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ABSTRACT 
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THERMAL PROGNOSTIC CONDITION MONITORING FOR MV CABLE 

SYSTEMS 

by Stelios Christou 

Large-scale investment in transmission and distribution power networks is planned over 

the next decades to meet the future demand and changes in power generation. 

Nevertheless, it is still of a great importance that the existing assets continue to operate 

reliably and their health is maintained. Moreover, the failures of distribution cables are 

extremely disruptive, costly to repair and have a serious impact on customer confidence. 

As a result, developing a reliable on-line prognostic tool is of a great importance. 

This research investigates a method of developing a prognostic capability for evaluation 

of the health and long term performance of aging distribution cable circuits. Developing 

such prognostic models will significantly improve the prognosis accuracy, allowing the 

targeting of maintenance and reduction of in-service failures. Real-time measurements 

taken close to underground cables can update the models giving a more accurate 

prognostic tool. The aging of the cable begins the moment it is installed and put in service 

due to a combination of mechanical, thermal, electrical and environmental factors. 

A thermal prognostic model is suggested. It enables prediction of the likely temperature 

impact on underground cable joints at the burial level and terminations according to 

weather conditions and known loading. Anomalies of temperature measurements along 

the cable compared to predicted temperatures will indicate the possible degradation 

activity in the cable. An experimental surface trough has been set up where operation of 

power cables was simulated with control system which is able to model any cable loading. 

The surface temperature of the cable is continuously monitored as well as the weather 

conditions such as solar radiation, wind speed, humidity, rainfall and air temperature. 

The research involved cooperation with University of Cyprus and the Electricity 

Authority of Cyprus which has given an opportunity to implement, install and study the 



 

 

performance of the condition monitoring thermal prognostic model in a distribution 

network with different environmental and loading conditions than found in the UK.   
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Chapter 1  Introduction 

An ultimate aim of every Distribution Network Operator is to maintain a reliable power 

supply to its customers. With a constantly increasing power demand existing transmission 

and distribution underground power networks are exposed to a number of factors which 

speed up cable aging leading to breakdown of power cables that are very inconvenient 

and expensive to repair. Thus developing a reliable online condition monitoring 

prognostic indicator tool is of great demand and importance in order to predict and 

prevent upcoming failures, make maintenance easier, reduce operational costs as well as 

to increase the confidence of the customers. 

The health of the electricity networks has a great financial and social impact to the society. 

In 1998 a 6 weeks power outage happened in Auckland due to overheating of four power 

cables. It had an estimated long-term economic impact equivalent  0.1 to 0.3 per cent of 

New Zealand's gross domestic product and over half of businesses within the central 

business district were forced to move out at least temporarily [1]. 

The research presented in this thesis involved collaboration between the University of 

Southampton, the University of Cyprus and the Electricity Authority of Cyprus in order 

to install condition monitoring units in underground cable joints inside an MV substation. 

This enabled the analysis of real-time data from cable circuits in Cyprus which 

contributed towards the development of an online thermal condition monitoring 

prognostic indicator tool.  

1.1 Research Motivation 

Cables start to age the moment they are put in operation. The lifetime of an aging cable 

is affected by a combination of mechanical, thermal and electrical stresses as well as 

weather conditions [2]. Most of the failures within a distribution network have been 

reported by the cable joints and terminations and for that reason they are considered to be 

the weakest accessories in the distribution networks [3][4][5]. 

 Over the past decade there has been a significant breakthrough in development of online 

diagnostic and condition monitoring tools which enabled network operators to a certain 

extent prioritize the required repairs or replacements in power networks. Partial discharge 
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(PD) monitoring tools can detect the defect prior to the failure of insulation  [6]. Hydro 

Quebec Research Institute and KEMA have developed an online monitoring systems 

which are able to detect and localize PD in cable and cable joints and to indicate the 

upcoming failures by spotting the abnormal PD activity [7][8]. Another way of condition 

monitoring is the monitoring of the temperature on the joint of underground cable. Hydro 

Quebec developed an online monitoring software which records temperatures of the cable 

joints and can indicate the health of the monitored joints [9]. Thermal imaging cameras 

have been used as a diagnostic technique for assessing the health of cable terminations 

[10]. The Electric Power Research Institute (EPRI) suggested the above technique to 

periodically inspect the current health state of the cable accessories such as joints and 

terminations [11]. Unfortunately, existing condition monitoring and diagnostic 

techniques are not always capable of detecting and preventing failures prior to their 

occurrence [10] [12]. Thus it is vital to identify the early stages of a possible degradation 

activity within the cable systems by developing improved prognostic capabilities. 

Developing such a prognostic capability will significantly improve the prognostic 

accuracy, allowing the targeting of maintenance and reduction of in-service failures. The 

existing condition monitoring systems are costly to implement and maintain. Furthermore 

the abovementioned condition monitoring systems are often able to identify only the final 

stages of an upcoming failures thus proving unreliable for network operators to schedule 

necessary maintenance.  

Hence a development of a condition monitoring prognostic indicator tool which is cost 

effective and is able to predict upcoming catastrophic failures sometime before its 

occurrence is of a great demand.  

1.2 Feasibility of a Thermal Prognostic Model 

Development of models can significantly improve the accuracy of prognostics, it can 

reduce the cost of maintenance and prevent in service failures. Real-time measurements 

taken close to underground cables can update the models input variables giving a more 

accurate prognostic model by reducing the real-time error of the prognostic output value. 

In this work a thermal prognostic  model is introduced and implemented for cables in air 

filled and soil filled trenches as well as in underground cable joints in a MV substation in 

Cyprus. The developed thermal prognostic model is based on a Support Vector 



 

 3

   

Regression (SVR) algorithm that is able to predict the likely temperature along the cable 

30 minutes into the future and is able to detect temperature anomalies which can indicate 

upcoming failures. 

Weather parameters such as solar radiation and air ambient temperature as well as load 

profile demands and cable temperature are used to develop the SVR models. A number 

of various sensitivity tests were performed in order to create a new methodology through 

which more efficient thermal prognostic models could be developed and adopted 

globally. 

1.3 Contribution of this Thesis 

The feasibility of predicting abnormal temperature anomalies along the surface of the 

cable accessories has been investigated. A simulation model in COMSOL as well as the 

experiments performed in air filled and soil filled trenches have verified that a set of 

potential faults will generate heat and the rise of temperature can be detected on the 

surface of the investigated accessories. A SVR machine learning algorithm has been used 

to develop thermal prognostic models which are able to identify abnormal cable surface 

temperature increases. Weather parameters such as solar radiation, air ambient 

temperature as well as cable loading conditions were taken into to account during the 

development of the thermal prognostic models.  

From the outcomes of the experiments in air filled and soil trenches as well as through 

the series of different sensitivity tests and the pre-processing data analysis, a methodology 

has been established which was then used during the installation and implementation of 

an online prognostic condition monitoring system for an MV substation in Cyprus. Field 

data collected from Cyprus was analysed and used to develop the thermal prognostic 

condition monitoring system. 

A thermal online condition monitoring prognostic indicator tool has been developed and 

implemented in the MV substation in Cyprus. The above prognostic capability is able to 

identify and predict the healthy state of the cable accessories such as joints and 

terminations. It was able to identify an upcoming failure in the real field underground 

cable joint approximately 2 months prior to failure.  The developed thermal anomaly 

decision algorithm (TADA) combined with the developed prognostic tool is able to give 

an insight on the current scale and size of degradation activity happening within the cable 
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joint and can provide the network operator with the needed confidence to take necessary 

actions and precautions. The suggested thermal online condition monitoring prognostic 

indicator tool will be able to fill the gap of demanded prognostic capability for common 

cable accessory faults. This research proves that the concept of predictive maintenance as 

well as the transition from diagnostics to prognostics is achievable.     

1.4 Thesis Structure 

This chapter has described the research motivation, the reasons why a reliable thermal 

prognostic model is of a great demand and the contributions of this thesis. An online 

condition monitoring thermal prognostic indicator system based on SVR is proposed.  

Chapter 2 presents a more detailed investigation of the underground cables used in the 

MV distribution networks. It outlines the construction of cables and the aging mechanism, 

factors and effects affecting lifetime of a cable. This Chapter also describes possible 

underground joint and termination failures and aging mechanisms as well as existing 

diagnostic and condition monitoring methods for the underground cable joints and 

terminations. 

Chapter 3 investigates the possibility to identify abnormal changes of temperature on the 

surface of a cable using a simple thermal cable model created in COMSOL. A comparison 

between Artificial Neural Network (ANN), Multiple Linear Regression (MLR), Gradient 

Bosting (Mboost) and Support Vector Regression (SVR) machine learning algorithms is 

performed and the reasons why the SVR is chosen and ultimately implemented are 

explained. The theoretical background of the SVR is presented and the description of the 

development of a thermal prognostic model using the SVR algorithm is described. 

Chapter 4 outlines a series of sensitivity tests performed in the air-filled trench. The 

results of the sensitivity tests are taken into account for the development and 

implementation of the thermal prognostic models in the soil filled trench and in the 

Cyprus field experiment as it is described later in Chapters 5 and 6.  Furthermore the air-

filled thermal prognostic model is developed and is able to detect the abnormal 

temperatures along the air-filled trench produced by an external heat source. The 

sensitivity of the thermocouples (TCs) is investigated in order to identify if they are 

appropriate temperature sensing devices to detect the existence of the increased 

temperature produced by the hot-spots on specific part of an underground cable system 
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such a joints and terminations. An experiment on a 33kV termination is performed in 

order to identify if the thermal prognostic model is sensitive enough to detect abnormal 

change of temperature on the termination surface after the introduction of hot-spots. 

Chapter 5 describes the performance of the SVR thermal prognostic model in the soil 

filled trench under the influence of the hot-spots during constant and cyclic loads. A 

benchmarking between the 4 above mentioned algorithms for both constant and cyclic 

load experiments is performed. Moreover it outlines an in-depth analysis of possible 

system error and the verification of selected model parameters is presented.  

Chapter 6 describes the development of a thermal condition monitoring system that has 

been designed and implemented for an MV substation in Cyprus. The field experimental 

data from Cyprus is used for the development of the thermal prognostic model. Finally 

the development of a thermal anomaly decision algorithm which is used to classify the 

upcoming failure alerts is presented.  

Chapter 7 summarises the development of the thermal prognostic models established in 

this research, highlights the benefits of these developments and discusses the potential of 

further development of the techniques proposed in this thesis. 
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Chapter 2  Underground Cable Systems and the 

Mechanism of Cable Aging  

Underground cables are used to transmit or distribute power within power networks. 

Underground cables are less liable to the impacts of severe weather, smaller land area is 

required for installation compared with overhead lines and finally they emit lower 

electromagnetic fields than overhead lines [13].    

From the beginning of the 20th century, low and medium voltage underground cables were 

used to distribute electric power in congested urban areas. The development of 

technology, new ways of manufacturing and design of underground cables enabled them 

to be used for electric power transmission for short or medium distances. 

2.1 Underground Cable Construction 

An underground cable is mainly composed from: a) a conductor, b) insulation around the 

conductor and c) an external protecting covering. An example of a three-core cable is 

shown in Figure 1. 

 

  

The number of conductors in an underground cable depends upon the purpose for which 

the cable is intended to be used. The conductors are built from stranded copper or 

aluminum to add flexibility to the cable. The conductors are surrounded with a layer of 

suitable insulation, thickness of which depends from the voltages the cable is carrying. 

Insulation is usually made from oil-impregnated paper, vulcanized, butyl rubber, PVC 

etc. The insulation is protected by a metallic sheath of lead or aluminum to minimize the 

damage from moisture, gases, damaging liquids from the soil and atmosphere. The 

metallic sheath is covered with a coating of bedding which is made of fibrous materials 

                      Fig. 1 Three-Core cable construction [14].  
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like jute or hessian tape to protect the metallic sheath from corrosion and mechanical 

damage from armouring. The armouring is usually made from steel wire or steel tape 

which acts as a source of mechanical protection of the cable. Some types of cables do not 

include armouring. The serving is used to protect the armouring from environmental 

conditions and it is a coating of fibrous material similar to the one used in the bedding. 

2.2 Mechanism of Cable Aging 

The aging of cable insulation materials begins the moment a cable is installed and 

energized. The degradation of the cable insulation depends on a number of factors which 

can be extrinsic or intrinsic. Extrinsic factors are those due to voids, physical 

imperfections, contaminants, or poorly dispersed components due to manufacturing 

imperfections and poor workmanship faults. Intrinsic factors are those due to a 

combination of mechanical, thermal, electrical and environmental factors to which cable 

is exposed in the long run [3]. The typical ageing factors, mechanisms and effects of cable 

insulation are presented in Table 1 and typical power cable defects are shown in Figure 

2. 

 
                               Fig. 2 Typical power cable defects [3]. 
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Table 1 Typical ageing factors, mechanisms and effects of cable insulation [2] 

Cables fail when the insulation loses its dielectric strength. When a material is subjected 

to electric field heat can be generated due to conduction current and dielectric loss. 

Thermal instability is reached when the rate of heating exceeds the rate of cooling and 

the cable may undergo thermal breakdown.  

Solid insulation may contain cavities and voids which might be very small in size. These 

voids might be either dielectric bounded or at the interface between dielectric and 

semiconducting screens which might have developed during the manufacturing or 

installation process. These voids are usually filled with a medium (gas or liquid) of lower 
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breakdown strength. This as a result can lead to electrical discharge inside the void which 

can only partially bridge the insulation. The above electrical discharges are called Patrial 

Discharges (PD) and do not immediately result in an insulation fault. However, the 

localised but intense electrical, thermal and chemical effects of the discharge are likely to 

degrade the insulation material over the time and might lead to a fault. 

2.3 Thermomechanical Aging in Underground Cables  

Power cables which handle daily load cycles are cyclically heated and cooled which 

results in the build-up of compressive and tensile stresses in the sheath of the cable due 

to the changing temperatures and the different thermal expansion factor of the insulation 

material compared to the conductor [15]. 

Studies of cable movement in a duct were undertaken for two fundamental purposes: a) 

to determine the portion of the theoretical expansion that appeared at the duct mouth 

under controlled conditions b) to ascertain the nature and extent of lateral movement 

(snaking), together with the relative performance of cable core and sheath while the cable 

is under compression during the heating cycle [16]. 

2.3.1 Movement of Underground Cables 

Lateral movement (snaking) can be explained by considering an inactive cable laid in a 

duct line without any other cables around it. At the lowest ambient temperature the cable 

is contracted to its minimum length and is positioned along the bottom of the duct. As it 

is being put in service and with increase of earth temperature, cable temperature therefore 

gradually increases and the cable expands longitudinally. The primary length expansion 

of the cable is absorbed by lateral displacement, so called snaking of the cable inside the 

duct, because the mechanical resistance of the cable to the snaking is lower than 

longitudinal movement. However the insignificant expansion in cable length can be 

noticed in the manholes despite the fact the cable has enough space to readjust itself 

within a duct [15].  

The longitudinal expansion of the cable occurs as a consequence of the larger thermal 

expansion of the lead sheath rather than copper/aluminium conductors of the cable. The 

above without any doubt creates a longitudinal mechanical force in the sheath of the cable 

which partially is transmitted through the insulation to the conductors which consequently 
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results in the expansion of the length of the whole cable. To a certain extent the expansion 

of the cable length is absorbed by lateral displacement within the duct. Nevertheless some 

of the stress in the sheath still has to be spread along the sheath of the cable and it can 

only be relieved by increasing the cable length into the manholes [15]. 

In addition to the lateral and longitudinal cable movements there are other configurations. 

Helical, part linear part helical, part helical part sinusoidal configurations can also be 

considered as cable movement configurations. According to [17][18] these configurations 

cannot be predicted as they depend on the previous elastic energy stored in the cable. 

Factors affecting cable movement are: temperature of the conductor, load cable demand, 

stiffness of the cable, weight of the cable and the diameter of the duct. 

2.3.2 Fatigue Analysis of Underground cables due to Thermomechanical   

Bending 

The lifetime of an operating power cable laid in underground ducts is highly dependent 

on the ability of the sheath to protect the insulation of the cable from air and moisture 

[19]. The effects of thermomechanical bending are caused by constant heating and 

cooling cycles due to the various daily load demands [18]. Thermal expansions and 

contractions of the cable generate the movement and bending of it causing damage and 

failure of the sheath. The movement of the cable causes fatigue cracks mainly in the 

manholes towards where the cable moves accumulated by longitudinal expansion force 

which is then reduced by the lateral movement of the joint [19]. 

Assuming the fact that the lead sheath can freely move with respect to the conductors of 

the underground cable then as a result the effect of longitudinal expansion of the sheath 

will be partially moved to the relevant sections of the sheath in the manhole. The stresses 

reach a maximum once the movement of the sheath is suppressed either by a bend, a 

reinforced joint or by a point where equivalent opposing forces of adjoining sections 

appear. In most cases because of the above suppression the lead sheath goes beyond its 

elastic limit at one of the above points which as a result creates a crack or ripple in sheath 

all around the cable. The moment this ripple develops all the future expansion of the 

sheath will be congested at that ripple and the failures will not appear at any other points 

of the sheath. This sort of failure is very commonly observed by the ends of joints 

specifically in systems without bends [20]. 
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In the bent section of XPLE cable, introduction of tension stress may cause the formation 

of microvoids. When these microvoids are formed within wet conditions, water trees 

could be developed [21]. On the other hand in the case of dry conditions, partial discharge 

could be initiated in mechanically formed microvoids, as a result developing the electrical 

trees and reducing the breakdown strength of the insulation [22]. 

The main negative factor for PILC cables is moisture. According to [23] moisture can 

enter the cable, via holes and cracks in the lead sheath due to thermomechanical 

movement at locations with concentrated mechanical stresses such as joints and 

terminations. The introduction of the moisture inside the paper-insulated cable will result 

in the development of thermal runaway due to increased dielectric losses. Sheath life of 

the cable might be reduced due to a cyclic movement of cable even within normal 

operating temperatures allowed by cable specifications [16]. 

For the above reasons determining the sheath life of an underground cable is of a great 

demand. Nevertheless it is extremely difficult to determine the actual service life even 

under known operating conditions as it depends on a number of various factors. The 

sheath life depends on: a) size and type of cable, b) size and type of duct, c) size of 

manhole and configuration of the cable in the manhole especially as to bends and offset 

of the joint from the line of the ducts, d) temperature cycles of the conductor, e) 

temperature of the sheath, f) length and slope of the cable between manholes and g) the 

amount of vibration (e.g. street traffic) [19] [24]. 

2.4 Environmental Factors Influencing Underground Cable Aging 

Global warming is predicted to result in generally hotter drier summers and milder, wetter 

winters in the UK [25]. Higher ambient temperatures cause an increase to the temperature 

of the ground, which as a result will cause the dry-out of the soil that potentially will 

increase the soil thermal resistivity. The dried out soil, especially one rich in clay will 

cause movement of the ground that may result in damage at the cable joints [26]. In the 

case which this occurs during the high cable loading demands there is a significant danger 

of the cable overheating which will cause mechanical, insulation damage and 

consequently the failure of the system [26]. 

The outage which happened in Auckland in 1998 is considered to be one of the major 

proofs that high soil thermal resistivity can cause the failure of the power system [27]. As 



 

 12 

well as by a significant rise in the ground temperature which increased the soil thermal 

resistivity that led to the overheating of the cables causing conductors and sheath to 

expand and contract resulting in the system breakdown [28]. A similar failure occurred 

in 1962 in London where two 132 kV cables suffered successive failures. Investigation 

showed that high thermal resistivity developed around the cable region during the summer 

period and caused abnormal soil dry-out due to the water migration [29]. 

When a crack occurs on the lead sheath the insulation can be easily damage by the 

moisture from the surrounding underground environment. This will cause the loss of its 

dielectric strength due to the possible and potential formation of water treeing and will 

finally lead to the failure of the cable [30]. It is verified that the phenomenon of water 

treeing is related to the presence of humidity in the insulation. Water by the cover of the 

cable is enough to cause treeing; it does not necessarily have to enter through the 

conductor in order to grow; water trees need only relatively high moisture content within 

the insulation [31]. 

Lightning strikes can cause damage to underground cables in the cases when cables are 

positioned near striking points or when lightning current flows though the soil to the cable 

causing insulation failure [32]. 

2.5 Cable Accessories 

In order to design and put into operation a fully functional cable circuit network, cables 

need to be both jointed and terminated. Thus cable joints and terminations are considered 

to be the most important cable accessories. Cable joints are used to interconnect and 

extend the length of underground cables while terminations are the accessories used to 

terminate the underground cables and to provide the connection to other assets in the 

power network. 

Both cable joints and terminations are installed manually on site, very often under 

unfavourable environmental conditions without taking into account controlled tape 

tension, clean extruders surfaces and temperature or humidity [33]. The quality of 

installation almost purely depends on human factors and mistakes made during the 

installation can significantly reduce the lifetime of the accessories. For that reason cable 

joints and terminations are considered to be the weakest points of underground cables 

systems.  
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2.5.1 Cable Terminations 

Cable terminations control the electric stresses of the cable insulation shield terminals as 

well as external insulation between the cable conductor(s) and ground. Terminations also 

provide a seal to the end of the cable against the entrance of the external environment and 

maintain the operating design of the cable system. Terminations are used for extruded 

dielectric cables, laminated dielectric cables and pressurized cable systems [34]. 

Terminations are divided into outdoor or indoor. Outdoor terminations are designed to 

endure weather phenomena such as precipitation, pollution and ultraviolet radiation. 

Indoor terminations are installed into a grounded protective metallic enclosures which 

can contain air, gas or liquid compounds [33].  

2.5.2 Cable Joints  

Over the past few decades the need to distribute the energy across every part of a country 

had resulted in the increased number of underground power cables. As the length of the 

cable is limited, additional accessories are needed to extend the cable length. These 

accessories are called cable joints. 

Cable joints have to provide stress control and be able to restore the connection between 

the insulation phases and earth like the cables they are connected to. Furthermore joint 

design must provide mechanical protection against external damage and to stop moisture 

from the surrounding environment entering the joint [33]. 

The joints are used to connect cables which are both insulated with extruded dielectric 

materials (extruded joints), for  cables which have a dielectric that consists of fluid-

impregnated paper or paper/synthetic laminated tape or varnished cloth (laminated 

joints), or to connect an extruded dielectric cable to a laminated dielectric cable (transition 

joints) [33]. 

2.6 Failures and Aging Mechanisms in cable accessories  

The power network distributors aim to supply electricity as safely and reliably as possible. 

Nevertheless failures in the power distribution networks are still very common 

[28][35][36][37]. The most common location of cable failures are at the cable joints or 

terminations [3][4][5]. The biggest percentage of the failures in North America according 
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with NEETRAC, as shown in Figure 3, is due to the cable accessories (joints and 

terminations) failures [4]. 

The different types of cable joint defects which can occur in the different types of joint 

constructions are shown in Figure 4. A list of aging mechanisms in cable joints and 

terminations is shown in Tables 2 and 3. 

 

 

 

 

 

 

 

                      

The temperature of the soil around the cable changes seasonally due to the weather 

conditions such as rain, ambient temperature, solar radiation and etc. An increase of the 

soil temperature creates a kind of hot-spot around the joint consequently increasing the 

temperature inside the joint. As a result a combination of that hot-spot with the rise of the 

Fig. 3 Percentages of failures for cables, terminations and joints in North America MV (15 kV-35 kV) 

cable system [4]. 

 

Fig. 4 Typical Cable Joint Defects [3]. 
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soil temperature can lead to the breakdown of the joint insulation and consequent failure 

[38]. 

 

 

 

       

 

 

 

 

  

 

 

Table 3 Aging mechanism for PILC cable joints  [3] 

Table 2 Aging mechanism for extruded cable joints and terminations  [3] 
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High current loads and particularly high cyclic loads are considered to be another cause 

for a larger number of failures in underground cable joints. High loads cause fatigue to 

cable joints in many ways but the main factor leading to failure is the mechanical stress 

in the joint produced by cable conductor under high loads. The investigation performed 

by Dutch power network owners together with KEMA to identify the cause of the 

breakdown in their power networks confirmed that considerable number of failures was 

related to causes of mechanical nature in networks operated at high cycling current loads 

[39][40].  

High current cycling loads cause severe extension and contraction stresses to the 

connector of the conductors. If the connector used is not fully appropriate for the type of 

conductor, the connection between conductor and connector will loosen. The high 

resistance of the joint and high currents produced a significant amount of heat [41]. This 

as a result leads to the creation of voids in insulation around the joint which would weaken 

the insulation material and lead to failure of the joint [39].   

A considerably large amount of failures in cable joints are related to mechanical forces 

acting on the joints due to the cyclic heating effects. These cyclic heating effects are due 

to the cyclic current loads which cause mechanical forces on the cable conductor as they 

expand when heated. This longitudinal force can be calculated by: 

𝐹 = 𝐸𝐴𝛼𝛥𝜃     (1) 

where E is the Young’s modulus [Nm-2] of the conductor material, A the conductor cross 

section [m2], α the thermal expansion coefficient [̊C-1] and Δθ the temperature increase 

with respect to the  ambient temperature of the cable [42]. 

The failures of accessories are most commonly caused by human imperfection factors. A 

summary of some of the failure is presented in Table 4. 

Failure causes Visual Indication 

Improper stress grading 
Failure spot near the insulation screen/shield 

terminus 

Insufficient clearance between shield terminus and 

conductors 

Failure of the insulation along the surface between 

screen terminus and conductor lug 

Semi conducting layer missing over stress control 

cone ,partly or completely 
Failure of insulation 

Cut in insulation at the end of semi conducting 

layer 

Direct puncture of cable insulation in the region 

around termination screen 
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Improper jointing of conductor 
Overheating of joint insulation around the 

conductor joint 

Missing metallic shield or floating shield Degradation and failure of joint insulation 

Improper protective covering of termination 
Erosion and tracking at the surface of insulation 

and termination 

Improper sealing of joint Deterioration of joint due to ingress of moisture 

Presence of knife cuts and traces of semi 

conducting material on the surface of the cable 

insulation 

Rapid deterioration and failure of insulation 

Overloading of the cable accessory 
Change in colour, softening or charring of 

insulation over conductor joint and near the lug. 

 

2.6.1 Diagnostic and Condition monitoring methods for cable joints and 

terminations  

The possibility of diagnosing the health of electrical components is of great demand for 

Network Operators. In the case of underground electrical components there always exists 

an unknown state of degradation and therefore it is of a vital importance for Network 

Operators to have an indication of asset health [12]. 

A continuous monitoring system of an optical gas sensor is used in Japan to detect 

concentration of the gas dissolved in the oil up to 5ppm (parts per million). In order to 

extract the gas dissolved in the oil, a gas cell with a function of separating dissolved gas 

from the oil was used and installed in the oil ports of an oil-filled cable joint.  It was 

proven that at an early stage of degradation of an oil-filled cable, small electrical 

discharges occur which generate gases such as hydrogen (H2), acetylene (C2H2), ethylene 

(C2H4), methane (CH4) and ethane (C2H6) [44]. Further discharges cause carbonization of 

the insulation paper generating C2H2. An investigation was made for 75 joints dismantled 

after faults and it had been verified that C2H2 and CH4 are gases which can provide an 

early stage of deterioration by continuously monitoring them [45]. The above approach 

is costly due to the very expensive equipment needed to operate, difficult to implement 

and cannot be applied in a large scale.   

Recently developed diagnostic and condition monitoring systems are based on GPRS data 

transmission. Meng and Hu [46], developed a monitoring device to monitor real-time the 

temperature of a cable joint via a digital temperature sensor. When the temperature 

exceeds a pre-set limit value an alarm signal is sent automatically via GPRS 

Table 4 Failure causes and visual indication for cable accessories [43]. 
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communication module to the control centre. Furthermore, a judge system is running to 

check the state of the cable joint through the historical temperature data analysis of the 

joint, in order to prevent the occurrence of an accident. The device is self-powered 

through a super capacitor which takes advantage of the principle of electromagnetic 

induction from the AC voltage of the high voltage cable. Chang et al. [47] used the same 

arrangement but they combined the GPRS communication protocol with ZigBee in order 

to achieve transmission of data for longer distances up to 400 m. Their monitoring unit is 

powered with a set of electronic components connected to a Current Transformer which 

is connected with the underground cable. Mitsubishi Cable Industries created two systems 

for online condition monitoring to find hot-spots in underground joints. The first one 

measures the temperature of the joint using a series of thermocouples (TCs) along the 

cable joint connected with a PC and the second one uses an optical fibre sensor connected 

as well to a PC [48]. Diagnostic software to monitor the health of the underground cable 

joint was developed in the Hydro Quebec Research Institute. Many factors such as critical 

joint temperature, current load, ambient temperature, cable size, type of cable joint and 

historical data previously collected are taken into the account to perform the diagnostic 

of the cable joint [9]. The first two systems are very complex to implement, they have 

high installation costs and specific operational knowledge is required. Furthermore both 

systems can only be applied inside transmission underground tunnels. The judgement 

alarm system might give wrong alerts as it is only taking into account local temperature 

fluctuations by the cable joint without considering loading demands and weather 

conditions. The judgement temperature is related to an overheating faulty temperature 

limit which does not avoid the failure from happening. On the other hand the technique 

of sending data via GPRS seems to be a useful approach of capturing data from remote 

locations. Despite the fact that the systems are able to monitor the health of an 

underground joint they are unable to predict the upcoming failures which are of a great 

importance for a reliable power network system. The idea of monitoring the temperature 

of a cable joint through a series of thermocouples (TCs) is cost effective and relatively 

reliable technique which can be used for large scale implementation. 

Partial discharge (PD) monitoring units for cable joints have been developed in recent 

years. Continuous online PD monitoring systems are able to obtain long-term data relating 

to gradual deterioration under normal operational stress, from which the characteristics 

of the PD signal can be extracted to increase the possibility of detecting defect prior to 
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insulation failure [6].  Hydro-Quebec has developed a portable PD analyser for detection, 

localization and interpretation of PD in cable accessories such as cable joints. The device 

is a narrow band AM receiver with a small capacitive probe which through an automated 

software can detect, discriminated and localize PD among RF signals. The device 

localizes different defective joints in the Montreal underground network and can carry 

out remote on-line detection, from a range of 100 metres to a few kilometres, accessories 

with abnormal PD activity [8]. KEMA has created an on-line tool measuring partial 

discharges in cables and cable joints. The system is capable to find the origin(s) of PDs 

from a complete cable connection by using only two inductive sensors, each at one cable 

termination. The installation of the sensors can be performed while a cable is in service. 

Data is monitored continuously and collected results are transferred and stored in a 

centralized Control Centre where results are analysed and interpreted. Results from there 

are made visible on a secured web-site for the network owners. Field results collected 

from 100 installed systems detected weak spots by the cable joints which made it possible 

to replace them before a breakdown occurred [7]. The above systems, based on the PD 

monitoring, consider only one of many possible degradation mechanisms. Furthermore 

monitoring the reliability of a whole power network using the above systems is high in 

cost and difficult to maintain. A huge amount of data is captured and has to be analysed 

making this technique very time consuming. Nevertheless it might be of a great use if it 

is possible to reduce the amount of captured data by enabling PD monitoring units when 

an abnormal temperature on the cable is spotted.  

Over the past years there have been a number of failures reported within cable 

terminations. The biggest number of failures are reported to occur near the termination 

sealing ends where in some cases the monitored temperatures increase by up to 10 °C  

[10]. Factors such as poor workmanship [49], high frequency stresses caused by an 

increased usage of power electronic devices [50][51] and circulating currents on the cable 

support structure [52] cause the temperature increase by the termination sealing ends. A 

thermal infrared camera was used for diagnostic purposes in order to identify exactly 

where the point of failure was [10] on a cable termination. Nevertheless the failure of the 

cable termination could not be avoided as the failure was detected too late. According to 

Electric Power Research Institute (EPRI) most cable problems are associated with 

increased heat generation. This heat generation will lead to the creation of local hot-spots. 

Hence EPRI suggests that infrared thermography can be used periodically to inspect the 
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health state of power cable accessories such as joints and terminations [11]. Hydro-

Quebec has developed a thermal imaging program based on an infrared imaging camera 

and the software mentioned in [9]  for diagnostics of the condition of underground cable 

joints and terminations in manholes. They succeeded in reducing the number of failures 

to cable accessories, such as joints and terminations, by 20 %. That proves that monitoring 

the accessory surface temperature can give vital information for the state and condition 

of the accessories. Due to its inspection maintenance nature this technique is repeated 

every year on accessories where the surface temperature is close to a pre-defined normal 

reference temperature of the investigated accessory, every six months when their 

temperature is slightly abnormal and when seen as abnormal the decision is to replace the 

accessories straight away. Over the that time period of 6-12 months there is no monitoring 

of the accessories which might be a period of time where a failure can occur [53][54] . 

On the other hand thermal cameras require skilful and experienced operators who have 

the knowledge and understanding to distinguish a possible hot-spot as the readings might 

be affected by weather factors (e.g. air ambient temperature, wind speed), solar 

reflections, solar radiation and emittance variation [55]. Furthermore the above 

mentioned diagnostic technique is not reliable enough to identify and prevent a possible 

failure prior to its occurrence due to the periodical inspection survey that is usually 

performed. Hence the need of a predictive method that is able to identify degradation at 

the early stage of the formation is highly relevant. 

The use of prognostic capabilities enables the determination and prediction of future 

health condition of assets [56] [57] while diagnostic techniques can just identify the final 

stage of an upcoming failure [58] sometimes without leaving enough time to schedule  

maintenance to prevent faults. Hence implementation of predictive maintenance 

techniques [59] is vital due to the increasing complexity of power network systems [60]. 

Different approaches can be used for the implementation of data driven prognostic 

systems [61]. The most commonly used prognostic technique is predicting the estimated 

remaining life time of an asset prior to the occurrence of the failure [58] [62][63].  

Although the technique of remaining useful life (RUL) looks appealing, in reality it can 

give just an approximate insight on the condition of the assets as it lacks accuracy and 

most importantly the confidence to determine the initial stages of degradation activity and 

thus might not give enough time for operator to take the necessary precautions. RUL 

prediction systems assume that the deterioration happens at a constant rate which in 
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reality cannot be valid as sudden changes in real field can accelerate aging drastically and 

therefore might significantly reduce the estimated remaining useful life of the asset.  

It has been found in the published literature that there are a number of approaches and 

techniques for diagnostic and condition monitoring of cable joints and terminations but 

there is a lack of reliable prognostic approaches for these accessories. 

2.7 Summary  

It has been found that factors such as electrical, mechanical, thermal, environmental and 

combinations of them are the main reasons for underground cable aging. 

Thermomechanical aging is a major factor affecting the lifetime of the underground 

cables. Daily load cycles cause cyclical heating and cooling of the cable which cause 

movement and hence bending of the underground cable which leads to damage and 

failure, particularly at the cable joints and terminations. In some cases it may cause 

formation of microvoids which respectively under wet or dry environmental conditions 

will result in water or electric trees. High ambient temperatures can cause drying out and 

movement of the soil and consequent mechanical damage to the cable. During the high 

cable loading demands high temperatures might cause cable overheating and thus 

breakdown of insulation which will lead to failure of the cable and cable joints or 

terminations.  

Joints and terminations of the cable are installed manually and very often under poor 

weather conditions. Thus their health and lifetime maybe directly related to human 

factors. Such factors include poor workmanship, lack of appropriate stress control or 

inappropriate fitting of the accessories under constant exposure to high loads and thus 

thermomechanical stresses will accelerate the aging and reduce lifetime. 

Different diagnostic and condition monitoring techniques for cable joints and 

terminations have been developed over the last decade. Some of them are based on optical 

gas sensors, temperature sensing with GPRS data transmission, partial discharge 

diagnostics and condition monitoring units and finally temperature monitoring techniques 

for cable joints and terminations.  

It can be concluded that the extension of condition monitoring and diagnostics of cable 

joints and terminations to prognostic indicators is of importance as these accessories 
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appear to be the weakest point in underground cable systems. By observing the health and 

operational condition of underground joints and terminations, improved reliability of 

power networks can be achieved as well as reduction in costly repairs. 

An increased temperature of the underground cables has proved to be the most common 

aging effect initiating different aging mechanisms such as electrical, thermomechanical, 

environmental factors or combinations of them. Therefore by continuously monitoring 

the temperature of the investigated cable accessories, such as cable joints and terminations 

and by developing thermal prognostic techniques it may be possible to avoid catastrophic 

failures by taking actions prior to their incidence.  

Chapter 3 gives a better understanding of how the magnitude of the potential fault within 

the cable might reflect on the surface temperature of it as well as it investigates the 

possibility of developing the thermal prognostic models using machine learning 

regression techniques such as Support Vector Regression (SVR), Artificial Neural 

Network (ANN), Multiple Linear Regression (MLR) and Gradient Boosting (Mboost).  

Each of the above mentioned algorithms is used to predict the likely surface temperature 

of the cable in the air-filled trench and their performance is compared in order to choose 

the one with the best performance to continue with the further development of the models.  
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Chapter 3  Design of a Thermal Prognostic model 

This Chapter investigates the feasibility of identifying abnormal temperature changes on 

the cable surface using a thermal cable model created in COMSOL. Four machine 

learning regression techniques based on Support Vector Regression (SVR), Artificial 

Neural Network (ANN), Multiple Linear Regression (MLR) and Gradient Boosting 

(Mboost) are introduced and discussed. Benchmarking between them based on their 

accuracy to predict the cable temperature in an air-filled trench was performed. The SVR 

showed better performance and thus was chosen to be further investigated for the 

development of the thermal prognostic models described in Chapter 4, 5 and 6. Hence a 

more in depth theoretical background of the SVR and the development techniques of it 

are discussed. 

3.1 Thermal cable model in COMSOL 

As it has been mentioned before a great number of faults in cable systems are related to 

heat generation. EPRI suggests four temperature stages of concern in their survey. The 

first one is the advisory stage where the rise of the temperature is between 0.5°C and  8°C 

above a reference temperature, the second stage is the intermediate stage where the 

temperature increase is between 9°C and 28°C, the third is the serious stage where 

temperature is between 29°C and 56 °C and the last stage is the critical stage where the 

temperature is above 56°C above the reference temperature [11]. The reference 

temperature is considered to be the normal operating temperature of the investigated cable 

system or accessory. 

In order to investigate in more detail the magnitude of an internal fault inside a cable 

related to the change of surface temperature of a cable, a simple thermal model was 

developed to simulate temperature rise as a function of thermal power supplied by a fault. 

A 5m long cable was designed in COMSOL based on a cable manufactured datasheet 

which all the details can be found in Appendix 1. An internal hot-spot was introduced in 

the middle of the cable under constant loading condition. Four different hot-spot profiles 

of 2.5W, 5W, 7.5W and 10W where used. Figure 5 shows the surface temperature 

distribution on the cable with the introduction of hot-spots. 
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With reference to Figure 5, a significant rise of temperature of the cable surface can been 

seen a several meters away from the source, if the source is large enough. An increase of 

temperature at 0.25 m away from the location of the fault for the 2.5W, 5W 7.5W and 10 

W was respectively 1.5, 3, 4.5 and 6 degrees Celsius. This increase corresponds to 0.60 ̊C 

per W. The same temperature increase was recorded for a constant and cyclic loading. An 

important factor to investigate further was the time needed for the cable surface located 

0.25 m away from the centre of the cable to increase by 1̊ C. 

 

 

The Figure 6 shows the relationship between the temperature increase and the time. 
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Fig. 5 Cable temperature distribution under the influence of the hot-spots. 

Fig. 6 Relation between temperature increase and time at 0.25 m away from the 

center of the cable. 
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It can been seen in Figure 6 that for a 2.5 W hot-spot around 30 minutes is needed to see 

an increase of the surface temperature by 1̊ C. As the power of the hot-spot increases the 

time needed for the cable surface temperature to increase by 1̊ C is reduced. Hence a 30 

minutes prediction horizon is an ideal time gap that can be used by the thermal prognostic 

models to identify an increase of temperature by 1̊ C. Furthermore the increase of 1̊ C 

was chosen as a measure of comparison as most of the existing monitoring units have a 

minimum accuracy ± 1̊ C [64][65][66]. Therefore if it is possible to identify abnormal 

temperature behaviour on the joint surface or cable terminations it is likely to be 

indicative of a fault. 

3.2 Machine Learning Algorithms: Artificial Neural Network 

(ANN), Support Vector Regression (SVR), Multiple linear 

regression (MLR) and Gradient Bosting (Mboost) 

Machine Learning is a branch of artificial intelligence which is based on the construction 

and study of systems that are able to learn from training data and produce a model which 

is able to determine and find a solution for an underlined problem. In this section machine 

learning algorithms are introduced and briefly discussed.  

Linear regression attempts to model the relationship between a scalar dependent variable 

y and one or more independent variables x. In the case where more than two  independent 

variables are used to describe the relationship between input data and output data then the 

model is called multiple linear regression (MLR) [67]. Linear regression is one of the 

oldest types of regression [68] and due to its simplicity has been used in a variety of 

prediction problems such as in water quality [69], mass of solid waste generation [70], 

estimation of time-frequency electrophysiological responses in neuroscience [71], 

prediction of swell potential of clayey soils [72] in geological sciences as well as in 

management for capital structures [73]. The MLR performs well in situations where there 

is a clear relation between input data and output data as it is shown in the case of oilfield 

output forecasting [74]. In the cases where there is a more complex and nonlinear 

relationship between input and output data ANN outperforms MLR [70] [72].       

The concept of the Gradient Boosting is to combine multiple models alongside with 

weights into a single prediction model [75] [76] [77] [78]. Two Gradient Boosting 

machine algorithms were ranked in the top 5 algorithms in a GEFCom load forecasting 
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competition in 2012 [79] [80]. They were also successfully used by the pharmaceutical 

industry  to predict the biological activity of molecules [81], in transportation research to 

predict freeway travel time [82] as well as in finance to predict insurance losses [83]. 

Gradient boosting machines can affectively solve a variety of non-linear problems but 

have several drawbacks such as memory and time consumption as well as being difficult 

to design [84]. 

An ANN is a widely used data modelling tool that simulates the way how the neurons 

work in the human brain.  The method of non-linear mapping which transforms data from 

RI to RK, where I and K are the dimensions of the input and output space, is used to 

express complex functions [85]. An ANN is based on interconnected nodes which are 

simply processing elements. Weights are connected with each of the inputs to a given 

neuron. This connection controls the strength of the input data. By manipulating these 

weights an ANN is able to create a model where the data is presented as patterns of input-

output pairs [86].  

The ε-Support Vector Regression aims to determine a function that has a maximum ε 

deviation from the targets output values and at the same time is not complex. As long as 

the errors do not exceed the deviation parameter ε, they are not taken into account but 

errors larger than ε are penalized [87].  

Artificial Neural Networks aim to minimize the empirical risk error over a given set of 

data and try to fit the data as closely as possible. This results in a solution function which 

works very well on a known training data but poorly on unknown data. This is known as 

overfitting.  In the SVR the issue of overfitting is less common because the algorithm is 

trying to minimize both the empirical risk error and the generalization error (model 

complexity) [88]. The less complex model results in better fitting of unknown data. 

Another advantage of the SVR algorithm over ANNs is that it always converges to a 

solution. ANN can work better with massively large data sets while SVR is limited by 

speed and memory constraints [89]. 

The Support Vector Regression algorithm has shown better performance and 

generalization ability in a variety of problem solving such as short-term temperature 

prediction [89], daily maximum temperature prediction [90], protein structure prediction 

in bioinformatics [91], financial forecasting [92], structural engineering [93] than ANN.  
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3.3 Benchmarking of Predictive Techniques 

Four different machine learning algorithms were used and compared to identify which 

one has a better performance. A variety of regression techniques based on Support Vector 

Regression (SVR), Artificial Neural Network (ANN), Multiple Linear Regression (MLR) 

and Gradient Boosting (Mboost) have been used to determine the most appropriate one 

and the implementation stages are shown in Appendix 2. Figure 7 shows the temperature 

prediction using the four different algorithms based on data collected from an air filled 

trench. The first 8 days were used for training and the last 4 days for testing as it is a 

common practice to use 2/3  of the dataset for training and 1/3 for testing [94]. Figure 8 
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shows the temperature prediction error graph where the difference between the real-time 

measured temperature and the model output prediction temperature for each of the 4 

benchmarked algorithms is presented. The performance of the algorithms is summarized 

in Table 5, by calculating the mean absolute percentage error (MAPE) as defined by [95]: 

MAPE =
100

n
 ∑ |

ya (i) − yp(i)

ya (i)
|

n

i=1

                   (2) 

where 𝑦𝑎 the real value of TCs temperature,  𝑦𝑝  is the predicted value of TCs temperature 

and 𝑛 is the total number of samples. 

 

 

 

 

From the obtained results it can been seen that SVR showed the best performance. The 

MAPE for SVR was 0.66% while for ANN, which showed the worst performance, it was 

1.20%. MLR and Mboost showed satisfactory performance as well but not as good as the 

SVR. It can be clearly seen from Figure 8 that ANN produces an overestimated model 

compared to the other three algorithms. Furthermore ANN training is always a time 

consuming process because of the algorithm’s nature. Every time the ANN is trained the 

weights are initialized randomly which each time results in a different prediction output 

model. In order to achieve the best prediction output, the ANN was trained 10 times and 

the model with the lowest MAPE error was selected. Hence due to its better performance, 

less training time is needed and the simplicity of its use, it was decided to continue further 

investigation and development of the prediction models using the SVR algorithm. SVR 

is able to avoid overfitting problems, creates less complex models that always converge 

to a solution. The test was performed in order to choose the machine learning algorithm 

to continue with the further development of thermal prognostic model techniques which 

aim to identify potential hot-spots on the cable surface in a variety of environments such 

as soil and air as described in Chapters 4 and 5. A benchmarking between the algorithms 

is performed as well in Chapter 5 to verify the performance of SVR in the soil 

Algorithms Error (MAPE %) Parameters 

SVR 0.66 C = 16384   γ = 9.7656e-4 

MLR 0.70  

Mboost 0.73 Iteration = 700 nu = 0.15 

ANN 1.20 Layers = 9 

Table 5 Benchmarking results for air filled trench.  
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environment as well as to validate the choice of SVR for the field experiments in Cyprus 

described in Chapter 6.   

3.4 Support Vector Regression and SVR Development  

Support Vector Regression (SVR) is a machine learning algorithm which uses a non-

linear mapping to transform data into a high dimensional feature space where linear 

regression is performed [88]. SVR has the advantage that not only does it fit the training 

data in order to find a solution but also keeps the highest possible degree of generality 

when new unseen data is introduced [89]. 

The ε-SVR is used to predict the values by solving the following optimization problem 

[87]: 

minimize   
1

2
 ‖𝑤‖2 +  𝐶 ∑(𝜉𝑖 +  𝜉𝑖

∗

𝑙

𝑖=1

 )  

subject to    {

   𝑦𝑖 − 𝑤𝑇𝜑(𝑥𝑖) − 𝑏   ≤   𝜀 + 𝜉𝑖 

   𝑤𝑇𝜑(𝑥𝑖) − 𝑦𝑖 + 𝑏   ≤   𝜀 + 𝜉𝑖
∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

 

where  𝑥𝑖   is a feature vector of the input space with dimension N,  𝑦𝑖 is the output value 

to be estimated, b is a parameter of bias, w is a weight vector which controls the 

smoothness of the model, φ(x) is a function used to map training samples 𝑥𝑖 to a higher 

dimensional feature space, penalty factor C controls the trade-off between complexity of 

the function and the frequency with which errors are allowed and  𝜉𝑖  and 𝜉𝑖
∗ are slack 

variables which compute the error for overestimating and underestimating the true output 

value  𝑦𝑖. The parameter ε determines the maximum deviation from the target output 

value 𝑦𝑖. Figure 9 shows the situation graphically. This above optimization problem can 

be transformed into the dual problem, as mentioned in [96] and its solution is given by: 

𝑚𝑎𝑥𝛼,𝛼∗ [−
1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝐾(𝑥𝑖, 𝑥𝑗)

𝑙

𝑖,𝑗=1

− 𝜀 ∑(𝛼𝑖 + 𝛼𝑖
∗)

𝑙

𝑖=1

+ ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=1

]  

subject to    {
∑(𝛼𝑖 − 𝛼𝑖

∗)

𝑛

𝑖=1

= 0 

  0 ≤ 𝛼𝑖 , 𝛼𝑖
∗ ≤ 𝐶, 𝑖 = 1, … , 𝑛 

 

(3) 

(4) 
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Having estimated α, α* and b, using a suitable quadratic programming algorithm, the 

SVR based regression function solution is given by: 

               𝑓(𝑥) = ∑(𝛼𝑖 −

𝑁𝑠𝑣

𝑖=1

𝛼𝑖
∗)𝐾(𝑥𝑖, 𝑥)   

where 𝑁𝑠𝑣 denotes the number of the Support vectors. The kernel function 𝐾(𝑥𝑖, 𝑥) is 

used to avoid the complicated calculations of the inner products of the mapped inputs in 

the feature space φ(x). The bias parameter b is calculated automatically and 

accommodated within the Kernel [97] [98]. 

 

 

 

 

 

 

 

 

The vector w is described in terms of the Lagrange multipliers  𝛼𝑖 and 𝛼𝑖
∗. Only some of 

the coefficients (𝑎𝑖 − 𝛼𝑖
∗) are non-zero and the corresponding input vectors 𝑥𝑖 are called 

support vectors (SVs). The SVs can be thought of as the most informative data points that 

compress the information content of the training set. The coefficients α and α* can be 

seen as forces pushing and pulling the regression estimate  𝑓(𝑥) towards the 

measurements  𝑦𝑖. 

 Lagrange multipliers 𝛼𝑖 and 𝛼𝑖
∗ will be non-zero values for training points “above” and 

“below” an ε-tube. Because no training data can be on both sides of the tube, either  𝛼𝑖  

or 𝛼𝑖
∗ will be non-zero. For data points inside the tube, both multipliers will be equal to 

zero.  

Fig. 9 The parameters for the SVR algorithm 

𝑓(𝑥) = 𝑤𝑇𝜑(𝑥𝑖)

+ 𝑏 
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-
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+ε    -ε    0 
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∑ 𝜆𝑖 

𝑁𝑠𝑣

𝑖=1

𝐾(𝑥𝑖 , 𝑥)    

𝐾(𝑥1, 𝑥) 𝐾(𝑥2, 𝑥) 𝐾(𝑥𝑖, 𝑥) … 
 𝑥1, 𝑥2 … 𝑥𝑖   

𝜆1 𝜆2 𝜆𝜄 
𝜆𝜄 = (𝑎𝑖 − 𝛼𝑖

∗) 

            𝑊𝑒𝑖𝑔ℎ𝑡𝑠: 

𝑆𝑉𝑠: 

(5) 
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The final answer of the 𝑓(𝑥) as shown in Equation 5 is as an approximation function of 

N sum of Gaussian RBF functions which have as their center the Support Vectors. The 

parameter γ controls the width of the Gaussian RBF function while the parameter C which 

is related with the Lagrange multipliers α and α* controls the amplitude of it.  

3.4.1 Kernel Selection   

The kernel function is used to allow operation in the input space instead of the potentially 

high dimensional feature space. Hence as was mentioned before the inner product does 

not need to be computed in the feature space. There are different types of kernel functions 

such as Gaussian Radial Basis Function, Exponential Radial Basis Function, Multi-Layer 

Perceptron, Fourier Series, Splines and etc. There is no a straightforward way to select a 

kernel function yet, but the most effective for general use has been found to be the 

Gaussian Radial Basis [99]. Hence the Gaussian - Radial Basis Function (RBF) is used 

in this research which is defined as:  

𝐾(𝑥𝑖, 𝑥) = 𝑒(−𝛾 ‖(𝑥𝑖−𝑥‖2 )        γ > 0              (6) 

where parameter γ controls the width of the Gaussian-RBF kernel function of the model. 

3.4.2 Data Preparation  

Input data has to be scaled before being imported in the SVR in order to avoid features 

with larger numeric values being dominant to those with smaller values. Furthermore 

scaling makes the computation easier during the application of the kernel function. In this 

model the data was scaled from [0,1] as follows:  

                    𝑋𝑠𝑐𝑎𝑙𝑒 =
𝑋𝑖 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
                                 (7) 

where 𝑋𝑖 is the original data, 𝑋𝑠𝑐𝑎𝑙𝑒 the scaled data, 𝑋𝑚𝑎𝑥 and 𝑋𝑚𝑖𝑛 are the maximum and 

minimum values of  𝑋𝑖. 

3.4.3 Grid-Search and Cross-Validation  

The penalty factor C and the kernel parameter γ have to be decided by the user of the 

LIBSVM [100] MATLAB toolbox in order for the regression model to be developed. The 
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aim is to identify a good pair of C and γ so that the classifier can accurately predict 

unknown data. To identify the most appropriate C and γ two algorithms are combined 

together, Cross-Validation and Grid-Search. The training data are split into K segments 

with equal size in K-fold cross-validation and then each segment is predicted by the 

remaining K-1 segments sequentially. For each of the iterations of the Grid-Search, a 

combination of C and γ values are tested and the one with minimum Cross-Validation 

error is selected. C and γ pairs are change based on the grid-search algorithm which 

suggest exponentially growing sequence for C (2-5, 2-3... 215) and γ (   2- 15, 2-13... 25). 

3.4.4 Choosing SVR parameter C, γ and ε  

The user has to select in ε-SVR the tuneable parameters C, γ and ε, which is not a 

straightforward procedure as all of them play a significant role to achieve a good 

generalization performance. 

The parameter C as was mentioned earlier, controls the trade-off between complexity of 

the function and the frequency with which errors are allowed. From Equation 3 it can be 

seen that if C has a large value more emphasis is placed on the empirical error  

∑ (𝜉𝑖 +  𝜉𝑖
∗𝑙

𝑖=1  ) while if C is small, more emphasis is placed to the generalization 

error 
1

2
 ‖𝑤‖2 . That is why parameter C has to be tuned in such a way that it will offer a 

balance to the model. 

The parameter γ controls the width of the Gaussian-RBF kernel. When γ is small, the 

Gaussian function is wide and hence the parameter C can has higher values. On the other 

hand when γ is large, the Gaussian function is narrow and thus C cannot have very large 

values. The combination of C and γ controls the input range of the training data and 

therefore these two values are considered to be best tuned together as mentioned in 

Section 3.4.3. 

The parameter ε controls the width of the ε-insensitive zone of the loss function which is 

used to fit the training data. It depends on the deviation of the target output value in the 

training set. A large value of ε will result in fewer Support Vectors and therefore to a less 

complex- under fitting regression model.  On the other hand small values of ε will increase 

the number of Support Vectors resulting in a complex- over fitting regression model. As 

ε is associated with the deviation of the output value from the training data, choosing ε to 
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have certain accuracy will result in improved accuracy results. The temperature data 

collected in the experiments has a precision of two decimal places hence the value of 

ε=0.01 has been selected. 

3.5 Summary  

From the thermal simulation model created in COMSOL it can be concluded that internal 

faults in the cable may generate heat and increase the cable surface temperature several 

meters away from the location of the fault, if the fault is large enough. It has been found 

using the simulation model that for the 2.5 W internal fault, smallest power fault, the 

increase of the cable temperature by 1̊ C can be detected approximately 30 minutes after 

the occurrence of the fault. Hence a 30 minutes prediction horizon is used for the 

development of the thermal prognostic models described in Chapters 4, 5 and 6.  

In terms of prediction of future behaviour, the SVR was selected to be investigated rather 

than MLR, Mboost and ANN as it shows better performance during the temperature 

prediction for a cable in an air filled trench. Furthermore SVR is able to avoid overfitting 

problems, develop less complex models which are always converged to a solution. An in-

depth analysis of SVR was performed and the SVR development steps were investigated 

in more detail.  

The developed methodology was later implemented during the constant and cyclic load 

experiments in air-filled trench and the on 33 kV closed loop cable termination to 

establish initial thermal prognostic models as well as to verify viability of the chosen 

methods for monitoring of cable accessories that are likely to be affected by the hot-spot 

activity through a series of sensitivity tests as it is further described in Chapter 4. 
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Chapter 4  Implementation of Thermal Prognostic 

Models for the Air Trench and 33 kV Cable 

Termination in Air 

Two different experiments were used to investigate the feasibility of different approaches 

for monitoring underground cables, in the areas where hot-spots are more common to 

occur, such as joints and terminations. The first experiment was performed in an air filled 

trench while the second was performed in a 33 kV closed loop cable termination in air. 

In both experiments the operation of power cables were simulated using a programmable 

control system able to simulate a wide range of cable loading. The surface temperature of 

the cables were continuously monitored by a series of TCs as well as the weather 

conditions such as solar radiation, wind speed and air temperature.  It is hypothesised that 

an increase of the local cable temperature is indicative of accelerated aging of the cable 

insulation due to thermomechanical, electrical and environmental factors.  

Thermal prognostic models have been established using a Support Vector Regression 

(SVR) algorithm which predicts the likely temperatures along the cables 30 minutes into 

the future, according to weather conditions and known loading. A series of different 

sensitivity tests as well as the pre-processing data analysis for the input feature data were 

performed in order to investigate which input parameters are crucial for the development 

of a generalized and robust thermal prognostic model. Anomalies of temperature 

measurements along the cable compared to predicted temperatures can indicate possible 

degradation activity in the cable.   

4.1 Experimental Design and Development for Air filled Trench 

A model surface trough was used to develop a thermal prognostic model which aims to 

predict the likely temperature impact on a cable at burial depth according to weather 

conditions and known loading. Initial experiments were performed in an air filled trench 

to investigate the relationship between weather conditions and the constant power 

demand as well as to investigate if the standard T-type thermocouples (TCs) are sensitive 

enough to detect the existence of the increased cable surface temperature produced by a 

hot-spot.  
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4.1.1 Trench Instrumentation  

The cable trough experiment consisted of two 3.95 meter trenches one filled with small 

grain sharp sand and the second is unfilled. Simulated cables are constructed by a heater 

tape wrapped around a length of aluminum pipe. The tape has a nominal power of 400 

W, thus for a pipe of 3.95 meters the maximum heat loss is approximately 100 W per 

meter. The surface temperature of the cable is continuously monitored using 22 TCs 

placed on the cables at various positions within the unfilled trench. The abovementioned 

trough have been constructed and used in a previous research project for the investigation 

of cable ratings of underground cables in unfilled and soil filled trenches hence more 

details can be found in [101].     

 Figure 10 shows the position of the TCs layout in the unfilled though. All the TCs are 

connected to the Campbell Scientific datalogger CR1000 via a 32 channel multiplexer. 

The datalogger record the temperatures every 1 minute giving an average value every 5 

minutes.    

 

 

 
Fig. 10 Layout of TCs in the unfilled surface trough. 
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A weather station installed on the roof of Tony Davies High Voltage Laboratory is used 

to collect measurements of weather conditions. Table 6 below shows the weather 

condition factors that are monitored by the Campbell Scientific datalogger CR10. 

Factors Unit Measurement Interval Averaging Interval 

Air Temperature ̊ C 1 minute 5 minutes 

Solar Radiation Wm-2 20 seconds 5 minutes 

Wind Speed ms-1 20 seconds 5 minutes 

 

 

4.1.2 Control System  

A computer program is used to operate various pre-set load/time profile patterns to control 

the heat output to the simulated cables shown in Figure 11. The controller sets the voltage 

supply to the heater tape whilst reading the current and voltage flowing through the tape 

as shown in Appendix 3. A variable transformer (Variac) is connected to each simulated 

3-phase cable and a stepper motor is connected to the Variac in order to control its output 

voltage. The control system is based on the Data Acquisition system of National 

Instrument (NI) USB-6008. The NI USB-6008 provides connection to eight analog input 

(AI) channels, two analog output (AO) channels, 12 digital input/output (DIO) channels, 

and a 32-bit counter with a Full-Speed USB interface. Current transducers are used to 

convert the  real time current in the cable (0-2 A) into a voltage output (0-10 V DC) and 

voltage transducers to convert the output voltage from the Variacs ( 0- 240 V AC) into a 

lower voltage (0-10 V DC) . The output signals from both transducers are read real-time 

by the NI USB-6008 device which collaborates with a Control Algorithm written in 

LabVIEW to send the appropriate digital signals to the stepper motors and adjust the 

corresponding power profile demands. The schematic diagrams for the stepper motors, 

voltage and current transducers in relation with the NI USB-6008 are shown in Appendix 

3.  

 

Table 6 Recordings of the Weather Data 
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As the heater tapes are essentially resistances, the actual power is calculated in real-time 

by multiplying the readings from the voltage transducer and current transducer values. 

According with the power demand value the NI USB-6008 sends a digital signal to the 

stepper motor in order to rotate it clockwise or anticlockwise to increase or decrease the 

power output from the corresponding Variac and adjust the demanding power. A 

schematic of the controller system and the program flowchart is shown in Figures 12 and 

13. 

 

 

Fig. 11 Cyclic power demand profile 

Fig. 12 Simulated Cable power output control system 
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4.2 Sensitivity tests and Pre-Processing 

An analytical approach was made during the implementation of the thermal prognostic 

model for the air filled trench in order to investigate different parameters that have to be 

taken into the account prior to the development of a robust and generalized model. The 

performed investigation includes the optimal time needed to average the input data, which 

weather parameters are needed, the amount of input data needed, how many hours ahead 

a model can predict and finally whether it is possible to monitor specific areas of an 

underground cable, where hot-spots are more likely to occur, such as joints and 

terminations. 

Weather data and cable surface temperature data were taken from 7th - 28th of August 

2013. The weather data used initially were solar radiation, air ambient temperature and 

wind speed. TC 6B (positioning can be seen in Figure 10) is used as an input variable for 

SVR training as it is the TC with the lowest temperature reading. The cables were loaded 

Fig. 13 Flowchart of the power demand algorithm program 



 

 39

   

with a constant power demand of 100W which for a cable of around 4 m it has an output 

heat loss of 25 Wm-1. 

4.2.1 Sensitivity test for time averaging of the input data  

Four different averaging minutes intervals (30 minutes, 15 minutes, 10 minutes and 5 

minutes) have been taken in order to identify which is the best averaging sample time that 

has to be used in order to predict the temperature for the cable surface temperature at 

position of TC 13 (positioning can be found in Figure 10) in a prediction time horizon of 

30 minutes. Four different models based on averaging time were built and the 

corresponding performance was calculated. All models were trained and tested with the 

same proportion of data (8 days training and 4 days testing) while the MAPE was 

calculated. This stage is very crucial as it calculates the prediction accuracy of the model 

obtained from the unknown data and reflects the performance on classifying and 

independent data set. For each model the optimum combination of C and γ was found. 

Obtained results are presented in Table 7. 

Time C γ Error (MAPE) 

30 minutes 32768 4.8828*10-4 0.84% 

15 minutes 8192 0.002 0.89% 

10 minutes 8192 4.8828*10-4 0.92% 

5 minutes 8192 1.2207*10-4 0.95% 

 

The model based on averaging input data every 30 minutes showed best performance. By 

averaging the data every 30 minutes it was possible to filter and remove any 

electromagnetic interference from the thermocouple measurement readings and hence to 

achieve a smoother input data for the SVR. Reducing the averaging sampling time made 

the random fluctuation of the real data values higher thus making it difficult for the SVR 

to produce a generalized model. For a 30 minutes ahead prediction SVR has to calculate 

one data point for the case of the 30 minutes model, two data points for 15 minutes model, 

three data points for 10 minutes model and six data points for 5 minutes model. The 

reduction of the sampling averaging time will cause a more complex system as the SVR 

has to perform more calculations while training and testing time will increase as well. 

Furthermore 30 minutes averaging sampling time proved to be sensitive enough to 

monitor the increase of abnormal temperature on the cable surface even when the external 

 
Table 7 Best SVR testing accuracies and optimized parameters. 
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cable heater failed and caused the temperature to increase up to 135 degrees Celsius over 

a period of 1 hour.  

4.2.2 Sensitivity test for weather parameters  

A study was undertaken in order to identify which weather parameters are the most 

dominant and need to be taken into account during the development of the thermal 

prognostic model. Four different models were built, trained and tested with the same 

proportion of data, 8 days training and 4 days testing, while MAPE was calculated. The 

prediction horizon of 30 minutes and the TC 13, located 1.725 m from the beginning of 

the middle cable 5, were chosen. Model 1 includes the parameters of solar radiation and 

the cable surface temperature of a point far away from the location of TC 13 which in this 

case is TC 6B. Model 2 includes the parameters of air ambient temperature and the cable 

surface temperature of TC 6B. Model 3 includes the parameters of solar radiation, air 

ambient temperature and the cable surface temperature of TC 6B. And finally model 4 

includes the parameters of solar radiation, air ambient temperature, wind speed and the 

surface temperature of the TC 6B. For each model the optimum combination of C and γ 

was found. Obtained results are presented in Table 8. 

 

 

 

 

 

 

 

 

 

The Figure 14 shows the temperature prediction error, which is defined as the measured 

temperature minus the predicted temperature, between the Model 2 (worst) and Model 3 

(best).  

Model C   γ Error (MAPE) 

1 (SC) 16384 4.8828*10-4 1.05% 

2 (AC) 16384 9.7656*10-4 1.10% 

3 (SAC) 16384 9.7656*10-4 0.96% 

4 (SACW*) 16384 2.4414*10-4 1.03% 

* Where S=Solar, A= Ambient, W= Wind and C= Cable surface 

temperature of TC 6B Table 8 Best SVR testing accuracies and optimized parameters for 

sensitivity test of weather parameters  
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The maximum temperature prediction error defined as: 

𝑀𝑎𝑥 𝑇𝑒𝑚𝑝 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 = |3 ∗ std(model error) + mean (model error)|    (8) 

was for Model 2 ±0.51 ̊C and for Model 3 ±0.39 ̊C. The error difference is not that 

significant because the models are developed with small amounts of training data but as 

the amount of training data increases the error difference will become greater. Hence it is 

better to choose the model with the lowest error deviation, which in this case is Model 3. 

The overall temperature uncertainty error is of the order of ±0.6 ̊C, which is due to data 

logger temperature uncertainty (±0.1 ̊C) and the T-type thermocouple (±0.5 ̊C). 

Clearly solar radiation and air ambient temperature are required in order to build an SVR 

model that predicts cable surface temperature with reasonable accuracy less than ±1 ̊C. 

Solar radiation and air ambient temperature provide enough and crucial information for 

the development of a robust model. Hence all the further models were developed taking 

into account only solar radiation and air ambient temperature. 

Fig. 14 Temperature prediction error for Model 2 and Model 3 for TC 13. 
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4.2.3 Sensitivity test for the amount of input data features  

A further investigation was performed to identify the amount of the input feature data 

needed in order to achieve the best results. During constant loading conditions the 

temperature of the cable can change due to the variation of air ambient temperature and 

solar radiation values. It was found, in the recorded data for August 2013, that peak air 

ambient temperature occurred two hours after peak solar radiation. Therefore according 

with the above observation it can be deduced that changes in solar radiation affects the 

variation of the air ambient temperature in the cable trough sometimes later which directly 

relates to subsequent variations of the temperature of the surface of the cable. 

In order to proceed with further investigation it was of a great importance to determine 

the time intervals between the occurrence of the peak solar radiation, peak air ambient 

temperature and the time intervals before any measurable affect on the temperature of the 

surface of the cable. Analysis of the whole data set showed that the time gap from the 

moment of the peak solar radiation to the peak of the cable temperature is of the order of 

4 hours. The time gap between peak solar radiation and peak air ambient temperature is 

2 hours.  

Each 4 hours interval contained patterns that the SVR used to build the relationship and 

the generalization function for the input feature data against the output data. The 

averaging time taken was 30 minutes as it was previously shown to have the best 

performance. Solar radiation, air ambient temperature and cable temperature at the 

location of TC 6B were also used to develop the model. The same length of training and 

testing data was used as before (8 days training and 4 days testing). Figure 15 shows the 

number of columns taken and the corresponding MAPE error. The number of columns 

correspond to 30 minutes intervals. The optimum pair of C and γ were determined as it is 

described in Section 3.4.3. 

 It can be concluded that the best MAPE error is at 8 columns which correspond to 4 hours 

of input data. The SVR method was able to build a robust model using the number of 

patterns that were contained in the 4 hours’ time gap calculated previous. For more 

complex systems it is better to consider multiples of initially calculated time gaps to 

identify the corresponding MAPE error as input feature data will contain more patterns 

and therefore the SVR will be able to derive the corresponding generalized function 

easier.  
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4.2.4 Sensitivity test for hours ahead prediction 

It is necessary to understand how many hours ahead a model is able to predict a value by 

comparing a model with the same parameters of C and γ and with a model using tuned C 

and γ as a function of the hour ahead prediction. The same length of training and testing 

data is used as before (8 days training and 4 days testing).  The averaging time taken was 

30 minutes as it has proven before to have the best performance. Solar radiation, air 

ambient temperature and cable temperature were used as well to develop the model. Eight 

input feature data columns were used. The Figures 16 and 17 show the two different 

approaches for C and γ.  

By having the same values of C and γ the model was able to predict the temperature of 

TC 13 up to two hours ahead, with very good accuracy, with MAPE error less than 2 %. 

By tuning the parameters C and γ the MAPE error can be reduced but the model is still 

able to produce satisfactory prediction results for up to two hours ahead. But tuning the 

parameters C and γ increases the computational effort as well as well as the complexity 

of the system. Therefore it is suggested to keep the same C and γ for a prediction of up to 

two hours ahead, as it is more efficient and less complex to be developed from the existing 

model. 
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4.2.5 Pre-processing feature data 

All the input feature data such as solar radiation, air ambient temperature and the surface 

temperature of TC 6B were averaged every 30 minutes. Figures 18-20 show the half hour 

intervals of one day for the input features with their corresponding 1 standard deviation.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

For every 30 minutes data averaging interval, 6 data points of 5 minutes measurement 

intervals were used. The red line in the graphs shown in Figures 18-20 indicates the 

standard deviation of these 6 data points while the blue line stands for their averaged 

value. It can be clearly observed that the standard deviation for the air ambient 

temperature and the TC 6B is small. That means that the error corresponding to the data 

point of the half an hour interval is small, as the fluctuation of the 5 minutes measurements 

in that period of half an hour did not cause a large uncertainty for the average value. In 
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contrast for the case of the solar radiation the uncertainty corresponding to every half an 

hour data point is large because of the disturbed nature of the solar radiation due to 

intermittent cloud cover. 

After averaging the data, the input features are scaled from 0 to 1 as it is mentioned in 

Chapter 3. An example of the scaling input features array used for the development of 

thermal prognostic model by the SVR is shown in Figure 21.The input features of solar 

radiation, air ambient temperature and temperature of TC 6B are scaled from 0 to 1.  

 

 

4.2.6 Sensitivity tests and pre-processing summary 

From the sensitivity tests performed on data obtained from the trough experiment it was 

concluded that 30 minutes averaging time proved to be optimal for the development of 

robust and generalized models. Solar radiation and air ambient temperature were found 

to be the most dominant weather parameters that have to be used as an input data during 

the development of the thermal prognostic model. Calculating time intervals between the 
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Fig. 21   Scaled input feature data 
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when it affects the temperature of the cable surface provide the key information about the 

amount of input data needed for the development of the model. The model is able to 

provide satisfactory prediction results up to 2 hours ahead. Hence the above facts were 

used during the development and implementation of the thermal prognostic models. 

Furthermore the pre-processing data analysis showed that the solar radiation has the 

largest standard deviation error due to the disturbed nature of it.   

4.3 Hot-Spot Experiment in the Air filled trench 

During the air filled trench experiment a constant power demand profile of 100W was 

loaded in the simulated cables producing an output heat loss of 25 Wm-1. During the 

loading, condition artificial hot-spots were introduced to the cable, using an external heat 

source, in order to investigate if the thermal prognostic model is sensitive enough to detect 

the existence of temperature anomalies along the cable, produced by the hot-spots. A hot-

spot power profile of 10W was performed. The external heater had a surface area of 100 

cm2 hence the hot-spots heat density was 0.1 Wcm-2.The experiment aimed to investigate 

whether it is possible to monitor specific areas of an underground cable, where hot-spots 

are more likely to occur, such as joints and terminations. 

4.3.1 Constant Load 

The external heat source was monitored by TC 8 which is positioned in the middle of 

Cable 5 as is shown in Figure 10. TC 6B was used as an input variable for SVR training 

as well as the solar radiation and the air ambient temperature. The TC 6B was chosen as 

it is one of the most distantly located TCs from where the heat source lies.  

A thermal prognostic model was developed based on the outcomes of the sensitivity tests 

performed, mentioned in the section 4.2. The first 8 days were used to train the SVR 

model while the next 4 days were used for testing it and to choose the optimal pair of C 

and γ. After the 12th day the model ran unchanged. On the day 13th of the experiment the 

hot-spots were introduced. The hot-spot cycle was 4 hours on at 10W and 2 hours off. 

The model was used to identify the abnormal temperatures produced by an external heat 

source with power output of 10W. Figure 22 shows the prediction made while the hot-

spots were enabled.  
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Figure 23 shows the temperature difference between the measured temperature of TC 13 

and the predicted temperature by the model of TC 13. It can be clearly seen that when 

 

Fig. 22   Predicted temperature and real temperature for TC 13 under 

the influence of hot-spots, MAPE=2.78 %. 
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the hot-spots cycle starts on the day 13th of the experiment and onwards the positive 

temperature prediction error has increased more than 1 ̊C during the nigh-time. During 

the night-time due to the much lower temperature time constant the detection with 

confidence was possible. 

The thermal prognostic model has an accuracy of ± 1°C. Hence in the event when the real 

temperature is higher than the predicted temperature by at least 1°C, the positive part of 

the temperature prediction error, it can be assumed as an indication of an upcoming failure 

of the system. 

The techniques used for the development of the model such as the scaling of the input 

data, the selection of the parameters C and γ, the way that the input data were selected 

and prepared, the sensitivity tests performed to tune the model verified that the chosen 

methodology was feasible and realistic.  

The air-filled trench prognostic model was able to detect abnormal increase of 

temperature on the cable, produced by the external heat source. TC 13 which is located 

0.25 m away from the location of the hot-spot was able to detect the change of the 

temperature due to the existence of the heater by TC 8. 

4.4 33 kV thermal cycle experiment 

This section investigates a method of developing a reliable thermal prognostic indicator 

system for cable terminations. An experiment was set up where a closed loop 33 KV cable 

is tested under current loading patterns. Real-time measurements (air ambient 

temperature, temperature of the cable terminations and loading demand) taken close to 

the cable are used to update the prognostic model based on the SVR algorithm. The model 

predicts the likely temperatures of cable terminations 30 minutes into the future. 

Anomalies of the measurements along the cable are compared with predicted values in 

order to identify possible degradation activity in the cable terminations.  

As before, it is assumed that an increase of local cable temperature, i.e. a hot-spot, is 

indicative of degradation of the cable insulation due to thermomechanical, electrical and 

environmental factors. 
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4.4.1 Experimental Design and Setup 

A closed loop of 10 meters 33 kV cable, under different current loading patterns, was 

used to generate data needed to develop the thermal prognostic model. Two ends of the 

cable are electrically connected to create a loop. Single-point-bonding is used to prevent 

any circulating earth currents. The sheath voltage is proportional to the sheath resistance 

which varies directly as the length of cable circuit. Hence the length of cable circuit is 

much shorter in the lab test than in the field, thus any sheath voltage is minimal. 

Two current transformers (CT1 and CT2) and a motorized variac unit were used to 

generate the current loading profiles. The motorized variac is used to control the input 

current to the primary windings of the CTs. The CTs generate a magnetic field due to 

their primary current. This magnetic field then induces a much higher current in the 

secondary side which is formed by the single short circuit turn of the test cable.  

A LabVIEW control system program, the flowchart of which can be seen in Figure 24, 

was developed in order to vary the input current to the CTs and to simulate different load 

profiles. A data acquisition device, NI USB-6008, collaborates with the control system 

program written in LabVIEW by receiving and sending analog signals. A Rogowski coil 

is used to measure the current passing through the cable conductor in real-time. This 

current is input to the NI USB-6008 which updates the LabVIEW control system 

program. Afterwards the LabVIEW control system program sends the appropriate signals 

to the motorized variac and adjusts the corresponding load profile demand in the cable to 

be close to the expected current value via the NI USB-6008.  

The surface temperature of the cable was continuously monitored using 7 thermocouples 

(TC) placed on the cable at various positions as is shown in Figure 25. Four 

thermocouples (FA1, FB1, FC1 and FD1) are located 2 meters away from each other. The 

other three thermocouples (T1, T2 and T3) are located at the termination section. The 

thermocouples are connected to the Campbell Scientific datalogger CR1000. The 

datalogger records the temperatures every minute giving an average value of local 

temperature every 30 minutes.   
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Fig. 24 Flowchart of the LabVIEW control system. 

 

Fig. 25 Experimental Setup of 33 kV 

cable 

Thermal 

Insulation 2 

T1 

T2 

T3 

Variac ontrol    

Unit 

FD1 

FC1 

FB1 

FA1 

CT 2 CT 1 

Thermal 

Insulation 1 



 

 52 

During this experiment a daily load current cycle, as shown in Figure 26, was loaded in 

the 33 kV cable producing an increase in temperature on the surface of the cable. The 

experiment was run for two weeks, with the same current load. The first week of the  

 

experiment was used to gather data in order to build the thermal prognostic model while 

the second week was used to test the performance of the model. During the second week 

of loading artificial hot-spots were introduced to the cable, by adding fiberglass insulation 

sections, in order to investigate if the thermal prognostic model is sensitive enough to 

detect the existence of the temperature anomalies along the cable produced by local hot-

spots. The two thermal insulation sections were added close to the end of the termination, 

where failures are more likely to occur. The first insulation was added by the end of the 

termination, located 0.10 meters away from TC T2 and 0.35 m from TC T1. The second 

insulation was added above the TC T3, 0.10 meters away from the end section of the 

termination. 

4.4.2 Experimental results for the cable in air base on the SVR thermal 

prognostic model 

TC FC1 is used as an input variable for SVR training as well as the air ambient 

temperature in the Tony Davies High Voltage Laboratory (TDHVL) and the current load 

profile of the experiment. The relationship between the peak of the air ambient 

Fig. 26 Experimental current daily 

loading profile  
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temperature and the cable temperature was 2 hours. Hence 4 input feature columns where 

used for the development of the models as the environment was not harsh.  

The data scaling, preparation, kernel selection as well as the grid-search technique and 

cross-validation method used were as previously described in Chapter 3. The LIBSVM 

toolbox in MATLAB has been used for the development of the thermal prognostic model. 

4.4.3 Results 

Three different models were built to detect temperature increases by the location of the 

TC T1, T2 and T3 after the introduction of the hot-spots produced by the fiberglass 

insulation sections by the end of the terminations. 

The hot-spots were introduced on the second week of the experiment. The first 5 days of 

the experiment were used to train the SVR algorithm, the next 2 days to test its 

performance using MAPE and to identify the optimum combination of C and γ. Finally 

in the last week the models, developed the week before, were left to run under unknown 

data and under the influence of local hot-spots. 

Figures 27, 28 and 29 show predictions made for the testing and unknown data for TC 

T1, T2 and T3 without and with the influence of hot-spots. 

The prediction made for the testing data of TCs T1, T2 and T3 shows good results with 

prediction MAPE less than 1.3%. After the introduction of the hot-spots from the day 7 

until day 14 of the experiment, the MAPE for TC T1, T2 and T3 increased to 3.50%, 

7.71% and 14.46% respectively. It can be observed that all of the TCs were able to 

identify the increase of temperature caused by the nearby hot-spots. 
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Fig. 27 Comparison between predicted temperature on Testing Data (MAPE= 1.11%) and  

Unknown Data (MAPE=3.50%) with the real temperature of TC T1. 
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Fig. 28 Comparison between predicted temperature on Testing Data (MAPE= 0.89%) and Unknown 

Data (MAPE=7.71%) with the real temperature of TC T2. 

Fig. 29 Comparison between predicted temperature on Testing Data (MAPE= 1.26%) and Unknown 

Data (MAPE=14.46%) with the real temperature of TC T3. 
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Figures 30, 31 and 32 show the temperature prediction error made for the same TCs while 

the hot-spots were disabled and enabled. TC T2 which is 0.10 m away from the first hot-

spot, thermal insulation 1, identified an increase of temperature of the order of 4.42 °C 

while TC T1 which is located further away from the hot-spot, at the distance of 0.35 m, 

could as well identify an increase of temperature of 2.54°C. TC T3 which is located just 

below the second hot-spot, thermal insulation 2, had a temperature increase which 

reached 8.22°C.  
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Fig. 30 Temperature prediction error for TC T1 

Fig. 31 Temperature prediction error for TC T2 
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The temperature prediction error for TC T2 and T3 is well above 1°C as these TCs are 

located near or below the hot-spots. TC T1 positioned 0.35 m away from the location of 

the first hot-spot was able to identify the presence of hot-spots with the highest 

temperature magnitude falling during the daytime but could not detect the hot-spots 

during the night-time due to the lower air ambient temperature. 

Hence it can be concluded that the most effective distance for the thermal prognostic 

model to identify the location of the hot-spots is within a radius of up to 0.35 m. A 

distribution of TCs close to the area of interest is good enough for the model to identify 

and predict a possible failure process at an early stage within the cable terminations.  

4.5 Summary  

The 30 minutes averaging time proved to be the best averaging interval for a prediction 

horizon of 30 minutes ahead because the model has to predict only one data point ahead 

which makes the model less complex and more robust. Solar radiation and air ambient 

temperature showed to be the most dominant weather parameters that influenced the 

surface cable temperature and hence they are used as input data during the development 

of the model. The time gaps between the occurrence of the peak solar radiation, peak air 

ambient temperature and the time gap when the above affects the surface temperature of 

the cable contain patterns that can be used by SVR to develop a generalized model. For 

more complex systems a larger amount of input data is needed for the SVR to build the 

relation between input data and output data. The methodology of multiple time intervals 
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Fig. 32 Temperature prediction error for TC T3 



 

 57

   

can help to identify the optimal number of the input data needed by the SVR. Reducing 

the size of input feature data will create a generic model while large amounts of data will 

create a specific model. The model can provide satisfactory prediction results up to 2 

hours ahead. The pre-processing data analysis shows how the input data was averaged 

and scaled prior to the insertion to the SVR model. 

Both the air-filled trench experiment and the 33kV thermal cycle experiment prognostic 

models were able to detect abnormal increases of temperature on the cable surface, 

produced by the external heat source. It was verified that the TC are sensitive enough to 

detect temperature anomalies as far as 0.35 m away from the location of the heat source.  

Hence TCs placed close to the area of interest, such as joints and termination in an air 

environment, can be used to develop prognostic models which can identify and predict a 

possible failure process at an early stage by the cable terminations and joints.  

The proposed methodology during the sensitivity tests proved to be suitable to develop 

robust and generalized models for both experiments. The two experiments were 

performed in a different environments, more complex for the air-trench experiment and 

less complex for the 33 kV thermal cycle experiment. The analysis of the relationship 

between peak solar radiation, peak air ambient temperature and peak temperature of the 

cable surface provides vital information for the development of the models. Less input 

feature data were used for the 33 kV thermal cycle because the surface temperature of the 

investigated cable was influenced only by the air ambient temperature inside the TDHVL. 

While the cable surface temperature during the air-filled trench experiment was 

influenced by the solar radiation as well as the air ambient temperature, thus the model 

required more input feature data. 

After the implementation of the established thermal models in the air-filled trench and 

the termination it was decided to test the performance of them in a more complex 

environment. Thus cyclic and constant load experiments were performed in backfill 

trench and are described in Chapter 5. The following chapter as well further investigates 

the performance of the previously mentioned machine learning regression algorithms for 

the case of backfill trench and the accuracy of the established models that predict the 

likely cable temperature 30 minutes into the future in order to verify robustness of the 

thermal prognostic system in a more complex environment prior to the implementation 

of it in the real field experiment.    
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Chapter 5  Implementation of Thermal Prognostic 

Models for the Backfill Trench  

Two experiments constant load and cyclic load, were setup up in the backfill trench to 

investigate the possibility of identifying abnormal surface cable temperature 

measurements in an underground cable system. An ability to identify anomalies in cable 

surface temperature can help to target the cable degradation activity, commonly occurring 

by the cable joints, at an early stage prior a catastrophic failure. It is assumed that a sign 

of an upcoming cable joint failure is closely related with abnormal temperature due to a 

combination of electrical, thermomechanical and environmental factors.  

The SVR algorithm was used to develop thermal prognostic models for the soil filled 

trench which can predict the likely temperature along the cable 30 minutes into the future. 

Weather conditions such as solar radiation, air ambient temperature as well as known 

cable loading conditions were used to develop the thermal models. Other machine 

learning algorithms were investigated and benchmarking was performed. The accuracy 

of the thermal prognostic model as well as the verification of model parameters selection 

were investigated. 

5.1 Hot-Spot Experiment in the Soil filled trench  

Based on results obtained for experiments in air, a thermal prognostic model was 

established using the Support Vector Regression (SVR) Algorithm which predicts the 

likely temperatures along the cable 30 minutes into the future, according to weather 

conditions and known loading. Anomalies of temperature measurements along the cable 

compared to predicted temperatures can indicate possible degradation activity in the 

cable. The surface temperature of the cable was continuously monitored as well as the 

weather conditions such as solar radiation and air ambient temperature.  The experiment 

was used to investigate the feasibility of different approaches for monitoring of 

underground cables, where hot-spots are more likely to occur, such as joints and 

terminations. It is assumed that an increase of the local cable temperature is a sign of 

aging of the cable insulation caused by thermomechanical, electrical and environmental 

factors. Various machine learning algorithms were benchmarked as well as a system error 

analysis and a verification technique for the selected model parameters was performed.  
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5.1.1 Soil trench input experiment  

The surface temperature of the 3 simulated cables is continuously monitored using 15 

TCs placed in the sand filled trench. Figure 33 shows the position of the TCs in the sand 

surface trough. The surface temperature for each TC as well as the weather conditions are 

monitored with the same dataloggers as it described in Chapter 4.  

During the loading condition artificial hot-spots were introduced to the cable surface, 

using an external heat source monitored by TC S8 which is positioned in the middle of 

the Cable 2. Two different loading conditions were investigated, the first with constant 

loading and the second with cyclic loading.   

Three different hot-spot power profiles of 5, 10, 15 Watt were generated using the 

external heat source, in order to investigate if the thermal prognostic  model is sensitive 

enough to detect the existence of the temperature anomalies along the cable produced by 

the hot-spots. The external heater had a surface area of 100 cm2 hence the hot-spots heat 

density was 0.05 Wcm-2, 0.1 Wcm-2 and 0.15 Wcm-2. 

The same sensitivity tests as described in Section 4.2 have been used. In order to proceed 

with further investigation it was of a great importance to determine the time difference 

between the occurrence of the peak solar radiation, peak air ambient temperature and 

when these effects influence the temperature of the cable in the soil. Analysis of the whole 

data set showed that the time gap from the moment of the peak solar radiation to the peak 

of the cable temperature is about 8 hours. Each 8 hour interval contains patterns that SVR 

uses to build the relationship and the generalization function for the input feature data 

against the output data. The averaging time taken was 30 minutes as it has shown to have 

the best performance. Solar radiation, air ambient temperature and cable temperature by 

the position of TC S2 were used to develop the model to predict the temperature of the 

TC S11 with reference the Figure 33. Each column corresponds to 30 minutes interval. 

Training data for 20 days and 8 hours and testing data of 3 days where used to develop 

the regression model using the LIBSVM MATLAB toolbox. The amount of input 

columns was varied in order to determine the best amount of input data needed for the 

development of the model. For each new number of columns the best combination of C 

and γ was selected with the corresponding MAPE error. Figure 34 shows the number of 

columns taken and the corresponding MAPE error 
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From Figure 34 it can be seen that the soil constant load experiment is much more 

complex than the air trench constant load experiment. Even though the time gap between 

the peak solar radiation and the peak air ambient temperature is the same as previously 

described in Section 4.2.3, the time interval between air ambient temperature peak and 
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peak of the surface cable temperature is greater due to the larger thermal time constant of 

the soil. That as a result has increased the time interval between the peak of solar radiation 

to the peak of the cable surface temperature to 8 hours rather than 4 hours for the air 

trench case. Hence the system is more complex and more input data are needed. As it was 

previously suggested in Section 4.2.3 the technique of multiplying intervals was used to 

identify the appropriate amount of input data features needed for the development of the 

model. 

5.1.2 Constant load experiment 

Based on the SVR input experiment, a thermal prognostic model was developed. The 

temperature measured by TC S2, solar radiation and air ambient temperature were the 

input parameters to the SVR model which predicts the temperature of the TCs buried in 

the sand surface trough. The load demand input was not taken into the account for this 

model, as the constant value of it does not add any feature to the model but only increases 

the complexity of the whole system. Initially the model was trained for 20 days and 8 

hours, tested for 3 days and the corresponding MAPE was calculated. This stage was 

crucial as it calculated the prediction accuracy of the model obtained from the unknown 

data. After the testing period of the experiment the hot-spots were enabled until day 39 

of the experiment after which they were switched off for a period of 3 days. The hot-spot 

cycle was the same as in the air-filled trench; 4 hours on and 2 hours off. 

In order to investigate the performance and the reliability of the thermal prognostic model 

two points were selected. The TC S11 was the first point as it is close to the hot-spot 

location, 0.25 m, and the second point of interest was TC S15 which is located farthest 

from the hot-spot, 1.5 m away. Figure 35 shows the prediction made for the TC S11 before 

and after the introduction of the hot-spots. The prediction made for the unknown testing 

data of TC S11 showed good results with a prediction MAPE 0.89%. 
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After the introduction of the hot-spots from day 23 until day 39 of the experiment, the 

MAPE for TC S11 increased to 8.28%, which was more than 9 times greater than before. 

When the real temperature is higher than the predicted temperature, giving a positive 

temperature prediction error graph, it can be assumed that this is an indication of a 

potential upcoming failure of the system.  

A better understanding of the influence of the hot-spots on the TC S11 can be seen in 

Figure 36. The temperature prediction error for TC S11 increased when the hot-spots 

were on. When the hot-spots were off, on the days 26, 30, 34, 37, 39 and onwards, it can 

be seen that the predicted temperature matched the real temperature. Hence the TC S11 

was affected by the hot-spots. On day 12 a power shut down occurred in the TDHVL 

which caused power loss in the simulated cables for a period of an hour. The temperature 

of the cables dropped instantaneously causing the thermal model to over predict for that 

period, as it can be seen in Figure 36 the power cut resulted in the negative temperature 

error spike in the temperature prediction error graph. The second point which shows signs 

of over prediction was between the days 39 and 40 due to the drying out of the soil around 

the TC S11 which was caused by the prolonged exposure to the heat produced by the hot-

spots. The thermal resistivity of the soil is 1.2 K m/W prior to drying and 3 K m/W in the 

Fig. 35 Comparison between predicted temperature on Testing Data (MAPE=0.89%) and 

Unknown Data (MAPE=8.28%) with the real temperature of TC S11. 
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dry state. Therefore the dry region increased the thermal time constant of the soil and 

hence more time was needed for the area around TC S11 to cool down. It should be noted 

that this is also indicative of the failure modes associated with thermal run away. In this 

case the increased local thermal resistance of the backfill can cause the cable to overheat 

leading to damage of the insulation. 

 

 

 

 

 

 

 

 

 

 

 

The MAPE of TC S15 during the introduction of the hot-spots was 1.43%, which was 

close to its previous testing value of 0.91%. Thus the prediction error of the TC S15 was 

within the boundaries of less than 2% and was not affected by the introduction of the hot-

spots as it can be seen in Figure 37. Figure 38 shows the temperature prediction error for 

TC S15 with the hot-spots on and off. The same negative spike on day 12 caused by the 

power shut down in the TDHVL can be seen in Figure 38. During the interval between 

days 24 -26 heavy rain caused the temperature of the TC S15 to be reduced. The above 

caused the model to over predict the temperature of the cable surface by the position of 

TC S15. 

 

 

Fig. 36 Temperature prediction error for TC S11 
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Figure 39 shows the distribution of the maximum temperature prediction error for 

different locations on the cables.  

Fig. 37 Comparison between predicted temperature on Testing Data (MAPE=0.91%) and 

Unknown Data (MAPE=1.43%) with the real temperature of TC S15. 

Fig. 38 Temperature prediction error for TC S15 
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The TCs close to the hot-spots such as S11, S5, S7 and S9 had the highest temperature 

prediction error. The influence of the hot-spots, produced by the heater positioned above 

TC S8, was reduced for the TCs located farther such as TCs S6 and S4. However TCs S6 

and S4 could still identify the anomalies of the temperature produced by the hot-spots 

despite the fact they have a smaller temperature prediction error than the TCs S11, S5, S7 

and S9. The most distant TCs such as S15 and S13, positioned 1.5 m away from the heater 

location, were not capable to detect temperature anomalies of the system as the sensitivity 

of the system is around ± 1 oC. Hence it was concluded that the most effective distance 

for the thermal prognostic model to identify the location of the hot-spots is again within 

a radius of up to 0.30 m. 

5.1.3 Benchmarking for Constant load experiment 

The ANN, MLR and Mboost prediction approaches were tested, as previously described 

in Section 5.1.1, to identify the best amount of input data needed for the development of 

the regression model for each of the algorithms. The performance of each individual 

algorithm was determined as before using the MAPE error. This step is required in order 

to tune and identify the best parameters needed during the testing period before the 

introduction of the hot-spots activity. The total amount of days before the introduction of 

hot-spots was 26 days and the amount of testing data was fixed to be 3 days for all of the 

algorithms before the introduction of the hot-spots. Hence as the amount of input data 

was different for each algorithm, it resulted in a slightly different durations of training 

data. A graph showing the number of columns used against the corresponding MAPE 

error is presented in Figure 40.  
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Fig. 39 Maximum temperature prediction error. 
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SVR and ANN used 20 days and 8 hours for training data and hence the actual period 

before the introduction of hot-spots is 23 days and 8 hours. For MLR the training period 

was 19 days and the actual period before the introduction of hot-spots was 22 days while 

for Mboost the training period was 18 days and 8 hours and the actual experiment period 

was 21 days and 8 hours. All the training data sets did not include, as mentioned before 

in Section 5.1.2, the 1 hour interval of the power shut down in the TDHVL. The 

investigated algorithms were tested to determine whether they were able to identify the 

introduction of the hot-spots during the constant loading experiment. The performance of 

each algorithm before the introduction of the hot-spots, after the introduction of the hot-

spots, the number of hot-spots that they could identify as well the number of input features 

and the parameters needed is summarized in Table 9. The SVR showed the best 

performance as it was able to identify 39 out of 42 hot-spots which corresponded to 92.9% 

accuracy. ANN and MLR were able to identify 27 and 25 hot-spots respectively but even 

though the MLR had a worse performance, it showed a better generalized prediction 

model during the hot-spot periods. ANN on the other hand created an overestimated 

prediction model. It is can be seen in Figures 42, 44 and 46 that during the last days after 

 

 

Fig. 40 Sensitivity test between number of input data needed and 

corresponding MAPE error for ANN, Mboost, MLR and SVR. 
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the introduction of the hot-spots both SVR and MLR still had a prediction output which 

was close to the real values while ANN and Mboost had overestimated predictions. 

Mboost had the worst performance as it could identify only 20 out of 42 hot-spots. The 

Figures 41-46 below show the prediction output of the different algorithms models with 

their corresponding temperature difference prediction error graphs.  

 

 

 

 

 

 

 

 

 

 

With reference to Figure 42, the temperature prediction error graphs of SVR and ANN it 

can be seen that ANN produces an overestimated prediction model by almost 1.5 ̊C from 

day 39 and onwards. During the power shut down on day 12, the ANN instead of finding 

a temperature reduction it identified a possible hot-spot which was obviously incorrect. 

Algorithms Hot-spots 
MAPE% 

(Before) 

MAPE% 

(After) 

Input 

Features 
Parameters 

SVR 
39/42 

(92.9%) 
0.89 8.28 128 

C = 16384 

γ = 6.1035*10-5 

MLR 
25/42 

(59.5%) 
1.34 7.21 192  

Mboost 
20/42 

(47.6%) 
1.45 6.42 224 

Iteration = 700 

nu = 0.15 

ANN 
27/42 

(64.3%) 
1.13 6.62 128 Layers = 9 

Table 9 Benchmarking between ANN, Mboost, MLR and SVR for constant load 

experiment.  
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Fig. 41 Comparison between predicted temperature on Testing Data (MAPE=1.13%) and 

Unknown Data (MAPE=6.62%) with the real temperature of TC S11using ANN. 
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Even though ANN could identify 27 out of 42 hot-spots and had the second best hot-spots 

performance it underestimated the amplitude of the hot-spots due to the overestimated 

model produced. Hence the actual amplitude of the hot-spots is greater in reality which  

 

                                                                                                                                    

means that in a real online condition monitoring environment it might produce serious 

problems and set false alarms. Figures 43 and 44 present the performance of MLR which 
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Fig. 42 Temperature prediction error for TC S11 using ANN and SVR. 
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Fig. 43 Comparison between predicted temperature on Testing Data (MAPE=1.34%) and 

Unknown Data (MAPE=7.21%) with the real temperature of TC S11 using MLR. 
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like SVR showed much better performance compared to ANN and Mboost during the end 

of the hot-spots introduction period. It was able to identify the power shut down and it 

could identify the hot-spots. Mboost like ANN produced an overestimated model and 

performed poorly during the end of the hot-spots introduction period as can been seen 

from Figures 45 and 46. 

 

 

 

Fig. 44 Temperature prediction error for TC S11 using MLR. 

Fig. 45 Comparison between predicted temperature on Testing Data (MAPE=1.45%) and 

Unknown Data (MAPE=6.42%) with the real temperature of TC S11 using Mboost. 
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Taking into the account the performance of the benchmarked algorithms, SVR was not 

only able to identify a greater number of hot-spots but it also created a generalized 

prediction model which was not subject to overestimating problems unlike both ANN and 

Mboost.  

5.1.4 Cyclic load experiment  

A new experiment was set up from 25/06/2014 – 28/8/2014, where a daily cycle of 16 

hours of high load (200 W from 06:00 until 22:00) and 8 hours of low load (100 W from 

22:00 – 06:00) were performed. This data, as well as the corresponding weather 

conditions, such as ambient temperature and solar radiation, were input to the SVR 

algorithm. Hot-spots of 5 W, 10 W and 15 W were introduced to the daily cycle 

experiment after day 25. Hot-spots were applied on the minimum and maximum points 

of the daily cycle in order to check the performance of the SVR model and test if it is able 

to detect abnormal changes corresponding from these hot-spots for a period of 4 hours on 

and 2 hours off. 

The data was divided again into two groups: a) 27/06/2014 - 18/07/2014 training data and 

b) 18/07/2014 – 20/07/2014 unknown testing data. To identify the most appropriate C 

and γ two algorithms were combined together, Cross-Validation and Grid-Search and the 

corresponding MAPE error was calculated. This stage was crucial as it calculated the 
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Fig. 46 Temperature prediction error for TC S11 using Mboost. 
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prediction accuracy of the model obtained from the unknown testing data and reflected 

on the performance of the temperature prediction model.  

The input data for the SVR was solar radiation, air ambient temperature and the 

temperature of the distant TC S2 and the daily load demand. The TC S2 was chosen as it 

is one of the most distantly located TCs on the same cable where the heat source was. The 

same sensitivity test as previously mentioned in Section 4.2 has been used. Analysis of 

the whole data set showed that the time difference from the moment of the peak solar 

radiation to the peak of the surface cable temperature is about 7 hours.  

Each 7 hour interval contains patterns that the SVR uses to build the relationship and the 

generalization function for the input feature data against the output data. The averaging 

time taken was 30 minutes as with previous models. Solar radiation, air ambient 

temperature and cable temperature were used as well to develop the model. Figure 47 

shows the number of columns taken and the corresponding MAPE error.  

 

 

 

 

 

 

 

 

 

 

TC S11 and TC S15 were once again compared as previously for the constant load 

experiment. Figure 48 shows prediction made for the TC S11 before and after the 

introduction of the hot-spots. The prediction made for the unknown testing data of TC 

S11 showed good results with prediction MAPE 1.32% which is less than 2%. From day 

Fig. 47 Sensitivity test between number of input data needed and 

corresponding MAPE error. 
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22 and onwards where the hot-spots were enabled the MAPE increased to 9.43%, 7 times 

more than before. 

 

 

 

A better understanding of the influence of hot-spots on the TC S11 can be seen in Figure 

49. It can be observed that the TC S11 was affected by the introduction of hot-spots. The 

temperature prediction error for TC S11 was increased when the hot-spots were on. When 

the hot-spots were off, on days 33-35 and 47-49 the prediction temperature error reduced 

but still not as much as expected due to the dry out of the soil around TC S11. On day 10 

of the experiment a heavy rain caused a flooding above the surface soil trench which 

caused the temperature of the TC S11 to reduce dramatically by more than   1.5 oC. That 

resulted in the model over predicting the temperature of the cable surface at the position 

of TC S11. 
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Fig. 48 Comparison between predicted temperature on Testing Data (MAPE=1.32%) and 

Unknown Data (MAPE=9.43%) with the real temperature of TC S11. 
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The MAPE of TC S15 during the introduction of the hot-spots was 1.36%, which was 

close to its previous testing value of 1.24%. Thus the prediction error of the TC S15 was 

within the same boundaries as before, less than 2% and was not affected by the 

introduction of the hot-spots as can be seen in Figures 50 and 51. 

 

Fig. 49 Temperature prediction error for TC S11 

Fig. 50 Comparison between predicted temperature on Testing Data (MAPE=1.24%) and 

Unknown Data (MAPE=1.36%) with the real temperature of TC S15. 
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The large negative prediction spike in Figure 50 was due to the flooding which occurred 

during that day.  

 

 

 

 

 

 

 

 

 

 

Figure 52 shows the distribution of the maximum temperature prediction error along the 

cable. 

 

 

 

With reference to Figure 52, the TCs positioned close to the heat source and within a 

radius up to 0.30 m such as S11, S5, S7, S9, S6 and S4 had temperature prediction error 

larger than 2 oC. It can be confidently stated that they were able to identify the anomalies 

of the temperature produced by the heater positioned above TC S8. The most distant TCs 

Fig. 52 Maximum temperature prediction error. 

Fig. 51 Temperature prediction error for TC S15 
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such as S15 and S13, positioned 1.5 m away from the heater location, were not capable 

of detecting temperature anomalies of the system as the sensitivity of these was around 

±1oC. It can be concluded once again that the most effective distance for the thermal 

prognostic model to detect the location of the hot-spots in the soil trench is in the radius 

of up to 0.30 m. 

5.1.5 Benchmarking for Cyclic load experiment 

As previously described in Section 5.1.1 determination of the ideal amount of input data 

required was performed for all the benchmarked algorithms. Figure 53 shows the best 

number of input data needed for SVR, MLR, Mboost and ANN. After this step all models 

were developed and tested for 3 days in order to select the best parameters to tune the 

models 

 

 

 

and to check their performance. The total amount of days before the introduction of hot-

spots was 25 days and 16 hours. SVR, MLR and ANN were trained for 19 days and 4 

hours while Mboost was trained for 18 days. The training data sets did not include a 6 

hour period of the flooding caused by heavy rain as mentioned before in Section 5.1.4. 

The performance of all the investigated algorithms is summarized in Table 10 below.  
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The SVR once again showed the best performance. It could identify 116 out of 122 hot-

spots which corresponded to 95.1% accuracy. MLR and Mboost produced satisfactory 

results as well, identifying 115 and 114 hot-spots respectively. ANN performed poorly 

comparing the other three algorithms by identifying only 93 hot-spots out of 122. Figures 

54 - 58 below show the prediction model for each algorithm separately as well as their 

temperature difference prediction graphs. Figure 56 shows the temperature prediction 

error difference of MLR, ANN and SVR. 
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Algorithms Hot-spots 
MAPE% 

(Before) 

MAPE% 

(After) 

Input 

Features 
Parameters 

SVR 
116/122 

(95.1%) 
1.32 9.43 168 

C = 16384 

γ = 3.0518*10-5 

MLR 
115/122 

(94.3%) 
1.33 9.32 168  

Mboost 
114/122 

(93.4%) 
1.37 8.12 224 

Iteration = 700 

nu = 0.15 

ANN 
93/122 

(76.2%) 
2.56 12.12 168 Layers = 7 

Fig. 54 Comparison between predicted temperature on Testing Data (MAPE=2.56%) and 

Unknown Data (MAPE=12.12%) with the real temperature of TC S11 using ANN. 

Table 10 Benchmarking between ANN, Mboost, MLR and SVR for cyclic load experiment. 
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The temperature difference errors for SVR and MLR have similar results. Both could 

identify similar numbers of the hot-spots, have predicted similar hot-spots amplitudes and 

both could identify the flooding. ANN on this occasion produced an underestimated 

model resulting in overestimated amplitude of the hot-spots and identified the flooding  
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Fig. 55 Comparison between predicted temperature on Testing Data (MAPE=1.33%) and 

Unknown Data (MAPE=9.32%) with the real temperature of TC S11 using MLR. 

Fig. 56 Temperature prediction error for TC S11 using ANN, SVR and MLR. 
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as a hot-spot. The Mboost performed well to identify the hot-spots but had slightly 

underestimated the hot-spots amplitude as it can been seen from Figures 56 and 57. 

Mboost was able as well to identify the anomaly caused by the flooding.  
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Fig. 57   Comparison between predicted temperature on Testing Data (MAPE=1.37%) and  

Unknown Data (MAPE=8.12%) with the real temperature of TC S11 using Mboost. 

Fig. 58 Temperature prediction error for TC S11 using Mboost. 
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It can be seen that MLR had better performance during the cyclic load rather than the 

constant load experiment due to its linear method approach. The reason behind this is that 

during the cyclic load experiment the temperature profile on the cable depends more on 

the cyclic load profile rather than the air ambient temperature as happened during the 

constant load experiment. In the cyclic load experiment the temperature pattern is more 

consistent in shape because it depends more on the loading profile rather than the air 

ambient temperature. The amplitude of temperature pattern is dependent on the air 

ambient temperature but not the shape of the pattern. On the other hand during the 

constant load experiment the temperature pattern of the cable depends mainly on the air 

ambient temperature. Therefore MLR can easier develop the regression models in a more 

controllable environment such as the cyclic load experiment rather than in more 

uncontrollable environment like the constant load experiment. In order to verify the above 

assumption a sensitivity test was performed to identify which input feature parameters 

are more dominant during the two loading experiments. The input parameters were 

multiplied by 1.2 and 0.8 times of their values to create an uncertainty boundaries of 

±20 %. The input features were varied independently one by one at the time. Afterwards 

the new model was produced and the new MAPE error was calculated for each of the 

tests. Table 11 below shows the corresponding MAPE error for each of the input features 

after the multiplication by 1.2 and 0.8 times.   

 

 

 

 

 

It can be seen that the air ambient temperature and TC S2 caused the biggest mean error 

during the constant load experiment while during the cyclic load experiment the TC S2 

and the load input feature contribute to the biggest mean error. Thus it can be stated that 

the initial assumption that the cyclic load profile is more dominant than the air ambient 

temperature in the cyclic load experiment is valid. 

 

Constant Load Experiment (MLR) 

Initial MAPE=1.34%  

Cyclic Load Experiment (MLR) 

Initial MAPE=1.33% 

Parameter x1.2 x0.8 x1.2  x0.8 

Air 0.99 2.56 1.65 1.90 

Solar 1.59 1.10 1.42 1.41 

TC S2 2.64 1.74 3.10 4.14 

Load - - 1.70 1.92 

Table 11 Input parameters sensitivity test.   
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5.2 Accuracy of Thermal Prognostic Models 

It is of a great importance to have a reliable Thermal Prognostic Model which will provide 

confidence to users. In order to achieve that confidence, system error analysis was 

performed to distinguish the accuracy in temperature prediction. The model error, the 

input data error as well as the data logger system error were taken into the account.  

Two values are experimentally consistent if the following inequality is true: 

|𝐴 − 𝐵| ≤ |𝛥𝐴 + 𝛥𝐵|       (9) 

where A and B are the values to be compared and ΔΑ and ΔB are the uncertainties of 

each of there values respectively. In this case this inequality could be used to identify 

possible error deviations of the real temperature measured by the thermocouple and the 

model predicted temperature which is greater than|𝛥𝐴 + 𝛥𝐵|. In this case the above 

equation could be written as follows:  

|𝑅𝑒𝑎𝑙 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑| ≤ |𝛥𝑅𝑒𝑎𝑙 + 𝛥𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|    (10) 

The ΔReal uncertainty includes the uncertainty of the thermocouple and the uncertainty 

from the Campbell Scientific Datalogger CR1000. The uncertainty due to the 

thermocouple sensor used is ±0.5ºC and the uncertainty from the CR1000 is ±0.1ºC. 

The ΔPredicted uncertainty is due to the model prediction error. With a machine learning 

technique like SVR, there is no clear relationship between the accuracy of the inputs and 

the accuracy of the output. The non-linear transform due to the kernel function means that 

the SVR responds to specific values of inputs in different ways. Therefore, the accuracy 

of some values of inputs will be more or less important for the output than other values 

of the same inputs. 

In order to investigate which parameters are the most dominant in the propagation of the 

model error, a sensitivity uncertainty test was performed. The model input parameters 

distribution was changed as shown in Figure 59 for the case of air ambient temperature. 

The parameters were multiplied by 1.2 and 0.8 in order to identify the error propagation 

boundaries of ±20% of a change on the input parameters. Solar radiation, air ambient 

temperature and the temperature of TC S2 are the input parameters used for the 

development of the constant load experiment model while for the cyclic load experiment 



 

 82 

the load profile parameter was added. The corresponding errors were calculated and are 

shown in Table 12.  

 

 

 

 

 

 

  

 

 

The MAPE error prior to the change of the distribution of the input parameters was 0.89% 

for the constant load experiment and 1.32% for the cyclic load experiment. The air 

ambient temperature and the temperature of TC S2 contribute to the highest mean MAPE 

model prediction error during the constant loading experiment. For the cyclic load 

experiment the parameters that contribute to the highest mean MAPE model prediction 

error are the air ambient temperature, the TC S2 and the load.  

In order to calculate the worst case scenario for the maximum and minimum cases the 

overestimated and underestimated parameters respectively where taken into account. The 

Constant Load Experiment (SVR) 

Initial MAPE=0.89% 

Cyclic Load Experiment (SVR)  

Initial MAPE =1.32% 

Parameter x1.2  x0.8 x1.2 x0.8 

Air 
1.49 

(over) 

2.73 

(under) 

1.66 

(under) 

2.05 

(over) 

Solar 
0.98 

(under) 

0.84 

(over) 

1.51 

(under) 

1.43 

(over) 

TC S2 
2.21 

(under) 

2.28 

(over) 

3.02 

(under) 

4.20          

(over) 

Load - - 
1.75 

(under) 

1.75 

(over) 

over= overestimated  under= underestimated 
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Fig. 59 Gaussian distribution of air ambient temperature for constant load experiment of the left and 

cyclic load experiment on the right. 

 

Table 12 Uncertainty sensitivity test accuracies. 
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maximum MAPE error for the constant load experiment was found to be 4.04 % and the 

minimum MAPE error 4.46%. For the cyclic load experiment the maximum MAPE error 

was 6.76% and the minimum MAPE error was 4.62 %. These differences can be 

calculated as a standard deviation of ±0.33 ̊C from the prediction outputs of the worst 

case scenarios for the constant load experiment and ±1.07 ̊C for the cyclic load 

experiment. A graphical representation of the overestimated and underestimated models 

during the testing period is shown in Figure 60. Therefore the total uncertainty of the 

system for the constant load experiment can be defined as follows:  

|𝑅𝑒𝑎𝑙 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑| ≤ | 0.6 ̊C + 0.33 ̊C|  (11) 

Hence temperature prediction errors greater than ±0.93 ̊C for constant load and ±1.67 ̊C 

for cyclic load have to be investigated further.  

The performed model error analysis is based on the distribution of the input data of ±20%. 

Hence if the Gaussian distribution of the input data is smaller it will result to a smaller 

error propagation during the error analysis. For the constant load experiment, performed 

during the months of October and November, the distribution of the air ambient 

temperature was from 0-16 ̊C with standard deviation of 16 ̊C ± 3 ̊C while during the 

cyclic load experiment, performed from June to September, the temperature distribution 

of the air ambient temperature varied from 7 ̊C - 29 ̊C with a standard deviation of   22 ̊C  
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Fig. 60   Worst case scenarios (maximum and minimum) for constant load experiment of the left and 

cyclic load experiment on the right. 
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± 4 ̊C as it can be seen in Figures 59 above. Therefore different temperature distribution 

results in different error propagation.  

A second method to calculate the worst case scenario for the SVR model error 

propagation is shown below:  

|𝑅𝑒𝑎𝑙 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑| ≤ |𝛥𝑅 + 3 ∗ std(model error) + mean (model error)|   (12) 

where model error is the temperature difference error calculated as the difference between 

the real temperature and the predicted temperature during the testing period. The 3 times 

standard deviation of the model error was used in order to cover 99.7% of the whole 

probability error that can occur during the development of the model. The model error for 

the case of SVR was calculated without changing the distribution of the input parameters 

to be ±0.32 ̊C for constant load experiment and ±1.09 ̊C for the cyclic load experiment. 

Hence the total uncertainty of the system for the constant load can be calculated using 

Equation 12. That results in an uncertainty error of ±0.92 ̊C for the constant load 

experiment and ±1.69 ̊C for the cyclic load experiment which is approximately 1% 

difference from the worst case scenarios values calculated before. Thus this method of 

calculating the total system error is less complex and easier to be calculated during the 

implementation of an online condition monitoring system. The idea is to calculate the 

model error during the testing time and then use that value as a measure to identify 

potential hot-spots in the field. A decision making algorithm which is discussed further 

in the Chapter 6 will provide the user with confidence and will determine if the detected 

abnormal activity on the cable surface is caused by a hot-spot, a power cut, a sensor failure 

or a model problem.   

5.3 Verification of model parameters selection (Cyclic Load) 

The temperature distribution of the TCs S11 and S2 was investigated in order to identify 

which temperature difference was the most frequent prior the introduction of the hot-

spots. During the introduction of the hot-spots an increase of the temperature above the 

average temperature difference of TCs S11 and S2 was observed. The magnitude of that 

temperature increase ΔT can be calculated by: 

𝛥𝛵 = 𝑇𝑆11 − 𝑇𝑆2 − 𝑇𝑚𝑒𝑎𝑛(𝑆11,𝑆2)  (13) 
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The ΔT can be compared with the temperature difference between the real temperature 

of TC S11 and the predicted temperature of S11 from the model. This comparison can be 

used to identify if the best pair of the model parameters C and γ was selected correctly 

during the development of the model. 

The histograms of the TC S2 and TC S11 before the introduction of the hot-spots for the 

constant load experiment were plotted in order to identify the most frequent temperature 

as is shown in Figures 61 and 62. The average temperature difference was calculated by 

subtracting the highest frequent temperature of TCs S2 and S11.  

The average temperature difference between TC S2 and TC S11 before the introduction 

of the hot-spots was 3.8 ̊C. The real maximum difference during the introduction of the 

hot-spot was 6.34 ̊C hence an increase of the temperature by 2.54 ̊C happens due to the 

influence of the hot-spot. The difference of the predicted temperature of the TC S11 and 

the real temperature of TC S11 was 2.56 ̊C.  

Therefore the model parameters C and γ were well chosen and the model is accurate 

enough, as the percentage error temperature difference of the real and the predicted values 

was around 1%. The above procedure was carried out to investigate if the selection of 

parameters C and γ for the other TCs prediction models was accurately selected. 

 

 

For the load cycle experiment due to its more complex loading demand and temperature 

distribution a second approach was used. That approach did not take into account just the 

highest maximum temperature difference due to the introduction of the hot-spots but the 
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Fig. 61 Temperature distribution of TC S2 prior the influence of Hot-Spots. 



 

 86 

mean increase temperature for the different periods of the hot-spots was used.  Hence the 

theoretical mean increase, calculated from Equation 13, for 5 W hot-spot was 1.46 ºC, for 

10 W was 1.88ºC and for 15 W 2.77ºC. 

 

The model predicted temperature difference increased for 5 W was 1.50 ºC, for 10 W   

1.71 ºC and for 15 W was 2.68ºC. It can be seen in Figure 63 that the model parameters, 

C and γ, have been selected appropriately as they do not only give satisfactory results but 

as well  provide a generalized solution where the output approximation waveform of it is 

closely matching the theoretical temperature difference.  

 

 

 

 

 

 

 

 

 

 

Fig. 63    Model and theoretical temperature prediction error for TC S11 during the 

daily loading demand under the influence of hot-spots. 

Fig. 62 Temperature distribution of TC S11 prior the influence of Hot-

Spots. 
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The drying out of the soil became more significant after the day 42 and can explain the 

reason why the theoretical temperature difference with the model temperature difference 

started to have a slight difference in magnitude. The theoretical temperature difference 

did not take into account drying out of the soil as the temperature values of the TC S11 

and TC S2, which were used in Equation 13, were prior the introduction of hot-spots. 

While the temperature of TCs used in the model is influenced by the drying out soil 

process. 

In comparison to the SVR the MLR, Mboost and ANN have lower generalization 

performance. Table 13 summarizes the performance of the other algorithms.  

 

 

 

 

 

 

MLR showed good generalization performance as well as SVR. Mboost was the third 

best and ANN had the worst performance. Thus the ideal algorithm must not only be able 

to identify the number of the hot-spots but also accurately predict the amplitude of these 

hot-spots otherwise faulty decisions might be taken.  

5.4 Summary 

Thermal prognostic models in a soil filled trench under constant and cycling loading 

conditions were developed. The developed models took into account the sensitivity tests 

performed prior in Chapter 4. The soil filled trench is a more complex system than the air 

filled trench hence the suggested methodology of multiple time intervals was applied to 

identify the optimal number of input data required for SVR to develop a generalized 

model.  During the loading profiles artificial hot-spots were introduced. The thermal 

prognostic models were able to identify the abnormal changes in the cable surface 

temperature due to the existence of the external heat source. Thus it was verified that the 

Method 5 W  10 W 15 W 

Theory 1.46   ºC    1.88  ºC 2.77 ºC 

SVR 1.50  ºC    1.71  ºC    2.68  ºC    

MLR  1.50  ºC    1.68  ºC    2.66  ºC    

Mboost 1.52  ºC    1.63  ºC    2.44 ºC    

ANN 1.97  ºC    1.68  ºC    3.61  ºC    

Table 13 Benchmarking generalization performance.   
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thermal prognostic models are able to monitor specific areas of an underground cable, 

where hot-spots are more likely to occur such as of joints, and identify the hot-spot 

locations in a radius of up to 0.30 m.  

From the benchmarking performed for both constant load and cyclic load experiments 

SVR showed the best performance in both cases. SVR was able to identify the highest 

number of hot-spots in both experiments as well as to produce generalized models. MLR 

showed satisfactory performance during the cyclic load experiment but average 

performance during the constant load experiment. Furthermore MLR produced models 

with a better generalization performance than ANN and Mboost. ANN and Mboost were 

not consistent and lacked the generalization feature.   

An in depth investigation of system error analysis was performed. Real uncertainties due 

to the TCs and the data logger as well as possible prediction uncertainties were calculated 

in order to give a measure of confidence for the thermal prognostic models. It was found 

that temperature prediction errors greater than ±0.92 ̊C for the constant load experiment 

and ±1.69 ̊C for the cyclic load experiment have to be investigated further and will be 

further discussed in Chapter 6. New techniques have been introduced in order to identify 

if the best pair of model parameters C and γ were selected correctly during the 

development of the thermal prognostic models. The difference between the theoretical 

and model temperature difference were compared and analyzed. The results showed that 

the theoretical temperature difference closely matches the model temperature difference 

but the magnitude of their difference can be affected by the drying out process of the soil 

in the soil filled trench. 

The implementation of suggested thermal condition monitoring prognostic system in the 

field experiment and analysis of the outcomes of the field experiments performed in 

Cyprus MV distribution substation as well as suggested Thermal Anomaly Decision 

Algorithm (TADA) are presented in Chapter 6. 

 

 

 



   

 89

   

Chapter 6  Development of a Thermal Condition 

Monitoring System 

Collaboration with the Electricity Authority of Cyprus (EAC) and the University of 

Cyprus (UCY) has allowed development of an experiment in a distribution substation. 

Temperature condition monitoring units were installed on selected underground cable 

joints within an MV substation in Cyprus. Real-time current loading data, weather 

conditions as well as surface temperature beside the cable joints were used for the 

development of the thermal prognostic models. The  thermal condition monitoring system 

installed in Cyprus is described and the results are presented as well as the suggested 

thermal anomaly decision algorithm which is able to identify the nature of a fault that 

might occur is introduced.  

6.1 Cyprus Field Experiment 

Cyprus represents an ideal system to study as it is an islanded network that sees heavy 

demand during the tourist season as well as being far smaller and less complex in design 

compared to UK distribution networks.  

In addition, Cyprus offers environmental conditions different to UK (dry hot summers, 

mild winters). Hence, data collected in these conditions alongside the data collected in 

UK, can be a key factor to investigate a life-time of the cable in different environments 

and ensure the development of a universal condition monitoring thermal prognostic 

indicator system is effective in a variety of environments. 

Collaboration with the University of Cyprus (UCY) and the Electricity Authority of 

Cyprus (EAC) has allowed the development of experiment in the field. Field 

measurements in MV substations in Cyprus have taken place. The implementation 

involves monitoring of weather conditions, temperature of the cable underground joints 

and circuit current loadings in order to gain data which will be implemented while 

developing the condition monitoring thermal prognostic indicator system. Joints closest 

to the substations are chosen as according to the literature and local experiments they are 

the ones where the highest percentage of failures occur as well as they have the easiest 

accessibility. 
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6.2 Cyprus Experimental Setup 

The installation took place at Agios Georgios substation in Larnaca (132/11 kV), Cyprus. 

EAC found and exposed four cable joints. The first cable joint was a straight 3-phase 

PILC, the second was three XLPE straight joints and the last two cable joints were 

transition joints XLPE to PILC. Figure 64 shows the corresponding joints. 

  

    
PILC-PILC XLPE-XLPE XLPE-PILC XLPE-PILC 

Circuit 1  Circuit 2 Circuit 3 Circuit 4 

 

 

 

First the cable joints where uncovered, then a power outage took place for each of the 

joints in order to install the TCs in different locations as is shown in Figures 65. As a final 

point cable joints were covered by inserting the appropriate backfill and placing the 

condition monitoring unit inside the ground. Pictures shown in Figure 66 illustrate the 

undertaken process. 

A monitoring unit, shown in Figure 67, consists of a Campbell Scientific datalogger 

CR1000 which logs the temperature of the installed TCs across the cable joint and a 

Campbell Scientific NL120 which allows the datalogger to communicate over a dedicated 

Internet connection via TCP/IP connected with an ethernet cable. The four monitoring 

units, one for each cable joint, were assigned to a unique public IP address and connected 

via ethernet cable to a router. The data were collected from the dataloggers twice per day 

by communication over the Internet connection. 

 

 

Fig. 64 Cable joints under investigation 
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In addition to the temperature logging of the cable joints, the current loading of the four 

cable joint circuits was monitored as well. Four RCTi-3phase Rogowski coils were used 

to measure the current passing through the cables for each of the circuits of the cable 

joints in real-time. The secondary output from the RCTi-3phase is an instantaneous DC 

voltage proportional to the measured primary current. A multiplexer was used to log the 

current measurement for each of the circuits. Figure 66 shows the installation of the 

Rogowski coils for one of the circuits as well as the connection of the output of the 

Rogowski coils to the multiplexer AM16/32. 

Fig. 66 Excavation of cable joint, installation of TCs and cover of cable joint. 

Fig. 65 Layout of TCs on the attached on the surface of the cable joint. 
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 A power control unit is located inside the substation. It consists of four 18 VAC 

transformers which are connected to four main sockets. The transformers are connected 

to four CH150 Campbell Scientific regulator units. The CH150 is responsible for charging 

the 12V battery, which powers up the data logger, as well as to supply a constant regulated 

12 V output to the data logger. In case of a power interruption the batteries are enabled 

and back-up power is provided to the data loggers. 

 

An underground plastic pipe duct for each data logger was installed for an ethernet cable 

and the power lead cable. The ethernet cable connects the data logger to the router 

(communication unit) and the power lead cables connect the data logger to power control 

unit. For the last data logger, assigned as CR1000_4, extra connection wires were required 

to pass through the underground pipe in order to establish the connection between the 

outputs of the Rogowski coils, the multiplexer AM16/32 and the data logger 

CR1000_4.The schematic shown in Figure 68 represents the overall connection in the 

substation. The factors that are required to build the thermal prognostic model for the four 

different cable joints are listed in the Table 14.  

 

 

   
Monitoring Unit Installation of Rogowski Coils 

 

Router and multiplexer cabinet 

 

 

 

 Power control unit  

Fig. 67 Monitoring Unit, installed Rogowski coils, router-multiplexer cabinet and power control unit  
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Factors Unit 
Measurement 

Interval 

Averaging 

Interval 

Air Temperature ̊ C 15 minutes 30 minutes 

Solar Radiation Wm-2 15 minutes 30 minutes 

Cable Temperature ̊ C 5 minutes 30 minutes 

Current Loading A 5 minutes 30 minutes 

Fig. 68 Schematic diagram of the connection inside the Sub-station 

  Table 14  Input parameters used for the development of the thermal prognostic models  
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6.3 Thermal Anomaly Decision Algorithm 

A Thermal Anomaly Decision Algorithm (TADA) for the thermal prognostic models has 

been implemented. The development of the suggested algorithm will bring confidence in 

the reliability of the whole system as it will be able to identify and categorize potential 

failures to hazardous and non-hazardous.  

The proposed thermal prognostic condition monitoring system is shown in Figure 69. 

Real time measurements update the thermal prognostic algorithm where the output of it 

is checked in real time by the TADA. TADA is capable of identifying whether an 

instantaneous difference between real temperature and predicted temperature is an actual 

upcoming failure alert due to the development of hot-spots or different other scenarios 

such as an emergency rating, power cut, heavy rain, model problem or sensor failures.  

 

 

Real Time Measurements

1) weather conditions 

2) surface temperature by the 
cable joint/termination

3) loading demand 

Update Prognostic 
model

1) Thermal prognostic 
model 

Thermal Anomaly 
Decision Algorithm

Identification of:

1) hot-spots

2) emergency rating

3) power cuts 

4) haivy rain

5) sensor failures

6) model problems

Cable Health State

1) Anomalies of measurement
along the cable joint/termination
are compared with the predicted
ones and indicating possible
degradation activity in the cable
(3 alarm zones)

2) Historical temperature data
are saved and used for
implementation of universal
models.

Fig. 69 Proposed thermal condition monitoring system 
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6.3.1 TADA description 

The TADA algorithm was developed taking into account the results obtained in Section 

5.2, in particular Equation 12. The idea of calculating the total model error uncertainty 

based on the testing data standard deviation error technique is the key factor of this online 

decision making algorithm. Figure 70 shows the flowchart of the TADA algorithm.  

With reference to Figure 70, every new output obtained by the thermal prognostic model 

is checked continuously by TADA. TADA automatically reads the current real 

temperature of the sensor under investigation R1, the predicted output temperature P1 and 

the current load passing through the cable L1. Then the uncertainty boundaries B1 and 

B2 are calculated based on the Equation 12 as shown in the flowchart detailed in Figure 

70. Afterwards the temperature prediction error E1 is calculated by subtracting the P1 

from R1. For any value of E1 which falls between the two boundaries no action has to be 

taken and the new available values of R1, P1 and L1 are read. But if the E1 is outside the 

two boundaries then an action is implemented. There are two possible scenarios. The first 

one is when E1 is greater than B2 which means that the real temperature R1 is greater 

than the predicted temperature P1. The second scenario is when E1 is smaller than B1 

which means that P1 is greater than R1. Hence in order to investigate further the possible 

scenarios the previous values of load L1p and real temperatures R1p are read. Next two 

new variables ER_p and EL_p which represent the difference between two successive 

values of real temperature and load are calculated. 

For the case when E1 is greater than B2, the real temperature higher than the predicted, 

the scenarios of emergency rating, sensor failure and hot-spot have to be identified. From 

the knowledge gained from the field experience  and [102] a 5% unbalanced current 

loading is permitted.  Hence for the investigated circuits in Cyprus, with current loading 

of 350 A, a current deviation of 17.5 A is allowed. Therefore if the difference between 

two successive current values, EL_p, is between ±17.5 A it can be consider to be normal. 

However if EL_p is out of the above range that means that we have a sudden increase of 

load and therefore an emergency rating in the cable which explains why the real 

temperature is higher than expected. No action has to be taken and the thermal model 

continues to work unchanged. In the case where EL_p lies within the expected boundaries 

we have to investigate further the difference between two successive real temperatures, 

ER_p. If ER_p is greater than 25 ̊C it means that it is the case of a sensor failure in the 
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system as a sudden change of temperature by an increase of 25 ̊C and above without 

sudden change of current load cannot explain why the real temperature is higher than the 

predicted. From the knowledge gained during the experiments in the TDHVL sudden 

changes of temperatures of that range happen only when thermocouples are failing. Thus 

if the point of installation is accessible then the thermocouple has to be replaced otherwise 

another nearby sensor has to be used. On the other hand if the difference of the ER_p is 

less than 25 ̊C it indicates the development of a hot-spot activity in the cable. Three alarm 

zones are used to identify the severity of the hot-spot activity. The temperature threshold 

levels for the three alarm zones were selected based on the experience gained from 

backfill trench experiments. The 1 ̊C difference between the alarm zones was selected in 

order to increase the sensitivity of the system. That temperature difference can be tuned 

accordingly after enough knowledge is gained from the field experiments. The Green 

zone identifies the initiation of a hot-spot activity up to 1 ̊C in which the operator is 

informed of a potential degradation activity. The second alarm is the Orange zone where 

the TADA identifies anomalies from 1 ̊C - 2 ̊C and suggests to the operator that an action 

has to be taken. The third alarm is the Red zone in which the temperature difference lies 

from 2 ̊C - 3 ̊C and above. The alarm informs the operator that an immediate action needs 

to be taken. The use of a three alarm zone strategy allows the operator to extend the 

lifetime of existing cables as it is possible to prevent and predict failures as well as to 

reduce unnecessary maintenance costs and potentially increase customer confidence. 

The second scenario is where E1 is less than B1, i.e. the predicted temperature is higher 

than the real. This can be a case of either a possible sensor failure, a heavy rainfall, a 

model problem or a power cut. First the EL_p is checked if it lies within the allowed range 

of ±17.5 A. If not, that means that a power cut happened and resulted in the real 

temperature to be smaller than the predicted temperature. If yes, then the ER_p is checked 

if the difference between R1 and R1p is less than - 0.6 ̊C. If that is not true it means that 

the model has started to over-predict the real temperature and therefore a new model is 

required. Otherwise if the ER_p is less than -25 ̊C it means that we have a sensor failure 

in our system. If the ER_p is less than -0.6 ̊C but not less than -25 ̊C means that the 

temperature drop maybe due to heavy rain because the reading of the thermocouple has 

been affected by wet conditions. The temperature of -0.6 ̊C was selected as the maximum 

possible uncertainty found in the field, thermocouple and datalogger, is ± 0.6 ̊C. 
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Fig. 70 TADA flowchart 
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The thermal anomaly decision algorithm will update the operator in real-time about the 

condition and the health state of the investigated circuit and will give the leverage to 

identify and prevent the upcoming failures. The suggested decision making algorithm 

takes into account the most common anomalies that can occur in the field and therefore 

helps to increase the confidence of the operator to take action responsibly. 
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6.4 Analysis of field data from Cyprus MV cable circuits 

The field experiments were performed for a period of 6 months. The moving window 

strategy technique, described in more detail in [103],  was implemented for all the 

investigated circuits as the amount of collected data was not enough to create general 

models. Data collected during the first month of the experiment was not enough to 

develop feasible models that would be able to work until the end of the experiment due 

to large changes of load and temperature profiles. Hence a moving window strategy of 56 

days was performed, the first 28 days were used to train and test the model. After 

identifying the parameters for C and γ during the testing period of 3 days, the existing 

model stayed unchanged to predict the next 28 days of unknown data. After that period 

of 28 days that unknown data will be used as the new training and testing data for a new 

model while the previous training and testing data will be not taken into the account but 

saved as historical data in a database for a development of a universal model over time. 

The period of 28 days for training and testing as well as for prediction of unknown data 

was selected due to the satisfactory performance of SVR models developed during the 

backfill trench experiments.  The graphical representation of the moving window strategy 

is shown in Figure 71.  

 

 

 

 

Implementation of the moving window strategy enables the development of small and 

robust models that use the latest captured data and remove the previous data to ensure 

that newly developed models are up-to-date with current dynamics. During the period of 

the unknown data the thermal anomaly decision algorithm (TADA) is activated. If TADA 

identifies a hot-spot, the model continues working unchanged in order not to use the hot-

spot data in the development of the next model. In case of an emergency rating, power 

cut or a heavy rainfall the data during that period has to be excluded from the new training 

dataset. On the other hand if TADA identifies a model problem then the model has to be 

retrained again with the last 28 days of data. In this way the model works robustly without 
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Fig. 71 Graphical representation of moving window strategy.  
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any interference through the whole period of the experiment. Two types of activity were 

found in the investigated circuits during the field experiments. Hot-spots activity was 

identified in Circuit 3 while Circuit 2 and 4 did not show any hot-spot activity. Circuit 1 

did not allow further analysis due to technical issues. 

6.4.1 Circuit 3 hot-spot activity  

The same analysis as previously described in Sections 5.1.1 and 5.1.5 was performed to 

identify the relation between the input data and the best amount of input data needed for 

SVR to develop robust models. The amount of input columns found for this case was 144 

30 minute intervals. Hence the initial amount of training data was 22 days, 3 days of 

testing and therefore the first window length was 53 days. The input features used for the 

development of the models was the surface temperature of TCs C3_T1, C3_T2, C3_T3 

as well as the current loading measured by the Rogowski coils R_C3_B, R_C3_Y and 

R_C3_R. Weather parameters such as solar radiation and air ambient temperature were 

not taken into account as were found not to affect the performance of the model as the 

joint is buried 1.5 meters below the ground surface.  

The moving window strategy was implemented and was used to predict the temperature 

of TCs across the length of Circuit 3. Initially the temperature of TC C3_T6 did not show 

any signs of hot-spot activity as can be seen in Figures 72-75. It can be seen that the 

prediction error in the first moving window, Figures 72-73, started slowly to deviate but  
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Fig. 72 Comparison between predicted temperature 

on Testing Data (MAPE=2.12%) and Unknown Data 

(MAPE=12.04%) with the real temperature of TC 

C3_T6. 

Fig. 73 Temperature prediction error for TC 

C3_T6.  
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still there was not a need to retrain the model as the prediction error was within the 

allowed error boundaries, ±0.78 ̊C, set by TADA. The over predictive performance of the 

model was due to the fact that there were not enough representative patterns of data during 

the training period which could give the model capability to perform well during the 

temperature increase of the cable from day 25 and onwards. In Figures 74-75 it can be  

 

 

 

seen that for the second moving window the previous training data was discarded and 

substituted the with newer unknown data. The SVR model developed for that period 

performed well due to the fact that training data included temperature increase patterns 

similar to those found during the unknown period. Therefore the model had the capability 

to perform well as the temperature was increasing during the unknown data period. On 

day 94 of the experiment an emergency rating occurred in the Circuit 3, as can been seen 

in Figure 76, resulting in an increase of temperature of the cable by 1 ̊C. Two weeks after 

the emergency rating the TC C3_T6 started showing the first signs of hot-spot activity. 
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Fig. 76 Emergency rating in Circuit 3 at day 94 of the experiment.   
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As mentioned the model was left to run unchanged. The results of the model prediction 

are shown in Figures 77 and 79-80 below. 

 

 

 

 

 

 

 

 

 

 

The emergency rating, black circle 1 Figure 78, triggered and drastically accelerated the 

potential ongoing internal aging activity in the cable joint which resulted in the 

temperature build up on the cable joint around the location of the TC C3_T6 as shown in 

Figures 79-80. On day 170 the real temperature exceeded the expected predicted 

temperature by 14 ̊C.  
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Fig. 77 Comparison between predicted temperature on Testing Data (MAPE=1.8%) and Unknown 

Data (MAPE=28.52%) with the real temperature of TC C3_T6. 

Fig. 78 Load demand for Circuit 3 from day 94 until day 173.   
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It can be seen from Figure 78 that on day 170, black circle 2, a high load demand rose up. 

The reason behind the increased load demand was a sand storm from the Sahara desert 

which struck Cyprus resulting in an increased usage of air conditioning by consumers. 

Figures 79-80 show the temperature prediction error during that period. A better 

understanding of the hot-spots location and magnitudes can been seen in Figure 80. Only 

the temperatures higher than 0.73 ̊C are plotted as they fall outside the allowed upper limit 

boundary based on Equation 12 in Section 5.2. From day 94 when the emergency 
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rating happened until the day when the first hot-spots were found on day 108 a period of 

2 weeks passed. From day 108 and onwards the temperature difference between real and 

predicted started slowly rising up every day, reaching a temperature difference increase 

of more than 3 C̊ 12 days prior to the huge temperature spike on day 170. The temperature 

difference reached its highest point of 14 ̊C within 7 hours and the total duration of the 

abnormal spike lasted for 12 hours. The suggested alarm zone strategy can give the system 

operator an insight of the current state of the cable. Already from day 134, 36 days prior 

to the temperature spike, the temperature difference lies within the red zone giving to the 

system operator enough time to take action and precautions prior to the potential failure 

as can be seen in Figure 80. The prediction models for TC C3_T4 and C3_T5 were also 

able to identify as well the abnormal temperature activity on the surface of the cable joint 

as shown in Figures 81-82.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

53 60 67 74 81 88 95 102 109 116 123 130 137 144 151 158 165 173
0

1

2

3

4

5

6

7

8

9

Time ( Day )

T
e
m

p
e
ra

tu
re

 (
 

C
 )

 

 
Temperature Difference ( Real - Predicted)

Orange Zone

Red Zone

Green Zone

53 60 67 74 81 88 95 102 109 116 123 130 137 144 151 158 165 173
0

1

2

3

4

5

6

Time ( Day )

T
e
m

p
e
ra

tu
re

 (
 

C
 )

 

 

Temperature Difference ( Real - Predicted)

Fig. 81 Temperature prediction error and alarm zones for TC C3_T5.  

Fig. 82 Temperature prediction error and alarm zones for TC C3_T4.  



   

 105

   

The maximum temperature difference plotted against located distances of TCs is shown 

in Figure 83. Thus the SVR proved to produce generalized models which can be described  

 

 

 

 

 

 

 

 

in an exponential decay equation as expected. From the distribution of the TCs along the 

surface of the cable joint it was possible to identify that the location of the hot-spot was 

by the location of TC C3_T6. On the other hand TC C3_T8 located 2 meters away from 

the location of the hot-spot could not identify any temperature anomaly at all.  

Despite the negative expectations the joint did not fail after the huge temperature spike 

on the day 170. In contrast, as can be seen from Figure 76, the real temperature dropped 

and matched the predicted temperature levels. One of the possible reasons for that could 

be explained by the self-healing behaviour of the mass impregnated cables. The TC 

C3_T6 is located on the surface of the PILC section of the cable joint. The self-healing 

properties of mass impregnated cables have been previously reported in both 

experimental [104] and field [105] conditions . Partial discharge activity in microvoids 

can initiate a degradation aging in the cable. On some occasions PD activity can stop after 

the electric field in the microvoids is neutralized due to the development of a carbonized 

path. While in some other cases as the temperature of the cable is rising, the viscosity of 

the mass impregnated oil inside the cable reduces and as a result it flows easier and closes 

the microvoids. Hence when the temperature is reduced the viscosity becomes again high 

and fills permanently the internal voids. After the day 170 the load reduced and possibly 

that was the reason for the disappearance of the spike. Further cases of self-healing 

phenomena in power connectors [106] due to cyclic load can result in an increase or 
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decrease of the resistance of the cable joint and hence create periods in time with local 

hot-spots in the cable joints which increase their surface temperature or decrease it 

respectively.  

6.4.2 Circuit 2 and 4 no hot-spots 

Both Circuits 2 and 4 did not show any sign of degradation activity during the period of 

field experiments. Circuit 2 is a shallow buried cable circuit and hence the solar radiation 

and air ambient temperature parameters were taken into account in addition to the surface 

temperature of TCs C2_T1, C2_T2, C2_T3 as well as the average current loading 

measured by the Rogowski coils R_C2_B, R_C2_Y and R_C2_R. For Circuit 4 the 

surface temperature of TCs C4_T1, C4_T2, C4_T3 as well as the average current loading 

measured by the Rogowski coils R_C4_B, R_C4_Y and R_C4_R. The solar radiation and 

air ambient temperature were not used as the Circuit 4 is a deeper buried cable. The 

amount of input columns, based on the above mentioned analysis in Section 5.1.1 and 

5.1.5, were 48 30 minutes intervals for both Circuit 2 and 4.   

After the installation, Circuit 2 started experiencing a technical issue. Due to the limited 

space around the location of Circuit 2 it was decided to mount the condition monitoring 

unit on the wall as is shown in Figure 84. During the collection of the data a strange noise 

started to appear on the data every day at around 08:00 in the morning as is shown in 

Figure 85. Plotting the captured raw data of the datalogger revealed that this effect was 

due to sunlight on the surface of the datalogger enclosure and causing the temperature of  

 

 

 

 

 

 

 
Fig. 84 Circuit 2 monitoring unit during interference period. 
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the on board thermistor of the datalogger to rapidly change. The datalogger uses the 

temperature of the on board thermistor as a reference point to calculate the temperature 

of the thermocouples connected to it. As the temperature of the thermistor was not 

appropriate, it caused the noise effect on the raw data.  The problem was solved by simply 

adding a wooden screen in front of the enclosure as it can be seen in Figure 86. For that 

reason the data analysed for Circuit 2 was reduced by 42 days than that for Circuit 4.  
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Fig. 85 Circuit 2 raw data interference period. 
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The TCs C2_T5 and C4_T5 of Circuits 2 and 4 respectively were chosen to show 

prediction results presented in Figures 87-106. The initial amount of training data was 24 

days, 3 days for testing and initial moving window length of 55 days. Afterwards the 

moving window was kept to a size of 56 days.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 7 14 21 28 35 42 49 55
19

20

21

22

23

24

25

26

Time ( Day )

T
e
m

p
e
ra

tu
re

 (
 

C
 )

 

 

predicted

real

Testing

  Data
Unknow n DataTraining Data

0 7 14 21 28 35 42 49 55
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time ( Day )

T
e
m

p
e
ra

tu
re

 (
 

C
 )

 

 
Temperature Difference ( Real - Predicted)

Unknow n DataTraining Data

Testing

  Data

Fig. 87 Comparison between predicted temperature 

on Testing Data (MAPE=0.69%) and 
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real temperature of TC C2_T5. 

Fig. 88 Temperature prediction error for TC 

C2_T5.  
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The models produced by the moving window technique were well tuned with appropriate 

parameters and produced robust and generalized models throughout the whole period of 

the experiment. There were not any signs of degradation activity detected during the 

period of 133 days that the experiment lasted. Figures 95-106 show the prediction results 

for TC C4_T5.  
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Fig. 91 Comparison between predicted temperature 

on Testing Data (MAPE=0.92%) and Unknown Data 

(MAPE=1.68%) with the real temperature of TC 

C2_T5. 

Fig. 92 Temperature prediction error for TC 

C2_T5.  
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on Testing Data (MAPE=0.84%) and Unknown Data 
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Fig. 94 Temperature prediction error for TC 

C2_T5.  
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It can be observed that the performance of the prognostic models was satisfactory and 

there were not any signs of possible hot-spots in the investigated underground cable joint. 

The predicted temperature with the real measured temperature were very close to each 
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Fig. 96 Temperature prediction error for TC 
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Fig. 95 Comparison between predicted temperature 

on Testing Data (MAPE=1.06%) and 

Unknown Data (MAPE=1.23%) with the 

real temperature of TC C4_T5. 
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Fig. 97 Comparison between predicted temperature 

on Testing Data (MAPE=0.55%) and Unknown Data 
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other. The results for the further four moving windows are also satisfactory and are 

presented in Figures 99-106. 
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Fig. 99 Comparison between predicted temperature 

on Testing Data (MAPE=0.45%) and Unknown Data 

(MAPE=0.77%) with the real temperature of TC 

C4_T5. 
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Fig. 102 Temperature prediction error for 

TC C4_T5.  

Fig. 101 Comparison between predicted temperature 

on Testing Data (MAPE=0.42%) and Unknown Data 

(MAPE=0.70%) with the real temperature of TC 

C4_T5. 
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Circuit 4 was monitored for a period of almost 6 months and did not show any signs of 

degradation activity. The temperature of TC C4_T5 was predicted accurately taking into 

account the parameters mentioned previously which verified once again that they were 

chosen appropriately.  
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Fig. 104 Temperature prediction error for 

TC C4_T5.  

Fig. 103 Comparison between predicted temperature 

on Testing Data (MAPE=1.46%) and Unknown Data 

(MAPE=1.82%) with the real temperature of TC 

C4_T5. 

Fig. 106 Temperature prediction error for 

TC C4_T5.  

Fig. 105 Comparison between predicted temperature 

on Testing Data (MAPE=1.25%) and Unknown Data 

(MAPE=1.80%) with the real temperature of TC 

C4_T5. 
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6.5 Summary 

After the satisfactory results obtained from the soil trench experiments, a field experiment 

was setup up in Cyprus. Four temperature condition monitoring units were installed on 3 

different types of underground cable joints, commonly found in Cyprus. The collected 

data were used for the development of real-time condition monitoring prognostic health 

systems.  

A thermal anomaly decision algorithm (TADA) was implemented in order to give real-

time needed confidence to the network operators about the condition of their circuits. 

TADA was able to identify that Circuit 3 had severe issues with hot-spot activity and 

therefore required immediate actions to be taken. The thermal prognostic model was able 

to predict accurately the first signs of a severe degradation activity in the cable joint of 

Circuit 3 two months prior its occurrence which led to an abnormal temperature spike of 

14 °C. The catastrophic failure of the cable joint was avoided due the self-healing 

behaviour of the mass impregnated cables inside the cable joint. As it can be seen from 

the last three days of the field experiment the above phenomenon removed completely 

the hot-spot activity. Hence the strategy to leave the model unchanged during the first 

signs of hot-spots activity has proven to be reasonable. Circuit 2 and 4 showed no signs 

of degradation activity and verified the efficiency and the robustness of the SVR 

algorithm. 

It has been reported from previous studies from IREQ [12] that the locations of hot-spots 

in cable joints matched locations of the failures and were always combined with PD 

activity. On the other hand, PD activity never leads by itself to a failure while a hot-spot 

is a clear indicator of a progressing problem. From the experimental results obtained for 

Circuit 3 it can be verified that an abnormal temperature led to degradation activity. Thus 

for cable joints the predictive thermal condition monitoring technique can be more 

effective and appropriate rather than PD monitoring alone. 

The use of such systems within  power networks will provide a smarter way of prognostic 

condition monitoring which is based on improved models and reduced reliance on 

measurements in real-time. The use of suggested thermal models will enable the power 

network operators to maximize asset utilization and minimize constraint costs in the 

system.  
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Chapter 7  Conclusions and Future Work  

This research aimed to develop a reliable and robust online condition monitoring thermal 

prognostic indicator system which will reduce the risk of failures in a power distribution 

network. A condition monitoring thermal prognostic system was developed taking into 

the account real-time weather conditions, surface temperature of the cable joints or 

terminations and loading demand which updates a thermal prognostic model giving a 

more accurate prognosis and pre-failure indication.  

It has been established that aging of the underground cables happens due to the electrical, 

mechanical and environmental factors or a combination of them. The most dominant 

factor influencing the aging of the underground cable and hence the lifetime of the cable 

was found to be thermomechanical aging. Thermomechanical aging happens due to the 

daily loading cycles which cause cyclical heating and cooling of the cable which results 

in cable movement and bending. The above mentioned movement and bending mostly 

causes damage to the cable sheath near the joints. That might lead to the formation of 

microvoids which can cause under the wet or dry environmental conditions water or 

electric trees. Mechanical damage to the cable can be also caused due to the high ambient 

temperatures which result in drying out of the soil. A combination of high ambient 

temperatures and high loading cable demands can cause overheating of the cable which 

will result in a cable and cable joint failure due to the breakdown of the cable insulation.   

It was found that cable joints and terminations are one of the weakest points in 

underground cable systems and the state of the joints and terminations health directly 

reflects in a more reliable power network. Hence monitoring the operational condition 

and health of the joints and terminations can increase the reliability of power networks, 

reduce costly repairs and increase customer confidence.  

Over the past decade various diagnostic and condition monitoring techniques for cable 

joints and terminations have been developed. Some of them are based on optical gas 

sensors, temperature sensing with GPRS data transmission, partial discharge diagnostic 

and condition monitoring units and finally temperature monitoring units for cable joints 

and terminations.  
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A review of published literature revealed the great need of reliable predictive capabilities 

that continuously predict and monitor real-time the health state of the underground cable 

joints and terminations and are able to identify degradation activity at an early stage.  It 

was found that abnormal temperature changes on the surface of the investigated 

accessories are closely related to health condition and are caused by thermomechanical, 

environmental, electrical factors or a combination of them. Hence it was decided to 

develop an online condition monitoring thermal prognostic indicator system which can 

be used to indicate and prevent possible upcoming failures prior to their occurrence. 

It was established through the thermal simulation models in COMSOL that internal faults 

inside the cables will generate heat and depending on the size of the internal fault will 

increase the surface temperature of the cable several meters away from the location of the 

fault. A thirty minutes prediction horizon was chosen as it took that amount of time to 

detect the temperature increase by 1̊ C at 0.25 m away from the location of the smallest 

fault of 2.5 W used during modelling. In order to develop a suggested thermal prognostic 

capability the SVR algorithm has been used for the implementation of thermal prognostic 

simulation models for air filled and soil filled trenches rather than ANN, MLR and 

Mboost due to its better generalization ability as evidenced by the results of  

benchmarking tests of the four investigated algorithms. 

The implementation of the thermal prognostic model in the air filled trench and the 33kV 

thermal cycle experiment based on the SVR showed very satisfying results. The thermal 

prognostic models that have been developed were able to identify the increase of the 

surface cable temperature produced by the introduction of the hot-spots. A new 

methodology has been introduced through a series of various sensitivity tests which 

enabled easier and more effective development of thermal prognostic models. It was 

concluded that the best data averaging time is every 30 minutes, that the most dominant 

weather parameters are solar radiation and air ambient temperature, that the time gap 

between peak of solar radiation and peak of cable temperature provides vital information 

about the amount of input data needed and finally that the model is able to give 

satisfactory prediction results up to 2 hours ahead.It was found that the TCs can be used 

to detect temperature anomalies within the radius of 0.35 m from the location of the heat 

source.  Therefore if the TCs are placed within close proximity to the investigated 

monitoring areas, such as cable joints and terminations in air, they can be effectively used 
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to implement prognostic models that are able to detect and predict a possible cable 

accessories degradation activity at an early stage.  

The SVR was used to develop and implement the thermal prognostic model in the soil 

filled trench for both constant and cycling load experiments. The performed 

benchmarking for both constant and cyclic load experiments justified the choice of SVR 

as it showed best overall performance for both cases. The developed models are able to 

identify anomalies of cable temperature 30 minutes into the future. The prediction output 

can be used to identify a possible sign of upcoming degradation activity in the cable. It 

has been proven that it is possible to monitor specific areas of an underground cable, 

where hot-spots are more likely to occur, such as joints buried in the soil. It was found 

that the most effective distance for the thermal prognostic model to identify the location 

of the hot-spots in the soil, is in a radius of up to 0.30 m. A methodology for calculating 

the total system error for an online condition monitoring thermal prognostic indicator 

system has been developed. In addition to above a verification technique for the selected, 

during the initial development of the model, parameters C and γ was developed. 

The field experiment in an MV substation in Cyprus was used to test the performance and 

robustness of the thermal prognostic models on real underground cable joints. Four 

different underground cable joints were monitored by the thermal prognostic models. 

Real-time measurements such as solar radiation, air ambient temperature, cable circuits 

loading as well as surface temperature by the cable joints were used to update the thermal 

prognostic models. 

The suggested thermal anomaly decision algorithm (TADA) proved to give a real-time 

insight into the level of current degradation activity within the cable joint based on the 

developed 3 zones alarm system strategy. The thermal prognostic models for Circuit 3 

combined with the 3 zones alarm system strategy of TADA were able to identify the 

initial stages of a degradation activity in the investigated cable joint which was initiated 

by the emergency rating on the 94th day of the experiment. It detected severe hot-spot 

activity in Circuit 3 two months prior to the abnormal temperature increase of 14 °C on 

the surface of the cable joint. Due to the self-healing abilities of mass impregnated cables 

a potential failure was avoided. On the other hand there were not any signs of degradation 

activity in Circuits 2 and 4 which once again confirmed the efficiency and the robustness 

of the SVR algorithm. 
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Thus if the knowledge of the Circuit 3 health state was available prior to the performed 

emergency rating then the abnormal hot-spot activity within the joint could be avoided. 

In most of the cases it was not possible to observe the current health state of the 

accessories and therefore lack of that knowledge can lead to taking wrong decisions which 

cause catastrophic failures in the power network. In the near future where smart grids will 

expand even more in the distribution systems, it will be necessary to know real-time the 

exact health state of the assets. The suggested thermal prognostic condition monitoring 

techniques and alarm zones strategy can be effectively implemented by DNOs to predict 

real-time the condition of the assets in order to successfully perform and schedule 

necessary maintenance. 

7.1 Future work 

The power industry needs to move towards online prognostic condition based 

maintenance. It will give the power operators the ability to predict and prevent failures 

by monitoring online health state of their assets. Any deviations from the predicted health 

state of the investigated assets should be considered as an indication of a possible 

instability in the health condition of the assets. This thesis has proved that predictive 

maintenance approach is feasible and applicable as it was able to indicate a developing 

fault in a cable joint. The initial installation cost of the developed technique is much lower 

comparing to the cost of the majority diagnostic techniques currently available on the 

market. Furthermore the cost of the suggested system can be further reduced with the use 

of dedicated lower cost condition monitoring units which have the capability to connect 

to the internet through GSM network, ethernet connection or over Wi-Fi. Nowadays with 

the vast amount of data collected from the power networks and with the development of 

cheaper and more reliable sensors as well as with already available cloud storage an 

online prognostic systems should not be difficult to build and install within the power 

networks.  

Further research is needed to improve understanding of the assets within the current 

power networks that may be affected significantly after the introduction of the smart 

grids. Smart grids will make the existing power networks more complex, will generate 

new power flow loads and add the new stresses to the existing power network systems. 

For the case of underground cable joints it would be beneficial to further investigate the 

stress/strain factor by the end of the cable joints. Development of prognostic stress/strain 
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models together with thermal prognostic models could give even better prediction results 

as it will enable to fully monitor the thermomechanical aging effect on the underground 

cable joints. Hence it is of a great importance to further investigate the most vital factors 

which need to be monitored and will directly translate into the health condition of the 

different assets. Identification of these monitoring factors and development of predictive 

models will bring us a step closer to the implementation of predictive based maintenance.  

In the future the suggested online condition monitoring thermal prognostic indicator 

system can be installed in the distribution networks for such institutions and facilities of 

urban infrastructure as hospitals, airports, ports and other facilities which require reliable 

and an uninterrupted power supply.  
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Appendix 

Appendix 1 Cable model in COMSOL 

The properties of an 11kV XLPE cable are shown in Table 15. Thermal properties of the 

materials are from [107]. 

Component 
Outer Diameter 

(mm) 
Material 

Thermal 

Conductivity 

(W/m·K) 

Volumetric 

Heat Capacity 

(MJ/m3K) 

Conductor 13.1 Copper 400 3.45 

Dielectric 19.9 XLPE 0.286 2.4 

Bedding 24.2 Semicon 0.286 2.4 

Armour 26.9 Aluminum 205 2.42 

Outer Sheath 31 PE 0.286 2.4 

Table 15 Cable properties 

The soil has the same thermal parameters and is treated as a uniform medium with thermal 

resistivity of 1.2 KmW-1 and volumetric heat capacity of 1 MJm-3K-1.  The cable initializes                    

Fig. 107 Cable temperature under transient conditions.  
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first by solving a steady state solution without the introduction of the hot-spot with a 

current loading of 100 A and then a transient solution including the hot-spot as can be 

seen in Figure 107. The hot-spot was located in the middle of the cable and just above the 

conductor covering ¼ of the circumference of the conductor with a width of 2mm and 

total area of 68 cm2. In terms of model boundaries conditions the cable is enclosed in a 

surrounding backfill box which represents the ambient environment. The backfill box 

height is 5 m and it is big enough to assume no heat flux crosses the side boundaries as 

can be seen from Figure 107. The meshing was selected carefully to give the best 

compromises between solution speed and accuracy. The difference between an extremely 

fine meshing and meshing used was of the order of 0.01 ̊C. Therefore the extremely fine 

mesh was not necessary. The meshing used is shown in Figure 108.   

 

 

 

 

 

 

 

 

Fig. 108 Cable meshing. 
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Appendix 2 Implementation of Machine Learning Algorithms 

The implementation stages for the development of a thermal prognostic model is shown 

in Figure 109. The real time measurements data such as weather conditions, surface 

temperature and loading demand are averaged every 30 minutes. Then input features are 

scaled from 0 to1 and are input to the different machine learning algorithms for training 

and testing. The different Machine learning algorithms might require tuneable parameters 

which can be found through experimental testing. Finally, the machine learning algorithm 

obtains the prediction results which are compared for benchmarking. An example of the 

system architecture used for neural network is given in Figure 110. 

Real time measurements 

(weather conditions, 

surface temperature and 

loading demand

Pre-processing

(averaging input features)

Data preparation for 

each algorithm 

(scaling input features)

ANN

-Layers

SVR

- C and γ
MLR

Mboost

- Iteration , nu

Prediction Results and 

Benchmarking

 

   

 

 

Fig. 109 Machine learning implementation flowchart 

Fig. 110 Architecture of neural network with 27 input features and 7 hidden 

layers. 
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Appendix 3 Variac Control Unit Schematic, Pictures and 

Instrumentation 

Below is the schematic of the Variac control unit and the pictures associate with the variac 

control unit. 

 

 

 

 

 

 

 

 

Fig. 111 Schematic diagram of the connection between Stepper motor and NI USB-6008 

Fig. 112 Schematic diagram of the connection between Voltage and Current transducers with NI USB-6008 
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Fig. 113 Front side of variac unit Fig. 114 Back side of variac unit 

 Fig. 115 Experimental Framework for load/ time power demand profiles 
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The implementation of the data monitoring system for the temperatures of the surface 

through as well as the weather conditions can be seen in Figure 116. 

 

 

 

 

 Fig. 116 Data monitoring system for surface through and weather station. 
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Appendix 4 Datasheets  
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CR10 Specifications  
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Multiplexer AM 16/32 
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T-type thermocouple Tolerance IEC 584 Class 1 was used.  
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Rogowski coil 
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