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UNIVERSITY OF SOUTHAMPTON

ABSTRACT
FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Thesis for the degree of Doctor of Philosophy

THERMAL PROGNOSTIC CONDITION MONITORING FOR MV CABLE
SYSTEMS

by Stelios Christou

Large-scale investment in transmission and distribution power networks is planned over
the next decades to meet the future demand and changes in power generation.
Nevertheless, it is still of a great importance that the existing assets continue to operate
reliably and their health is maintained. Moreover, the failures of distribution cables are
extremely disruptive, costly to repair and have a serious impact on customer confidence.

As a result, developing a reliable on-line prognostic tool is of a great importance.

This research investigates a method of developing a prognostic capability for evaluation
of the health and long term performance of aging distribution cable circuits. Developing
such prognostic models will significantly improve the prognosis accuracy, allowing the
targeting of maintenance and reduction of in-service failures. Real-time measurements
taken close to underground cables can update the models giving a more accurate
prognostic tool. The aging of the cable begins the moment it is installed and put in service

due to a combination of mechanical, thermal, electrical and environmental factors.

A thermal prognostic model is suggested. It enables prediction of the likely temperature
impact on underground cable joints at the burial level and terminations according to
weather conditions and known loading. Anomalies of temperature measurements along
the cable compared to predicted temperatures will indicate the possible degradation
activity in the cable. An experimental surface trough has been set up where operation of
power cables was simulated with control system which is able to model any cable loading.
The surface temperature of the cable is continuously monitored as well as the weather

conditions such as solar radiation, wind speed, humidity, rainfall and air temperature.

The research involved cooperation with University of Cyprus and the Electricity

Authority of Cyprus which has given an opportunity to implement, install and study the



performance of the condition monitoring thermal prognostic model in a distribution

network with different environmental and loading conditions than found in the UK.
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Chapter 1 Introduction

An ultimate aim of every Distribution Network Operator is to maintain a reliable power
supply to its customers. With a constantly increasing power demand existing transmission
and distribution underground power networks are exposed to a number of factors which
speed up cable aging leading to breakdown of power cables that are very inconvenient
and expensive to repair. Thus developing a reliable online condition monitoring
prognostic indicator tool is of great demand and importance in order to predict and
prevent upcoming failures, make maintenance easier, reduce operational costs as well as

to increase the confidence of the customers.

The health of the electricity networks has a great financial and social impact to the society.
In 1998 a 6 weeks power outage happened in Auckland due to overheating of four power
cables. It had an estimated long-term economic impact equivalent 0.1 to 0.3 per cent of
New Zealand's gross domestic product and over half of businesses within the central

business district were forced to move out at least temporarily [1].

The research presented in this thesis involved collaboration between the University of
Southampton, the University of Cyprus and the Electricity Authority of Cyprus in order
to install condition monitoring units in underground cable joints inside an MV substation.
This enabled the analysis of real-time data from cable circuits in Cyprus which
contributed towards the development of an online thermal condition monitoring

prognostic indicator tool.

1.1 Research Motivation

Cables start to age the moment they are put in operation. The lifetime of an aging cable
is affected by a combination of mechanical, thermal and electrical stresses as well as
weather conditions [2]. Most of the failures within a distribution network have been
reported by the cable joints and terminations and for that reason they are considered to be

the weakest accessories in the distribution networks [3][4][5].

Over the past decade there has been a significant breakthrough in development of online
diagnostic and condition monitoring tools which enabled network operators to a certain

extent prioritize the required repairs or replacements in power networks. Partial discharge



(PD) monitoring tools can detect the defect prior to the failure of insulation [6]. Hydro
Quebec Research Institute and KEMA have developed an online monitoring systems
which are able to detect and localize PD in cable and cable joints and to indicate the
upcoming failures by spotting the abnormal PD activity [7][8]. Another way of condition
monitoring is the monitoring of the temperature on the joint of underground cable. Hydro
Quebec developed an online monitoring software which records temperatures of the cable
joints and can indicate the health of the monitored joints [9]. Thermal imaging cameras
have been used as a diagnostic technique for assessing the health of cable terminations
[10]. The Electric Power Research Institute (EPRI) suggested the above technique to
periodically inspect the current health state of the cable accessories such as joints and
terminations [11]. Unfortunately, existing condition monitoring and diagnostic
techniques are not always capable of detecting and preventing failures prior to their
occurrence [10] [12]. Thus it is vital to identify the early stages of a possible degradation
activity within the cable systems by developing improved prognostic capabilities.

Developing such a prognostic capability will significantly improve the prognostic
accuracy, allowing the targeting of maintenance and reduction of in-service failures. The
existing condition monitoring systems are costly to implement and maintain. Furthermore
the abovementioned condition monitoring systems are often able to identify only the final
stages of an upcoming failures thus proving unreliable for network operators to schedule

necessary maintenance.

Hence a development of a condition monitoring prognostic indicator tool which is cost
effective and is able to predict upcoming catastrophic failures sometime before its

occurrence is of a great demand.

1.2 Feasibility of a Thermal Prognostic Model

Development of models can significantly improve the accuracy of prognostics, it can
reduce the cost of maintenance and prevent in service failures. Real-time measurements
taken close to underground cables can update the models input variables giving a more

accurate prognostic model by reducing the real-time error of the prognostic output value.

In this work a thermal prognostic model is introduced and implemented for cables in air
filled and soil filled trenches as well as in underground cable joints in a MV substation in

Cyprus. The developed thermal prognostic model is based on a Support Vector
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Regression (SVR) algorithm that is able to predict the likely temperature along the cable
30 minutes into the future and is able to detect temperature anomalies which can indicate

upcoming failures.

Weather parameters such as solar radiation and air ambient temperature as well as load
profile demands and cable temperature are used to develop the SVR models. A humber
of various sensitivity tests were performed in order to create a new methodology through
which more efficient thermal prognostic models could be developed and adopted

globally.

1.3 Contribution of this Thesis

The feasibility of predicting abnormal temperature anomalies along the surface of the
cable accessories has been investigated. A simulation model in COMSOL as well as the
experiments performed in air filled and soil filled trenches have verified that a set of
potential faults will generate heat and the rise of temperature can be detected on the
surface of the investigated accessories. A SVR machine learning algorithm has been used
to develop thermal prognostic models which are able to identify abnormal cable surface
temperature increases. Weather parameters such as solar radiation, air ambient
temperature as well as cable loading conditions were taken into to account during the
development of the thermal prognostic models.

From the outcomes of the experiments in air filled and soil trenches as well as through
the series of different sensitivity tests and the pre-processing data analysis, a methodology
has been established which was then used during the installation and implementation of
an online prognostic condition monitoring system for an MV substation in Cyprus. Field
data collected from Cyprus was analysed and used to develop the thermal prognostic

condition monitoring system.

A thermal online condition monitoring prognostic indicator tool has been developed and
implemented in the MV substation in Cyprus. The above prognostic capability is able to
identify and predict the healthy state of the cable accessories such as joints and
terminations. It was able to identify an upcoming failure in the real field underground
cable joint approximately 2 months prior to failure. The developed thermal anomaly
decision algorithm (TADA) combined with the developed prognostic tool is able to give

an insight on the current scale and size of degradation activity happening within the cable
3



joint and can provide the network operator with the needed confidence to take necessary
actions and precautions. The suggested thermal online condition monitoring prognostic
indicator tool will be able to fill the gap of demanded prognostic capability for common
cable accessory faults. This research proves that the concept of predictive maintenance as

well as the transition from diagnostics to prognostics is achievable.

1.4 Thesis Structure

This chapter has described the research motivation, the reasons why a reliable thermal
prognostic model is of a great demand and the contributions of this thesis. An online
condition monitoring thermal prognostic indicator system based on SVR is proposed.

Chapter 2 presents a more detailed investigation of the underground cables used in the
MV distribution networks. It outlines the construction of cables and the aging mechanism,
factors and effects affecting lifetime of a cable. This Chapter also describes possible
underground joint and termination failures and aging mechanisms as well as existing
diagnostic and condition monitoring methods for the underground cable joints and

terminations.

Chapter 3 investigates the possibility to identify abnormal changes of temperature on the
surface of a cable using a simple thermal cable model created in COMSOL. A comparison
between Artificial Neural Network (ANN), Multiple Linear Regression (MLR), Gradient
Bosting (Mboost) and Support Vector Regression (SVR) machine learning algorithms is
performed and the reasons why the SVR is chosen and ultimately implemented are
explained. The theoretical background of the SVR is presented and the description of the

development of a thermal prognostic model using the SVR algorithm is described.

Chapter 4 outlines a series of sensitivity tests performed in the air-filled trench. The
results of the sensitivity tests are taken into account for the development and
implementation of the thermal prognostic models in the soil filled trench and in the
Cyprus field experiment as it is described later in Chapters 5 and 6. Furthermore the air-
filled thermal prognostic model is developed and is able to detect the abnormal
temperatures along the air-filled trench produced by an external heat source. The
sensitivity of the thermocouples (TCs) is investigated in order to identify if they are
appropriate temperature sensing devices to detect the existence of the increased

temperature produced by the hot-spots on specific part of an underground cable system

4



such a joints and terminations. An experiment on a 33kV termination is performed in
order to identify if the thermal prognostic model is sensitive enough to detect abnormal

change of temperature on the termination surface after the introduction of hot-spots.

Chapter 5 describes the performance of the SVR thermal prognostic model in the soil
filled trench under the influence of the hot-spots during constant and cyclic loads. A
benchmarking between the 4 above mentioned algorithms for both constant and cyclic
load experiments is performed. Moreover it outlines an in-depth analysis of possible

system error and the verification of selected model parameters is presented.

Chapter 6 describes the development of a thermal condition monitoring system that has
been designed and implemented for an MV substation in Cyprus. The field experimental
data from Cyprus is used for the development of the thermal prognostic model. Finally
the development of a thermal anomaly decision algorithm which is used to classify the
upcoming failure alerts is presented.

Chapter 7 summarises the development of the thermal prognostic models established in
this research, highlights the benefits of these developments and discusses the potential of

further development of the techniques proposed in this thesis.



Chapter 2 Underground Cable Systems and the
Mechanism of Cable Aging

Underground cables are used to transmit or distribute power within power networks.
Underground cables are less liable to the impacts of severe weather, smaller land area is
required for installation compared with overhead lines and finally they emit lower

electromagnetic fields than overhead lines [13].

From the beginning of the 20" century, low and medium voltage underground cables were
used to distribute electric power in congested urban areas. The development of
technology, new ways of manufacturing and design of underground cables enabled them

to be used for electric power transmission for short or medium distances.

2.1 Underground Cable Construction

An underground cable is mainly composed from: a) a conductor, b) insulation around the
conductor and c) an external protecting covering. An example of a three-core cable is

shown in Figure 1.

Lead
sheath

Armouring

Conductor

Paper )
Insulation Beading Serving

Fig. 1 Three-Core cable construction [14].

The number of conductors in an underground cable depends upon the purpose for which
the cable is intended to be used. The conductors are built from stranded copper or
aluminum to add flexibility to the cable. The conductors are surrounded with a layer of
suitable insulation, thickness of which depends from the voltages the cable is carrying.
Insulation is usually made from oil-impregnated paper, vulcanized, butyl rubber, PVC
etc. The insulation is protected by a metallic sheath of lead or aluminum to minimize the
damage from moisture, gases, damaging liquids from the soil and atmosphere. The

metallic sheath is covered with a coating of bedding which is made of fibrous materials
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like jute or hessian tape to protect the metallic sheath from corrosion and mechanical
damage from armouring. The armouring is usually made from steel wire or steel tape
which acts as a source of mechanical protection of the cable. Some types of cables do not
include armouring. The serving is used to protect the armouring from environmental

conditions and it is a coating of fibrous material similar to the one used in the bedding.

2.2 Mechanism of Cable Aging

The aging of cable insulation materials begins the moment a cable is installed and
energized. The degradation of the cable insulation depends on a number of factors which
can be extrinsic or intrinsic. Extrinsic factors are those due to voids, physical
imperfections, contaminants, or poorly dispersed components due to manufacturing
imperfections and poor workmanship faults. Intrinsic factors are those due to a
combination of mechanical, thermal, electrical and environmental factors to which cable
Is exposed in the long run [3]. The typical ageing factors, mechanisms and effects of cable
insulation are presented in Table 1 and typical power cable defects are shown in Figure
2.

Sheath Hole

e ‘-Ele;c‘tri‘cal ]lgeg'

7 Hole

"- Bridging WT

Corroded
Neutral

R .- Delanunation
T e SOE YL T 5 o o

Fig. 2 Typical power cable defects [3].
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compressive, shear
siresses, fatigue,
cyclic bending,
vibration

+  Cracking
*  Rupture

Aging factor Aging mechanisms Effects
Thermal
. High *  Chemical reaction . Hardening, softening, loss of mechanical
temperature *  Incompatibility of strength, embrittlement
*  Temperature materials . Increase tan delta
cycling *  Thermal expansion *  Shrinkage, loss of adhesion, separation,
+  Diffusion delamination at interfaces
&  Anneal locked-in +  Swelling
mechanical streszes * Loss of liquids, gases
*  Melting / flow of +  Conductor penetration
insulation . Rotation of cable
. Formation of soft spote, wrinkles
* Increase migration of components
Low temperature +  Cracking *  5Shrinkage, loss of adhesion, separation,
*  Thermal contraction delamination at interfaces
. Loss / ingress of liquids, gases
* Movement of joints, terminations
Electrical
_‘JDltagE. ac, de, *  Partial discharge (PD) | *  Erosion of insulation =ET
impulse +  Electrical treeing (ET) + PD
+  Water treeing (WT) . Increaszed losses and ET
+ Dielectric losses and *  Increased temperature, thermal aging,
capacitance thermal runaway
* Charge injection . Immediate failure
*  |ntrinsic breakdown
Current +  Qverheating . Increased temperature, thermal aging,
thermal runaway
Mechanical
Tensile, +  Yielding of materials . Mechanical ruptures

Loss of adhesion, separation,
delamination at interfaces
Loss / ingress of liquids, gases

Environmental

Water / humidity
Liquids / gases
Contamination

+  Dielectric losses and
capacitance

&  Electrical tracking

*  Water treeing

*  Comosion

Increased temperature, thermal aging,
thermal runaway

Increased losses and ET

Flashover

Radiation

*  Increase chemical
reaction rate

Hardening, softening, loss of mechanical
strength, embrittlement

Table 1 Typical ageing factors, mechanisms and effects of cable insulation [2]

Cables fail when the insulation loses its dielectric strength. When a material is subjected
to electric field heat can be generated due to conduction current and dielectric loss.
Thermal instability is reached when the rate of heating exceeds the rate of cooling and
the cable may undergo thermal breakdown.

Solid insulation may contain cavities and voids which might be very small in size. These
voids might be either dielectric bounded or at the interface between dielectric and
semiconducting screens which might have developed during the manufacturing or

installation process. These voids are usually filled with a medium (gas or liquid) of lower



breakdown strength. This as a result can lead to electrical discharge inside the void which
can only partially bridge the insulation. The above electrical discharges are called Patrial
Discharges (PD) and do not immediately result in an insulation fault. However, the
localised but intense electrical, thermal and chemical effects of the discharge are likely to

degrade the insulation material over the time and might lead to a fault.

2.3  Thermomechanical Aging in Underground Cables

Power cables which handle daily load cycles are cyclically heated and cooled which
results in the build-up of compressive and tensile stresses in the sheath of the cable due
to the changing temperatures and the different thermal expansion factor of the insulation

material compared to the conductor [15].

Studies of cable movement in a duct were undertaken for two fundamental purposes: a)
to determine the portion of the theoretical expansion that appeared at the duct mouth
under controlled conditions b) to ascertain the nature and extent of lateral movement
(snaking), together with the relative performance of cable core and sheath while the cable

is under compression during the heating cycle [16].

2.3.1 Movement of Underground Cables

Lateral movement (snaking) can be explained by considering an inactive cable laid in a
duct line without any other cables around it. At the lowest ambient temperature the cable
is contracted to its minimum length and is positioned along the bottom of the duct. As it
is being put in service and with increase of earth temperature, cable temperature therefore
gradually increases and the cable expands longitudinally. The primary length expansion
of the cable is absorbed by lateral displacement, so called snaking of the cable inside the
duct, because the mechanical resistance of the cable to the snaking is lower than
longitudinal movement. However the insignificant expansion in cable length can be
noticed in the manholes despite the fact the cable has enough space to readjust itself
within a duct [15].

The longitudinal expansion of the cable occurs as a consequence of the larger thermal
expansion of the lead sheath rather than copper/aluminium conductors of the cable. The
above without any doubt creates a longitudinal mechanical force in the sheath of the cable

which partially is transmitted through the insulation to the conductors which consequently
9



results in the expansion of the length of the whole cable. To a certain extent the expansion
of the cable length is absorbed by lateral displacement within the duct. Nevertheless some
of the stress in the sheath still has to be spread along the sheath of the cable and it can

only be relieved by increasing the cable length into the manholes [15].

In addition to the lateral and longitudinal cable movements there are other configurations.
Helical, part linear part helical, part helical part sinusoidal configurations can also be
considered as cable movement configurations. According to [17][18] these configurations
cannot be predicted as they depend on the previous elastic energy stored in the cable.
Factors affecting cable movement are: temperature of the conductor, load cable demand,

stiffness of the cable, weight of the cable and the diameter of the duct.

2.3.2 Fatigue Analysis of Underground cables due to Thermomechanical

Bending

The lifetime of an operating power cable laid in underground ducts is highly dependent
on the ability of the sheath to protect the insulation of the cable from air and moisture
[19]. The effects of thermomechanical bending are caused by constant heating and
cooling cycles due to the various daily load demands [18]. Thermal expansions and
contractions of the cable generate the movement and bending of it causing damage and
failure of the sheath. The movement of the cable causes fatigue cracks mainly in the
manholes towards where the cable moves accumulated by longitudinal expansion force
which is then reduced by the lateral movement of the joint [19].

Assuming the fact that the lead sheath can freely move with respect to the conductors of
the underground cable then as a result the effect of longitudinal expansion of the sheath
will be partially moved to the relevant sections of the sheath in the manhole. The stresses
reach a maximum once the movement of the sheath is suppressed either by a bend, a
reinforced joint or by a point where equivalent opposing forces of adjoining sections
appear. In most cases because of the above suppression the lead sheath goes beyond its
elastic limit at one of the above points which as a result creates a crack or ripple in sheath
all around the cable. The moment this ripple develops all the future expansion of the
sheath will be congested at that ripple and the failures will not appear at any other points
of the sheath. This sort of failure is very commonly observed by the ends of joints

specifically in systems without bends [20].
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In the bent section of XPLE cable, introduction of tension stress may cause the formation
of microvoids. When these microvoids are formed within wet conditions, water trees
could be developed [21]. On the other hand in the case of dry conditions, partial discharge
could be initiated in mechanically formed microvoids, as a result developing the electrical

trees and reducing the breakdown strength of the insulation [22].

The main negative factor for PILC cables is moisture. According to [23] moisture can
enter the cable, via holes and cracks in the lead sheath due to thermomechanical
movement at locations with concentrated mechanical stresses such as joints and
terminations. The introduction of the moisture inside the paper-insulated cable will result
in the development of thermal runaway due to increased dielectric losses. Sheath life of
the cable might be reduced due to a cyclic movement of cable even within normal

operating temperatures allowed by cable specifications [16].

For the above reasons determining the sheath life of an underground cable is of a great
demand. Nevertheless it is extremely difficult to determine the actual service life even
under known operating conditions as it depends on a number of various factors. The
sheath life depends on: a) size and type of cable, b) size and type of duct, c) size of
manhole and configuration of the cable in the manhole especially as to bends and offset
of the joint from the line of the ducts, d) temperature cycles of the conductor, €)
temperature of the sheath, f) length and slope of the cable between manholes and g) the

amount of vibration (e.g. street traffic) [19] [24].

2.4  Environmental Factors Influencing Underground Cable Aging

Global warming is predicted to result in generally hotter drier summers and milder, wetter
winters in the UK [25]. Higher ambient temperatures cause an increase to the temperature
of the ground, which as a result will cause the dry-out of the soil that potentially will
increase the soil thermal resistivity. The dried out soil, especially one rich in clay will
cause movement of the ground that may result in damage at the cable joints [26]. In the
case which this occurs during the high cable loading demands there is a significant danger
of the cable overheating which will cause mechanical, insulation damage and

consequently the failure of the system [26].

The outage which happened in Auckland in 1998 is considered to be one of the major

proofs that high soil thermal resistivity can cause the failure of the power system [27]. As
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well as by a significant rise in the ground temperature which increased the soil thermal
resistivity that led to the overheating of the cables causing conductors and sheath to
expand and contract resulting in the system breakdown [28]. A similar failure occurred
in 1962 in London where two 132 kV cables suffered successive failures. Investigation
showed that high thermal resistivity developed around the cable region during the summer
period and caused abnormal soil dry-out due to the water migration [29].

When a crack occurs on the lead sheath the insulation can be easily damage by the
moisture from the surrounding underground environment. This will cause the loss of its
dielectric strength due to the possible and potential formation of water treeing and will
finally lead to the failure of the cable [30]. It is verified that the phenomenon of water
treeing is related to the presence of humidity in the insulation. Water by the cover of the
cable is enough to cause treeing; it does not necessarily have to enter through the
conductor in order to grow; water trees need only relatively high moisture content within
the insulation [31].

Lightning strikes can cause damage to underground cables in the cases when cables are
positioned near striking points or when lightning current flows though the soil to the cable
causing insulation failure [32].

2.5 Cable Accessories

In order to design and put into operation a fully functional cable circuit network, cables
need to be both jointed and terminated. Thus cable joints and terminations are considered
to be the most important cable accessories. Cable joints are used to interconnect and
extend the length of underground cables while terminations are the accessories used to
terminate the underground cables and to provide the connection to other assets in the

power network.

Both cable joints and terminations are installed manually on site, very often under
unfavourable environmental conditions without taking into account controlled tape
tension, clean extruders surfaces and temperature or humidity [33]. The quality of
installation almost purely depends on human factors and mistakes made during the
installation can significantly reduce the lifetime of the accessories. For that reason cable
joints and terminations are considered to be the weakest points of underground cables

systems.
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25.1 Cable Terminations

Cable terminations control the electric stresses of the cable insulation shield terminals as
well as external insulation between the cable conductor(s) and ground. Terminations also
provide a seal to the end of the cable against the entrance of the external environment and
maintain the operating design of the cable system. Terminations are used for extruded
dielectric cables, laminated dielectric cables and pressurized cable systems [34].

Terminations are divided into outdoor or indoor. Outdoor terminations are designed to
endure weather phenomena such as precipitation, pollution and ultraviolet radiation.
Indoor terminations are installed into a grounded protective metallic enclosures which

can contain air, gas or liquid compounds [33].

25.2 Cable Joints

Over the past few decades the need to distribute the energy across every part of a country
had resulted in the increased number of underground power cables. As the length of the
cable is limited, additional accessories are needed to extend the cable length. These

accessories are called cable joints.

Cable joints have to provide stress control and be able to restore the connection between
the insulation phases and earth like the cables they are connected to. Furthermore joint
design must provide mechanical protection against external damage and to stop moisture

from the surrounding environment entering the joint [33].

The joints are used to connect cables which are both insulated with extruded dielectric
materials (extruded joints), for cables which have a dielectric that consists of fluid-
impregnated paper or paper/synthetic laminated tape or varnished cloth (laminated
joints), or to connect an extruded dielectric cable to a laminated dielectric cable (transition
joints) [33].

2.6 Failures and Aging Mechanisms in cable accessories

The power network distributors aim to supply electricity as safely and reliably as possible.
Nevertheless failures in the power distribution networks are still very common
[28][35][36][37]. The most common location of cable failures are at the cable joints or

terminations [3][4][5]. The biggest percentage of the failures in North America according
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with NEETRAC, as shown in Figure 3, is due to the cable accessories (joints and
terminations) failures [4].

The different types of cable joint defects which can occur in the different types of joint
constructions are shown in Figure 4. A list of aging mechanisms in cable joints and

terminations is shown in Tables 2 and 3.

Percentages of failures of each component

Termination
1.4%

Fig. 3 Percentages of failures for cables, terminations and joints in North America MV (15 kV-35 kV)
cable system [4].

Loose Cable-Tout

Voud

Surface ljrischarge
Kxfe Cut or Tracking

Fig. 4 Typical Cable Joint Defects [3].

The temperature of the soil around the cable changes seasonally due to the weather
conditions such as rain, ambient temperature, solar radiation and etc. An increase of the
soil temperature creates a kind of hot-spot around the joint consequently increasing the

temperature inside the joint. As a result a combination of that hot-spot with the rise of the
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soil temperature can lead to the breakdown of the joint insulation and consequent failure
[38].
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Table 2 Aging mechanism for extruded cable joints and terminations [3]
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Table 3 Aging mechanism for PILC cable joints [3]
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High current loads and particularly high cyclic loads are considered to be another cause
for a larger number of failures in underground cable joints. High loads cause fatigue to
cable joints in many ways but the main factor leading to failure is the mechanical stress
in the joint produced by cable conductor under high loads. The investigation performed
by Dutch power network owners together with KEMA to identify the cause of the
breakdown in their power networks confirmed that considerable number of failures was
related to causes of mechanical nature in networks operated at high cycling current loads
[39][40].

High current cycling loads cause severe extension and contraction stresses to the
connector of the conductors. If the connector used is not fully appropriate for the type of
conductor, the connection between conductor and connector will loosen. The high
resistance of the joint and high currents produced a significant amount of heat [41]. This
as a result leads to the creation of voids in insulation around the joint which would weaken

the insulation material and lead to failure of the joint [39].

A considerably large amount of failures in cable joints are related to mechanical forces
acting on the joints due to the cyclic heating effects. These cyclic heating effects are due
to the cyclic current loads which cause mechanical forces on the cable conductor as they

expand when heated. This longitudinal force can be calculated by:
F = EAaA® (1)

where E is the Young’s modulus [Nm] of the conductor material, A the conductor cross
section [m?], a the thermal expansion coefficient [C] and A the temperature increase

with respect to the ambient temperature of the cable [42].

The failures of accessories are most commonly caused by human imperfection factors. A

summary of some of the failure is presented in Table 4.

Failure causes Visual Indication

Failure spot near the insulation screen/shield

Improper stress grading terminus

Insufficient clearance between shield terminus and | Failure of the insulation along the surface between
conductors screen terminus and conductor lug

Semi conducting layer missing over stress control

Failure of insulation
cone ,partly or completely

Cut in insulation at the end of semi conducting Direct puncture of cable insulation in the region
layer around termination screen
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Overheating of joint insulation around the

Improper jointing of conductor conductor joint

Missing metallic shield or floating shield Degradation and failure of joint insulation

Erosion and tracking at the surface of insulation

Improper protective covering of termination and termination

Improper sealing of joint Deterioration of joint due to ingress of moisture

Presence of knife cuts and traces of semi
conducting material on the surface of the cable Rapid deterioration and failure of insulation

insulation

Change in colour, softening or charring of
insulation over conductor joint and near the lug.

Overloading of the cable accessory

Table 4 Failure causes and visual indication for cable accessories [43].

2.6.1 Diagnostic and Condition monitoring methods for cable joints and

terminations

The possibility of diagnosing the health of electrical components is of great demand for
Network Operators. In the case of underground electrical components there always exists
an unknown state of degradation and therefore it is of a vital importance for Network

Operators to have an indication of asset health [12].

A continuous monitoring system of an optical gas sensor is used in Japan to detect
concentration of the gas dissolved in the oil up to 5ppm (parts per million). In order to
extract the gas dissolved in the oil, a gas cell with a function of separating dissolved gas
from the oil was used and installed in the oil ports of an oil-filled cable joint. It was
proven that at an early stage of degradation of an oil-filled cable, small electrical
discharges occur which generate gases such as hydrogen (H2), acetylene (C2Hz), ethylene
(C2H4), methane (CHgyand ethane (C2Hs) [44]. Further discharges cause carbonization of
the insulation paper generating C2H>. An investigation was made for 75 joints dismantled
after faults and it had been verified that C.H. and CHa are gases which can provide an
early stage of deterioration by continuously monitoring them [45]. The above approach
is costly due to the very expensive equipment needed to operate, difficult to implement
and cannot be applied in a large scale.

Recently developed diagnostic and condition monitoring systems are based on GPRS data
transmission. Meng and Hu [46], developed a monitoring device to monitor real-time the
temperature of a cable joint via a digital temperature sensor. When the temperature

exceeds a pre-set limit value an alarm signal is sent automatically via GPRS
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communication module to the control centre. Furthermore, a judge system is running to
check the state of the cable joint through the historical temperature data analysis of the
joint, in order to prevent the occurrence of an accident. The device is self-powered
through a super capacitor which takes advantage of the principle of electromagnetic
induction from the AC voltage of the high voltage cable. Chang et al. [47] used the same
arrangement but they combined the GPRS communication protocol with ZigBee in order
to achieve transmission of data for longer distances up to 400 m. Their monitoring unit is
powered with a set of electronic components connected to a Current Transformer which
is connected with the underground cable. Mitsubishi Cable Industries created two systems
for online condition monitoring to find hot-spots in underground joints. The first one
measures the temperature of the joint using a series of thermocouples (TCs) along the
cable joint connected with a PC and the second one uses an optical fibre sensor connected
as well to a PC [48]. Diagnostic software to monitor the health of the underground cable
joint was developed in the Hydro Quebec Research Institute. Many factors such as critical
joint temperature, current load, ambient temperature, cable size, type of cable joint and
historical data previously collected are taken into the account to perform the diagnostic
of the cable joint [9]. The first two systems are very complex to implement, they have
high installation costs and specific operational knowledge is required. Furthermore both
systems can only be applied inside transmission underground tunnels. The judgement
alarm system might give wrong alerts as it is only taking into account local temperature
fluctuations by the cable joint without considering loading demands and weather
conditions. The judgement temperature is related to an overheating faulty temperature
limit which does not avoid the failure from happening. On the other hand the technique
of sending data via GPRS seems to be a useful approach of capturing data from remote
locations. Despite the fact that the systems are able to monitor the health of an
underground joint they are unable to predict the upcoming failures which are of a great
importance for a reliable power network system. The idea of monitoring the temperature
of a cable joint through a series of thermocouples (TCs) is cost effective and relatively

reliable technique which can be used for large scale implementation.

Partial discharge (PD) monitoring units for cable joints have been developed in recent
years. Continuous online PD monitoring systems are able to obtain long-term data relating
to gradual deterioration under normal operational stress, from which the characteristics

of the PD signal can be extracted to increase the possibility of detecting defect prior to
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insulation failure [6]. Hydro-Quebec has developed a portable PD analyser for detection,
localization and interpretation of PD in cable accessories such as cable joints. The device
is a narrow band AM receiver with a small capacitive probe which through an automated
software can detect, discriminated and localize PD among RF signals. The device
localizes different defective joints in the Montreal underground network and can carry
out remote on-line detection, from a range of 100 metres to a few kilometres, accessories
with abnormal PD activity [8]. KEMA has created an on-line tool measuring partial
discharges in cables and cable joints. The system is capable to find the origin(s) of PDs
from a complete cable connection by using only two inductive sensors, each at one cable
termination. The installation of the sensors can be performed while a cable is in service.
Data is monitored continuously and collected results are transferred and stored in a
centralized Control Centre where results are analysed and interpreted. Results from there
are made visible on a secured web-site for the network owners. Field results collected
from 100 installed systems detected weak spots by the cable joints which made it possible
to replace them before a breakdown occurred [7]. The above systems, based on the PD
monitoring, consider only one of many possible degradation mechanisms. Furthermore
monitoring the reliability of a whole power network using the above systems is high in
cost and difficult to maintain. A huge amount of data is captured and has to be analysed
making this technique very time consuming. Nevertheless it might be of a great use if it
is possible to reduce the amount of captured data by enabling PD monitoring units when

an abnormal temperature on the cable is spotted.

Over the past years there have been a number of failures reported within cable
terminations. The biggest number of failures are reported to occur near the termination
sealing ends where in some cases the monitored temperatures increase by up to 10 °C
[10]. Factors such as poor workmanship [49], high frequency stresses caused by an
increased usage of power electronic devices [50][51] and circulating currents on the cable
support structure [52] cause the temperature increase by the termination sealing ends. A
thermal infrared camera was used for diagnostic purposes in order to identify exactly
where the point of failure was [10] on a cable termination. Nevertheless the failure of the
cable termination could not be avoided as the failure was detected too late. According to
Electric Power Research Institute (EPRI) most cable problems are associated with
increased heat generation. This heat generation will lead to the creation of local hot-spots.

Hence EPRI suggests that infrared thermography can be used periodically to inspect the
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health state of power cable accessories such as joints and terminations [11]. Hydro-
Quebec has developed a thermal imaging program based on an infrared imaging camera
and the software mentioned in [9] for diagnostics of the condition of underground cable
joints and terminations in manholes. They succeeded in reducing the number of failures
to cable accessories, such as joints and terminations, by 20 %. That proves that monitoring
the accessory surface temperature can give vital information for the state and condition
of the accessories. Due to its inspection maintenance nature this technique is repeated
every year on accessories where the surface temperature is close to a pre-defined normal
reference temperature of the investigated accessory, every six months when their
temperature is slightly abnormal and when seen as abnormal the decision is to replace the
accessories straight away. Over the that time period of 6-12 months there is no monitoring
of the accessories which might be a period of time where a failure can occur [53][54] .
On the other hand thermal cameras require skilful and experienced operators who have
the knowledge and understanding to distinguish a possible hot-spot as the readings might
be affected by weather factors (e.g. air ambient temperature, wind speed), solar
reflections, solar radiation and emittance variation [55]. Furthermore the above
mentioned diagnostic technique is not reliable enough to identify and prevent a possible
failure prior to its occurrence due to the periodical inspection survey that is usually
performed. Hence the need of a predictive method that is able to identify degradation at

the early stage of the formation is highly relevant.

The use of prognostic capabilities enables the determination and prediction of future
health condition of assets [56] [57] while diagnostic techniques can just identify the final
stage of an upcoming failure [58] sometimes without leaving enough time to schedule
maintenance to prevent faults. Hence implementation of predictive maintenance
techniques [59] is vital due to the increasing complexity of power network systems [60].
Different approaches can be used for the implementation of data driven prognostic
systems [61]. The most commonly used prognostic technique is predicting the estimated
remaining life time of an asset prior to the occurrence of the failure [58] [62][63].
Although the technique of remaining useful life (RUL) looks appealing, in reality it can
give just an approximate insight on the condition of the assets as it lacks accuracy and
most importantly the confidence to determine the initial stages of degradation activity and
thus might not give enough time for operator to take the necessary precautions. RUL

prediction systems assume that the deterioration happens at a constant rate which in
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reality cannot be valid as sudden changes in real field can accelerate aging drastically and
therefore might significantly reduce the estimated remaining useful life of the asset.

It has been found in the published literature that there are a number of approaches and
techniques for diagnostic and condition monitoring of cable joints and terminations but

there is a lack of reliable prognostic approaches for these accessories.

2.7 Summary

It has been found that factors such as electrical, mechanical, thermal, environmental and
combinations of them are the main reasons for underground cable aging.
Thermomechanical aging is a major factor affecting the lifetime of the underground
cables. Daily load cycles cause cyclical heating and cooling of the cable which cause
movement and hence bending of the underground cable which leads to damage and
failure, particularly at the cable joints and terminations. In some cases it may cause
formation of microvoids which respectively under wet or dry environmental conditions
will result in water or electric trees. High ambient temperatures can cause drying out and
movement of the soil and consequent mechanical damage to the cable. During the high
cable loading demands high temperatures might cause cable overheating and thus
breakdown of insulation which will lead to failure of the cable and cable joints or

terminations.

Joints and terminations of the cable are installed manually and very often under poor
weather conditions. Thus their health and lifetime maybe directly related to human
factors. Such factors include poor workmanship, lack of appropriate stress control or
inappropriate fitting of the accessories under constant exposure to high loads and thus

thermomechanical stresses will accelerate the aging and reduce lifetime.

Different diagnostic and condition monitoring techniques for cable joints and
terminations have been developed over the last decade. Some of them are based on optical
gas sensors, temperature sensing with GPRS data transmission, partial discharge
diagnostics and condition monitoring units and finally temperature monitoring techniques

for cable joints and terminations.

It can be concluded that the extension of condition monitoring and diagnostics of cable

joints and terminations to prognostic indicators is of importance as these accessories
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appear to be the weakest point in underground cable systems. By observing the health and
operational condition of underground joints and terminations, improved reliability of

power networks can be achieved as well as reduction in costly repairs.

An increased temperature of the underground cables has proved to be the most common
aging effect initiating different aging mechanisms such as electrical, thermomechanical,
environmental factors or combinations of them. Therefore by continuously monitoring
the temperature of the investigated cable accessories, such as cable joints and terminations
and by developing thermal prognostic techniques it may be possible to avoid catastrophic

failures by taking actions prior to their incidence.

Chapter 3 gives a better understanding of how the magnitude of the potential fault within
the cable might reflect on the surface temperature of it as well as it investigates the
possibility of developing the thermal prognostic models using machine learning
regression techniques such as Support Vector Regression (SVR), Artificial Neural
Network (ANN), Multiple Linear Regression (MLR) and Gradient Boosting (Mboost).
Each of the above mentioned algorithms is used to predict the likely surface temperature
of the cable in the air-filled trench and their performance is compared in order to choose
the one with the best performance to continue with the further development of the models.
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Chapter 3 Design of a Thermal Prognostic model

This Chapter investigates the feasibility of identifying abnormal temperature changes on
the cable surface using a thermal cable model created in COMSOL. Four machine
learning regression techniques based on Support Vector Regression (SVR), Artificial
Neural Network (ANN), Multiple Linear Regression (MLR) and Gradient Boosting
(Mboost) are introduced and discussed. Benchmarking between them based on their
accuracy to predict the cable temperature in an air-filled trench was performed. The SVR
showed better performance and thus was chosen to be further investigated for the
development of the thermal prognostic models described in Chapter 4, 5 and 6. Hence a
more in depth theoretical background of the SVR and the development techniques of it

are discussed.

3.1 Thermal cable model in COMSOL

As it has been mentioned before a great number of faults in cable systems are related to
heat generation. EPRI suggests four temperature stages of concern in their survey. The
first one is the advisory stage where the rise of the temperature is between 0.5°C and 8°C
above a reference temperature, the second stage is the intermediate stage where the
temperature increase is between 9°C and 28°C, the third is the serious stage where
temperature is between 29°C and 56 °C and the last stage is the critical stage where the
temperature is above 56°C above the reference temperature [11]. The reference
temperature is considered to be the normal operating temperature of the investigated cable

system or accessory.

In order to investigate in more detail the magnitude of an internal fault inside a cable
related to the change of surface temperature of a cable, a simple thermal model was
developed to simulate temperature rise as a function of thermal power supplied by a fault.
A 5m long cable was designed in COMSOL based on a cable manufactured datasheet
which all the details can be found in Appendix 1. An internal hot-spot was introduced in
the middle of the cable under constant loading condition. Four different hot-spot profiles
of 2.5W, 5W, 7.5W and 10W where used. Figure 5 shows the surface temperature

distribution on the cable with the introduction of hot-spots.

23



With reference to Figure 5, a significant rise of temperature of the cable surface can been

seen a several meters away from the source, if the source is large enough. An increase of
temperature at 0.25 m away from the location of the fault for the 2.5W, 5W 7.5W and 10

W was respectively 1.5, 3, 4.5 and 6 degrees Celsius. This increase corresponds to 0.60 C

per W. The same temperature increase was recorded for a constant and cyclic loading. An

important factor to investigate further was the time needed for the cable surface located

0.25 m away from the centre of the cable to increase by 1°C.

11

Temperature on surface of cable with different hotspot

10

/\ —2.5 W Hotspot
—5 W Hotspot
/ \ —7.5 W Hotspot

/ \ —10 W Hotspot

AN

[\

Temperature [°C]

/ A\
/] \\\

/] A\
/ \

00 025 05 075 1 125 15 175 2 225 25 275 3 325 35 375 4 425 45 475 5

/, // / /\\ \&\
2 NN
___éé—-’/ \\E§__

Distance along cable route [m]

Fig. 5 Cable temperature distribution under the influence of the hot-spots.

The Figure 6 shows the relationship between the temperature increase and the time.
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It can been seen in Figure 6 that for a 2.5 W hot-spot around 30 minutes is needed to see
an increase of the surface temperature by 1°C. As the power of the hot-spot increases the
time needed for the cable surface temperature to increase by I° C is reduced. Hence a 30
minutes prediction horizon is an ideal time gap that can be used by the thermal prognostic
models to identify an increase of temperature by 1I° C. Furthermore the increase of 1" C
was chosen as a measure of comparison as most of the existing monitoring units have a
minimum accuracy + 1° C [64][65][66]. Therefore if it is possible to identify abnormal
temperature behaviour on the joint surface or cable terminations it is likely to be

indicative of a fault.

3.2 Machine Learning Algorithms: Artificial Neural Network
(ANN), Support Vector Regression (SVR), Multiple linear
regression (MLR) and Gradient Bosting (Mboost)

Machine Learning is a branch of artificial intelligence which is based on the construction
and study of systems that are able to learn from training data and produce a model which
is able to determine and find a solution for an underlined problem. In this section machine

learning algorithms are introduced and briefly discussed.

Linear regression attempts to model the relationship between a scalar dependent variable
y and one or more independent variables x. In the case where more than two independent
variables are used to describe the relationship between input data and output data then the
model is called multiple linear regression (MLR) [67]. Linear regression is one of the
oldest types of regression [68] and due to its simplicity has been used in a variety of
prediction problems such as in water quality [69], mass of solid waste generation [70],
estimation of time-frequency electrophysiological responses in neuroscience [71],
prediction of swell potential of clayey soils [72] in geological sciences as well as in
management for capital structures [73]. The MLR performs well in situations where there
is a clear relation between input data and output data as it is shown in the case of oilfield
output forecasting [74]. In the cases where there is a more complex and nonlinear

relationship between input and output data ANN outperforms MLR [70] [72].

The concept of the Gradient Boosting is to combine multiple models alongside with
weights into a single prediction model [75] [76] [77] [78]. Two Gradient Boosting

machine algorithms were ranked in the top 5 algorithms in a GEFCom load forecasting
25



competition in 2012 [79] [80]. They were also successfully used by the pharmaceutical
industry to predict the biological activity of molecules [81], in transportation research to
predict freeway travel time [82] as well as in finance to predict insurance losses [83].
Gradient boosting machines can affectively solve a variety of non-linear problems but
have several drawbacks such as memory and time consumption as well as being difficult
to design [84].

An ANN is a widely used data modelling tool that simulates the way how the neurons
work in the human brain. The method of non-linear mapping which transforms data from
R' to RK, where | and K are the dimensions of the input and output space, is used to
express complex functions [85]. An ANN is based on interconnected nodes which are
simply processing elements. Weights are connected with each of the inputs to a given
neuron. This connection controls the strength of the input data. By manipulating these
weights an ANN is able to create a model where the data is presented as patterns of input-

output pairs [86].

The e-Support Vector Regression aims to determine a function that has a maximum ¢
deviation from the targets output values and at the same time is not complex. As long as
the errors do not exceed the deviation parameter €, they are not taken into account but

errors larger than ¢ are penalized [87].

Acrtificial Neural Networks aim to minimize the empirical risk error over a given set of
data and try to fit the data as closely as possible. This results in a solution function which
works very well on a known training data but poorly on unknown data. This is known as
overfitting. In the SVR the issue of overfitting is less common because the algorithm is
trying to minimize both the empirical risk error and the generalization error (model
complexity) [88]. The less complex model results in better fitting of unknown data.
Another advantage of the SVR algorithm over ANNSs is that it always converges to a
solution. ANN can work better with massively large data sets while SVR is limited by
speed and memory constraints [89].

The Support Vector Regression algorithm has shown better performance and
generalization ability in a variety of problem solving such as short-term temperature
prediction [89], daily maximum temperature prediction [90], protein structure prediction

in bioinformatics [91], financial forecasting [92], structural engineering [93] than ANN.
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3.3 Benchmarking of Predictive Techniques

Four different machine learning algorithms were used and compared to identify which
one has a better performance. A variety of regression techniques based on Support VVector
Regression (SVR), Artificial Neural Network (ANN), Multiple Linear Regression (MLR)
and Gradient Boosting (Mboost) have been used to determine the most appropriate one
and the implementation stages are shown in Appendix 2. Figure 7 shows the temperature
prediction using the four different algorithms based on data collected from an air filled
trench. The first 8 days were used for training and the last 4 days for testing as it is a
common practice to use 2/3 of the dataset for training and 1/3 for testing [94]. Figure 8
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Fig. 7 Temperature prediction comparison between ANN, SVR, Mboost, MLR with the real
temperature.
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Fig. 8 Temperature prediction error for ANN, SVR, Mboost and
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shows the temperature prediction error graph where the difference between the real-time
measured temperature and the model output prediction temperature for each of the 4
benchmarked algorithms is presented. The performance of the algorithms is summarized

in Table 5, by calculating the mean absolute percentage error (MAPE) as defined by [95]:

n

100
MAPE = Z
n

i=1

(2)

Ya (1) —¥p (1)‘
ya (1)

where y, the real value of TCs temperature, y, is the predicted value of TCs temperature

and n is the total number of samples.

Algorithms | Error (MAPE %) Parameters
SVR 0.66 C=16384 vy=9.7656e"
MLR 0.70
Mboost 0.73 Iteration = 700 nu = 0.15
ANN 1.20 Layers =9

Table 5 Benchmarking results for air filled trench.

From the obtained results it can been seen that SVR showed the best performance. The
MAPE for SVR was 0.66% while for ANN, which showed the worst performance, it was
1.20%. MLR and Mboost showed satisfactory performance as well but not as good as the
SVR. It can be clearly seen from Figure 8 that ANN produces an overestimated model
compared to the other three algorithms. Furthermore ANN training is always a time
consuming process because of the algorithm’s nature. Every time the ANN is trained the
weights are initialized randomly which each time results in a different prediction output
model. In order to achieve the best prediction output, the ANN was trained 10 times and
the model with the lowest MAPE error was selected. Hence due to its better performance,
less training time is needed and the simplicity of its use, it was decided to continue further
investigation and development of the prediction models using the SVR algorithm. SVR
is able to avoid overfitting problems, creates less complex models that always converge
to a solution. The test was performed in order to choose the machine learning algorithm
to continue with the further development of thermal prognostic model techniques which
aim to identify potential hot-spots on the cable surface in a variety of environments such
as soil and air as described in Chapters 4 and 5. A benchmarking between the algorithms

is performed as well in Chapter 5 to verify the performance of SVR in the soll
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environment as well as to validate the choice of SVR for the field experiments in Cyprus
described in Chapter 6.

3.4  Support Vector Regression and SVR Development

Support Vector Regression (SVR) is a machine learning algorithm which uses a non-
linear mapping to transform data into a high dimensional feature space where linear
regression is performed [88]. SVR has the advantage that not only does it fit the training
data in order to find a solution but also keeps the highest possible degree of generality

when new unseen data is introduced [89].

The &-SVR is used to predict the values by solving the following optimization problem
[87]:

l
1
minimize = [l + C Y (6 + &)
i=1

yi—wlo(x)—b < e+§
subject to wip(x)—y;+b < e+&

where x; is a feature vector of the input space with dimension N, y; is the output value
to be estimated, b is a parameter of bias, w is a weight vector which controls the
smoothness of the model, ¢(x) is a function used to map training samples x; to a higher
dimensional feature space, penalty factor C controls the trade-off between complexity of
the function and the frequency with which errors are allowed and ¢; and &; are slack
variables which compute the error for overestimating and underestimating the true output
value y;. The parameter ¢ determines the maximum deviation from the target output
value y;. Figure 9 shows the situation graphically. This above optimization problem can

be transformed into the dual problem, as mentioned in [96] and its solution is given by:

l l !
1
U z (a; — a;)((lj - af)K(Xi.Xj) - EZ(ai +ap) + Z yila; —a;)
i=1 i=1

ij=1

n
subject to Z(ai —a)=0
1=

0<a,a;/<Ci=1,..,n

(4)
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Having estimated o, a* and b, using a suitable quadratic programming algorithm, the

SVR based regression function solution is given by:

Nsv

() = ) (@ —aDK () ©

where Nsv denotes the number of the Support vectors. The kernel function K(x;, x) is
used to avoid the complicated calculations of the inner products of the mapped inputs in
the feature space @(x). The bias parameter b is calculated automatically and

accommodated within the Kernel [97] [98].

® Support

Weights:

Al/ AZT /’{\/’1’[ = (ai - (X:)

K(xy,x) K(x2,%) ... K(x;,x) SVs:

X1y Xp e Xi
Test Vector: x

Fig. 9 The parameters for the SVR algorithm

The vector w is described in terms of the Lagrange multipliers «; and «;. Only some of
the coefficients (a; — a;) are non-zero and the corresponding input vectors x; are called
support vectors (SVs). The SVs can be thought of as the most informative data points that
compress the information content of the training set. The coefficients a and o* can be
seen as forces pushing and pulling the regression estimate f(x) towards the

measurements y;.

Lagrange multipliers a; and «; will be non-zero values for training points “above” and
“below” an e-tube. Because no training data can be on both sides of the tube, either «;
or «; will be non-zero. For data points inside the tube, both multipliers will be equal to

Zero.
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The final answer of the f(x) as shown in Equation 5 is as an approximation function of
N sum of Gaussian RBF functions which have as their center the Support Vectors. The
parameter y controls the width of the Gaussian RBF function while the parameter C which

is related with the Lagrange multipliers a and a* controls the amplitude of it.

34.1 Kernel Selection

The kernel function is used to allow operation in the input space instead of the potentially
high dimensional feature space. Hence as was mentioned before the inner product does
not need to be computed in the feature space. There are different types of kernel functions
such as Gaussian Radial Basis Function, Exponential Radial Basis Function, Multi-Layer
Perceptron, Fourier Series, Splines and etc. There is no a straightforward way to select a
kernel function yet, but the most effective for general use has been found to be the
Gaussian Radial Basis [99]. Hence the Gaussian - Radial Basis Function (RBF) is used
in this research which is defined as:

K(x;,x) = eCY Il Cx;—x11?) y>0 (6)

where parameter y controls the width of the Gaussian-RBF kernel function of the model.

3.4.2 Data Preparation

Input data has to be scaled before being imported in the SVR in order to avoid features
with larger numeric values being dominant to those with smaller values. Furthermore
scaling makes the computation easier during the application of the kernel function. In this
model the data was scaled from [0,1] as follows:

Xi - Xmin (7)

Xscale = X — X
max min

where X; is the original data, X,.,;. the scaled data, X,,,, and X,,,;,, are the maximum and

minimum values of X;.

343 Grid-Search and Cross-Validation

The penalty factor C and the kernel parameter y have to be decided by the user of the
LIBSVM [100] MATLAB toolbox in order for the regression model to be developed. The
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aim is to identify a good pair of C and y so that the classifier can accurately predict
unknown data. To identify the most appropriate C and y two algorithms are combined
together, Cross-Validation and Grid-Search. The training data are split into K segments
with equal size in K-fold cross-validation and then each segment is predicted by the
remaining K-1 segments sequentially. For each of the iterations of the Grid-Search, a
combination of C and y values are tested and the one with minimum Cross-Validation
error is selected. C and vy pairs are change based on the grid-search algorithm which

suggest exponentially growing sequence for C (2°, 23... 2% and y ( 25, 2°3... 29).

344 Choosing SVR parameter C, y and ¢

The user has to select in e-SVR the tuneable parameters C, y and &, which is not a
straightforward procedure as all of them play a significant role to achieve a good

generalization performance.

The parameter C as was mentioned earlier, controls the trade-off between complexity of
the function and the frequency with which errors are allowed. From Equation 3 it can be
seen that if C has a large value more emphasis is placed on the empirical error

L (& + &) while if C is small, more emphasis is placed to the generalization
error% llwl|? . That is why parameter C has to be tuned in such a way that it will offer a

balance to the model.

The parameter y controls the width of the Gaussian-RBF kernel. When v is small, the
Gaussian function is wide and hence the parameter C can has higher values. On the other
hand when v is large, the Gaussian function is narrow and thus C cannot have very large
values. The combination of C and y controls the input range of the training data and
therefore these two values are considered to be best tuned together as mentioned in
Section 3.4.3.

The parameter ¢ controls the width of the e-insensitive zone of the loss function which is
used to fit the training data. It depends on the deviation of the target output value in the
training set. A large value of € will result in fewer Support Vectors and therefore to a less
complex- under fitting regression model. On the other hand small values of € will increase
the number of Support Vectors resulting in a complex- over fitting regression model. As

€ 1s associated with the deviation of the output value from the training data, choosing ¢ to
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have certain accuracy will result in improved accuracy results. The temperature data
collected in the experiments has a precision of two decimal places hence the value of

€=0.01 has been selected.

3.5 Summary

From the thermal simulation model created in COMSOL it can be concluded that internal
faults in the cable may generate heat and increase the cable surface temperature several
meters away from the location of the fault, if the fault is large enough. It has been found
using the simulation model that for the 2.5 W internal fault, smallest power fault, the
increase of the cable temperature by 1I°C can be detected approximately 30 minutes after
the occurrence of the fault. Hence a 30 minutes prediction horizon is used for the

development of the thermal prognostic models described in Chapters 4, 5 and 6.

In terms of prediction of future behaviour, the SVR was selected to be investigated rather
than MLR, Mboost and ANN as it shows better performance during the temperature
prediction for a cable in an air filled trench. Furthermore SVR is able to avoid overfitting
problems, develop less complex models which are always converged to a solution. An in-
depth analysis of SVR was performed and the SVR development steps were investigated

in more detail.

The developed methodology was later implemented during the constant and cyclic load
experiments in air-filled trench and the on 33 kV closed loop cable termination to
establish initial thermal prognostic models as well as to verify viability of the chosen
methods for monitoring of cable accessories that are likely to be affected by the hot-spot

activity through a series of sensitivity tests as it is further described in Chapter 4.
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Chapter 4 Implementation of Thermal Prognostic
Models for the Air Trench and 33 kV Cable

Termination in Air

Two different experiments were used to investigate the feasibility of different approaches
for monitoring underground cables, in the areas where hot-spots are more common to
occur, such as joints and terminations. The first experiment was performed in an air filled
trench while the second was performed in a 33 kV closed loop cable termination in air.
In both experiments the operation of power cables were simulated using a programmable
control system able to simulate a wide range of cable loading. The surface temperature of
the cables were continuously monitored by a series of TCs as well as the weather
conditions such as solar radiation, wind speed and air temperature. It is hypothesised that
an increase of the local cable temperature is indicative of accelerated aging of the cable

insulation due to thermomechanical, electrical and environmental factors.

Thermal prognostic models have been established using a Support Vector Regression
(SVR) algorithm which predicts the likely temperatures along the cables 30 minutes into
the future, according to weather conditions and known loading. A series of different
sensitivity tests as well as the pre-processing data analysis for the input feature data were
performed in order to investigate which input parameters are crucial for the development
of a generalized and robust thermal prognostic model. Anomalies of temperature
measurements along the cable compared to predicted temperatures can indicate possible

degradation activity in the cable.

4.1 Experimental Design and Development for Air filled Trench

A model surface trough was used to develop a thermal prognostic model which aims to
predict the likely temperature impact on a cable at burial depth according to weather
conditions and known loading. Initial experiments were performed in an air filled trench
to investigate the relationship between weather conditions and the constant power
demand as well as to investigate if the standard T-type thermocouples (TCs) are sensitive
enough to detect the existence of the increased cable surface temperature produced by a
hot-spot.
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41.1 Trench Instrumentation

The cable trough experiment consisted of two 3.95 meter trenches one filled with small
grain sharp sand and the second is unfilled. Simulated cables are constructed by a heater
tape wrapped around a length of aluminum pipe. The tape has a nominal power of 400
W, thus for a pipe of 3.95 meters the maximum heat loss is approximately 100 W per
meter. The surface temperature of the cable is continuously monitored using 22 TCs
placed on the cables at various positions within the unfilled trench. The abovementioned
trough have been constructed and used in a previous research project for the investigation
of cable ratings of underground cables in unfilled and soil filled trenches hence more

details can be found in [101].

Figure 10 shows the position of the TCs layout in the unfilled though. All the TCs are
connected to the Campbell Scientific datalogger CR1000 via a 32 channel multiplexer.
The datalogger record the temperatures every 1 minute giving an average value every 5

minutes.
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Fig. 10 Layout of TCs in the unfilled surface trough.
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A weather station installed on the roof of Tony Davies High Voltage Laboratory is used
to collect measurements of weather conditions. Table 6 below shows the weather

condition factors that are monitored by the Campbell Scientific datalogger CR10.

Factors Unit | Measurement Interval | Averaging Interval
Air Temperature °C 1 minute 5 minutes
Solar Radiation Wm2 20 seconds 5 minutes
Wind Speed ms’t 20 seconds 5 minutes

Table 6 Recordings of the Weather Data

4.1.2 Control System

A computer program is used to operate various pre-set load/time profile patterns to control
the heat output to the simulated cables shown in Figure 11. The controller sets the voltage
supply to the heater tape whilst reading the current and voltage flowing through the tape
as shown in Appendix 3. A variable transformer (Variac) is connected to each simulated
3-phase cable and a stepper motor is connected to the Variac in order to control its output
voltage. The control system is based on the Data Acquisition system of National
Instrument (NI) USB-6008. The NI USB-6008 provides connection to eight analog input
(Al) channels, two analog output (AO) channels, 12 digital input/output (D10O) channels,
and a 32-bit counter with a Full-Speed USB interface. Current transducers are used to
convert the real time current in the cable (0-2 A) into a voltage output (0-10 V DC) and
voltage transducers to convert the output voltage from the Variacs ( 0- 240 V AC) into a
lower voltage (0-10 V DC) . The output signals from both transducers are read real-time
by the NI USB-6008 device which collaborates with a Control Algorithm written in
LabVIEW to send the appropriate digital signals to the stepper motors and adjust the
corresponding power profile demands. The schematic diagrams for the stepper motors,
voltage and current transducers in relation with the NI USB-6008 are shown in Appendix
3.
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Fig. 11 Cyclic power demand profile

As the heater tapes are essentially resistances, the actual power is calculated in real-time

by multiplying the readings from the voltage transducer and current transducer values.

According with the power demand value the NI USB-6008 sends a digital signal to the

stepper motor in order to rotate it clockwise or anticlockwise to increase or decrease the

power output from the corresponding Variac and adjust the demanding power. A

schematic of the controller system and the program flowchart is shown in Figures 12 and

13.
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Fig. 12 Simulated Cable power output control system
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Fig. 13 Flowchart of the power demand algorithm program

4.2 Sensitivity tests and Pre-Processing

An analytical approach was made during the implementation of the thermal prognostic
model for the air filled trench in order to investigate different parameters that have to be
taken into the account prior to the development of a robust and generalized model. The
performed investigation includes the optimal time needed to average the input data, which
weather parameters are needed, the amount of input data needed, how many hours ahead
a model can predict and finally whether it is possible to monitor specific areas of an
underground cable, where hot-spots are more likely to occur, such as joints and

terminations.

Weather data and cable surface temperature data were taken from 7" - 28" of August
2013. The weather data used initially were solar radiation, air ambient temperature and
wind speed. TC 6B (positioning can be seen in Figure 10) is used as an input variable for
SVR training as it is the TC with the lowest temperature reading. The cables were loaded
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with a constant power demand of 100W which for a cable of around 4 m it has an output
heat loss of 25 Wm'™.

4.2.1 Sensitivity test for time averaging of the input data

Four different averaging minutes intervals (30 minutes, 15 minutes, 10 minutes and 5
minutes) have been taken in order to identify which is the best averaging sample time that
has to be used in order to predict the temperature for the cable surface temperature at
position of TC 13 (positioning can be found in Figure 10) in a prediction time horizon of
30 minutes. Four different models based on averaging time were built and the
corresponding performance was calculated. All models were trained and tested with the
same proportion of data (8 days training and 4 days testing) while the MAPE was
calculated. This stage is very crucial as it calculates the prediction accuracy of the model
obtained from the unknown data and reflects the performance on classifying and
independent data set. For each model the optimum combination of C and y was found.

Obtained results are presented in Table 7.

Time C Y Error (MAPE)
30 minutes | 32768 | 4.8828*10* 0.84%
15 minutes | 8192 0.002 0.89%
10 minutes | 8192 | 4.8828*10* 0.92%
5 minutes | 8192 | 1.2207*10* 0.95%

Table 7 Best SVR testing accuracies and optimized parameters.

The model based on averaging input data every 30 minutes showed best performance. By
averaging the data every 30 minutes it was possible to filter and remove any
electromagnetic interference from the thermocouple measurement readings and hence to
achieve a smoother input data for the SVR. Reducing the averaging sampling time made
the random fluctuation of the real data values higher thus making it difficult for the SVR
to produce a generalized model. For a 30 minutes ahead prediction SVR has to calculate
one data point for the case of the 30 minutes model, two data points for 15 minutes model,
three data points for 10 minutes model and six data points for 5 minutes model. The
reduction of the sampling averaging time will cause a more complex system as the SVR
has to perform more calculations while training and testing time will increase as well.
Furthermore 30 minutes averaging sampling time proved to be sensitive enough to

monitor the increase of abnormal temperature on the cable surface even when the external
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cable heater failed and caused the temperature to increase up to 135 degrees Celsius over
a period of 1 hour.

4.2.2 Sensitivity test for weather parameters

A study was undertaken in order to identify which weather parameters are the most
dominant and need to be taken into account during the development of the thermal
prognostic model. Four different models were built, trained and tested with the same
proportion of data, 8 days training and 4 days testing, while MAPE was calculated. The
prediction horizon of 30 minutes and the TC 13, located 1.725 m from the beginning of
the middle cable 5, were chosen. Model 1 includes the parameters of solar radiation and
the cable surface temperature of a point far away from the location of TC 13 which in this
case is TC 6B. Model 2 includes the parameters of air ambient temperature and the cable
surface temperature of TC 6B. Model 3 includes the parameters of solar radiation, air
ambient temperature and the cable surface temperature of TC 6B. And finally model 4
includes the parameters of solar radiation, air ambient temperature, wind speed and the
surface temperature of the TC 6B. For each model the optimum combination of C and y

was found. Obtained results are presented in Table 8.

Model C v Error (MAPE)
1(SC) 16384 4.8828*10* 1.05%
2 (AC) 16384 9.7656*10 1.10%
3 (SAC) 16384 9.7656*10 0.96%
4 (SACW*) 16384 2.4414*10* 1.03%

* Where S=Solar, A= Ambient, W= Wind and C= Cable surface

Table 8 Best SVR testing accuracies and optimized parameters for

sensitivity test of weather parameters

The Figure 14 shows the temperature prediction error, which is defined as the measured
temperature minus the predicted temperature, between the Model 2 (worst) and Model 3
(best).
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Fig. 14 Temperature prediction error for Model 2 and Model 3 for TC 13.

The maximum temperature prediction error defined as:
Max Temp Prediction Error = |3 * std(model error) + mean (model error)| (8)

was for Model 2 £0.51C and for Model 3 £0.39°C. The error difference is not that
significant because the models are developed with small amounts of training data but as
the amount of training data increases the error difference will become greater. Hence it is
better to choose the model with the lowest error deviation, which in this case is Model 3.
The overall temperature uncertainty error is of the order of £0.6 ‘C, which is due to data

logger temperature uncertainty (0.1 C) and the T-type thermocouple (£0.5 C).

Clearly solar radiation and air ambient temperature are required in order to build an SVR
model that predicts cable surface temperature with reasonable accuracy less than =1 C.
Solar radiation and air ambient temperature provide enough and crucial information for
the development of a robust model. Hence all the further models were developed taking

into account only solar radiation and air ambient temperature.
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4.2.3 Sensitivity test for the amount of input data features

A further investigation was performed to identify the amount of the input feature data
needed in order to achieve the best results. During constant loading conditions the
temperature of the cable can change due to the variation of air ambient temperature and
solar radiation values. It was found, in the recorded data for August 2013, that peak air
ambient temperature occurred two hours after peak solar radiation. Therefore according
with the above observation it can be deduced that changes in solar radiation affects the
variation of the air ambient temperature in the cable trough sometimes later which directly

relates to subsequent variations of the temperature of the surface of the cable.

In order to proceed with further investigation it was of a great importance to determine
the time intervals between the occurrence of the peak solar radiation, peak air ambient
temperature and the time intervals before any measurable affect on the temperature of the
surface of the cable. Analysis of the whole data set showed that the time gap from the
moment of the peak solar radiation to the peak of the cable temperature is of the order of
4 hours. The time gap between peak solar radiation and peak air ambient temperature is
2 hours.

Each 4 hours interval contained patterns that the SVR used to build the relationship and
the generalization function for the input feature data against the output data. The
averaging time taken was 30 minutes as it was previously shown to have the best
performance. Solar radiation, air ambient temperature and cable temperature at the
location of TC 6B were also used to develop the model. The same length of training and
testing data was used as before (8 days training and 4 days testing). Figure 15 shows the
number of columns taken and the corresponding MAPE error. The number of columns
correspond to 30 minutes intervals. The optimum pair of C and y were determined as it is
described in Section 3.4.3.

It can be concluded that the best MAPE error is at 8 columns which correspond to 4 hours
of input data. The SVR method was able to build a robust model using the number of
patterns that were contained in the 4 hours’ time gap calculated previous. For more
complex systems it is better to consider multiples of initially calculated time gaps to
identify the corresponding MAPE error as input feature data will contain more patterns
and therefore the SVR will be able to derive the corresponding generalized function

easier.
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Fig. 15 Sensitivity test between number of input data needed and

corresponding MAPE error.

4.2.4 Sensitivity test for hours ahead prediction

It is necessary to understand how many hours ahead a model is able to predict a value by
comparing a model with the same parameters of C and y and with a model using tuned C
and vy as a function of the hour ahead prediction. The same length of training and testing
data is used as before (8 days training and 4 days testing). The averaging time taken was
30 minutes as it has proven before to have the best performance. Solar radiation, air
ambient temperature and cable temperature were used as well to develop the model. Eight
input feature data columns were used. The Figures 16 and 17 show the two different

approaches for C and vy.

By having the same values of C and y the model was able to predict the temperature of
TC 13 up to two hours ahead, with very good accuracy, with MAPE error less than 2 %.
By tuning the parameters C and y the MAPE error can be reduced but the model is still
able to produce satisfactory prediction results for up to two hours ahead. But tuning the
parameters C and y increases the computational effort as well as well as the complexity
of the system. Therefore it is suggested to keep the same C and vy for a prediction of up to
two hours ahead, as it is more efficient and less complex to be developed from the existing

model.
43



MAPE %

MAPE %

4.8¢

L L

4.4~ °* MAPE Error
_ y=0,1186x° + 0,2132x + 0,6978
4r R2 = 0,9991
3.6
3.2
2.8
2.4
2 -
1.6
1.2
0.8‘ r r r r r r r
0.5 1 15 2 2.5 3 3.5 4 4.5
Hours Ahead (Hours)
Fig. 16 Keeping the same C and y parameters
3,6 L L L L L L L L
* MAPE Error
32 y=0,0498x? + 0,3064x + 0,6575
Rz = 0,9997
0 8' r r r r r r r r
0.5 1 1.5 2 25 3 3.5 4 4.5

Hours Ahead (Hours)

Fig. 17 Tuning C and y parameters

44




4.2.5 Pre-processing feature data

All the input feature data such as solar radiation, air ambient temperature and the surface

temperature of TC 6B were averaged every 30 minutes. Figures 18-20 show the half hour

intervals of one day for the input features with their corresponding 1 standard deviation.
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radiation.

For every 30 minutes data averaging interval, 6 data points of 5 minutes measurement

intervals were used. The red line in the graphs shown in Figures 18-20 indicates the

standard deviation of these 6 data points while the blue line stands for their averaged

value. It can be clearly observed that the standard deviation for the air ambient

temperature and the TC 6B is small. That means that the error corresponding to the data

point of the half an hour interval is small, as the fluctuation of the 5 minutes measurements

in that period of half an hour did not cause a large uncertainty for the average value. In
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contrast for the case of the solar radiation the uncertainty corresponding to every half an
hour data point is large because of the disturbed nature of the solar radiation due to

intermittent cloud cover.

After averaging the data, the input features are scaled from 0 to 1 as it is mentioned in
Chapter 3. An example of the scaling input features array used for the development of
thermal prognostic model by the SVR is shown in Figure 21.The input features of solar

radiation, air ambient temperature and temperature of TC 6B are scaled from 0 to 1.
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Fig. 21 Scaled input feature data
4.2.6 Sensitivity tests and pre-processing summary

From the sensitivity tests performed on data obtained from the trough experiment it was
concluded that 30 minutes averaging time proved to be optimal for the development of
robust and generalized models. Solar radiation and air ambient temperature were found
to be the most dominant weather parameters that have to be used as an input data during
the development of the thermal prognostic model. Calculating time intervals between the
occurrence of the peak solar radiation, peak air ambient temperature and the time interval
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when it affects the temperature of the cable surface provide the key information about the
amount of input data needed for the development of the model. The model is able to
provide satisfactory prediction results up to 2 hours ahead. Hence the above facts were
used during the development and implementation of the thermal prognostic models.
Furthermore the pre-processing data analysis showed that the solar radiation has the
largest standard deviation error due to the disturbed nature of it.

4.3 Hot-Spot Experiment in the Air filled trench

During the air filled trench experiment a constant power demand profile of 100W was
loaded in the simulated cables producing an output heat loss of 25 Wm™. During the
loading, condition artificial hot-spots were introduced to the cable, using an external heat
source, in order to investigate if the thermal prognostic model is sensitive enough to detect
the existence of temperature anomalies along the cable, produced by the hot-spots. A hot-
spot power profile of 10W was performed. The external heater had a surface area of 100
cm? hence the hot-spots heat density was 0.1 Wem2.The experiment aimed to investigate
whether it is possible to monitor specific areas of an underground cable, where hot-spots

are more likely to occur, such as joints and terminations.

43.1 Constant Load

The external heat source was monitored by TC 8 which is positioned in the middle of
Cable 5 as is shown in Figure 10. TC 6B was used as an input variable for SVR training
as well as the solar radiation and the air ambient temperature. The TC 6B was chosen as
it is one of the most distantly located TCs from where the heat source lies.

A thermal prognostic model was developed based on the outcomes of the sensitivity tests
performed, mentioned in the section 4.2. The first 8 days were used to train the SVR
model while the next 4 days were used for testing it and to choose the optimal pair of C
and y. After the 12'" day the model ran unchanged. On the day 13" of the experiment the
hot-spots were introduced. The hot-spot cycle was 4 hours on at 10W and 2 hours off.

The model was used to identify the abnormal temperatures produced by an external heat
source with power output of 10W. Figure 22 shows the prediction made while the hot-

spots were enabled.
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Fig. 22 Predicted temperature and real temperature for TC 13 under

the influence of hot-spots, MAPE=2.78 %.

Figure 23 shows the temperature difference between the measured temperature of TC 13

and the predicted temperature by the model of TC 13. It can be clearly seen that when
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Fig. 23 Temperature prediction error for TC 13 under the influence of hot-spots.
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the hot-spots cycle starts on the day 13" of the experiment and onwards the positive
temperature prediction error has increased more than 1 ‘C during the nigh-time. During
the night-time due to the much lower temperature time constant the detection with

confidence was possible.

The thermal prognostic model has an accuracy of + 1°C. Hence in the event when the real
temperature is higher than the predicted temperature by at least 1°C, the positive part of
the temperature prediction error, it can be assumed as an indication of an upcoming failure

of the system.

The techniques used for the development of the model such as the scaling of the input
data, the selection of the parameters C and vy, the way that the input data were selected
and prepared, the sensitivity tests performed to tune the model verified that the chosen

methodology was feasible and realistic.

The air-filled trench prognostic model was able to detect abnormal increase of
temperature on the cable, produced by the external heat source. TC 13 which is located
0.25 m away from the location of the hot-spot was able to detect the change of the

temperature due to the existence of the heater by TC 8.

4.4 33 kV thermal cycle experiment

This section investigates a method of developing a reliable thermal prognostic indicator
system for cable terminations. An experiment was set up where a closed loop 33 KV cable
is tested under current loading patterns. Real-time measurements (air ambient
temperature, temperature of the cable terminations and loading demand) taken close to
the cable are used to update the prognostic model based on the SVR algorithm. The model
predicts the likely temperatures of cable terminations 30 minutes into the future.
Anomalies of the measurements along the cable are compared with predicted values in

order to identify possible degradation activity in the cable terminations.

As before, it is assumed that an increase of local cable temperature, i.e. a hot-spot, is
indicative of degradation of the cable insulation due to thermomechanical, electrical and

environmental factors.
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4.4.1 Experimental Design and Setup

A closed loop of 10 meters 33 kV cable, under different current loading patterns, was
used to generate data needed to develop the thermal prognostic model. Two ends of the
cable are electrically connected to create a loop. Single-point-bonding is used to prevent
any circulating earth currents. The sheath voltage is proportional to the sheath resistance
which varies directly as the length of cable circuit. Hence the length of cable circuit is

much shorter in the lab test than in the field, thus any sheath voltage is minimal.

Two current transformers (CT1 and CT2) and a motorized variac unit were used to
generate the current loading profiles. The motorized variac is used to control the input
current to the primary windings of the CTs. The CTs generate a magnetic field due to
their primary current. This magnetic field then induces a much higher current in the

secondary side which is formed by the single short circuit turn of the test cable.

A LabVIEW control system program, the flowchart of which can be seen in Figure 24,
was developed in order to vary the input current to the CTs and to simulate different load
profiles. A data acquisition device, NI USB-6008, collaborates with the control system
program written in LabVIEW by receiving and sending analog signals. A Rogowski coil
is used to measure the current passing through the cable conductor in real-time. This
current is input to the NI USB-6008 which updates the LabVIEW control system
program. Afterwards the LabVIEW control system program sends the appropriate signals
to the motorized variac and adjusts the corresponding load profile demand in the cable to
be close to the expected current value via the NI USB-6008.

The surface temperature of the cable was continuously monitored using 7 thermocouples
(TC) placed on the cable at various positions as is shown in Figure 25. Four
thermocouples (FAL, FB1, FC1 and FD1) are located 2 meters away from each other. The
other three thermocouples (T1, T2 and T3) are located at the termination section. The
thermocouples are connected to the Campbell Scientific datalogger CR1000. The
datalogger records the temperatures every minute giving an average value of local

temperature every 30 minutes.
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Fig. 24 Flowchart of the LabVIEW control system.

Fig. 25 Experimental Setup of 33 kV
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During this experiment a daily load current cycle, as shown in Figure 26, was loaded in
the 33 kV cable producing an increase in temperature on the surface of the cable. The

experiment was run for two weeks, with the same current load. The first week of the
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Fig. 26 Experimental current daily
experiment was used to gather data in order to build the thermal prognostic model while
the second week was used to test the performance of the model. During the second week
of loading artificial hot-spots were introduced to the cable, by adding fiberglass insulation
sections, in order to investigate if the thermal prognostic model is sensitive enough to
detect the existence of the temperature anomalies along the cable produced by local hot-
spots. The two thermal insulation sections were added close to the end of the termination,
where failures are more likely to occur. The first insulation was added by the end of the
termination, located 0.10 meters away from TC T2 and 0.35 m from TC T1. The second
insulation was added above the TC T3, 0.10 meters away from the end section of the

termination.

4.4.2 Experimental results for the cable in air base on the SVR thermal

prognostic model

TC FC1 is used as an input variable for SVR training as well as the air ambient
temperature in the Tony Davies High Voltage Laboratory (TDHVL) and the current load
profile of the experiment. The relationship between the peak of the air ambient
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temperature and the cable temperature was 2 hours. Hence 4 input feature columns where

used for the development of the models as the environment was not harsh.

The data scaling, preparation, kernel selection as well as the grid-search technique and
cross-validation method used were as previously described in Chapter 3. The LIBSVM

toolbox in MATLAB has been used for the development of the thermal prognostic model.

4.4.3 Results

Three different models were built to detect temperature increases by the location of the
TC T1, T2 and T3 after the introduction of the hot-spots produced by the fiberglass

insulation sections by the end of the terminations.

The hot-spots were introduced on the second week of the experiment. The first 5 days of
the experiment were used to train the SVR algorithm, the next 2 days to test its
performance using MAPE and to identify the optimum combination of C and y. Finally
in the last week the models, developed the week before, were left to run under unknown

data and under the influence of local hot-spots.

Figures 27, 28 and 29 show predictions made for the testing and unknown data for TC
T1, T2 and T3 without and with the influence of hot-spots.

The prediction made for the testing data of TCs T1, T2 and T3 shows good results with
prediction MAPE less than 1.3%. After the introduction of the hot-spots from the day 7
until day 14 of the experiment, the MAPE for TC T1, T2 and T3 increased to 3.50%,
7.71% and 14.46% respectively. It can be observed that all of the TCs were able to

identify the increase of temperature caused by the nearby hot-spots.
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Fig. 27 Comparison between predicted temperature on Testing Data (MAPE= 1.11%) and
Unknown Data (MAPE=3.50%) with the real temperature of TC T1.
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Figures 30, 31 and 32 show the temperature prediction error made for the same TCs while
the hot-spots were disabled and enabled. TC T2 which is 0.10 m away from the first hot-
spot, thermal insulation 1, identified an increase of temperature of the order of 4.42 °C
while TC T1 which is located further away from the hot-spot, at the distance of 0.35 m,
could as well identify an increase of temperature of 2.54°C. TC T3 which is located just
below the second hot-spot, thermal insulation 2, had a temperature increase which
reached 8.22°C.
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Fig. 30 Temperature prediction error for TC T1
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Fig. 31 Temperature prediction error for TC T2
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Fig. 32 Temperature prediction error for TC T3

The temperature prediction error for TC T2 and T3 is well above 1°C as these TCs are
located near or below the hot-spots. TC T1 positioned 0.35 m away from the location of
the first hot-spot was able to identify the presence of hot-spots with the highest
temperature magnitude falling during the daytime but could not detect the hot-spots
during the night-time due to the lower air ambient temperature.

Hence it can be concluded that the most effective distance for the thermal prognostic
model to identify the location of the hot-spots is within a radius of up to 0.35 m. A
distribution of TCs close to the area of interest is good enough for the model to identify

and predict a possible failure process at an early stage within the cable terminations.

4.5 Summary

The 30 minutes averaging time proved to be the best averaging interval for a prediction
horizon of 30 minutes ahead because the model has to predict only one data point ahead
which makes the model less complex and more robust. Solar radiation and air ambient
temperature showed to be the most dominant weather parameters that influenced the
surface cable temperature and hence they are used as input data during the development
of the model. The time gaps between the occurrence of the peak solar radiation, peak air
ambient temperature and the time gap when the above affects the surface temperature of
the cable contain patterns that can be used by SVR to develop a generalized model. For
more complex systems a larger amount of input data is needed for the SVR to build the

relation between input data and output data. The methodology of multiple time intervals
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can help to identify the optimal number of the input data needed by the SVR. Reducing
the size of input feature data will create a generic model while large amounts of data will
create a specific model. The model can provide satisfactory prediction results up to 2
hours ahead. The pre-processing data analysis shows how the input data was averaged

and scaled prior to the insertion to the SVR model.

Both the air-filled trench experiment and the 33kV thermal cycle experiment prognostic
models were able to detect abnormal increases of temperature on the cable surface,
produced by the external heat source. It was verified that the TC are sensitive enough to
detect temperature anomalies as far as 0.35 m away from the location of the heat source.
Hence TCs placed close to the area of interest, such as joints and termination in an air
environment, can be used to develop prognostic models which can identify and predict a

possible failure process at an early stage by the cable terminations and joints.

The proposed methodology during the sensitivity tests proved to be suitable to develop
robust and generalized models for both experiments. The two experiments were
performed in a different environments, more complex for the air-trench experiment and
less complex for the 33 kV thermal cycle experiment. The analysis of the relationship
between peak solar radiation, peak air ambient temperature and peak temperature of the
cable surface provides vital information for the development of the models. Less input
feature data were used for the 33 kV thermal cycle because the surface temperature of the
investigated cable was influenced only by the air ambient temperature inside the TDHVL.
While the cable surface temperature during the air-filled trench experiment was
influenced by the solar radiation as well as the air ambient temperature, thus the model

required more input feature data.

After the implementation of the established thermal models in the air-filled trench and
the termination it was decided to test the performance of them in a more complex
environment. Thus cyclic and constant load experiments were performed in backfill
trench and are described in Chapter 5. The following chapter as well further investigates
the performance of the previously mentioned machine learning regression algorithms for
the case of backfill trench and the accuracy of the established models that predict the
likely cable temperature 30 minutes into the future in order to verify robustness of the
thermal prognostic system in a more complex environment prior to the implementation

of it in the real field experiment.
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Chapter 5 Implementation of Thermal Prognostic
Models for the Backfill Trench

Two experiments constant load and cyclic load, were setup up in the backfill trench to
investigate the possibility of identifying abnormal surface cable temperature
measurements in an underground cable system. An ability to identify anomalies in cable
surface temperature can help to target the cable degradation activity, commonly occurring
by the cable joints, at an early stage prior a catastrophic failure. It is assumed that a sign
of an upcoming cable joint failure is closely related with abnormal temperature due to a

combination of electrical, thermomechanical and environmental factors.

The SVR algorithm was used to develop thermal prognostic models for the soil filled
trench which can predict the likely temperature along the cable 30 minutes into the future.
Weather conditions such as solar radiation, air ambient temperature as well as known
cable loading conditions were used to develop the thermal models. Other machine
learning algorithms were investigated and benchmarking was performed. The accuracy
of the thermal prognostic model as well as the verification of model parameters selection

were investigated.

51 Hot-Spot Experiment in the Soil filled trench

Based on results obtained for experiments in air, a thermal prognostic model was
established using the Support Vector Regression (SVR) Algorithm which predicts the
likely temperatures along the cable 30 minutes into the future, according to weather
conditions and known loading. Anomalies of temperature measurements along the cable
compared to predicted temperatures can indicate possible degradation activity in the
cable. The surface temperature of the cable was continuously monitored as well as the
weather conditions such as solar radiation and air ambient temperature. The experiment
was used to investigate the feasibility of different approaches for monitoring of
underground cables, where hot-spots are more likely to occur, such as joints and
terminations. It is assumed that an increase of the local cable temperature is a sign of
aging of the cable insulation caused by thermomechanical, electrical and environmental
factors. Various machine learning algorithms were benchmarked as well as a system error

analysis and a verification technique for the selected model parameters was performed.
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511 Soil trench input experiment

The surface temperature of the 3 simulated cables is continuously monitored using 15
TCs placed in the sand filled trench. Figure 33 shows the position of the TCs in the sand
surface trough. The surface temperature for each TC as well as the weather conditions are

monitored with the same dataloggers as it described in Chapter 4.

During the loading condition artificial hot-spots were introduced to the cable surface,
using an external heat source monitored by TC S8 which is positioned in the middle of
the Cable 2. Two different loading conditions were investigated, the first with constant

loading and the second with cyclic loading.

Three different hot-spot power profiles of 5, 10, 15 Watt were generated using the
external heat source, in order to investigate if the thermal prognostic model is sensitive
enough to detect the existence of the temperature anomalies along the cable produced by
the hot-spots. The external heater had a surface area of 100 cm? hence the hot-spots heat
density was 0.05 Wem, 0.1 Wem™ and 0.15 Wem™,

The same sensitivity tests as described in Section 4.2 have been used. In order to proceed
with further investigation it was of a great importance to determine the time difference
between the occurrence of the peak solar radiation, peak air ambient temperature and
when these effects influence the temperature of the cable in the soil. Analysis of the whole
data set showed that the time gap from the moment of the peak solar radiation to the peak
of the cable temperature is about 8 hours. Each 8 hour interval contains patterns that SVR
uses to build the relationship and the generalization function for the input feature data
against the output data. The averaging time taken was 30 minutes as it has shown to have
the best performance. Solar radiation, air ambient temperature and cable temperature by
the position of TC S2 were used to develop the model to predict the temperature of the
TC S11 with reference the Figure 33. Each column corresponds to 30 minutes interval.
Training data for 20 days and 8 hours and testing data of 3 days where used to develop
the regression model using the LIBSVM MATLAB toolbox. The amount of input
columns was varied in order to determine the best amount of input data needed 