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Abstract—This article presents a bathymetric SLAM (simulta-
neous localization and mapping) solution for underwater vehicles
by addressing the registration of point clouds gathered from
single line laser-based structured light systems. While structured
light can be applied to generate millimetre resolution seafloor
bathymetry, the accuracy of the maps generated is typically
constrained by the localization accuracy of the vehicles used.
In this work, relative uncertainties in vehicle localisation are
reduced by implementing bathymetric SLAM using temporally
constrained submaps. We demonstrate that the method described
can overcome misalignments by correcting errors in localisation
and can be used to generate self-consistent high-resolution
seafloor bathymetric maps.

I. INTRODUCTION

The use of high-resolution seafloor bathymetry is becoming
increasingly routine in marine research [1], [2]. In particular,
advances in high-frequency acoustics and optical methods
combined with the use of underwater vehicles such as AUVs
and ROVs allow us to map vast expanses of the seafloor at
resolutions of several tens of centimetres [3].

While the instruments used to generate seafloor maps have
significantly increased the spatial resolution of bathymetric
maps, this improvement is only meaningful if it can be
matched by accurate vehicle localization. Most underwater
vehicles use a combination of Doppler velocity log (DVL), in-
ertial navigation system (INS) and ship-board super short base
line (SSBL) or ultra short base line (USBL) for localization
and navigation. Position estimates are typically made based
on these sensor measurements through dead reckoning (DR)
or the use of an extended Kalman filter (EKF). Simple DR
suffers from cumulative drift in position, which is unbounded
and is typically in the order of 5% of distance travelled [4].
For a mission where a vehicle travels several kilometres, we
would expect position uncertainty of several tens of metres.
While the use of an EKF can bound estimates of position
uncertainty, a shipboard SSBL typically has an uncertainty of
1% of the slant range, which for a distance of thousands of
meters would be in the order of tens of metres. Clearly, these
uncertainties in localization are significantly large compared
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to the mapping resolutions that can be achieved, and form a
major bottleneck in our ability to perform meaningful high-
resolution studies of the seafloor.

State of the art position estimation solutions use a wider
sensor suite, such as in [5], where a USBL provides x-y
absolute position, together with a Visual SLAM solution.
Both position estimates are then fused in a parallel EKF
solution with a DVL, IMU, GPS and a pressure sensor. The
implementation shows that its accuracy is improved with
respect to DR.

Visual SLAM enhances the estimation by detecting loop
closures between different passes over the same areas. Several
approaches have been reported in the literature, as in [6],
where a stereo pair is used to extract features from the images
and find matching candidates for loop closures. By these
corrections, drift can be minimized. However, when trying to
apply these techniques to underwater imaging, one is faced
with a number of challenges that do not occur, or to a lesser
degree in images taken on land: (1) image features change
strongly depending on the point of view, mostly due to low
altitudes or to wide camera lenses, which makes it difficult
to extract them robustly; (2) it is also affected by absorption
and scattering in water, and requires a light source [7]; (3)
featureless terrains cannot be easily mapped [8] and (4) chang-
ing features like moving flora or fauna can affect the posterior
feature matching process. Bathymetric SLAM can overcome
some of these problems by using only featureless registration
and discarding moving objects by filtering or treating them as
outliers.

In Roman and Singh [9] a bathymetric SLAM solution using
multibeam acoustic data is presented with a range resolution of
4 cm. Inglis et al. [10] presented a structured light bathymetric
mapping algorithm that accounts for errors in the horizontal
component of the robot’s position estimate.

This article explores another way of estimating the pose,
accounting for four degrees of freedom: three for translation
and one for orientation, whilst at the same time building a
bathymetric map of the seafloor using laser based structured
light. Laser stripe systems address some of the optical imaging
issues. As only monochromatic light is projected, a colour can
be chosen that is absorbed minimally in water, and because



only a small volume of water is illuminated, the effect of
backscatter is much smaller compared to imaging systems
using flashes or continuous lights. Furthermore, since the laser
has a small footprint on the seafloor, the power consumption
of laser-based systems is typically significantly smaller than
the systems that uses flash or lights. This makes it possible for
the underwater vehicle to acquire images from higher altitudes
and to cruise at higher speeds than if conventional lighting and
imaging is used.

Structured light imaging provides 3D measurements of the
seafloor with higher resolution than stereoscopy or multibeam
sonar [11]. However, this system cannot exploit image features
for SLAM in a conventional manner. Other approaches, as
submap bathymetric SLAM described in this article, can be
used.

This article is structured as follows: in section II the
structured light system and the submap generation are de-
scribed, whilst in section III the pairwise registration of the
reconstructed three-dimensional submaps is presented. Then
in section IV a SLAM solution to optimize the pose and
orientation of the submaps is introduced. Finally, in section
V the experimental results are presented and in section VI
conclusions are delivered.

II. STRUCTURED LIGHT SYSTEM

The structured light system is formed by an underwater
camera and a line laser mounted on a rigid rig with know
dimensions, which is attached to an underwater vehicle. The
camera and laser require a translational offset perpendicular
to the direction of the laser projection plane. Often a relative
angular offset is introduced to optimize the range and resolu-
tion of the system [12]. The captured images of the laser line
projection on the seafloor provide a simple but efficient way
of computing the terrain profile by triangulating the light rays
originated from the laser back to the camera.

Figure 1 shows the structure of the submap registration
pipeline, which is explained in more detail in the following
sections. From images and vehicle positions submaps are
created. Using their known uncertainty and position a list of
possible loop closure candidates is proposed and a registration
is issued. If the submaps match correctly, a new constraint
is added to a pose-based graph SLAM and the graph is
optimized. The algorithm finishes when there are no more
submap candidates.

A. Laser stripe detection

As a first step all images are corrected for lens distortion.
In each rectified image the laser stripe is detected with sub-
pixel resolution. Each column is convolved with a triangular
kernel, and the row yielding the highest computed value,
provided it is bigger than a minimum threshold, is considered
the approximate location of the laser line. The centroid is then
computed to determine the position of the laser point candidate
with sub-pixel resolution. The candidates from all columns
are then grouped into clusters. Candidates from neighbouring
columns that are close to each others go into the same cluster;
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Figure 1. Submap registration pipeline.

if there is a jump in position between columns a new cluster
starts. Laser line candidate points that are a part of large
clusters are then passed on to the next step, while those that
are in small clusters are considered outliers and are discarded.

The detected laser points w = (u;, v;) € IR” in 2D pixel
coordinates are triangulated using the known rig dimensions
and the camera calibration. In the camera coordinate system,
the laser plane 7 € IR® is known as

w:Ax+By+Cz+D =0, (D)

where the coefficients {A, B, C, D} are computed on a prior
calibration stage. The three dimensional line that crosses the
point € IR? and the focal point of the camera is

U; — Cyg Uy — Cy
ri(t) : < -t -t,t), )
’ fa fy
where (cg, ¢,) is the camera optical centre, (f5, f,) is the
focal length. These values can be obtained from the camera
calibration.
The three dimensional laser point m; € IR® is therefore

m; =r;(t)Nmw. 3)
More information on how the laser detection and 3D point
extraction works can be found in [13].
B. Map generation

In the laser stripe detection step the 3D points are computed
in a reference frame tight to the vehicle. In order to obtain



3D reconstructions in a global reference frame it is necessary
to transform the coordinates, using the position of the vehicle
when the image of the laser line was acquired. In our approach,
an initial 6 degrees of freedom (DOF) estimate of the vehicle
trajectory is obtained using the DR solution based on the
measurements of a DVL, an IMU and a pressure sensor. It
is straightforward to compound the laser points in a global
reference frame given the position estimate of the vehicle:
let m; = N (i, Py,,) be a triangulated 3D point in the
expressed in the reference frame of the vehicle and x; =
N (&4, Py,) be the pose of the vehicle at the time the image
was acquired. Then the position of one point p; = N (p;, Pp,)
of the submap can be computed as:

Ppi = J1®Pwi.]1—r® + J26§)Pm¢J2T® ®)

where Jg = [J1g, J2g] are the left and right halves (6 x 6)
of the compounding Jacobian (6 x 12) [14].

C. Submap sizing

The main assumption of this algorithm is that the accuracy
of the DR in a submap is consistent enough that drift can
be neglected. This is reasonable because the time interval for
each submap is set at a maximum of 30 s, which for a mapping
velocity of 0,4 m/s would result in a position uncertainty of
approximately 5mm. However, for the entire map the DR
error would grow unbounded (or up to the constraints of SSBL
or USBL uncertainty) and the complete map would appear
distorted and in the case of overlapping transects, inconsistent.
In order to produce self-consistent maps we developed an
algorithm, explained in detail in the following sections, which
registers submaps to each others to determine and compensate
for the position estimation drift. Therefore, when aggregating
the 3D points from the laser scanning step, we break them
into a set of smaller submaps. The selection of the break point
has to take into account the following: (1) the submap will be
considered rigid, therefore it has to be small enough so that the
error committed by compounding DR navigation is negligible,
and (2) the submap has to be large enough to contain sufficient
3D information to be unambiguously registered to another
submap.

In order to achieve this, the following conditions are applied
to divide the data into submaps: (1) when the localization
uncertainty of the last added line is bigger than a threshold, (2)
when there is a jump in navigation, and (3) when the submap
is considered too big. Once the submap is closed, all the p;
points are referenced to a new coordinate frame coincident
with the vehicle pose in the middle of the submap sequence
and the position uncertainty at this point is applied to the
submap. [9].

The submap points are triangulated using a Greedy Stepwise
triangulation algorithm in two dimensional space (e.g. x-y),
and are randomly sampled. At the same time the number of
points can be reduced to speed up the subsequent processing
steps. Each random sample is converted to a 3D point where

its z coordinate is interpolated using the tree points that form
the two dimensional triangle.

III. BOUNDED PAIRWISE REGISTRATION

Once all the submaps are generated, loop closure candidates
are proposed. These candidates are submaps whose projection
into the x-y plane, augmented by their uncertainty, overlap.
For each proposed link, a pairwise registration is attempted
to produce a 4 DOF relative pose transformation between the
submaps. When computing the new estimate, only the position
and the heading are adapted, as it is assumed that the roll and
pitch measurements from the vehicle are accurate. The search
space of the relative transformation is also bounded to the
uncertainty of the position and heading of the current submap.

The registration presented in this paper is an optimization
problem that estimates a rigid transformation. We assume:
(1) the transformation is global (the same for every point
within a submap), (2) can be uniquely defined by three non-
collinear pairs of correspondences and (3) has 6 DoF. The
constraints are found using the closest point criterion (CRC),
which chooses the closest point as the match for the next
iteration.

Let P, = {p%,...,p%} and P, = {pl{,...,p,bn} be two
overlapping submaps created with the previous assumptions.
Let p¢ € P, be a point in the submap P,, and p;? the
closest point that lies in the plane defined by the three nearest
neighbours of p in Py.

The function to minimize depends on the L2 norm and the
z distance between the points p$ and p;? subject to small
translations and heading. The parameter block can be simpli-
fied to 4 DoF = = {Ax, Ay, Az, Af} given our application.
Common ROVs or surveying AUVs for imagery have pitch
and roll measurements with tightly bounded uncertainties, so
it is assumed that these degrees are sufficiently accurate in
the for the purpose of this study. Furthermore, vehicles are
normally not controlled in these DoF, and it is unlikely that
the bias error significantly drift over time.

The minimization function can be expressed as

minimize
xr

1 N
NZf(T(w) 'p?7 qi'))27 (6)
=1

subject to Tmin S T S LTmazxs (7)

where T'(x) is the 4 x 4 homogeneous matrix that depends
on the parameter block. The final value of the (6) is the
cost, and the transformation is the output of the minimization
algorithm, and will be added to a pose-based graph SLAM
as a new edge if the resulting minimization cost is below
a maximum allowable error. x,,;, and ,,.,,; bound the
argument search space. These terms depend directly on the
position uncertainty of the submaps being registered. The
function f(p¢, q?), p¢ € P,, q° € Py is defined as

e, if e<eémin
€+ €l, if e > Emin

fof, q) —{ : (8)
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Figure 2. An underwater vehicle scans the seafloor using a laser stripe. Each
submap is stored with known transformations and uncertainty for posterior
optimization.

where e, is the distance in meters of the point pf to its
projection g° on the plane formed by the three closest points
in a x-y projected two-dimensional cloud. The term e, is
the euclidean distance of the point p§ to the closest point in
P, after the transformation. Finally, the term e,,;, switches
between these two errors and depends on the random sampled
submap resolution. It is used to avoid over-fitting the submaps
to the sampled points or to the noise.

Figure 2 shows an example of two intersecting transects.
Submaps P, from transect A and P, from transect B overlap
within an uncertainty determined search space, so a relative
transformation between them can be computed using the
registration algorithm of the presented solution.

IV. BATHYMETRIC SLAM

Most common SLAM solutions have two clear parts: (1) a
front-end and (2) a back-end [15]. In this approach, the front-
end is the pairwise registration explained in section III, and
the back-end is a pose-based graph SLAM explained below.

A pose-based graph SLAM is a graphical representation of
the SLAM optimization problem where poses are represented
as nodes and relative transformations as edges in a graph.
Let x = (x1,...,27)" be a vector of parameters, where x;
describes the pose of node 4. Let z;; and £2;; be the mean and
the information matrix of a measurement between the node @
and the node j. This measurement is a transformation that
makes the observations obtained from ¢ maximally overlap
with the ones acquired from j. Let 2;;(x;, ;) be the mea-
surement between nodes ¢ and j, which usually is the relative
transformation between these two. The log-likelihood /;; of a
measurement z;; is

lij X e?jﬂijeij (9)

where e;; = e;j(z;,x;) = zij — Zij(x;, ;) is the error
function that computes the difference between the expected
and the real observation. For simplicity, the indices of the
measurements have been encoded in the indices of the er-
ror function. The equation to minimize is the negative log-

Transect A

(a) Hemisphere generated with a standard deviation of 0.1 m

(b) Step generated with a standard deviation of 0.1 m

Figure 3. Computer generated data to test the registration algorithm.

likelihood [;; to achieve the goal of a maximum likelihood
approach.

* e - ] T .. ..
x* = argmin g e;;$dije;;
(i,5)€C

(10)

The output of this equation are the optimized relative transfor-
mation encoded in the edges of the pose-based graph SLAM.

V. EXPERIMENTAL RESULTS

Two sets of experiments have been conducted to evaluate
the pairwise registration, one with computer generated data to
evaluate the results of the registration algorithm, and another
with underwater imagery gathered during a research cruise
in the Theya North field of the Okinawa Trough. The SLAM
results will be presented in an upcoming paper.

The registration has been implemented using Ceres li-
brary [16], and the graph SLAM using g2o library [17], both
in C++. The code is available for testing at [18].

A. Evaluation

Two different point cloud sets have been generated to assess
the accuracy of the registration. The first one is a set of 3D
points sampled from a hemisphere with a radius of 5 m, and
the second is a sharp step of 3 m over a 6 X 6 m area.

Pairs of these clouds were generated using different sam-
pling noises as shown in figure 3 and at different locations
in space. The artificially introduced noise has zero mean
and its standard deviation was increased in the following
manner: 0.01, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 m. The relative



transformation between the submap pair has been changed
from 1, 2, 4 and 6 m for x and y coordinates, and three
different z distances have also been used: 0, 0.5 and 1 m.
The yaw orientation has been changed from 0 to 0.2 radians
in 0.1 radian steps. The orientation alteration has not been
introduced in the hemisphere dataset. This results in 336
different registration trials for the hemisphere and 1008 trials
for the step dataset. These pairs were input to the algorithm,
which computed the transformation to best align them. The
difference of the computed transformation with compared
to the actual transformation are presented in table I and in
figure 4(a) for the hemisphere, and in table II and in figure 4(b)
for the step. In the tables, the minimum, maximum, mean,
median and standard deviation of the translation error (L2
norm) of the registration for all the different configurations
are presented. Results on the orientation alignment for the step
registration are also shown on table III.

For each trial the algorithm was only run once. Different
runs may end up in slightly different results, since the random
sampling makes the submaps look different, but on average it
does not change the outcome significantly.

B. Seafloor data

In 2015 an underwater survey was carried out with the ROV
Hyper-Dolpin JAMSTEC) at the Theya North Field, Okinawa,
Japan. The vehicle was equipped with a monochrome camera
and a laser stripe. The setup used was similar to the one
presented in [19]. A large area of seafloor, including a 30m
tall mound and an artificial vent, was mapped from an altitude
of approximately 8 m.

Three passes over the artificial vent that were made during
that survey have been used to test the registration algorithm.
The three transects and the generated graph can be seen in
figures 5(a) and 5(b) respectively. The transects A, B and C are
formed by submap 0 to 2, 3 to 6 and 7 to 11. These submaps
where split evenly at 34 min 23.91 sec, 61 min 29.60 sec and
345 min 41.35 sec from the start of the dive. Each transect
duration is 220 seconds.

The graph shows the submaps as nodes and their relative
transformations as edges, where dashed lines are loop closure
candidates.

Figure 6 shows submaps 6 (transect B) and 9 (transect C)
generated using their initial pose estimates based on DR (sub-
figure 6(a)) and after (subfigure 6(b)) the registration algorithm
was applied. It is worth to notice that the output of the algo-
rithm is a corrective translation of (—1.297,0.209,0.238) m
and a heading of 0.031rad between the known relative
transformation and the corrected registration. Registering these
two submaps took 52 iterations and 3.49 seconds on a Intel 5
processor at 2.4 GHz with 8 Gb of RAM. The point density
has changed due to the random subsampling used in the first
step of the registration algorithm.

VI. CONCLUSIONS AND FUTURE WORK

A pipeline to improve the accuracy of high-resolution
seafloor bathymetry using SLAM has been presented and its

registration algorithm evaluated. This same pipeline could also
work with other sensor output streams, such as point clouds
from stereo cameras or from other structured light sensors.

In the evaluation of the computer generated data, we could
see that lower noises gave the most stable output, with most
of the outliers when the two submaps where initially separated
by a large distance, and also when the orientation offset was
at its maximum value. The reason for this is that the submap
transformation output fall into local minima away from the
true solution. This means that the input reconstruction must
be as accurate as possible, as it is the starting point for the
registration. Regarding the orientation misalignment, the dif-
ferences in the registration results (e.g. error) do not show any
strong trend depending on which was the starting orientation.
This solution is able to cope with small misalignments in
orientation (up to 0.2 rad). For noisy data, the features of
the submap (e.g. the step or the smoothed surface of the
hemisphere) to register ended up over-fitting the submaps,
registering to noise in a local minima configuration, whilst
for the step, the minimization function forces the submaps to
better align. The results start to have higher errors when the
noise is comparable with the step itself (3 m step vs a standard
deviation of 0.5 — 1.0 m). From these results it is clear that
the registration works well with noisy data, and it is able to
cope with up to one-to-two meter misalignments if the overlap
is big enough.

Regarding results with seafloor data, the DR and position
uncertainty played a significant role in the results. Getting
a good initial position estimate is crucial for the success of
the pipeline, since terrain-based registrations, such as ICP, are
prone to fall in local minima while performing the minimiza-
tion step.

Future work will be focused in further studying these results,
and the sources of noise, such as the camera calibration, the
laser transformation, the laser detection in the image and the
robot position accuracy and uncertainty, and implementation
of methods to improve robustness to local minima.

Also, further results in the evaluation of the SLAM solution
will be presented, together with a parametrization study on the
submap size, or whether smoothing out the submaps prior to
registration, or using multiscale resolution as suggested in [20]
is applicable.
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Figure 5. Three 3D reconstructed transects over an artificial vent
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