
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

Fully Parallel Implementation of
Timing-Error-Tolerant LDPC Decoders

by

Xin Zuo

A thesis submitted for the degree of

Doctor of Philosophy

January, 2016

Department of Electronics and Computer Science

Faculty of Physical Science and Engineering

University of Southampton

Southampton SO17 1BJ

United Kingdom

c©Xin Zuo 2016

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Fully Parallel Implementation of Timing-Error-Tolerant LDPC Decoders

by Xin Zuo

In this thesis, the design of fully parallel timing-error-tolerant Low-Density Parity-

Check (LDPC) decoders have been investigated. LDPC decoders are employed in nu-

merous communication systems to correct channel-induced transmission errors. The

ever increasing data traffic demands require LDPC decoders that are capable of provid-

ing high processing throughput and low processing latency, using limited hardware re-

sources and energy consumption. The fully parallel implementation of LDPC decoders

is suitable, due to the high throughput and low latency that this affords. However,

the task of designing reliable Very Large-Scale Integration (VLSI) systems is becoming

increasingly challenging in successive generations of nanoscale fabrication technology.

This may be attributed to the occurrence of timing errors, during the processing, which

is caused by the increasing susceptibility to IR drop, inductive noise, crosstalk, elec-

trostatic discharges, particle strikes, switching noise and fabrication process variations.

Therefore it is necessary to consider the effects of timing errors during the design of

LDPC decoders. However, the characterization of the timing error tolerance of LDPC

decoders relying on measurements obtained directly from a fabricated Application-

Specific Integrated Circuit (ASIC) may not be preferable, owing to the associated risk

of wasting all of the invested time, effort and expense, if the ASIC is not able to fa-

cilitate the desired outcomes. A novel design flow is therefore proposed in this thesis,

which allows the use of simulations at the algorithm level to investigate the decoders’

error correction performance, with considerations of the occurrence of timing errors in

the hardware architecture level of the design.

LDPC decoders employing the optimal Sum-Product Algorithm (SPA) have a very

high implementation complexity, which requires the exchange of floating point proba-

bilities between the parity-Check Nodes (CNs) and Variable Nodes (VNs) in their factor

graph representation. In order to reduce the complexity, the Log-Sum-Product Algo-

rithm (Log-SPA) and the Min-Sum Algorithm (MSA) may be employed in the LDPC

decoder, which operate on a basis of Log-Likelihood Ratios (LLRs), rather than prob-

abilities. These LLRs can be represented by Fixed-Point (FP) numbers, comprising

a number of bits, referred to as the bit width. It is this bit width that proportion-

ally determines both the size of the memory required, as well as the area of the data

path and hence the energy consumption imposed. We propose the use of EXtrinsic

Information Transfer (EXIT) charts to select the bit widths for the Fixed-point LDPC

Decoders (LDPC-FDs), in order to achieve a desirable trade-off between the implemen-

tation complexity and the error correction performance. This significantly expedites

the LDPC-FD design process, relative to the conventional approach of using trial and

error based Bit Error Ratio (BER) simulations. Using the proposed design flow, timing

characteristics analysis may be performed on the LDPC-FD, in order to derive an error

model of the causes and effects of timing errors. With the aid of the error model, the

error correction performance of the LDPC-FD in the presence of timing errors may be

characterized. In this way, the parametrization of the LDPC-FD may be optimized.

In Stochastic LDPC Decoders (LDPC-SDs), only a single bit is exchanged between

each pair of CNs and VNs in each clock cycle. Over the course of several successive

clock cycles, the individual bits that are exchanged between a particular pair of nodes

collectively form a Bernoulli sequence, which may replace the LLRs conventionally used

in LDPC-FDs. Owing to this, the operations of the CNs and VNs may be implemented

using simple logic gates, which grants LDPC-SDs the practical opportunity for fully

parallel implementation. As in LDPC-FDs, the proposed design flow may be adopted to

guide the investigation of the timing error tolerance of LDPC-SDs, in order to determine

their optimal parametrization.

iii

Acknowledgements

I wish to thank my supervisors, Prof. Lajos Hanzo and Dr. Robert Maunder, for

their generous and consistent help. I am deeply indebted to them for their wise guidance

and stimulating encouragement through years. I could not complete this thesis without

their help. I also would like to express my gratitude to all the colleagues who helped

me to complete this thesis.

I also wish to express appreciation to my parents. This thesis is dedicated to my

beloved grandparents.

List of Publications

• X. Zuo, I. Perez-Andrade, R. G. Maunder, B. M. Al-Hashimi and L.

Hanzo, “Improving the Tolerance of Stochastic LDPC Decoders to Overclocking-

Induced Timing Errors: A Tutorial and a Design Example”, in IEEE Access, vol.

4, pp. 1607-1629, 2016.

• X. Zuo, S. Zhong, K. Li, I. Perez-Andrade, R. G. Maunder, B. M.

Al-Hashimi and L. Hanzo, “High throughput timing-error-induced VLSI im-

plementation of LDPC decoding using the base-minus-two fixed-point number

representation”, In preparation for IEEE Journal of Solid-State Circuits.

• X. Zuo, R. G. Maunder, and L. Hanzo, “Design of Fixed-Point Processing

Based LDPC Codes Using EXIT Charts”, in IEEE Vehicular Technology Confer-

ence (VTC Fall), pp.1-5, 5-8 Sept. 2011.

• Y. Huo, X. Zuo, R. G. Maunder, and L. Hanzo, “Inter-layer FEC de-

coded multi-layer video streaming”, in IEEE Global Communications Conference

(GLOBECOM), pp.2113-2118, 3-7 Dec. 2012.

• I. Perez-Andrade, X. Zuo, R. G. Maunder, B. M. Al-Hashimi and L.

Hanzo, “Analysis of voltage- and clock-scaling-induced timing errors in stochastic

LDPC decoders”, in IEEE Wireless Communications and Networking Conference

(WCNC), pp.4293-4298, 7-10 April 2013.

• C. Xu, X. Zuo, S. X. Ng, R. G. Maunder, and L. Hanzo, “Reduced-

Complexity Soft-Decision Multiple-Symbol Differential Sphere Detection”, in IEEE

Transactions on Communications, vol.63, no.9, pp.3275-3289, Sept. 2015.

v

Contents

Abstract ii

Acknowledgements iv

List of Publications v

1 Introduction 1

1.1 Error-Tolerant Design of Channel Decoders 1

1.2 Structure and Novel Contributions of the Thesis 3

2 Low-Density Parity-Check Codes 6

2.1 Channel Coding in Communication Systems 6

2.2 Linear Binary Block Codes . 8

2.2.1 Generator Matrix . 9

2.2.2 Parity-Check Matrix . 11

2.3 LDPC Codes . 12

2.3.1 Factor Graph . 12

2.3.2 LDPC Decoder and Decoding Algorithms 14

2.3.2.1 Decoder Schematic . 14

2.3.2.2 Sum-Product Algorithm 16

2.3.2.3 Log-SPA and Min-Sum Algorithm 18

Check Node Decoding: 18

Variable Node Decoding: 19

2.4 EXIT Charts . 20

2.4.1 Mutual Information . 21

2.4.2 EXIT Chart Analysis of LDPC Codes 23

2.5 Simulation Results . 26

2.5.1 Effect of Node Degree . 26

2.5.2 Effect of Code Length . 27

2.5.3 Effect of MSA and Log-SPA . 28

vi

2.5.4 BER Results . 30

2.6 Conclusions . 30

3 Minimum Bit Widths for Fixed-Point LDPC Decoder 32

3.1 Introduction . 32

3.2 Fixed-Point LDPC Decoders . 34

3.2.1 Fixed-Point LDPC Decoders and the Log-SPA Operations . . . 34

3.2.2 Two’s Complement Representation and Arithmetic 35

3.2.3 Look-Up Table . 37

3.3 Fixed-Point EXIT Chart Analysis . 38

3.4 Simulation Results . 41

3.4.1 Fraction Bit Width . 42

3.4.2 Clipping Range . 42

3.4.3 Integer Bit Width . 45

3.4.4 BER Results . 45

3.5 Conclusions . 48

4 Timing-Error-Tolerant Fixed-Point LDPC Decoder Using Base Minus

Two 50

4.1 Introduction . 50

4.2 Design Flow . 52

4.3 Fully Parallel Implementation of Fixed-Point LDPC Decoder 55

4.3.1 Fully Parallel Scheduling . 55

4.3.1.1 Decoding Scheduling and Double D-FFs 56

4.3.1.2 Metastability . 57

4.3.2 Structure of High-Degree Nodes 58

4.3.2.1 Conventional Structure 59

4.3.2.2 Proposed Structure . 61

4.3.3 Fixed-Point Numbers and Anti-Overflow Techniques 61

4.3.3.1 Two’s Complement Number Representation 61

4.3.3.2 Base Minus Two Number Representation 63

4.3.3.3 Boolean Expressions 64

4.4 Overclocking-Induced Timing Error Analysis 64

4.4.1 Timing analysis . 66

4.4.1.1 Nominal Propagation Delay 66

4.4.1.2 Fluctuation in Propagation Delay 67

4.4.2 Proposed error model . 68

4.4.3 Validation of the error model 69

vii

4.5 Comparison of Implementations . 69

4.5.1 Timing Characteristics . 69

4.5.1.1 Comparison of Number Representations 71

4.5.1.2 Comparison of high-degree Node Structures 73

4.5.2 Area . 74

4.5.3 Power Consumption . 75

4.5.4 BER Results and Discussions 75

4.5.4.1 Proposed Scheme and Benchmarkers 76

4.5.4.2 Simulation and Analysis in The Absence of Timing Errors 77

4.5.4.3 Simulation and Analysis in The Presence of Timing Errors 78

Decoder B and E . 79

Decoder A and B . 80

4.5.5 Tape-out . 81

4.6 Conclusions . 81

5 Stochastic LDPC Decoder 83

5.1 Introduction . 83

5.2 Fully Parallel Implementation of Stochastic LDPC Decoders 84

5.2.1 Basic Stochastic Computation 86

5.2.2 Stochastic Implementation of CNs 87

5.2.3 Stochastic Implementation of VNs 90

5.2.3.1 Channel Input Convertor 90

5.2.3.2 Computational Units 92

5.2.3.3 Anti-Latching Techniques 93

5.2.3.4 Decision Unit and Termination of Decoding 96

5.3 Simulation Results and Discussion . 98

5.3.1 Decision Unit Scheme . 98

5.3.2 Initialization of EMs . 100

5.3.3 Length of EMs . 102

5.3.4 Number of Decoding Cycles . 103

5.3.5 Noise Dependent Scaling . 103

5.4 Conclusion . 104

6 Timing-Error-Tolerant Stochastic LDPC Decoder 106

6.1 Introduction . 106

6.2 Overclocking-Induced Timing Error Analysis 109

6.2.1 Nominal Signal Propagation Delays of Stochastic LDPC Decoders 110

6.2.2 Propagation Delay Fluctuation 112

viii

6.2.3 Effects of timing errors in Stochastic LDPC Decoders 112

6.2.3.1 Timing Error Type I 114

6.2.3.2 Timing Error Type II 114

6.2.3.3 Timing Error Type III 118

6.2.4 Validation in SPICE . 118

6.3 Modified Stochastic LDPC Decoder 119

6.3.1 Modified EM . 119

6.3.2 Overclocking-Induced Timing Error Analysis 121

6.4 Simulation Results and Discussions . 121

6.4.1 Inherent Timing Error Tolerance 123

6.4.1.1 Tolerance to All Types of Timing Errors 123

6.4.1.2 Tolerance to Timing Error Type I 125

6.4.2 Improved Timing Error Tolerance 125

6.4.3 Processing Throughput . 127

6.4.4 Processing Energy Consumption 128

6.5 Conclusions . 129

7 Conclusions and Future Work 130

7.1 Summary and Conclusions . 130

7.2 Suggestions for Future Work . 132

List of Figures 133

List of Tables 138

List of Symbols 141

Glossaries 145

Bibliography 145

Index 158

Author Index 158

ix

Chapter 1

Introduction

1.1 Error-Tolerant Design of Channel Decoders

The data traffic carried by wireless communication is increasing explosively in every cor-

ner of the world nowadays, from cell phone users on the ground to the aircraft above in

the sky, from the Tactile Internet [1, 2] to cloud computing, and so on. However, wireless

communication channels impair the transmitted data, owing to the effects of noise, fad-

ing and interference [3]. This imposes transmission errors, which must be repaired in the

receiver using channel decoders for error correction [3]. Therefore more and more pow-

erful channel decoders are required, which are capable of processing massive amounts of

data using less processing time and without using excessive hardware resources or energy

consumption. The rise of ‘turbo-like’ channel decoders [4, 3, 5] using iterative decoding

algorithms has illuminated the path towards this goal, due to their outstanding error

correction capability. In particular, Low-Density Parity-Check (LDPC) decoders [6, 7]

are a class of ‘turbo-like’ decoders that are particularly suited to very high processing

throughputs, when implemented in hardware. This is because LDPC decoders offer

great potential for fully parallel and distributed computation, owing to the parallel-

friendly structure of the factor graph [8, 9] that defines their operation. However, there

are significant challenges in converting this potential into practice, since the graph is

usually too complex to be fully implemented without making some hardware specific op-

timizations. Therefore, the code design has to be considered jointly with the implemen-

tation. In one approach, the graph of an LDPC code may be simultaneously designed

to be sufficiently random to ensure a desirable error correction performance as well as

to be sufficiently structured to allow the decoder to be implemented based on a part of

the graph that can be reused to implement the other parts of the graph. In this way,

the implementation complexity of the decoder can be significantly reduced. Numerous

1

1.1. Error-Tolerant Design of Channel Decoders 2

previous research efforts [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]

have investigated the partially parallel approach, which is a compromise of the fully par-

allel implementation. Only recently a non-binary LDPC decoder Application-Specific

Integrated Circuit (ASICs) has been implemented in a fully parallel manner [27, 28],

owing to the small graphs that are used in non-binary LDPC codes [29, 30]. In the

future, fully parallel implementations of channel decoders will become more and more

common, as fabrication technology keeps improving.

On the other hand, the task of designing completely reliable large-scale ASIC is

becoming increasingly challenging in successive generations of nanoscale fabrication

technology. This may be attributed to the increasing susceptibility of lower scale tech-

nology to processing errors, including IR drop1, inductive noise, cross talk, electro-

static discharges, particle strikes, switching noise and fabrication process variations

[31, 32, 33, 34, 35, 36, 37]. As fabrication technology is developing to the sub-65 nm

regime, it is no longer possible to guarantee the reliability of nanoelectronic ASICs [37].

Therefore the design of future digital circuits must consider the processing errors that

may occur. Motivated by this, error-tolerant electronic design has already been adopted

in numerous applications [38, 39, 40, 41, 42, 33, 43, 44].

Fortunately, the error correction capability of channel decoders grants them some

inherent tolerance to processing errors, as we shall demonstrate in this thesis. More

specifically, we characterize the error correction performance of fully parallel LDPC

decoders in the presence of timing errors. In order to characterize timing error tolerance,

measurements may be taken from a fabricated ASIC implementation of an the LDPC

decoder. However, the characteristics of the tape-out 2 may be unpredictable during the

design stage with a risk that the tape-out will be unsuccessful. That risk increases as the

complexity of the design increases. In this event, the huge amount of design time, effort

and expense required for a tape-out would be wasted, if it was unsuccessful. Owing to

these issues, we propose the use of simulations at the algorithm level to characterize

fully parallel LDPC decoders. However, we propose to incorporate a model of the causes

and effects of timing errors, which is parametrized by characteristics obtained from the

later design stages. The conventional design flow and the proposed modification are

illustrated in Figure 4.1. In this thesis, we will characterize the timing error tolerance of

fully parallel implementation of LDPC decoders by using the proposed design flow. This

simulation-only approach de-risks the expensive and time-consuming fabrication of an

1The resistance of the power distribution network in integrated circuit systems may cause a drop
in the power supply voltage, commonly referred to as the IR drop, where I is the current flowing in
the network and R is the resistance.

2In electronics design, tape-out or tapeout is the final result of the design for integrated circuits,
which is sent for manufacture.

1.2. Structure and Novel Contributions of the Thesis 3

ASIC, allowing confidence to be gained in a timing-error-tolerant design. Furthermore,

our simulations at the upper levels of the design flow are immune to random variation

and are readily repeatable, using synthesis processing, SPICE [45, 46, 47] simulation or

Cadence [48] simulation.

1.2 Structure and Novel Contributions of the The-

sis

The outline of thesis is presented below:

• Chapter 2 briefly reviews linear binary block codes, LDPC codes and EXtrinsic

Information Transfer (EXIT) charts [49, 50]. The EXIT charts of LDPC decoders

using floating point operation is studied. We present define Bit Error Ratio (BER)

results to characterize the error correction performance of the LDPC decoders

and to validate the predictions that we made using EXIT charts. In the following

chapters, EXIT charts will be used as a design tool during the implementation of

LDPC decoders.

• Chapter 3 extends the EXIT charts of Chapter 2 to the characterization of the

Fixed-point LDPC Decoders (LDPC-FDs) using Two’s Complement (TC) Fixed-

Point (FP) representation. Based on these EXIT charts, the bit width of 4 is

recommended for the TC representation LDPC-FDs, in order to strike a desirable

trade-off between the complexity and the error correction performance.

• Chapter 4 proposes a fully parallel implementation of LDPC-FDs, using a 4-

bit Base Minus Two (BMT) representation, rather than the conventional TC

representation. The causes and effects of timing errors are modelled and used for

conducting simulations to characterize the timing error tolerance of the LDPC-

FDs. Based on the simulations, the LDPC-FD using BMT is demonstrated to

have superior timing error tolerance than these using TC, as well as 10% lower

ASIC area, 10% lower power consumption and 23% lower clock period.

• Chapter 5 introduces the stochastic implementation of LDPC decoders, which

only needs to process single bits in each clock cycle, rather than 4 bits as in FP

implementation. The building blocks of stochastic computation and the fully par-

allel implementation of the LDPC-SDs are discussed in detail. The error correc-

tion performance of Stochastic LDPC Decoders (LDPC-SDs) are comprehensively

1.2. Structure and Novel Contributions of the Thesis 4

characterized as functions of the implementation parameters. Based on these sim-

ulation results, a particular parametrization of the fully parallel implementation

of the LDPC-SDs is recommended.

• Chapter 6 employs the fully parallel LDPC-SD of Chapter 5 and investigates

its timing error tolerance. Similarly to Chapter 4, an error model is derived and

used for conduction simulations. By examining the causes and effects of each type

of timing error, we have pinpointed the bottleneck of the LDPC-SD, in terms of

timing error tolerance. Motivated by this, we propose a modified LDPC-SD design

to significantly improve the timing error tolerance. By comparing the simulation

results, this modified Edge Memory (EM) structure is demonstrated to achieve

a higher tolerance to timing errors, while reducing the required implementation

resources at the same time. A particular 41% reduction in clock period and 28.6%

in the number of logic gates for building EMs are reported.

• Chapter 7 concludes the main findings of the thesis and presents suggestions for

future research.

In summary, the novel contributions of this thesis are:

• the first comprehensive tutorial on the operation of fully parallel stochastic LDPC

decoders;

• error models for the causes and efforts of timing errors in fully parallel FP and

stochastic LDPC decoders;

• comprehensive characterizations of the error correction performance of fully par-

allel floating-point, FP and stochastic LDPC decoders as function of their param-

eters both in the absence and presence of timing errors;

• a technique that allows EXIT chart analysis to be used for the first time to

characterize and parametrize hardware implementation of channel decoders; in

order to achieve a desirable trade-off between error correction performance and

complexity;

• first BMT-based implementation of LDPC-FD, which significantly improves the

timing error tolerance, clock period, chip area and energy consumption, compared

to TC-based implementations;

• a novel structure for the processing nodes of LDPC-FDs, which minimizes and

equalizes the propagation delay of all circuit paths through the nodes, further

improving the clock period;

1.2. Structure and Novel Contributions of the Thesis 5

• a novel design flow that utilizes simulation at the algorithm level to model the

causes and effects of timing errors, as characterized at the implementation level

of the design flow;

• a novel modification to the LDPC-SD which significantly improves its tolerance

to timing errors.

Chapter 2

Low-Density Parity-Check Codes

2.1 Channel Coding in Communication Systems

Channel coding refers to a technique used in digital communications that is designed

to protect the transmitted data from channel impairments, such as noise, interference

and fading [51], therefore improving the performance of communication systems. The

research of channel coding can be traced back to the pioneering work of Shannon’s pub-

lication in 1948 [52], which suggested that there always exists a channel coding scheme

that can achieve error-free communications despite the prevailing channel conditions,

provided that the channel capacity is not exceeded by the channel coded throughput.

Since then, the research community has endeavoured to transform Shannon’s theory

into practice. Commonly, this data protection is achieved by transforming the original

bit sequence to some specially encoded sequence, which includes additional redundant

bits. In this case, a channel code is also known as a Forward Error Correction (FEC)

or an error-correcting code. During transmissions using a channel code, the channel

decoder at the receiver is able to detect and correct transmission errors and therefore

recover the data, based on its knowledge of the encoding process that is used in the

transmitter. However, channel coding may not allow the channel decoder to correct

all transmission errors, where the ratio between the number of remaining errors and

the number of original data bits is referred to as Bit Error Ratio (BER), which is used

to measure the error correction capability of the channel code. Figure 2.1 depicts a

block diagram of a baseband digital communication system, where the channel coding

is shown as a pair of encoder and decoder blocks1.

1This is only an inexact sketch to show the deployment and role of channel coding in communication
systems, with other necessary blocks omitted, such as radio-frequency stage, synchronization, etc.

6

2.1. Channel Coding in Communication Systems 7

Figure 2.1: Baseband block diagram of a digital communication system. The dashed
boxes indicate optional blocks, while the solid ones are essential.

Various FEC codes have been proposed and all the codes can be classified into three

subcategories2, namely block codes, convolutional codes [53] and concatenated codes [4,

3, 5]. A block code3, such as a BCH code [54, 55], Reed-Solomon code [56] or an LDPC

code [6, 7], expands a block of bits into a codeword, where the size of both the uncoded

block and the encoded codeword are fixed. By contrast, a convolutional encoder may

accept bit streams of arbitrary size. The decoders of both types of codes may search the

set of all valid encoded codewords for the one that most closely resembles the received

bit y using hard-decision algorithms, which only accept inputs comprising binary digits.

In this case, the demodulator must make decisions as to whether each received bit is a

1 or a 0, before providing inputs to the channel decoder. However, this leads to a lack

of reliability in the binary values handled by the hard-decision algorithms, limiting the

error correcting performance of the block and convolutional decoders. Motivated by

this, so-called soft-decision algorithms have been developed, such as the soft-decision

Viterbi algorithm used for convolutional decoders [57, 58], which significantly improve

the decoders’ error correcting capability. In contrast to hard-decision algorithms, soft-

decision algorithms process soft inputs and may generate soft outputs as well, which

represent binary digits with multiple level of reliabilities, allowing the decoder to search

for a valid codeword with higher accuracy. More specifically, soft decision expresses not

only what the most likely value of each bit is, but also how likely that value is. However,

in order to further improve the error correcting capability of channel codes, two or more

block codes or convolutional codes may be combined to work in cooperation, such as in

the turbo code [4]. Such a hybrid code may be referred to as a concatenated code, where

each constituent block or convolutional code is referred to as a constituent code. The

codeword of a concatenated coding scheme is generated using either parallel or serial

concatenation of the constituent encoders, while the decoded codeword may be found

2Only linear codes are considered in depth by this thesis.
3Block codes also known as algebraic codes, since they operate on the basis of the algebraic prop-

erties of finite fields.

2.2. Linear Binary Block Codes 8

by iteratively exchanging soft decisions indicating whether the encoded bits are binary 1

or 0 between the constituent decoders. These iterative decoding algorithms schemes are

broadly adopted in modern communication systems, owing to their outstanding error-

correcting performance. Figure 2.2 lists the most relevant previous publications along

two main timelines, namely the timeline of linear binary block codes and that of the

convolutional codes. Each timeline is represented by a vertical line with the downward

direction representing the chronological order, where each knot on the vertical lines

represent a publication discussed above. In the remainder of this thesis, we focus on

linear binary block codes and more specifically on LDPC codes, which are block codes

that can benefit from the iterative decoding approach of concatenated codes.

Figure 2.2: Brief timeline of linear binary block codes and convolutional codes.

2.2 Linear Binary Block Codes

As discussed in Section 2.1, in block codes, a block of information bits having a fixed

length of K bits is encoded into a codeword having a fixed length of N bits, where

N > K, since encoding inserts additional redundant bits. A block code can be denoted

as a (N,K) code, with the ratio between the number of information bits and codeword

bits denoted as the coding rate, R = K
N

. Binary linear block codes are a class of block

code, which insert linear parity sums of information bits as the redundant bits, which

are hence named parity bits. The encoder of a binary linear block code is associated

with the so-called generator matrix having the dimensions of K × N , which defines

the generation of all the parity bits. The generator matrix is uniquely paired with a

2.2.1. Generator Matrix 9

Parity-Check Matrix (PCM), upon which the corresponding decoder relies. The pair of

matrices are discussed with examples in the following subsections.

2.2.1 Generator Matrix

Table 2.1: An example of parity bits, obtained from a set of information bits. Here,
the notation ⊕ refers to modulo-2 addition.

information bits parity bits
u1, u2, u3 p4 = u1 ⊕ u2, p5 = u1 ⊕ u2 ⊕ u3

In a binary linear block code, the parity bits are obtained as modulo-2 additions

of information bits. For example, a parity sum of the first two bits out of the three

information bits, u1, u2 and u3, is calculated as u1 ⊕ u2, while a parity sum of the

three information bits is calculated as u1 ⊕ u2 ⊕ u3, notated as p4 and p5 in Table 2.1,

respectively. Here, the notation ⊕ refers to the modulo-2 addition, which calculates

0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1 and 1 ⊕ 1 = 0. Therefore, each pattern of the three

information bits, u1, u2 and u3, is uniquely transformed into a codeword of five bits,

u1, u2, u3, p4 and p5, which defines a (5, 3) binary linear block code. By enumerating

all the patterns of the information bits and the corresponding codewords, the parity

sums can be interpreted as a Look-Up Table (LUT), referred to as the codebook, which

can be used by the decoder to search for the codeword that most closely resembles the

received bits or soft-decisions. Table 2.2 presents the LUT of the (5, 3) code defined by

the parity sums of Table 2.1.

Table 2.2: The LUT of the (5, 3) code defined in Table 2.1.

message codewords
000 00000
001 00101
010 01011
011 01110
100 10011
101 10110
110 11000
111 11101

However, as the length K of the information block increases, the corresponding code-

book may become too large to implement in the encoder and decoder, since the LUT has

2K entries, which grows exponentially with K. Therefore, the encoder may employ a

2.2.1. Generator Matrix 10

compressed version of the LUT, which is the so-called generator matrix. The sequence of

the K information bits can be denoted as a vector u = [u1, u2, · · · , uK], while the addi-

tional sequence of parity bits can be written as p = [pK+1, pK+2, · · · , pN], which may be

concatenated to obtain the codeword c = [u,p] = [u1, u2, · · · , uK , pK+1, pK+2, · · · , pN].

Since the parity bits of each codeword are linear combinations of information bits, any

codeword in the N -dimensional vector space described by the LUT can be obtained

as a combination of the vectors in the K-dimensional subspace {c}, which contains K

linearly independent vectors {c1, c2, · · · , cK}. In this way, any valid codeword may be

obtained as a linear combination of all the codeword vectors in the subspace,

c = u1c1 + u2c2 + · · ·+ uKcK . (2.1)

The generator matrix can be obtained from the K base vectors {c1, c2, · · · , cK} as,

G =


c1

c2

...

cK

 =


c1,1 c1,2 · · · c1,N

c2,1 c2,2 · · · c2,N

...

cK,1 cK,2 · · · cK,N

 , (2.2)

where the elements in a base vector u1, u2, · · · , uK , pK+1, pK+2, · · · , pN is replaced by

ci,j, i ∈ {1, 2, · · · , K}, j ∈ {1, 2, · · · , N}, for the sake of consistency in the mathe-

matical representation. The corresponding encoding process can be represented as the

multiplication of the vector of information bits u1×K and the generator matrix GK×N ,

according to

c1×N = u1×K ·GK×N . (2.3)

If all the bits in all the rows {c1, c2, · · · , cK} of the generator matrix G are arranged in

the same order as [u1, u2, · · · , uK , pK+1, pK+2, · · · , pN] shown in Table 2.2, then the left-

hand part of the generator matrix can be transformed into an identity matrix through

elementary row and/or column operations. In this case, the code is called a systematic

code, while the generator matrix G is called a systematic generator matrix, having the

structure

GK×N = [IK
...PK×M], (2.4)

where M = N −K and IK is an identity matrix having the dimensions of K ×K. The

example (5, 3) code of Table 2.1 has the left-hand systematic generator matrix of

G =

 1 0 0 1 1

0 1 0 1 1

0 0 1 0 1

 . (2.5)

2.2.2. Parity-Check Matrix 11

Accordingly, the resultant codeword will contain a duplicate of the original message in

the left-hand part, according to

c1×N = [u1×K
...p1×M], (2.6)

2.2.2 Parity-Check Matrix

The PCM H of a binary linear block code is uniquely paired with its generator matrix.

The PCM has the dimensions of M ×N and is defined such that

G ·HT = 0K×M , (2.7)

where 0 represents an all-zeros matrix and T is the transpose operation. Corresponding

to (2.4), H has a systematic form of

HM×N = [PT
M×K

...IM]. (2.8)

Therefore, the systematic PCM of the previous example (5,3) LDPC code from Table 2.1

can be represented as

H =

[
1 1 0 1 0

1 1 1 0 1

]
(2.9)

The PCM can be used by a block decoder to check whether a received codeword satisfies

the parity sums, which are defined at the encoder. Explicitly, a valid codeword encoded

from (2.3) should have an all-zero syndrome, which can be obtained as the multiplication

of the codeword and the PCM, according to

s1×M = ĉ ·HT = û·G ·HT = 01×M , (2.10)

where û and ĉ are the receiver’s estimations of u and c, respectively, while the resultant

vector s is called the syndrome. If an all-zero syndrome is found using (2.10), then the

codeword ĉ estimated at the decoder may be considered to be a valid codeword from

the set {c}. By contrast, if s 6= 0, then the estimated codeword ĉ definitely contains

errors. In the latter case, the particular value of s identifies a particular error pattern

in a one-to-one manner [51]. Therefore, the syndrome may be used to pinpoint and

correct the error bits, relying on a particular algorithm designed for this purpose. In

particular, the following section will discuss a powerful algorithm for correcting errors

in the specific class of binary linear block codes known as LDPC codes. Once ĉ as been

2.3. LDPC Codes 12

recovered correctly, the decoded information bits can be obtained according to

û = ĉ ·G−1. (2.11)

2.3 LDPC Codes

LDPC codes [6] are a particular type of binary linear block code, whose PCM contains

only a small number of ‘1’s, giving a ‘low-density’. Since LDPC codes usually have

a block length N of a few hundreds to thousands of bits, a graphical representation

may be used to represent the complex characteristics of the large PCM. This graph is

referred to as the factor graph [8, 9] or Tanner graph [59], which is uniquely mapped to

the matrix representation, namely to the pair of the generator matrix and the PCM,

as introduced in Section 2.2. LDPC codes exhibit an outstanding error correction

capability, when using iterative soft-decision decoding algorithms, such as the Sum-

Product Algorithm (SPA) and the Min-Sum Algorithm (MSA) [8], which operate on

the basis of the topology defined by the factor graph. As a result, LDPC codes have

been found in numerous practical applications, such as code-division multiple-access

applications [60, 18, 61], IEEE 802.16e [62, 26] and IEEE 802.11n/ac [63]. The factor

graph and the iterative decoding algorithm are discussed in the following subsections.

2.3.1 Factor Graph

Figure 2.3: An example factor graph, corresponding to the (5, 3) LDPC PCM of (2.9),
although this (5, 3) code is too small to be considered as a valid LDPC code.

The parametrization of an LDPC decoder is completely specified by its factor graph

[59, 8, 9], which has a design depending upon that of the corresponding PCM. Fig-

ure 2.3 illustrates the factor graph of an LDPC code which uses the N encoded bits

to represent K information bits, where N > K. Figure 2.3 depicts an example factor

graph, corresponding to the (5, 3) LDPC PCM of (2.9). The factor graph is comprised

2.3.1. Factor Graph 13

of M = N − K parity-Check Nodes (CNs) and N Variable Nodes (VNs). The CNs

and VNs are connected by the edges, indicated as interconnections in Figure 2.3. The

cth CN has a degree of dc, if it has dc number of Input/Output (IO) ports, which are

connected to dc different VNs by edges within the factor graph, as shown in Figure 2.3.

Similarly, the vth VN has a degree of dv, if it has (dv + 1) IO ports, one of which is

connected to the channel and the remaining dv ports are connected to different CNs by

edges within the factor graph. The total number of edges in the factor graph is notated

as Nedge, which is equal to the sum of the degrees of all the CNs or equivalently, of all

the VNs. During LDPC decoding, the CNs and VNs work together to refine the soft

messages associated with the N LDPC-encoded bits, which are then used to decide the

values of N decoded bits, as shown in Figure 2.3. More specifically, the VNs and CNs

iteratively exchange the soft messages along the edges of the factor graph. One decod-

ing iteration in a LDPC decoder is defined as a period in which all the CNs and the VNs

are activated once. The LDPC decoder continues processing soft messages iteration by

iteration, until a fixed number of iterations is reached or until an early-stopping crite-

rion is satisfied, such as having found an all-zero syndrome as demonstrated in (2.10)

[64]. Following this, the K information bits may be extracted from the N decoded bits

and output, as demonstrated in (2.11).

An LDPC code is referred to as regular, if all CNs have the same degree dc and

all VNs have the same degree dv, and it is referred to as irregular otherwise. Note

that the factor graph may comprise so-called cycles, which are looping paths along the

edges between connected CNs and VNs, where the number of edges in a cycle is called

its girth. The girth of cycles can be as small as 4, as illustrated by the dashed lines

in Figure 2.3, which provides a simple example factor graph for the PCM of (2.9).

The minimum girth of all the cycles in a factor graph is one of the main factors that

determines the error-correcting performance of the corresponding LDPC code. This is

because any unreliable soft messages loop quickly within small-girth cycles, increasing

their apparent credibility quickly compared to reliable soft messages within large-girth

cycles. This prevents the decoder from achieving the efficient exchange of reliable

soft messages between CNs and VNs [59, 9]. Therefore, the design of LDPC codes in

practical standards usually has a particular focus on eliminating the smallest girth-4

cycles in the factor graph, making the best efforts to achieve a minimum girth of 6, 8,

or even higher [65, 63]. Furthermore, the node degrees dc and dv, code length N and

coding rate K
N

also significantly affect the error-correcting performance of LDPC codes.

Irregular LDPC codes usually outperform regular counterparts, since the additional

freedom that is afforded when selecting the node degree distribution allows the design

of the factor graph to eliminate more small-girth cycles. Similarly, since a larger factor

2.3.2. LDPC Decoder and Decoding Algorithms 14

graph is less likely to contain small-girth cycles, LDPC codes having larger code lengths

exhibit a better error-correcting performance than shorter counterparts. Furthermore,

LDPC codes having a lower coding rate usually outperform codes having higher coding

rates, since each uncoded bit is afforded better protection by the greater number of

parity bits involved.

2.3.2 LDPC Decoder and Decoding Algorithms

Based on the factor graph, numerous soft-decision decoding algorithms have been pro-

posed for LDPC decoding [8, 64]. Among these algorithms, the SPA [8, 64] uses prob-

abilities to represent the soft messages exchanged between CNs and VNs. Other soft-

decision LDPC decoding algorithms usually represent the soft messages using so-called

Log-Likelihood Ratios (LLRs) [11, 15, 66, 67], rather than probabilities. These algo-

rithms include the Log-SPA algorithms [8, 11, 68] and the MSA [11], which is a widely

used simplification of the Log-SPA. We will discuss the schematic of the LDPC decoder,

as well as the SPA, Log-SPA and MSA in the following subsections.

2.3.2.1 Decoder Schematic

Figure 2.4 provides the schematic of an LDPC encoder and the corresponding decoder.

In Figure 2.4, the LDPC encoder generates the codeword c according to (2.3), which is

then transmitted using Binary Phase Shift Keying (BPSK) modulation over an Additive

White Gaussian Noise (AWGN) channel. The LDPC decoder can be viewed as a serial

concatenation of two Soft-Input Soft-Output (SISO) constituent decoders, which are

connected using the interleaver π, which permutes the order of the edges connecting the

CNs to the VNs, as well as the de-interleaver π−1 for performing the opposite operation.

The SISO decoder for performing the computations of all CNs may be referred as the

parity-Check Node Decoder (CND), while the other SISO decoder is referred to as the

Variable Node Decoder (VND), which performs the computations of the VNs.

The CND and VND may employ soft messages in the form of probabilities or LLRs,

to represent the uncertainty introduced by the noisy channel. When a hard decision is

used to convert a soft information sequence, Figure 2.4 applies a diacritical hatˆto the

notation of the corresponding bit vector, in order to indicate the resultant estimation.

Moreover, a sequence of soft information is indicated by applying a diacritical tilde˜to

the notation of the corresponding bit vector. The superscripts a, e and p are used to

represent a priori, extrinsic and a posteriori soft information sequences, respectively.

The feedback provided to one SISO decoder from the other is referred to as the a

2.3.2. LDPC Decoder and Decoding Algorithms 15

priori probabilities or LLRs, while the input from the channel is referred to as the

channel probabilities or LLRs, or are also known as the intrinsic probabilities or LLRs.

The output provided from one SISO decoder to the other is referred to as the extrinsic

probabilities or LLRs. The combination of all soft information contained in the channel,

a priori and extrinsic probabilities or LLRs is referred to as the a posteriori probabilities

or LLRs, which are used to determine whether each encoded bit has a binary value of

1 or 0.

The flow diagram of Figure 2.5 shows how the decoding algorithms for LDPC codes

work. During the first initialization step, all the a priori inputs of VNs are set to

indicate that no a priori information is available. As shown in Figure 2.5, the iterative

decoding process continues until a pre-defined number of iterations is completed or until

the validity of the recovered bit sequence ĉ is confirmed by the acquisition of a zero-

valued syndrome, according to (2.10). If the hard decisions ĉ satisfy (2.10), the decoding

is terminated immediately and the decoder decides that a valid decoded codeword has

been found. By contrast, if the pre-defined limit upon the number of iterations is

reached without finding a valid codeword, then a decoding failure is declared and a

tentative decoded result ĉ is output. Either way, the systematic output corresponding

to the transmitted information bits u is obtained according to (2.11).

Figure 2.4: The schematic of an LDPC code, which comprises an encoder and an
iterative decoder.

2.3.2. LDPC Decoder and Decoding Algorithms 16

Terminate decoding

Declare failure

Terminate decoding,

Declare success

û = ĉ ·G−1

CND

VND

Initialization

Yes

Yes

No

No
Output results

reached?

number of iterations

The maximum

s = ĉ ·HT = 0?

Figure 2.5: The flow diagram of iterative decoding.

2.3.2.2 Sum-Product Algorithm

As introduced previously, the SPA uses probabilities to represent the soft messages,

denoted as PA, where the subscript A corresponds to a specific port of a VN or CN

that the probability is passed along. More specifically, the probability PA quantifies the

probability that the corresponding encoded bit has a binary value of 1. This notation

will be used throughout all the following discussions, if not otherwise specified. In the

case where BPSK modulation maps bits to symbols according to x = 1 − 2c, we have

an effective throughput of η = R bits per symbol and an energy per bit of Eb = 1
η
. The

AWGN channel of Figure 2.4 provides the received symbols according to y = x + n,

where n is complex Gaussian distributed with a mean of zero and a variance of N0

2

in each of the real and imaginary parts. Here, N0 is the noise power spectral density,

giving an Signal to Noise Ratio (SNR) of 1
N0

and an SNR per bit of Eb/N0 = 1
ηN0

. The

2.3.2. LDPC Decoder and Decoding Algorithms 17

BPSK demodulator provides the probabilities c̃ according to [67, 66, 11],

c̃ =
1

1 + exp(4η · Eb

N0
· Re(y))

. (2.12)

At the start of the iterative decoding process, the a priori probabilities provided to the

VND are all set to 0.5. Whenever a CN or VN is activated, the probability associated

with an encoded bit is output on each of its ports. The probabilities that are output on

a particular port of a CN or VN are calculated as a function of the probabilities that

are input to all of the other ports of that node, via the edges of the factor graph. The

only exception to this is the probability that is output on the port of the VN connected

to the channel, which is calculated as a function of the probabilities that are input to

all ports of that VN, including the port connected to the channel. In the case of CNs

and VNs, an output probability PC that is obtained by combing two input probabilities

PA and PB as given by

PC = fCN(PA, PB) = PA(1− PB) + PB(1− PA), (2.13)

PC = fVN(PA, PB) =
PAPB

PAPB + (1− PA)(1− PB)
, (2.14)

respectively [8, 11, 66]. These functions may be extended for more than two input

probabilities, by recursively substituting (2.13) or (2.14) into itself. For example, three

input probabilities may be combined according to

PD = fCN(PA, PB, PC)

= PA(1− fCN(PB, PC)) + fCN(PB, PC) · (1− PA),
(2.15)

PD = fVN(PA, PB, PC)

=
PA · fVN(PB, PC)

PA · fVN(PB, PC) + (1− PA)(1− fVN(PB, PC))

=
PAPBPC

PAPBPC + (1− PA)(1− PB)(1− PC)
.

(2.16)

Each a posteriori probability is obtained as the function fVN of the corresponding

channel probability and all the a priori probabilities provided to the corresponding

VN. As shown in Figure 2.4, each a posteriori probability is converted into a decoded

bit having the binary value of 1 if the probability is greater than 0.5, or to the binary

value of 0 otherwise.

2.3.2. LDPC Decoder and Decoding Algorithms 18

2.3.2.3 Log-SPA and Min-Sum Algorithm

In contrast to the SPA, Log-SPA and MSA uses LLRs instead of probabilities to rep-

resent the soft information, which are defined as x̃ = ln 1−PA
PA

[11, 64]. The BPSK

demodulator provides the LLRs c̃ according to [67, 66, 11]

c̃ = 4η · Eb

N0

· Re(y)

At the start of the iterative decoding process, the a priori LLRs provided to the VND

are all set to zero, which corresponds to PA = 0.5.

At the end of the iterative decoding process, the LLRs are converted into hard

decisions, according to

ĉk =

{
0, c̃p

k > 0

1, c̃p
k ≤ 0

. (2.17)

In the Log-SPA and MSA, the functions fCN and fVN are modified as discussed in

the following subsections. These modifications have the advantage of using the lower

complexity min and sum operations, rather than the sum and product operations of the

SPA. Also, LLRs have a lower dynamic range than probabilities, which makes hardware

implementation simpler.

Check Node Decoding: As shown in Figure 2.4, the CND and VND are employed

to convert sequences of a priori LLRs into sequences of extrinsic LLRs. The CND

employs the boxplus operator [69, 8] to combine LLRs according to

p̃e
3 = fCN(p̃a

1, p̃
a
2) = p̃a

1 � p̃a
2 = sign(p̃a

1)sign(p̃a
2) min(|p̃a

1|, |p̃a
2|)

+ log
(
1 + e−|p̃

a
1+p̃a2|

)
− log

(
1 + e−|p̃

a
1−p̃a2|

)
(2.18)

≈ sign(p̃a
1)sign(p̃a

2) min(|p̃a
1|, |p̃a

2|). (2.19)

Here, we refer to an LDPC decoder that adopts the full correction terms of (2.18)

as the ‘Log-SPA’. By contrast, we use ‘MSA’ to refer to a decoder that neglects the

logarithmic correction terms of (2.18), as shown in (2.19). The correction terms on

the right of (2.18) grant the Log-SPA a superior error correction performance to the

MSA, at the cost of having a high computational complexity [8, 70]. As a compromise,

the correction terms can be approximated by several means [67, 66, 11]. In particular,

LUTs can be utilized in a fixed-point decoder, in order to pre-compute the correction

terms, as will be investigated in Chapters 3 and 4.

The CND converts the a priori LLR sequence p̃a into the extrinsic LLR sequence p̃e,

2.3.2. LDPC Decoder and Decoding Algorithms 19

as shown in Figure 2.4. This is achieved by decomposing p̃a into the sets of dc LLRs that

are associated with each individual CN c. Each set {p̃a
1, p̃

a
2, . . . , p̃

a
L} comprises L = dc

LLRs and is converted into the corresponding set of extrinsic LLRs {p̃e
1, p̃

e
2, . . . , p̃

e
L},

which may be achieved by recursively substituting (2.18) into itself, owing to the asso-

ciative property of the boxplus � operator [8]. For example, three input probabilities

may be combined according to

p̃e
4 = fCN(p̃e

1, p̃
e
2, p̃

e
3)

= (p̃e
1 � p̃a

2) � p̃a
3.

(2.20)

The so-called Forward Backward Algorithm (FBA) have been employed to obtain the set of

extrinsic LLRs in[11, 64], according to

p̃e
k =


b̃2 if k = 1

f̃k−1 � b̃k+1 if 1 < k < L

f̃L−1 if k = L

, (2.21)

where the LLRs f̃k may be calculated using a forwards recursion, according to

f̃k =

{
p̃a

1 if k = 1

p̃a
k � f̃k−1 if k > 1

, (2.22)

and the LLRs b̃k may be calculated using a backwards recursion, according to

b̃k =

{
p̃a
L if k = L

p̃a
k � b̃k+1 if k < L

. (2.23)

Finally, these sets of extrinsic LLRs are concatenated to obtain the extrinsic LLR

sequence p̃e = [p̃e
1, p̃

e
2, . . . , p̃

e
L].

Variable Node Decoding: Similarly, the VND combines the a priori LLR sequence

r̃a and the channel LLR sequence c̃ in order to obtain the extrinsic LLR sequences r̃e

and the a posteriori LLR sequence c̃p, as shown in Figure 2.4. This is achieved by

decomposing r̃a into the sets of dv LLRs that are associated with each individual VN v.

Each set is appended with the LLR c̃v from c̃ that corresponds to the vth variable node,

in order to obtain {x̃a
1, x̃

a
2, . . . , x̃

a
L} = {r̃a

1, r̃
a
2, . . . , r̃

a
dv
, c̃v}, where L = dv + 1. These

are then converted into the set of extrinsic LLRs {x̃e
1, x̃

e
2, . . . , x̃

e
dv
, x̃e

L} by recursively

substituting x̃e
3 = fVN(x̃a

1, x̃
a
2) = x̃a

1+x̃a
2 into itself. For example, three input probabilities

2.4. EXIT Charts 20

may be combined according to

x̃e
4 = fCN(x̃e

1, x̃
e
2, x̃

e
3)

= (x̃a
1 + x̃a

2) + x̃a
3.

(2.24)

Similarly to the CND decoding, these may be converted using FBA of (2.21), (2.22)

and (2.23), but employing the plus operator + instead of the boxplus operator �, as

shown in (2.25) (2.26) and (2.27). Namely the function fVN simply sums two LLRs as

x̃e
3 = fVN(x̃a

1, x̃
a
2) = x̃a

1 + x̃a
2. These sets of extrinsic LLRs are then decomposed in order

to obtain LLRs for the sequences r̃e and c̃p. More Specifically, the extrinsic sequence

of LLRs that are fedback to the CND is obtained as r̃e = {x̃e
1, x̃

e
2, . . . , x̃

e
dv
}. Meanwhile,

the a posteriori LLR c̃psequence are obtained by adding the corresponding a priori and

extrinsic LLR sequences x̃a and x̃e, according to c̃p = x̃a
L + x̃e

L = c̃v + x̃e
L. Note that

unlike the CND, the operation of the VND is identical in the Log-SPA and the MSA.

x̃e
k =


b̃2 if k = 1

f̃k−1 + b̃k+1 if 1 < k < L

f̃L−1 if k = L

, (2.25)

f̃k =

{
x̃a

1 if k = 1

x̃a
k + f̃k−1 if k > 1

, (2.26)

b̃k =

{
x̃a
L if k = L

x̃a
k + b̃k+1 if k < L

. (2.27)

2.4 EXIT Charts

As discussed in Section 2.3, the error-correcting performance of LDPC codes is affected

by many factors, including node degree distribution, code length, coding rate, chan-

nel SNR and the number of iterations performed. However, it is not easy to jointly

optimize all these factors using a trial and error approach. Motivated by this, pre-

vious efforts have proposed techniques for analysing the error-correcting performance

of LDPC codes, such as density evolution [71]. However, EXIT charts were proposed

in [49] as an alternative method for analysing the convergence behaviour of iterative

decoders, which offers more convenience and accuracy, since EXIT charts analysis does

not require the iterative decoding process to be simulated. This approach investigates

the characteristics of each constituent SISO decoder separately, before considering their

2.4.1. Mutual Information 21

combination, in order to predict the iterative decoding convergence performance. In

this section, we will detail the EXIT charts of LDPC codes. In Section 2.4.1, we will

begin by describing the mutual information, which is used to quantify the quality of the

iteratively exchanged soft information. Following this, the application of EXIT charts

to LDPC decoders will be exemplified in Section 2.4.2.

2.4.1 Mutual Information

The so-called ‘Mutual Information’ (MI) quantifies how well a sequence of probabilities

or LLRs represents the corresponding sequence of bits. More explicitly, MI quantifies

the reliability of the information conveyed by the sequence of probabilities or LLRs. MI

is used when plotting an EXIT function, which characterizes the quality of the extrinsic

information produced by a SISO component decoder, as a function of the quality of the

a priori information it is provided with. More explicitly, the generation of artificial a

priori messages having a particular a priori MI is performed at the input at the SISO

decoder, while the extrinsic MI is quantified at the output of the component decoder.

In this way, the EXIT function describes how the extrinsic MI is dependent on the a

priori MI, as well as on the MI of the channel information, if appropriate.

In [49, 50], it was shown that a sequence of artificial a priori LLRs can be gener-

ated as independent random variables having an identical Gaussian distribution. More

specifically, an a priori LLR x̃ pertaining to the bit x can be obtained according to

x̃ =
σ2

A

2
· (1− 2x) + nA, (2.28)

where nA is a realization of Gaussian random variable having the variance σ2
A and a

mean of zero. The corresponding conditional probability density function is

pA(x̃|x) =
e
− (x̃−(σ2A/2)·(1−2x))2

2σ2
A√

2πσA

. (2.29)

The a priori MI IA [49, 50], 0 ≤ IA ≤ 1, can be calculated by

IA = 0.5 ·
∑
x=0,1

ˆ +∞

−∞
pA(x̃|x) · log2

2 · pA(x̃|x)

pE(x̃|x = 1) + pA(x̃|x = 0)
dx̃. (2.30)

Here, the MIs have values in the range of [0, 1], where ‘0’ indicates that the LLRs

contain no information about the corresponding bits, while ‘1’ indicates perfect MI.

When substituting (2.29) into (2.30), IA becomes a function of σA, which does not have

2.4.1. Mutual Information 22

a closed form, but which can be represented by

IA = J(σA). (2.31)

This function is reversible and the result can represented by

σA = J−1(IA). (2.32)

The relationship can be used to identify the σA required to model the desired IA, which

may be then be used to generate artificial a priori LLRs according to (2.28).

The extrinsic MI IE, 0 ≤ IE ≤ 1, can be quantified by estimating the distributions

of the extrinsic LLRs pE(x̃|x), where x ∈ {0, 1}. The extrinsic MI IE may then be

obtained according to

IE = 0.5 ·
∑
x=0,1

ˆ +∞

−∞
pE(x̃|x) · log2

2 · pE(x̃|x)

pE(x̃|x = 1) + pE(x̃|x = 0)
dx̃. (2.33)

Note that (2.33) allows the measurement of mutual information, provided that knowl-

edge of the transmitted bits x is available. This measuring method therefore is referred

to as the histogram based method. The histogram method provides more precise mea-

surements of MI, when the bit and LLR sequences are long, owing to the more precise

estimation of the histogram. In [50], it is suggested that a sequence length of 104 bits

is sufficient for achieving accurate measurements using the histogram method. As an

alternative to the histogram method, the averaging method [49, 50] does not require

knowledge of the corresponding bits, but it assumes that the LLRs are obtained us-

ing optimal decoders and hence convey an appropriate level of confidence in the soft

decisions. The averaging method calculates the MI of a sequence comprising N LLRs

[x̃1, x̃2, . . . , x̃N] according to

IE = 1− 1

N

N∑
k=1

∑
x=0,1

pE(xk|x̃k) · log2

1

p(xk|x̃k)
, (2.34)

where p(0|x̃) = ex̃

1+ex̃
and p(1|x̃) = 1

1+ex̃
.

In summary, the EXIT function of a constituent decoder can be obtained by consid-

ering a range of values for IA ∈ [0, 1]. For each value of IA, we generate the sequence of

a priori LLRs according to (2.28) and (2.32). This is input into the decoder, in order

to obtain the corresponding sequence of extrinsic LLRs. Following this, the extrinsic

MI of the output can be quantified as IE according to (2.33) and (2.34). In this way,

2.4.2. EXIT Chart Analysis of LDPC Codes 23

the EXIT characteristics of the decoder can be described by IE as a function of IA, or

a function of IE and channel SNR.

2.4.2 EXIT Chart Analysis of LDPC Codes

As previously discussed in Section 2.4.1, EXIT chart analysis has the advantages of

characterizing the error correction capability of an LDPC decoder without the require-

ment for performing iterative decoding and focusing on a single SNR in contrast to

BER analysis. Furthermore, some EXIT chart investigations are independent of both

the LDPC block length and the number of decoding iterations performed. As a result,

EXIT charts are usually a fast and convenient way to investigate the characteristics

of an LDPC decoder’s error correction capability. In the following discussions, we will

give a detailed description about how to obtain the EXIT functions for an LDPC code,

using the schematic of Figure 2.6, which are adapted from that of Figure 2.4.

In Figure 2.6, the reliability of the extrinsic LLR sequences r̃e and p̃e may be

quantified by their MIs I(r̃e; r) and I(p̃e; p), respectively. The iterative exchange of

increasingly more reliable extrinsic information between the CND and VND can be

characterized using EXIT charts. More specifically, as the dashed boxes and paths of

Figure 2.6 show, the vth bit of the encoded sequence c = [c1, c2, · · · , cN] is repeated dv

times to form the longer Nedge-bit sequence r, where we have r(v−1)·dv+1 = r(v−1)·dv+2 =

· · · = rv·dv = cv for the vth VN in a regular LDPC code4. After the permutation of

the interleaver π, the bit sequence p is obtained from the bit sequence r, as described

in Section 2.3.2. The CND EXIT chart simulation of Figure 2.4.2 generates Gaussian-

distributed a priori LLR sequences p̃a having MIs I(p̃a; p) across the range of [0, 1].

Following the operation of the CND, the MI I(p̃e; p) of the extrinsic LLR sequence p̃e

is measured using the MI histogram or averaging method, as described in Section 2.4.1.

Note however that as shown in Figure (2.7(c)), it is conventional to plot these CND

EXIT functions on inverted axes, namely with I(p̃a; p) as a function of I(p̃e; p). Also

note that the CND EXIT function is independent of the channel SNR. Similarly, the

simulation of Figure 2.4.2 is used to plot the EXIT function of the VND. Since the

VND is fed directly from the channel output, the VND EXIT function is associated

with the particular channel SNR per bit Eb/N0 [49, 50]. This is illustrated in the EXIT

functions of Figures 2.7(a) and 2.7(b), which are combined for the different AWGN

SNRs of 0 dB and 3 dB.

As described in [49, 72], a CND and a VND EXIT function may be plotted in the

4The extension to an irregular LDPC code is trivial.

2.4.2. EXIT Chart Analysis of LDPC Codes 24

[

(a)

CND]

[

(b)

VND]

Figure 2.6: Adapted schematics used to depict the generations of EXIT functions for
the (a) the CND and (b) the VND.

same figure to obtain an EXIT chart as shown in Figure 2.8. When the channel Eb/N0

is sufficiently high, the VND EXIT function will be above the CND EXIT function,

2.4.2. EXIT Chart Analysis of LDPC Codes 25

dv = 16
dv = 8
dv = 4
dv = 2

code length = 500
Eb/N0 = 0dB

I(r̃a,r)

I(
r̃ e
,r
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(a) VND (0 dB)

dv = 16
dv = 8
dv = 4
dv = 2

code length = 500
Eb/N0 = 3dB

I(r̃a,r)

I(
r̃ e
,r
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(b) VND (3 dB)

dc = 32
dc = 16
dc = 8
dc = 4

code length = 500

I(p̃e,p)

I(
p̃
a
,p
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(c) CND

Figure 2.7: EXIT functions and bands of a regular LDPC VND and CND having lengths
of 500 and degree dv ∈ {2, 4, 8, 16}, dc ∈ {4, 8, 16, 32}, when the channel Eb/N0 equals
to 0 and 3 dB.

and they will not intersect before reaching the (1, 1) point of perfect convergence to

a vanishingly low BER. The emergence of the resultant so-called open EXIT tunnel

implies that iterative decoding convergence towards a low BER may indeed be achieved.

The iterative exchange of increasingly more reliable extrinsic information between

the CND and VND can be characterised using EXIT charts. These employ the MI

I(x̃; x) to quantify the reliability of the information in the LLR sequence x̃ about the

contents of the bit sequence x. Here, the MIs have values in the range of [0, 1], where ‘0’

indicates that the LLRs contain no information about the corresponding bits, while ‘1’

2.5. Simulation Results 26

indicates perfect MI. More specifically, an EXIT function plots the MI of the extrinsic

LLRs x̃e that are output by a decoder as a function of the MI of the corresponding

input a priori LLRs.

2.5 Simulation Results

In this section, we discuss the EXIT charts of regular binary LDPC codes. Firstly,

Section 2.5.1 shows the EXIT functions of the CND and the VND, which are obtained

according to Figure 2.6. Note that the CND and the VND EXIT functions are il-

lustrated with dashed bands in Figures 2.7, 2.8, 2.9 and 2.10, which demonstrate the

standard deviations of the MIs obtained through simulations. These EXIT bands will

be discussed in detail in Section 2.5.2. Subsequently, the capability of EXIT charts to

predict the convergence behaviour of the LDPC decoder is demonstrated, by combing

so-called ‘snapshot’ decoding trajectories with the EXIT functions. Section 2.5.3 com-

pares the performance of the Log-SPA and MSA algorithms. Finally, a BER versus

Eb/N0 plot is used to validate of the predication based on the EXIT charts. All the

parameters used in the simulations are listed in Table 2.3.

Table 2.3: Parameters used for EXIT chart simulations of LDPC codes.

code type regular LDPC
code length N 500, 5000
coding rate R 0.5
node degrees CND dc = 4, 6, 8, 16, 32

VND dv = 2, 3, 4, 8, 16
decoding algorithm Log-SPA, MSA
modulation BPSK
channel conditions AWGN Eb/N0 = 3 dB
mutual information histogram method
measurement
number of trajectories 10
maximum number of iterations 20

2.5.1 Effect of Node Degree

Figure 2.7(c) shows CND EXIT functions for a R = 1
2

rate LDPC code having the block

length ofN =500 bits, having different degrees dc = 4, 8, 16, 32, where the corresponding

VND EXIT functions are shown in Figures 2.7(a) and 2.7(b) for degree of dv = 2, 4, 8, 16

and for channel Eb/N0 values of 0 dB and 3 dB, respectively. Based on these plots, it

2.5.2. Effect of Code Length 27

can be concluded that all degrees result in increasing EXIT functions, but that lower

degrees cause the EXIT function to ascend more slowly, for both the CND and the

VND.

Figure 2.8(a) plots the VND EXIT functions for dv = 2 and Eb/N0 = 3 dB in the

same plot as the CND EXIT function for dc = 4. However, since the tunnel between the

CND and VND EXIT functions is closed in the high MI area before the (1, 1) point, the

LDPC decoder will be unable to converge to a low BER, no matter how many decoding

iterations are performed. Furthermore, Figure 2.8(a) shows 10 decoding trajectories,

which represents the actual decoding behaviour of the LDPC decoder operating on 10

particular encoded blocks. Note that all of these trajectories stop at the intersection

point of the CND and VND functions, resulting in the decoding failure for all the

blocks. Similarly, Figure 2.8(b) illustrates that the decoding failure that is indicated

by the early termination of 10 trajectories for the codes with dc = 32 and dv = 16.

By comparison, Figure 2.9(a) shows 10 decoding trajectories of the codes with dc = 6

and dv = 3 successfully navigating through the open tunnels and reaching the (1, 1)

point. Note however that the VND having degrees of dv = 2 exhibit a poor iterative

decoding convergence [6], as will be revealed in the BER simulation of Section 2.5.4.

Note that the simulations of Figure 2.8 can be repeated for different Eb/N0 values such

as Eb/N0 ∈ {0, 6} dB. In this way, the convergence behaviour and BER performance

of an LDPC code can be precisely predicted by the EXIT charts. Note that when

employing higher node degrees, the Eb/N0 values required to achieve an open EXIT

chart tunnel increases. Therefore, it can be predicted that when the node degrees are

increased, the BER performance of regular LDPC codes degrades.

2.5.2 Effect of Code Length

The comparison between Figures 2.9(a) and 2.9(b) shows the impact of the block length

N on the EXIT functions of the CND and VND, when the channel Eb/N0 is 3 dB. The

EXIT functions of the CND and of the VND of both codes are nearly identical, with

the exception that the EXIT bands of the code having length of 5000 bits are much

slimmer than the code having the length of 500 bits. As described in Section 5.3, the

bands quantify the standard deviation in the MI measurements that are made for each

block, where wider bands result in more variation between the trajectories of different

blocks. However, one specific trajectory may still fall outside of the band, since around

68% of all the possible measured MI values are within one standard deviation from

the mean MI. Moreover, each trajectory of the longer code is matched well with the

corresponding EXIT curves exhibiting only a small amount of variation from block to

2.5.3. Effect of MSA and Log-SPA 28

Eb/N0 = 3dB

coding rate = 0.5, dv =2

code length = 500

I(p̃e,p), I(r̃a,r)

I(
p̃
a
,p
),
I(
r̃ e
,r
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(a)

Eb/N0 = 3dB

coding rate = 0.5, dv =16

code length = 500

I(p̃e,p), I(r̃a,r)

I(
p̃
a
,p
),
I(
r̃ e
,r
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(b)

Figure 2.8: EXIT bands and trajectories for regular half-rate LDPC codes having block
length of 500 bits and degree of (a) dv = 2 and (b) dv = 16, when the channel Eb/N0

equals 3 dB.

block. By contrast, the 10 trajectories differ widely along the tunnel for the shorter code.

In the case where the tunnel is narrow, some trajectories may not navigate through a

tunnel having wide bands, resulting in a gradually reducing BER as the channel Eb/N0

is increased. By contrast, if the bands are narrow, then either the tunnel is open and all

trajectories will navigate through to the (1, 1) point, or the tunnel is closed and none

of the trajectories will reach the (1, 1) point. Owing to this, the BER reduces quickly

as Eb/N0 is increased, in the case of long blocks.

2.5.3 Effect of MSA and Log-SPA

Since the only difference between the MSA and the Log-SPA is in the operation of

the CND, the VND has EXIT functions identical to those of Figures 2.7(a) and 2.7(b)

for both algorithms. However, Figure 2.10 compares the CND EXIT functions of the

MSA and Log-SPA algorithms, which are obtained using (2.18) and (2.19), respectively.

Note that the EXIT functions corresponding to the sub-optimal MSA are slightly higher

than those corresponding to the optimal Log-SPA for all LDPC codes having different

degrees. This implies that a slightly higher channel SNR is required to create an open

EXIT tunnel when the MSA is employed. These results demonstrate that the perfor-

mance degradation imposed by sub-optimal decoding algorithms can be investigated by

considering the narrowing of EXIT tunnels.

2.5.3. Effect of MSA and Log-SPA 29

Eb/N0 = 3dB

coding rate = 0.5, dv =3

code length = 500

I(p̃e,p), I(r̃a,r)

I(
p̃
a
,p
),
I(
r̃ e
,r
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(a)

Eb/N0 = 3dB

coding rate = 0.5, dv =3

code length = 5000

I(p̃e,p), I(r̃a,r)

I(
p̃
a
,p
),
I(
r̃ e
,r
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(b)

Figure 2.9: EXIT bands and trajectories for regular half-rate LDPC codes having block
lengths of (a) 500 and (b) 5000 bits and degrees dc = 6 and dv = 3, when the channel
Eb/N0 is 3 dB.

MSA
Log-SPA
dc = 32
dc = 16
dc = 8
dc = 4

code length = 500

I(p̃e,p)

I(
p̃
a
,p
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 2.10: The EXIT function of LDPC CNDs having block length of 500 bits and
various CN degrees of dc ∈ {4, 8, 16, 32}.

2.5.4. BER Results 30

2.5.4 BER Results

To demonstrate the conclusions and predictions obtained from the EXIT charts dis-

cussed in the previous subsections, a plot of BER versus Eb/N0 is shown in Figure 2.11.

This figure compares the error correcting performance of the Log-SPA and MSA, when

employed by operating on various half-rate regular LDPC codes having different CN

degrees dc ∈ {4, 6, 8, 16, 32} and VN degrees, dv ∈ {2, 3, 4, 8, 16}. All other parameters

used are the same as listed in Table 2.3.

In Figure 2.11, the N = 5000-bit regular LDPC code having a CN and VN degree

of dc = 6 and dv = 3 outperforms all the N = 500-bit codes, when employing either the

Log-SPA or MSA, matching the conclusion drawn based on the comparison between

Figures 2.9(a) and 2.9(b). Furthermore, as discussed in Section 2.5.1, the N = 500-

bit regular LDPC code having a VN degree of dv = 2 exhibits a significantly slower

convergence than all the other codes having degrees of dv ∈ {3, 4, 8, 16}, which all

exhibit the steep BER ‘waterfall’, but in different Eb/N0 ranges. Explicitly, for the

codes having degrees of dv ∈ {3, 4, 8, 16}, the BER curves exhibit steep BER waterfalls

at higher Eb/N0 as predicted in Section 2.5.1. Additionally, the sub-optimal MSA

algorithm can be seen to impose up to 1 dB of performance degradation on all the

codes having various degrees and lengths, compared to the optimal Log-SPA algorithm

as discussed in Section 2.5.3.

2.6 Conclusions

In this chapter, we have briefly reviewed the basics of channel codes, with a particular

focus on block codes. After describing the matrix representation of block codes, we have

discussed the factor graph of LDPC codes, as well as the decoding algorithms that rely

on the factor graph. Among the numerous decoding algorithms that have been proposed

for LDPC decoding, we have focused on the SPA, Log-SPA and MSA, which operate on

soft information in the form of probabilities and LLRs, respectively. Each constituent

decoder in the LDPC decoder outputs extrinsic soft information, which is fedback to

the other constituent decoder, where it is used as a priori soft information. The two

constituent decoders exchange a priori and extrinsic soft information iteratively, with

the aim of converging upon a valid codeword. The reliability of the soft information

may be quantified by the MI between the sequence of probabilities or LLRs and the

corresponding sequence of bits. The relation between the extrinsic MI associated with

the extrinsic probabilities or LLRs, and the a priori MI associated with the a priori

2.6. Conclusions 31

dv = 16
dv = 8
dv = 4
dv = 3
dv = 2
MSA

Log-SPA

(5000, 2500)

Eb/N0(dB)

B
E
R

876543210

1

10−1

10−2

10−3

10−4

10−5

10−6

Figure 2.11: BER performance of regular LDPC codes having different degrees and
code lengths. The left-most curve represents the (5000,2500) LDPC code, which has
half coding rate and block length of 5000 bits, with dc = 6 and dv = 3 . All the right-
hand curves are half-rate LDPC codes having the block length of 500 bits, but various
degrees.

probabilities or LLRs, can be obtained and visualized in EXIT charts. Simulations may

be conducted to obtain EXIT charts for particular LDPC codes, which are utilized to

characterize the error-correcting performance of the LDPC codes. We presented BER

results to validate the predictions that we made using EXIT charts. In the forthcoming

chapters, EXIT charts will be used as a design tool during the implementation of LDPC

decoders.

Chapter 3

Minimum Bit Widths for

Fixed-Point LDPC Decoder

3.1 Introduction

As discussed in Chapter 2, Low-Density Parity-Check (LDPC) codes [6] exhibit an

outstanding error correction capability [73], when using the SPA. However, owing to the

high dynamic range of its variables, the optimal Sum-Product Algorithm (SPA) requires

a floating point implementation, which is associated with high complexity. Therefore, in

order to mitigate this problem, the SPA can be transformed into the logarithmic domain,

to yield the ‘Log-SPA’, which replaces the sum and product operations of the SPA with

the lower-complexity ‘boxplus’ [69] and sum operations. Furthermore, by approximating

the boxplus operator of the Log-SPA with the minimum-finding operation, the Min-

Sum Algorithm (MSA) [67, 66, 11] achieves a further complexity reduction at the cost

of marginally degrading the LDPC performance by a few tenths of a dB [67, 66, 64,

11, 15, 16, 12]. Both the Log-SPA and MSA operate on the basis of LLRs, which have

a low dynamic range and can be represented by Fixed-Point (FP) numbers, having a

low bit width. During typical LDPC iterative decoding processes, the LLRs typically

only adopt values in the range -10 to 10, since this corresponds to bit probabilities in

the range 0.00005 to 0.99995. Owing to this low dynamic range, the Log-Likelihood

Ratios (LLRs) processed in practical implementation of LDPC decoders are typically

represented by FP numbers. This is because FP numbers can efficiently represent values

having a low dynamic range using a relatively small number of bits, which is referred to

as the bit width. In a hardware implementation, it is this bit width that proportionally

determines both the size of the memory required, as well as the area of the data path

and hence the energy consumption imposed. It is therefore desirable to use a low bit

32

3.1. Introduction 33

width. However, if the bit width is too low, then the dynamic range and/or the fidelity

of the FP number representation will constrain the error correction capability of the

LDPC decoder.

Table 3.1: Summary of previously proposed schemes.

Reference LDPC code1 Decoding algorithm Scheme2

[11] R and IR Log-SPA U-Q 7 bits
offset-MSA [11] U-Q 4-6 bits

[10] not mentioned SPA U-Q 12 bits
SPA3 U-Q 6 bits

[14] R offset-MSA FP(2,3,2/3)4

[15] R and IR offset-MSA U-Q 4-6 bits
[13] IR Log-SPA FP(4,4,4)
[12] IR offset-MSA NU-Q 5 bits
[16] IR offset-MSA U-Q 6 bits

In previous works, the authors of [10, 14, 11, 15, 13, 12, 16, 74] attempted to de-

termine the minimum bit width that does not impose a significant performance degra-

dation upon Fixed-point LDPC Decoders (LDPC-FDs). However, owing to the dif-

ferent algorithms and techniques that they considered, these efforts reached differing

conclusions, as summarized in Table 3.1. The efforts of [10, 11, 12, 13, 14, 15, 16]

[17, 18, 19, 20, 21, 22, 23, 24, 25, 26] relied upon BER simulations, which, have to con-

sider a number of decoding iterations, as well as a range of channel SNRs, hence they

are time consuming. This problem is further aggravated by the need to consider diverse

combinations of various parameters, such as the LDPC code block length, the parity-

Check Node (CN) and Variable Node (VN) degrees, the number of decoding iterations

performed and the channel conditions. Since it is infeasible to exhaustively search all

combinations of these parameters using BER simulations, there is no single authori-

tative study on the most desirable bit widths in LDPC decoders. Furthermore, BER

simulations only reveal the magnitude of the performance degradation, without offering

any insight into its causes, namely whether the accuracy of the integer or fraction part

of the bit width is insufficient, for example. As a remedy, this chapter proposes the

1Here, ‘R’ represents regular LDPC codes constructed from a random unstructured Parity Check
Matrix (PCM), which was designed to avoid length-4 cycles. Meanwhile ‘IR’ represents corresponding
irregular LDPC codes.

2Here, ‘U-Q’ represents a uniform quantization of the LLRs in the Log-SPA and MSA, or of the
Likelihood Ratios (LRs) of the SPA. Meanwhile, ‘NU-Q’ represents a non-uniform quantization. We
define the notation FP(x, y, z) in Section 3.2.

3In fact, [10] adopts the “parity likelihood ratio algorithm”, which is equivalent to the SPA.
4In this scheme, the fraction part of the FP representation is reduced from Wf = 3 to Wf = 2 when

the integer part is clipped.

3.2. Fixed-Point LDPC Decoders 34

novel approach of using EXtrinsic Information Transfer (EXIT) charts [75] for the com-

prehensive investigation of the minimum bit widths for LDPC-FDs. In particular, the

methods detailed in Chapter 2 for generating EXIT charts are extended to the case of

LDPC-FDs. Additionally, we will demonstrate that the FP EXIT charts offer insights

into the specific causes of performance degradation, which are unavailable when using

BER simulations.

We commence by introducing the FP number representation and the corresponding

Log-SPA operations in LDPC-FDs in Section 3.2. In Section 3.3, we detail the extension

of EXIT charts to the case of LDPC-FDs, as well as the analysis based on the FP EXIT

charts. Our simulation results are presented and discussed in Section 3.4. Finally, we

conclude this chapter in Section 3.5.

3.2 Fixed-Point LDPC Decoders

In this section, we will discuss the schematic of the LDPC-FD and the corresponding FP

operations of the Log-SPA, based on the adaption of the floating point LDPC decoder

introduced in Section 2.3. The Two’s Complement (TC) number representation will

also be addressed, which is most widely adopted for the FP implementation of LDPC

decoders in practice, owing to the simplicity of its arithmetic. In particular, the Look-

Up Table (LUT) will be employed to simplify the FP operation of the Log-SPA using

TC representation.

3.2.1 Fixed-Point LDPC Decoders and the Log-SPA Opera-

tions

The transceiver schematic of the LDPC-FD is similar to the LDPC decoder using

floating point representation, as shown in Figure 2.4 in Chapter 2. Figure 3.1 depicts

the schematic for an LDPC-FD, where the LDPC encoder is employed to transform

the sequence of K information bits u into the N -bit encoded sequence c, which is

transmitted through an Additive White Gaussian Noise (AWGN) channel, while the

LDPC decoder may be considered to be an iteratively-operated serial concatenation of

two decoders that are separated by an interleaver π of length Nedge. More specifically,

Variable Node Decoder (VND) comprises N VNs with the same degree5 of dv, while the

parity-Check Node Decoder (CND) comprises M CNs with degree dc, where we have

Mdc = Ndv = Nedge. Note that the soft demodulator provides the decoder with LLR

5The extension of our proposed methods to irregular LDPC codes is trivial.

3.2.2. Two’s Complement Representation and Arithmetic 35

Figure 3.1: The schematic of an LDPC-FD, which comprises an encoder and an iterative
decoder. The mark × indicates where clipping is performed.

sequences represented by FP numbers. In each decoding iteration, the VND uses the

Forward-Backward Algorithm (FBA) [11, 15] to convert the a priori LLR sequences

c̃a and r̃a into the extrinsic LLR sequence r̃e. Meanwhile, the CND uses the FBA to

convert p̃a into p̃e. While the VND FBA generates extrinsic LLRs by summing a priori

LLRs, the CND FBA combines LLRs using the boxplus operator [69], according to

(2.18). However, the correction terms in (2.18) involve the logarithmic and exponential

operations, the implementation of which will be detailed in Section (3.2.3). Note that

while the CND employs the boxplus operator of (2.18) in a Log-SPA LDPC decoder, the

CND of an MSA LDPC decoder approximates this using the minimum-finding operator

of (2.19).

3.2.2 Two’s Complement Representation and Arithmetic

TC representation having a bit width W consists of a fraction part having a bit width

Wf and an integer part having a bit width Wi , which includes a sign bit as the Most

Significant Bit (MSB) [76], where W = Wi +Wf . For a fractional FP number, there is

an imaginary point set between the integer and fraction parts, like the decimal point in

decimal systems. Here, it is the integer bit width Wi that dictates the dynamic-range

3.2.2. Two’s Complement Representation and Arithmetic 36

of the FP representation, while its fine-resolution is dictated by the fraction bit width

Wf .

The W -bit binary number (bW−1bW−2 . . . b1b0)b represents the decimal number hav-

ing the value of (x)d = −bW−12W−1 + ΣW−2
i=0 bi2

i, where the bit bW−1 indicates the sign

of the number. The sign bit indicates a positive number by 0 and a negative number

by 1. For a positive number, the other bits on the right of the sign bit are used to

represent the magnitude of the absolute value; in the case of a negative number, its

magnitude is represented by the complement of the absolute value plus 1. For example,

using Wi = 4 and Wf = 2, 4.50 is represented by 0100.10, while the FP binary number

1010.11 represents the decimal number −6.25. Table 3.2 also shows a complete set

of 3-bit binary representations. The left column of Table 3.2 gives the natural binary

representations of numbers, compared with TC numbers in the right column. Note that

it is the bit width of the integer part, which determines the maximum dynamic range

that can be represented for large values, and the bit width of the fraction part that

dictates the achievable precision.

Table 3.2: An example of two’s complement representation.

Binary number (Wi.Wf) decimal values
1.00 −1
1.01 −0.75
1.10 −0.5
1.11 −0.25
0.00 0
0.01 +0.25
0.10 +0.5
0.11 +0.75

The further advantage of TC is that its arithmetic operates in a natural manner,

which mimics that of decimal numbers. In particular, TC subtraction satisfies

A−B = A+ (−B). (3.1)

For example,

0.25− 0.75 = 0.25 + (−0.75) = 0.01 + 1.01 = 1.10 = −0.5.

This example reveals that TC performs a similar operation for both addition and sub-

traction, without requiring any separate operation based on the sign bits to decide

whether to perform separate addition or subtraction operations.

3.2.3. Look-Up Table 37

Note that it is necessary to let subtraction overflow, providing when a carry is

generated from the leftmost bit. In this way, the carry will be abandoned, providing

the correct result. For instance,

0.75− 0.75 = 0.75 + (−0.75) = 0.11 + 1.01 = (1)0.00 = 0.

Saturation may be employed in TC arithmetic in order to avoid the potential overflow

that would eventually occur by repeatedly incrementing a TC number. As we shall

show in Section 3.4, clipping the integer bit width Wi of the a priori LLRs r̃a, p̃a and

c̃ to a reduced value x may in fact improve the performance of the LDPC-FD, despite

appearing to be counter-intuitive. In Figures 3.1 and 3.3, these clipping operations

are indicated using × symbols. For example, when the Wi = 4 integer bits of the

TC number 1010.11 are clipped to Wc = 3 bits, the result becomes 1100.00, which

corresponds to −4 in decimal, which is the lowest number that can be represented by

Wc = 3 integer bits and Wf = 2 fraction bits. Similarly, 0100.10 may be clipped to

0011.11, which corresponds to 3.75 in decimal, which is the highest number that can

represented by Wc = 3 integer bits and Wf = 2 fraction bits. For the remainder of the

thesis, we use the notation FP(Wc,Wi,Wf) to define a particular TC representation.

3.2.3 Look-Up Table

In a Log-SPA, CN relying on the boxplus operator � of (2.18), the correction term

log
(
1 + e−c̃

)
can be computed accurately in a floating point LDPC decoder. By con-

trast, however, LDPC-FDs typically rely on a Look-Up Table (LUT) for the computa-

tion6 of this correction term. Since log(1 + e−c̃) < 1 for c̃ > 0, it is the number of bits

Wf in the fraction part of the two’s complement representation that dictates the design

of the LUT. More specifically, for Wf ∈ {1, 2, 3}, Figure 3.2 illustrates the multiples of

2−Wf that most closely approximate log(1 + e−c̃) for various values of c̃, which are also

selected from multiples of 2−2. Here, the number of entries in the LUT is determined

by the bit width Wf of the fraction part used in the FP representation of LLRs. For

example, when Wf = 2, we have

log
(
1 + e−c̃

)
≈


0.75 if c̃ ∈ [0, 0.15)

0.5 if c̃ ∈ [0.15, 0.9)

0.25 if c̃ ∈ [0.9, 2)

0 if c̃ ∈ [2,+∞)

. (3.2)

6The correction terms can also be implemented by piece-wise linear approximation, a single constant
value and other methods [67, 66, 11].

3.3. Fixed-Point EXIT Chart Analysis 38

(a) Wf = 1 (b) Wf = 2

(c) Wf = 3 (d) Wf = 1, 2, 3

Figure 3.2: Correction function log
(
1 + e−c̃

)
and its approximation by LUT for the

case of (a) fraction bit width Wf = 1, (b) fraction bit width Wf = 2 and (c) fraction bit
width Wf = 3.

3.3 Fixed-Point EXIT Chart Analysis

In this section, we will address the adaption of the generation of the EXIT charts to

the LDPC-FD, based on Section 2.4.

The iterative exchange of increasingly more reliable extrinsic information between

the CND and VND can be characterised using EXIT charts. These employ the MI

I(x̃; x) to quantify the reliability of the information in the LLR sequence x̃ about

the contents of the bit sequence x. Here, the MIs have values in the range of [0, 1],

where ‘0’ indicates that the LLRs contain no information about the corresponding bits,

while ‘1’ indicates perfect MI. More specifically, an EXIT function plots the Mutual

Information (MI) of the extrinsic LLRs x̃e that are output by a decoder as a function

3.3. Fixed-Point EXIT Chart Analysis 39

Generate

LLRs

MI

Measure

CND

π Repeat
I(p̃a;p)

u c

r

p̃a

p̃e

I(p̃e;p)

p

LDPC

Encoder

(a) CND

LLRs

Generate

BPSK

Soft

Measure

MI

Repeat

VND

Mod

Demod

c x

y

r

r̃a

r̃e

AWGN

c̃a

I(r̃e; r)

I(r̃a; r)

u LDPC

Encoder

(b) VND

Figure 3.3: Adapted schematics used to depict the generations of EXIT function for
the (a) CND, (b) VND. The mark × indicates where clipping is performed.

3.3. Fixed-Point EXIT Chart Analysis 40

of the MI of the corresponding input a priori LLRs.

Figure 3.3(b) shows how the schematic of Figure 3.1 may be adapted to plot the

VND EXIT function, which is exemplified in Figure 3.4(b). More specifically, as

the dashed boxes and paths of Figure 3.3(b) show, each bit of the encoded sequence

c = [c1, c2, · · · , cN] is repeated dv times to form the longer Nedge-bit sequence r, where

we have r(v−1)·dv+1 = r(v−1)·dv+2 = · · · = rv·dv = cv for the vth VN7. The EXIT chart

simulation of Figure 3.3(b) generates Gaussian-distributed a priori LLR sequences r̃a

having MIs I(r̃a; r) across the range of [0, 1]. Following the operation of the VND,

the MI I(r̃e; r) of the extrinsic LLR sequence r̃e is measured using the MI histogram

based method of (2.33), the histogram based method of evaluating the MI can accu-

rately quantify the degradation imposed by sub-optimal decoding algorithms, which

produce LLRs that do not satisfy the consistency condition [49, 50]. Figure 3.4(b) plots

I(r̃e; r) as a function of I(r̃a; r), when using the floating point Log-SPA or MSA for

VN degrees in the set dv ∈ {2, 4, 8, 16}. Note that the Log-SPA and MSA have identi-

cal VND’s EXIT functions, since the distinction between these algorithms affects only

the CND operation. Furthermore, since the simulation based investigations outlined in

Figure 3.3(b) consider the AWGN channel, the results of Figure 3.4(b) are specific to

an AWGN channel Eb/N0 of 3 dB. Higher or lower Eb/N0 values would move the EXIT

functions upwards or downwards, respectively.

Similarly, the investigations detailed in Figure 3.3(a) are used to plot the EXIT

function of the CND, as exemplified in Figure 3.4(a). Here, the dashed-box interleaver

π permutes the bit sequence r, in order to obtain the Nedge-bit sequence p. Figure 3.4(a)

plots I(p̃e; p) as a function of I(p̃a; p), when using the floating point Log-SPA or MSA

for CN degrees in the set dc ∈ {4, 8, 16, 32}. Observe that the Log-SPA and MSA have

different EXIT functions for the CND, since the former operates on the basis of (2.18),

while the latter employs (2.19). More specifically, the MSA CND EXIT function can

be seen to achieve extrinsic MIs that are almost 0.005 lower than these of the Log-SPA.

Note however that it is conventional to plot these EXIT functions on inverted axes

[49, 50]. Also note that the CND EXIT function is independent of the channel’s Eb/N0

value.

As described in [49, 50], the VND’s and CND’s EXIT function may be plotted in

the same figure to obtain an EXIT chart. When the channel Eb/N0 is sufficiently high,

the VND’s EXIT function will be above the CND’s EXIT function, and they will not

intersect before reaching the (1, 1) point of perfect convergence to the minimum at-

tainable BER. The emergence of the resultant so-called open EXIT tunnel implies that

7The extension to an irregular LDPC code is trivial.

3.4. Simulation Results 41

iterative decoding convergence towards a minimum BER may indeed be achieved. Ob-

serve in Figure 3.4(a) that the EXIT function values corresponding to the sub-optimal

MSA are slightly higher than those corresponding to the optimal Log-SPA. This implies

that a slightly higher channel Eb/N0 is required to create an open EXIT tunnel, when

the MSA is employed. These results demonstrate that the performance degradation

imposed by sub-optimal decoding algorithms can be investigated by considering the

quantization-induced narrowing of EXIT tunnels. In the next section, we use this tech-

nique to identify desirable bit widths for FP implementations of LDPC codes. Note

that the vertical bars in Figures 3.4, 3.5 and 3.6 indicate the spread of the EXIT bands

[77, 78, 79], when employing an interleaver length of Nedge. These bands allow the EXIT

chart to accurately characterize the iterative decoding process, even when very short

interleaver lengths are employed, in which case the spread of the bands is increased,

but the EXIT functions remain unchanged.

3.4 Simulation Results

In this section, we determine the minimum required bit widths for FP implementations

of LDPC codes in a systematic manner. We begin by using EXIT chart simulations

to determine a desirable value for the fraction bit width Wf in isolation. Next, we

consider the clipped integer bit width Wc in isolation, before jointly considering Wf ,

Wc and the integer bit width Wi. During our investigations, we shall use the Log-

SPA as our benchmarker. We shall consider the degradations imposed by limited bit

widths to be acceptable, provided that they are less than the difference between the

CND’s EXIT functions attained using the MSA and Log-SPA, namely a maximum MI

degradation of 0.005. Note that in each case, we found that the spread of the EXIT

bands was unaffected by the bit width and that they accurately predicted the path of

the iterative decoding trajectories, even when employing short interleaver lengths. All

the parameters used in FP EXIT chart simulations are listed in Table 3.3.

Table 3.3: Schemes having different bit width used for FP EXIT chart simulations of
LDPC codes.

integer bit width Wi 1, 2, 3, 4, 5, 6 bit
fraction bit width Wf 0, 1, 2, 3, 4, 5 bit
clipped integer bit width Wc 3, 4, 5, bit
infinite value ∞ 32 bit

3.4.1. Fraction Bit Width 42

3.4.1 Fraction Bit Width

Figure 3.4 demonstrates the effect of employing fraction bit widths in the set Wf ∈
{0, 1, 2, 3, 4, 5} upon the CND’s and VND’s EXIT functions. Here, 32 bit has been

selected for the integer bit widths Wc and Wi, which we assume to be an effectively

infinite value, as implied by the notation FP(∞,∞,Wf). This allows us to consider the

effect of the fraction bit width in isolation.

Figure 3.4 shows that a higher degradation is imposed by lower fraction bit widths

Wf , for both the CND and VND, which is not unexpected owing to the reduced precision

that this implies. This degradation is manifested as a slight EXIT tunnel narrowing

across the entire range of MIs. The results show that the degradation imposed only

slightly varies with the node degrees dc and dv.

The CND results of Figure 3.4(a) show that the degradation imposed by a fraction

bit width of Wf ≥ 2 is less than that imposed by the MSA. Likewise, only Wf ≥ 1

imposes only an acceptable degradation for the VND. In order to simplify the LDPC

decoder’s architecture, it is desirable to adopt the same fraction bit width Wf in both

the CND and VND. For this reason, we recommend a fraction bit width of Wf = 2

for striking a desirable trade-off between the complexity imposed and the performance

attained.

3.4.2 Clipping Range

The effect of employing clipping bit widths in the set Wc ∈ {1, 2, 3, 4, 5, 6} upon the

CND’s and VND’s EXIT functions is considered in Figure 3.5. Here, the notation

FP(Wc,∞,∞) is employed to show that effectively infinite values have been selected

for the integer and fraction bit widths Wi and Wf , respectively. In this way, the effect

of the clipping bit width is considered in isolation.

Figure 3.5 shows that for both the CND and VND, a higher degradation is imposed

by lower clipping bit widths Wc, which may indeed be expected owing to the reduced

dynamic range that this implies. As shown in Figure 3.5(a), the degradation imposed

on the CND EXIT functions is similar to that caused by employing a limited fraction bit

width Wf , but the effect is more significant. In the case of the VND, the degradation

causes a droop in the EXIT functions for low a priori MIs of I(r̃a; r) < 0.1, when

Wc ∈ {1, 2}. Briefly, this may be explained by the fact that Wc ∈ {1, 2} causes most

a priori LLRs to become saturated, effectively transforming the VND into a hard

decision decoder. While Figure 3.5(b) shows that the shape of the droop is affected by

3.4.2. Clipping Range 43

dv = 4

MSA
Log-SPA

FP(∞,∞,5)
FP(∞,∞,4)
FP(∞,∞,3)
FP(∞,∞,2)
FP(∞,∞,1)
FP(∞,∞,0)

from right to left
dc = 4, 8, 16, 32

I(p̃e,p)

I(
p̃
a
,p
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(a) CND

dv = 4

Log-SPA/MSA
FP(∞,∞,5)
FP(∞,∞,4)
FP(∞,∞,3)
FP(∞,∞,2)
FP(∞,∞,1)
FP(∞,∞,0)

from bottom to top
dv = 2, 4, 8, 16

I(r̃a,r)

I(
r̃e
,r
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(b) VND

Figure 3.4: The EXIT functions for TC implementations of LDPC codes employing
various fraction bit widths z, as well as various CN and VN degrees, for communication
over an AWGN channel having an Eb/N0 of 3 dB.

3.4.2. Clipping Range 44

dv = 4

MSA
Log-SPA

FP(6,∞,∞)
FP(5,∞,∞)
FP(4,∞,∞)
FP(3,∞,∞)
FP(2,∞,∞)
FP(1,∞,∞)
from bottom to top
dc = 4, 8, 16, 32

I(p̃e,p)

I(
p̃
a
,p
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(a) CND

dv = 4

dv = 8

Log-SPA/MSA
FP(6,∞,∞)
FP(5,∞,∞)
FP(4,∞,∞)
FP(3,∞,∞)
FP(2,∞,∞)
FP(1,∞,∞)

from bottom to top
dv = 2, 4, 8, 16

I(r̃a,r)

I(
r̃e
,r
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(b) VND

Figure 3.5: The EXIT functions for FP implementations of LDPC codes employing
various clipped integer bit widths x, as well as CN and VN degrees, for communication
over an AWGN channel having an Eb/N0 of 3 dB.

3.4.3. Integer Bit Width 45

the variable node degree dv, but the magnitude of the droop is largely unaffected.

Both the CND’s and VND’s results of Figure 3.5 show that the degradation imposed

by a clipping bit width of Wc ≥ 3 is less than that imposed by the MSA. For this reason,

we suggest that a desirable trade-off between complexity and performance can be struck

by using a clipping bit width of Wc = 3.

3.4.3 Integer Bit Width

Let us now combine the conclusions of Sections 3.4.1 and 3.4.2 with the consideration of

the integer bit width Wi. More specifically, we adopt the values of Wc = 3 and Wf = 2,

while considering integer bit widths from the set Wi ∈ {3, 4, 5}.

For both the CND and VND, Figure 3.6 shows that a more severe degradation is

imposed by lower integer bit widths Wi, which is not unexpected owing to the reduced

dynamic range that this implies. As in the case of limited fraction bit widths, this

degradation is manifested as a slight tunnel narrowing across the entire range of MIs.

However unlike for limited fraction bit widths, Figure 3.6(b) shows that the degradation

is more pronounced for higher variable node degrees dv.

Regardless of the node degrees, it can be seen for both the CND and VND that

an integer bit width of Wi = 4 is sufficient to avoid a degradation that is significantly

higher than that imposed by the MSA. For this reason, we conclude that the FP(3, 4, 2)

representation facilitates LDPC implementations that strike the most desirable trade-off

between the complexity imposed and the performance attained.

3.4.4 BER Results

In analogy with Chapter 2, this section presents BER plots to validate the conclusions

drawn based on the EXIT charts of Sections 3.4.1, 3.4.2 and 3.4.3. We first demonstrate

the effect of the fraction bit width Wf that was charaterized by the EXIT charts of

Section 3.4.1 by using the BER plot of Figure 3.7(a), which does not apply clipping

to the integer part. Following that, the effect of the integer bit width Wi is validated

by the BER plot of Figure 3.7(b). Two benchmarkers are also considered, namely the

optimal floating point Log-SPA and the sub-optimal floating point MSA, where the

maximum number of decoding iterations considered is 20. All of the parameters used

in these simulations are listed in Tables 2.3 and 3.3.

Figure 3.7(a) shows the effect of the fraction bit width on BER performance of

the LDPC-FD, when the fraction bit width is increasing from Wf = 0 to 7, and the

3.4.4. BER Results 46

MSA
Log-SPA
FP(3,5,2)
FP(3,4,2)
FP(3,3,2)

from right to left
dc = 4, 8, 16, 32

I(p̃e,p)

I(
p̃
a
,p
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(a) CND

Log-SPA/MSA
FP(3,5,2)
FP(3,4,2)
FP(3,3,2)

from bottom to top
dv = 2, 4, 8, 16

I(r̃a,r)

I(
r̃e
,r
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(b) VND

Figure 3.6: The EXIT functions for FP implementations of LDPC codes employing
various integer bit widths y, as well as various CN and VN degrees, for communication
over an AWGN channel having an Eb/N0 of 3 dB.

3.4.4. BER Results 47

(a) Fraction bit width Wf ∈ {0, 1, 2, 3, 4, 5, 6, 7}, when Wc = Wi = 32.

(b) Integer bit width Wc = Wi ∈ {1, 2, 3, 4, 5, 6, 7}, when Wf = 32.

Figure 3.7: BER plots of the LDPC-FD using different FP schemes.

integer bit width is set as Wi = 32 bits. As maybe observed in Figure 3.7(a), the

BER performance is barely improved, when incrementing of the fraction bit width Wf .

3.5. Conclusions 48

Moreover, all of the FP schemes outperform the sub-optimal MSA benchmarker, but

exhibit a gap of around 0.1 dB from the optimal Log-SPA benchmarker. This is in

agreement with the observation that the EXIT functions of CND and VND using the

same FP schemes exhibit an insignificant gap compared to both of the benchmarker,

as shown in Figure 3.4,

Figure 3.7(b) shows the effect of the integer bit width on BER performance of the

LDPC-FD, when the integer bit width is increased from Wi = 1 to 7 without any

clipping, while the fraction bit width is set to Wf = 32 bits. It may be observed

that the FP schemes exhibit slow iterative decoding convergence when Wi ≤ 3, while

schemes having Wi > 3 all approach the two benchmarkers’ performance. Explicitly,

the FP(4, 4, 32) scheme only exhibits a gap of around 0.2 dB compared to the sub-

optimal MSA benchmarker at the BER of 10−5. By contrast, there is no significant

performance degradation between FP schemes having Wi ≥ 5 and the optimal Log-

SPA benchmarker. This agrees with the conclusions that Wi = 4 is the lowest integer

bit width that gives acceptable BER performance, as was observed from the EXIT chart

analysis based on Figures 3.5 and 3.6. Therefore, by comparing Figures 3.7(a) and 3.4,

as well as Figures 3.7(b) and 3.5, we have demonstrated that the BER performance

of LDPC-FDs using various FP schemes can be predicted by the EXIT chart analysis

discussed in Sections 3.4.1, 3.4.2 and 3.4.3.

3.5 Conclusions

In this chapter, we have proposed an EXIT chart based method to investigate desirable

parameters of FP implementations of LDPC codes, in order to strike an attractive trade-

off between their complexity and performance. Our technique may also be employed

to investigate this trade-off in other reduced-complexity versions of LDPC codes. Since

this technique does not require the simulation of iterative decoding at different number

of iterations or at multiple Eb/N0 values, it is significantly less time consuming than the

conventional BER-based method. For example, when employing a half-rate length-500

regular LDPC code having dv = 3 and FP(3, 4, 2), a total of 6 × 108 CND operations

and 8 × 108 VND operations are required, to obtain the CND’s and VND’s EXIT

functions, respectively. Here, we consider 2000 frames for each of 100 a priori MI values

in the range of [0, 1]. However, a BER simulation for the same LDPC code requires

approximately 1011 CND operations and 1011 VND operations to consider 10 different

Eb/N0 values in the range of [0, 4.5] dB. Here the decoding iterations are continued

only until convergence is achieved. Therefore, the resultant factor of 100 complexity

3.5. Conclusions 49

reduction allows comprehensive investigations into the effects of multiple parameters to

be conducted. This is particularly beneficial, since it is typically necessary to investigate

the most desirable bit widths whenever a new LDPC code is designed. Furthermore,

EXIT chart analysis can offer insights into the causes of the performance degradation

that is imposed by reduced-complexity versions of LDPC codes. For example, the

analysis of Section 3.4.2 revealed that a droop in the VND’s EXIT function implies

that the a priori LLRs are excessively clipped.

In Section 3.4, we proposed a systematic approach for determining the desirable bit

widths for FP implementations of LDPC codes. Our results indicate that as a rule

of thumb an overall bit width of W = Wi + Wf = 6, namely the FP scheme (3,4,2),

may offer an attractive trade-off between an LDPC code’s complexity and performance.

As summarized in Table 3.1, this published result [75] agrees with the conclusions of

[80, 10, 11, 12, 13, 14, 15, 16], where the slight differences observed may be attributed

to the different algorithms and quantization schemes considered.

Furthermore, as was also demonstrated by the comprehensive EXIT chart investiga-

tion, which was first conducted in this thesis, the fraction bit width Wf may be set as 0

in order to further reduce the implementation complexity of the LDPC-FD, while main-

taining an acceptable BER performance, since the corresponding degradation imposed

is relatively small. Moreover, clipping the integer bit width from Wi = 4 to Wc = 3 bits

barely improves the BER performance of the LDPC-FD, and imposes an overhead for

performing the clipping. Therefore, an overall bit width of W = Wi = 4 is the minimum

required for an LDPC-FD to achieve an insignificant performance degradation. Moti-

vated by this, we will propose 4-bit FP schemes for the fully parallel implementation

of LDPC-FDs in the next chapter.

Chapter 4

Timing-Error-Tolerant Fixed-Point

LDPC Decoder Using Base Minus

Two

4.1 Introduction

During data transmission via noisy communication channels, errors may be introduced

into the data recovered at the receiver. As discussed previously in Chapters 2 and 3,

channel decoders may be adopted at the receiver to mitigate these channel-induced

errors, relying on the redundancy built into the messages by the channel encoder at

the transmitter. Owing to their outstanding error correction capability, Low-Density

Parity-Check (LDPC) codes can be found in many communication standards, such

as IEEE 802.11 (WiFi) [63] and IEEE 802.16e (WiMAX) [81, 65]. Next-generation

communication standards are expected to offer communication throughputs on the order

of Gbit/s and communication latencies on the order of microseconds [82, 83]. This

requires that the channel decoders provide the corresponding processing throughput

and latencies, in order to avoid imposing any bottlenecks. Based on the discussions of

Chapters 2 and 3, LDPC decoders have been demonstrated to have the potential to meet

these requirements, since they can be processed with a very high degree of parallelism.

More specifically, LDPC decoders can operate on the basis of the iterative exchange of

Fixed-Point (FP) numbers between distributed and parallel processing nodes. In this

way, LDPC decoders implemented as fully parallel ASICs can offer high error correction

capability, high processing throughput and low latency [84].

In order to further increase the processing throughput of ASIC LDPC decoders, the

50

4.1. Introduction 51

clock period of the hardware can be scaled down, which is called overclocking, so that

each LDPC decoding operation can be completed using less time. However, overclocking

has the potential side effect of introducing timing errors, which occur whenever a signal

has not had enough time to propagate through the circuit before it is clocked into a

memory, before the end of the reduced clock period. On the other hand, the task of

designing completely reliable Very Large-Scale Integration (VLSI) systems is becoming

increasingly challenging in successive generations of nanoscale fabrication technology,

due to the increasing susceptibility to IR drop, inductive noise, crosstalk, electrostatic

discharges, particle strikes, switching noise and fabrication process variations [31, 32,

33, 34, 35, 36, 37]. Previous efforts [40, 85, 86, 87, 88, 41, 42, 44] have been dedicated

to designing general purpose circuits, as well as ASIC LDPC decoder, that are capable

of tolerating a limited amount of timing errors. This has been achieved by employing

additional circuitries to detect and correct errors, which implies a cost in area and

energy consumption. However, in LDPC decoders, it may be possible to achieve the

same degree of timing error tolerance by exploiting the inherent LDPC error-correcting

capability, without the need for the extra circuitries. Motivated by this, this chapter

will investigate the inherent timing error tolerance of the LDPC-FD of Chapter 3.

Two’s Complement (TC) representation used to represent the Log-Likelihood Ra-

tios (LLRs) in the Fixed-point LDPC Decoders (LDPC-FDs) is required to have a bit

width of at least 4, as concluded in Chapter 3. Since the significance of the 4 bits

in a TC number are different, they may have different degrees of tolerance to timing

errors. Explicitly, the TC numbers may be not sensitive to timing errors affecting the

bits having less significance, since the represented decimal TC numbers are not changed

dramatically by these errors. However, when timing errors affect the Most Significant

Bits (MSBs) of the fixed-point probabilities, the error correction performance is signif-

icantly degraded [40, 41, 42]. In this chapter, we propose the use of Base Minus Two

(BMT) representation rather than TC in a fully parallel implementation of the LDPC-

FD, since we will demonstrate that this can reduce the required chip area and increase

the processing throughput. Furthermore, conventional methods for constructing the

high-degree LDPC nodes adopt the most straightforward implementations. These ei-

ther use a serial concatenation of processing elements to achieve a moderate chip area

at the cost of large processing latency, or use a parallel concatenation to achieve a

low latency and also a low chip area1. In this chapter, we propose a novel method to

construct the high-degree nodes which achieves an even lower latency than the parallel

structure, but with a comparable area to the serial structure. Furthermore, the pro-

1This parallel concatenation usually involves complex reverse operation of that employed in LDPC
decoding algorithms, resulting in an unfair comparison to some degree, which will be detailed in Section
4.3.2.

4.2. Design Flow 52

posed LDPC decoder is scheduled to simultaneously decode two independent encoded

frames. This is facilitated by double D-type Flip-Flop (D-FF) chains [89, 90, 35, 91],

which also protect the decoder from the catastrophic propagation of metastability. By

employing these three innovations, our novel fully parallel LDPC-FD architecture is

shown to be more resilient to timing errors, as well as capable of achieving a higher

throughput and lower latency than conventional architectures.

The chapter is organised as follows: Section 4.2 outlines the motivation and flow

for designing and characterising the proposed decoder. Section 4.3 discusses the fully

parallel implementation of the LDPC-FP. In particular, motivated by the conventional

implementation, we propose the novel employment of the BMT number representation

for LDPC decoding, as well as a novel decoder architecture that is designed to provided

tolerance to processing errors. We propose the error model in Section 4.4, for conducting

BER simulations in the presence of timing errors. The complete comparison between

different implementations is presented and discussed in terms of timing characteristics,

area, power consumption and BER simulation results, in Section 4.5. Finally, the

chapter is concluded in Section 4.6.

4.2 Design Flow

In Section 4.1, we reviewed the challenges encountered in the design of previous timing

error-tolerant LDPC decoders, which we will use to motivate our proposed LDPC-FD

and its design flow. In this subsection, we first address the conventional design flow

for LDPC decoders and discuss the modifications that are motivated for the design of

timing-error-tolerant LDPC decoders. A typical design flow for ASIC implementations

of LDPC decoders is illustrated in Figure 4.1. The process starts from the specifica-

tions and proceeds step-by-step until the bottom level is reached, where the ASIC is

fabricated. Here, the specification defines the design goals of the LDPC decoder, which

informs the selection of algorithmic parameters, such as block length, coding rate, and

LDPC factor graph topology [84, 92]. Following this, an algorithm-level simulation of

the iterative LDPC decoding process is employed to validate the algorithmic parame-

ters and to identify the number of clock cycles required to achieve the desired BER.

The simulation may be extended to also consider architectural parameters, such as

fixed-point bit width, in order to characterize the effect on the BER. Following this,

the algorithm can be converted into a Register Transfer Level (RTL) description, which

precisely describes the behaviour of the decoder and allows synthesis. By linking a par-

ticular library of cells, the RTL behaviour description can be replaced by logic gates and

4.2. Design Flow 53

BER
Results

Results
BER

Place & Route

Synthesis

RTL coding

Fixed-Point Algorithm
Level

Register Transfer
Level (RTL)

Gate Level

Transistor Level
Post-layout

characteristics

timing

Timing Error

extracting

Testing

Vectors

injecting
timing errors

Model

Timing

characteristics

input

Specifications

Tape out

simulation

Library

Cell

Constraints

Cell

Library

measurement

Figure 4.1: The proposed design flow for LDPC decoder ASICs.

interconnections, facilitating gate level simulation. The gates can be further replaced

by transistors during placing and routing, with corresponding libraries. This facilitates

transistor level simulation, which validates the operation and identifies the ASIC area,

energy consumption and clock frequency. The above-mentioned design steps may be

iterated several times, before finally taping out the design. As the design flow proceeds

through each subsequent level, the design is enriched with more realistic simulation re-

sults, but also becomes more complex, time consuming and expensive. In the remainder

of this thesis, the Cadence simulation is considered running on the transistor level with

proper design tools provided, and the SPICE simulation is assumed to run on the gate

level, unless otherwise specified.

Furthermore, the complexity of each level is significantly further increased when in-

vestigating the circuit behaviour under the influence of timing errors, which transform

the synchronous digital operation of the circuit into asynchronous analogue operation.

Consequently, it may become impossible to comprehensively simulate the timing er-

ror tolerance of an ASIC LDPC decoder at the lower design levels. As a result, the

characteristics of the tape-out become unpredictable with a risk that the tape-out is

unsuccessful. This risk of wasting all of the invested time, effort and expense, makes

it undesirable to investigate timing error tolerance based only on measurements taken

from a fabricated ASIC. Furthermore, the effect of the parameters chosen for the ASIC

cannot be investigated, since these are typically hard-coded into a tape-out. Addi-

4.2. Design Flow 54

tionally, ASICs are not capable of offering insights into the internal operations of the

design, in the way that simulations can. Furthermore, these experimental results may

be influenced by numerous unpredictable factors, such as temperature variations, elec-

tromagnetic radiation and process variations, which may obfuscate the results. Finally,

these measurements cannot be readily reproduced by other researchers, unless they

have access to the fabricated chip. Owing to these issues, research is motivated in

not only timing-error-tolerant LDPC implementations, but also in the design process

for these implementations [33, 39, 38, 43]. This is particularly motivated now that

fabrication technology has moved into the sub-65nm regime, where the reliability of na-

noelectronic systems cannot be guaranteed, due to the increased effect of the IR drop,

inductive noise, crosstalk, electrostatic discharges, particle strikes, switching noise and

fabrication process variations [31, 32, 33, 34, 35, 36, 37].

Motivated by this, we propose a novel process for designing and characterizing our

fully-parallel LDPC-FD, which has improved inherent tolerance to timing errors, com-

pared to conventional designs. The arrows pointing upwards on the right-hand side

of Figure 4.1 illustrates the proposed modification to the design flow, in contrast to

the traditional design flow shown on the left-hand side. More specifically, we use sim-

ulations at the algorithm level to investigate the decoders’ BER performance, but we

incorporate a model of the causes and effects of timing errors, which is parametrized

by characteristics obtained from the lower design levels of Figure 4.1. Although the

most realistic experimental results can only be obtained by taking measurements from

a fabricated ASIC, this implies a huge amount of design time, effort and financial invest-

ment, which may not deliver the desired performance as described above. Therefore,

our simulation-only approach de-risks the expensive and time-consuming fabrication of

an ASIC, allowing confidence to be gained in a timing-error-tolerant design. This will

pave the way for our future work, which will fabricate a timing-error-tolerant LDPC

decoder ASIC. Furthermore, our simulations at the upper levels of the design flow

are immune to random variation and are readily repeatable, using synthesis process-

ing, SPICE simulation and Cadence simulation. Additionally, our approach allows the

characterization of the effect of each design parameter on the circuit performance to be

characterised, enabling the optimization of parameter values. We will demonstrate the

proposed design flow throughout the remainder of this chapter.

In this chapter, we propose a timing error model to predict the occurrence, loca-

tion and effect of timing errors, according to timing characteristics of individual nodes

extracted from lower levels of the design flow, which allows the algorithm level simula-

tion of the decoding operation in fully-parallel manner at low BERs. With the aid of

the developed model, it is possible to efficiently and accurately characterise the error-

4.3. Fully Parallel Implementation of Fixed-Point LDPC Decoder 55

correction performance of the proposed LDPC decoder, when operating in the presence

of timing errors, as discussed in the following sections. Note that, transistor level sim-

ulations are utilized to characterise and verify the timing error model for each type of

node.

4.3 Fully Parallel Implementation of Fixed-Point LDPC

Decoder

In this section, we will discuss the fully parallel implementation of the LDPC-FD using a

4-bit FP representation and the Min-Sum Algorithm (MSA), for the sake of complexity

reduction, the error correction performance of which has been discussed in Chapter 3.

The corresponding MSA operations of the CNs and VNs have been explained in (2.20)

and (2.24) of Section 2.3.2.3. This section commences in Section 4.3.1 by breaking

down the fully parallel implementation of the LDPC-FD into the implementation of

individual CNs and VNs in the LDPC code’s factor graph. Based on Figure 4.2, we

employ D-type Flip Flops (D-FFs) in the LDPC-FD to separate and schedule the CN

and VN operations, so that the LDPC-FD is capable of simultaneously decoding two

independent codewords, as well as reducing the likelihood of catastrophic metastability

propagation. The improved placement of D-FFs is proposed to reduced the number of

D-FFs required, without compromising the capability of simultaneous decoding. Fol-

lowing this, Section 4.3.2 discusses the structure of the large-degree CNs and VNs, used

to implement (2.20) and (2.24). The conventional structures are presented, and con-

trasted to a novel structure that we propose for constructing large-degree nodes, having

more desirable tolerance to timing errors. The use of BMT is proposed in Section 4.3.3,

in contrast to the conventionally adopted TC.

4.3.1 Fully Parallel Scheduling

As discussed in Chapter 2, the parametrization of an LDPC decoder is completely spec-

ified by its factor graph [59, 8, 9]. Figure 4.2 illustrates a fraction of the factor graph

of a (1056, 528) WiMAX LDPC code [65]. This factor graph comprises CNs having

degrees of dc = 6, 7, VNs having degrees of dv = 2, 3, 6, and the edges interconnect-

ing them, each of which is analogous to a pair of wires propagating soft information

bidirectionally. Although a number of algorithms have been proposed for LDPC de-

coding [6, 11, 66, 67, 69, 8, 71, 72, 93, 94], the MSA is adopted here for the sake of

achieving low complexity [11, 64]. This algorithm uses an LLR to represent the soft in-

4.3.1. Fully Parallel Scheduling 56

Figure 4.2: A fraction of the factor graph of a (1056, 528) WiMAX LDPC code and the
illustration of the decoding scheduling.

formation associated with each particular encoded bit x, expressed as x̃ = ln
P (x = 1)

P (x = 0)
.

Fully-parallel MSA LDPC decoders employ an iterative decoding process in which each

iteration comprises two steps. In the first step, all VNs are activated simultaneously.

Each VN generates a LLR for each of the connected CNs by summing the LLRs pro-

vided by the other CNs with the LLR provided by the wireless channel, as indicated

in (2.24). The resultant LLRs are passed along the edges of the factor graph to the

CNs, which are activated simultaneously in the second step of the iteration. Each CN

generates an LLR for each of the connected VNs by combining the LLRs provided by

the other connected VNs, as indicated in (2.20). Rather than using summation to

combine LLRs like in the VNs, the CNs use the boxplus � operation [8] to combine

LLRs. In the MSA, the boxplus operator � is approximated for two LLRs ã and b̃ as

c̃ = ã � b̃ ≈ sign(ã) · sign(b̃) · min(|ã|, |b̃|), as given in (2.19). The structure used to

implement the combination of LLRs will be addressed in the following subsection.

4.3.1.1 Decoding Scheduling and Double D-FFs

As shown in Figure 4.2, D-FFs may be placed on the input and output ports of every

CN and VN for storing the FP numbers processed. In this way, it takes 4 clock cycles

to complete 1 decoding iteration, in which all CNs and VNs are activated once. This

double D-FFs placement also allows the simultaneous decoding of two independent

4.3.1. Fully Parallel Scheduling 57

Table 4.1: The scheduling for simultaneously decoding two independent codewords, A
and B, when D-FFs are employed at the input and output ports of every CN and VN.

VNs dv = 2 dv = 3 dv = 6
Odd clock cycle A A A
Even clock cycle B B B

Table 4.2: The scheduling for simultaneously decoding two independent codewords, A
and B, when D-FFs are employed at the input and output ports of CNs and VNs having
a degree of dv = 6 only.

VNs dv = 2 dv = 3 dv = 6
Odd clock cycle A A B
Even clock cycle B B A

codewords, provided that the received LLRs related to one of the two codewords are

fed to the VNs in clock cycles having odd indices, while the received LLRs related to

the other of the two are fed to the VNs in clock cycles having even indices, which is

depicted in Table 4.1. Note that the use of double D-FFs implies an increased energy

consumption and chip area, as reported in [95, 96, 97]. In this way, the two codewords

can be decoded using the same total number of clock cycles as is required for their

successive decoding without the use of double D-FFs.

Note however that the low-degree VNs have much lower critical path delays than

those of the high-degree VNs and CNs. Owing to this, we propose to employ D-FFs

only on the input and output ports of VNs having a degree of dv = 6, as well as of

CNs having degrees of dc = 6 and 7. By contrast, we propose the use of no D-FFs

on the input and output ports of VNs having degrees of dv = 2 and 3, as shown by

the dashed D-FFs in Figure 4.2. Accordingly, the scheduling may be modified to avoid

the overlapped processing of received LLRs related to the two codewords. In this way,

the VNs having a degree of dv = 6 are fed with LLRs related to one codeword, while

received LLRs related to the other codeword are fed into the other VNs, during the

same clock cycle. In the next clock cycle, the received LLRs at all VNs are alternated.

Table 4.2 shows this modified scheduling.

4.3.1.2 Metastability

In order to ensure that a D-FF is able to reliably clock in a sample from a binary

signal, the signal is required to remain constant at ‘1’ or ‘0’ for a certain amount of

time both before and after the sampling moment at the clock edge. The amounts of time

4.3.2. Structure of High-Degree Nodes 58

are referred to as the setup time and hold time, respectively. If these required timing

conditions are violated, then the output of D-FF may become metastable [90, 89, 35, 91],

adopting a value that is neither a valid ‘1’ nor ‘0’. In this case, the D-FF requires

an unpredictable amount of time to recover the output signal from the metastable

state back to a valid logic value, which may be selected at random. This imposes

additional delay on the next circuit path, which can cause further timing violations and

metastability. In this way, metastability may propagate through the other connecting

components and spread to other D-FFs. If metastability is not resolved before the

arrival of the upcoming clock edge, it can take over the entire circuit and prevent

it working altogether [90, 89, 35, 91]. Although the occurrence of metastability is

rare in any single D-FF, it is common in circuits having many D-FFs and it is only

necessary for metastability to occur at one D-FF for it to spread to the whole circuit.

Therefore, metastability has to be considered during digital circuit design, especially

when aggressive overclocking is applied as in this chapter.

The Mean Time Between Failures (MTBF) is a metric commonly used to charac-

terise the likelihood of occurrence of metastability [90, 89, 35, 91]. However, a chain

of double D-FFs can be used to protect a circuit from the spread of metastability.

This is because the path delay between the cascaded D-FFs is very small, allowing the

metastability the greatest opportunity to resolve before it reaches the second D-FF.

4.3.2 Structure of High-Degree Nodes

Nearly all CNs and around half of the VNs in the family of WiMAX LDPC codes

have a degree of 6 or higher [65]. Similar node degree distributions can be found in

other practical standards, such as IEEE 802.11n/ac[63]. The implementation of the

high-degree CNs and VNs dictates not only the area and energy consumption of the

decoder, but also the critical path propagation delay. Owing to this, the implementation

of the high-degree nodes determines the tolerance of the a fully-parallel LDPC-FD to

timing errors.

Computer-aided VLSI design can generate high-degree CN and VN circuits from

either the corresponding behaviour description or the truth table. However, as the

number of inputs to the nodes increases, the description and truth table representing

the logic operations within the CNs and VNs becomes exponentially complex. For this

reason, generating the circuits of the high-degree nodes via synthesis processing is not

preferred. Alternatively, the associative property of the addition and boxplus operator

allows nodes having large degrees to be constructed on the basis of 2-input 1-output

4.3.2. Structure of High-Degree Nodes 59

sub-nodes, as discussed in Section 2.3.2. For example, in the (1056,528) WiMAX LDPC

code, the VNs having degrees of dv = 2, 3 and 6 may be constructed on the basis of

2-input 1-output adders, which we refer to as sub-VNs. Likewise, the CNs having

degrees of dc = 6, 7 may be constructed on the basis of 2-input 1-output boxplus

operators, namely sub-CNs. The circuit of a sub-node may be designed by computer-

aided synthesis, due to its low complexity.

4.3.2.1 Conventional Structure

A number of methods for efficiently constructing high-degree nodes on the basis of

2-input 1-output sub-nodes have been proposed in [11, 67, 17, 16, 10, 92, 15, 98, 99,

64, 13, 12, 26, 100, 14, 101, 20, 24, 102]. The serial structure of Figure 4.3(a) is also

known as forward-backward structure [11, 66, 67, 64], which implements the FBA of

(2.21), (2.22) to (2.27). This uses sub-nodes to accumulatively combine the inputs

in both directions, in order to obtain intermediate results, which are then combined

to generate the outputs. However, this inherently serial processing results in a large

propagation delay for the circuit’s critical path. In a large node having L inputs, the

forward-backward structure requires a total of 3L− 6 sub-nodes and has a critical path

delay of L− 2 times the critical path delay of an individual sub-node.

By contrast, the parallel structure of Figure 4.3(b) in [13, 14] combines all the inputs

using a logarithmically-reducing number of sub-nodes to successively pair them, until

the single combination of all inputs is obtained. Following this, an extra subtraction

or reverse operation of (2.18) is performed, to remove each input from the combination

of all inputs, in order to obtain each final output. However, the reverse operation of

(2.18) has a high complexity and cannot be implemented easily [13, 14]. For a node

having L inputs, the parallel structure requires at least L− 1 sub-nodes plus L reverse

sub-nodes, and achieves a critical path delay of at least dlog2 Le times the critical path

delay of the sub-node plus the critical path delay of the reverse sub-node. Therefore, the

parallel structure has a lower hardware resource requirement and a lower latency than

the serial structure, assuming the reverse sub-nodes have a similar implementation

complexity is similar to the original sub-nodes. Due to this advantage, the parallel

structure of Figure 4.3(b) is widely adopted in the implementations of LDPC decoders

[11, 67, 17, 16, 10, 92, 15, 98, 99, 64, 13, 12, 26, 100, 14, 101, 20, 24, 102]. Note that

the shaded blocks in Figure 4.3 represent sub-nodes.

4.3.2. Structure of High-Degree Nodes 60

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����
����

����
����
����
����

(a) The forward-backward structure.

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Addition / Boxplus

The inverse operation

(b) An instance of parallel structures.

Figure 4.3: The conventional structures for constructing nodes having high degrees
based on 2-input 1-output sub-nodes.

4.3.3. Fixed-Point Numbers and Anti-Overflow Techniques 61

4.3.2.2 Proposed Structure

The methods discussed in Section 4.3.2.1 for constructing high-degree nodes are not

desirable for exploiting and enhancing the circuit’s tolerance to timing errors, due to the

large associated critical path delays. We propose a novel structure for high-degree nodes

to exploit and enhance the timing error tolerance of the fully parallel LDPC decoder.

Our proposed design achieves a minimum and equal propagation delay for the paths

from every node input to every output. These propagation delays are lower than those

of the previously mentioned forward-backward and parallel structures. Furthermore,

the proposed structure employs the symmetrical connections, with the aim of reusing

common pairs of inputs and common combining nodes as many times as possible. In

this way, the number of consumed sub-nodes is reduced, without compromising the

propagation delay at each output. Figures 4.4(b) and 4.4(d) present the schematics

for the proposed high-degree nodes having 6 and 7 inputs. Figures 4.4(a) and 4.4(c)

provide the schematics of nodes having 3 and 4 inputs, although their area and critical

path delay are similar to those of the conventional structures. Note that the shaded

blocks in Figure 4.4 represent sub-nodes.

In Section 4.5, it will be demonstrated that in the fully parallel LDPC decoder using

the proposed node structure of Figure 4.4, the longest critical path delay is reduced by

up to 38.8%, at the cost of increase of around 12% and 4% in estimated area and

power consumption, respectively. Detailed results and discussions will be provided in

Section 4.5.

4.3.3 Fixed-Point Numbers and Anti-Overflow Techniques

Anti-overflow techniques for TC and BMT FP numbers are discussed in Sections 4.3.3.1

and 4.3.3.2, respectively.

4.3.3.1 Two’s Complement Number Representation

As discussed in Section 3.2.2, TC has been widely adopted in the implementation of

LDPC decoders. However, overflow may occur to TC numbers having a bit width of W ,

when an arithmetic operation performed on FP numbers produces a result that exceeds

the supported dynamic range, which may cause a positive number to become negative

or vice versa. In an LDPC decoder implementation, ignoring this problem may increase

the number of iterations required for the decoding process to converge, or may result in

decoding failure [16, 10]. In order to mitigate the overflow problem, the overflowed TC

4.3.3. Fixed-Point Numbers and Anti-Overflow Techniques 62

���
���
���

���
���
���

�
�
�
�

�
�
�
�

���
���
���

���
���
���

���
���
���

���
���
���

(a) The structure of nodes
having 3 inputs.

(b) The structure of nodes having 6 inputs.

���
���
���
���

���
���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���
���

���
���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

(c) The structure of nodes having 4
inputs.

(d) The structure of nodes having 7 inputs.

Figure 4.4: The proposed structure of nodes having 3, 4, 6 and 7 inputs.

4.3.3. Fixed-Point Numbers and Anti-Overflow Techniques 63

numbers may be saturated to the maximum or the minimum value supported, which

has been demonstrated to be necessary for fixed-point LDPC decoders having limited

bit width W [16, 10]. The FP EXIT analysis of Section 3.4 has revealed that a bit

width W of 4 is sufficient for LDPC-FDs to achieve low computational complexity,

while suffering only a slightly degraded BER performance. Since 4-bit TC numbers

support decimal values in the range from -8 to 7, overflow may occur in both CNs and

VNs of the MSA LDPC decoder employing 4-bit LLRs. For example, when adding (6)d,

(0110)b, and (5)d, (0101)b, in a sub-VN, the desired decimal result (11)d overflows to

an incorrect value of (−5)d, (1011)b. By incorporating saturation into the operation

of sub-VNs, the incorrect value of (−5)d can be saturated to (7)d, (0111)b, in order to

avoid the incorrect sign bit. Overflow occurs in a sub-CN when a boxplus operation is

performed on a pair of inputs both equal to (−8)d, (1000)b, which has the desired value

of (8)d, but which results in the overflowed value of (0)d, (0000)b. In order to avoid an

incorrect sign bit, this overflowed value can be saturated to (7)d, (0111)b.

4.3.3.2 Base Minus Two Number Representation

Despite the widespread adoption of TC in digital circuit design, it has some disadvan-

tages with respect to tolerance to timing errors. For example, in a full adder within a

VN using TC, the sign bit is decided after the other bits, due to the ripple carry mech-

anism. Owing to this, the TC sign bit is most vulnerable to timing errors. However,

LDPC decoders decide the decoding results based on the sign of the LLRs, which indi-

cates that erroneous sign bits may significantly degrade the decoder’s error-correcting

performance. Motivated by this, we conducted a comprehensive investigation of sev-

eral other number representations, in order to search for an alternative that is suited

to timing error tolerance. Apart from two’s complement number representation, this

investigation have covered a range of standard number representations, including sign-

and-magnitude, one’s complement, offset binary and base minus two, and also a mas-

sive amount of random permutations of those existing ones. Through the exhaustive

searching, we found that the BMT FP number representation is capable of achieving

a superior timing error tolerance than that of TC. The BMT number representation is

similar to TC, except that the weight of bits in BMT are powers of −2, rather than 2 as

in TC. In the BMT number representation, a binary number having a bit width of W ,

(bW−1bW−2 . . . b1b0)b, is equal to the decimal number having the value of ΣW−1
i=0 bi(−2)i.

Note that no specific bit indicates the sign of the number as in the TC number repre-

sentation. In agreement with the discussion of Section 4.3.3, we recommend a BMT bit

width of 4 bits, which has a supported range of decimal numbers from −10 to 5.

4.4. Overclocking-Induced Timing Error Analysis 64

4.3.3.3 Boolean Expressions

In the case of W = 4, the 2 inputs to a sub-node have 256 combinations, because each

of them has 4 bits. Therefore, the logic operation in a 2-input 1-output sub-node can

be expressed by a 256×4 truth table or by 4 boolean expressions corresponding to the

4 bits of the node output. Note that this truth table and thus boolean expressions can

natively consider built-in saturation, as explained previously in Section 4.3.3.1. The

boolean expressions of sub-CNs using TC and BMT are shown in the first column of

Figure 4.5, which demonstrate that the boolean expressions of BMT are much less

complex than those of TC, when the operation of (2.19) is performed within the CNs.

More explicitly, the most complex expression for TC has 25 terms, some of which involve

6 variables, while the corresponding expression of BMT only contains 15 terms with no

more than 5 variables involved in each.

This relatively low complexity of boolean expressions translates into a relatively low

complexity circuit, when computer-aided design is applied to the corresponding truth

tables. Furthermore, each logic gate in the schematic can be translated into a cell

containing multiple transistors, following placing and routing. This allows additional

characteristics of the sub-nodes to be characterised, namely the area and energy con-

sumption. Figure 4.5 compares the layout views2 of a CN having a degree of dc = 6

using the BMT and one using the TC number representation, which are constructed

based on sub-CNs using the structure proposed in Figure 4.4(b) of Section 4.3.2.2. The

detailed comparison on the timing, area characteristics, energy consumption and error-

correcting performance will be discussed in Section 4.5. Here we list several numerical

comparisons to prove the advantages previously discussed. When using BMT instead

of TC, the longest path delay within CNs and VNs is reduced by 23%, and both the

estimated area and power consumption of the decoder are reduced by around 10%. In

Section 4.5.4, our design will be shown to be significantly more resilient to timing errors,

owing to the nature of the BMT number representation and owing to the reduced crit-

ical path delay. For the reasons mentioned above, we propose to use the BMT number

representation in our design for a fully-parallel LDPC decoder.

4.4 Overclocking-Induced Timing Error Analysis

As described in Section 4.1, timing errors may be imposed by overclocking, whenever

there is insufficient time for the correct value of a signal to propagate to the input of a

2This result is reproduced from the work of the colleagues, Ke Li and Shida Zhong, as will be briefly
introduced in Section 4.5.5.

4.4. Overclocking-Induced Timing Error Analysis 65

34
0µ

m

196µm

degree-6 CN using TC

degree-6 CN using BMT

138µm

33
2µ

m

Boolean expressions for sub-CN using BMT

Boolean expressions for sub-CN using TC

Figure 4.5: Comparison of boolean expressions for sub-CNs using TC and BMT. The
layout view for CNs having a degree of dc = 6 using TC and BMT is also compared,
when IBM 130nm process technology is employed. Note that the saturation is employed
in the operation of each sub-CN.

4.4.1. Timing analysis 66

memory, before the arrival of the upcoming clock edge. When aggressive overclocking

is employed, the clock period Tclk is reduced below the nominal propagation delay t of

a signal, typically imposing timing errors. However, even moderate overclocking may

cause timing errors, since this makes the circuit more sensitive to the late arrival of

signals. The propagation delays of circuit paths may fluctuate from one clock cycle

to the next, typically caused by noise imposed on the power rails [103]. This noise

is caused by parasitic resistance and inductance in the power distribution network

[104, 105]. These noise sources, known as IR-drop and LdI/dt noise, are related to

both the mean current drawn from the power supply and to the instantaneous changes

in current, respectively [105]. Changes in mean and instantaneous current are mainly

determined by the switching activity levels in the circuit, which in turn depend on the

combination of input vectors present during each clock cycle. Formally, a timing error

occurs for a particular signal when

t× δ > Tclk, (4.1)

where δ characterizes the fluctuation in the propagation delay within the current clock

cycle. In Section 4.4.1.2, we describe methods to obtain the nominal propagation delay

t within CNs and VNs. Following this, the fluctuation δ of signal propagation delays

from one clock cycle to the next is selected from a normalized Probability Density

Function (PDF). In Section 4.4.2, we propose an error model which can predict the

timing errors, based on the timing analysis. Finally, this model is utilized to guide the

simulations in Section 4.5.4.

4.4.1 Timing analysis

We commence in Section 4.4.1.1 by discussing the methods used to obtain the nominal

path delays t within various different LDPC decoder architectures. In Section 4.4.1.2,

we discuss the methods used to quantify the fluctuation δ in these propagation delays,

caused by the supply noise.

4.4.1.1 Nominal Propagation Delay

Let us begin by characterizing the nominal signal propagation delays t of CNs and VNs

having different degrees, when employing the number representations and nodes struc-

tures discussed in Sections 4.3.2 and 4.3.3. This is considered for two different scales of

fabrication technologies, namely IBM 130 nm technology [106] and STMicroelectronics

90 nm technology [107]. Note that the delay of a path includes the output delay of the

4.4.1. Timing analysis 67

D-FF at the beginning of the path and the total delay of the combinational logic along

the path. By contrast, the hold time of the D-FF at the beginning and the setup time

of the D-FF at the end of the path are not considered to be part of the path delay,

since these are instead used to model the occurrence of timing errors. Unlike the delay

of the paths, the setup and hold times do not vary from one clock cycle to another.

The values of the nominal propagation delay t are characterized in Section 4.5.1, when

IBM 130nm technology is used as an example. The comparison is also conducted and

discussed in Section 4.5.1 for CNs and VNs having different degrees, when employing

different number representations and nodes structures.

4.4.1.2 Fluctuation in Propagation Delay

3σ/µ = 0.3

3σ/µ = 0.1

3σ/µ = 0.01

Normalized delay multiplier δ

N
or
m
al
iz
ed

P
D
F

1.41.210.80.6

Figure 4.6: Time-normalized NAND gate delay PDF for 3σ/µ = {0.01, 0.1, 0.3} when
employing STMicroelectronics 90 nm technology, where µ = 1 V.

In our timing error model, the value of the supply voltage VDD is assumed to be

randomly distributed and independent in each clock cycle, since different gates are

switched in each successive clock cycle [104, 105]. We further assume that the physical

design (layout of the power grid) is fully optimized, and that sufficient on-chip bypass

capacitors are inserted. Owing to this, the supply voltage VDD may be assumed to have

a Gaussian distribution, since the fully parallel LDPC decoder contains a sufficiently

high number of gates. The mean value of the Gaussian distributed supply voltage is

equal to the nominal supply voltage µ, while the value of the standard deviation σ

depends on the supply voltage noise, circuit layout, fabrication process and technology

scale [104, 105]. Finally, we assume that during each clock cycle, each gate within the

decoder is driven by the the same supply voltage VDD value, that was randomly selected

from the Gaussian distribution [103]. Since the propagation delay of a particular type

of gate is a decreasing function of the supply voltage VDD, it can be modelled as a

random variable that is independently selected from a particular PDF in each successive

clock cycle. Since the normalized distributions of all gates types are very similar [103],

4.4.2. Proposed error model 68

the normalized propagation delay distribution of a NAND gate was adopted to model

the propagation delay distribution of all circuit components, as recommended in [103].

Figure 4.6 shows the time-normalized NAND gate delay PDF for 3σ/µ ∈ {0.01, 0.1, 0.3}.
For example, when 3σ/µ = 0.1, the propagation delay of a NAND gate extends above

its nominal value by 10% or more with a probability of around 1%. Correspondingly,

the probability of a NOT gate’s propagation delay extending by 10% or more above

its nominal value is also around 1%, when 3σ/µ = 0.1. This normalized distribution

has been verified to be accurate by SPICE simulation and is capable of simplifying the

analysis of the following sections.

4.4.2 Proposed error model

Based on the previous timing analysis, we model timing errors by modifying particular

bits in the fixed-point number representations of the LLRs exchanged within the LDPC

decoder in each clock cycle. This is implemented by comparing the simulated fluctuation

propagation delay to the clock period, according to

δt < Tclk − Tsetup no error, (4.2)

Tclk − Tsetup ≤ δt ≤ Tclk + Thold type I error, (4.3)

Tclk + Thold < δt type II error. (4.4)

Explicitly, the model categorizes the timing errors into two types. (4.2) represents the

case where the propagation delay of a signal on a particular path during a particular

clock cycle, δt, is small compared to the clock period Tclk. In this case, the signal is

correctly clocked into the D-FF on time. (4.3) represents the case where δt is increased

so that the signal’s arrival is located in the metastability window, namely the duration

from Tclk−Tsetup to Tclk+Thold. This causes the D-FF to become potentially metastable.

However, this metastability can be resolved by the double flip-flop chain, as described

in Section 4.3.1.1. This provides an additional clock cycle to allow the metastability

to resolve to a valid but randomly selected logic value again, causing a Type I error.

To model a Type I error, during our simulations, a random bit value is clocked into

the second D-FF. (4.4) represents the case where the propagation delay δt is further

increased to be larger than Tclk + Thold. In this case, we assume that different parts of

the logic propagate asynchronously, causing glitches to appear at the input of the first

D-FF throughout the metastability window. Owing to this, the resultant Type II error

is modelled as a random bit being clocked into the second D-FF.

4.4.3. Validation of the error model 69

4.4.3 Validation of the error model

The proposed error model was validated using simulation in Cadence which is considered

to be the most accurate tool in both academic and industry [46, 108]. This approach

is exemplified by the results of Figure 4.7. More specifically, we simulated the case of

for a TC-based CN having a degree of dc = 7 to decode two independent codewords

simultaneously, as discussed in Section 4.3. The supply voltage VDD was set at the

nominal value of 1.5 V, while the clock frequency was set as 800 MHz, which is an

extreme condition that allows the observation of metastability. As may be observed in

Figure 4.7, the first D-FF misses the switching input signal, during the first two clock

cycles, then clocks incorrect values, causing two instances of Type II error. During the

9th clock cycle shown in Figure 4.7, the first D-FF enters the metastable state, due to

the dramatic switching at the input before the clock edge. However, this metastability

resolves to the valid logic value “1” within the clock cycle, and this incorrect value is

clocked into the second D-FF at the next clock edge, cauinsg a Type I error.

4.5 Comparison of Implementations

In this section, the timing, area and power consumptions characteristics of CNs and

VNs in the (1056,528) WiMAX LDPC are compared for cases of using different number

representations and node structures, with the IBM 130nm process technology[106].

More explicitly, we investigate VNs have degrees of 2, 3 and 6, as well as CNs having

degrees of 6 and 7, which are associated with the distributions shown in Table 4.3.

Note that similar results were observed when the STMicroelectronics 90 nm process

technology[107] is employed. We commence by comparing the timing characteristics in

Section 4.5.1. Following this, the area characteristics and the energy consumption of

each type of CN and VN compared in Sections 4.5.2 and 4.5.3, respectively. Motivated

by the discussion of Section 4.2, we characterize the impact of timing errors upon the

error correction capability of the proposed fully parallel LDPC decoder, as well as of

several benchmarkers, in Section 4.5.4.

4.5.1 Timing Characteristics

In this subsection, we compare the timing characteristics of individual CNs and VNs

using the BMT representation to those using the TC representation. The proposed

structure of Figure 4.4 for constructing large-degree CNs and VNs is also compared to

the forward-backward structure of Figure 4.3(a), in terms of the timing characteristics

4.5.1. Timing Characteristics 70

Type I
Error

MetastabilityType II
Error

true
simulated

Time (ns)

VDD

at 2nd DFF

output signal

510500490

1.5

0.5

at 1st DFF

output signal
1.5

0.5

at 1st DFF

input signal
1.5

0.5

CLOCK

1.5

0.5

Figure 4.7: Timing diagrams demonstrating two types of timing errors, obtained from
post-layout simulation in Cadence.

4.5.1. Timing Characteristics 71

BMT proposed structure
TC proposed structure

BMT forward-backward structure
TC forward-backward structure

VNs

CNs

N
om

in
al

P
ro
p
ag
at
io
n
D
el
ay

(n
s)

dv = 6dv = 3dv = 2dc = 7dc = 6

8

7

6

5

4

3

2

1

0

Figure 4.8: Comparison of timing characteristics for all combinations of CNs and VNs
using BMT and TC, as well as the proposed node structures of Figures 4.3(a) and the
forward-backward structure of Figure 4.4, for the case when IBM 130 nm technology is
employed.

of CNs and VNs. We characterize the nominal propagation delay t from the synthesised

schematics, according to the discussion of Section 4.4.1.1. The obtained values of the

nominal propagation delay t within CNs and VNs using IBM 130nm technology [106]

are plotted in Figure 4.8. Explicitly, Figure 4.8 plots the nominal propagation delay on

each of 4 bits at one output port of every type of CN and VN, where the bars represent

the delay for the proposed structure and the discrete marks represent the delay for the

forward-backward structure. The longest critical path delay among the 4 path delays

for every type of CNs and VNs is also shown in the row of ‘longest critical path delay’ of

Table 4.3. The numbers in and outside of brackets in Table 4.3 present the results for the

forward-backward and proposed node structures of Figures 4.3(a) and 4.4, respectively.

Based on these results, the comparison of TC and BMT representations is discussed in

Section 4.5.1.1 and the comparison of node structures is discussed in Section 4.5.1.2.

4.5.1.1 Comparison of Number Representations

Following the discussion in Section 4.3.3.2, the BMT number representation is demon-

strated to achieve a lower value of the longest critical path delay within CNs and VNs

having various degrees, as shown in Table 4.3. It may be observed that BMT decreases

the critical path delay of all CNs and VNs to be lower than 3 ns, when using the pro-

4.5.1. Timing Characteristics 72

T
ab

le
4.

3:
C

om
p
ar

is
on

of
cr

it
ic

al
p
at

h
d
el

ay
,

es
ti

m
at

ed
ar

ea
an

d
p

ow
er

co
n
su

m
p
ti

on
fo

r
C

N
s

an
d

V
N

s,
u
si

n
g

d
iff

er
en

t
co

m
b
in

at
io

n
s

of
B

M
T

an
d

T
C

,
as

w
el

l
as

th
e

p
ro

p
os

ed
n
o
d
e

st
ru

ct
u
re

s
of

F
ig

u
re

s
4.

4
an

d
th

e
fo

rw
ar

d
-b

ac
k
w

ar
d

st
ru

ct
u
re

of
F

ig
u
re

,
fo

r
th

e
ca

se
w

h
en

IB
M

13
0n

m
te

ch
n
ol

og
y

is
em

p
lo

ye
d
.

T
h
e

n
u
m

b
er

s
in

b
ra

ck
et

s
co

rr
es

p
on

d
to

th
e

fo
rw

ar
d
-b

ac
k
w

ar
d

st
ru

ct
u
re

of
F

ig
u
re

4.
3(

a)
.

n
o
d
e

ty
p

e
F

P
C

N
V

N
T

ot
al

re
p
.

d
eg

re
e

-
6

7
2

3
6

-
d
is

tr
ib

u
ti

on
-

2/
3

1/
3

11
/2

4
1/

3
5/

24
-

#
su

b
-n

o
d
es

T
C

&
B

M
T

12
(1

2)
21

(1
5)

3(
3)

6(
6)

21
(1

5)
-

lo
n
ge

st
cr

it
ic

al
T

C
3.

60
(5

.4
3)

3.
52

(6
.7

7)
0.

83
(0

.8
3)

1.
57

(1
.5

4)
2.

12
(3

.2
5)

-
p
at

h
d
el

a y
(n

s)
B

M
T

2.
69

(3
.6

5)
2.

78
(4

.5
4)

1.
10

(1
.1

0)
1.

98
(2

.0
0)

2.
78

(4
.6

1)
-

ar
ea

(µ
m

2
)

T
C

70
48

.8
0

(7
06

7.
52

)
11

51
5.

68
(8

70
6.

24
)

15
07

.6
8

(1
50

7.
68

)
24

85
.4

4(
24

85
.4

4)
68

34
.2

4
(5

41
8.

72
)

7.
62

(6
.8

2
) ×

1
06

B
M

T
53

48
.1

6
(5

34
8.

16
)

84
26

.8
8

(6
55

3.
44

)
16

58
.8

8
(1

65
8.

88
)

27
87

.8
4

(2
78

7.
84

)
79

02
.7

2
(6

17
4.

72
)

6.
89

(6
.1

8
)×

1
06

p
ow

er
(µ

W
)

T
C

19
.3

5
(1

9.
34

)
26

.4
9

(2
2.

95
)

6.
78

(6
.7

9)
9
.8

9
(9

.8
9
)

2
1
.0

9
(1

9
.3

4
)

22
.8

7
(2

1
.8

6
)×

1
03

B
M

T
15

.6
7(

15
.7

5)
20

.7
6

(1
8.

53
)

6.
85

(6
.8

5)
1
0
.0

0
(1

0
.0

0
)

2
1
.2

3
(1

9
.2

0
)

20
.6

8
(1

9
.8

7
) ×

1
03

4.5.1. Timing Characteristics 73

posed node structures of Figure 4.4. More explicitly, the longest critical path delay for

CNs using BMT instead of TC, are decreased by up to 25%. By contrast, the longest

critical path delay for VNs having degrees of dv =2, 3 and 6 are increased by 33%, 26%

and 10%, respectively, when using BMT instead of TC. However, the increased critical

path delays are still lower than those of the CNs. Owing to this, the critical path delay

for the LDPC decoder is decreased by 23% overall. When the BMT representation is

employed in the forward-backward node structures of Figures 4.3(a), similar reduction

in the longest critical path delay within CNs and similar increases in the longest critical

path delay within VNs are observed, compared to those using TC.

4.5.1.2 Comparison of high-degree Node Structures

The numbers outside of brackets in Table 4.3 represent the numerical results of CNs and

VNs using the proposed high-degree node structure of Figure 4.4. Meanwhile, those in

brackets represent the numerical results for CNs and VNs using the forward-backward

structure of Figure 4.3(a). It may be observed that the longest critical path delays

for all CNs and VNs are significantly lower in the proposed structure, regardless of

whether BMT or TC is used. The longest critical path delay is typically reduced by up

to 38.8% in the case of the CNs having a degree of dc = 7, when BMT and the proposed

structure is employed. Moreover, Figure 4.8 provides detailed timing characteristics for

each of the 4 bits on each output port of all types of CNs and VNs. When the proposed

structure is used, all output ports employ equivalent combinations of inputs. Owing

to this, the difference between delays of 4 bits at different output ports is negligible

as discussed in Section 4.3.2. For this reason, Figure 4.8 quantifies only the delays

associated with a single output port of a particular node, using a cluster of 4 bars, each

of which corresponds to a different bit in the operand. The different shade patterns of

the bars indicate whether the results correspond the use of BMT or TC in that node.

By contrast, when the forward-backward structure of Figure 4.3(a) is used, the various

output ports are associated with different methods of combining the inputs. Owing

to this, Figure 4.8 quantifies the delays of all output ports of each node using groups

of markers, where each group comprises 4 markers representing the delays associated

with the 4 bits of the operand at each output. Similarly, different markers are used to

indicate whether the results correspond to the use of BMT or TC in that node. It may

be observed that all markers are located above the bars, indicating that the proposed

structure of Figure 4.4 reduces the propagations delays to a minimum value at every

output port, regardless of which number representation is used.

Due to the various implementations of the inverse operation that may be used in

4.5.2. Area 74

the parallel node structure of Figure 4.3(b), it is difficult to precisely quantify the

timing results, as well as chip area and power consumption. However, as discussed in

Sections 4.3.2, the proposed structure of Figure 4.4 is guaranteed to achieve a lower

critical path delay at the cost of a slightly increased chip area, based on the similarities

between these structures and the additional cost of the complex inverse operation.

4.5.2 Area

The area for CNs and VNs using BMT and TC are obtained from the synthesis pro-

cessing on the schematics of Figures 4.3(a) and 4.4, when IBM 130nm technology is

employed. First, we compare the area for different CNs and VNs using BMT and TC,

shown as numbers outside brackets in Table 4.3, when the proposed structure of Fig-

ure 4.4 is employed. It may be observed that BMT reduces the total area consumption

by up to 27% in CNs having a degree of dc = 7, at the cost of increasing it by up to

16% in VNs having a degree of dv = 7. However, the area of a VN having a degree

of dv = 6 is still less than that for a CN having a degree of dc = 6. This was also

exemplified by the comparison of chip layouts of CNs having a degree of dc = 7 shown

in the right column of Figure 4.5, which exhibits a 31% reduction after placing and

routing, when using BMT instead of TC. More explicitly, the CNs having a degree of

dc = 7 using BMT require around 34.6% fewer transistors, compared to the number

required when using TC. Following the principle discussed in Section 4.2, the area of

the full decoder is estimated by summing those of every CN and VN, as shown in the

right-most column in Table 4.3, instead of by synthesising the full decoder’s schematic.

Note that the estimated full decoder’s area excludes the consideration of interconnect-

ing wires and other components. In this case, the total area of the decoder using BMT

instead of TC is reduced by 10%, when the proposed node structure is employed. When

the forward-backward structure of Figure 4.3(a) is employed, similar reduction of area

in CNs and increase in VNs are observed when using BMT instead of TC, shown as

numbers in the brackets of Table 4.3.

Table 4.3 also demonstrates that the proposed node structure consumes larger area

only in CNs having a degree of dc = 7 and VNs having a degree of dv = 6, compared

to the forward-backward structure, when the same number representation is employed.

More explicitly, the area is increased by 29% and 28% for CNs having a degree of dc = 7

and VNs having a degree of dv = 6, respectively, when both use BMT. This comparison

can also be presented from the total number of sub-nodes consumed by CNs having a

degree of dc = 7 and VNs having a degree of dv = 6, as shown in Table 4.3. However,

no significant differences are found in CNs and VNs having other degrees. Note that

4.5.3. Power Consumption 75

the CNs having a degree of dc = 7 using the proposed structure and BMT achieve

similar areas to those using the forward-backward structure and TC, which verifies

the discussions in Section 4.3.2.2. The area of the parallel structure of Figure 4.3(b)

is excluded from the comparison, due to the unfair comparison caused by the inverse

operation, as discussed previously in Section 4.3.2.

4.5.3 Power Consumption

Similarly, the energy consumption results for CNs and VNs using BMT and TC number

representations from the synthesis processing on the schematics of Figures 4.3(a) and 4.4

are compared in Table 4.3, when IBM 130nm technology is employed. As a result of the

area reduction of the proposed node structure of Figure 4.4, the energy consumption

for CNs having degrees of dc = 6 and 7 using BMT instead of TC is decreased by

around 19% and 22%, respectively. However, the energy consumption of the VNs

having a degree of dv = 6 using BMT is increased by less than 1%, despite the 16% area

increase observed previously. This indicates that the inputs of VNs having a degree of

dv = 6 using BMT may have less switching activity than those using TC. No significant

differences in energy consumption were observed between the VNs having degrees of

dv = 2 and 3, when using BMT instead of TC. The estimated power consumption for

the decoder using BMT instead of TC is reduced by around 10%, which is obtained

by summing the power consumption of each CN and VN. When the forward-backward

node structure of Figure 4.3(a) is employed, similar results are observed for BMT and

TC.

Another comparison between the proposed and forward-backward node structures

may be conducted by comparing the numbers inside and outside the brackets in Ta-

ble 4.3. Only a slight 12% increase is observed for CNs having a degree of dc = 7

using the proposed structure of Figure 4.4 instead of the forward-backward structure

of Figure 4.3(a), when BMT is employed.

4.5.4 BER Results and Discussions

In this section, BER results were obtained using the Monte-Carlo simulation at the FP

algorithm level, where timing errors are injected according to the proposed model of

Section 4.4.2. The same (1056,528) LDPC code is considered here as an example, and

BPSK is employed for transmission over an Additive White Gaussian Noise (AWGN)

channel. All the BER results are simulated by sending at least 106 codewords encoded

from random information bits over a noisy AWGN channel, then decoding the received

4.5.4. BER Results and Discussions 76

codewords iteratively using the MSA. This continues until early termination is triggered

by the occurrence of an all-zero syndrome, or until the maximum affordable number of

clock cycles is reached. The decoder decodes two independent codewords simultaneously

as discussed in Section 4.3.1. The maximum number of clock cycles is limited to 100,

which is large enough to achieve the iterative decoding convergence at the low Eb/N0

values. However, since the early termination cannot be anticipated in advance, the

amount of time that is reserved for decoding each codeword is given by 100Tclk. This

corresponds to a processing throughput of Rb =
2K

100Tclk

information bits per second.

Note that the decoders adopt saturation, as described in Section 4.3.3.

In Section 4.5.4.1, we list the LDPC decoder parametrizations that are consid-

ered in the simulations. The BER performances of these decoders in the absence of

timing errors are compared and discussed in Section 4.5.4.2, providing the theoretical

bound on the BER performance that can be achieved when timing errors are consid-

ered. The corresponding BER results in the presence of overclocking-induced timing

errors are demonstrated in Section 4.5.4.3, which considers the timing characteristics

of Section 4.4.

4.5.4.1 Proposed Scheme and Benchmarkers

Six types of fully parallel fixed-point LDPC decoder architectures will be considered in

the following sections, as follows.

• Decoder A: The proposed scheme, which employs BMT number representation

with double D-FFs only on the inputs and outputs of VNs having a degree of 6,

as well as CNs.

• Decoder B: A benchmarker, which employs the BMT number representation with

D-FFs on the inputs and outputs of every VN and CN.

• Decoder C: A benchmarker, which employs the BMT number representation with

D-FFs only on the outputs of every VN and CN.

• Decoder D: A benchmarker, which employs the TC number representation with

D-FFs only on the inputs and outputs of VNs having a degree of 6, as well as

CNs,

• Decoder E: A benchmarker, which employs the TC number representation with

D-FFs on the inputs and outputs of every VN and CN.

4.5.4. BER Results and Discussions 77

Table 4.4: Simulation parameters.

µ 1.5 V
3σ/µ {0.01, 0.3}
Tclk {1, 2, 3, 4} ns
bit width 4 bits
number representation TC, BMT
high-degree node structures proposed in Figure 4.4
max num. of Tclk per codeword 100
anti-overflow saturation

• Decoder F: A benchmarker, which employs the TC number representation with

D-FFs only on the outputs of every VN and CN.

Note that all decoders adopt the proposed node structures illustrated in Figure 4.4,

with a bit width of W = 4. Each of the six decoders is capable of decoding two

independent codewords simultaneously, while Decoders B and E are also capable of

decoding four codewords at a time, since they employ D-FFs on both ends of every

interconnecting wire. However, since Decoders C and F employ only a single D-FF

on each interconnecting wire, they do not have the protection against the catastrophic

propagation of metastability, as the other 4 decoders have. A limit of 100 clock cycles

is employed, in order to make fair comparison with the proposed schemes. All of the

parameters used in our simulations are shown in Table 4.4.

4.5.4.2 Simulation and Analysis in The Absence of Timing Errors

The error-correcting performance in the absence of timing error is investigated as fol-

lows, when the clock frequency is set sufficiently high to avoid possibility of timing er-

rors. Figure 4.9 plots the BER performance of the six decoders listed in Section 4.5.4.1,

when the maximum number of clock cycles per codeword is limited to 100. It may

be observed that in each pairing of Decoders A and D, B and E, as well as C and F,

the schemes achieve very similar error-correcting performance to each other, when em-

ploying the same maximum number of clock cycles. This demonstrates that the BMT

and TC number representations having a bit width of W = 4 give very similar error

correction performance, in the absence of timing errors. However, Decoders A and D

achieve iterative decoding convergence at lower Eb/N0 values than Decoders B and E,

because the former schemes exchange more LLRs within fewer clock cycles, owing to

their employment of fewer D-FFs. Decoder C and F require the highest Eb/N0 values

to achieve iterative decoding convergence, compared to the other two pairs.

4.5.4. BER Results and Discussions 78

Decoder F
Decoder C
Decoder E
Decoder B
Decoder D
Decoder A
4bit MSA

Eb/N0(dB)

B
E
R

6543210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

Figure 4.9: BER plots of the proposed architecture compared with several benchmarkers
in the absence of timing errors.

4.5.4.3 Simulation and Analysis in The Presence of Timing Errors

In this section, the timing error tolerance of Decoders A, B, and E is investigated in

the presence of timing errors caused by aggressive overclocking. Note that Decoder

C and F are not considered for this case, since they are vulnerable to catastrophic

metastability propagation, due to the single D-FF employed between each pair of CN

and VN. The consideration of Decoder D is redundant, since it employs the combina-

tion of both inferior schemes in terms of timing error tolerance, namely TC and D-FFs

only on the inputs and outputs of VNs having a degree of 6, as well as CNs, as will

be demonstrated in the following subsections. This analysis relies on the error model

and timing analysis described in Section 4.4. In order to investigate the timing er-

rors tolerance comprehensively, the scaled clock period Tclk is selected from the set of

{1, 2, 3, 4} ns, while the supply voltage standard deviation is selected such that 3σ/µ

is equal to {0.01, 0.3} [103], when µ is 1.5 V, as shown in Table 4.4. More explicitly,

compared to the 2.78 ns critical path delay of Decoder A, Tclk = 1 and 2 ns represent

aggressive overclocking, while Tclk = 3 and 4 ns represent moderate overclocking. As

explained in Section 4.4.1.2, 3σ/µ = 0.01 represents a very small variation in the value

of δ, which models the scenario where the path delay varies little between clock cycles,

while 3σ/µ = 0.3 represent the scenario where the path delay may vary dramatically

from one clock cycle to another.

4.5.4. BER Results and Discussions 79

4bit MSA
4 ns
3 ns
2 ns

Tclk = 1 ns
BMT
TC

Eb/N0(dB)

B
E
R

6543210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

(a) 3σ/µ = 0.01

4bit MSA
4 ns
3 ns
2 ns

Tclk = 1 ns
BMT
TC

Eb/N0(dB)

B
E
R

6543210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

(b) 3σ/µ = 0.3

Figure 4.10: BER plots of the proposed architecture compared with 3 benchmarkers
with the presence of timing errors, when 3σ/µ equals to (a) 0.01 and (b) 0.3, for the
case when IBM 130 nm technology is employed.

Decoder B and E Let us begin by comparing the BER performance of Decoders B

and E for different degrees of overclocking, as shown in Figures 4.10(a) and 4.10(b).

Figure 4.10(a) characterizes the scenario when 3σ/µ = 0.01. It may be observed that

Decoder B achieves iterative decoding convergence to the same BER as the sub-optimal

MSA benchmarker, when a clock period Tclk of 3 ns is employed. By contrast, Decoder

E requires Tclk = 4 ns in order to achieve this BER performance. Indeed, this BER

performance gap between Decoders B and E at a BER of 10−5 is around 2.5 dB, when

Tclk = 3 ns. However, in the case of aggressive overclocking where the clock period is

set to 1 and 2 ns, both decoders fail to converge at a low BER.

In the case of 3σ/µ = 0.3, where the path delays vary significantly from one clock

cycle to the next, the BER performance of Decoders B and E are degraded significantly

compared to the corresponding schemes in the absence of timing errors, as shown in

Fig 4.10(b). More explicitly, Decoder B achieves a BER of 10−5 within 0.6 dB of the

performance achieved in the absence of timing errors, when the clock period Tclk is 3 ns.

This gap closes to around 0.2 dB, when Tclk is increased to 4 ns. By contrast, Decoder

E only approaches a BER of 10−5 within 0.3 dB of the performance achieved in the

absence of timing errors, when Tclk is 4 ns.

Based on Figures 4.10(a) and 4.10(b), it may be observed that Decoder B is capable

of achieving the same BER performance of Decoder D, when operating with a lower

Tclk. In other words, the fully parallel LDPC decoder using BMT has a greater tolerance

to timing errors than the corresponding scheme using the TC number representation.

This allows Tclk to be reduced by around 1 ns, which corresponds to an increase of

4.5.4. BER Results and Discussions 80

4bit MSA
4 ns
3 ns
2 ns

Tclk = 1 ns
BMT
TC

Eb/N0(dB)

B
E
R

6543210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

(a) 3σ/µ = 0.01

4bit MSA
4 ns
3 ns
2 ns

Tclk = 1 ns
BMT
TC

Eb/N0(dB)

B
E
R

6543210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

(b) 3σ/µ = 0.3

Figure 4.11: BER plots of the proposed architecture compared with 3 benchmarkers in
the presence of timing errors, when 3σ/µ equals to (a) 0.01 and (b) 0.3, for the case
when STMicroelectronic 90 nm technology is employed.

around 33.3% in the processing throughput from 1.3 Gbit/s to 1.8 Gbit/s.

The same timing analysis and error model can be applied to fabrication technolo-

gies of other scales. Figures 4.11(a) and 4.11(b) provide the corresponding BER results,

when the STMicroelectronic 90nm technology is used instead of the 130nm IBM tech-

nology. Similar BER performances can be observed for Decoders B and E, offering the

similar conclusion that BMT is preferable to TC with respect to timing error tolerance.

Decoder A and B Since BMT was identified as being preferable to TC in our

previous discussions, we compare the BER performance of the BMT-based Decoders A

and B, when 3σ/µ = 0.3 and Tclk = 3 ns, as shown in Fig 4.12. It may be observed

that the BER performance of Decoder A only exhibits a negligible degradation of less

than 0.1 dB compared to Decoder B at a BER of 10−5. Furthermore, both decoders

closely approach the performance of the corresponding schemes in the absence of timing

errors. Here, the slight discrepancy may be explained by the dramatically varying path

delays when 3σ/µ = 0.3, which increases the occurrence of timing errors. However,

the number of D-FFs used in Decoder A is 9328, which is 30% fewer than that 13376

D-FFs used in Decoder B. Therefore, we recommend the architecture of Decoder A,

which is a fully parallel LDPC-FD using the BMT number representation, our novel

node structure and D-FFs placed only on the inputs and outputs of high-degree nodes.

4.5.5. Tape-out 81

4bit MSA
Tclk = 3 ns
Decoder B
Decoder A

Eb/N0(dB)

B
E
R

6543210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

Figure 4.12: BER plots of different D-FF schemes in the presence of timing errors, when
3σ/µ is 0.3 and Tclk = 3 ns, for the case where IBM 130 nm technology is employed.

4.5.5 Tape-out

In this subsection, we present the results of further work [109]3 undertaken by our

colleagues, Shida Zhong, Ke Li and Isaac Perez-Andrade, who have successfully fab-

ricated an IBM 130 nm ASIC for LDPC decoding using the BMT representation and

the proposed node structure of Figure 4.3(a). Figure 4.13(a) shows the layout view

of the decoder design, and Figure 4.13(b) is the micro photography corresponding to

the fabricated chip. In [109], we have demonstrated that the measurements obtained

from the ASIC agree with the conclusions made based on the BER simulations, which

validates our design flow proposed in Section 4.2.

4.6 Conclusions

In this chapter, we have proposed a novel design flow for timing-error-tolerant LDPC

decoders. Using this design flow, we have accomplished the implementation and verifi-

cation of an LDPC-FD having improved tolerance to timing errors. We have proposed

a novel fully parallel LDPC-FD, having enhanced inherent tolerance to overclocking-

induced timing errors. The decoder adopts 4-bit BMT FP numbers rather than TC to

3This work is been prepared for submission to IEEE Journal of Solid-State Circuits [109].

4.6. Conclusions 82

CHIP 1

CHIP 2

(a) Layout (b) Micro photography

Figure 4.13: The layout of the fabricated ASIC for the LDPC decoding using the BMT
representation.

represent LLRs, a novel structure for constructing the high-degree nodes, and places D-

FFs on the inputs and outputs of only high-degree nodes. These innovations increases

the processing throughput by allowing the simultaneous decoding of two independent

codewords, as well as protecting the decoder from the catastrophic propagation of

timing-error-induced metastability. In order to demonstrate the improved timing er-

ror tolerance of the proposed architecture, we have proposed a timing error model

for LDPC-FDs, which allows the simulation of timing errors with efficiency and accu-

racy. With the aid of this model, we investigated the BER performance of the LDPC

decoder and several benchmarkers, in the presence of timing errors caused by over-

clocking. Based on these BER results, we conclude that the proposed BMT number

representation can increase the processing throughput by up to 33.3%, reduce the area

by around 10% and maintain a similar level of power consumption, compared to the

conventional TC number representation. Furthermore, the novel structure proposed for

high-degree nodes and the placement of D-FFs placed at their inputs and outputs was

also demonstrated to enhance the tolerance of the decoder to timing errors. Further-

more, we demonstrated that placing D-FFs at the inputs and outputs of high-degree

nodes imposes only a negligible degradation in error-correcting performance, but uses

30% fewer D-FFs. An ASIC has been fabricated by our colleagues and the resultant

measurements have validated our design flow proposed in Section 4.2.

Chapter 5

Stochastic LDPC Decoder

5.1 Introduction

As discussed in Chapters 3 and 4, Fixed-point LDPC Decoders (LDPC-FDs) usually

adopt the Log-Sum-Product Algorithm (Log-SPA), the Min-Sum Algorithm (MSA)

or on other log-domain algorithms over the probability-domain Sum-Product Algo-

rithm (SPA). This may be attributed to the high implementational complexity involved

with the SPA operations performed on probabilities. The use of reduced-complexity log-

domain algorithms allows implementations of LDPC-FDs to use the Fixed-Point (FP)

number representation for the soft information exchanged between and processed by

the parity-Check Nodes (CNs) and Variable Nodes (VNs). Each FP number comprises

several bits, each of which requires a wire to connect between a CN and a VN. This may

cause interconnection congestion, due to the large number of wires required to connect

the CNs and VNs. This is one of the main factors limiting the fully-parallel implemen-

tation of LDPC-FDs having a medium or large block lengths of hundreds or thousands

of bits [110, 111, 112, 97, 102]. In particular, the area of wires may occupy up to 50%

of the total area of an LDPC decoder Application-Specific Integrated Circuit (ASICs)

[110]. Therefore, the partial parallel implementation of LDPC-FDs is more common

[100, 99, 98, 113, 101, 14, 16, 10, 13, 26] than fully parallel implementation in practice.

In order to reduce the number of wires required to exchange soft information between

the CNs and VNs, the so-called bit-serial LDPC-FDs were proposed in [97, 112]. Mean-

while, the bit-flipping decoding algorithm was proposed and developed in [6, 114], while

a compression technique was proposed in [115] to compress the probabilities or LLRs.

Despite the above-mentioned challenges, fully parallel implementations of LDPC-

FDs have been reported in [27, 116, 117, 118, 28]. In [27, 28], a fully parallel LDPC-FD

83

5.2. Fully Parallel Implementation of Stochastic LDPC Decoders 84

for non-binary LDPC codes was fabricated as an ASIC, for the case of a small factor

graph. Layout results have been reported in [116, 117, 118] for fully parallel LDPC-FDs,

where various techniques for reducing routing congestion are employed.

In [119, 120, 121, 122, 123], the stochastic implementation of LDPC decoders is

proposed, which uses so-called Bernoulli sequences to convey the soft information ex-

changed between CNs and VNs, rather than using FP numbers. In Stochastic LDPC

Decoders (LDPC-SDs), only a single bit is exchanged between each pair of CNs and

VNs per clock cycle. Over the course of several successive clock cycles, the individual

bits that are exchanged between a particular pair of nodes collectively form a Bernoulli

sequence [119, 124]. Here, the exchanged probability is represented by the particular

fraction of bits in this Bernoulli sequence that have a binary value of 1. In this way, the

number of interconnection wires is significantly reduced. Furthermore, the operations

performed within the stochastic CNs and VNs may be implemented using simple logic

gates, rather than complicated FP arithmetic circuits. These advantages reduce the

chip are required, granting LDPC-SDs the potential for fully parallel implementation.

In this chapter, we will discuss the fully parallel implementation of LDPC-SDs in

detail. Figure 5.1 lists the most relevant previous publications along the timeline of the

stochastic implementation of LDPC decoders. The timeline is represented by a vertical

line with the downward direction representing the chronological order, where each knot

on the vertical lines represent a publication discussed above. The novel contributions of

this chapter area a novel method for obtaining the decoding decision from the LDPC-

SDs, as well as a comprehensive characterization of the performance of LDPC-SDs.

In this chapter, we commence by explaining basic stochastic computation in LDPC-

SDs in Section 5.2.1. Following this, we will discuss the implementation of LDPC-SDs

in Sections 5.2.2 and 5.2.3. In Section 5.3, we conduct comprehensive simulations to

investigate the Bit Error Ratio (BER) performance of the LDPC-SDs. Finally, this

chapter will be concluded in Section 5.4.

5.2 Fully Parallel Implementation of Stochastic LDPC

Decoders

Since the LDPC-SDs use Bernoulli sequences to represent probabilities, we first

recall the SPA introduced in Chapter 2 and the operations performed on probabilities

as expressed in (2.13), (2.14), (2.15) and (2.16). These equations are shown as below

5.2. Fully Parallel Implementation of Stochastic LDPC Decoders 85

Figure 5.1: Timelines of relevant publications.

Figure 5.2: Structure of a CN.

for the sake of convenience. In Section 5.2.1, we will discuss the conversion of those

operations on probabilities to basic stochastic computations in LDPC-SDs [125].

In the case of CNs having a degree of dc = 3 and VNs having a degree of dv = 2,

an output probability PC that is obtained by combining two input probabilities PA and

PB is given by

PC = fCN(PA, PB) = PA(1− PB) + PB(1− PA),

PC = fVN(PA, PB) =
PAPB

PAPB + (1− PA)(1− PB)
,

respectively [8]. These functions may be extended for more than two input probabili-

ties, by recursively substituting (2.13) and (2.14) into itself. For example, these input

probabilities may be combined according to

PD = fCN(PA, PB, PC)

= PA(1− fCN(PB, PC)) + fCN(PB, PC) · (1− PA),

5.2.1. Basic Stochastic Computation 86

Figure 5.3: Structure of a VN.

PD = fVN(PA, PB, PC)

=
PA · fVN(PB, PC)

PA · fVN(PB, PC) + (1− PA)(1− fVN(PB, PC))

=
PAPBPC

PAPBPC + (1− PA)(1− PB)(1− PC)
.

The structure of CNs and VNs in fully-parallel LDPC-SDs were discussed in Chap-

ter 4, illustrated by Figures 5.2 and 5.3. In Sections 5.2.2 and 5.2.3, we will discuss

the implementation of CNs and VNs in LDPC-SDs, respectively, based on the basic

stochastic computation and the structure in LDPC-SDs. In particular, Section 5.2.3

will detail the differences of each component in stochastic VNs compared to those in

LDPC-FDs.

5.2.1 Basic Stochastic Computation

In LDPC-SDs, the exchanged probability is represented by the particular fraction of bits

in this Bernoulli sequence that have a binary value of 1. For example, the probability

of 0.7 may be expressed by a stochastic bit stream 1011110101 However, the same

probability of 0.7 may be represented by other streams having the same fraction of 1s

in a different order, such as 0110110111 Accordingly, the stochastic implementation

of (2.13) and (2.14), as well as of the CNs and VNs of Figure 5.2 and 5.3, are explained

in the following subsections.

In stochastic computation, different mathematical functions of probabilities can be

5.2.2. Stochastic Implementation of CNs 87

implemented using different logic gates. In particular, the intersection of two probabili-

ties is given by their product PC = PA∩B = PA ·PB, which can be implemented by using

an AND logic gate, to combine the corresponding Bernoulli sequences, as exemplified in

Figure 5.4(a). Similarly, the difference between the union and intersection of two inde-

pendent probabilities is given by PC = PA⊕B = PA∪B−PA∩B = PA(1−PB)+PB(1−PA),

which can be implemented by using an eXclusive-OR (XOR) gate, as exemplified in Fig-

ure 5.4(b). The complementary probability PC = PĀ = 1−PA can be obtained using a

NOT gate to invert the Bernoulli sequence, as exemplified in Figure 5.4(c). Finally, the

normalized division PC = PA
PA+PB

of two probabilities can be implemented using a JK-

type Flip-Flop (JK-FF), which operates on the two corresponding Bernoulli sequences,

as shown in Figure 5.4(d). Note that while the gates of Figures 5.4(a), 5.4(b) and 5.4(c)

produce outputs that depend only on the current inputs, the JK-FF of Figure 5.4(d)

has memory, which implies that the output depends on the current inputs and the state

of the memory that has been established by the previous inputs. More explicitly, the

output Q of the JK-FF is updated to the value of the input J, if it disagrees with the

value of K. If J and K are both equal to 0, then the state of the output Q is preserved.

If J and K are both equal to 1, then the state of the output Q is toggled, as shown

in the example of Bernoulli sequences of Figure 5.4(d). Note that when the Bernoulli

sequences are short, the output will represent a probability that only approximates

the correct result, as exemplified in Figure 5.4. However, the approximations become

increasingly accurate, as the length of the Bernoulli sequences are extended.

5.2.2 Stochastic Implementation of CNs

Figures 5.2 and 5.3 depict the structures of an individual CN and VN, respectively. As

shown in Figure 5.2, the cth CN uses dc number of computation units to combine the dc

input probabilities, which are referred to as a priori probabilities. More specifically, fCN

is used to compute the so-called extrinsic probabilities. As shown in Figure 5.3, the vth

VN is provided with a probability from the channel, as well as dv a priori probabilities

from the connected CNs. The VN uses the dv computation units shown in Figure 5.3

to compute fVN and output an extrinsic probability back to each of the connected CNs

via the corresponding edge. Furthermore, the VN uses an additional computation unit

to calculate a probability for the channel port, which is then converted into a decoded

bit having the binary value of 1, if the probability is greater than 0.5, or to the binary

value of 0 otherwise.

CNs in LDPC-SDs can be implemented by substituting the computation units in

Figure 5.2 by the stochastic implementation of the function fCN. More specifically, in

5.2.2. Stochastic Implementation of CNs 88

(a) Stochastic implementation for approximating PC =
PA∩B = PA · PB .

(b) Stochastic implementation for approximating PC =
PA⊕B = PA(1− PB) + PB(1− PA).

(c) Stochastic implementation for approximating PC =
PĀ = 1− PA .

(d) Stochastic implementation for approximating PC =
PA

PA+PB
.

Figure 5.4: Stochastic implementations of the computation used in LDPC decoding, as
well as example Bernoulli sequences and the corresponding output Bernoulli sequences.
Note that the probabilities PC are the correct results.

5.2.2. Stochastic Implementation of CNs 89

Figure 5.5: Structure of a stochastic CN.

CNs having a degree of dc = 3, the stochastic implementation of (2.13) is obtained using

an XOR gate, as shown in Figure 5.4(b). Note that in LDPC-FDs, the corresponding

function fCN is implemented as either a sum of probabilities represented by FP numbers

in the Log-SPA, or a min of LLRs represented by FP numbers in the MSA. Furthermore,

the stochastic implementation of fCN having more than two inputs in CNs having a

degree of dc > 3 can be implemented by recursively combining XOR gates, in analogy

with (2.15). In analogy with Figure 5.2, a stochastic CN having a degree of dc perform

parity check operations on all the input bits provided by the connected VNs, by using dc

stochastic computation units, each of which combines its dc− 1 inputs using a network

of dc − 2 XOR gates. However, as discussed in Chapter (4), the hardware complexity

of this structure can be readily reduced by using the arrangement of Figure 5.5 [64].

In this high-degree CN, an intermediate parity check result is obtained using a tree

structure composing dc − 1 XOR gates, in order to find the XOR of all the input a

priori bits. This parity check result is then XORed with each of the dc input bits, in

order to obtain the extrinsic bit for each output port. This improved structure therefore

requires a total of 2dc − 1 XOR gates, which is lower than the dc(dc − 2) XOR gates

required by the structure of Figure 5.2 for dc > 3. Note that D-type Flip-Flop (D-FF)

are employed at every input port of CNs, for storing the a priori bits sent from the

interconnected VNs in the previous clock cycle. Likewise, at the output ports of CNs,

5.2.3. Stochastic Implementation of VNs 90

Figure 5.6: Structure of a stochastic VN.

the D-FFs are employed to store the extrinsic bits in the current clock cycle. In this

way, two consecutive clock cycles form one decoding iteration in LDPC-SDs.

5.2.3 Stochastic Implementation of VNs

Figure 5.6 illustrates the stochastic implementation of the VN of Figure 5.3, where

the shaded blocks represent the constituent components, namely the convertor used for

providing the computation units with stochastic bits that represent the channel input,

the computation units used for the stochastic implementation of the function fVN for

converting the a priori stochastic bits into and the decision unit used for obtaining the

decoded bit. In the following discussions, we will address the implementation of the

each shaded blocks, addressing the differences with the corresponding components of

VNs in conventional LDPC-FDs.

5.2.3.1 Channel Input Convertor

As shown in Figure 5.6, the input from channel must be converted from a bit probability

to a Bernoulli sequence, which supplies a single bit to each computation block, in each

5.2.3. Stochastic Implementation of VNs 91

(a) Stochastic implementation of fVN of
(2.14) for VNs having a degree of dv = 2.

(b) Stochastic implementation of fVN of
(2.16) for VNs having a degree of dv = 3.

(c) An anti-latching stochastic implementation of fVN of
(2.16) for VNs having a degree of dv = 3.

(d) Anti-latching stochastic implementation of fVN for
VNs having a degree of dv = 4.

(e) Anti-latching stochastic implementation of fVN for
VNs having a degree of dv = 6.

Figure 5.7: Stochastic implementations for the function fVN of VNs having degrees of
2, 3, 4 and 6. [119, 126, 127, 120].

5.2.3. Stochastic Implementation of VNs 92

clock cycle. This convertor can be implemented as a comparator, which outputs a

stochastic bit having the value of 1, if the channel input probability exceeds a random

number generated with a uniform probability distribution or outputs 0 otherwise [121].

This output is clocked into an output D-FF.

5.2.3.2 Computational Units

The implementation of the function fVN can be constructed based on the stochastic

arithmetic of Section 5.2.1. More specifically, (2.14) can be implemented by a JK-

FF, where the J and K inputs are provided by Bernoulli sequences that represent the

calculation of PA · PB and (1 − PA) · (1 − PB), respectively. As discussed previously,

PA · PB can be obtained using the AND gate of Figure 5.4(a), while the second term

(1 − PA) · (1 − PB) can be obtained by using an AND gate combined with two NOT

gates. The complete implementation of (2.14) is shown in Figure 5.7(a), while Table 5.1

provides the corresponding truth table. Note that if the two stochastic input bits PA

and PB have values that agree, then this value is passed to the output stochastic bit PC ,

as a so-called regenerative bit. Otherwise, the value output in the previous clock cycle

is preserved for the output PC , as a so-called conservative bit. For VNs having higher

degrees, the additional a priori stochastic bits that are input to each computation unit

of Figure 5.6 can be accommodated by increasing the number of inputs provided to

the AND gates. This is shown in Figure 5.7(b) for the case of VNs having a degree

of dv = 3, which operate on the basis of (2.16). However, as the number of inputs

to an AND gate is increased, the probability that they will all adopt the value of 1

simultaneously diminishes. As a result, the outputs of the AND gates tend to get stuck

at 0, causing the output of the connected JK-FF to also become stuck.

Table 5.1: Truth table of stochastic VN.

PA PB PC
0 0 0 generative bits
1 1 1
1 0 previous PC conservative bits
0 1 previous PC

This problem is exacerbated by cycles in the factor graphs of LDPC codes, which

comprise looping paths along the edges between connected CNs and VNs [92, 71], as ex-

emplified in Figure 2.3. In LDPC-SDs, these cycles can result in positive feedback loops,

which can cause particular stochastic bits to get stuck at particular values over many

5.2.3. Stochastic Implementation of VNs 93

0

1

0

1

0

1

8 : 1

8 : 1

8 : 1

Figure 5.8: The example structure of the EM, replacing the JK-FF indicated by the
dashed block.

successive clock cycles. This so-called latching problem typically prevents a LDPC-SD

from converging to a valid decoding result, unless special measures are taken to mitigate

the locked state of the nodes, as discussed below.

5.2.3.3 Anti-Latching Techniques

In particular, VNs having large degrees are most affected by the latching problem, since

they typically form part of more cycles in the factor graph and because they pass their

locked extrinsic bits to more CNs. Therefore, the latching problem can be addressed

by redesigning the VNs having large degrees, at the cost of making them slightly more

complex. In order to increase the switching activity and therefore mitigate the latching

problem for stochastic VNs having high degrees, the implementations of Figures 5.7(a)

and 5.7(b) can be combined recursively, as exemplified in Figure 5.7(d) for the case

of a VN having a degree of dv = 4 and Figure 5.7(e) for the case of a VN having a

degree of dv = 6. In order to further increase the protection of VNs having a degree

of dv = 3 from the latching problem, Figure 5.7(b) can be alternatively implemented

using the layered structure shown in Figure 5.7(c). This approach may be extended for

VNs having higher degrees, as exemplified in Figures 5.7(d) and 5.7(e), for degrees of

dv = 4 and dv = 6, respectively.

As a further step, [121, 120] proposed the replacement of the JK-FFs employed by

VNs with circuits based on so-called Edge Memories (EMs), which comprise a shift

register formed of several D-FFs, as shown in Figure 5.8. The circuit of Figure 5.8

behaves in analogy to a JK-FF and may therefore replace the JK-FFs of Figures 5.7.

Note that the use of the AND gates in Figures 5.7 ensure that the inputs J and K of

Figure 5.8 cannot both have the value of 1 simultaneously. Therefore, the circuit of

Figure 5.8 does not need to implement the toggle functionality of a JK-FF. This means

that a disagreement between the values of J and K can detected using the OR gate of

5.2.3. Stochastic Implementation of VNs 94

Figure 5.8. In this case, the MUltipleXer (MUX) of Figure 5.8 passes the value of the

input J to the output D-FF, as in a JK-FF. In this case, the update signal is used to

shift the contents of the EM by one position and to shift in the value of the input J. By

contrast, if the inputs J and K bothy adopt the value of 0, then a random bit is selected

from the contents of the EM and passed to the output D-FF. In this way, a bit value

from a previous clock cycle is output, in analogy to the behavior of a JK-FF, when

preserving the value from the previous clock cycles. Since the EM typically stores a

mixture of both 0s and 1s, the circuit of Figure 5.8 allows a locked state to be escaped,

in contrast to a JK-FF-based VN.

1

0

S15

S14

S13

1

0

Address

5-bits
Random

D Q

1 from
CN
&

1 from
channel

Initialisation

UpdateIn

32-bit EMOut

Stochastic Stream

Output to
a CN

Clock

S16

2 inputs

Figure 5.9: Schematic of a stochastic VN having a degree of dv = 2 [121].

1

0

S15

S14

S13

1

0

Address

6-bits
Random

2 from
CNs
&

1 from
channel

3 inputs

D Q

Clock

Address
Random

D
Update

Q

S7

S9

S8

0

1

Initialisation

Stochastic Stream UpdateIn

48-bit EMOut

IM1

Output to
a CN

Clock

S16

Figure 5.10: Schematic of a stochastic VN having a degree of dv = 3 [121].

In VNs having degree of 2,3,4 and 6, [121, 120] recommended the use of EMs com-

prising 32, 48, 48 and 64 D-FFs, respectively. However, in high-degree VNs adopting

the layered structures of Figure 5.7(e), the JK-FFs in the first layer may be replaced

with so-called Intermediate Memories (IMs), rather than full EMs. These IMs have

a simpler structure as EMs, but only store 1 or 2 bits. More specifically, [121, 120]

5.2.3. Stochastic Implementation of VNs 95

recommended the use of a pair of IMs comprising one or two D-FFs for VNs having

degrees of 4 or 6, respectively. For VNs having a degree of 3, a single IM comprising

one D-FF was recommended in [121, 120] for combining two the three inputs to each

computation unit. Meanwhile, IMs are not required for VNs having a degree of 2. Only

small IMs are needed, since the outputs of these IMs feed into a large EM in the second

layer, which can generate the VN’s final output bit and mitigate the latching problem.

Furthermore, when employing IMs, the output D-FF of Figure 5.8 may be omitted,

in order to reduce the number of clock cycles required for stochastic bits to propagate

through the VN, as shown in Figure 5.11. Throughout the remainder of this paper, we

assume the use of IMs and EMs in all LDPC-SDs discussions, unless specified otherwise.

0

1

0

1

Address
Random
6-bits

0

1

EM
Update

Input
EM

D QD QD Q
0

1

Address

6-bits
Random

Input
EM

EM
Output

MUX
8 : 1

MUX
8 : 1

MUX
8 : 1

EM
Update

D QD Q
0

1

Address
Random

Input
IM

IM
Output

IM
Update

CLK

Update
QD

Address
IM 1Random

CLK

Update
QD

Address
IM 2Random

Address

6-bits
Random

1

0

Internal Memory Structure

Nominal Edge Memory Structure

Initialisation

Check Nodes &
S14

S13

S15

S18

S12

S11

Output to a
Parity-Check

S8

S9

MUX
8 : 18 : 1

MUX

8 : 1
MUX

S15[2 : 0] [2 : 0]

[5 : 3]
[5 : 0]

D
S18

QD Q D Q

Proposed Edge Memory Structure

MSB

CLKCLKCLK
Output
EMCLKCLK CLK

S15[2 : 0][2 : 0]

[5 : 3]

[5 : 0]

S17

CLKCLK
S9

0

1

0 1

Stream
1 Stochastic

5 from Parity-

S10

6 inputs (S1 . . . S6)

0

1

S7

Stochastic Stream

1

0

1

CLK

D Q
0

64-bit EM
UpdateIn Out

S16

Node

Figure 5.11: Schematic of a stochastic dv = 6 VN. Corresponding schematics for dv = 2
and 3 VNs can be found in [121, Figure 6].

As discussed previously, the content of EMs is essential for VNs to escape the latch-

ing state. Furthermore, EMs are heavily relied on during the beginning of the iterative

decoding, since the inputs of VNs are more likely to disagree with each other. There-

fore, the initial values stored in EMs before starting the decoding processing play an

important role in the decoding of LDPC-SDs [121]. A solution is proposed in [121] to

initialize the EM with the input probability from the channel. More explicitly, when a

new codeword is received at the decoder, the initialization signal shown in Figure 5.11

is set as 1, during as many clock cycles as half of the largest EM, so that all the EMs

are filled by the bits coming out of the convertors of Figure 5.6, e.g. 32 clock cycles for

5.2.3. Stochastic Implementation of VNs 96

the (1056,528) WiMAX LDPC code. before the iterative exchanging between CNs and

VNs begins. After the initialization, with the initialization signal reset as 0, the CNs

and VNs are iteratively activated, and the EM is then controlled by the update signal

discussed previously, until the decoding processing is terminated. This initialization

is then repeated for another received codeword. It has been demonstrated that this

partial initialization allows the LDPC-SDs have the similar BER performance as the

LDPC-FDs [121]. In this paper, we also use the recommended 32 clock cycles in the

initialization phase.

So-called Noise-Dependent Scaling (NDS) [120] may also be used to help prevent the

occurrence of the latching problem. This technique scales the bit probabilities provided

by the demodulator before they are converted into stochastic bits and provided to the

VNs. In this way, the degree of the switching activity within the stochastic decoder

can be maintained at a sufficiently high level, that mitigates the latching problem for

all SNRs. In the case where BPSK modulation is employed for transmission over an

AWGN channel, the scaled bit probability is obtained as

P =
1

1 + exp(αN0

ymax
· 4ηEb

N0
· Re(y))

, (5.1)

rather than (2.12), where y is the received Binary Phase Shift Keying (BPSK) symbol,

N0 is the Additive White Gaussian Noise (AWGN) power spectral density and αN0

ymax
is

the noise-dependent scaling factor. Here, ymax is a predefined constant relating to the

maximum value of Re(y) and α is a constant parameter of the scaling. By tuning the

value of α, the BER performance of LDPC-SDs may be optimized [120]. According to

[120], ymax has the value of 6 for BPSK transmission, where the optimal value of α is

around 3.

5.2.3.4 Decision Unit and Termination of Decoding

Figure 5.12: The structure of the voting decision unit, which may be used to generate
the decoded bit of a VN of an LDPC-SD.

5.2.3. Stochastic Implementation of VNs 97

The method used by the decision unit of Figure 5.6 to generate a decision bit in each

VN has a significant impact on the error correction performance of an LDPC-SD. How-

ever, neither the generation of the decision bits or their impact on the error correction

performance has been addressed in previous publications on LDPC-SDs. Therefore,

we propose two methods for generating these decision bits as shown in Figures 5.12

and 5.13, both of which offer a strong error-correction performance. The schematic of

Figure 5.12 implements a voting mechanism based on all the extrinsic bits output from

the computation units in a VN, where the majority of all the extrinsic bits decide the

decoded bit. Explicitly, the counter of Figure 5.12 is reset in each clock cycle, and is

then incremented by 1 for each extrinsic bit provided by a computation unit having the

value of 0, or decremented by -1 otherwise. At the end of the clock cycle, if the content

of the counter is non-zero, the control signal is set as 0, which allows the sign bit of the

content of the counter to propagate through the MUX as the decoded bit. However, if

the content of counter is evaluated as zero, namely half of the extrinsic bits are 1s and

the other half are 0s, the control signal is set as 1, which sends the bit output from the

convertor directly through the MUX as the decoded bit. The number of bits M used

in the counter may be set as 3, which we found is sufficient for the WiMAX (1056,528)

LDPC code, since the largest degree of its VNs is dv = 6. This decision unit may be

referred to as the voting scheme in the following discussions.

As an alternative, we propose the use of a JK-FF, to obtain the decision bits.

As illustrated in Figure 5.13, this decision unit is similar to the computation unit of

Figure 5.7(b), but is obtained by replacing all a priori inputs, as well as the input

from the channel, with the values of extrinsic outputs from the computation units of

Figure 5.6. If all the extrinsic bits agree with each other, then this value is passed to

the output as the decoded bit. Otherwise, the value output in the previous clock cycle

is preserved for the decision bit. We refer to this decision unit as the JK-FF scheme.

The iterative stochastic LDPC decoding process can be terminated once a valid set

of decoded bits is found, or when a predefined maximum number of decoding cycles is

reached. The former termination condition relies on the method to validate the decoding

bits, as well as a mechanism for generating a decision bit for each VN during each

decoding cycle. In particular, the decoded bits may be considered to be valid, if their

multiplication with the Parity-Check Matrix (PCM) produces an all-zero syndrome

[121].

5.3. Simulation Results and Discussion 98

Figure 5.13: The structure of the JK-FF decision unit, which may be used to generate
the decoded bit in a VN of an LDPC-SD.

Table 5.2: Simulation parameters.

Initialization method random, all one, all zero and channel probability
Decision unit scheme voting and JK-FF
Scaling method with and without NDS
LDPC code WiMAX (1056, 528) LDPC [65]

EM length 32, 48, 64 bits for VNs having degree of dv = 2, 3, 6

EM length multiplexer 1, 1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
64

IM length 0, 1, 2 bits for VNs having degree of dv = 2, 3, 6

Max number of decoding cycles up to 10000

Clock cycles per decoding cycle 1

5.3 Simulation Results and Discussion

In this section, we conduct simulations to investigate the BER performance of LDPC-

SDs employing the implementation discussed in Section 5.2. Explicitly, the BER perfor-

mance of the WiMAX (1056,528) LDPC code is characterised for the case of employing

BPSK for transmission over an AWGN channel. In each of the following subsections,

the BER performance will be characterized as a function of a different parameter, in-

cluding the choice of decision unit scheme, the initialization method of EMs, the length

of EMs and the number of decoding cycles. In this way, we identify recommended

parameters the scheme for the full-parallel implementation of the LDPC-SD. Our sim-

ulation parameters are summarized in Table 5.2. The benchmarker is provided by the

optimal floating-point LDPC decoder using the Log-SPA, which continues decoding

until convergence is achieved.

5.3.1 Decision Unit Scheme

As discussed in Section 5.2.3.4, two schemes for generating the decoded bit in a VN

have been proposed in this chapter, as shown in Figures 5.12 and 5.13. Their BER

performance will be compared in this subsection. Apart from the decision unit, the other

5.3.1. Decision Unit Scheme 99

2000
1000

d
eco

d
in
g
cy
cle

=
500

fl
oatin

g
p
oin

t
L
og-S

P
A

E
b /N

0
(d
B
)

BER

6
5

4
3

2
1

0

10
0

10 −
1

10 −
2

10 −
3

10 −
4

10 −
5

10 −
6

10 −
7

10 −
8

Figure 5.14: BER performance of the LDPC-SD using the voting scheme of Figure 5.12
for decision bit generation.

parameters are identical for the LDPC-SDs employing the two schemes. Explicitly, the

length of the EMs are set as 32, 48 and 64 D-FFs for VNs having degrees of dc =

2, 3 and 6, respectively. During the initialization step, the sequence of output bits

from the convertor discussed in Section 5.2.3.1 are used to fill the the EMs in the

corresponding VN, for 32 successive clock cycles. The plot of Figure 5.14 compares

the BER performance of the voting scheme of Figures 5.12, when different number

of decoding cycles are employed. As may be observed in Figure 5.14, the LDPC-SD

5.3.2. Initialization of EMs 100

using the voting scheme of Figures 5.12 may achieve the same BER performance as the

Log-SPA benchmarker, when the maximum number of decoding cycles is set as 2000,

although it exhibits a gap of around 0.5 dB at a BER of 10−5, when fewer decoding

cycles are permitted. By contrast, the BER performance of the JK-FF decision scheme

of Figure 5.13 is shown in Figure 5.15(a). As may be observed in Figure 5.15(a), the

LDPC-SD employing the JK-FF scheme of Figure 5.13 also achieve the same BER

performance as the Log-SPA benchmarker, when the maximum number of decoding

cycles is 2000.

Note however that the voting scheme of Figures 5.12 has a higher implementation

complexity than the JK-FF scheme of Figure 5.13, owing to the complex M -bit counter.

Therefore, in the remainder of this thesis, the JK-FF scheme of Figure 5.13 is adopted

for the implementation of the LDPC-SD, unless specified otherwise.

10000 cycles
6400 cycles
3200 cycles
1600 cycles
800 cycles
400 cycles
200 cycles
100 cycles

floating point

increasing
decoding cycles

Eb/N0

B
E
R

3210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

(a) BER

10000 cycles
6400 cycles
3200 cycles
1600 cycles
800 cycles
400 cycles
200 cycles
100 cycles

Eb/N0

A
ve
ra
ge

D
ec
o
d
in
g
C
y
cl
es

U
se
d

3210

10000

8000

6000

4000

2000

0

(b) Average number of decoding cycles
performed.

Figure 5.15: (a)BER performance of the LDPC-SD and (b) the average number of
decoding cycles performed, when the maximum numbers of decoding cycles allowed is
{100, 200, 400, 800, 1600, 3200, 6400, 10000}.

5.3.2 Initialization of EMs

As discussed in Section 5.2.3.3, the EMs are initialized by the sequence of bits out-

put from the convertor at the start of decoding process, which may be referred to as

“channel initialization”. The length of the EMs are set as 32, 48 and 64 D-FFs for

VNs having degrees of dc = 2, 3 and 6, respectively. In this way, the EMs can be

completely initialized, provided that 64 successive clock cycles are set as the initializa-

tion depth. Alternatively, the content of the EMs may be only partially initialized, if a

5.3.2. Initialization of EMs 101

random
allzero
allone

completed init
partial init

Eb/N0(dB)

B
E
R

6543210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

Figure 5.16: BER performance of the LDPC-SD employing different EM initialization
methods and depths, for the case of performing a maximum number of decoding cycles
in the set {200, 400, 800, 1600, 2000}

lower number of initialization clock cycles is chosen. In this subsection, we will compare

the BER performance of the LDPC-SD employing the channel initialization method to

three other methods, as shown in Figure 5.16. Explicitly, the other methods initialize

the EMs using sequences of 1s, 0s and random binary values, respectively. Furthermore,

the BER performance of the channel initialization methods with full depth of 64 clock

cycles is also compared to that with the partial depth of 32 clock cycles in Figure 5.16.

These 5 BER curves are presented in clusters, corresponding to a particular number of

decoding cycles, which increases in the set of 200, 400, 800, 1600 and 2000 as the BER

curves approaching the bottom left corner of Figure 5.16. As observed in Figure 5.16,

the channel initialization method exhibits a faster convergence than the other three

methods, although all methods achieve the same BER performance as the Log-SPA

benchmarker, when the maximum number of the decoding cycles is 2000. The partial

channel initialization method also exhibits an identical BER performance to the full

channel initialization method in every cluster. Therefore, we recommend the channel

initialization method with the depth of 32 clock cycles, in order to achieve trade-off

between the error correcting performance and the implementation complexity. Addi-

tionally, this choice allows comparison between our work with previous publications,

since the initialization depth of 32 clock cycles is also recommended in [121, 127].

5.3.3. Length of EMs 102

5.3.3 Length of EMs

Full
Half
Quar

Eighth
Sixteenth

Allone
stoch

log-SPA

Eb/N0

B
E
R

6543210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

Figure 5.17: BER performance of the LDPC-SD employing EMs of various lengths.

In this subsection, we conduct simulations to investigate the effect of the length

of EMs on the BER performance of the LDPC-SD, as shown in Figure 5.17. As dis-

cussed in Section 5.2.3.3, VNs having degrees of 2,3 and 6 employ EMs comprising

32, 48 and 64 D-FFs, respectively. We may refer to this configuration as the full-

length EMs. Another four configuration are also considered in this subsection, which

reduce the length of EMs by factors of 1
2
, 1

4
, 1

8
and 1

16
, namely resulting in EM lengths

of {16, 24, 32}, {8, 12, 16}, {4, 6, 8} and {2, 3, 4} D-FFs, respectively, for VNs having

degrees of {2, 3, 6}. We refer to these as half, quarter, eighth and sixteenth length EM

schemes, respectively. Furthermore, an ‘allone’ configuration in which all EMs in VNs

have only a single D-FF is considered as the extreme case. As observed in Figure 5.17,

the extreme configuration always fails to converge to a low BER, while the two con-

figurations having the smallest EM lengths exhibit obviously slower convergence than

those having larger EM lengths. In particular, only the two configurations having the

largest EM lengths, namely {32, 48, 64} and {16, 24, 32}, can achieve the closest per-

formance to the floating point benchmarker, although there is no distinctive difference

of BER performance between them. Despite this, however, we adopt the use of the full

length EM configuration for the remainder of this thesis, so that our future work may

be compared to the results provided in previous publications [121, 127], which also used

5.3.4. Number of Decoding Cycles 103

full length EMs.

5.3.4 Number of Decoding Cycles

Following the conclusions of the previous subsections, Figure 5.15(a) comprehensively

characterize the BER performance of the LDPC-SD when the maximum number of

decoding cycles is a value in the set of {100, 200, 400, 800, 1600, 3200, 6400, 10000}. Ac-

cordingly, the average number of decoding cycles performed before early stopping is

involved is characterized as a function of the channel Eb/N0 values, in Figure 5.15(b).

As shown in Figure 5.15(a), the BER performance of the LDPC-SD approaches that

of the Log-SPA benchmarker when the number of decoding cycles is 1600, exhibiting

a gap of around 0.25 dB. When the maximum number of decoding cycles is equal to

or higher than 3200, the BER performance becomes similar to the benchmarker, and

cannot be further improved significantly by using more decoding cycles. However, the

average number of decoding cycles performed is almost doubled, when closing the gap

of 0.25 dB, as observed in Figure 5.15(b). Therefore, a maximum number of 2000 de-

coding cycles is recommended, since it strikes a desirable trade-off between complexity

and BER performance. This choice also allows the comparison between our work with

previous publications, as stated previously.

5.3.5 Noise Dependent Scaling

As discussed in Section 5.2.3.3, NDS may help prevent the occurrence of the latching

problem. In this subsection, we characterize the BER performance of an LDPC-SD

without employing scaling methods, as shown in Figure 5.18. Explicitly, the BER

performance is provided for the case when the maximum number of decoding cycles is

a value in the set of {200, 400, 800, 1600, 3200, 6400, 10000}. This is compared to the

BER performance of a floating point benchmarker that employs maximum numbers

of decoding iterations from the set of {1, 2, 4, 8, 16, 32, 100}. As may beobserved in

Figure 5.18, regardless of the number of decoding cycles performed, the LDPC-SD

without NDS exhibits a poor error correction performance, suffering from a severe error

floor. Based on the comparison between Figures 5.15(a) and 5.18, we may conclude that

the NSA of the channel input probabilities is necessary for protecting the LDPC-SDs

from latching. Therefore, we adopt the use of NDS in the remainder of this thesis.

5.4. Conclusion 104

Figure 5.18: The BER performance of the LDPC-SD without NDS, when
employing a maximum numbers of decoding iterations from the set of
{200, 400, 800, 1600, 3200, 6400, 10000}, and is compared with a floating point Log-SPA
LDPC decoder employing {1, 2, 4, 8, 16, 32, 100} decoding iterations.

5.4 Conclusion

In this chapter, we began by identifying the challenges associated with the fully parallel

implementation of LDPC-FDs. Motivated by this, we introduce the fully parallel imple-

mentation of LDPC-SDs. We discussed the details on the building blocks of stochastic

computation that are required in LDPC decoding. Afterwards, we discussed the im-

plementation of the various components of the LDPC-SD. We discussed the latching

problems, as well as several techniques that may be used to protect the LDPC-SD from

it. Moreover, we have proposed schematics for the decision units of the VNs in the

LDPC-SD. By conducting simulations, we have characterized the BER performance of

the LDPC-SD as functions of different parameters. Based on this simulation investi-

gation, we recommend a parametrization for the fully parallel implementation of the

LDPC-SD, as summarised in Table 5.3, which achieves a desirable trade-off between

the implementation complexity and error correction performance. In the nex chapter,

the timing error tolerance of this fully parallel implementation of the LDPC-SD will be

characterized, in analogy to the investigation conducted for the LDPC-FD in Chapter 4.

5.4. Conclusion 105

Table 5.3: The proposed parametrization.

Initialization method channel probability
Decision unit scheme JK-FF
Scaling method with NDS
EM length 32, 48, 64 bits for VNs having degree of dv = 2, 3, 6

IM length 0, 1, 2 bits for VNs having degree of dv = 2, 3, 6

Max number of decoding cycles 2000
Clock cycles per decoding cycle 1

Chapter 6

Timing-Error-Tolerant Stochastic

LDPC Decoder

6.1 Introduction

As discussed in Chapter 4, Fixed-point LDPC Decoders (LDPC-FDs) have an inherent,

but limited, tolerance to timing errors [40, 85, 86, 87, 88, 41, 42, 44]. However, when

timing errors affect the Most Significant Bits (MSBs) of the fixed-point probabilities,

the error correction performance of an LDPC-FD is significantly degraded [40, 41, 42].

Therefore, the designs of [41, 42] employed additional circuitry for detecting and/or

correcting timing errors affecting the MSBs, although this approach is itself associ-

ated with an additional overhead. In Chapter 4, we proposed an Fixed-point LDPC

Decoder (LDPC-FD) design based on Base Minus Two (BMT) numbers to represent

Fixed-Point (FP) probabilities, in order to improve the tolerance to timing errors, com-

pared to the conventional implementation of LDPC-FD using Two’s Complement (TC)

number representation. However, this improved tolerance to timing errors may be dam-

aged by timing errors that affect the bits in the BMT number representation that are

associated with large circuit propagation delays, which limits clock frequency that can

be employed for an Application-Specific Integrated Circuit (ASIC) implementation. In

Chapter 5, Stochastic LDPC Decoders (LDPC-SDs) were introduced, which use the

fraction of bits having the value of 1 within so-called Bernoulli sequences [128] to rep-

resent the probabilities exchanged between parity-Check Nodes (CNs) and Variable

Nodes (VNs). All bits in these Bernoulli sequences have an equal and relatively low

significance, granting them an inherent tolerance to timing errors [129]. Furthermore,

stochastic CN and VN circuits are significantly simpler than those of LDPC-FDs. Ow-

ing to this, the clock frequency may be further increased in LDPC-SDs, in order to

106

6.1. Introduction 107

increase the processing throughput of an LDPC decoder ASIC. Motivated by this, this

chapter considers the tolerance of LDPC-SDs to timing error caused by overclocking and

supply voltage noise. In particular, supply voltage noise models the effects of IR drop,

inductive noise, cross talk, electrostatic discharges, particle strikes, switching noise and

fabrication process variations [31, 32, 33, 34, 35, 36, 37].

Several previous research efforts have investigated the tolerance of LDPC decoder

ASICs to timing errors and other types of processing errors [40, 85, 86, 87, 88, 41, 42, 44].

In [40], it was demonstrated that the inherent error-correcting capability of LDPC-FDs

may also grant them tolerance to timing errors, provided that they do not affect the

MSBs of the fixed-point numbers used to represent bit probabilities. Analytical in-

vestigations of the error-correcting capability of LDPC decoders in the presence of

processing errors were provided in [85, 86, 87, 88]. The designs of [41, 42] employed

additional circuitry for detecting and/or correcting timing errors affecting the MSBs

of the fixed-point numbers, although this approach is associated with an additional

processing overhead, which can limit the attainable processing throughput. Recently,

LDPC decoders that are implemented using stochastic processing have attracted sig-

nificant research interest [121, 122, 120, 126], owing to their low hardware complexity.

Compared to the traditional implementations using FP numbers, LDPC-SDs are suited

to timing-error-tolerant design, since all bits in the stochastic number representation

have an equal and relatively-low significance. Owing to this, a timing error affecting

any single bit in a stochastic number representation has only a small effect on the repre-

sented bit probabilities, which can be readily tolerated by the inherent error correction

capability of the LDPC decoder. In this chapter, we provide a comprehensive investiga-

tion into the causes and effects of timing errors on an LDPC-SD. We propose a number

of enhancements to the stochastic LDPC decoder, in order to improve its tolerance to

timing errors and we expand the analysis to consider timing errors and supply voltage

noise, as discussed in Section 4.1. Furthermore, we propose a novel design flow for

timing-error-tolerant LDPC decoders.

Figure 6.1 lists the most relevant previous publications along two main timelines,

namely the timeline of timing-error-tolerant LDPC decoder design and that of the

stochastic implementation of LDPC decoders. Each timeline is represented by a vertical

line with the downward direction representing the chronological order, where each knot

on the vertical lines represent a publication discussed above.

This chapter follows the proposed design flow of Section 4.2 and models the varia-

tion in supply voltage and hence in circuit propagation delay between clock cycles in

Section 6.2. We also derive a model of the causes and effects of different types of timing

6.1. Introduction 108

Figure 6.1: Timelines of relevant publications.

errors that are imposed upon LDPC-SDs in Section 6.2. We use this model to inves-

tigate the error-correcting performance of the LDPC-SDs in the presence of each type

of timing error separately. In this way, we characterise the most detrimental types of

timing errors and use this to motivate the design of a novel modified LDPC-SD, as dis-

cussed in Section 6.3. This modification redefines the functionality of the VNs, so that

they can be implemented using a circuit schematic that has a significantly improved

tolerance to timing errors. The error model is employed in the Bit Error Ratio (BER)

analysis of Section 6.4, for characterizing the tolerance to both transmission errors and

timing errors of the LDPC-SD and the modified LDPC-SD. We show that this mod-

ification does not compromise the error correction capability of the LDPC-SD in the

absence of timing errors. We demonstrate that the BER performance is not degraded

by applying moderate overclocking and that even for aggressive overclocking, only a

1 dB performance degradation is incurred, in the case of the conventional LDPC-SD.

Furthermore, we demonstrate that our modified LDPC-SD eliminates this 1 dB per-

formance degradation that is incurred by the LDPC-SD when employing aggressive

overclocking, despite requiring no extra circuitries. This significantly improved toler-

ance to timing errors allows the processing throughput to be increased by up to 69.4%

in practice, without compromising either the error correction capability or processing

energy consumption of the LDPC-SD. Finally, we offer our conclusions in Section 6.5.

6.2. Overclocking-Induced Timing Error Analysis 109

6.2 Overclocking-Induced Timing Error Analysis

As described in Section 4.1, overclocking causes timing errors, whenever there is in-

sufficient time for a signal to propagate to the input of a memory, before its value is

clocked into the memory. When aggressive overclocking is employed, the clock period

Tclk is reduced below the nominal propagation delay t of some signals in a circuit, typ-

ically imposing timing errors. However, even moderate overclocking may cause timing

errors, since this makes the circuit more sensitive to the late arrival of signals, owing

to fluctuations in their propagation delay from one clock cycle to the next. These

fluctuations may caused by power supply noise, which models the effects of IR drop,

inductive noise, cross talk, electrostatic discharges, particle strikes, switching noise and

fabrication process variations [31, 32, 33, 34, 35, 36, 37]. Formally, a timing error occurs

for a particular signal when

t× δ > Tclk, (6.1)

where δ characterizes the fluctuation in the propagation delay within the current clock

cycle.

There are numerous methods that may be employed to quantify the nominal prop-

agation delays t, their fluctuation δ and the occurrence of timing errors. The most

realistic method for quantifying these circuit characteristics is to fabricate an ASIC

and to measure them, as described in Section 4.2. However we did not opt for this

method, since these experimental results may be influenced by numerous uncontrol-

lable factors, such as temperature variations, electromagnetic radiation and processing

variations, which may obfuscate the results. Furthermore, these measurements cannot

be readily reproduced by other researchers, if they do not have access to the chip. By

contrast, SPICE simulation and manual calculations using component datasheets are

immune to random variation and are readily repeatable, as described in Section 4.2.

In particular, these methods allow the isolated investigation of how the circuit charac-

teristics are influenced by a particular parameter, such as supply voltage. Therefore,

in the following sections of this chapter, the values of delays t, their fluctuation δ and

the occurrence of timing errors are modelled using either the data provided in the

STMicroelectronics 90 nm datasheet [107] or SPICE simulations.

In Section 6.2.1, we characterize the nominal signal propagation delays t within

stochastic VNs and CNs having various degrees. Following this, the fluctuation δ of

signal propagation delays from one clock cycle to the next is characterized in Sec-

tion 6.2.2. Finally, Section 6.2.3 models the causes and effects of timing errors within

LDPC-SDs, focussing on VNs having a degree of dv = 6, since they are found to have

6.2.1. Nominal Signal Propagation Delays of Stochastic LDPC Decoders110

the highest susceptibility to timing errors.

6.2.1 Nominal Signal Propagation Delays of Stochastic LDPC

Decoders

In this section, we characterize the nominal signal propagation delays t of stochastic CNs

and VNs having various degrees, as discussed in Section 5.2.2 and 5.2.3, respectively.

More specifically, we consider VNs having degrees of dv ∈ {2, 3, 6} and CNs having

degrees of dc ∈ {6, 7}, as employed in the (1056,528) WiMAX LDPC code [65]. Later,

another (2304, 1920) WiMAX LDPC code containing additional VNs having a degree of

4 and additional CNs having a degree of 20 will also be considered. More particularly,

we model the nominal propagation delay t of the signal arriving at each D-type Flip-

Flop (D-FF) within these VNs and CNs. These are obtained as the maximum of the

nominal propagation delays of all paths that end at the particular D-FF. Here, the

nominal propagation delay of a path includes the output delay of the D-FF at the

beginning of the path, the total delay of the combinational logic along the path and the

setup time of the D-FF at the end of the path. We initially focus on the particular case

of VNs having a degree of dv = 6, before summarizing the analysis of the other nodes.

For VNs having a degree of dv = 6, we consider four sets of D-FFs, which we refer to

as the output D-FF, the Intermediate Memory (IM)1 D-FFs, the IM2 D-FFs and the

Edge Memory (EM) D-FFs. In Figure 5.11, the output D-FF provides the signal S16,

while the signals S17 and S18 are provided by IM1 and EM D-FFs, respectively. Note

that VNs having a degree of dv = 3 require only a single IM and hence they do not

have any IM2 D-FFs [121, Figure 6], while VNs having a degree of dv = 2 do not have

any IMs and therefore do not have any IM1 D-FFs either, as discussed in Section 5.2.3.

The nominal propagation delay t of the signal arriving at a particular D-FF depends

on the state of the VN or CN during both the previous and current clock periods. How-

ever, it is not feasible to simulate all the possible combinations of current and previous

states. For example, the VN having a degree of dv = 6 shown in Figure 5.11 has 15 in-

puts, including control signals. In two consecutive clock cycles, these inputs will adopt

one of 2
2×15 ≈ 109 combinations of values. The amount of time required to simulate all

of these combinations would be prohibitively excessive. Instead, our analysis focuses on

the combinations of the particular signals that have the greatest effect on the operation

and nominal propagation delay of the VNs. Unlike in the stochastic CNs, the flow of

information within the VNs is controlled by MUltipleXers (MUXs), which have a sig-

nificant impact on the operations of IMs, the EM and the final output. Owing to their

importance, our analysis carefully considers the values of the MUX selector signals in

6.2.1. Nominal Signal Propagation Delays of Stochastic LDPC Decoders111

both the current and the previous clock cycles. More specifically, when a MUX selector

signal remains constant between consecutive clock cycles, the propagation delay of the

MUX output depends only on the delay of the selected signal. By contrast, if the MUX

selector signal is toggled in the current clock cycle, then the propagation delay of the

MUX output is given by the maximum of the MUX selector signal’s delay and the

selected signal’s delay. In the case of VNs having a degree of dv = 6, we consider three

MUX selector signals, which we refer to as the IM1, the IM2 and the EM MUX selector

signals, that are respectively labelled as S7, S10 and S13 in Figure 5.11. Our analysis

considers all 22×3 = 64 combinations of these MUX selector signals in both the current

and previous clock cycles, offering a significant simplification, while capturing the main

operation of the VN. Similarly, the IM1, IM2 and the EM MUX selector signals are

considered for dv = 4 VN, while we consider only the IM1 and the EM MUX selector

signals for VN having a degree of dv = 3, as well as only the EM MUX selector signal

for the VN having a degree of dv = 2, since they have only a single IM and no IMs,

respectively.

Table 6.1 provides the nominal propagation delays associated with the input of

each D-FF in stochastic VNs and CNs having various degrees. In Table 6.1, ‘toggle’

indicates that the corresponding MUX selector signal of a VN has different values in

the previous and current clock cycles. By contrast, ‘1’ and ‘0’ indicate that the MUX

selector signal has maintained a constant value of either 1 or 0 in the previous and

current clock cycles, respectively. Finally ‘any’ indicates that the nominal propagation

path delay is not dependent on the corresponding MUX selector signal. Here, in order

to simplify the analysis, we model the propagation delay of each gate using a constant

value, which is obtained by considering its worst-case switching condition and the worst-

case loading that is imposed by the particular set of gates that it drives. This approach

is justified, since the loads imposed by the different pins of each gate vary by only about

1%. Furthermore, this worst-case approach guarantees a worst-case upper bound for

the performance degradation of Sections 6.4, since timing errors are most likely to

occur for signals having long propagation delays. For providing deeper insights into the

propagation delays and for obtaining reproducible results, the values of Table 6.1 were

calculated manually using data provided in the STMicroelectronics 90 nm datasheet

[107]. Note that the nominal path delay of CNs having a degree of dc = 20 is omitted

from Table 6.1 for simplicity, since it is only slightly higher than that of CNs having a

degree of dc = 7, when implemented using the CN structure of Figure 5.5. Also note

that the wire delay is neglected in our analysis of the nominal signal propagation delays

of the LDPC-SD. This is justified, since 90 nm ASIC implementations of LDPC-SDs

typically have dimensions that are no greater than a few millimetres [122]. Owing to

6.2.2. Propagation Delay Fluctuation 112

this, the expected maximum wire delays may be of the order of tens of picoseconds [130],

which is negligible compared to the propagation delays within the stochastic nodes.

6.2.2 Propagation Delay Fluctuation

As described in Section 4.1, supply voltage noise can model the effects of IR drop,

inductive noise, cross talk, electrostatic discharges, particle strikes, switching noise and

fabrication process variations [31, 32, 33, 34, 35, 36, 37]. In this case, the supply voltage

VDD may be assumed to have a Gaussian distribution with a mean value that is equal to

the nominal supply voltage µ and a standard deviation σ, which is related to the circuit

layout, fabrication process and technology scale, in circuits containing a sufficiently

high number of gates [131, 103]. Since the propagation delay of a particular type of

gate is a decreasing function of the supply voltage VDD, it can be modelled as a random

variable that is independently selected from a particular Probability Density Function

(PDF) in each successive clock cycle. We found that the time-normalized NAND gate

delay PDF can accurately represent the PDFs of other types of logic gates, which is

shown in Figure 4.6 for 3σ/µ ∈ {0.01, 0.1, 0.3} [103]. For example, when 3σ/µ = 0.1,

the propagation delay of a NAND gate extends above its nominal value by 10% or more

with a probability of around 1%. Correspondingly, the probability of a NOT gate’s

propagation delay extending by 10% or more above its nominal value is also around

1%, when 3σ/µ = 0.1. Hence, we employ the time-normalized NAND gate delay PDF to

model the propagation delay distribution of all circuit components, in order to simplify

the analysis of the following sections, as recommended in [103].

6.2.3 Effects of timing errors in Stochastic LDPC Decoders

As shown in Table 6.1, the maximum nominal propagation delay t within stochastic VNs

is 727.6 ps, rendering them more susceptible to timing errors than the CNs, which have

a maximum propagation delay of 618.1 ps. In order to simplify our analysis, we assume

that the normalized delay multiplier δ is never large enough and the clock period Tclk is

never low enough to cause timing errors within the CNs. More specifically, we assume

that (620× δ) > Tclk never happens. This assumption allows us to focus our attention

on the specific paths within the stochastic VNs that have nominal propagation delays

t of at least 620 ps, as highlighted in bold within Table 6.1. This approach is justified,

since our experiments show that the inherent error tolerance of the LDPC-SD entirely

breaks down, when timing errors occur in the CNs. As shown in Table 6.1, nominal

propagation delays t of at least 620 ps are manifested in dv = 2, 3, 4 and 6 VNs. In

6.2.3. Effects of timing errors in Stochastic LDPC Decoders 113

Table 6.1: Nominal propagation delays within the VNs and CNs of the LDPC-SD of
[121], when employing STMicroelectronics 90 nm technology. The nominal propagation
delays of the modified LDPC-SD are provided in brackets, where they differ.

Node Updated D-FF
MUX selector signal Nominal propagation delay t (ps)

EM IM1 IM2 Degree 2 Degree 3 Degree 4 Degree 6 Degree 7

VN

EM

toggle

toggle any

463.6(439.0)

687.9(650.6) 687.9(650.6) 727.6(674.6)

–

1

toggle

595.4 (558.1)

687.9(650.6) 727.6(674.6)

1
595.4(558.1)

633.5(580.5)

0 633.5(580.5)

0

toggle

542.1 (504.8)

687.9(650.6) 727.6(674.6)

1 595.4(558.1) 633.5(580.5)

0 542.1(504.8) 624.5 (571.5)

1

toggle any

387.9

573.6 573.6 597.6

1

toggle

481.1

573.6 597.6

1
481.1

503.5

0 503.5

0

toggle

427.8

573.6 597.6

1 481.1 503.5

0 427.8 494.5

0 any any 573.6 573.6 597.6

Output

toggle 0→ 1

toggle any

463.6(439.0)

687.9(650.6) 687.9(650.6) 727.6(674.6)

1

toggle

595.4 (558.1)

687.9(650.6) 727.6(674.6)

1
595.4(558.1)

633.5(580.5)

0 633.5(580.5)

0

toggle

542.1 (504.8)

687.9(650.6) 727.6(674.6)

1 595.4(558.1) 633.5(580.5)

0 542.1 (504.8) 624.5 (571.5)

toggle 1→ 0

toggle any

656.6(653.3) 724.7(723.5) 724.7(723.5)

727.6(723.5)

1

toggle 727.6(723.5)

1 724.7(723.5)

0 724.7(723.5)

0

toggle 727.6(723.5)

1 724.7(723.5)

0 724.7(723.5)

1

toggle any

387.9

573.6 573.6 597.6

1

toggle

481.1

573.6 597.6

1
481.1

503.5

0 503.5

0

toggle

427.8

573.6 597.6

1 481.1 503.5

0 427.8 494.5

0 any any 656.6(653.3) 724.7(723.5) 724.7(723.5) 724.7(723.5)

IM1 any

toggle

any N/A

393.0 393.0 417.0

1
301.1 301.1

323.5

0 323.5

IM2 any any

toggle

N/A N/A

393.0 417.0

1
301.1

323.5

0 323.5

CN Output N/A N/A N/A – – – 511.0 618.1

6.2.3. Effects of timing errors in Stochastic LDPC Decoders 114

order to simplify our discussions, we exemplify our analysis by focusing on dv = 6 VNs

of Figure 5.11. This is because Section 6.2.1 revealed that these VNs are associated

with the longest propagation delays and hence have the highest susceptibility to timing

errors. Note that the corresponding analysis carried out for VNs having lower degrees

is similar, but simpler. In the case of the dv = 6 VN of Figure 5.11, only three types of

timing errors need to be considered, as summarized by the flowchart of Figure 6.2(a).

Note that corresponding flowcharts are provided for VNs having degrees of dv = 2

and 3 in Figure 6.3 and 6.4, respectively. Due to the identical implementation in the

first layer of Figure 5.7(c) and 5.7(d), VNs having a degree of dv = 4 have the similar

timing characteristic to the VNs having a degree of dv = 3, as shown in Table 6.1,

despite employing two IMs in parallel instead of only a single IM in the first layer of

Figure 5.7(c) in parallel. Therefore, the flowchart for VNs having a degree of dv = 4 can

be obtained by replacing the condition ‘IM1 toggle’ in the flowchart of Figure 6.4(a)

with ‘IM1 or IM2 toggle’. These flowcharts may be derived by combining (6.1) with the

MUX selector signal conditions and with the nominal propagation delays t of Table 6.1,

as described for VNs having a degree of dv = 6 in the following paragraphs for each

type of timing error. More specifically, each value of t shown in Figure 6.2(a), e.g.

674.6 ps, is obtained from the appropriate entry in Table 6.1, which quantifies the

timing characteristics of the corresponding path within the selected VN, as obtained

during our simulations described in Section 6.2.1.

6.2.3.1 Timing Error Type I

In this type of timing error, the propagation of S15 is not completed before the end of

the clock cycle, but the EM MUX selector signal S13 arrives on time. However, the

EM MUX will not select the late S15 signal if S13 = 1, preventing the occurrence of a

timing error. Therefore, S13 = 0 is a condition for a Type I error to occur. Instead of

clocking the correct value of the signal S15 into the output D-FF, its value from the

previous clock cycle S−15 is latched. Note that timing errors are not inflicted upon the

EM D-FFs, when a Type I error occurs, since the late S15 signal is not an input to the

EM.

6.2.3.2 Timing Error Type II

Type II errors occur if S15 arrives on time, but S13 is toggled and arrives late. In this

case, it is the previous value of S−13 that controls both the updating of the EM D-FFs

and the selection of the signal that is clocked into the output D-FF. Type II errors can

6.2.3. Effects of timing errors in Stochastic LDPC Decoders 115

No Errors

True

True

0False

False

False

False

False

True

False

True True

TrueTrueTrue

False

False
633.5δ > Tclk624.5δ > Tclk

724.7δ > Tclk 724.7δ > Tclk 727.6δ > Tclk

Start

724.7δ > Tclk

Error I
S+
16 = S−

15

Error IIa
S+
16 = S15
EM fails

to get updated

Error IIb
S+
16 = S14

EM erroneously
gets updated

Error IIIa
S+
16 = S−

15
EM fails

to get updated
No EM errors

False

1

True

True True

True

False

False

False

False

False

False

True

True

727.6δ > Tclk 633.5δ > Tclk 624.5δ > Tclk

724.7δ > Tclk

EM

toggle 1 → 0

toggleTrue

OROR
IM2=1

OR OR
IM1 toggle

IM2 toggle

IM1=1 IM1 toggle

IM2 toggle IM2=1

IM1=1

(a) Before modification.

No Errors

IM2 toggle

True

0 1

toggle

False
OR

False

True

False

Start

OR

False
723.5δ > Tclk

674.6δ > Tclk

723.5δ > Tclk 674.6δ > Tclk

IM1 toggle
toggle 1 → 0

EM

TrueTrueTrue

True

True

False

False

False

True

False

Error I
S+
16 = S−

15

No EM errors

Error IIb
S+
16 = S14

Error IIIa
S+
16 = S−

15
EM erroneously EM fails

to get updated

IM2 toggle

IM1 toggle

723.5δ > Tclk

gets updated

(b) After modification. Observe that a number
of paths leading to type II and II timing errors
have been removed, hence eliminating the type
IIa errors.

Figure 6.2: Flowcharts illustrating the causes and effects of timing errors in stochastic
VNs having a degree of dv = 6.

6.2.3. Effects of timing errors in Stochastic LDPC Decoders 116

toggle 1 → 0

EM

Start

656.6δ > Tclk

No Errors
No EM errors

S+
16 = S−

15

Timing Error I

True

0 1

toggle

False

True

False

(a) Before modification.

toggle 1 → 0

EM

Start

653.3δ > Tclk

No Errors
No EM errors

S+
16 = S−

15

Timing Error I

True

0 1

toggle

False

True

False

(b) After modification. Observe that the nominal prop-
agation delay of the path has been reduced.

Figure 6.3: Flowcharts illustrating the causes and effects of timing errors in stochastic
VNs having a degree of dv = 2.

6.2.3. Effects of timing errors in Stochastic LDPC Decoders 117

EM

Start

No Errors
No EM errors

S+
16 = S−

15

Timing Error I

toggle 1 → 0

724.7δ > Tclk

687.9δ > Tclk

724.7δ > Tclk

EM erroneously updated

S+
16 = S14

Timing Error IIb

EM fails to get updated

S+
16 = S−

15

Fault IIIa

687.8δ > Tclk

toggle

TrueTrue

True

False

False True False

False

True

True

10

False

IM1 toggle IM1 toggle

False

False

True

(a) Before modification.

EM

Start

No Errors
No EM errors

S+
16 = S−

15

Timing Error I

toggle 1 → 0

723.5δ > Tclk

650.6δ > Tclk

723.5δ > Tclk

EM erroneously updated

S+
16 = S14

Timing Error IIb

EM fails to get updated

S+
16 = S−

15

Fault IIIa

650.6δ > Tclk

toggle

TrueTrue

True

False

False True False

False

True

True

10

False

IM1 toggle IM1 toggle

False

False

True

(b) After modification. Observe that the nominal prop-
agation delays of all paths have been reduced.

Figure 6.4: Flowcharts illustrating the causes and effects of timing errors in stochastic
VNs having a degree of dv = 3. Note that the flowchart for VNs having a degree
of dv = 4 can be obtained by replacing the condition ‘IM1 toggle’ with ‘IM1 or IM2
toggle’.

6.2.4. Validation in SPICE 118

be further classified into Type IIa and IIb errors, depending on the value of S−13. A Type

IIa error occurs, when the EM MUX selector signal is toggled according to S−13 = 0 and

S13 = 1. In this case, the updating of the EM will be erroneously prevented and instead

of S14, it will be S15 that is clocked into the output D-FF. By contrast, S−13 = 1 and

S13 = 0 is associated with a Type IIb error, which results in S14 being erroneously

clocked into the first EM D-FF, as well as into the output D-FF.

6.2.3.3 Timing Error Type III

Finally, the Type III errors occur, when S13 is toggled and arrives late, as well as S15

arriving late. Again, it is the previous value of S−13 that controls the updating of the EM

D-FFs and the selection of the signal that is latched into the output D-FF. Similarly,

Type III errors can also be further classified into Type IIIa and IIIb errors, depending

on the value of S−13. A Type IIIa error occurs when S−13 = 0 and S13 = 1, causing the

updating of the EM to be erroneously prevented and the wrong signal to be clocked

into the output D-FF, instead of S14. However, since S15 is late, it will not be clocked

into the output D-FF as in the Type IIa error. Instead, its value in the previous clock

cycle S−15 will be clocked. By contrast, S−13 = 1 and S13 = 0 is associated with a Type

IIIb error, in which case the EM MUX will not select the late S15 signal. Instead, the

timing error will cause S14 to be erroneously clocked into the first EM D-FF, as well

as into the output D-FF. Note that Type IIIb errors have the same effect as Type IIb

errors and so are merged into the type IIb outcome of Figure 6.2(a).

6.2.4 Validation in SPICE

SPICE simulation has been shown to accurately predict practical measurements of cir-

cuit behaviour [46, 108], when operating in the presence of timing errors and other types

of processing fault. However, since the SPICE simulation of the entire LDPC-SD would

be impractical, our simulations considered only individual VNs and CNs in isolation.

During these simulations, the overclocking was applied so that we could observe the

occurrence of timing errors and validate the timing error model of Figure 6.2(a). This

approach is exemplified by the results of the VNs having a degree of dv = 6 portrayed

in Figure 6.5. More specifically, Figure 6.5 compares the ideal zero-delay response of

the dv = 6 VN with the simulated response for the case of implementation using STMi-

croelectronics 90 nm technology, with VDD = 1.0 V and Tclk = 700 ps. As shown in

Figure 6.5, timing errors of Type IIb and I occur in clock cycles 2 and 3, respectively.

6.3. Modified Stochastic LDPC Decoder 119

T = 700 psclk

S ¯ S10 10≠

+
S =S (Ideal)16 15

+
S =S16 14 @ V = 1.0 V DD

+
S =S16 14 (Ideal)

+
S =S16 15¯ @ V = 1.0 V DD

S ¯ S =07 7=

S ¯ S =010 10=

S ¯ S7 7≠

S ¯ S13 13≠

 IM1 Update (S)7

Clock

IM2 Update (S)10

EM Update (S)13

EM In (S)14

EM Out (S)15

VN Out Q (S)16

1 2 3

Clock Cycle

4

Real delay response - @ V = 1.0VDD

S 013= S 013=

Zero-delay response

Figure 6.5: SPICE simulation demonstrating the occurrence of Type IIb and Type I
timing errors in a stochastic VN of [121] having a degree of dv = 6, when employing
STMicroelectronics 90 nm technology, where the supply voltage VDD is set as 1.0 V, the
clock period is set as 700 ps and random signals are used as the input.

6.3 Modified Stochastic LDPC Decoder

As we will demonstrate later in Section 6.4, the LDPC-SD has a inherent tolerance to

Type I timing errors. However, our results show that its BER performance is limited

by the occurrence of Type II and III timing errors. In Section 6.2.3 we showed that

these types of timing errors are caused by the late arrival of the EM MUX selector

signal, which is labeled S13 in Figure 5.11. Motivated by this, Section 6.3.1 proposes

a modification to the EM, which reduces the nominal propagation delay of S13 and

mitigates the occurrence of Type II and III timing errors. The causes and effects of

timing errors in the modified LDPC-SD are analysed in Section 6.3.2, using a similar

approach to that discussed in Section 6.2. The BER performance of the modified

LDPC-SD will be characterised later in Section 6.4.2 and compared with that of the

LDPC-SD of [121], both in the absence and presence of timing errors.

6.3.1 Modified EM

As shown in Figure 5.11, the EM MUX selector signal S13 also acts as the selector signal

for a large number of MUXs within the EM structure of [121]. More specifically, 32, 48,

48 and 64 MUXs are employed within the EMs of VNs having degrees of dv = 2, 3, 4

and 6, respectively. These MUXs generate a large capacitive load, which is the cause

of the high nominal propagation delay of the EM MUX selector signal S13.

In order to reduce this capacitive load and reduce the nominal propagation delay of

the EM MUX selector signal S13, we propose the modified EM structure of Figure 5.11.

This schematic of Figure 5.11 is repeated here for the convenience of reading. Here,

6.3.1. Modified EM 120

0

1

0

1

Address
Random
6-bits

0

1

EM
Update

Input
EM

D QD QD Q
0

1

Address

6-bits
Random

Input
EM

EM
Output

MUX
8 : 1

MUX
8 : 1

MUX
8 : 1

EM
Update

D QD Q
0

1

Address
Random

Input
IM

IM
Output

IM
Update

CLK

Update
QD

Address
IM 1Random

CLK

Update
QD

Address
IM 2Random

Address

6-bits
Random

1

0

Internal Memory Structure

Nominal Edge Memory Structure

Initialisation

Check Nodes &
S14

S13

S15

S18

S12

S11

Output to a
Parity-Check

S8

S9

MUX
8 : 18 : 1

MUX

8 : 1
MUX

S15[2 : 0] [2 : 0]

[5 : 3]
[5 : 0]

D
S18

QD Q D Q

Proposed Edge Memory Structure

MSB

CLKCLKCLK
Output
EMCLKCLK CLK

S15[2 : 0][2 : 0]

[5 : 3]

[5 : 0]

S17

CLKCLK
S9

0

1

0 1

Stream
1 Stochastic

5 from Parity-

S10

6 inputs (S1 . . . S6)

0

1

S7

Stochastic Stream

1

0

1

CLK

D Q
0

64-bit EM
UpdateIn Out

S16

Node

Figure 6.6: Schematic of a stochastic dv = 6 VN. Corresponding schematics for dv = 2
and 3 VNs can be found in [121, Figure 6].

the EM MUX selector signal S13 acts as the selector signal for only one MUX within

the EM structure. This is achieved by configuring the EM as a ring buffer, rather than

as a shift register, as shown in Figure 5.11. This is motivated by the observation that

a ring buffer can fulfil the same role as a shift register in an EM, despite having a

different operation. More explicitly, the role of an EM is to store recent VN decisions,

so that when a decision cannot be made in future decoding cycles, one may be selected

randomly from the EM. This role may be fulfilled by both a shift register and a ring

buffer, since both replace older decisions with new ones, as they are clocked into the

EM. Note however that in contrast to a shift register, the ring buffer does not necessary

replace the oldest decision when it is provided with a new one. Despite this, we will

show in Section 6.4.2, that the replacement of the shift registers with ring buffers does

not significantly affect the BER performance of the LDPC-SD in the absence of timing

errors. Note that this modification eliminates all but one of the 2:1 MUXs that are

employed in each EM. Owing to this, the total number of gates required to implement

the k = 528 and n = 1056 IEEE 802.16e (WiMAX) LDPC decoder is reduced by 28.6%,

from around 5.6 × 105 gates to around 4.0 × 105 gates. Furthermore, the proposed

modification allows the OR gate that supplies the signal S13 to be replaced with a

significantly smaller OR gate having a lower drive capability, owing to the reduced

capacitive load that is imposed by these 2:1 MUXs.

6.3.2. Overclocking-Induced Timing Error Analysis 121

6.3.2 Overclocking-Induced Timing Error Analysis

The same approach described in Section 6.2 is employed here for quantifying the nominal

propagation delays of every path within the modified LDPC-SD, as provided in brackets

in Table 6.1. It can be seen that many of the large nominal propagation delays are

reduced in the modified LDPC-SD, owing to the reduced capacitive load that it imposes

upon the EM MUX selector signal S13. As shown in Table 6.1, the number of highlighted

entries having propagation delays exceeding that of the CN having a degree of dc = 7 is

reduced after the modification. Owing to this, a number of routes through the flowchart

of Figure 6.2(a) leading to Type II and III timing errors can be removed, as shown in

the modified flowchart of Figure 6.2(b). Consequently, the Type IIa timing errors are

eliminated. Furthermore, higher values are required for the normalized delay multiplier

δ to satisfy the conditions for the remaining routes towards the Type II and III timing

errors. As a result, Type II and III timing errors can be expected to occur significantly

less often in the modified LDPC-SD, compared to the design of [121].

6.4 Simulation Results and Discussions

In this section, we characterize the impact of timing errors upon the error correction

capability of LDPC-SDs. Again, the most realistic method of characterizing this impact

would be to fabricate an ASIC and to measure the occurrence of decoding errors.

However, this is not preferred for the reasons discussed in Section 6.2. Instead, the

BER results of Figure 6.7 and 6.8 were obtained by applying the timing error model of

Section 6.2.3 within Monte-Carlo simulations written in C++. This has the advantage

of allowing us to investigate the individual impact of the different types of timing errors

that were introduced in Section 6.2.3, by disabling the occurrence of all other types

of timing errors. This C++ simulation also allows the BER of the LDPC-SD to be

characterised without incurring a significant overhead associated with simulating the

occurrence of timing errors using SPICE, for example. Owing to this, a single CPU

core requires about 24 hours of runtime to simulate the decoding of 109 message bits,

which is typical of C++ BER simulations.

Our simulation parameters are summarized in Table 6.2. In addition to the STMi-

croelectronics 90 nm technology [107] discussed in Section 6.2.1, the Oklahoma State

University FreePDK 45 nm technology [133] is also employed, for the sake of investigat-

ing timing errors in different fabrication scales. The BER performance of the LDPC-SD

and the modified LDPC-SD of Section 6.3 are characterised for the case of employing

6.4. Simulation Results and Discussions 122

Table 6.2: Simulation parameters.

Manufacturer’s datasheets STMicroelectronics 90 nm [132] and FreePDK 45 nm [133]

(Tclk, 3σ/µ) for 90 nm (628.3, 0.01), (718.8, 0.01), (718.8, 0.1), (1217.3, 0.1) and (1217.3, 0.3)

(Tclk, 3σ/µ) for 45 nm (760.0, 0.01), (869.5, 0.1), (1171.2, 0.1), (1472.8, 0.1) and (1472.8, 0.3)

LDPC code WiMAX LDPC (1056, 528) (2304, 1920) [65]

EM length 32, 48, 48, 64 bits for VNs having degree of dv = 2, 3, 4, 6

IM length 0, 1, 1, 2 bits for VNs having degree of dv = 2, 3, 4, 6

Max number of decoding cycles 2000

Clock cycles per decoding cycle 1

Binary Phase Shift Keying (BPSK) for transmission over an Additive White Gaussian

Noise (AWGN) channel, in order to facilitate comparisons with the results of [121]. In

the following sections, we characterise the BER performance of two WiMAX LDPC

codes, for which (1056, 528) and (2304, 1920). The former code has medium code rate

of 1/2 and a medium length of K = 528. By contrast, the latter code has the longest

code length of K = 2304 and the highest code rate of 5/6 supported in WiMAX, of-

fering diverse application examples. Moreover, since our design is dependent on the

characteristics of individual nodes, rather than on the interconnectivity among them,

the BER plots of the two codes demonstrate that our design may be applied to various

types of LDPC codes, provided that a similar timing analysis to that discussed in Sec-

tion 6.2.1 is completed for nodes having degrees different from those considered here.

The number of memory elements used in the EMs are selected as 32, 48, 48 and 64

for VNs having degrees of dv = 2, 3, 4 and 6, respectively, since these are the numbers

employed in [121]. Likewise, for this reason, the IMs use 1, 1 and 2 memory elements

for VNs having degrees of dv = 3, 4 and 6, respectively, while VNs having a degree

of dv = 2 contain no IMs [121]. The choices of Tclk and 3σ/µ have been discussed

previously in Sections 6.2 and 6.3.2. In each clock cycle, our simulations employed a

different value for the normalized delay multiplier δ, which was randomly selected from

the distribution of Figure 4.6 associated with the selected values of 3σ/µ. The cause

and effect of timing errors on each path within each VN in LDPC-SDs are revealed by

identifying the appropriate path through the flowcharts of Figure 6.2(a) and 6.2(b), by

using the comparisons t× δ > Tclk. All of the BER results are obtained by simulating

the transmission of at least 106 codewords encoded from random information bits, then

decoding the received codewords iteratively until early termination is triggered by the

occurrence of an all-zero syndrome [121], or until the maximum affordable number of

decoding cycles is reached. We limit the maximum number of decoding cycles to 2000,

since this value is recommended for achieving the lowest BER shown in [121, Figure 12].

However, since the early termination cannot be anticipated in advance, the amount of

6.4.1. Inherent Timing Error Tolerance 123

time that is reserved for decoding each codeword is given by 2000Tclk. This corresponds

to a processing throughput of Rb = k/(2000Tclk) information bits per second.

In Section 6.4.1, simulations were conducted for characterizing the BER performance

of the LDPC-SD in the presence of timing errors, when employing diverse values of both

the clock period Tclk, as well as of the nominal supply voltage µ and its standard devi-

ation σ. Following this, Section 6.4.2 investigates and compares the BER performance

of the novel modification proposed in Section 6.3 using similar simulations.

6.4.1 Inherent Timing Error Tolerance

As described in Section 6.2.3, the analysis presented in the flowchart of Figure 6.2(a)

assumes that δ < Tclk/620, so that timing errors do not occur in the CNs. In order to

satisfy this assumption in at least 99% of the clock cycles, the specific combinations of

(Tclk, 3σ/µ) that we consider for the LDPC-SD of [121] are (628.3, 0.01), (718.8, 0.01),

(718.8, 0.1), (1217.3, 0.1) and (1217.3, 0.3). Note that Tclk = 1217.3 ps represents mod-

erate overclocking, since this value exceeds 727.6 ps, which is the longest nominal prop-

agation delay of Table 6.1. By contrast, both Tclk = 628.3 ps and 718.8 ps represent

aggressive overclocking.

In order to consider the effect of different technology scales, the analysis described in

the preceding sections for the STMicroelectronics 90 nm technology was also conducted

for the Oklahoma State University FreePDK 45 nm technology [133]. In this case, our

analysis assumes that δ < Tclk/750, which is satisfied in 99% of the clock cycles, when

using the specific combinations for (Tclk, 3σ/µ) of (760.0, 0.01), (869.5, 0.1), (1171.2, 0.1),

(1472.8, 0.1) and (1472.8, 0.3). Here, Tclk = 1472.8 ps represents moderate overclocking,

while Tclk = 1171.2 ps, 869.5 ps and 760.0 ps represent aggressive overclocking.

6.4.1.1 Tolerance to All Types of Timing Errors

Figure 6.7(a) demonstrates the effect of all types of timing errors on the BER perfor-

mance, when the LDPC-SD is implemented using 90 nm technology, while Figure 6.8(a)

provides the corresponding plot for 45 nm technology. The BER performance is also

plotted for three benchmarkers, namely for the corresponding widely-used LDPC-FD

using Min-Sum Algorithm (MSA) and a 4-bit FP TC number representation [75] and

for the LDPC-SD in the absence of timing errors. In each case, iterative decoding is

continued until convergence to a legitimate LDPC codeword is achieved.

As shown in Figure 6.7(a) and 6.8(a), the BER performance of the LDPC-SD out-

6.4.1. Inherent Timing Error Tolerance 124

(1217.5, 0.3)
(1217.5, 0.1)
(718.8, 0.1)
(718.8, 0.01)
(628.3, 0.01)
LDPC-SD

LDPC-FD using 4-bit MSA

Eb/N0 (dB)

B
E
R

6543210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

(a) LDPC-SD for decoding (1056,528)
code, in the presence of Type I, II and III
timing errors.

(1217.5, 0.3)
(1217.5, 0.1)
(718.8, 0.1)
(718.8, 0.01)
(628.3, 0.01)
LDPC-SD

LDPC-FD using 4-bit MSA

Eb/N0 (dB)
B
E
R

6543210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

(b) LDPC-SD for decoding (1056,528)
code, in the presence of only Type I timing
errors.

(1217.5, 0.3)
(1217.5, 0.1)
(718.8, 0.1)
(718.8, 0.01)
(628.3, 0.01)

modified LDPC-SD
LDPC-SD

LDPC-FD using 4-bit MSA

Eb/N0 (dB)

B
E
R

6543210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

(c) Modified LDPC-SD for decoding
(1056,528) code, in the presence of Type
I, II and III timing errors.

(1217.5, 0.3)
(718.8, 0.1)
(718.8, 0.01)

modified LDPC-SD
LDPC-SD

LDPC-FD using 4-bit MSA

Eb/N0 (dB)

B
E
R

6543210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

(d) LDPC-SD and modified LDPC-SD for
decoding (2304,1920) code, in the presence
of Type I, II and III timing errors.

Figure 6.7: BER performance of the LDPC-SD and modified LDPC-SD for decoding
(1056,528) and (2304,1920) WiMAX LDPC codes, using 90 nm technology.

6.4.2. Improved Timing Error Tolerance 125

performs the 4-bit MSA benchmarker, confirming the high-performance operation of

the LDPC-SD in the absence of timing errors. Furthermore, these figures show that

when the moderate overclocking of Tclk = 1217.3 ps is employed for 90 nm and when

Tclk = 1472.8 ps is employed for 45 nm, the resultant timing errors do not significantly

degrade the performance of the LDPC-SD of [121]. It is only when employing the

aggressive overclocking of Tclk = 718.8 ps for 90 nm and Tclk = 1171.2 ps for 45 nm,

that the BER performance of the LDPC-SD becomes degraded by about 1 dB. When

employing the aggressive overclocking of Tclk = 628.3 ps for 90 nm and Tclk = 869.5 ps

or Tclk = 760.0 ps for 45 nm, the BER performance of the decoder is degraded so

severely that it converges perceivably slower. Based on these observations, we consider

the LDPC-SD to have a degree of inherent tolerance to timing errors, even though no

additional circuitry is employed for detecting or correcting these errors.

6.4.1.2 Tolerance to Timing Error Type I

To further investigate the effects imposed by different types of timing errors on the BER

performance of the LDPC-SD of [121], we repeated the simulations of Figure 6.7(a)

and 6.8(a), but with the timing error types II and III turned off. This was achieved by

simulating the occurrence of timing errors as usual, but only actually imposing those

timing errors, if they were of Type I. As shown in Figure 6.7(b) and 6.8(b), the resultant

simulations yielded BER performances that are within 0.1 dB of those achieved by the

benchmarkers. This indicates that it is the occurrence of Type II and III timing errors

that causes the significant degradation of the BER in Figure 6.7(b) and 6.8(b), when

aggressive overclocking is employed. Furthermore, this demonstrates that the LDPC-

SD has an inherent tolerance to Type I timing errors. It is these observations that

motivated the modified LDPC-SD of Section 6.3, which is designed to have an increased

tolerance to Type II and III timing errors.

6.4.2 Improved Timing Error Tolerance

The simulations of Figure 6.7(a) and 6.8(a) were repeated, but employing the modified

LDPC-SD instead of the conventional LDPC-SD of [121], in order to characterize the

corresponding improvement in BER performance, shown in Figure 6.7(c) and 6.8(c). An

additional benchmaker was introduced, namely the modified LDPC-SD in the absence

of timing errors. In this case, Figure 6.7(c) and 6.8(c) show that the BER performance

of the modified LDPC-SD structure is similar to that of the conventional LDPC-SD of

[121], despite having a different EM operation, as described in Section 6.3.1. Further-

6.4.2. Improved Timing Error Tolerance 126

(0.3, 1472.8)
(0.1, 1472.8)
(0.1, 1171.2)
(0.1, 869.5)
(0.01, 760)
LDPC-SD

LDPC-FD using 4-bit MSA

Eb/N0 (dB)

B
E
R

6543210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

(a) LDPC-SD for decoding (1056,528)
code, in the presence of Type I, II and III
timing errors.

(0.3, 1472.8)
(0.1, 1472.8)
(0.1, 1171.2)
(0.1, 869.5)
(0.01, 760)
LDPC-SD

LDPC-FD using 4-bit MSA

Eb/N0 (dB)
B
E
R

6543210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

(b) LDPC-SD for decoding (1056,528)
code, in the presence of only Type I timing
errors.

(0.3, 1472.8)
(0.1, 1472.8)
(0.1, 1171.2)
(0.1, 869.5)
(0.01, 760)

modified LDPC-SD
LDPC-SD

LDPC-FD using 4-bit MSA

Eb/N0 (dB)

B
E
R

6543210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

(c) Modified LDPC-SD for decoding
(1056,528) code, in the presence of Type
I, II and III timing errors.

(1472.8, 0.3)
(1171.2, 0.1)
(869.5, 0.01)

modified LDPC-SD
LDPC-SD

LDPC-FD using 4-bit MSA

Eb/N0 (dB)

B
E
R

6543210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

(d) LDPC-SD and modified LDPC-SD for
decoding (2304,1920) code, in the presence
of Type I, II and III timing errors.

Figure 6.8: BER performance of the LDPC-SD and modified LDPC-SD for decoding
(1056,528) and (2304,1920) WiMAX LDPC codes, using 45 nm technology.

6.4.3. Processing Throughput 127

more, the BER results of Figure 6.7(c) and 6.8(c) reveal that the modified LDPC-SD

has a higher tolerance to timing errors than the conventional LDPC-SD of [121]. As

shown in Figure 6.7(c), even the aggressive overclocking of Tclk = 718.8 ps for 90 nm

technology fails to impose a significant degradation on the BER performance of the

modified LDPC-SD. Likewise, a significant BER degradation is avoided, when employ-

ing the aggressive overclocking of Tclk = 1171.2 ps for the 45 nm technology, as shown

in Figure 6.8(c). It may be also observed from Figure 6.7(d) and 6.8(d), that our modi-

fication facilitates a similar BER improvement for the (2304,1920) code of the WiMAX

LDPC family, which has a different code rate and length. In summary, it may be ob-

served that the proposed modification eliminates the 1 dB performance degradation

that is suffered by the LDPC-SD, when employing aggressive overclocking.

6.4.3 Processing Throughput

An alternative comparison can be made by observing that for 90 nm, the BER per-

formance of the modified LDPC-SD recorded for (Tclk, 3σ/µ) = (718.8, 0.1) is similar

to that of the conventional LDPC-SD of [121] for (Tclk, 3σ/µ) = (1217.5, 0.1). There-

fore, the proposed modification may be deemed to offer a 41% clock period reduc-

tion. This corresponds to a 69.4% increase in processing throughput, namely from

Rb = 225.2 Mbit/s using the conventional LDPC-SD to Rb = 367.3 Mbit/s for the

modified design, when employing the upper limit of 2000 clock cycles to decode every

encoded codeword. However, this upper limit is typically only hit at low channel SNR

values. At higher channel SNR values, the stochastic decoding process is able to reach

a syndrome of zero using significantly fewer clock cycles. When this happens, the de-

coding of the current encoded codeword can be stopped early and the decoding of the

next codeword can commence without significantly degrading the BER performance.

Indeed, Figure 6.9 shows that the modified decoder is capable of achieving a processing

throughput as high as 3.8 Gbit/s at a channel SNR per bit of Eb/N0 = 5 dB, which

is about 60% higher than throughput reported for the conventional LDPC-SD of [121].

Note that this average number of decoding cycles is obtained based on the simulation

of 106 codewords.

Similarly, for 45 nm, the BER performance of the modified LDPC-SD recorded for

(Tclk, 3σ/µ) = (1171.2, 0.1) is similar to that of the conventional LDPC-SD of [121] for

(Tclk, 3σ/µ) = (1472.8, 0.1), which corresponds to a 20% clock period reduction. This

represents a 25.5% increase in processing throughput, namely from Rb = 179.3 Mbit/s

using the conventional LDPC-SD of [121] to Rb = 225.2 Mbit/s for the modified design.

6.4.4. Processing Energy Consumption 128

modified decoder
stoch decoder of [3]
decoding cycles

throughput

Eb/N0 (dB)

p
ro
ce
ss
in
g
th
ro
u
gh

p
u
t(
G
b
it
/s
)

av
er
ag
e
n
u
m
b
er

of
d
ec
o
d
in
g
cy
cl
es

4

3.5

3

2.5

2

1.5

1

0.5

0
6543210

3000

2500

2000

1500

1000

500

0

Figure 6.9: Processing throughput (information bits per second) and average number
of decoding cycles used for decoding the (1056,528) code, at different Eb/N0, using
90 nm technology, when the overclocking is adopted as (Tclk, 3σ/µ) = (1217.5, 0.1) and
(718.8, 0.1), for the LDPC-SD and the modified LDPC-SD, respectively.

6.4.4 Processing Energy Consumption

Table 6.3 quantifies the processing energy consumption of individual dv = 2, 3, 6 VNs

and dc = 6, 7 CNs, within the conventional LDPC-SD of [121] and the modified LDPC-

SD. These results were obtained by using SPICE simulations, when employing various

Tclk. The STMicroelectronics 90 nm technology [107] and the FreePDK 45 nm technol-

ogy [133] are designed to work at nominal power supply voltages of 1.0 V and 1.1 V,

respectively. The same values of the scaled clock period Tclk that were selected and justi-

fied in Sections 6.2 and 6.3 were used to conduct the simulation for energy consumption

estimation. The total LDPC-SD energy consumption was estimated by multiplying the

individual CN and VN energy consumptions by the total number of nodes having the

corresponding degree in the WiMAX LDPC (1056,528) code. As shown in Table 6.3,

neither overclocking, nor the modification of Section 6.3.1 has a significant effect on the

energy consumption of the LDPC-SD. Therefore, we can conclude that the attained

processing throughput increases of up to 69.4% were achieved without significantly

increasing the processing energy consumption.

6.5. Conclusions 129

Table 6.3: Energy consumption from SPICE simulations.

Energy consumption per 2 clock cycles (pJ)

ST90 nm, µ = 1.0 V FreePDK45 nm, µ = 1.1 V

Tclk = 628.3 ps 718.8 ps 1217.5 ps 760 ps 869.5 ps 1171.2 ps 1472.8 ps

CNs dc = 6 0.297 0.302 0.303 0.262 0.264 0.275 0.286

dc = 7 0.325 0.332 0.336 0.282 0.287 0.288 0.288

Conventional dv = 2 1.47 1.48 1.51 1.52 1.55 1.58 1.59

VNs dv = 3 3.22 3.34 3.38 3.19 3.22 3.26 3.31

dv = 6 8.25 8.36 8.58 8.36 8.39 8.45 8.65

Conventional Total 3.83×103 3.90×103 3.97×103 3.84×103 3.88×103 3.92×103 3.99×103

Modified dv = 2 1.53 1.54 1.54 1.43 1.44 1.44 1.44

VNs dv = 3 3.10 3.32 3.43 3.10 3.13 3.37 3.38

dv = 6 8.64 8.88 8.90 8.08 8.10 8.38 8.40

Modified Total 3.89×103 4.03×103 4.08×103 3.70×103 3.72×103 3.88×103 3.88×103

6.5 Conclusions

This chapter proposed a novel design flow for timing-error-tolerant LDPC decoders.

Using this design flow, we have demonstrated that LDPC-SDs are capable of exploiting

their inherent error correction capability, to correct not only transmission errors, but

also timing errors. We have characterized the causes and effects of timing errors within

LDPC-SDs by developing a timing error model, which we have validated using SPICE

simulations. Drawing upon our findings, we proposed a modified LDPC-SD, having an

improved timing error tolerance. In a particular practical scenario, we demonstrated

that this modification eliminates the 1 dB performance degradation suffered by the

LDPC-SD of [121], which allows the processing throughput to be increased by up to

69.4% in practice, due to the significantly improved tolerance to timing errors. This is

achieved without the requirement for additional circuitry or the associated processing

energy consumption. Note that since the timing analysis and the timing error model

of Sections 6.2 and 6.3 are particular to VNs and CNs having specific degrees and

are independent of the interconnectivity of the VNs and CNs, our methodology may

be readily applied to other LDPC decoders having different block lengths and coding

rates. Additionally, our methodology may be applied to other stochastic decoders that

rely on EMs, such as the turbo decoder of [134]. Our future work will fabricate timing-

error-tolerant channel decoder ASICs and compare practical measurements of their

performance with simulations.

Chapter 7

Conclusions and Future Work

7.1 Summary and Conclusions

In this thesis, we have investigated the fully parallel implementation of Fixed-point

LDPC Decoders (LDPC-FDs) and Stochastic LDPC Decoders (LDPC-SDs), as well as

characterized their tolerance to timing errors using comprehensive simulations. Based

on the simulation results, we have recommended parametrizations for fully parallel

LDPC-FDs and LDPC-SDs. These parametrization have been demonstrated to be

capable of achieving improved timing error tolerance.

In Chapter 2, the basics of channel codes were reviewed, with a particular focus on

LDPC codes. The factor graph representation of LDPC codes was discussed as the basis

of the decoding algorithm and the error correction performance. We investigated sev-

eral iterative LDPC decoding algorithms, including the Sum-Product Algorithm (SPA),

Log-Sum-Product Algorithm (Log-SPA) and Min-Sum Algorithm (MSA). The princi-

ple of EXtrinsic Information Transfer (EXIT) charts was outlined and used to analyse

LDPC decoders using different decoding algorithms. Based on the EXIT charts, the

error correction performance of LDPC decoders was evaluated, and the insights of the

performance degradation were exhibited and concluded. The error correction perfor-

mance of the LDPC decoders was also characterized through Bit Error Ratio (BER)

simulations, allowing the conclusions based on EXIT charts to be validated.

In Chapter 3, the Two’s Complement (TC) number representation and the Fixed-

Point (FP) implementation of LDPC decoders were outlined. The EXIT chart analysis

of Chapter (2) was extended to consider LDPC-FDs. The FP EXIT chart analysis re-

vealed that the minimum bit width required for LDPC-FDs is 4 bits, having a fraction

part of 0 bits. This bit width was demonstrated to allow the LDPC-FD to achieve

130

7.1. Summary and Conclusions 131

an attractive trade-off between their complexity and performance. The advantage of

EXIT charts analysis was also characterized. In particularly, factor of 100 times com-

plexity reduction was demonstrated for the case of performing EXIT chart analysis for a

particular LDPC code, rather than the conventional method of using BER simulations.

In Chapter 4, previous publications on error-tolerant LDPC decoder design were

reviewed and the challenges and the bottlenecks were identified in the conventional

LDPC decoder Application-Specific Integrated Circuit (ASIC) design process. Moti-

vated by this, a novel design flow was proposed for timing-error-tolerant LDPC de-

coders. The fully parallel implementation of the LDPC-FD using 4-bit TC and Base

Minus Two (BMT) representations was detailed. A novel structure for high-degree

nodes was also proposed for improving the timing error tolerance of the fully parallel

LDPC-FD. Timing characteristics analysis was performed on the LDPC-FDs and the

resultant error model was detailed. Using the proposed design flow, the error correction

performance of the LDPC-FD in the presence of timing errors was characterized using

BER simulations. It was demonstrated that the LDPC-FD employing BMT and the

proposed node structure is more resilient to timing errors than several benchmarkers.

The placement of D-type Flip-Flops (D-FFs) and the associated decoding scheduling

was also addressed. By employing D-FFs on the inputs and outputs of every parity-

Check Node (CN) and Variable Node (VN), the simultaneous decoding of two indepen-

dent codewords is permitted for the LDPC-FD. However, the number of D-FFs used

may be reduced by up to 30%, if the D-FFs are employed on only the Input/Output (IO)

ports of high-degree nodes. The resultant tolerance to timing error was demonstrated

to be unaffected by this area reduction, while maintaining the capability for the simul-

taneous decoding of two independent codewords. The improvements in other aspects of

the LDPC decoders were also established. More specifically, the BMT representation

can increase the processing throughput by up to 33.3%, reduce the chip area by around

10% and maintain a similar level of energy consumption, compared to the conventional

TC representation. The proposed structure for high-degree nodes was demonstrated

to significantly improve throughput and timing error tolerance, at the cost of slightly

increasing the area and the energy consumption, compared to the conventional node

structure. A fabricated ASIC was presented and in the work of our colleagues [109], the

resultant measurements were shown to support our simulation results and the design

flow proposed in Section 4.2.

In Chapter 5, the challenges associated with the fully parallel implementation of

LDPC-FDs were identified. Motivated by this, LDPC-SDs were introduced as a solu-

tion. The fully parallel implementation of LDPC-SDs was outlined and the building

blocks of stochastic computation that are required in LDPC decoding were detailed.

7.2. Suggestions for Future Work 132

The latching problems was raised, since it was identified as one of the many main factors

that limits the error correction performance of LDPC-SDs. Several techniques used to

protect LDPC-SDs from the latching problem were also discussed. BER simulations

were conducted to characterize the performance of LDPC-SDs as functions of different

parameters. A parametrization for the fully parallel implementation of the LDPC-SD

was recommended, which was demonstrated to achieve a desirable trade-off between

the implementation complexity and error correction performance.

In Chapter 6, an error model was derived for evaluating the causes and effects of

timing errors within the LDPC-SD. With the aid of this error model, the error correc-

tion performance of the LDPC-SDs in the presence of timing errors was characterized

using BER simulations. Drawing upon our findings, a modification of the LDPC-SD

was presented and demonstrated to offer an improved timing error tolerance. In a

particular practical scenario, this modification was shown to eliminate the 1 dB per-

formance degradation that is suffered by the conventional LDPC-SD, which increased

the processing throughput by up to 69.4% in practice. This was achieved without the

requirement for additional circuitry or the associated processing energy consumption.

Our methodology was demonstrated to be readily applicable to other LDPC decoders

having different block lengths and coding rates, as well as to other stochastic decoders

that rely on Edge Memories (EMs). This is because the timing analysis and the timing

error model of Sections 6.2 and 6.3 depend only on the degrees of the CNs and VNs

and are independent of the interconnectivity.

7.2 Suggestions for Future Work

In analogy to Chapter 4, an LDPC-SD ASIC may be fabricated as the next step follow-

ing the work of Chapter 6. Measurements may be obtained from this LDPC-SD ASIC

to characterize the timing error tolerance, which can be compared with the simulation

results demonstrated in Section 6.4. Based on these results, we may adjust the timing

characteristics analysis and the error model of Section 6.2.

As demonstrated in Chapter 3, the thorough investigation of LDPC decoding having

many design parameters can be efficiently accomplished by the use of EXIT charts.

This motivated the extension of the EXIT charts of Chapter 2 to LDPC-SDs. The

Bernoulli sequences employed in LDPC-SDs represent probabilities by the fraction of

the bits having the value of binary 1 in the entire sequence of bits. Given a number

L of successive clock cycles, the probability may be estimated based on the streams

of a priori or extrinsic bits x at a CN or a VN, according to
∑L
i xi
L

. Furthermore,

7.2. Suggestions for Future Work 133

vectors of estimated probabilities can be obtained at all CNs and VNs, then used to

quantify the Mutual Information (MI) between the encoded bits and the corresponding

probabilities conveyed by the streams of stochastic bits. In this way, the extrinsic MI

can be obtained as a function of the a priori MI, and visualized as EXIT charts. Note

that this quantification of MIs is independent of the structures of CNs and VNs, which

may allow the EXIT chart technique to be applied to any other types of LDPC-SDs.

The proposed design flow of Chapters 4 and 6 has been demonstrated to be capable

of conducting simulations to characterize the timing error tolerance of LDPC decoders.

In order to further improve the accuracy of the simulations, such that they approach the

accuracy of practical measurements, more complicated information may be considered

in the algorithm level simulation, such as the geographical topology of the logic elements

and the clock tree after placing and routing. For example, in our analysis, two VNs

having identical degrees are considered to have identical timing characteristics, which

may not be an accurate representation of a practical tape-out. For example, when the

VNs are located at opposite corners of a large-scale ASIC, they may experience signif-

icantly different clock delays and skews, even if they have identical designs and clock

tree optimizing techniques. By extending the proposed design flow, we may enhance

our error model and the timing analysis for individual CNs and VNs, by taking into

consideration this topology information extracted from the transistor design level, using

Cadence for example. However, an increase in simulation complexity is inevitable, so it

may become challenging to simulate the enhanced error model and more complicated

combinations of parameters using conventional C++, as accomplished in Chapters 4

and 6. However, simulators that are used for communication networks may be suited

for this task, since they have built-in features for managing the network comprised by a

huge number of distributed and parallel entities, as well as for managing the messages

propagating through them. In particular, OMNeT++ [135, 136] is a general-purpose

platform for simulating such networks. It has been widely used for simulating wired and

wireless communication networks [137, 138], while in [139, 140], it has been employed to

simulate network-on-chip systems. In order to tackle the massively increased simulation

complexity, OMNeT++ may be adopted as the simulation platform in future work.

List of Figures

2.1 Baseband block diagram of a digital communication system. The dashed

boxes indicate optional blocks, while the solid ones are essential. . . . 7

2.2 Brief timeline of linear binary block codes and convolutional codes. . . 8

2.3 An example factor graph, corresponding to the (5, 3) LDPC PCM of

(2.9), although this (5, 3) code is too small to be considered as a valid

LDPC code. 12

2.4 The schematic of an LDPC code, which comprises an encoder and an

iterative decoder. 15

2.5 The flow diagram of iterative decoding. 16

2.6 Adapted schematics used to depict the generations of EXIT functions for

the (a) the CND and (b) the VND. 24

2.7 EXIT functions and bands of a regular LDPC VND and CND having

lengths of 500 and degree dv ∈ {2, 4, 8, 16}, dc ∈ {4, 8, 16, 32}, when the

channel Eb/N0 equals to 0 and 3 dB. 25

2.8 EXIT bands and trajectories for regular half-rate LDPC codes having

block length of 500 bits and degree of (a) dv = 2 and (b) dv = 16, when

the channel Eb/N0 equals 3 dB. 28

2.9 EXIT bands and trajectories for regular half-rate LDPC codes having

block lengths of (a) 500 and (b) 5000 bits and degrees dc = 6 and dv = 3,

when the channel Eb/N0 is 3 dB. 29

2.10 The EXIT function of LDPC CNDs having block length of 500 bits and

various CN degrees of dc ∈ {4, 8, 16, 32}. 29

134

LIST OF FIGURES 135

2.11 BER performance of regular LDPC codes having different degrees and

code lengths. The left-most curve represents the (5000,2500) LDPC code,

which has half coding rate and block length of 5000 bits, with dc = 6

and dv = 3 . All the right-hand curves are half-rate LDPC codes having

the block length of 500 bits, but various degrees. 31

3.1 The schematic of an LDPC-FD, which comprises an encoder and an

iterative decoder. The mark × indicates where clipping is performed. . 35

3.2 Correction function log
(
1 + e−c̃

)
and its approximation by LUT for the

case of (a) fraction bit width Wf = 1, (b) fraction bit width Wf = 2 and

(c) fraction bit width Wf = 3. 38

3.3 Adapted schematics used to depict the generations of EXIT function

for the (a) CND, (b) VND. The mark × indicates where clipping is

performed. 39

3.4 The EXIT functions for TC implementations of LDPC codes employing

various fraction bit widths z, as well as various CN and VN degrees, for

communication over an AWGN channel having an Eb/N0 of 3 dB. . . . 43

3.5 The EXIT functions for FP implementations of LDPC codes employing

various clipped integer bit widths x, as well as CN and VN degrees, for

communication over an AWGN channel having an Eb/N0 of 3 dB. . . . 44

3.6 The EXIT functions for FP implementations of LDPC codes employing

various integer bit widths y, as well as various CN and VN degrees, for

communication over an AWGN channel having an Eb/N0 of 3 dB. . . . 46

3.7 BER plots of the LDPC-FD using different FP schemes. 47

4.1 The proposed design flow for LDPC decoder ASICs. 53

4.2 A fraction of the factor graph of a (1056, 528) WiMAX LDPC code and

the illustration of the decoding scheduling. 56

4.3 The conventional structures for constructing nodes having high degrees

based on 2-input 1-output sub-nodes. 60

4.4 The proposed structure of nodes having 3, 4, 6 and 7 inputs. 62

LIST OF FIGURES 136

4.5 Comparison of boolean expressions for sub-CNs using TC and BMT. The

layout view for CNs having a degree of dc = 6 using TC and BMT is also

compared, when IBM 130nm process technology is employed. Note that

the saturation is employed in the operation of each sub-CN. 65

4.6 Time-normalized NAND gate delay PDF for 3σ/µ = {0.01, 0.1, 0.3}
when employing STMicroelectronics 90 nm technology, where µ = 1 V. 67

4.7 Timing diagrams demonstrating two types of timing errors, obtained

from post-layout simulation in Cadence. 70

4.8 Comparison of timing characteristics for all combinations of CNs and

VNs using BMT and TC, as well as the proposed node structures of

Figures 4.3(a) and the forward-backward structure of Figure 4.4, for the

case when IBM 130 nm technology is employed. 71

4.9 BER plots of the proposed architecture compared with several bench-

markers in the absence of timing errors. 78

4.10 BER plots of the proposed architecture compared with 3 benchmarkers

with the presence of timing errors, when 3σ/µ equals to (a) 0.01 and (b)

0.3, for the case when IBM 130 nm technology is employed. 79

4.11 BER plots of the proposed architecture compared with 3 benchmarkers

in the presence of timing errors, when 3σ/µ equals to (a) 0.01 and (b)

0.3, for the case when STMicroelectronic 90 nm technology is employed. 80

4.12 BER plots of different D-FF schemes in the presence of timing errors,

when 3σ/µ is 0.3 and Tclk = 3 ns, for the case where IBM 130 nm

technology is employed. 81

4.13 The layout of the fabricated ASIC for the LDPC decoding using the

BMT representation. 82

5.1 Timelines of relevant publications. 85

5.2 Structure of a CN. 85

5.3 Structure of a VN. 86

5.4 Stochastic implementations of the computation used in LDPC decoding,

as well as example Bernoulli sequences and the corresponding output

Bernoulli sequences. Note that the probabilities PC are the correct re-

sults. 88

5.5 Structure of a stochastic CN. 89

LIST OF FIGURES 137

5.6 Structure of a stochastic VN. 90

5.7 Stochastic implementations for the function fVN of VNs having degrees

of 2, 3, 4 and 6. [119, 126, 127, 120]. 91

5.8 The example structure of the EM, replacing the JK-FF indicated by the

dashed block. 93

5.9 Schematic of a stochastic VN having a degree of dv = 2 [121]. 94

5.10 Schematic of a stochastic VN having a degree of dv = 3 [121]. 94

5.11 Schematic of a stochastic dv = 6 VN. Corresponding schematics for dv =

2 and 3 VNs can be found in [121, Figure 6]. 95

5.12 The structure of the voting decision unit, which may be used to generate

the decoded bit of a VN of an LDPC-SD. 96

5.13 The structure of the JK-FF decision unit, which may be used to generate

the decoded bit in a VN of an LDPC-SD. 98

5.14 BER performance of the LDPC-SD using the voting scheme of Fig-

ure 5.12 for decision bit generation. 99

5.15 (a)BER performance of the LDPC-SD and (b) the average number of

decoding cycles performed, when the maximum numbers of decoding

cycles allowed is {100, 200, 400, 800, 1600, 3200, 6400, 10000}. 100

5.16 BER performance of the LDPC-SD employing different EM initialization

methods and depths, for the case of performing a maximum number of

decoding cycles in the set {200, 400, 800, 1600, 2000} 101

5.17 BER performance of the LDPC-SD employing EMs of various lengths. 102

5.18 The BER performance of the LDPC-SD without NDS, when employing a

maximum numbers of decoding iterations from the set of {200, 400, 800, 1600, 3200, 6400, 10000},
and is compared with a floating point Log-SPA LDPC decoder employing

{1, 2, 4, 8, 16, 32, 100} decoding iterations. 104

6.1 Timelines of relevant publications. 108

6.2 Flowcharts illustrating the causes and effects of timing errors in stochas-

tic VNs having a degree of dv = 6. 115

6.3 Flowcharts illustrating the causes and effects of timing errors in stochas-

tic VNs having a degree of dv = 2. 116

LIST OF FIGURES 138

6.4 Flowcharts illustrating the causes and effects of timing errors in stochas-

tic VNs having a degree of dv = 3. Note that the flowchart for VNs

having a degree of dv = 4 can be obtained by replacing the condition

‘IM1 toggle’ with ‘IM1 or IM2 toggle’. 117

6.5 SPICE simulation demonstrating the occurrence of Type IIb and Type

I timing errors in a stochastic VN of [121] having a degree of dv = 6,

when employing STMicroelectronics 90 nm technology, where the supply

voltage VDD is set as 1.0 V, the clock period is set as 700 ps and random

signals are used as the input. 119

6.6 Schematic of a stochastic dv = 6 VN. Corresponding schematics for dv =

2 and 3 VNs can be found in [121, Figure 6]. 120

6.7 BER performance of the LDPC-SD and modified LDPC-SD for decoding

(1056,528) and (2304,1920) WiMAX LDPC codes, using 90 nm technol-

ogy. 124

6.8 BER performance of the LDPC-SD and modified LDPC-SD for decoding

(1056,528) and (2304,1920) WiMAX LDPC codes, using 45 nm technol-

ogy. 126

6.9 Processing throughput (information bits per second) and average number

of decoding cycles used for decoding the (1056,528) code, at different

Eb/N0, using 90 nm technology, when the overclocking is adopted as

(Tclk, 3σ/µ) = (1217.5, 0.1) and (718.8, 0.1), for the LDPC-SD and the

modified LDPC-SD, respectively. 128

List of Tables

2.1 An example of parity bits, obtained from a set of information bits. Here,

the notation ⊕ refers to modulo-2 addition. 9

2.2 The LUT of the (5, 3) code defined in Table 2.1. 9

2.3 Parameters used for EXIT chart simulations of LDPC codes. 26

3.1 Summary of previously proposed schemes. 33

3.2 An example of two’s complement representation. 36

3.3 Schemes having different bit width used for FP EXIT chart simulations

of LDPC codes. 41

4.1 The scheduling for simultaneously decoding two independent codewords,

A and B, when D-FFs are employed at the input and output ports of

every CN and VN. 57

4.2 The scheduling for simultaneously decoding two independent codewords,

A and B, when D-FFs are employed at the input and output ports of

CNs and VNs having a degree of dv = 6 only. 57

4.3 Comparison of critical path delay, estimated area and power consumption

for CNs and VNs, using different combinations of BMT and TC, as well as

the proposed node structures of Figures 4.4 and the forward-backward

structure of Figure , for the case when IBM 130nm technology is em-

ployed. The numbers in brackets correspond to the forward-backward

structure of Figure 4.3(a). 72

4.4 Simulation parameters. 77

5.1 Truth table of stochastic VN. 92

5.2 Simulation parameters. 98

139

LIST OF TABLES 140

5.3 The proposed parametrization. 105

6.1 Nominal propagation delays within the VNs and CNs of the LDPC-SD

of [121], when employing STMicroelectronics 90 nm technology. The

nominal propagation delays of the modified LDPC-SD are provided in

brackets, where they differ. 113

6.2 Simulation parameters. 122

6.3 Energy consumption from SPICE simulations. 129

List of Symbols

General notation

• The bold lower-case letter, such as a, indicates a sequence of message bits.

• The tilde notation, such as that in ã, represents LLRs corresponding to the bit

sequence a.

• The hat notation, such as that in â, represents the corresponding estimation of a

at the receiver.

• The superscript a represents a priori.

• The superscript e represents extrinsic.

• The superscript p represents a posteriori.

• The superscript T is used to indicate matrix transpose operation.

• The superscript AT is used to indicate a inverse matrix.

• The subscript a×b indicates the size of a matrix or vector is a-by-b.

• The superscript + is used to indicate the value of a signal in the forthcoming clock

cycle.

• The superscript − is used to indicate the value of a signal in the previous clock

cycle.

• the subscript b is used to indicate a binary number, such as (000)b

• the subscript d is used to indicate a decimal number, such as (000)d

141

List of Symbols 142

Special symbols

u: information bit

u: parity bit

u: vector of information bits

c: encoded bit

c: vector of encoded bits

x: BPSK modulated symbol

x: vector of symbols

y : received symbol from channel

y: vector of received symbols

r: vector of repeated bits, associated with VNs

p: vector of permuted bits, associated with CNs

s: syndrome vector

G: generator matrix

H: PCM

I: identity matrix

P : probability

PA: probability of a message corresponding to port A of a CN or VN

N : codeword length; number of columns in PCM; number of VNs in factor

graph

K: block length of information bits;

M : number of rows in PCM; number of CNs in factor graph

Nedge : number of edges in factor graph

R: coding rate

η: processing throughput

List of Symbols 143

d : the degree of a node

dc: the degree of cth CN

dv: the degree of vth VN

c: cth CN

v: vth CN

π : interleaver

π−1 : de-interleaver corresponding to π

N0: noise power spectral density

Eb: energy per bit

σ2
A : standard deviation of nA

nA: Gaussian random variable

fCN : operation within CN

fVN : operation within VN

� : boxplus operator

I : mutual information

IA : a priori mutual information

IE : extrinsic mutual information

W : bit width for FP representation

Wi : bit width for integer part

Wf : bit width for fraction part

Wc : bit width for integer part after clipping

Tclk : clock period

t : nominal propagation delay

δ : a multiplier modelling the fluctuation in t

List of Symbols 144

VDD : supply voltage

µ : mean of VDD

σ : standard deviation of VDD

Bibliography

[1] G. Fettweis, “The tactile internet: Applications and challenges,” IEEE Vehicular

Technology Magazine, vol. 9, pp. 64–70, Mar. 2014.

[2] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Communicating while comput-

ing: Distributed mobile cloud computing over 5g heterogeneous networks,” IEEE

Signal Processing Magazine, vol. 31, pp. 45–55, Nov 2014.

[3] L. Hanzo, T. H. Leiw, and B. L. Yeap, Turbo Coding, Turbo Equalisation and

Space-Time Coding. Piscataway, NJ: IEEE Press, 2002.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-

correcting coding and decoding: Turbo-codes. 1,” in IEEE International Con-

ference on Communications, vol. 2, pp. 1064–1070, May 1993.

[5] C. B. Schegel and L. C. Perez, Trellis and Turbo Coding. Piscataway, NJ: IEEE

Press, 2004.

[6] R. Gallager, “Low-density parity-check codes,” IRE Transactions on Information

Theory, vol. 8, pp. 21 –28, Jan. 1962.

[7] R. Gallager, Low Density Parity Check Codes. PhD thesis, 1963.

[8] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product

algorithm,” IEEE Transactions on Information Theory, vol. 47, pp. 498–519, Feb.

2001.

[9] H.-A. Loeliger, “An introduction to factor graphs,” IEEE Signal Processing Mag-

azine, vol. 21, pp. 28–41, Feb. 2004.

[10] L. Ping and W. K. Leung, “Decoding low density parity check codes with finite

quantization bits,” IEEE Communications Letters, vol. 4, pp. 62–64, Feb. 2000.

145

BIBLIOGRAPHY 146

[11] J. Chen, A. Dholakia, E. Eleftherious, M. P. C. Fossorier, and X. Hu, “Reduced-

complexity decoding of LDPC codes,” IEEE Transactions on Communications,

vol. 53, pp. 1288–1299, Aug. 2005.

[12] D. Oh and K. Parhi, “Optimally quantized offset min-sum algorithm for flex-

ible LDPC codes,” in Asilomar Conference Signals, Systems and Computers,

pp. 1886–1891, Oct. 2008.

[13] G. Masera, F. Quaglio, and F. Vacca, “Finite precision implementation of LDPC

decoders,” IEE Proceedings-Communications, vol. 152, pp. 1098–1102, Dec. 2005.

[14] T. Zhang, Z. wang, and K. Parhi, “On finite precision implementation of low den-

sity parity check codes decoder,” in IEEE International Symposium on Circuits

and Systems, Sydney, Australia, vol. 4, pp. 202–205, May 2001.

[15] J. Zhao, F. Zarkeshvari, and A. Banihashemi, “On implementation of min-sum

algorithm and its modification for decoding low-density parity-check (LDPC)

codes,” IEEE Transactions on Communications, vol. 53, pp. 549–554, Apr. 2005.

[16] D. Oh and K. Parhi, “Min-sum decoder architecture with reduced word length for

LDPC codes,” IEEE Transactions on Circuits and Systems I, vol. 57, pp. 105–115,

Jan. 2010.

[17] G. Masera, F. Quaglio, and F. Vacca, “Implementation of a flexible LDPC de-

coder,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54,

p. 542, June 2007.

[18] V. Sorokine, F. R. Kschischang, and S. Pasupathy, “Gallager codes for CDMA

applications .II. implementations, complexity, and system capacity,” IEEE Trans-

actions on Communications, vol. 48, p. 1818, Nov. 2000.

[19] H. Zhong and T. Zhang, “Joint code-encoder-decoder design for LDPC coding

system VLSI implementation,” in International Symposium on Circuits and Sys-

tems, vol. 2, p. II, May 2004.

[20] H. Zhong and T. Zhang, “Design of VLSI implementation-oriented LDPC codes,”

in IEEE 58th Vehicular Technology Conference, vol. 1, p. 670, Oct. 2003.

[21] M. M. Mansour and N. R. Shanbhag, “Memory-efficient turbo decoder architec-

tures for LDPC codes,” in IEEE Workshop on Signal Processing Systems, p. 159,

Oct. 2002.

BIBLIOGRAPHY 147

[22] M. M. Mansour and N. Shanbhag, “Architecture-aware low-density parity-check

codes,” in Proceedings of the 2003 International Symposium on Circuits and Sys-

tems, vol. 2, pp. II–57, May 20093.

[23] G. Lechner, J. Sayir, and M. Rupp, “Efficient dsp implementation of an LDPC

decoder,” in IEEE International Conference on Acoustics, Speech, and Signal

Processing, vol. 4, pp. iv–665, May 2004.

[24] Y. Zhu, Y. Chen, D. Hocevar, and M. Goel, “A reduced-complexity, scalable

implementation of low density parity check (LDPC) decoder,” in IEEE Workshop

on Signal Processing Systems Design and Implementation, p. 83, Oct. 2006.

[25] Z. Wang, H. Suzuki, and K. K. Parhi, “VLSI implementation issues of TURBO

decoder design for wireless applications,” in 1999 IEEE Workshop on Signal Pro-

cessing Systems, p. 503, 1999.

[26] Y. Zhu, Y. Chen, D. Hocevar, and M. Goel, “A reduced-complexity, scalable

implementation of low density parity check (LDPC) decoder,” in IEEE 8th In-

ternational Conference on ASIC, p. 501, Oct. 2009.

[27] Y. S. Park, Y. Tao, and Z. Zhang, “A 1.15Gb/s fully parallel nonbinary LDPC

decoder with fine-grained dynamic clock gating,” in Solid-State Circuits Confer-

ence Digest of Technical Papers (ISSCC), 2013 IEEE International, pp. 422–423,

Feb 2013.

[28] Y. S. Park, Y. Tao, and Z. Zhang, “A fully parallel nonbinary LDPC decoder

with fine-grained dynamic clock gating,” IEEE Journal of Solid-State Circuits,

vol. 50, pp. 464–475, Feb. 2015.

[29] C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2,dc)-LDPC codes

over GF(q) using their binary images,” IEEE Transactions on Communications,

vol. 56, pp. 1626–1635, Oct. 2008.

[30] J. Kang, Q. Huang, L. Zhang, B. Zhou, and S. Lin, “Quasi-cyclic LDPC codes:

an algebraic construction,” IEEE Transactions on Communications, vol. 58,

pp. 1383–1396, May 2010.

[31] R. Ahmadi and F. Najm, “Timing analysis in presence of power supply and

ground voltage variations,” in International Conference on Computer Aided De-

sign, pp. 176–183, Nov 2003.

BIBLIOGRAPHY 148

[32] M. Alioto, G. Palumbo, and M. Pennisi, “Understanding the effect of process

variations on the delay of static and domino logic,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 18, pp. 697–710, May 2010.

[33] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw,

T. Austin, K. Flautner, and T. Mudge, “Razor: a low-power pipeline based on

circuit-level timing speculation,” in Proceedings of 36th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture., pp. 7–18, Dec 2003.

[34] M. Gupta, J. Oatley, R. Joseph, G.-Y. Wei, and D. Brooks, “Understanding

voltage variations in chip multiprocessors using a distributed power-delivery net-

work,” in Design, Automation Test in Europe Conference Exhibition, pp. 1–6,

April 2007.

[35] S. Beer, J. Cox, R. Ginosar, T. Chaney, and D. Zar, “Variability in multistage

synchronizers,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems, vol. 23, pp. 2957–2969, Dec 2015.

[36] N. Ahmed, M. Tehranipoor, and V. Jayaram, “A novel framework for faster-

than-at-speed delay test considering IR-drop effects,” in IEEE/ACM Interna-

tional Conference on Computer-Aided Design, pp. 198–203, Nov 2006.

[37] S. Ghosh and K. Roy, “Parameter variation tolerance and error resiliency: New de-

sign paradigm for the nanoscale era,” Proceedings of the IEEE, vol. 98, pp. 1718–

1751, Nov. 2010.

[38] B. Shim and N. Shanbhag, “Energy-efficient soft error-tolerant digital signal pro-

cessing,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 14, pp. 336–348, April 2006.

[39] R. Abdallah and N. Shanbhag, “Error-resilient low-power Viterbi decoder archi-

tectures,” IEEE Transactions on Signal Processing, vol. 57, pp. 4906–4917, May

2009.

[40] V. C. Gaudet, “Low-power LDPC decoding by exploiting the fault-tolerance of

the sum-product algorithm,” in Contemporary Mathematics, vol. 523, pp. 165–

171, Jun. 2010.

[41] M. Alles, T. Brack, and N. Wehn, “A reliability-aware LDPC code decoding algo-

rithm,” in IEEE 65th Vehicular Technology Conference (VTC), Dublin, Ireland,

pp. 1544–1548, Apr. 2007.

BIBLIOGRAPHY 149

[42] M. May, M. Alles, and N. Wehn, “A case study in reliability-aware design: A re-

silient LDPC code decoder,” in Design, Automation and Test in Europe, Munich,

Germany, pp. 456 –461, Mar. 2008.

[43] R. Uppu, R. Uppu, A. Singh, and A. Chatterjee, “A high throughput multiplier

design exploiting input based statistical distribution in completion delays,” in 26th

International Conference on VLSI Design and 12th International Conference on

Embedded Systems (VLSID) , Hyatt Regency, Pune, India, pp. 109–114, Jan.

2013.

[44] I. Perez-Andrade, X. Zuo, R. Maunder, B. Al-Hashimi, and L. Hanzo, “Analysis of

voltage- and clock-scaling-induced timing errors in stochastic LDPC decoders,” in

IEEE Wireless Communications and Networking Conference (WCNC), Shanghai,

China, pp. 4293–4298, Apr. 2013.

[45] L. W. Nagel and D. Pederson, “SPICE (simulation program with integrated cir-

cuit emphasis),” Tech. Rep. UCB/ERL M382, EECS Department, University of

California, Berkeley, Apr 1973.

[46] Synopsys, Inc., “HSPICE: The gold standard for ac-

curate circuit simulation,” 2014. [Online]. Available:

http://www.synopsys.com/Tools/Verification/AMSVerification/CircuitSimulation/

HSPICE/Documents/hspice ds.pdf.

[47] Synopsys, Inc., HSPICE user guide: simulation and analysis. (Version B-

2008.09), 2008.

[48] Cadence Design Systems, Inc. [Online] http://www.cadence.com/products/pages/

default.aspx.

[49] S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated

codes,” IEEE Transactions on Communications, vol. 49, no. 10, pp. 1727–1737,

2001.

[50] J. Hagenauer, “The EXIT chart - introduction to extrinsic information transfer in

iterative processing,” in 12th European Signal Processing Conference, pp. 1541–

1548, Sep. 2004.

[51] B. Sklar, Digital Communications Fundamentals and Applications, ch. 6,7,8,

pp. 304–510. Prentice Hall, Englewood Cliffs: Prentice-Hall International Edi-

tions, 1988.

BIBLIOGRAPHY 150

[52] C. Shannon, “A mathematical theory of communication,” The Bell System Tech-

nical Journal, vol. 27, pp. 379–423, July 1948.

[53] P. Elias, “Coding for noisy channels,” IRE Convention Record, vol. 3, no. 4,

pp. 37–46, 1955.

[54] R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting binary group

codes,” Information and Control, vol. 3(1), pp. 68–79, Mar. 1960.

[55] A. Hocquenghem, “Codes correcteurs d’erreurs,” Chiffres, vol. 2, pp. 147–156,

Sep. 1959.

[56] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal

of the Society for Industrial and Applied Mathematics (SIAM), vol. 8(2), pp. 300–

304, 1960.

[57] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm,” IEEE Transactions on Information Theory, vol. 13, pp. 260–

269, April 1967.

[58] J. Hagenauer and P. Hoeher, “A viterbi algorithm with soft-decision outputs and

its applications,” in IEEE Global Telecommunications Conference and Exhibition

’Communications Technology for the 1990s and Beyond’ (GLOBECOM), vol. 3,

(Dallas, USA), pp. 1680–1686, Nov. 1989.

[59] R. Tanner, “A recursive approach to low complexity codes,” IEEE Transactions

on Information Theory, vol. 27, pp. 533–547, Sep. 1981.

[60] V. Sorokine, F. R. Kschischang, and S. Pasupathy, “Gallager codes for CDMA

applications .I. generalizations, constructions, and performance bounds,” IEEE

Transactions on Communications, vol. 48, p. 1660, Oct. 2000.

[61] H. Behairy and S.-C. Chang, “Parallel concatenated Gallager codes for CDMA

applications,” in IEEE Global Telecommunications Conference (GLOBECOM),

vol. 2, p. 1002, 2001.

[62] IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/Cor 1-2005 (Amendment and

Corrigendum to IEEE Std 802.16-2004), IEEE Std 802.16e-2005, 2006.

[63] IEEE 802.11n/ac. The IEEE 802.11 Working Group. [Online]. Available:

http://www.ieee802.org/11/.

BIBLIOGRAPHY 151

[64] X.-Y. Hu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient implemen-

tations of the sum-product algorithm for decoding LDPC codes,” in IEEE Global

Telecommunications Conference, San Antonio, USA, vol. 2, pp. 1036–1036E, Nov.

2001.

[65] IEEE 802.16e. The IEEE 802.16 Working Group. [Online]. Available:

http://www.ieee802.org/16/.

[66] E. Eleftheriou, T. Mittelholzer, and A. Dholakia, “Reduced-complexity decod-

ing algorithm for low-density parity-check codes,” Electronics Letters, vol. 37,

pp. 102–104, Jan 2001.

[67] M. P. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decod-

ing of low-density parity-check codes based on belief propagation,” IEEE Trans-

actions on Communications, vol. 47, pp. 673–680, Mar. 1999.

[68] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,”

IEEE Transactions on Information Theory, vol. 45, no. 2, pp. 399–431, 1999.

[69] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and

convolutional codes,” IEEE Transactions on Information Theory, vol. 47, pp. 429–

445, Aug. 2002.

[70] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-

optimal MAP decoding algorithms operating in the log-domain,” in IEEE Inter-

national Conference on Communications, vol. 2, p. 1009, 1995.

[71] T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes

under message-passing decoding,” IEEE Transactions on Information Theory,

vol. 47, pp. 599–618, Feb. 2001.

[72] N. Bonello, S. Chen, and L. Hanzo, “Low-density parity-check codes and their

rateless relatives,” IEEE Communications Surveys & Tutorials, vol. P, p. 1, May.

2010.

[73] D. J. C. MacKay and R. M. Neal, “Near shannon limit performance of low density

parity check codes,” Electronics Letters, vol. 33, no. 6, pp. 457–458, 1997.

[74] Y. Wu and B. D. Woener, “The influence of quantization and fixed point arith-

metic upon the BER performance of turbo codes,” in IEEE Vehicular Technology

Conference, vol. 2, p. 1683, Jul. 1999.

BIBLIOGRAPHY 152

[75] X. Zuo, R. Maunder, and L. Hanzo, “Design of fixed-point processing based LDPC

codes using EXIT charts,” in 2011 IEEE Vehicular Technology Conference (VTC

Fall), San Francisco, CA, USA, pp. 1–5, Sep. 2011.

[76] G. Montorsi and S. Benedetto, “Design of fixed-point iterative decoders for con-

catenated codes with interleavers,” IEEE Journal on Selected Areas in Commu-

nications, vol. 19, pp. 871–882, May 2001.

[77] J. Lee and R. Blahut, “A note on the analysis of finite length turbo decoding,” in

IEEE International Symposium on Information Theory, (Lausanne, Switzerland),

p. 83, June 2002.

[78] J. Lee and R. Blahut, “Lower bound on BER of finite-length turbo codes based

on exit characteristics,” IEEE ASSP MagazineCommunications Letters, vol. 8,

pp. 238–240, Apr. 2004.

[79] J. Lee and R. Blahut, “Convergence analysis and BER performance of finite-

length turbo codes,” IEEE Transactions on Communications, vol. 55, pp. 1033–

1043, May 2007.

[80] E. Boutillon, C. Douilard, and G. Montorsi, “Iterative decoding of concatenated

convolutional codes: Implementation issues,” in Proceedings of the IEEE, vol. 95,

pp. 1201–1227, Jun. 2007.

[81] The IEEE 802.16 Working Group [Online]. http://www.ieee802.org/16/.

[82] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband sys-

tems,” IEEE Communications Magazine, vol. 49, pp. 101–107, June 2011.

[83] E. Larsson, O. Edfors, F. Tufvesson, and T. Marzetta, “Massive MIMO for next

generation wireless systems,” IEEE Communications Magazine, vol. 52, pp. 186–

195, February 2014.

[84] M. Mansour and N. Shanbhag, “High-throughput LDPC decoders,” IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 6, pp. 976–

996, 2003.

[85] L. Varshney, “Performance of LDPC codes under faulty iterative decoding,” IEEE

Transactions on Information Theory, vol. 57, no. 7, pp. 4427–4444, 2011.

[86] S. Yazdi, C.-H. Huang, and L. Dolecek, “Optimal design of a Gallager B noisy

decoder for irregular LDPC codes,” IEEE Communications Letters, vol. 16,

pp. 2052–2055, Dec. 2012.

BIBLIOGRAPHY 153

[87] S. Tabatabaei Yazdi, H. Cho, and L. Dolecek, “Gallager B decoder on noisy

hardware,” IEEE Transactions on Communications, vol. 61, pp. 1660–1673, May

2013.

[88] C.-H. Huang, Y. Li, and L. Dolecek, “Gallager B LDPC decoder with transient

and permanent errors,” IEEE Transactions on Communications, vol. 62, pp. 15–

28, Jan. 2014.

[89] K. Bowman, J. Tschanz, N. S. Kim, J. Lee, C. Wilkerson, S. Lu, T. Karnik, and

V. De, “Energy-efficient and metastability-immune resilient circuits for dynamic

variation tolerance,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 49–63, Jan

2009.

[90] A. Martin and M. Nystrom, “Asynchronous techniques for system-on-chip de-

sign,” Proceedings of the IEEE, vol. 94, pp. 1089–1120, June 2006.

[91] R. Ginosar, “Metastability and synchronizers: A tutorial,” IEEE Design Test of

Computers, vol. 28, pp. 23–35, Sept 2011.

[92] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-approaching

irregular low-density parity-check codes,” IEEE transcations on Information The-

ory, vol. 47, pp. 619–637, Feb. 2001.

[93] Z. Cui, Z. Wang, and X. Zhang, “Reduced-complexity column-layered decoding

and implementation for LDPC codes,” IET Communications, vol. 5, pp. 2177–

2186, October 2011.

[94] S. Papaharalabos, P. Sweeney, B. Evans, P. Mathiopoulos, G. Albertazzi,

A. Vanelli-Coralli, and G. Corazza, “Modified sum-product algorithms for decod-

ing low-density parity-check codes,” IET Communications, vol. 1, pp. 294–300,

June 2007.

[95] X. Chen, Q. Huang, S. Lin, and V. Akella, “FPGA-based low-complexity high-

throughput tri-mode decoder for quasi-cyclic LDPC codes,” in Communication,

Control, and Computing, 2009. Allerton 2009. 47th Annual Allerton Conference

on, pp. 600–606, Sept 2009.

[96] H. Ding, S. Yang, W. Luo, and M. Dong, “Design and implementation for high

speed LDPC decoder with layered decoding,” in WRI International Conference

on Communications and Mobile Computing, vol. 1, pp. 156–160, Jan 2009.

BIBLIOGRAPHY 154

[97] A. Darabiha, A. Carusone, and F. Kschischang, “A bit-serial approximate min-

sum LDPC decoder and FPGA implementation,” in Proceedings of IEEE Inter-

national Symposium on Circuits and Systems, (Kos, Greece), pp. 149 – 152, May

2006.

[98] T. Zhang and K. K. Parhi, “Joint (3,k)-regular LDPC code and decoder/encoder

design,” IEEE Transactions on Signal Processing, vol. 52, p. 1065, April 2004.

[99] D. E. Hocevar, “LDPC code construction with flexible hardware implementation,”

in IEEE International Conference on Communications, vol. 4, p. 2708, May 2003.

[100] E. Yeo, B. Nikolic, and V. Anantharam, “Architectures and implementations of

low-density parity check decoding algorithms,” in Midwest Symposium on Circuits

and Systems, vol. 3, pp. III–437, Aug. 2002.

[101] T. Zhang and K. K. Parhi, “VLSI implementation-oriented (3,k)-regular low-

density parity check codes,” in IEEE Workshop on Signal Processing Systems,

p. 25, Sep. 2001.

[102] A. Darabiha, VLSI Architecture for Multi-Gbps Low-Density Parity-Check De-

coders. PhD thesis, University of Toronto, Toronto, ON, Canada, 2008.

[103] F. Martorell, M. Pons, A. Rubio, and F. Moll, “Error probability in synchronous

digital circuits due to power supply noise,” in International Conference on Design

Technology of Integrated Systems (DTIS) in Nanoscale Era, pp. 170–175, Sep.

2007.

[104] S. Pant, D. Blaauw, V. Zolotov, S. Sundareswaran, and R. Panda, “A stochastic

approach to power grid analysis,” in Proceedings of the 41st Design Automation

Conference, (New York, New York, USA), pp. 171–176, ACM Press, 2004.

[105] M. Nourani and A. Radhakrishnan, “Power-supply noise in SoCs: ATPG, estima-

tion and control,” IEEE International Conference on Test, 2005., pp. 507–516,

2005.

[106] IBM, “Foundry technologies 130-nm CMOS and RF CMOS,” 2003.

[107] STMicroelectronics, “CORE90 GP SVT 1.00V,” User manual & Databook, May

2006.

[108] S. Zhong, S. Khursheed, B. Al-Hashimi, and W. Zhao, “Efficient variation-

aware delay fault simulation methodology for resistive open and bridge defects,”

BIBLIOGRAPHY 155

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 33, pp. 798–810, May 2014.

[109] X. Zuo, S. Zhong, K. Li, I. Perez-Andrade, R. Maunder, B. Al-Hashimi, and

L. Hanzo, “High throughput timing-error-induced VLSI implementation of LDPC

decoding using the base-minus-two fixed-point number representation,” IEEE

Journal of Solid-State Circuits. In preparation.

[110] A. Blanksby and C. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density

parity-check code decoder,” IEEE Journal of Solid-State Circuits, vol. 37,

pp. 404–412, Mar. 2002.

[111] A. Darabiha, A. Carusone, and F. Kschischang, “Block-interlaced LDPC decoders

with reduced interconnect complexity,” IEEE Transactions on Circuits and Sys-

tems II: Express Briefs, vol. 55, pp. 74–78, Jan. 2008.

[112] A. Darabiha, A. Carusone, and F. Kschischang, “A 3.3-Gbps bit-serial block-

interlaced min-sum LDPC decoder in 0.13-µm CMOS,” in IEEE Custom Inte-

grated Circuits Conference, (San Jose, USA), pp. 459–462, Sep. 2007.

[113] H. Zhong and T. Zhang, “Block-LDPC: a practical LDPC coding system design

approach,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52,

p. 766, April 2005.

[114] F. Guo, Low density parity check coding. PhD thesis, University of Southampton,

UK, 2005.

[115] K. Cushon, C. Leroux, S. Hemati, S. Mannor, and W. Gross, “A min-sum iterative

decoder based on pulsewidth message encoding,” IEEE Transactions on Circuits

and Systems II: Express Briefs, vol. 57, pp. 893 –897, Nov. 2010.

[116] T. Mohsenin, D. Truong, and B. Baas, “A low-complexity message-passing algo-

rithm for reduced routing congestion in LDPC decoders,” IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 57, pp. 1048–1061, May 2010.

[117] N. Onizawa, T. Hanyu, and V. Gaudet, “Design of high-throughput fully parallel

LDPC decoders based on wire partitioning,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 18, pp. 482–489, March 2010.

[118] C.-C. Cheng, J.-D. Yang, H.-C. Lee, C.-H. Yang, and Y.-L. Ueng, “A fully par-

allel LDPC decoder architecture using probabilistic min-sum algorithm for high-

throughput applications,” IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 61, pp. 2738–2746, Sep. 2014.

BIBLIOGRAPHY 156

[119] V. Gaudet and A. Rapley, “Iterative decoding using stochastic computation,”

Electronics Letters, vol. 39, pp. 299–301, Feb. 2003.

[120] S. Tehrani, W. Gross, and S. Mannor, “Stochastic decoding of LDPC codes,”

IEEE Communications Letters, vol. 10, pp. 716–718, Oct. 2006.

[121] S. S. Tehrani, S. Mannor, and W. J. Gross, “Fully parallel stochastic LDPC

decoders,” IEEE Transactions on Signal Processing, vol. 56, pp. 5692–5703, Nov.

2008.

[122] S. Tehrani, A. Naderi, G.-A. Kamendje, S. Hemati, S. Mannor, and W. Gross,

“Majority-based tracking forecast memories for stochastic LDPC decoding,”

IEEE Transactions on Signal Processing, vol. 58, no. 9, pp. 4883–4896, 2010.

[123] A. Ciobanu, S. Hemati, and W. Gross, “Adaptive multiset stochastic decoding

of non-binary LDPC codes,” IEEE Transactions on Signal Processing, vol. 61,

pp. 4100–4113, Aug. 2013.

[124] J. P. H. A. Alaghi, “Survey of stochastic computing,” ACM Transactions on

Embedded Computing Systems, 2012.

[125] X. Zuo, I. Perez-Andrade, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo,

“Improving the tolerance of stochastic LDPC decoders to overclocking-induced

timing errors: A tutorial and a design example,” IEEE Access, vol. 4, pp. 1607–

1629, 2016.

[126] S. Tehrani, S. Mannor, and W. Gross, “Survey of stochastic computation on factor

graphs,” in 37th International Symposium on Multiple-Valued Logic (ISMVL),

p. 54, May 2007.

[127] W. J. Gross, V. C. Gaudet, and A. Milner, “Stochastic implementation of LDPC

decoders,” in Conference Record of the Thirty-Ninth Asilomar Conference on

Signals, Systems and Computers, pp. 713–717, Oct. 2005.

[128] B. Gaines, Advances in Information Systems Science, ch. 2. New York: Plenum,

1969.

[129] N. R. Shanbhag, R. A. Abdallah, R. Kumar, and D. L. Jones, “Stochastic com-

putation,” in 47th ACM/IEEE Design Automation Conference (DAC), pp. 859

–864, June 2010.

[130] X. Qi, S. Lo, Y. Luo, A. Gyure, M. Shahram, and K. Singhal, “Simulation and

analysis of inductive impact on VLSI interconnects in the presence of process

BIBLIOGRAPHY 157

variations,” in Proceedings of the IEEE Custom Integrated Circuits Conference,

pp. 309–312, 2005.

[131] T. Enami, S. Ninomiya, and M. Hashimoto, “Statistical timing analysis consid-

ering spatially and temporally correlated dynamic power supply noise,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 28, no. 4, pp. 541–553, 2009.

[132] STMicroelectronics, User Manual & Databook, May 2006.

[133] A variation-aware 45nm design flow for the Semiconductor Re-

search Corporation, jointly developed by Oklahoma State Uni-

versity and North Carolina State University [Online]. Available:

http://vlsiarch.ecen.okstate.edu/flows/OSUFreePDK45/.

[134] Q. T. Dong, M. Arzel, C. Jego, and W. J. Gross, “Stochastic decoding of turbo

codes,” IEEE Transactions on Signal Processing, vol. 58, pp. 6421–6425, Dec.

2010.

[135] A. Varga, “OMNeT++,” in Modeling and Tools for Network Simulation, pp. 35–

59, Springer, 2010.

[136] A. Varga et al., “The OMNeT++ discrete event simulation system,” in Proceed-

ings of the European simulation multiconference (ESM), vol. 9, p. 65, sn, 2001.

[137] J. Zuo, S. X. Ng, and L. Hanzo, “Fuzzy logic aided dynamic source routing in

cross-layer operation assisted Ad Hoc networks,” in IEEE Vehicular Technology

Conference Fall (VTC 2010-Fall), pp. 1–5, Sept. 2010.

[138] Y. He, W. Xu, and X. Lin, “A stable routing protocol for highway mobility over

vehicular Ad-Hoc networks,” in IEEE Vehicular Technology Conference (VTC

Spring), pp. 1–5, May 2015.

[139] Y. Ben-Itzhak, E. Zahavi, I. Cidon, and A. Kolodny, “NoCs simulation framework

for OMNeT++,” in IEEE/ACM International Symposium on Networks on Chip

(NoCS), pp. 265–266, May 2011.

[140] A. Mansour and J. Gotze, “An OMNeT++ based network-on-chip simulator for

embedded systems,” in IEEE Asia Pacific Conference on Circuits and Systems

(APCCAS), pp. 364–367, Dec 2012.

BIBLIOGRAPHY 158

A. Alaghi, J. P. Hayes 87

Abdallah, R.A. 2, 56

Abdallah, Rami A. 108

Ahmadi, R. 2, 53, 56, 109, 111, 114

Ahmed, N. 2, 53, 56, 109, 111, 114

Akella, V. 59

Al-Hashimi, B.M. 2, 53, 70, 83, 108, 109, 120, 132

Albertazzi, G. 57

Alioto, M. 2, 53, 56, 109, 111, 114

Alles, M. 2, 53, 108, 109

Anantharam, Venkat 61, 86

Arnold, D.-M. 13, 14, 18, 19, 34, 57, 61, 92

Arzel, Matthieu 130

Austin, T. 2, 53, 56, 109, 111, 114

Baas, B.M. 86, 87

Banihashemi, A.H. 2, 14, 34, 35, 37, 45, 61

Barbarossa, S. 1

Beer, S. 2, 53, 54, 56, 59, 60, 109, 111, 114

Behairy, H. 12

Ben-Itzhak, Y. 134

Benedetto, S. 37

Berrou, C. 1, 7

Blaauw, D 66, 69

Blahut, R.E. 41

Blanksby, A.J. 86

Bonello, Nicholas 25, 57

Bose, R. C. 7

Boutillon, E. 45

BIBLIOGRAPHY 159

Bowman, K.A. 54, 59, 60

Brack, T. 2, 53, 108, 109

Brooks, D.M. 2, 53, 56, 109, 111, 114

Carusone, A.C. 59, 86

Chaney, T. 2, 53, 54, 56, 59, 60, 109, 111, 114

Chang, Shih-Chun 12

Chatterjee, A. 2, 56

Chen, J. 2, 14, 16–19, 34, 35, 37, 39, 45, 57, 61

Chen, Sheng 25, 57

Chen, Xiaoheng 59

Chen, Yanni 2, 12, 35, 61, 86

Cheng, Chung-Chao 86, 87

Cho, Hyungmin 53, 108, 109

Cidon, I. 134

Ciobanu, A. 87

Corazza, G.E. 57

Cox, J. 2, 53, 54, 56, 59, 60, 109, 111, 114

Cui, Z. 57

Cushon, K. 86

Darabiha, A. 59, 61, 86

Das, S. 2, 53, 56, 109, 111, 114

De, V.K. 54, 59, 60

Declercq, D. 2

Dholakia, A. 2, 13, 14, 16–19, 34, 35, 37, 39, 45, 57, 61, 92

Di Lorenzo, P. 1

Ding, Hong 59

Dolecek, L. 53, 108, 109

Dolecek, Lara 53, 108, 109

BIBLIOGRAPHY 160

Dong, Mingke 59

Dong, Quang Trung 130

Douilard, C. 45

Edfors, O. 52

Eleftheriou, E. 13, 14, 16–19, 34, 39, 57, 61, 92

Eleftherious, E. 2, 14, 16–19, 34, 35, 37, 39, 45, 57, 61

Elias, Peter 7

Enami, T. 114

Ernst, D. 2, 53, 56, 109, 111, 114

Evans, B.G. 57

Fettweis, G.P. 1

Flautner, K. 2, 53, 56, 109, 111, 114

Fossorier, M. 2

Fossorier, M. P. C. 2, 14, 16–19, 34, 35, 37, 39, 45, 57, 61

Fossorier, Marc P.C. 14, 16, 18, 19, 34, 39, 57, 61

Frey, B.J. 1, 12–14, 17, 19, 57, 58, 88

Gaines, B. 108

Gallager, R. 1, 7, 12, 27, 34, 57, 86

Gaudet, V. C. 2, 53, 94, 104, 105, 108, 109, 138

Gaudet, V.C. 86, 87, 94, 138

Ghosh, S. 2, 53, 56, 109, 111, 114

Ginosar, R. 2, 53, 54, 56, 59, 60, 109, 111, 114

Glavieux, A. 1, 7

Goel, M. 2, 12, 35, 61, 86

Gotze, J. 134

Gross, W. J. 87, 94–100, 104, 105, 109, 112, 115, 120–124, 126, 128–130, 138, 139, 141

Gross, Warren J. 130

Gross, W.J. 86, 87, 94, 96–99, 109, 113, 138

BIBLIOGRAPHY 161

Guo, Feng 86

Gupta, M.S. 2, 53, 56, 109, 111, 114

Gyure, A. 114

Hagenauer, J. 3, 7, 19, 21–23, 25, 34, 37, 40, 41, 57

Hanyu, T. 86, 87

Hanzo, L. 2, 36, 53, 83, 108, 109, 126, 132, 134

Hanzo, Lajos 1, 7, 25, 57

Hashimoto, M. 114

He, Yang 134

Hemati, S. 86, 87, 109, 113

Hocevar, D. 2, 12, 35, 61, 86

Hocevar, D. E. 61, 86

Hocquenghem, Alexis 7

Hoeher, P. 7, 19

Howland, C.J. 86

Hu, X. 2, 14, 16–19, 34, 35, 37, 39, 45, 57, 61

Hu, Xiao-Yu 13, 14, 18, 19, 34, 57, 61, 92

Huang, Chu-Hsiang 53, 108, 109

Huang, Qin 2, 59

IBM 68, 72, 73

Imai, H. 14, 16, 18, 19, 34, 39, 57, 61

Jayaram, V. 2, 53, 56, 109, 111, 114

Jego, Christophe 130

Jones, Douglas L. 108

Joseph, R. 2, 53, 56, 109, 111, 114

Kamendje, G.-A. 87, 109, 113

Kang, Jingyu 2

BIBLIOGRAPHY 162

Karnik, T. 54, 59, 60

Khan, F. 52

Khursheed, S. 70, 120

Kim, Nam Sung 2, 53, 54, 56, 59, 60, 109, 111, 114

Kolodny, A. 134

Kschischang, F. R. 2, 12, 35

Kschischang, F.R. 1, 12–14, 17, 19, 57–59, 86, 88

Kumar, Rakesh 108

Larsson, E. 52

Lechner, G. 2, 35

Lee, Huang-Chang 86, 87

Lee, J.C. 54, 59, 60

Lee, J.W. 41

Leiw, T. H. 1, 7

Leroux, C. 86

Leung, W. K. 2, 35, 45, 61, 63, 86

Li, Ke 83, 132

Li, Yao 53, 108, 109

Lin, Shu 2, 59

Lin, Xuehong 134

Lo, S.C. 114

Loeliger, H.-A. 1, 12–14, 17, 19, 57, 58, 88

Loeliger, Hans-Andrea 1, 12, 13, 57

Lu, S.L. 54, 59, 60

Luo, Wu 59

Luo, Yansheng 114

MacKay, D. J. C. 34

Mannor, S. 86, 87, 94–100, 104, 105, 109, 112, 113, 115, 120–124, 126, 128–130, 138,

BIBLIOGRAPHY 163

139, 141

Mansour, A. 134

Mansour, M. M. 2, 35

Mansour, M.M. 52, 54

Martin, A.J. 54, 59, 60

Martorell, Ferran 66, 69, 80, 114

Marzetta, T. 52

Masera, G. 2, 35, 45, 61, 86

Mathiopoulos, P.T. 57

Maunder, R.G. 2, 36, 53, 83, 108, 109, 126, 132

May, M. 2, 53, 108, 109

Mihaljevic, M. 14, 16, 18, 19, 34, 39, 57, 61

Milner, A. 94, 104, 105, 138

Mittelholzer, T. 14, 16–19, 34, 39, 57, 61

Mohsenin, T. 86, 87

Moll, Francesc 66, 69, 80, 114

Montorsi, G. 37, 45

Mudge, T. 2, 53, 56, 109, 111, 114

Naderi, A. 87, 109, 113

Najm, F.N. 2, 53, 56, 109, 111, 114

Neal, R. M. 34

Ng, Soon Xin 134

Nikolic, Borivoje 61, 86

Ninomiya, S. 114

Nourani, M. 66, 68, 69

Nystrom, M. 54, 59, 60

Oatley, J.L. 2, 53, 56, 109, 111, 114

Offer, E. 19, 34, 37, 57

BIBLIOGRAPHY 164

Oh, Daesun 2, 34, 35, 45, 61, 63, 86

Onizawa, N. 86, 87

Palumbo, G. 2, 53, 56, 109, 111, 114

Panda, R. 66, 69

Pant, S. 2, 53, 56, 66, 69, 109, 111, 114

Papaharalabos, S. 57

Papke, L. 19, 34, 37, 57

Parhi, K. K. 2, 35, 61, 86

Parhi, Keshab K. 61, 86

Parhi, K.K. 2, 34, 35, 45, 61, 63, 86

Park, Youn Sung 2, 86

Pasupathy, S. 2, 12, 35

Pennisi, M. 2, 53, 56, 109, 111, 114

Perez-Andrade, I. 2, 53, 83, 108, 109, 132

Perez, L. C. 1, 7

Pham, T. 2, 53, 56, 109, 111, 114

Pi, Zhouyue 52

Ping, Li 2, 35, 45, 61, 63, 86

Pons, Marc 66, 69, 80, 114

Poulliat, C. 2

Qi, Xiaoning 114

Quaglio, F. 2, 35, 45, 61, 86

Radhakrishnan, A. 66, 68, 69

Rao, R. 2, 53, 56, 109, 111, 114

Rapley, A.C. 87, 94, 138

Ray-Chaudhuri, D. K. 7

Reed, Irving S. 7

Richardson, T.J. 21, 54, 57, 61, 96

BIBLIOGRAPHY 165

Robertson, P. 19

Roy, K. 2, 53, 56, 109, 111, 114

Rubio, Antonio 66, 69, 80, 114

Rupp, M. 2, 35

Sardellitti, S. 1

Sayir, J. 2, 35

Schegel, C. B. 1, 7

Shahram, M. 114

Shanbhag, N. 2, 35

Shanbhag, N. R. 2, 35

Shanbhag, Naresh R. 108

Shanbhag, N.R. 2, 52, 54, 56

Shannon, C.E. 6

Shim, Byonghyo 2, 56

Shokrollahi, M.A. 54, 61, 96

Singh, A.D. 2, 56

Singhal, Kishore 114

Sklar, Bernard 6, 11

Solomon, Gustave 7

Sorokine, V. 2, 12, 35

STMicroelectronics 68, 72, 111, 113, 123, 129

Sundareswaran, S. 66, 69

Suzuki, H. 2, 35

Sweeney, P. 57

Synopsys 70, 120

Tabatabaei Yazdi, S.M.Sadegh 53, 108, 109

Tanner, R. 12, 13, 57

Tao, Yaoyu 2, 86

BIBLIOGRAPHY 166

Tehrani, S. Sharifi 87, 95–100, 104, 105, 109, 112, 115, 120–124, 126, 128–130, 138,

139, 141

Tehrani, S.S. 87, 94, 96–99, 109, 113, 138

Tehranipoor, M. 2, 53, 56, 109, 111, 114

ten Brink, Stephan 3, 21–23, 25, 40, 41

Thitimajshima, P. 1, 7

Truong, D.N. 86, 87

Tschanz, J.W. 54, 59, 60

Tufvesson, F. 52

Ueng, Yeong-Luh 86, 87

Uppu, R.K. 2, 56

Uppu, R.T. 2, 56

Urbanke, R.L. 21, 54, 57, 61, 96

Vacca, F. 2, 35, 45, 61, 86

Vanelli-Coralli, A. 57

Varga, András 134

Varshney, L.R. 53, 108, 109

Villebrun, E. 19

Viterbi, A.J. 7

Wang, Z. 57

Wang, Zhongfeng 2, 35

Wehn, N. 2, 53, 108, 109

Wei, Gu-Yeon 2, 53, 56, 109, 111, 114

Wilkerson, C.B. 54, 59, 60

Woener, Brian D. 35

Wu, Yufei 35

Xu, Wenjun 134

BIBLIOGRAPHY 167

Yang, Chia-Hsiang 86, 87

Yang, Jeng-Da 86, 87

Yang, Shuai 59

Yazdi, S.M.S.T. 53, 108, 109

Yeap, B. L. 1, 7

Yeo, Engling 61, 86

Zahavi, E. 134

Zar, D.M. 2, 53, 54, 56, 59, 60, 109, 111, 114

Zarkeshvari, F. 2, 14, 34, 35, 37, 45, 61

Zhang, Li 2

Zhang, Tang 2, 35, 45, 61, 86

Zhang, Tong 2, 35, 61, 86

Zhang, X. 57

Zhang, Zhengya 2, 86

Zhao, Jianguang 2, 14, 34, 35, 37, 45, 61

Zhao, Wei 70, 120

Zhong, Hao 2, 35, 61, 86

Zhong, Shida 70, 83, 120, 132

Zhou, Bo 2

Zhu, Yuming 2, 12, 35, 61, 86

Ziesler, C. 2, 53, 56, 109, 111, 114

Zolotov, V. 66, 69

Zuo, Jing 134

Zuo, Xin 2, 36, 53, 83, 108, 109, 126, 132

