
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Southampton Wireless

Timing-Error-Tolerant Iterative Decoders

by

Isaac Pérez Andrade

A thesis submitted in partial fulfillment for the degree of

Doctor of Philosophy

at the University of Southampton

May 2016

Supervisors:

Dr. Robert G. Maunder

Prof. Bashir M. Al-Hashimi

Prof. Lajos Hanzo

c© Isaac Pérez Andrade 2016

mailto:ip1g10@ecs.soton.ac.uk

Dedicated to my family and friends

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Southampton Wireless

Doctor of Philosophy

TIMING-ERROR-TOLERANT ITERATIVE DECODERS

by Isaac Pérez Andrade

Iterative decoders such as Low-Density Parity-Check (LDPC) and turbo decoders have

an inherent capability to correct the transmission errors that originate during commu-

nication over a hostile wireless channel. This capability has engendered the widespread

use of LDPC and turbo decoders in current communications standards. As a result, sig-

nificant research efforts have been made in order to conceive efficient Very-Large-Scale

Integration (VLSI) implementations of both LDPC and turbo decoders. Typically, these

efforts have focused on optimizing only one of the various trade-offs associated with the

hardware implementation of iterative decoders, such as the chip area, latency, through-

put, energy efficiency or Bit Error Ratio (BER) performance. However, tolerance to

timing errors that occur during the iterative decoding processing are typically not con-

sidered in these implementations. Owing to this, the BER performance and hardware

efficiency of the proposed designs may be severely degraded, if timing errors occur during

the iterative decoding process.

Against this background, this thesis demonstrates that iterative decoders are capable

of exploiting their inherent error correction capability to correct not only transmission

errors, but also timing errors caused by overclocking and power supply variations. More-

over, we propose modifications to the iterative decoders designs, which further enhance

their inherent tolerance to timing errors. We achieve this by considering the close rela-

tionship between the different trade-offs associated with the hardware implementation

of iterative decoders, with the aim of achieving Pareto optimality, where none of these

trade-offs can be further improved without degrading at least one of the others. Owing

to this, our proposed timing-error-tolerant design methodology simultaneously considers

the design constraints and parameters that affect not only the BER performance, but

also the hardware efficiency of each implementation.

We first investigate the benefits of stochastic computing in iterative decoders, by charac-

terizing the inherent timing-error tolerance of Stochastic LDPC Decoders (SLDPCDs)

and Stochastic Turbo Decoders (STDs). Moreover, we propose modifications to the

mailto:ip1g10@ecs.soton.ac.uk

vi

SLDPCD and STD in order to further improve their inherent tolerance to timing errors.

This is achieved by performing extensive transistor-level and post-layout simulations, in

order to develop different timing analyses for determining the causes and effects of timing

errors in these stochastic decoders. Following this, we propose a novel Reduced-Latency

STD (RLSTD), which improves the latency of the state-of-the-art STD by an order of

magnitude, without increasing its chip area or energy consumption. Our experimental

results demonstrate that our proposed RLSTD achieves ultra-low-latencies required by

next-generation Mission-Critical Machine-Type Communication (MCMTC).

We also investigate the inherent tolerance to timing errors of a recently-proposed Fully-

Parallel Turbo Decoder (FPTD). Furthermore, we propose a novel Reduced-Critical-

Path Fully-Parallel Turbo Decoder (RCP-FPTD) algorithm and the employment of

Better-Than-Worst-Case (BTWC) design techniques in FPTD and RCP-FPTD im-

plementations, for the sake of improving their throughput and their tolerance to tim-

ing errors caused by overclocking. We demonstrate that the FPTD and RCP-FPTD

implementations improve the throughput of the state-of-the-art turbo decoder by an

order of magnitude. Finally, despite operating in the presence of timing errors, our

proposed Better-Than-Worst-Case Reduced-Critical-Path Fully-Parallel Turbo Decoder

(BTWC-RCP-FPTD) achieves throughputs on the order of tens of Gbps, which may be

expected to be a requirement in next-generation wireless communication standards.

Contents

List of Figures xi

List of Tables xvii

Nomenclature xix

Commonly Used Symbols xxi

Declaration of Authorship xxiii

Acknowledgements xxv

List of Publications xxvii

1 Introduction 1

1.1 Related Work . 3

1.1.1 Stochastic Iterative Decoders . 4

1.1.2 Fault-Tolerant Iterative Decoders 6

1.2 High-throughput Iterative decoders . 7

1.3 Motivation and Thesis Outline . 8

1.4 Novel Contributions . 10

2 Fixed-Point and Stochastic Iterative Decoders 13

2.1 Fundamentals of Iterative Decoding . 13

2.2 Fixed-Point Two’s Complement in Iterative Decoders 14

2.3 Stochastic Computing in Iterative Decoding 16

2.3.1 Stochastic Arithmetic . 16

2.3.2 Latching Problem . 18

2.4 Chapter Conclusions . 20

3 Timing-Error-Tolerant Stochastic LDPC Decoders 21

3.1 LDPC Codes . 22

3.1.1 Sum-Product Algorithm . 23

3.2 Stochastic Implementation of LDPC Decoders 27

3.2.1 Variable nodes . 27

3.2.1.1 Variable nodes having degree two 28

viii CONTENTS

3.2.1.2 Variable nodes having higher degrees 32

3.2.2 Parity-check nodes . 33

3.3 Hardware Implementation . 35

3.4 Error Correction Capabilities in the Presence of Timing Errors 37

3.4.1 Timing error analysis of the stochastic LDPC decoder 38

3.4.1.1 Propagation delays . 39

3.4.1.2 Causes and effects of timing errors 42

3.4.2 Decoding performance in the presence of timing errors 45

3.5 Modified Stochastic LDPC Decoder . 49

3.5.1 Modified EM . 49

3.5.2 Hardware implementation . 49

3.5.3 Error correction capabilities in the presence of timing errors 53

3.5.3.1 Timing error analysis . 54

3.5.4 Decoding performance in the presence of timing errors 56

3.6 Chapter Conclusions . 60

4 Timing-Error-Tolerant Stochastic Turbo Decoders 63

4.1 Turbo Codes . 64

4.2 Stochastic Implementation of Turbo Decoders 66

4.2.1 Branch metrics . 67

4.2.2 State metrics . 69

4.2.3 Extrinsic Probabilities . 70

4.2.4 A Posteriori Probability . 72

4.3 Timing-Error Tolerant Stochastic Turbo Decoder 73

4.3.1 Output Synchronizers for Mitigating the Catastrophic Propaga-
tion of Metastability . 74

4.3.2 Decoding of Two Frames Concurrently 75

4.3.3 Tracking Forecast Memory-based Edge Memories in Stochastic
Turbo Decoders . 79

4.3.4 Pipelining . 82

4.4 Trade-off Analysis of the Hardware Implementations of the Timing-Error
Tolerant Stochasic Turbo Decoder . 83

4.5 Error Correction Capabilities of the Timing-Error Tolerant Stochastic
Turbo Decoders . 88

4.5.1 Timing Error Model . 88

4.5.2 Decoding Performance in the Presence of Timing Errors 90

4.6 Chapter Conclusions . 95

5 Reduced-Latency Stochastic Turbo Decoders 97

5.1 Proposed Reduced-Latency Stochastic Turbo Decoder 99

5.1.1 Approximate stochastic adders . 99

5.1.2 Reduced-complexity tracking-forecast memory 102

5.1.3 Output decision . 104

5.2 Error Correction Capabilities of the Reduced-Latency Stochastic Turbo
Decoder . 105

5.3 Hardware Implementation of the Reduced-Latency Stochastic Turbo De-
coder . 107

5.4 Chapter Conclusions . 110

CONTENTS ix

6 Timing-Error-Tolerant Fully-Parallel Turbo Decoders 113

6.1 Logarithmic BCJR Algorithm . 115

6.2 Fully-Parallel Turbo Decoder . 118

6.2.1 Algorithm . 119

6.2.2 Hardware Implementation . 122

6.2.2.1 Noise-Dependent-Scaling in FX FPTDs 123

6.2.2.2 Odd-Even scheduling . 124

6.2.2.3 LLR quantization . 126

6.2.2.4 Branch metrics . 126

6.2.2.5 State metrics . 127

6.2.2.6 Extrinsic LLR . 130

6.2.2.7 Hard Decision . 132

6.3 Reduced-Critical-Path Fully-Parallel Turbo Decoder 133

6.3.1 Algorithm . 133

6.3.2 Hardware Implementation . 135

6.4 Trade-off Analysis of the FPTD and RCP-FPTD Implementations 139

6.4.1 Error Correction Capabilities of the Floating Point FPTD and
RCP-FPTD algorithms . 139

6.4.2 Error Correction Capabilities of the Fixed-Point FPTD and RCP-
FPTD algorithms . 141

6.4.3 Hardware Efficiency . 143

6.5 Fixed-Point FPTDs in the Presence of Timing Errors 145

6.5.1 Timing analysis . 146

6.5.2 Timing error model . 149

6.5.3 Error decoding performance . 151

6.6 Better-than-worst-case Design in FPTDs 152

6.6.1 Razor DFF . 153

6.6.2 BTWC-FPTD . 155

6.6.2.1 Hardware Implementation 155

6.6.2.2 Timing analysis and timing error model 160

6.6.2.3 Trade-off analysis in the presence of timing errors 162

6.6.3 BTWC-RCP-FPTD . 164

6.6.3.1 Hardware Implementation 165

6.6.3.2 Timing analysis and timing error model 168

6.6.3.3 Trade-off analysis in the presence of timing errors 169

6.7 Hardware Efficiency of the Various FPTD Implementations 170

6.8 Chapter Conclusions . 172

7 Conclusions and Future Work 175

7.1 Conclusions and Summary . 175

7.2 Future Work . 178

7.2.1 Hardware Efficiency of Iterative Decoders 178

7.2.2 Timing Error Model . 179

7.2.3 Power Gating in Stochastic Turbo Decoders 180

7.2.4 FPTD ASIC Fabrication and Error Model Validation 180

7.3 Closing Remarks . 181

x CONTENTS

A Design Flow 183

References 189

Author Index 197

List of Figures

1.1 Relationship between different design trade-offs in iterative decoders. . . . 2

1.2 Thesis outline. 9

2.1 Simplified block diagram of a communication scheme using iterative de-
coding. 14

2.2 Stochastic circuits for arithmetic operations: (a) Different BSs for P =
0.75. (b) Complement. (c) Multiplication. (d) Scaled addition. (e)
Approximate division and normalization. 17

2.3 EM employed for the re-randomization of BSs in stochastic decoding. . . 18

3.1 Parity-check matrix, parity-check equations and factor graph of a (10, 5)
LDPC code. (a) H matrix and parity-check equations. (b) Factor graph
of H. VNs are represented with a circle with equal sign and CNs are
represented with a box with a plus sign. 23

3.2 Simplified block diagram of a communication scheme employing LDPC
codes. 24

3.3 Example of the implementation of one edge of a VN having the degree of
di employing only subnodes of degree 2. 28

3.4 Inputs and outputs of a VN having degree of di = 2. 28

3.5 Stochastic implementation of an edge of a VN having the degree of di = 2. 29

3.6 Stochastic implementation of an edge of a VN having a degree of di = 2
and employing EMs. 30

3.7 Stochastic implementation of a VN having a degree of di = 2. 31

3.8 Stochastic implementation of VNs having different degrees. Here, only
one output of each VN is shown. (a) di = 3. (b) di = 6. 32

3.9 Inputs and outputs of a CN having the degree of dj = 3. 33

3.10 Stochastic implementation of CNs having the degree dj = 3: (a) One edge
of a CN. (b) Parity-check satisfied. 34

3.11 Stochastic implementation of a CN having a degree of dj = 3. 35

3.12 BER of the (1056,528) SLDPCD. 37

3.13 Average number of DCs for successfully decoding a frame for the SLDPCD. 37

3.14 Latency of the SLDPCD. 38

3.15 Uncoded throughput of the SLDPCD. 38

3.16 Energy consumption per decoded bit of the SLDPCD. 39

3.17 A critical path in a stochastic VN di = 3. 41

xii LIST OF FIGURES

3.18 Propagation delays as a function of supply voltage for the VNs and CNs
employed in the SLDPCD implemented in ST 90 nm technology. Here,
tp denotes the propagation delay of the path p. 43

3.19 Flowchart illustrating causes and effects of timing errors in stochastic VNs
having a degree of di = 3. 44

3.20 SPICE simulation demonstrating the occurrence of TET II in the stochas-
tic VN having a degree di = 3. 45

3.21 Flowchart illustrating causes and effects of timing errors in stochastic VNs
having a degree of di = 2. 45

3.22 Flowchart illustrating causes and effects of timing errors in stochastic VNs
having a degree of di = 6. 46

3.23 BER of the SLDPCD with VDD = 1.0 V 48

3.24 BER of the SLDPCD with VDD = 0.8 V 48

3.25 Comparison of driving loads in SR-based and RB-based EMs: (a) SR-
based. (b) RB-based. 50

3.26 BER of the RB-based (1056,528) SLDPCD. 52

3.27 Average number of DCs for successfully decoding a frame in the RB-based
SLDPCD. 52

3.28 Latency of the RB-based SLDPCD. 53

3.29 Uncoded throughput of the RB-based SLDPCD. 53

3.30 Energy consumption per decoded bit of the RB-based SLDPCD. 54

3.31 Comparison of propagation delays of the SR-based and RB-based SLD-
PCDs as a function of the supply voltage. Here, tSR

p and tRB
p denote the

propagation delay of the path p in the SR-based and RB-based stochastic
VNs, respectively. 55

3.32 Flowchart illustrating causes and effects of timing errors in RB-based
stochastic VNs having a degree of di = 6. 55

3.33 Flowchart illustrating causes and effects of timing errors in RB-based
stochastic VNs having a degree of di = 3. 56

3.34 BER of the RB-based SLDPCD with VDD = 1.0 V 57

3.35 BER of the RB-based SLDPCD with VDD = 0.8 V 57

3.36 BER of the RB-based SLDPCD with VDD = 1.0 V and aggressive over-
clocking . 58

3.37 BER of the RB-based SLDPCD with VDD = 0.8 V and aggressive over-
clocking . 58

3.38 Hardware implementation results of the RB-based SLDPCD in the pres-
ence of timing errors. (a)VDD = 1.0 V, same Tclk values for both the
SR-and RB-based SLDPCD. (b)VDD = 1.0 V, different Tclk values for the
SR-and RB-based SLDPCD. (c)VDD = 0.8 V, different Tclk values for the
SR-and RB-based SLDPCD. 59

4.1 (a) Simplified turbo encoder. (b) Conventional structure of a turbo de-
coder. (c) State transition diagram of the LTE turbo code. 65

4.2 Block diagram of the fully-parallel STD. 67

4.3 Stochastic realization of γk(s
′, s) and γe

k. 68

4.4 Stochastic realization of αk(0). 69

4.5 Stochastic realization of the calculation of the extrinsic probabilities in
Equation 4.5. 71

LIST OF FIGURES xiii

4.6 Stochastic realization of the calculation of the APP. 73

4.7 Modified TFM-based EM. 76

4.8 External set of systematic and parity probabilities for concurrently de-
coding two frames. 78

4.9 Modified stochastic realization of the calculation of the APP for concur-
rently decoding two frames. 79

4.10 Architecture of TFM-based EMs. 81

4.11 Data scheduling of the modified STD. 83

4.12 Hardware implementation results of the modified STD schemes. The
presented results are normalized relative to SR-1, when VDD = 1.2 V and
Eb/N0 = 3.0 dB. 85

4.13 Clock skew of the different STD implementations. 87

4.14 Delays of critical paths of different implementations of the STD. 89

4.15 SPICE simulation of a critical path under different supply voltages of
VDD ∈{0.99, 1.00, 1.01, 1.02, 1.03, 1.04, 1.05} V. 90

4.16 BER and hardware and performance of the modified STDs in the presence
of timing errors and power supply variations when VDD = 1.20 V: (a)
BER performance of the modified STDs operated at VDD = 1.20 V. (b)
Hardware performance of the modified STD operated at VDD = 1.20 V
and Eb/N0 = 3.0 dB. 92

4.17 BER and hardware and performance of the modified STDs in the presence
of timing errors and power supply variations when VDD = 0.84 V: (a)
BER performance of the modified STDs operated at VDD = 0.84 V. (b)
Hardware performance of the modified STDs operated at VDD = 0.84 V
and Eb/N0 = 3.0 dB. 93

4.18 Design flow of error-tolerant iterative decoders. 95

5.1 Stochastic realization of αk(0) employing or gates as approximate adders. 100

5.2 Estimation of the extrinsic probabilities in the RLSTD. 101

5.3 Estimation of the hard-decision bit b̂1,k in the RLSTD. 102

5.4 Comparison of TFM structures: (a) Conventional TFM employed in
TFM-based STDs of Chapter 4. (b) Proposed RCTFM associated with
φ = 2−1. 103

5.5 BER performance of the RLSTD, as well as of various benchmarks. 106

5.6 Average number of DCs for successfully decoding a frame for the RLSTD. 106

5.7 Hardware implementation results for different STDs, normalized relative
to SR-1, when operated at VDD = 1.20 V and when Eb/N0 = 3.0 dB. (a)
50-bit STDs. (b) 200-bit STDs. 110

6.1 Simplified turbo encoder. 115

6.2 Data dependencies of the Log-BCJR algorithm. 117

6.3 Block diagram of the FPTD algorithm. 120

6.4 Schematic of the FPTD employing termination bits. 122

6.5 Block diagram of the FPTD showing the employment of registers. 123

6.6 Clock signals for the light- and dark-shaded blocks of the FPTD. (a) Clock
signals generation circuit. (b) Timing diagram. 125

6.7 Schematic of the hardware implementation of the state metrics γtk(s
′, s)

of the FPTD. 127

xiv LIST OF FIGURES

6.8 Schematic of the hardware implementation of the forward state metrics
αtk(s) of the FPTD. 129

6.9 Schematic of the hardware implementation of the backward state metrics
βtk−1(s′) of the FPTD. 130

6.10 Schematic of the hardware implementation of the extrinsic LLR bt,e1,k of
the FPTD. 131

6.11 Schematic of the hardware implementation of the hard decision performed
by the FPTD. 133

6.12 Block diagram of the RCP-FPTD algorithm. 135

6.13 Block diagram of the RCP-FPTD algorithm. 136

6.14 Schematic of the hardware implementation of the pipelined state metrics
γtk(s

′, s) of the RCP-FPTD. 137

6.15 Schematic of the hardware implementation of the pipelined extrinsic LLR
bt,e1,k of the RCP-FPTD. 137

6.16 Schematic of the hardware implementation of the pipelined εtk,m,n of the
RCP-FPTD. 138

6.17 BER performance of FP versions of the FPTD and RCP-FPTD algo-
rithms, as well as of the FP Log-BCJR algorithm. The BER perfor-
mance was obtained for the case of the exact max* operation, when us-
ing BPSK modulation to transmit N={48,480,4800}-bit frames over an
AWGN channel, where the FPTD and RCP-FPTD algorithms perform
DC=∈{2,4,8,16,32,64,128,256} DCs and the Log-BCJR algorithm per-
forms I = 6 iterations. (a) N = 48. (b) N = 480. (c) N = 4800. 140

6.18 BER performance of FP versions of the FPTD, RCP-FPTD and Log-
BCJR algorithms. The BER performance was obtained for the case of the
exact max*, when using BPSK modulation to transmit N ∈ {40, 6144}-bit
frames over an AWGN channel. 141

6.19 Comparison of the BER performance of the FX and FP FPTDs. The
BER performance of the FP FPTDs was obtained for the cases of both
the exact and approximate max∗, when N ∈ {40, 6144} 142

6.20 Example of CCDFs of propagation delays for the FPTD and RCP-FPTD.
These CCDFs were obtained for the case of the MSB of αk(1), βk−1(1) and
be1,k for the FPTD, as well as of the MSB of αk(1), βk−1(1), be1,k, εk,0,1 and
γk the LSB of γk for the RCP-FPTD, in the case when γk = b1,k+b2,k+b3,k.148

6.21 Structure of a max block. 148

6.22 Example of propagation delays in the FPTDs. 150

6.23 BER performance of the FPTD and RCP-FPTD in the presence of tim-
ing errors owing to different degrees of overclocking, when transmitting
N={40,6144} bits using BPSK over an AWGN channel. (a) BER of
the FPTD, when N=40, DC=48 and Tclk ={4.5, 3.4, 3.3, 3.2, 3.1} ns.
(b) BER of the FPTD, when N=6144, DC=80 and Tclk ={4.5, 3.5, 3.4,
3.3, 3.2} ns. (c) BER of the RCP-FPTD, when N=40, DC=48 and Tclk

={3.0, 2.3, 2.2, 2.1, 2.0} ns. (d) BER of the RCP-FPTD, when N=6144,
DC=100 and Tclk ={3.0, 2.4, 2.3, 2.2, 2.1} ns. 152

6.24 Razor DFF. (a) Razor circuit. (b) Timing diagram showing the operation
of a Razor DFF. 153

6.25 Odd-even operation of the FPTD. 156

6.26 Razor DFF employed in the BTWC-FPTD and BTWC-RCP-FPTD. . . . 157

LIST OF FIGURES xv

6.27 Implementation of RDFFs in a block of the BTWC-FPTD. 158

6.28 Operation of the BTWC-FPTD in the presence of timing errors. 159

6.29 Example of propagation delays in the BTWC FPTDs. 160

6.30 Trade-off analysis of the FPTD and of the BTWC-FTPD in the presence
of timing errors owing to different degrees of overclocking, when trans-
mitting N = 40 bits using BPSK over an AWGN channel. The results of
average DCs, throughput and energy efficiency were obtained for the case
of a target BER of 10−4 and when using a maximum of 256 DCs with
early stopping. (a) BER performance at 48 DCs. (b) Average number
of DCs for achieving a BER of 10−4. (c) Throughput. (d) Energy per
decoding frame. 163

6.31 Trade-off analysis of the FPTD and of the BTWC-FTPD in the presence
of timing errors owing to different degrees of overclocking, when trans-
mitting N = 6144 bits using BPSK over an AWGN channel. The results
of average DCs, throughput and energy efficiency were obtained for the
case of a target BER of 10−5 and when using a maximum of 256 DCs with
early stopping. (a) BER performance at 80 DCs. (b) Average number
of DCs for achieving a BER of 10−5. (c) Throughput. (d) Energy per
decoding frame. 164

6.32 Odd-even operation of the RCP-FPTD. 166

6.33 Implementation of RDFFs in a block of the BTWC-RCP-FPTD. 167

6.34 Odd-even operation of the BTWC-RCP-FPTD in the presence of timing
errors. 168

6.35 Trade-off analysis of the RCP-FPTD and of the BTWC-RCP-FTPD in
the presence of timing errors owing to different degrees of overclocking,
when transmitting N = 40 bits using BPSK over an AWGN channel. The
results of average DCs, throughput and energy efficiency were obtained
for the case of a target BER of 10−4 and when using a maximum of 256
DCs with early stopping. (a) BER performance at 48 DCs. (b) Average
number of DCs. (c) Throughput. (d) Energy per decoding frame. 170

6.36 Trade-off analysis of the RCP-FPTD and of the BTWC-RCP-FTPD in
the presence of timing errors owing to different degrees of overclocking,
when transmitting N = 6144 bits using BPSK over an AWGN channel.
The results of average DCs, throughput and energy efficiency were ob-
tained for the case of a target BER of 10−5 and using a maximum of 256
DCs with early stopping. (a) BER performance at 100 DCs. (b) Average
number of DCs. (c) Throughput. (d) Energy per decoding frame. 171

7.1 Example of DVFS in iterative decoders. 179

A.1 Design flow used throughout this thesis. 184

List of Tables

1.1 Selected previous contributions in the field of stochastic iterative decoders. 5

1.2 Selected previous contributions in the field of fault-tolerant iterative de-
coders. 6

1.2 Selected previous contributions in the field of fault-tolerant iterative de-
coders. 7

1.3 Research opportunities in the field of fully-parallel fault-tolerant imple-
mentations of LDPC decoders and turbo decoders. 8

3.1 Truth table of the stochastic VN of Figure 3.5. 29

3.2 Hardware implementation performance of the SLDPCD. 36

3.3 Maximum propagation delays according to pairs of starting and ending
points in stochastic VNs operating at VDD = 1.0 V. 40

3.4 Summary of the effects of timing errors in stochastic VNs. 42

3.5 Combinations of (µ, %, Tclk) that are considered for BER simulations. . . 47

3.6 Hardware implementation performance of the RB-based SLDPCD. 51

4.1 Hardware implementation results of the STD when operated at Eb/N0 =
3.0 dB. 84

5.1 Hardware complexity comparison of the SR-1, TFM-1 and RLSTD schemes.107

5.2 Hardware efficiency of different STDs. 109

6.1 Simulation parameters for the FX FPTD and FX RCP-FPTD. 142

6.2 Hardware efficiency of short-frame FPTDs. 144

6.3 Hardware efficiency of long-frame FPTDs. 146

6.4 Causes and effects of timing errors in the FPTDs. 150

6.5 Timing error conditions in BTWC designs. 161

6.6 Hardware efficiency comparison of various 40-bit frame length FPTD im-
plementations, when using TSMC 40 nm technology and VDD = 1.0 V. . 172

6.7 Hardware efficiency comparison of various 6144-bit frame length FPTD
implementations, when using TSMC 40 nm technology and VDD = 1.0 V. 173

Nomenclature

APP A Posteriori Probability

ASIC Application Specific Integrated Circuit

AWGN Additive White Gaussian Noise

BCJR Bahl-Cocke-Jelinek-Raviv

BER Bit Error Ratio

BPSK Binary Phase Shift Keying

BS Bernoulli Sequence

BTWC Better-Than-Worst-Case

BTWC-FPTD Better-Than-Worst-Case Fully-Parallel Turbo Decoder

BTWC-RCP-FPTD Better-Than-Worst-Case Reduced-Critical-Path

Fully-Parallel Turbo Decoder

CCDF Complementary Cumulative Distribution Function

CG Clock Gating

CMOS Complementary Metal-Oxide Semiconductor

CN Check Node

CRC Cyclic Redundancy Check

DC Decoding Cycle

DFF D-type Flip Flop

DVFS Dynamic Voltage and Frequency Scaling

EDAC Error Detection and Correction

EM Edge Memory

FP Floating-Point

FPGA Field-Programmable Gate Array

FPTD Fully-Parallel Turbo Decoder

FX Fixed-Point

IM Internal Memory

JKFF JK-Type Flip-Flop

LDPC Low-Density Parity-Check

LLR Logarithmic Likelihood Ratio

Log-BCJR Logarithmic BCJR

xx NOMENCLATURE

Log-SPA Logarithmic Sum-Product Algorithm

LSB Least Significant Bit

LTE Long Term Evolution

LUT Lookup Table

MCMTC Mission-Critical Machine-Type Communication

MPA Message Passing Algorithm

MSA Min-Sum Algorithm

MSB Most Significant Bit

MUX Multiplexer

NDS Noise-Dependent Scaling

NSW Non-Sliding Window

PCS Parity-Check Satisfied

RB Ring Buffer

RCP-FPTD Reduced-Critical-Path Fully-Parallel Turbo Decoder

RCTFM Reduced-Complexity Tracking Forecast Memory

RDFF Razor D-Type Flip Flop

RLSTD Reduced-Latency STD

SLDPCD Stochastic LDPC Decoder

SNR Signal to Noise Ratio

SoC System-on-Chip

SPA Sum-Product Algorithm

SR Shift Register

STD Stochastic Turbo Decoder

TET Timing Error Type

TFM Tracking Forecast Memory

TSMC Taiwan Semiconductor

UMTS Universal Mobile Telecommunications System

VLSI Very-Large-Scale Integration

VN Variable Node

WLAN Wireless Local Area Network

Commonly Used Symbols

αk Forward recursion pertaining kth bit in turbo decoders

βk Backward recursion pertaining kth bit in turbo decoders

γk Branch metrics pertaining kth bit in turbo decoders

δk Aposteriori branch metric pertaining kth bit in turbo decoders

εk,m,n Intermediate result in RCP-FPTDs

η Constant value in Noise-Dependendent Scaling

θ Detection window in Razor DFFs

µ Mean of Gaussian distribution∏
Interleaver∏−1 De-interleaver

σ Variance of Gaussian distribution

τ Scaling factor in FPTDs

φ Relaxation parameter in TFMs

ψ Constant value in Noise-Dependendant Scaling

a Superscript pertaining a priori information
c Superscript pertaining channel information
e Superscript pertaining extrinsic information
l Superscript indicating lower
u Superscript indicating upper

b Frame of bits in turbo decoding

b̂ Frame of estimated decoded bits in turbo decoders

b̃ Frame of received bits in turbo decoders

c LDPC codeword

ĉ Frame of estimated decoded bits in LDPC decoders

G Generator matrix in LDPC decoding

H Parity-check matrix in LDPC decoding

xxii COMMONLY USED SYMBOLS

q Vector of soft bits pertaining variable nodes in LDPC decoding

r Vector of soft bits pertaining parity-check nodes in LDPC decoding

u Vector of information bits in LDPC decoding

x Vector of transmitted symbols in LDPC decoding

y Vector of received symbols in LDPC decoding

Ci\j Set of CNs connected to the ith VN, with the jth CN excluded

Rj\i Set of VNs connected to the jth CN, with the ith VN excluded

di Degree of variable nodes in LDPC decoding

dj Degree of parity-check nodes in LDPC decoding

Eb/N0 Signal to Noise Ratio per bit

IR Current-Resistance noise in power supplies

k Number of message bits in LDPC decoding

L Logarithmic Likelihood Ratio

L·di/dt Inductive noise in power supplies

N Frame length in turbo decoding

N0 Noise spectral density

n Number of encoded bits in LDPC decoding

P Probability

P Complementary probability

q Quantization bits

R Coding rate

S Bernoulli sequence

s Current state

s′ Previous state

Tclk Clock period

t Time index

th Hold time

tp Propagation delay of path p

ts Setup time

VDD Supply voltage

Declaration of Authorship

I, Isaac Pérez Andrade, declare that the thesis entitled Timing-Error-Tolerant

Iterative Decoders and the work presented in the thesis are both my own, and have

been generated by me as the result of my own original research. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree

at this University;

• Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• Where I have consulted the published work of others, this is always clearly at-

tributed;

• Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• Parts of this work have been published in the provided list of publications

Signed:...

Date:..

Acknowledgements

I would like to express my gratitude to my supervisor, Dr Robert G. Maunder, for his

outstanding supervision, support and dedication throughout my PhD study. I would

also like to thank Prof. Bashir M. Al-Hashimi for providing me with the opportunity

to undertake this research. I would also like to express my gratitude and admiration

to Prof. Lajos Hanzo, whose valuable advice and guidance provided during these years

have greatly helped me to successfully conclude this research.

Despite the distance, my family has been the main motivation for completing this PhD.

I would like to thank my parents, Amelia and Pascual, for all the constant support and

love provided not only during my PhD, but throughout my life. I am deeply grateful

to them for all their efforts and the sacrifices that they have made to provide me and

my siblings with an education. I would also like to thank my brother Roberto for being

an exceptional example and my sister Saráı for her constant support and for always

drawing a smile upon my face.

This PhD would not have been possible without the unconditional support, care and

motivation from Eszter. I sincerely thank you for being there in the good times, but

especially during the bad times along these years. Thank you for all the talks, walks,

meals and endless activities you always had in your mind so I could distract mine. I

am also thankful for all the support that Marianna, György Sr. and György Jr. have

constantly provided.

I would also like to thank my friends Marce, Penélope and David for always helping me

to clear my mind with non-academia chats, as well as Faby, Luis, Mauricio and Emma

for all the help provided outside of University.

Finally, I would like to acknowledge the financial support of ‘Consejo Nacional de Ciencia

y Tecnoloǵıa de México (CONACyT)’ under the auspices of the scholarship 311103 and

of ‘Secretaŕıa de Educación Pública y del Gobierno Mexicano’.

To all the people listed above, Thank you!

List of Publications

I. Perez-Andrade, X. Zuo, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “Analysis

of voltage- and clock-scaling-induced timing errors in stochastic LDPC decoders,” in

IEEE Wireless Communications and Networking Conf. (WCNC-2013), April, 2013, pp.

4293-4298.

I. Perez-Andrade, S. Zhong, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo,

“Stochastic computing improves the timing-error tolerance and latency of turbo de-

coders: Design guidelines and trade-offs,” in IEEE Access, vol. 4, pp. 1008–1038,

February, 2016.

X. Zuo, I. Perez-Andrade, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “Improv-

ing the tolerance of stochastic LDPC decoders to overclocking-induced timing errors: A

tutorial and a design example,” in IEEE Access, vol. 4, pp. 1607–1629, April, 2016.

X. Zuo, S. Zhong, K. Li, I. Perez-Andrade, R. G. Maunder, B. M. Al-Hashimi, L.

Hanzo, “High throughput timing error tolerant VLSI implementation of LDPC decoding

using the base-minus-two fixed-point number representation”, in IEEE J. Solid-State

Circuits, [In preparation].

I. Perez-Andrade, S. Zhong, K. Li, A. Li, R. G. Maunder, B. M. Al-Hashimi, and L.

Hanzo, “Timing-error-tolerant VLSI implementation of fully-parallel turbo decoding,”

in IEEE J. Solid-State Circuits, [In preparation].

Chapter 1
Introduction

During the recent decades, wireless communication systems have greatly benefited from

iterative decoding algorithms, which iteratively refine a probabilistic view of the trans-

mitted messages, until the correct decoding decisions can be made. This powerful tech-

nique therefore has an inherent capability of correcting the transmission errors that

originate during communication over a hostile wireless channel. As a result, iterative

decoders offer a near-optimal decoding performance, close to the theoretical Shannon’s

capacity limit [1]. This has motivated the widespread use of iterative decoders such as

Low-Density Parity-Check (LDPC) [2] decoders and turbo decoders [3] in current dig-

ital transmission standards. For example, LDPC decoders are used in the broadband

wireless access WiMAX [4], Wireless Local Area Network (WLAN) [5], Ethernet [6] and

digital video broadcasting DVB-S2 [7] standards. Meanwhile, turbo decoders are used

in the Universal Mobile Telecommunications System (UMTS) [8], Long Term Evolu-

tion (LTE) [9] and WiMAX cellular telephony standards. Furthermore, both LDPC

and turbo decoders are currently being considered for next-generation wireless commu-

nication standards [10, 11], owing to their high-throughput capability.

Owing to their near-optimal decoding performance, substantial research efforts have

been invested in conceiving efficient Very-Large-Scale Integration (VLSI) implementa-

tions of LDPC and turbo decoders, using both Field-Programmable Gate Array (FPGA)

and Application Specific Integrated Circuit (ASIC) technologies. Typically, these efforts

have focused on optimizing only one of the various trade-offs associated with the hard-

ware implementation of iterative decoders, as shown in Figure 1.1. In a Pareto optimal

design, none of these trade-offs may be further improved without degrading at least one

of the others. To elaborate further, Figure 1.1 shows the close relationship between chip

area, latency, throughput, energy efficiency and error correction capabilities in iterative

decoders, as well as the factors that may influence each of these trade-offs. As an exam-

ple of this, the chip area of an implementation may be influenced by the design of the

algorithm, as well as its hardware description and its logical and physical synthesis for a

2 Chapter1. Introduction

Algorithm
Design

Target
Technology

Error
Correction

Latency
&

Throughput

Energy
Efficiency

Chip
Area

Hardware Synthesis
Place & Route

Processing
Errors

Transmission
Errors

Description

Figure 1.1: Relationship between different design trade-offs in iterative decoders.

target technology. Similarly, the chip area may influence the energy efficiency, latency,

throughput and error correction capabilities of the implementation. For example, LDPC

decoders benefit from the inherent parallelism of their decoding algorithms. As a result,

it is common for VLSI designers to consider fully-parallel LDPC decoders, in order to

achieve high processing throughputs. However, this approach incurs a large and proba-

bly unacceptable chip area. Likewise, the inherent serial data-dependencies of the turbo

decoding algorithms have motivated designers to conceive serial turbo decoder imple-

mentations. Although this approach facilitates relatively low chip areas, it incurs large

processing latencies. In addition to this, tolerance to timing errors that occur during the

iterative decoding processing are typically not considered in these implementations. As

a result of this, the error correction and hardware performance of the proposed design

may be severely degraded, if timing errors occur during the iterative decoding process,

owing to overclocking or power supply noise, for example. Note that throughout this

thesis, we employ the term energy in order to refer to the capacity to perform work. This

is justified since the energy efficiency of an implementation determines its power dissi-

pation in the form of heat, owing to the close relationship between energy and power.

As an example of this, the higher the energy consumption of a system, the higher its

power dissipation.

As fabrication technology scales below the deep-submicron regime, it is no longer pos-

sible to guarantee the reliable operation of ASICs in the presence of process, voltage or

temperature variations, as well as other sources of noise such as IR-drop, L · di/dt noise,

crosstalk, electrostatic discharges, particle strikes and switching noise [12, 13, 14, 15, 16],

among other causes. As a result, error-tolerant design techniques are becoming a crit-

ical and essential feature of modern VLSI devices. Traditional error-tolerant design

techniques rely on hardware redundancy and voting units [17]. Here, the same logic

function is performed by an odd number of identical and independent units, which pass

their result to a majority voting module, in order to determine the correct results. How-

ever, this approach incurs large chip area extensions. In order to mitigate the effects of

1.1. Related Work 3

processing errors, VLSI designers adopt conservative design methodologies, where the

design is conceived using safety margins above the worst-case scenario. In this way,

they avoid the excessive cost of hardware replication, albeit at the cost of operating the

system under overly conservative conditions. However, such a worst-case scenario may

be rare or even impossible to encounter.

Over the past decade, new error-tolerant design approaches have arisen. For example,

stochastic computing [18] has been recently proposed for the iterative decoding of LDPC

and turbo codes. Stochastic computing has been proposed as a low-complexity design

alternative to Fixed-Point (FX) binary arithmetic. Here, the probabilities in the prob-

abilistic view of the transmitted message are represented by streams of bits, known as

Bernoulli Sequences (BSs) [18]. Only a single bit of each BS is processed per clock cycle

and the specific fraction of bits having the logical value 1 determines the value of the

probability represented. As a benefit of this, arithmetic operations in stochastic com-

puting can be implemented using low-complexity digital circuits. Moreover, stochastic

computing offers an inherent tolerance to processing errors. Since every bit of a BS has

an identical and relatively-low significance, a processing error causing a bit-flip will only

result in a small change to the overall value of the probability represented. This repre-

sents a key advantage of the stochastic implementation of iterative decoders, particularly

as VLSI technologies scale.

In parallel to the employment of stochastic computing in iterative decoders, Better-

Than-Worst-Case (BTWC) design techniques [19] have become a common denomina-

tor in current high-performance microprocessor systems. In this design approach, the

voltage and/or the clock period of a system are scaled below the recommended safety

margins, for the sake of reducing the energy consumption or improving the throughput,

respectively. Here, Error Detection and Correction (EDAC) techniques [13, 20, 21, 22]

are employed in order to correct and restore the state of the system. This is achieved by

increasing the voltage and/or the clock period and repeating those operations that trig-

gered the timing error. However, this functionality is only naturally supported in current

high-performance microprocessors with a dedicated instruction replay mechanism [13].

These error tolerant design techniques are discussed in greater detail in Section 1.1.

1.1 Related Work

Section 1.1.1 summarizes previous contributions in the field of stochastic decoders, while

Section 1.1.2 summarizes previous contributions in the field of fault-tolerant iterative

decoders.

4 Chapter1. Introduction

1.1.1 Stochastic Iterative Decoders

Table 1.1 summarizes some of the seminal contributions in the field of stochastic iterative

decoders. In 2003, Gaudet [23] and Rapley [24] proposed stochastic computing in itera-

tive decoders for the first time. They demonstrated that it is possible to perform iterative

decoding using low-complexity digital gates. As a result, stochastic computing has been

recently proposed for the fully-parallel decoding of LDPC codes [23, 24, 25, 26, 27,

28, 29, 30, 31, 32, 33, 34, 35], Bose-Chaudhuri-Hocquenghem codes [36], Reed-Solomon

codes [36], cortex codes [37], convolutional codes [38] and turbo codes [39, 40, 41, 42].

Among these contributions, several research efforts have been invested in optimizing

the decoding capabilities of stochastic decoders. For example, the authors of [27] pro-

posed Edge Memory (EM) and Noise-Dependent Scaling (NDS) in order to overcome

the latching problem in Stochastic LDPC Decoders (SLDPCDs). This allowed the prac-

tical implementation of SLDPCDs on FPGAs in [28, 29]. Moreover, the authors of [29]

further improved the error correction performance of the (1056,528) SLDPCD by us-

ing Internal Memories (IMs) and different EMs lengths according to the degree of each

stochastic node. This implementation was further optimized in [30, 33], where Shift

Register (SR)-based EMs were replaced by Tracking Forecast Memories (TFMs).

Despite the near-optimal decoding performance and the relatively-low-complexity asso-

ciated with their hardware implementation, stochastic decoders require a large number

of clock cycles in order to achieve the same near-optimal error correction capability as

their FX implementation counterparts. Regretfully, this degrades their latency, through-

put and energy efficiency. Owing to these impediments, stochastic decoders have been

previously deemed unsuitable for practical low-latency next-generation Mission-Critical

Machine-Type Communication (MCMTC) systems, such as those required by vehicular

traffic safety and control, as well as industrial process automation and manufactur-

ing [43]. In these applications, short emergency and control messages constituted by a

low number of bits must be reliably transmitted with ultra-low latency, hence motivat-

ing the employment of error correction decoders having ultra-low processing latencies

on the order of microseconds [43]. Along this road, substantial research efforts have

been invested in reducing the number of clock cycles required by stochastic decoders

for achieving a near-optimal error correction performance. In particular, the employ-

ment of NDS and EMs in [27, 28, 30, 33] reduced the number of clock cycles required

by SLDPCDs to achieve near-optimal error correction performance from several thou-

sands to as low as a few hundreds. By contrast, the fully-parallel Stochastic Turbo

Decoder (STD) of [39] requires several thousands of processing cycles, despite the em-

ployment of NDS and EMs. This problem is partially overcome in [39, 40] by further

increasing the grade of processing parallelism. However, this significantly increases the

hardware complexity of the STD. The authors of [41, 42] proposed modified BS repre-

sentations for the implementation of STDs. These contributions significantly reduced

1.1.1. Stochastic Iterative Decoders 5

the number of clock cycles required by STDs without significantly increasing the hard-

ware complexity of the design. However, these designs may be considered to represent

partially-stochastic turbo decoders, since their operation is based on fixed-point arith-

metic circuits, which do not benefit from the inherent tolerance of stochastic decoders

to timing errors.

Table 1.1: Selected previous contributions in the field of stochastic iterative
decoders.

Year Author Contribution

2003 Gaudet and Rapley [23] Stochastic computing proposed in iterative

decoding for the first time.

Rapley et al [24] Stochastic decoding of a (7,4) Hamming

code.

2005 Winstead et al [25] Stochastic computing in block turbo codes.

Gross, Gaudet and Milner [26] First FPGA implementation of SLDPCDs.

2006 Sharifi Tehrani, Gross and

Mannor [27]

EMs and NDS for avoiding the latching

problem in SLDPCDs.

2007 Sharifi Tehrani, Mannor and

Gross [28]

First practical SLDPCD on FPGAs.

2008 Sharifi Tehrani, Mannor and

Gross [29]

IMs and different EMs lengths in a

(1056,528) SLDPCD on FPGA.

Sharifi Tehrani et al [36] Stochastic decoding of Bose-Chaudhuri-Ho-

cquenghem codes and Reed-Solomon codes.

2009 Sharifi Tehrani et al [30] TFMs in SLDPCDs. First ASIC implemen-

tation of SLDPCDs.

Leduc-Primeau et al [31] Relaxed-half-stochastic LDPC algorithm.

2010 Sarkis and Gross [32] Non-binary SLDPCD algorithm.

Sharifi Tehrani et al [33] MBTFM-based SLDPCDs on ASICs.

Dong et al [39] Stochastic decoding of turbo codes.

2011 Naderi et al [34] Delayed SLDPCDs on ASICs.

Arzel et al [37] Multiple stream decoding of cortex codes.

Dong et al [40] STDs on FPGAs.

2013 Te-Hsuan and Hayes et al [38] Stochastic decoding of convolutional codes.

Hu et al [41] Half-stochastic turbo decoders.

Chen and Hu et al [42] Improved half-stochastic turbo decoders.

2014 Ceroici and Gaudet [35] Clockless SLDPCDs on FPGAs.

6 Chapter1. Introduction

1.1.2 Fault-Tolerant Iterative Decoders

Table 1.2 summarizes some of the seminal contributions in the field of fault tolerance in

iterative decoders. Fault-tolerance in iterative decoders has mostly been explored from

the algorithmic point of view in [44, 45, 46, 47, 48, 49, 50, 51, 52]. The vast majority

of these contributions rely on probabilistic analysis in order to apply compensation

techniques to mitigate the effects of processing errors. However, these contributions

do not consider the trade-offs associated with the hardware implementation of their

error-tolerant design. Only a small number of the contributions [53, 54, 55, 56] of

Table 1.2 have considered the practical implications of fault-tolerant hardware design in

iterative decoders. Within these contributions, different approaches have been explored

in order to improve the decoder’s fault-tolerance. For example, hardware redundancy

and voting units are employed in [53] for error detection and correction. Processing

errors are corrected on the basis of probabilistic analyses in [54, 55]. Finally, [56] only

characterizes the occurrence of timing errors caused by overscaling the supply voltage

in LDPC decoders.

Table 1.2: Selected previous contributions in the field of fault-tolerant iterative
decoders.

Year Author(s) Contribution

2007 Alles, Brack and Wehn [44] Error resilient LDPC code design.

2008 May, Alles and Wehn [53] Hardware redundancy in LDPC decoders.

2009 Winstead and Howard [45] Probabilistic analysis for fault compensation

in LDPC decoders.

Abdallah and Shanbhag [54] Algorithmic noise tolerant in hardware im-

plementation of Viterbi decoders.

2010 Gaudet [46] Analysis of the inherent error tolerance of

the SPA algorithm in LDPC decoders.

2012 Tang et al [47] LDPC decoding tolerant to transient errors.

Winstead et al [48] Space-time redundancy algorithms in LDPC

decoders.

Kim and Shanbhag [55] Statistical error compensation in hardware

implementation of LDPC decoders.

2013 Geldmacher and Gotze [49] EXIT chart-aided analysis of faulty iterative

decoders.

2014 Kameni Ngassa, Savin and De-

clerq [50]

Analysis of fault tolerant SLDPCDs in the

binary symmetric channel.

Andrade et al [51] Analysis of turbo decoders with unreliable

memories.

Sedighi, Prasanth and Su-

vakovic [56]

Characterization of timing error occurrence

in voltage overscaled LDPC decoders.

1.2. High-throughput Iterative decoders 7

Table 1.2: Selected previous contributions in the field of fault-tolerant iterative
decoders.

Year Author(s) Contribution

2015 Huang, Li and Dolecek [52] Analysis of belief propagation algorithms on

noisy hardware.

Note that from the selected contributions of Tables 1.1 and 1.2, only the authors of [50]

analyze the inherent tolerance to processing errors of SLDPCDs. However, this is

achieved from the algorithmic point of view for the simplified case of the binary sym-

metric channel.

1.2 High-throughput Iterative decoders

The next-generation of wireless communication standards [10, 11] are expected to re-

quire processing throughputs on the order of tens of Gbps. Significant efforts have been

made along the road to fulfilling these throughput requirements. As an example of this,

the state-of-the-art turbo decoder implementations achieve processing throughputs of

2.15 Gbps [57], 1.67 Gbps [58] and 1.28 Gbps [59]. These turbo decoder implementa-

tions rely on increasing the parallelism of the highly-serial turbo decoding algorithm.

Despite these efforts, the proposed solutions still require hundreds of clock periods to

complete a decoding iteration, resulting in a requirement for thousands of clock periods

for completing the iterative decoding process. This may be attributed to the inher-

ently serial nature of the turbo decoding algorithm. Moreover, the implementations

of [57, 58, 59] do not consider fault tolerant design. As a result of this, the significant

throughput gains offered by these implementations may be diminished by the occur-

rence of processing errors, if the operating conditions of the system fluctuate below the

recommended safety margins.

In parallel to this, in order to fulfill the high throughput requirements of next-generation

wireless communication standards, a Fully-Parallel Turbo Decoder (FPTD) [60] algo-

rithm and VLSI [61] implementation has been recently proposed. This FPTD facilitates

throughputs in the order of tens of Gbps, since it disposes with the highly-serial data

dependencies of the traditional turbo decoding algorithm. Owing to this, each FPTD

decoding iteration may be completed in a single clock period, requiring only tens of

clock periods to complete the iterative decoding process, albeit at the cost of a large

computational complexity.

8 Chapter1. Introduction

1.3 Motivation and Thesis Outline

The previous work mentioned in Section 1.1 has mainly focused on enhancing the er-

ror correction capabilities of iterative decoders. Similarly, fault-tolerance in iterative

decoders has mainly been addressed from the algorithmic point of view. Moreover,

the above-mentioned contributions in the field of fault-tolerant iterative decoders have

failed to provide a comprehensive analysis of the various design trade-offs involved in the

hardware implementation of error tolerant techniques, which is a common approach in

performance-oriented design methodologies [62]. To elaborate further, the main design

objective of these contributions has been to enhance both the robustness and reliability

of the decoders against processing errors. However, this is typically reported without

considering the impact of fault-tolerant techniques on the associated hardware design

trade-offs, such as the chip area, energy efficiency, latency, throughput and error correc-

tion capabilities, despite the strong dependence they have upon each other, as depicted

in Figure 1.1. In this context, a compelling Pareto-optimal design has a set of charac-

teristics, where none of them can be further improved without degrading at least one of

the others. In parallel to this, previous research efforts have been mainly focused on the

implementation of fault-tolerant fully-parallel FX LDPC decoders. However, aspects of

fault-tolerant fully-parallel implementations of SLDPCDs and STDs, as well as of fully-

parallel FX turbo decoders have not yet been explored, as summarized in Table 1.3.

Table 1.3: Research opportunities in the field of fully-parallel fault-tolerant
implementations of LDPC decoders and turbo decoders.

Fully-parallel Fully-parallel
LDPC decoders Turbo decoders

Fixed-Point Significantly explored Not explored
Stochastic Not explored Not explored

Against this background, this thesis demonstrates that iterative decoders are capable of

exploiting their inherent error correction capability to correct not only transmission

errors, but also timing errors caused by overclocking and power supply variations. More-

over, we propose modifications to the iterative decoders designs, which further enhance

their inherent tolerance to timing errors. We achieve this by considering the close re-

lationship between the different trade-offs associated with the hardware implementation

of iterative decoders, with the aim of achieving Pareto optimality. Owing to this, our

proposed timing-error-tolerant design methodology simultaneously considers the design

constraints and parameters that affect not only the Bit Error Ratio (BER) performance,

but also the hardware efficiency of each implementation.

This thesis is structured as depicted in Figure 1.2.

1.3. Motivation and Thesis Outline 9

Chapter 3
Timing-Error-Tolerant

Stochastic

Chapter 4
Timing-Error-Tolerant

Stochastic

Chapter 5
Reduced-Latency

Stochastic

Chapter 6
Timing-Error-Tolerant

Fully-Parallel

Chapter 2
Stochastic and Fixed-Point
Implementation of Iterative

Decoders

Iterative
Decoding

Stochastic
Computing

Chapter 1
Introduction

Turbo DecodersLDPC Decoders Turbo Decoders Turbo Decoders

Chapter 7
Conclusions

Future Work
and

Figure 1.2: Thesis outline.

Chapter 1 presents the introduction of this thesis, including a perspective of the

related previous work in the selected areas of fault-tolerance in iterative decoders.

Chapter 2 reviews the basic concepts of iterative decoding and some fundamental

aspects of the hardware implementation of iterative decoders. These concepts are

employed throughout this thesis. Moreover, this chapter reviews the concept of

stochastic computing, which is the foundation for the stochastic implementation of

LDPC decoders in Chapter 3 and the stochastic implementation of turbo decoders

in Chapters 4 and 5.

Chapter 3 reviews the concept of LDPC decoding and the implementation of the

Sum-Product Algorithm (SPA) algorithm using stochastic computing. Section 3.3

characterizes the hardware efficiency and the BER performance of the (1056,528)

WiMAX SLDPCD of [29], when using ST 90 nm technology. Moreover, extensive

SPICE simulations are used in order to determine the causes and effects of timing

errors in SLDPCDs. Furthermore, we present a modified SLDPCD that further

improves the timing error tolerance of the stochastic implementation of LDPC

decoders. Additionally, we characterize the different trade-offs associated with the

hardware implementation of the modified SLDPCDs.

Chapter 4 reviews the concept of turbo decoding and the implementation of

the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm using stochastic computing. We

presents various modifications to the STD of [39] that enhance its tolerance to tim-

ing errors in the presence of power supply variations and prevents the catastrophic

10 Chapter1. Introduction

propagation of metastability through the circuit. Moreover, the proposed mod-

ifications significantly improve the hardware efficiency of the STDs, when using

Taiwan Semiconductor (TSMC) 90 nm technology.

Chapter 5 presents a second set of improvements to the STD of [39], in order to

significantly reduce the number of clock cycles required in order to achieve iterative

decoding convergence.

Chapter 6 expands the review of the BCJR algorithm into the logarithmic do-

main, in order to directly compare it with the recently-proposed FPTD algorithm

of [60]. We also review the hardware implementation of the FPTD algorithm, as

detailed in [61]. Moreover, we present a novel Reduced-Critical-Path Fully-Parallel

Turbo Decoder (RCP-FPTD) algorithm that reduces the number of data path

stages required in the FPTD and hence the required clock period of its implemen-

tation. We also detail the hardware implementation of the proposed RCP-FPTD,

as well as its corresponding trade-off analysis, when using TSMC 40 nm techno-

logy. Furthermore, we develop a timing error model of the FPTD and RCP-FPTD

implementations and employ BTWC design techniques for the implementation of

the FPTD, in order to significantly enhance its inherent tolerance to timing errors

and its hardware efficiency.

Chapter 7 summarizes the findings of our investigations and provides opportu-

nities regarding future work.

1.4 Novel Contributions

The novel contributions of this thesis are summarized as follows.

In Chapter 3 we characterize the causes and effects of timing errors caused

by overclocking and power supply variations in SLDPCDs. We propose a Ring

Buffer (RB)-based SLDPCD that further improves the timing error tolerance of

the SR-based SLDPCD of [29]. We characterize the trade-offs associated with the

hardware implementation of the SR- and RB-based (1056,528) WiMAX SLDPCDs,

when using ST 90 nm technology. Our experimental results demonstrate that our

proposed RB-based SLDPCD operated at a supply voltage of 0.8 V, an overclock

period of 800 ps and in the presence of timing errors owing to 10% power supply

variations, offers the same BER performance as the SR-based SLDPCD of [29] op-

erated a 0.8 V and a clock period of 1160 ps in the absence of timing errors, while

increasing the throughput by a factor of 1.22, reducing the energy consumption

by a factor of 0.7 and requiring only 0.77 the chip area of that of the SR-based

SLDPCD of [29].

1.4. Novel Contributions 11

In Chapter 4 we present various modifications to the STD of [39] that enhance its

tolerance to timing errors and significantly improve its hardware efficiency, when

using TSMC 90 nm technology. More specifically, we propose: i) the employment

of synchronizers for preventing the catastrophic cascading of metastability owing

to timing errors; ii) the simultaneous decoding of two received frames for improv-

ing the processing throughput; iii) the employment of TFMs [30] in STDs for the

first time, in order to enhance their hardware implementation and decoding capa-

bilities; and iv) the inclusion of a pipelining stage for enhancing the decoding. Our

proposed TFM-based STD design operated at 1.20 V, a clock period of 2.2 ns and

in the presence of timing errors owing to 7% power supply variation offers the same

BER performance as the state-of-the-art STD of [39], when operated at 1.20 V,

a clock period of 4.0 ns and in the absence of power supply variations. This is

achieved while increasing the throughput by a factor of 2.42, reducing the latency

by a factor of 0.83 and consuming only 0.25 times the energy, without increasing

the chip area.

In Chapter 5 we propose a Reduced-Latency STD (RLSTD) design, which re-

duces the number of clock cycles required for achieving near-optimal error correc-

tion performance by an order of magnitude, without increasing the chip area. This

is achieved by employing: i) or gates for performing approximate stochastic addi-

tions; ii) a reduced-complexity TFM design for overcoming the latching problem

iii) a single D-type Flip Flop (DFF) for estimating each decoded bit. Our pro-

posed RLSTD design achieves the same BER performance as the state-of-the-art

STD of [39], while improving its latency, throughput and energy efficiency by an

order of magnitude and without imposing an area extension. More specifically,

our proposed RLSTD requires only 0.015 times the latency, 0.005 times the energy

and 0.51 times the chip area of the state-of-the-art STD, while offering a 65 times

throughput increase.

In Chapter 6 we present a novel RCP-FPTD algorithm, which further improves

the processing throughput of the FPTD of [60]. Our results demonstrate that the

FPTD and RCP-FPTD implementations offer significant throughput increases,

when compared to both the RLSTD of Chapter 5 and the state-of-the-art turbo

decoder implementation of [57], while achieving the same BER performance. The

FPTD and RCP-FPTD implementations offer throughputs that are 7.9 and 9.5

times superior to those of the turbo decoder of [57], respectively, albeit at the cost

of requiring 5.42 and 5.58 times the chip area. We demonstrate that the FPTD

and RCP-FPTD implementations have an inherent tolerance to timing errors,

when overclocking is employed for the sake of further improving their throughput.

We propose to use the BTWC design approach [19] and EDAC techniques [13,

20, 21, 22] for mitigating the effect of timing errors in the FPTD and RCP-FPTD

12 Chapter1. Introduction

implementations. Our results of Section 6.7 demonstrate that the proposed Better-

Than-Worst-Case Fully-Parallel Turbo Decoder (BTWC-FPTD) and Better-Than-

Worst-Case Reduced-Critical-Path Fully-Parallel Turbo Decoder (BTWC-RCP-

FPTD) operated in the presence of timing errors achieve a processing throughput

that is 1.7 and 2.47 times superior to that of the proposed RLSTD of Chapter 5,

respectively, when employing the shortest frame length of N = 40 supported by the

LTE standard. Similarly, when employing LTE’s longest frame length ofN = 6144,

the proposed BTWC-FPTD and Better-Than-Worst-Case Reduced-Critical-Path

Fully-Parallel Turbo Decoder (BTWC-RCP-FPTD) operating in the presence of

timing errors achieve processing throughputs that are 9.2 and 12.3 times superior

than that of the state-of-the-art turbo decoder of [57] in the absence of timing

errors, respectively.

Chapter 2
Fixed-Point and Stochastic

Iterative Decoders

This chapter briefly reviews the concept of iterative decoding and aspects of its hard-

ware implementation, since these are the foundations of the algorithms and hardware

implementations described in the following chapters. Section 2.1 reviews the operation

of iterative decoders in communications systems. Section 2.2 reviews some fundamentals

of Fixed-Point (FX) two’s complement numbers, while Section 2.3 reviews the concept

of stochastic computing and its application to iterative decoders. Finally, Section 2.4

presents the conclusions of this chapter.

2.1 Fundamentals of Iterative Decoding

Figure 2.1 shows a simplified communication scheme, where a source message comprising

a sequence of bits is encoded and modulated, before it is transmitted over a channel.

Upon its reception, the demodulator will be uncertain of the bit values in the original

source message, owing to the effect of noise in the channel. As a result of this, the de-

modulator provides soft-valued bits, instead of hard-valued bits. These soft bits express

not only what the most likely values of the corresponding bits are, but also how likely

these bit values are. Following this, the iterative decoder processes the soft bits, with

the ultimate aim of generating hard-valued bits, which correspond to the best estimation

of the source message bits.

Iterative decoding may operate on the basis of a serial or parallel concatenation of

component decoders, as shown in the lower part of Figure 2.1. In this way, the iter-

ative decoding process consists of the two component decoders feeding and processing

soft-valued bits back and forth between each other through an interleaver
∏

and a de-

interleaver
∏−1, which reorder the soft-valued bits in a non-contiguous way. In this

14 Chapter2. Fixed-Point and Stochastic Iterative Decoders

Transmitter

Noise

Channel

Receiver

Encoder

DemodulatorDecoder

Modulator
Source

Sink

Iterative

d
eM

U
X∏∏−1

Decoder
Lower

Decoder
Upper

Input

Output
∏

∏−1

Input

Output Decoder
Inner

Decoder
Outer

Serial Concatenation Parallel Concatenation

Figure 2.1: Simplified block diagram of a communication scheme using iterative
decoding.

configuration, the soft-valued bits improve in each iteration, until the best estimation

of the output is achieved, or until a maximum number of affordable iterations has been

reached. Low-Density Parity-Check (LDPC) decoders [2] and turbo decoders [3] are

examples of serially-concatenated and parallel-concatenated iterative decoders, respec-

tively. More specifically, LDPC decoders can be considered to employ a serial concatena-

tion of a so-called Variable Node (VN) inner decoder and a so-called Check Node (CN)

outer decoder [2], where the operation of these decoders differs from each other. By

contrast, turbo decoders are an example of a parallel concatenation of so-called upper

and lower Logarithmic BCJR (Log-BCJR) decoders [63], where both decoders operate

in the same fashion.

The operation of LDPC decoders is further discussed in Chapter 3, while the operation

of turbo decoders is further discussed in Chapters 4 to 6. The following sections provide

an overview of two different approaches for the hardware implementation of iterative

decoders.

2.2 Fixed-Point Two’s Complement in Iterative Decoders

As mentioned in Chapter 1, substantial research efforts have been invested in conceiving

efficient Very-Large-Scale Integration (VLSI) implementations of LDPC and turbo de-

coders. Typically, these efforts rely on the FX two’s complement number representation,

owing to its attractive trade-off between error correction performance and hardware im-

plementation complexity, as shown in Figure 1.1. In this number representation, both

positive and negative numbers may be represented using q quantization bits. Here, one

2.2. Fixed-Point Two’s Complement in Iterative Decoders 15

of the bits of the FX number represents the sign of each represented value, while its mag-

nitude is determined by the weighted sum of the other (q − 1) bits. More specifically,

the sign of the represented number is determined by the Most Significant Bit (MSB) of

the FX number, which has a weight of −2q−1. For example, -6 is represented by 1010

q = 4-bits two’s complement, where the MSB has a weight of -8 and the other 1-valued

bit has a weight of 2, since the three Least Significant Bits (LSBs) have weights of 4, 2

and 1 from left to right. In this way, a two’s complement FX number F may take any

of the integer value within its dynamic range of

− (2q−1) ≤ F ≤ 2q−1 − 1. (2.1)

Owing to this, the number of quantization bits q used in FX iterative decoders determines

both their dynamic range and their hardware complexity [64]. To elaborate further,

larger values of q result in larger dynamic ranges, which aid the iterative decoding

process [64]. However, larger q values also results in larger hardware complexities, owing

to the employment of larger FX arithmetic circuits, larger number of interconnections

and larger memory requirements. As a result of this, it is necessary to carefully consider

this trade-off when selecting a q value for the soft-valued bits used during the iterative

decoding process.

Special considerations must be taken during the hardware implementation of FX num-

bers, owing to the limitation imposed by their dynamic range. For example, overflow

may occur, if the addition of two q-bit FX numbers cannot be represented with the same

number of q bits. When overflow occurs, the MSB of the FX number flips its value from

logic 0 to logic 1, or from logic 1 to logic 0, resulting in an absolute error of 2q in the

represented number. For example, the computation 4 + 6 in q = 4-bit two’s comple-

ment arithmetic is performed as 0100+0110=1010, which represents -6, rather than 10

as desired. This problem can be easily overcome by increasing the number of q bits after

performing an arithmetic operation, such as addition and subtraction. However, this

may cause the number of q bits and the magnitude of the FX numbers to grow rapidly,

significantly increasing the hardware complexity from one processing stage to the next.

In order to overcome this problem, clipping may be employed for ensuring that the re-

sults of FX arithmetic calculations remain within the dynamic range supported using q

bits. For example, when using clipping for the case of q = 4, the computation 4+6 gives

the result 7, since this is the highest value within the dynamic range of −8 ≤ F ≤ 7.

Chapter 6 expands the discussion presented in this section for the case of the Fully-

Parallel Turbo Decoder (FPTD) and Reduced-Critical-Path Fully-Parallel Turbo De-

coder (RCP-FPTD) implementations. In addition to this, Section 2.3 reviews the con-

cept of stochastic computing [18], which has been recently proposed as a low-complexity

alternative to traditional FX two’s complement in iterative decoders.

16 Chapter2. Fixed-Point and Stochastic Iterative Decoders

2.3 Stochastic Computing in Iterative Decoding

In contrast to FX two’s complement, in stochastic computing [18], probabilities are

represented by means of streams of bits known as Bernoulli Sequence (BS), which are

generated by statistically independent processes and with only one bit of each BS being

processed in each clock cycle that is referred to as a Decoding Cycle (DC) of stochastic

decoders. The probability P represented by a BS is determined by the fraction of its

bits having the value of 1. Owing to this, the same probability can be represented by

different BSs having the same fraction of bits with the value 1, but in different positions.

This is exemplified in Figure 2.2(a), where the probability P = 0.75 is represented by

different BSs, each having 12 out 16 bits with value 1. As an explicit benefit of this,

stochastic computing offers an inherent tolerance to processing errors. To elaborate

further, a single bit-flip caused by a processing error will only change the overall value

of the represented probability by a fraction proportional to the length of the BS. In this

way, if the BS is sufficiently long, the represented probability will not be significantly

affected, if some of the bits are corrupted. As an example of this, if any of the 12

bits having the value of logical 1 of the BSs of Figure 2.2(a) is flipped to logical 0, the

resultant BSs will represent the probability of P = 11/16 = 0.6875, which corresponds

to an absolute error of 1/16.

2.3.1 Stochastic Arithmetic

In stochastic computing, arithmetic combinations of the probabilities represented by two

or more BSs can be implemented using low-complexity digital circuits. In particular,

the binary complement P̄ = (1 − P) of a probability P can be obtained using a not

gate, as exemplified in Figure 2.2(b).

The multiplication Pmult = PA · PB of two probabilities PA and PB can be performed

using a bitwise logical and of the two corresponding BSs SA and SB, as exemplified

in Figure 2.2(c). Similarly, the multiplication Pmult =
∏M
i=1 Pi of the probabilities

represented by M BSs can be performed with the aid of an M -input and gate.

The weighted mean Padd = PA · (1−Psel) +PB ·Psel of two probabilities PA and PB can

be obtained by using a two-input Multiplexer (MUX) to randomly select bits from the

corresponding BSs SA and SB, with the aid of the BS Ssel, which represents the prob-

ability Psel = 0.5 for the case of a non-weighted mean, as exemplified in Figure 2.2(d).

The outgoing bit of the MUX will have the value of 1 only if the bit of the input selected

by Ssel has the value of 1. More specifically, we have Sadd = 1 only if SA = 1 and Ssel = 0

or SB = 1 and Ssel = 1. Similarly, the mean Padd = [
∑M

i=1 Pi]/M of M probabilities can

be obtained using an M -input MUX to randomly select bits from the corresponding M

BSs.

2.3.1. Stochastic Arithmetic 17

P = 12
16 = 0.75⇔

. . . 0000111111111111 . . .

. . . 1111011101100111 . . .

. . . 0101110111111110 . . .

. . . 1111111001011101 . . .
(a)

P̄ = 0.3

S̄ = ...1000100001...S = ...0111011110...

P = 0.7

(b)

Smult = ...1010101000...

Pmult = 0.4

SA = ...1111111100...
PA = 0.8

SB = ...1010101010...
PB = 0.5

(c)

0

1

Sadd = ...0110101011...

Padd = 0.6

Ssel = ...0101010101...
Psel = 0.5

SA = ...0111111110...
PA = 0.8

SB = ...1100000011...
PB = 0.4

(d)

SK = ...1100111101...

SJ = ...0010100000... SQ = ...0011000000...

PJ = 0.2

PK = 0.7

PQ = 0.2

Clock

QJ

K

(e)

Figure 2.2: Stochastic circuits for arithmetic operations: (a) Different BSs for
P = 0.75. (b) Complement. (c) Multiplication. (d) Scaled addition. (e)
Approximate division and normalization.

The division of the probability PJ by the probability PK can be approximated by entering

the corresponding BSs SJ and SK into the J and K inputs of a JK-Type Flip-Flop

(JKFF), respectively, as exemplified in Figure 2.2(e). Here, the output Q of the JKFF

adopts the value of the input J if J and K disagree. By contrast, if J = 0 and K = 0,

then Q retains the same value that it had in the previous clock cycle. If J = 1 and

K = 1, the output Q is toggled relative to its value in the previous clock cycle. The

bits in the BS SQ obtained at the output Q of the JKFF will adopt the value 1 with

the probability PQ = PJ/[PJ + PK], which corresponds to the normalization of the

probabilities PJ and PK , as well as the approximation of PJ/PK if PJ � PK . In contrast

to this, the division PQ = PJ/PK may not be represented in stochastic computing if

PJ > PK , since this results in the probability PQ adopting values larger than 1, which

18 Chapter2. Fixed-Point and Stochastic Iterative Decoders

1

0

1 1 1

0 0 0

Update

SR Out

SR In

Random
Bits

m : 1 MUX

1 2 mm-1

Clock

D Q

Clock

D Q

Clock

D Q

Clock

D Q

J

m-bit SR

Init

Update
Out

In

J

K

Random Bits

U
Update

Init
MUX

0

1

Out
MUX

1

0

InitBit Address

D Q
Q

Clock

xorJK

xorEM

Figure 2.3: EM employed for the re-randomization of BSs in stochastic decoding.

cannot be represented using BSs in stochastic computing. In the example presented in

Figure 2.2(e), the outgoing BS SQ represents the probability PQ = 0.2, whereas the

resulting normalization gives 0.2/(0.2 + 0.7) ≈ 0.22 and the approximated division gives

0.2/0.7 ≈ 0.28. Accurate stochastic computation realizations of division, integration,

square and square operations can be obtained by combining the above-described basic

stochastic arithmetic circuits, albeit at the cost of an increased complexity, as detailed

in [18, 65, 66].

2.3.2 Latching Problem

In the stochastic decoding of LDPC codes, JKFFs are susceptible to the latching prob-

lem, as detailed in [25]. This occurs when the bits of the BSs become stuck at 0 or 1

for several DCs, which severely affects the attainable error correction capability of the

stochastic LDPC decoder [27]. This problem is particularly acute in LDPC codes with

cycles in the factor graph. To elaborate further, cycles in the factor graph of the LDPC

code correlate the bits of the BSs, causing the nodes of the cycle to enter into a fixed

state for several DCs, as detailed in [67, 25]. As a result of this, short cycles are more

susceptible to the occurrence of the latching problem. However, the careful design of

LDPC codes may reduce the occurrence of the latching problem, by maximizing the

length of the cycles in the factor graph, for example. A number of approaches have

been proposed for overcoming the latching problem. For example, the employment of

Noise-Dependent Scaling (NDS) was firstly proposed in [29]. This technique induces

2.3.2. Latching Problem 19

switching activity in order to help stochastic LDPC decoders become unstuck when

they encounter the latching problem. This is particularly useful at high channel Signal

to Noise Ratios (SNRs), where the probabilities represented by the soft bits received

from the channel are very close to 0 or 1, causing the BSs to become stuck at 0 or

1, respectively. In this method, the probabilities received from the channel are scaled

depending on the channel’s noise power spectral density N0. Assuming a Binary Phase

Shift Keying (BPSK) transmission over an Additive White Gaussian Noise (AWGN)

channel, a bit value probability P (b = 0) is converted into a scaled bit value probability

P ′(b = 0) according to [29]

P ′(b = 0) =
1

1 + exp
(
ηN0

ψ · log 1−P (b=0)
P (b=0)

) , (2.2)

where η and ψ are parameters that can be chosen to optimize the Bit Error Ratio (BER)

performance of the stochastic LDPC decoder.

Another method of assisting stochastic LDPC decoders to become unstuck, when en-

countering the latching problem is replacing the JKFFs used for divisions by re-rando-

mization units known as Edge Memories (EMs), which were first proposed in [27]. The

EMs introduced in [27] consist of m-bit Shift Registers (SRs), which can be considered

to behave as an m-length JKFF having a selectable output, as shown in the blue box

printed using dashed lines in Figure 2.3.

Just like a JKFF, the values stored by an SR-based EM are updated if the input bits J

and K differ from each other J 6= K, whereupon the regenerative bit J is stored in the

first D-type Flip Flop (DFF) of the SR and passed to the output Q of the EM in analogy

to the behavior of a JKFF, with the aid of the OutMUX. In this event, the signals U

and Update of Figure 2.3 are asserted and the contents of the SR will be shifted by

one position, with the oldest bit in the SR being discarded in order to ensure that only

the m-most recent regenerative bits are stored. By contrast, when the J and K input

bits are equal, one of the previous regenerative bits is randomly chosen from the SR

and passed to the output Q of the EM, in analogy to the behavior of a JKFF. This is

achieved with the aid of an m:1 MUX with pseudo-random selector bits that change in

every DC, as shown in the lower part of Figure 2.3. Additionally, when J = K = 1, the

outgoing bit of the SR is inverted with the aid of an xor gate, before being provided to

the output Q, in analogy to the behavior of a JKFF. The SR-based EM of Figure 2.3

can be initialized prior the beginning of the decoding process by means of the Init signal.

During the initialization phase, the assertion of the signal Init causes the InitMUX to

feed the initialization bits InitBits into the SR. The values of InitBit can be chosen to

optimize the BER performance of the decoder.

20 Chapter2. Fixed-Point and Stochastic Iterative Decoders

2.4 Chapter Conclusions

In this chapter, we have reviewed the fundamentals of iterative decoders and aspects of

their hardware implementation. We have also reviewed the fundamentals of the FX two’s

complement number representation, as well as stochastic computing. The concepts of

stochastic computing presented in this chapter are employed in Chapters 3 to 5 in order

to characterize the hardware requirements of Stochastic LDPC Decoders (SLDPCDs),

Stochastic Turbo Decoder (STD) and Reduced-Latency STD (RLSTD), respectively.

Meanwhile, aspects of two’s complement representation are further discussed in Chap-

ter 6 for the FX implementation of FPTDs and RCP-FPTDs.

Chapter 3
Timing-Error-Tolerant Stochastic

LDPC Decoders

As mentioned in Chapter 1, Low-Density Parity-Check (LDPC) codes offer near-optimal

error-correction decoding performance. This allows LDPC-coded communication sche-

mes to employ lower transmission energies than uncoded schemes, at the cost of in-

troducing a significant processing energy consumption during LDPC decoding. Energy

management techniques such as voltage or clock scaling [68] may be employed to reduce

the energy consumption of LDPC decoders. However, these techniques may induce tim-

ing errors, which occur whenever a signal does not propagate to the input of a memory

before it is clocked, degrading the error correction capability of the LDPC decoder. Sim-

ilarly, the clock period may be reduced below the recommended safety margins, in order

to increase the processing throughput of the LDPC decoder. However, this approach

also has the potential side effect of introducing timing errors. Previous works [53, 46]

have shown that Fixed-Point (FX) LDPC decoders have an inherent, but partial, toler-

ance to timing errors. In particular, the error correction capability of LDPC decoders is

not degraded significantly when timing errors occur in the Least Significant Bit (LSB)

of the FX numbers. In contrast to this, if timing errors occur in the Most Significant

Bit (MSB), the error correction capability is significantly degraded, as detailed in [46].

Against this background, we demonstrate that Stochastic LDPC Decoders (SLDPCDs)

have an inherent tolerance to timing errors owing to power supply variations and over-

clocking. Moreover, we propose a modified SLDPCD design, which maintains the error

This chapter is based on the following publications.
i) I. Perez-Andrade, X. Zuo, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, ”Analysis of voltage-

and clock-scaling-induced timing errors in stochastic LDPC decoders,” in IEEE Wireless Communica-
tions and Networking Conf. (WCNC-2013), April, 2013, pp. 4293-4298.

ii) X. Zuo, I. Perez-Andrade, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, ”Improving the
tolerance of stochastic LDPC decoders to overclocking-induced timing errors: A tutorial and a design
example,” in IEEE Access, vol. 4, pp. 1607–1629, April, 2016

22 Chapter3. Timing-Error-Tolerant Stochastic LDPC Decoders

correction capability of the conventional SLDPCD design and reduces the chip area, re-

duces the latency and increases the throughput, albeit at the cost of a marginal increase

in the energy consumption.

The rest of this chapter is organized as follows. Section 3.1 reviews the basic function-

ality of LDPC codes and their decoding algorithm. Section 3.2 details the hardware

implementation of SLDPCDs, followed by an analysis of the various design trade-offs

of the SLDPCD in Section 3.3. Section 3.4 employs extensive SPICE simulations for

characterizing the causes and effects of timing errors in SLDPCDs. In addition to this,

Section 3.4 characterizes the error correction capability of SLDPCDs in the presence of

power supply variations when operating with different voltages and clock periods. Sec-

tion 3.5 presents a modified SLDPCD design and compares its error correction capability

and hardware performance with those of the conventional design. Finally, Section 3.6

concludes that the modified SLDPCD offers an improved tolerance to timing errors and

an improved hardware implementation performance.

3.1 LDPC Codes

An (n, k) LDPC code uses n encoded bits to represent k < n message bits and may be

described by means of a sparse (n− k)× n parity-check matrix H. LDPC codewords

c = [ci]
n
i=1 comprising a valid sequence of n encoded bits satisfy

HcT = 0, (3.1)

where the codeword c is a 1× n sequence comprising k message bits and (n− k) parity

bits, cT denotes the transpose of c and 0 is an (n − k) × 1 null vector. Each of the

(n − k) rows of H represents a parity-check equation of the LDPC code. Similarly,

each of the n columns of H corresponds to a bit in the LDPC-encoded codeword. As a

result of this, an (n, k) LDPC code can be described by means of (n − k) parity-check

equations and by means of factor graphs [67], which comprise n Variable Nodes (VNs)

and (n− k) Check Nodes (CNs), as exemplified by the (10,5) LDPC code of Figure 3.1.

In Figure 3.1, VNs are represented with a circle with an equal sign, in order to indicate

that these nodes compute the probability that their incoming messages have the same

value. Similarly, CNs are represented with a box with a plus sign, in order to indicate

that these nodes compute the modulo-2 addition of their incoming messages.

The relationship between a parity-check matrixH and its parity-check equations is illus-

trated in Figure 3.1(a). Here, the parity-check equation of the jth row of H corresponds

to the modulo-2 addition of the ith columns having the value of 1 in that particular

row. Additionally, Figure 3.1(b) illustrates the corresponding factor graph of the (10,5)

LDPC code of Figure 3.1(a). A non-zero element in the jth row and ith column of

H corresponds to the presence of an edge connecting between the jth CN and the ith

3.1.1. Sum-Product Algorithm 23

H =




1 0 0 0 1 0 0 1 0 1
0 1 0 1 0 1 0 0 1 0
1 0 1 1 0 0 1 0 0 1
0 1 0 1 1 0 1 0 1 0
1 0 1 0 0 1 0 1 1 0



⇔

c1 ⊕ c5 ⊕ c8 ⊕ c10 = 0
c2 ⊕ c4 ⊕ c6 ⊕ c9 = 0
c1 ⊕ c3 ⊕ c4 ⊕ c7 ⊕ c10 = 0
c2 ⊕ c4 ⊕ c5 ⊕ c7 ⊕ c9 = 0
c1 ⊕ c3 ⊕ c6 ⊕ c8 ⊕ c9 = 0

(a)

+ + + + +

= =========

n = 10 VNs

(n− k) = 5 CNs

d1 = 4 d2 = 4 d3 = 5 d4 = 5 d5 = 5

d1 = 3 d2 = 2 d3 = 2 d4 = 3 d5 = 2 d6 = 2 d7 = 2 d8 = 2 d9 = 3 d10 = 2

(b)

Figure 3.1: Parity-check matrix, parity-check equations and factor graph of a
(10, 5) LDPC code. (a) H matrix and parity-check equations. (b) Factor graph
ofH. VNs are represented with a circle with equal sign and CNs are represented
with a box with a plus sign.

VN, which are represented by a box with a plus sign and a circle with an equal sign,

respectively. In this way, the total number of edges in the factor graph corresponds to

the total number of 1’s in the parity-check matrix. The number of edges attached to a

particular node is referred to as the degree of the node. The degree of the ith VN is equal

to the total number of 1’s in the ith column of H and is referred to as di. Similarly,

the number of 1’s in the jth row of H determines the degree of the jth CN represented

as dj . An LDPC code is called regular if the degrees of all VNs are equal and if the

degrees of all CNs are equal. By contrast, an irregular LDPC code comprises different

degree distributions for VNs and CNs. As a result of this, the LDPC code illustrated in

Figure 3.1 corresponds to an irregular code having the degree distributions di ∈ {2, 3}
and dj ∈ {4, 5}.

3.1.1 Sum-Product Algorithm

Figure 3.2 shows a simplified communication scheme, where the transmitter employs an

LDPC encoder and the receiver employs an LDPC decoder. Here, the factor graph of

Figure 3.1(b) is represented by the interleaver box in order to facilitate the following

discussions.

24 Chapter3. Timing-Error-Tolerant Stochastic LDPC Decoders

Demodulator

BPSK
Modulator

LDPC
Encoder

LDPC
Decoder

cu x

y

Transmitter

AWGN

Channel

Receiver

c̃cĉ

==

c̃c1 ĉ1

qa
1

ra1

Interleaver

re1

qe
1 q

a
2 qe

2 q
a
3 qe

3 qa
n qe

n

= =

c̃c2 ĉ2 c̃
c
3 ĉ3 c̃cn ĉn

ra2re2 ra(n−k)re(n−k)

+ + +

Figure 3.2: Simplified block diagram of a communication scheme employing
LDPC codes.

A sequence of k information bits u = [ui]
k
i=1 can be LDPC-encoded into the n-bit

encoded sequence c = [ci]
n
i=1 with the aid of a (k × n) generator matrix G, such that

c = uG. Here, G is designed to produce codewords that satisfy the corresponding

parity-check matrix H [69]. Following this, c is modulated by employing Binary Phase

Shift Keying (BPSK) modulation to obtain the sequence of n symbols x = [xi]
n
i=1, where

xi ∈ {−1,+1}. Here, the modulated symbol xi = −1 is used to represent the LDPC-

encoded bit ci = 1. Similarly, xi = +1 represents ci = 0. After their transmission over

an Additive White Gaussian Noise (AWGN) channel, the received sequence y = [yi]
n
i=1

is soft decision demodulated [70] and the sequence of a priori soft bits c̃c = [c̃c
i]
n
i=1 is

provided to the LDPC decoder. These soft bits express not only what the most likely

value of the corresponding bits are, but also how likely these bit values are. As an

example of this, each soft bit c̃c
i expresses the two probabilities P (ci = 0) and P (ci = 1).

Each VN of Figure 3.2 employs the corresponding soft bit c̃c
i to generate the sequence of

di extrinsic soft bits qe
i = [qe

ij]
di
j=1. Following this, the extrinsic soft bits qe

i are provided

as the sequence of dj a priori soft bits ra
j = [ra

ji]
dj
i=1 to each CN through the edges of the

factor graph, which are represented by the interleaver of Figure 3.2. Each CN employs

the sequence ra
j to provide the sequence of dj extrinsic soft bits re

j = [re
ji]
dj
i=1, which

are provided through the interleaver to each VN as the sequence of di a priori soft bits

qa
i = [qa

ij]
di
j=1. Finally, each VN employs the corresponding a priori soft bits c̃c

i provided

from channel and the sequence of di a priori soft bits qa
i provided from the CNs to

estimate the decoded bit ĉi. This process iterates several times, before the decoded bits

3.1.1. Sum-Product Algorithm 25

c̃c
i =

1

1 + e2yi/σ2 (3.2)

qe
ij =

c̃c
i

∏
j′∈Ci\j

qa
ij′

c̃c
i

∏
j′∈Ci\j

qa
ij′ + [1− c̃c

i]
∏
j′∈Ci\j

(1− qa
ij′)

(3.3)

re
ji =

1

2
− 1

2

∏

i′∈Rj\i

(1− 2(1− ra
i′j)) (3.4)

Qi =
c̃c
i

∏
j∈Ci

qa
ij

c̃c
i

∏
j∈Ci

qa
ij + [1− c̃c

i]
∏
j∈Ci

(1− qa
ij)

(3.5)

ĉi =

{
0 Qi < 0.5
1 otherwise

(3.6)

are concatenated to form the decoded bit sequence Ĉ = [ĉi]
n
i=1. Note each VN provides

its extrinsic soft bits only to those CNs that are connected through edges in the factor

graph. Similarly, each CN only provides its extrinsic soft bits to those VNs that are

connected through edges in the factor graph.

VNs and CNs operate iteratively on the basis of the Sum-Product Algorithm (SPA) [67],

which comprises Equations (3.2) to (3.6). During the first iteration of the SPA, VNs

initialize their extrinsic soft bits qe
ij according to the received channel probabilities c̃c

i

of Equation 3.2. Here σ2 denotes the variance of the Gaussian noise of the channel.

Following this, the extrinsic soft bits qe
ij are provided to the CNs as the a priori soft

bits ra
ji. CNs employ Equation 3.4 to provide the extrinsic sequence re

ji as the a priori

soft bits qa
ij to the VNs. Here, i′ ∈ Rj\i denotes the set of VNs connected to the jth

CN, with the ith VN excluded. Following this, VNs employ Equation 3.5 to estimate

the a posteriori probability of the decoded sequence, where j ∈ Ci denotes the set of

CNs connected to the ith VN. The first iteration of the SPA is finalized with the hard

decision estimation of the decoded sequence, which is performed by the VNs employing

Equation 3.6. In the subsequent iterations, VNs employ Equation 3.3 to provide the

extrinsic soft bits qe
ij . Here, j′ ∈ Ci\j denotes the set of CNs connected to the ith VN,

with the jth CN excluded. This process is repeated until all parity-check equations are

satisfied by HĉT = 0 or until a maximum affordable number of iterations has been

reached.

Note that the SPA relies on the multiplication of probabilities in the range P ∈ [0, 1],

which can lead to numerical stability issues, when the probabilities adopt very small

values. In order to overcome this problem, the SPA can be operated in the logarith-

mic domain, where multiplications of probabilities are transformed into additions of

logarithms. The resulting algorithm is referred to as Logarithmic Sum-Product Algo-

rithm (Log-SPA) [70] and its operation is based on the employment of Logarithmic

26 Chapter3. Timing-Error-Tolerant Stochastic LDPC Decoders

Lc̃ci =
2yi
σ2

(3.8)

Lqeij = Lc̃ci +
∑

j′∈Ci\j

Lqa
ij′

(3.9)

Lreji = 2 tanh−1
∏

i′∈Rj\i

tanh
Lra

i′,j

2
(3.10)

LQi = Lc̃ci +
∑

j∈Ci

Lqaij (3.11)

ĉi =

{
0 Qi < 0
1 otherwise

(3.12)

Likelihood Ratios (LLRs), which are defined as

LP = log
P (b = 0)

P (b = 1)
. (3.7)

As a result of this, Equations (3.2) to (3.6) can be expressed for the case of the Log-SPA

as in Equations (3.8) to (3.12).

The complexity of the Log-SPA can be further reduced by approximating the box plus

operation of CNs in Equation 3.10 as follows:

a� b = 2 tanh−1(tanh
a

2
tanh

b

2
)

≈ sgn(a)sgn(b) min(|a|, |b|).
(3.13)

As a benefit of this, Equation 3.10 can be expressed as

Lreji ≈
∏

i′∈Rj\i

sgn(Lra
i′,j

) · min
i′∈Rj\i

|Lra
i′,j
|. (3.14)

In this case, CNs operate on the basis of determining the minimum absolute value of

their incoming a priori soft bits, while VNs operate on the basis of additions. Owing to

this, the resulting algorithm is referred to as the Min-Sum Algorithm (MSA) [71],

Note that the stochastic implementation of LDPC decoders detailed in Section 3.2 is

based on the SPA. However, owing to its improved numerical stability and relatively

low-complexity, the Log-SPA is used as a benchmark throughout the rest of this chapter.

3.2. Stochastic Implementation of LDPC Decoders 27

3.2 Stochastic Implementation of LDPC Decoders

SLDPCDs operate on the basis of Equations (3.2) to (3.6) and represent probabilities

using Bernoulli Sequences (BSs) [18], which represent probabilities by the fraction of bits

in the BS having the value of 1. These bits are gradually exchanged between the VNs

and CNs along the edges of the factor graph, using just one bit per decoding iteration,

which is referred to as Decoding Cycle (DC). Moreover, the stochastic implementation

of LDPC decoders employs combinations of the stochastic arithmetic circuits presented

in Section 2.3.1. More specifically, stochastic VNs convert the FX received channel

probabilities of Equation 3.2 into individual bits of BSs representing c̃c
i . Following this,

stochastic VNs use the stochastic representation of Equation 3.3 to combine the bits of

the BSs of c̃c
i and qa

ij , in order to provide bits of the BSs representing the extrinsic soft

bits qe
ij to the stochastic CNs. Stochastic CNs employ the stochastic implementation

of Equation 3.4 to combine the bits of the BSs representing ra
ji, in order to provide

BSs representing the extrinsic soft bits re
ji. Finally, stochastic VNs use the stochastic

implementation of Equations (3.5) and (3.6) to combine the bits of the BSs of c̃c
i and

qa
ij , in order to provide an estimation of the decoded bit ĉi. This process is repeated

until all parity-check equations are satisfied or until a maximum affordable number of

DCs has been reached. The following sections describe the stochastic implementation

of VNs and CNs employed in the fully-parallel SLDPCD of [29].

3.2.1 Variable nodes

Stochastic VNs accept q-bit FX representations of the received channel probabilities c̃c
i

of Equation 3.2 from the demodulator and convert them into BSs. In addition to this,

stochastic VNs generate BSs representing the extrinsic soft bits qe
ij of Equation 3.3,

compute the a posteriori probability Qi of Equation 3.5 and estimate the decoded bit

ĉi of Equation 3.6.

The stochastic implementation of VNs is based on the observation that every node of

a factor graph of an LDPC code can be decomposed into subnodes having degrees 2

and 3, with higher degree nodes resulting from the combination of these subnodes, as

detailed in [67, 29]. This is exemplified in Figure 3.3, where the output corresponding to

an edge of a VN having the degree of di is obtained by employing subVNs having degree

of 2 connected in a tree structure. Owing to this, Section 3.2.1.1 presents the stochastic

implementation of VNs having degree di = 2. Building on this, Section 3.2.1.2 presents

the stochastic implementation of VNs having degree di = 3 and di = 6, as employed in

the SLDPCD of [29].

28 Chapter3. Timing-Error-Tolerant Stochastic LDPC Decoders

=

=
=

=

=
=

=

in1
in2

in3
in4

indi

out

Figure 3.3: Example of the implementation of one edge of a VN having the
degree of di employing only subnodes of degree 2.

3.2.1.1 Variable nodes having degree two

The conversion of the received channel probabilities c̃c
i into BSs is achieved with the aid

of q-bit FX comparators and q-bit pseudo-random numbers, as shown in the blue box of

Figure 3.4. Here, q represents the number of quantization bits employed for representing

the received channel probabilities and its value can be chosen based on the best trade-off

between Bit Error Ratio (BER) performance and hardware requirements, where q = 7

in the fully-parallel SLDPCD of [29], for example. In this structure, c̃c
i remains constant

throughout the decoding process and the pseudo-random numbers change in every DC.

The outgoing bit of each comparator is set to 1 if the corresponding probability is larger

than the pseudo-random number and 0 otherwise. As a result of this, the majority of

the bits of the BSs will adopt the value of 1, when c̃c
i adopts large values. Similarly, the

majority of the bits of the BSs will adopt the value of 0, when c̃c
i adopts small values.

=
c̃ci

qai,1

ĉi

qei,1

qai,2

qei,2
c̃ci

Random
bits

q

q

(BS)

(Probability)

Figure 3.4: Inputs and outputs of a VN having degree of di = 2.

Following their conversion to BSs, the received channel probabilities are employed for

obtaining the extrinsic probabilities qe
ij of Equation 3.3, as shown in the blue box of

Figure 3.4. As described in Section 3.1.1, each VN employs Equation 3.3 to provide

the extrinsic probabilities qe
ij to its di connected CNs. As a result of this, the VN

having degree di = 2 of Figure 3.4 provides the extrinsic probabilities qe
i1 and qe

i2. Note

3.2.1. Variable nodes 29

that the VN provides the extrinsic probability qe
i2 in a similar manner to the extrinsic

probability qe
i1. For this reason, the following discussion considers only the stochastic

implementation of qe
i1. Equation 3.3, for the case of qe

i1, can be expressed as

qe
i1 =

c̃c
iq

a
i2

c̃c
iq

a
i2 + [1− c̃c

i][1− qa
i2]

=
c̃c
iq

a
i2

c̃c
iq

a
i2 + c̃c

i q
a
i2

=
J

J +K
, (3.15)

where c̃c
i = 1 − c̃c

i and qa
i2 = 1 − qa

i2 are the complementary probabilities of c̃c
i and

qa
i2, respectively, J = c̃c

iq
a
i2 and K = c̃c

i q
a
i2. Owing to this, the stochastic implementa-

tion of Equation 3.15 can be performed employing not gates, and gates and JK-Type

Flip-Flops (JKFFs), as shown in Figure 3.5, for the complement, multiplication and

division of the BSs representing the probabilities c̃c
i and qa

i2, respectively, as described

in Section 2.3.1.

J Q

Clock

K

c̃ci

qai,2
qei1

Figure 3.5: Stochastic implementation of an edge of a VN having the degree of
di = 2.

The operation of the stochastic implementation of the VN of Figure 3.5 is summarized

in Table 3.1.

Table 3.1: Truth table of the stochastic VN of Figure 3.5.

c̃c
i qa

i2 J K qe
i1

1 0 0 0 previous qe
i1

0 1 0 0 previous qe
i1

0 0 0 1 0
1 1 1 0 1

Here, qe
i1 retains the same value that it had in the previous DC if c̃c

i 6= qa
i2. By contrast, if

the bits of the BS of c̃c
i and qa

i2 have the same value, this value is passed to the output qe
i1.

However, as mentioned in Section 2.3.2, JKFFs are susceptible to the latching problem,

which can be overcome with the employment of Edge Memories (EMs). As a result of

this, the JKFF of Figure 3.5 can be replaced with an EM structure similar to that of

Figure 2.3 for avoiding the latching problem, as shown in Figure 3.6.

Here, the xorJK gate of Figure 2.3, which determines if J and K have the same value, is

replaced with an or gate. This is justified since the contents of the Shift Register (SR)

are updated if J = 1 or K = 1, as described in Table 3.1. Likewise, according to

30 Chapter3. Timing-Error-Tolerant Stochastic LDPC Decoders

Init

Update OutIn

Random Bits

U
Update

Init
MUX

0

1

Out
MUX

1

0

InitBit Address

D Q

Clock

c̃ci

qai,2

qei1

J

K

32-bit SR

SR-based EM

Figure 3.6: Stochastic implementation of an edge of a VN having a degree of
di = 2 and employing EMs.

Table 3.1, the condition J = K = 1 will never occur. As a result of this, the xorEM

gate employed to toggle the output of the SR of Figure 2.3 is no longer required. In

analogy to the behavior of the EM of Figure 2.3, when c̃c
i and qa

i2 have the same value,

the regenerative bit J of Figure 3.6 is stored in the first D-type Flip Flop (DFF) of

the SR and passed to the DFF output qe
i1, with the aid of the OutMUX, In this event,

the signals U and Update of Figure 3.6 are asserted and the contents of the SR will

be shifted by one position, with the oldest bit in the SR being discarded. By contrast,

when c̃c
i 6= qa

i2, one of the previous regenerative bits is randomly chosen from the SR

and passed to the DFF output qe
i1. The SR-based EM of Figure 3.6 can be initialized

by means of the Init signal. During the initialization phase, the assertion of the signal

Init causes the InitMUX to feed the initialization bits provided by the input InitBit

into the SR during successive clock cycles. Here, the values of InitBit can be chosen to

optimize the BER performance of the decoder. As an example of this, BSs representing

the received channel probabilities c̃c
i are employed for the initialization of the SRs in

the fully-parallel SLDPCD of [29]. The length of the SR can be chosen based on the

best trade-off between BER performance and hardware implementation requirements.

Moreover, VNs having different degrees can employ different SR lengths, as shall be

discussed in Section 3.2.1.2.

As explained above, the VN of Figure 3.4 provides the extrinsic soft bits qe
i1 and qe

i2.

Owing to this, the extrinsic soft bits qe
i2 must be provided by a similar structure to

that of Figure 3.6, but with c̃c
i and qa

i1 as the input bits, as shown in the green box of

Figure 3.7.

In addition to the extrinsic probabilities qe
ij , VNs employ Equations (3.5) and (3.6) to

provide the decoded bit ĉi. Following the same principles of the stochastic implementa-

tion of Equation 3.3, Equation 3.5 for the case of a VN having the degree of di = 2 can

3.2.1. Variable nodes 31

J

K

J

K

J

K

qei2
EM

Clock

J

K

qei1
EM

Clock

J

K

qai,2

qai,1

c̃ci

Up/Down
Sign

ĉi

Clock

Qi
J Q

Clock

K

qai,2

qei,1
qai,1

qei,2

c̃ci ĉi

Figure 3.7: Stochastic implementation of a VN having a degree of di = 2.

be expressed as follows:

Qi =
c̃c
iq

a
i1q

a
i2

c̃c
iq

a
i1q

a
i2 + c̃c

i q
a
i1 q

a
i2

=
J

J +K
, (3.16)

where J = c̃c
iq

a
i1q

a
i2 and K = c̃c

i q
a
i1 q

a
i2. The stochastic implementation of Equation 3.16

can be performed with a structure similar to that of Figure 3.6, but employing a pair

of 3-input and gates, 3 not gates and a JKFF, instead of an EM, as shown in the red

box of Figure 3.7. Here, the value of J will be stored in the JKFF and passed to Qi,

if J 6= K. By contrast, if J = K, Qi will adopt the value that it had in the previous

DC. Additionally, the estimation of the decoded bit ĉi of Equation 3.6 can be performed

with a signed up/down saturated counter, as shown in the red box of Figure 3.7. The

up/down counter increments its value if the BS representing Qi takes the value of 1 and

decreases its value otherwise. The counter saturates its value if either the maximum or

the minimum count value has been reached. In the SLDPCD of [29], a 4-bit up/down

counter with a maximum value of +7 and a minimum value of -8 is employed. The

estimation of the decoded bit ĉi is performed in each DC by considering the sign bit

of the saturated counter. In this way, if the value of the counter is ≥ 0, the estimated

decoded bit is ĉi = 0 and 1 otherwise. Note that the JKFF delays the estimation of

the decoded bit ĉi by one DC, owing to the counter updating its value one DC after

Qi. However, this does not degrade the error correction capability or the hardware

implementation performance of the decoder, as we will demonstrate in Section 3.3.

32 Chapter3. Timing-Error-Tolerant Stochastic LDPC Decoders

IM
MUX

1

0

c̃ci

qai,2 J1
d2

K1
d2 Init

Update OutIn

Random Bits

U
Update

Init
MUX

0

1

Out
MUX

1

0

InitBit
Address

D Q

Clock

qei1

J2
d2

48-bit SR

D Q

Clock

Update

UpdateIM

K2
d2

qai,3

(a)

IM1
MUX

1

0

c̃ci

qai,2 J1
d3

K1
d3

Init

U
Update

Init
MUX

0

1

Out
MUX

1

0

InitBit

D Q

Clock

qei1

Jd2

UpdateIM1

Kd2

qai,3

Update OutIn

Random Bits

Address
2-bit SR

IM2
MUX

1

0

J2
d3

K2
d3

UpdateIM2

Update OutIn

Random Bits

Address
2-bit SR

qai,4

qai,5
qai,6

Update OutIn

Random Bits

Address
64-bit SR

(b)

Figure 3.8: Stochastic implementation of VNs having different degrees. Here,
only one output of each VN is shown. (a) di = 3. (b) di = 6.

3.2.1.2 Variable nodes having higher degrees

The same principle described in Section 3.2.1.1 can be applied to VNs having different

degrees. To elaborate further, the stochastic implementation of Equation 3.3 for a VN

having a degree di can be implemented with the aid of two di-input and gates, di not

and di EM structures. Furthermore, in the SLDPCD of [29], VNs having a degree

di = 3 and di = 6 are built by employing VNs having lower degrees. More specifically,

VNs having a degree di = 3 employ two subVNs having a degree di = 2, as shown in

Figure 3.8(a). Here, a 48-bit SR is employed in the EM of the subVN shown in the green

box of Figure 3.8(a). Likewise, VNs having a degree di = 6 employ two subVNs having

a degree di = 3, as well as a VN having a degree di = 2 with an EM employing a 64-bit

SR, as shown in Figure 3.8(b).

A scaled version of the EMs of Figure 3.6 is employed for the initial stages of VNs having

degree di ≥ 3. These structures are referred to as Internal Memories (IMs) and their

operation follows the same principle as that of the EMs described in Section 3.2.1.1.

3.2.2. Parity-check nodes 33

More specifically, in the subVN degree di = 2 shown in the blue box of Figure 3.8(a),

the 32-bit SR of the VN of Figure 3.6 is replaced with an IM consisting of a single DFF.

In analogy to the operation of the EM discussed in Section 3.2.1.1, the DFF of the IM

updates its contents when J1
d2
6= K1

d2
, whereupon the subVN provides the value of Jd2 to

the following subVN, shown in the green box of Figure 3.8(a). Additionally, if J1
d2

= K1
d2

,

the value that the DFF had in the previous DC is provided to the following subVN. The

subVN of the green box of Figure 3.8(a) employs a 48-bit SR and its operation follows

the same principle of that of the VN described in Section 3.2.1.1.

In the VN degree di = 6 of Figure 3.8(b), the two subVNs having the degree di = 3,

employ IMs comprising two-bit SRs, as shown in the blue and green boxes. The operation

of these subVNs follows the same principle described above for the operation of the

subVNs having the degree di = 2 of Figure 3.8(a). Similarly, the subVN having the

degree di = 2 shown in the red box of Figure 3.8(b) employs a 64-bit SR and its

operation follows the same principle as that of the VN described in Section 3.2.1.1.

Note that the authors of [30, 33] employ enhanced implementations of EMs for VNs,

which significantly improve the hardware efficiency of SLDPCDs. However, these im-

plementations rely on FX numbers, which do not benefit from the low-complexity and

inherent timing error tolerance. Owing to this, we limit our discussions to the EM

structures presented in the fully-parallel SLDPCD of [29].

3.2.2 Parity-check nodes

In the following discussion, the stochastic implementation of CNs is described for the case

of a CN having the degree dj = 3, as shown in Figure 3.9. The stochastic implementation

of CNs having different degrees can be performed following the same principles.

rej1
raj1 rej3

raj3raj2rej2

PCS

Figure 3.9: Inputs and outputs of a CN having the degree of dj = 3.

As described in Section 3.1.1, each CN employs Equation 3.4 to provide the extrin-

sic probabilities re
ji to its dj connected VNs. In addition to this, in the fully-parallel

34 Chapter3. Timing-Error-Tolerant Stochastic LDPC Decoders

SLDPCD of [29], each CN provides a Parity-Check Satisfied (PCS) signal, which indi-

cates that the parity-check equation of that particular CN has been satisfied. As a result

of this, the CN of Figure 3.9 provides the extrinsic soft bits re
j1, re

j2 and re
j3 and the signal

PCS. Note that the CN provides the extrinsic soft bits re
j2 and re

j3 in a similar manner

to the extrinsic soft bits re
j1. For this reason, the following discussion considers only the

stochastic implementation of re
j1. Equation 3.4 for the case of re

j1 can be expressed as

follows:

re
j1 =

1

2
− 1

2

[
1− 2(1− ra

j2)
] [

1− 2(1− ra
j3)
]

= ra
j2[1− ra

j3] + ra
j3[1− ra

j2]

= ra
j2r

a
j3 + ra

j3r
a
j2.

(3.17)

Equation 3.17 involves the multiplication, addition and complement of BSs represented

probabilities. However, Equation 3.17 also corresponds to the logical xor operation of

the BSs representing the probabilities ra
j2 and ra

j3, which is expressed as

re
j1 = ra

j2 ⊕ ra
j3. (3.18)

Owing to this, the stochastic implementation of Equation 3.18 is shown in Figure 3.10(a).

raj2

raj3

rej1
D Q

Clock
(a)

raj2

raj1

raj3

PCS

(b)

Figure 3.10: Stochastic implementation of CNs having the degree dj = 3: (a)
One edge of a CN. (b) Parity-check satisfied.

As mentioned in Section 3.1, the parity-check equation of a CN is computed with modulo-

2 additions of the a priori probabilities provided by the connected VNs. Here, the

stochastic implementation of a CN having the degree dj employs a dj-input xor gate for

the computation of the signal PCS. As a result of this, stochastic CNs having the degree

dj employ one dj-input xor gate and dj xor gates having (dj − 1)-inputs for providing

the extrinsic probabilities re
j,i and the PCS signal, respectively. However, the complexity

of the stochastic CNs can be reduced by combining Figures 3.10(a) and 3.10(b), Here,

the signal PCS is xored with the ith incoming a priori bit for providing the ith outgoing

extrinsic bit. By doing this, the (dj − 1)-input xor gates can be replaced with 2-input

xor gates, as shown in Figure 3.11. If the PCS signal of all CNs is asserted in the same

DC, the SLDPCD determines that all parity-check equations of the LDPC code have

3.3. Hardware Implementation 35

raj2

rej1

raj1

raj3

rej2

rej3

D Q

Clock

D Q

Clock

D Q

Clock

PCS

raj3

rej3

raj2raj1

rej2rej1PCS

Figure 3.11: Stochastic implementation of a CN having a degree of dj = 3.

been satisfied, whereupon the decoding process is stopped and VNs output the decoded

bits ĉ.

3.3 Hardware Implementation

Table 3.2 characterizes the hardware implementation of the SLDPCD presented in Sec-

tion 3.2 in terms of chip area, minimum clock period and average energy consumption

per DC of the (1056,528) WiMAX SLDPCD presented in [29], when using ST 90 nm

technology. Here, the average energy consumption is presented for the case of the indi-

vidual VNs and CNs and for the accumulated total according to the degree distribution

of the LDPC code. Similarly, Table 3.2 provides the total average energy consumption

of the SLDPCD per DC.

The results of area of Table 3.2 are obtained from the physical synthesis using automatic

place and route of the individual nodes of the above mentioned SLDPCD using Cadence’s

Encounter [72]. Similarly, the results of energy consumption of Table 3.2 are obtained

from SPICE [73] simulation of the individual nodes of the above mentioned SLDPCD,

for the cases where the supply voltage is set to either 1.0 V or 0.8 V. The critical clock

period is obtained by performing a static timing analysis of the SLDPCD using Synopsys

PrimeTime [73].

In addition to the results presented in Table 3.2, Figure 3.12 presents the BER decoding

performance of a SLDPCD implementation of the (1056,528) IEEE 802.16e (WiMAX)

LDPC decoder, assuming BPSK transmission over an AWGN channel, when allowing

a maximum of 104 DCs and when Noise-Dependent Scaling (NDS) with η = 1 and

36 Chapter3. Timing-Error-Tolerant Stochastic LDPC Decoders

Table 3.2: Hardware implementation performance of the SLDPCD.

Node Area VDD Tclk
Energy per DC

per node all nodes

VN

di = 2 1290 µm2 1.0 V 618 ps 1.50 pJ 726 pJ
(484×) (294 gates) 0.8 V 959 ps 0.92 pJ 445 pJ
di = 3 1909 µm2 1.0 V 716 ps 3.27 pJ 1151 pJ
(352×) (435 gates) 0.8 V 1120 ps 2.07 pJ 729 pJ
di = 6 2539 µm2 1.0 V 745 ps 8.15 pJ 1793 pJ
(220×) (578 gates) 0.8 V 1160 ps 5.09 pJ 1120 pJ

CN

dj = 6 222 µm2 1.0 V 318 ps 0.30 pJ 105 pJ
(352×) (51 gates) 0.8 V 505 ps 0.19 pJ 67 pJ
di = 7 257 µm2 1.0 V 370 ps 0.33 pJ 58 pJ
(176×) (59 gates) 0.8 V 560 ps 0.20 pJ 35 pJ

TOTAL
1.98 mm2 1.0 V 745 ps N/A 3833 pJ

(450× 103 gates) 0.8 V 1160 ps N/A 2396 pJ

ψ = 2 is employed, as described in Section 2.3.2. C++ simulations were used to obtain

the BER performance of the SLDPCD. More specifically, we simulate the stochastic

VNs shown in Figures 3.7 and 3.8, as well as stochastic CNs with structures similar

to that of Figure 3.11, for the cases of CNs having the degree of dj ∈ {6, 7}. In each

DC, stochastic VNs and stochastic CNs process and exchange bits of the BSs, until all

parity-check equations are satisfied or 104 DCs has been reached. Figure 3.12 compare

the BER of the SLDPCD with that of the Floating-Point (FP) Log-SPA LDPC decoder

as a benchmark. As shown in Figure 3.12, the BER of the SLDPCD is very similar to

that of the FP implementation. Note that an error floor is manifested at a BER < 10−6,

since our simulations employ early stopping to halt the iterative decoding process as soon

as the corresponding degree of confidence is attained for the decoded bits. In Section 3.4,

we will consider the effects that timing errors impose in the BER performance of the

SLDPCD.

C++ simulations of the SLDPCD were used to measure the average number of DCs

required for successfully decoding a frame, when employing early stopping and allowing

a maximum of 104 DCs, as shown in Figure 3.13. The critical clock periods of Table 3.2

and the average number of DCs of Figure 3.13 were employed to obtain the latency of the

SLDPCD shown in Figure 3.14, where Latency = DCavg×Tclk. The uncoded throughput,

also known as information throughput, of Figure 3.15 was obtained according to The

energy consumption per decoded bit of Figure 3.16 was quantified by using the average

number of DCs of Figure 3.13 and the average energy consumption per DC of Table 3.2,

where

Figures 3.14 to 3.16 show the effect that two different supply voltages have on the

performance of the SLDPCD. More specifically, the SLDPCD exhibits reduced latencies

and increased throughputs, when operated at VDD =1.0 V instead of at 0.8 V, albeit at

the cost of an increased energy consumption. Moreover, Figure 3.15 demonstrates that

3.4. Error Correction Capabilities in the Presence of Timing Errors 37

43210

B
E
R

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Eb/N0 (dB)

Stochastic
Log-SPA

Figure 3.12: BER of the (1056,528) SLDPCD.

Eb/N0 (dB)

D
C
s

43210

104

103

102

Figure 3.13: Average number of DCs for successfully decoding a frame for the
SLDPCD.

the SLDPCD may achieve throughputs in the order of Gbps, when operated at VDD

=1.0 V for Eb/N0 > 2.25 dB or VDD =0.8 V for Eb/N0 ≥ 3.0 dB.

3.4 Error Correction Capabilities in the Presence of Tim-

ing Errors

This section characterizes the error correction capabilities of the SLDPCD in the pres-

ence of timing errors, when it operates with different voltages and clock periods. This

38 Chapter3. Timing-Error-Tolerant Stochastic LDPC Decoders

(0.8 V, 1160 ps)
(1.0 V, 745 ps)

Eb/N0 (dB)

L
at
en
cy

43210

100 µs

10 µs

1 µs

100 ns

Figure 3.14: Latency of the SLDPCD.

Eb/N0 (dB)

U
n
co
d
ed

th
ro
u
gh

p
u
t

43210

10 Gbps

1 Gbps

100 Mbps

10 Mbps

(0.8 V, 1160 ps)
(1.0 V, 745 ps)

Figure 3.15: Uncoded throughput of the SLDPCD.

is achieved by performing a timing analysis for characterizing the specific causes end

effects of timing errors in the SLDPCD.

3.4.1 Timing error analysis of the stochastic LDPC decoder

Timing errors in synchronous systems occur when the propagation delay tp of the signal

path p exceeds the clock period Tclk. In this case, an incorrect bit value will be clocked

into the corresponding DFFs. This occurs when the power supply voltage is reduced,

owing to power supply noise or for the sake of reducing the energy consumption of

the system, as well as when overclocking is employed for the sake of increasing the

throughput. The prevalence of timing errors when the supply voltage VDD is reduced

3.4.1. Timing error analysis of the stochastic LDPC decoder 39

Eb/N0 (dB)

E
n
er
gy

p
er

d
ec
o
d
ed

b
it
(n
J
)

43210

100

10

1

(0.8 V, 1160 ps)
(1.0 V, 745 ps)

Figure 3.16: Energy consumption per decoded bit of the SLDPCD.

and the clock period Tclk is not adjusted accordingly, owing to voltage scaling or to

power supply noise, is a decreasing quadratic function of the nominal supply voltage.

In Section 3.4.1.1, we characterize the signal propagation delays tp within stochastic

VNs and CNs having various degrees and nominal supply voltages. Following this,

Section 3.4.1.2 details the conditions and effects of timing errors in VNs having a degree

of di = 3, as a particular example. Note that the timing analysis of VNs having degree

di = 2 and di = 6 can be performed following the same principles and so will only be

summarized.

3.4.1.1 Propagation delays

In this section, we characterize the nominal signal propagation delays tp of stochastic

VNs and CNs having degrees of di ∈ {2, 3, 6} and dj ∈ {6, 7}, respectively, as employed

in the (1056, 528) LDPC code defined in the IEEE 802.16e (WiMAX) standard [4]. We

model the propagation delay tp of a signal according to its end DFF. In this context,

a path delay is comprised of the Clock-to-Q delay of the initial DFF, The propagation

delay of a logic gate depends on the previous and current values of its inputs as well as its

supply voltage and external factors such as temperature and fabrication process varia-

tions [74]. Hence, the cumulative propagation delay of a path varies between consecutive

clock cycles [75].

A stochastic VN having a degree of di = 3 comprises 9 input bits, each of them corre-

sponding to one bit of a BS. More specifically, 3 input bits correspond to BSs provided

by CNs and 6 input bits corresponds to pseudo-random bits employed by the 48-bit SR,

as shown in Figure 3.8(a) and again with more detail in Figure 3.17. Note that the Init

and InitBit inputs are not considered in this analysis since they are only relevant during

40 Chapter3. Timing-Error-Tolerant Stochastic LDPC Decoders

the initialization stage of the SLDPCD. In addition to this, a stochastic VN employs 48

DFFs in the SR, 1 DFF in the IM and 1 output DFF. Owing to this, there are a total

of 29+50 ≈ 6 × 1017 combinations of current states and about 6 × 1034 combinations of

current and previous states in a VN having a degree of di = 3. Similarly, a VN having

a degree of di = 6 comprises ≈ 1050 combinations of current and previous states. As

a result of this, it is not feasible to perform a timing analysis that considers all possi-

ble combinations of current inputs and current and previous states. In analogy to the

methodology proposed in [54], and This is justified because the Multiplexer (MUX) se-

lector signals determine how signals are propagated through the stochastic VN circuit,

as detailed in [54]. More specifically, when a MUX selector signal remains constant

during consecutive clock cycles, the MUX propagation delay is governed by the selected

signal. By contrast, if the selector signal is toggled, the propagation delay is governed

by the maximum delay of the MUX selector signal and the selected signal. To further

simplify our analysis, we do not consider all combinations of IMMUX and OutMUX

selector signals. Instead, we focus on those that were found to exceed the maximum CN

propagation delay tCN. This is because we assume that the degree of power supply vari-

ations and overclocking is limited, in order to avoid timing errors in the CNs, which were

found to break down the inherent fault tolerance of the SLDPCD in our experiments.

Table 3.3 summarizes the maximum propagation delays Here, ‘Input’ refers to the input

Table 3.3: Maximum propagation delays according to pairs of starting and
ending points in stochastic VNs operating at VDD = 1.0 V.

Degree
Starting Ending Combination

Delay (tp)point point IMMUX (S4) OutMUX (S5)

di = 6

Input
Output/SR 1→ 1 1→ 0 745 ps (t1)
Output/SR toggle 0→ 1 576 ps (t6)
IM (D) 0→ 1 any 245 ps

IM (Q) Output/SR 1→ 1 1→ 0 552 ps (t7)
SR (Q) Output (D) any 0→ 0 642 ps (t3)

di = 3

Input
Output/SR toggle 1→ 0 716 ps (t2)
Output/SR toggle 0→ 1 455 ps (t8)
IM (D) 0→ 1 any 218 ps

IM (Q) Output/SR any 1→ 0 382 ps (t10)
SR (Q) Output (D) any 0→ 0 599 ps (t5)

di = 2
Input

Output/SR
-

1→ 0 618 ps (t4)
Output/SR 0→ 1 354 ps

SR (Q) Output (D) 0→ 0 426 ps (t9)

of the corresponding stochastic VN; ‘IM (Q)’ refers to the output Q of the corresponding

IM; ‘SR (Q)’ refers to the output Q of any of the DFFs of the corresponding SR;

‘Output/SR’ refers to both the input D of the output DFF of the VN and to the input

D of the first DFF of the corresponding SR; ‘Output (D)’ refers to the input D of the

output DFF of the corresponding VN; and ‘IM (D)’ refers to the input D of the IM of the

3.4.1. Timing error analysis of the stochastic LDPC decoder 41

corresponding VN. These start and end points are shown in Figure 3.17 for illustrative

purposes. The fourth and fifth columns of Table 3.3 describe the combination of the

the IMMUX and OutMUX selector signals that cause the corresponding delay tp, where

‘0 → 1’ refers to the case of a 0 to 1 transition of the corresponding signal in two

consecutive DCs. Similarly, ‘1 → 0’ represents a 1 to 0 transition in two consecutive

DCs, while ‘0 → 0’ and ‘1 → 1’ represent a constant value of 0 and 1 between the

consecutive DCs, respectively. Finally, ‘any’ indicates that the particular propagation

delay is not dependent on the corresponding MUX selector signal. Note that stochastic

VNs having the degree of di = 6 employ two sets of IMs with MUX selector signals

IM1MUX and IM2MUX, respectively. However, owing to the symmetry in the circuit,

the maximum propagation delay of these VNs may be caused when either IM1MUX

or IM2MUX adopt specific values. As a result of this, our analysis considers only one

of the two MUX selector signals of stochastic VNs having the degree of di = 6, which

is simply denoted as IMMUX in the fourth column of Table 3.3. Moreover, stochastic

VNs having the degree of di = 2 do not employ IMs. Propagation delays in bold, which

are labeled as [tp]
10
p=1, correspond to those paths that exceed the maximum propagation

delay tCN = 370 ps of CNs having the degree of dj = 7.

Figure 3.17 exemplifies a possible critical path starting in the input of the VN and ending

in the output DFF as well as in the first DFF of the SR. Here, a transition from 1 to

0 of the OutMUX selector signal S5 and a constant value of 1 of the IMMUX selector

signal S4 may result in a propagation delay t1 = 745 ps, as described in Table 3.3.

IM
MUX

1

0

Init

Update OutIn

Random Bits

Init
MUX

0

1

Out
MUX

1

0

InitBit
Address

D Q

Clock

S+
8

48-bit SR

D Q

Clock

Update

1

0

1 1 1

0 0 0
(SR Out)

(SR In)

Random
Bits

48 : 1 MUX

1 2 4847

Clock

D Q

Clock

D Q

Clock

D Q

Clock

D Q

S1

S2

S3

S4
S5

S6

S7

S7

S6

S5

S8

Input

IM (Q)

SR (Q)

Output (D)

Output/SR

IM (D)

Figure 3.17: A critical path in a stochastic VN di = 3.

42 Chapter3. Timing-Error-Tolerant Stochastic LDPC Decoders

As described above, Table 3.3 shows the combination of IMMUX and OutMUX selector

signals that triggers the maximum propagation delay for each pair of starting and ending

point in stochastic VNs. However, in our analysis of Section 3.4.1.2, we also consider all

other combinations of IMMUX and OutMUX selector signals that cause a propagation

delay larger than the propagation delay tCN of a CN having the degree of dj = 7.

3.4.1.2 Causes and effects of timing errors

As described above, propagation delays are a function of the supply voltage, which can

vary from one clock cycle to the next due to the switching activity of registers, tem-

perature variation or other sources of noise, such as IR-drop, L · di/dt noise, crosstalk,

electrostatic discharges, particle strikes, switching noise and fabrication process varia-

tions [12, 13, 14, 15, 16], among other causes. Owing to this, the supply voltage VDD in

consecutive clock cycles can be assumed to have a Gaussian distribution having a mean

of µ, which represents the nominal supply voltage, and a standard deviation σ, related

to the power supply variations [76, 77].

Figure 3.18 presents the propagation delay for each of the highlighted tp of Table 3.3

and for tCN, as a function of the supply voltage. These results were obtained using

SPICE simulations of the individual VNs and CNs of the SLDPCD, implemented using

ST 90 nm technology. Depending on the supply voltage in each clock cycle, Table 3.3

and Figure 3.18 can be employed to determine the corresponding propagation delay tp

of each considered path p. Furthermore, Figure 3.18 can be employed to determine the

occurrence of timing errors, when the clock period Tclk adopts a particular value. For

example, Figure 3.18 illustrates that when Tclk =750 ps, no timing errors occur if the

supply voltage in the current clock cycle is 1.0 V. However, in clock cycles where the

supply voltage drops to 0.95 V, timing errors occur in paths p = 1 and p = 2 of the

SLDPCD.

The following discussion exemplifies the causes and effects of timing errors for the case

of a stochastic VNs having a degree of di = 3, as shown in Figure 3.19. Moreover, in

order to facilitate the following explanations, Table 3.4 summarizes the effect of each

timing error shown in Figure 3.19.

Table 3.4: Summary of the effects of timing errors in stochastic VNs.

TET Update state of SR
Update of output DFF

Error-free case Error case

I Not correctly updated current SR output old SR output
IIa Fails to get updated current SR input current SR output
IIb Erroneously updated current SR output current SR input
IIIa Fails to get updated current SR input old SR output
IIIb Erroneously updated current SR output current SR input

3.4.1. Timing error analysis of the stochastic LDPC decoder 43

1200

1100

1000

900

800

700

600

500

400

300

200

t p
(p
s)

VDD

1.21.11.00.90.8

Tclk = 750 ps
Timing errors

No timing errors

t8
t7
t6

t9
t10
tCN

t5
t4
t3
t2
t1

Figure 3.18: Propagation delays as a function of supply voltage for the VNs and
CNs employed in the SLDPCD implemented in ST 90 nm technology. Here, tp
denotes the propagation delay of the path p.

The Timing Error Type (TET) I of Figure 3.19 occurs if the OutMUX selector signal S5

correctly propagates before the clock edge, but S7 arrives late. In this case, if S5 = 1,

the OutMUX will not select the late S7. However, if S5 = 0, the OutMUX will select the

late S7 inflicting a timing error. Therefore, S5 = 0 is a condition for a TET I to occur.

The effect of this error is that the value that is clocked into the output DFF of the VN

corresponds to value of the previous clock cycle S−7 instead of clocking its current value

S7, as described in the third and fourth columns of Table 3.4. In this type of error, the

SR DFFs are not erroneously updated, since S7 is not an input to the SR.

The TET II of Figure 3.19 occurs when S5 is toggled and arrives after the clock edge,

but S7 arrives on time. In this case, the previous value of the OutMUX selector signal,

S−5 , determines the updating of the SR and the signal that is clocked into the output

DFF of the VN. Owing to this, TET II can be categorized into TET IIa and TET IIb,

depending on the value of S−5 . A TET IIa occurs when the selector signal OutMUX is

toggled according to S−5 = 0 and S5 = 1. The effect of this fault is that the SR fails to

get updated and the value of S7 will be clocked into the output DFF of the VN, rather

than S6, as described in Table 3.4. By contrast, a TET IIb occurs when the OutMUX

selector signal is toggled according to S−5 = 1 and S5 = 0. In this error, S6 is erroneously

clocked into the SR as well as into the output DFF.

Finally, the TET III of Figure 3.19 occurs when S5 and S7 arrive after the clock edge and

S5 has been toggled. In a similar manner as in the TET II, S−5 controls the updating of

the SR DFFs and the signal that is clocked into the output DFF of the VN. Therefore,

44 Chapter3. Timing-Error-Tolerant Stochastic LDPC Decoders

TET III can also be categorized into TET IIIa and TET IIIb, depending on the value of

S−5 . More specifically, TET IIIa occurs when S−5 = 0 and S5 = 1. The effect of this fault

is that the SR fails to get updated and since S7 is late, S−7 is clocked into the output

DFF, rather than S6, as described in Table 3.4. By contrast, a TET IIIb occurs when

S−5 = 1 and S5 = 0. In this case, the effect of the timing error is that S6 is clocked into

the SR DFF as well as into the output DFF of the VN, rather than clocking the late S7.

Start

0 → 0

TCLK < t2

TCLK < t8

1 → 1

toggle

No timing
errors

No timing
errors

Timing
error
I

Timing
error
IIa

Timing
error
IIb

Timing
error
IIIa

Timing
error
IIIb

Yes

Yes

Yes

Yes Yes

Yes

Yes

No

No

No

No

No

No

No

0 → 1 1 → 0IMMUX
toggle

IMMUX
toggle

TCLK < t5

TCLK < t2

TCLK < t10

OutMUX
constant

toggle
OutMUX

Figure 3.19: Flowchart illustrating causes and effects of timing errors in stochas-
tic VNs having a degree of di = 3.

SPICE simulations were employed to obtain the waveforms of Figure 3.20, which present

the error-free zero-delay response of a stochastic VN having the degree of di = 3, as well

as the corresponding error-free real-delay response when the supply voltage is 1.0 V and

the occurrence of timing errors when the supply voltage is 0.8 V.

For the case of VDD = 0.8 V, a TET IIa occurs in clock cycles 2 and 3. In this case,

S5 = 1 fails to propagate in time and the signal that is clocked into the output DFF of

the VN is S7 instead of S6. Similarly, a TET IIb is present in clock cycles 4 and 5 when

S5 = 0. In this situation, the ideal output value corresponds to Ŝ8 = S7, however, the

actual value that is clocked into the output DFF of the VN is S8 = S6.

3.4.2. Decoding performance in the presence of timing errors 45

TCLK = 750 ps

IMMUX (S4)

Clock

SR Input (S6)

SR Output (S7)

VN Out Q (S8)

1 2
Clock cycle

3

Real-delay response VDD = 1.0 V
Zero-delay response

4 5 6

S−5 6= S5 Real-delay response VDD = 0.8 V

OutMUX (S5)

Ŝ+
8 = S6

S+
8 = S7

Ŝ+
8 = S7

S+
8 = S6

S5 = 0

Figure 3.20: SPICE simulation demonstrating the occurrence of TET II in the
stochastic VN having a degree di = 3.

A similar approach can be followed for VNs having degree di = 2 and di = 6. More

specifically, Figures 3.21 and 3.22 can be employed for determining the occurrence and

the effects of timing errors in VNs having degree di = 2 and di = 6, respectively.

Start

0 → 0
TCLK < t9

1 → 1

toggle

Timing
error
IIb

Yes

NoNo

No

TCLK < t4 TCLK < t4

Timing
error
IIa

0 → 1 1 → 0

Yes

Timing
error
I

No timing
errors

No timing
errors

Yes

OutMUX
constant

toggle
OutMUX

Figure 3.21: Flowchart illustrating causes and effects of timing errors in stochas-
tic VNs having a degree of di = 2.

Note that since TET III occurs when both the OutMUX selector signal and the output

signal of the SR arrive after the clock edge, this type of error is not considered in

the analysis of degree di = 2 VNs of Figure 3.21, owing to this propagation delay not

exceeding the maximum CN delay.

3.4.2 Decoding performance in the presence of timing errors

Monte Carlo simulations were performed to characterize the error correction capability of

the SLDPCD in the presence of timing errors, when employing particular combinations

46 Chapter3. Timing-Error-Tolerant Stochastic LDPC Decoders

Start

0 → 0 1 → 1

toggle

No

Yes

Yes

No

No No

No

TCLK < t1

1 → 1

Yes Yes

Yes

TCLK < t3

Timing
error
IIIa

Timing
error
IIb

Timing
error
IIa

Timing
error
I

No timing
errors

No

Yes

0 → 0

No

0 → 1 1 → 0

No timing
errors

OutMUX
constant

IM1 or IM2
constant

TCLK < t6 TCLK < t7

TCLK < t1

IM1 or IM2
toggle

IM1 or IM2
toggle

IM1 or IM2
constant

Timing
error
IIIb

0 → 0

No

Yes

Yes

No No
TCLK < t1

1 → 1

Yes Yes

Yes

No
TCLK < t7 TCLK < t6

TCLK < t1

toggle
OutMUX

Figure 3.22: Flowchart illustrating causes and effects of timing errors in stochas-
tic VNs having a degree of di = 6.

of (µ,%, Tclk), which corresponds to a particular value of the nominal supply voltage

µ, three standard deviation percentage of supply voltage noise, which is obtained by

expressing 3σ/µ as a percentage, and clock period Tclk, respectively. In our analysis,

the nominal supply voltage µ, the degree of power supply variations 3σ/µ and the clock

period Tclk are fixed for the whole operation of the decoder [77]. However, a different

random value of VDD is selected from the Gaussian distribution having a mean of µ

and standard deviation of σ for each clock cycle. The selected value of VDD is then

used for all gates in the SLDPCD during the current clock cycle. The selected values

of µ are 1.0 V and 0.8 V, corresponding to the nominal supply voltage of ST 90 nm

technology and this value scaled down 20%, respectively. The value of σ is selected to

obtain a particular value of 3σ/µ, namely 0.01, 0.10 and 0.30, which correspond to the

three standard deviation variation fraction of the selected supply voltage of 1%, 10%

and 30%, respectively, as detailed in [78]. In this configuration, the causes and effects

of the timing errors are modeled using the technique exemplified in Figures 3.19, 3.21

and 3.22.

The combinations of (µ,%, Tclk) that we consider are listed in Table 3.5. We consider

the cases where the SLDPCD operates at a clock period of Tclk < t4 to be examples of

aggressive overclocking. Similarly, we consider the cases where the SLDPCD operates at

a clock period such that t2 < Tclk ≤ t4 to be moderate overclocking. Finally, we consider

Tclk > t1 as relaxed overclocking, since the clock period is large enough to ensure that

all circuit paths can correctly propagate their signals when σ = 0. The performed

simulations correspond to a limit of 104 DCs of the (1056,528) IEEE 802.16e (WiMAX)

LDPC decoder, assuming BPSK transmission over an AWGN channel. Figure 3.23 and

Figure 3.24 plot the BER of the SLDPCD in the presence of timing errors, for the cases

3.4.2. Decoding performance in the presence of timing errors 47

Table 3.5: Combinations of (µ, %, Tclk) that are considered for BER simulations.

µ % Tclk (ps) Overclocking

1.0

1%
600 Aggressive
750 Relaxed

10%
700 Moderate
750 Relaxed
800 Relaxed

30%
550 Aggressive
750 Relaxed
950 Relaxed

0.8

1%
800 Aggressive
1200 Relaxed

10%
800 Aggressive
1200 Relaxed
1400 Relaxed

30%
1000 Moderate
1200 Relaxed
1600 Relaxed

of nominal supply voltages of µ =1.0 V and 0.8 V, respectively. We present different

BER plots for each chosen combination of (µ,%, Tclk) of Table 3.5. The BER is also

plotted for two benchmark, namely the corresponding FP Log-SPA LDPC decoder and

the SLDPCD in the absence of timing errors, as characterized in Section 3.3.

As shown in Figure 3.23, the BER of the SLDPCD in the absence of timing errors is

very similar to the FP implementation. Figure 3.23 shows that relaxed overclocking

corresponding to clock periods of 800 ps and 950 ps are required to guarantee the

unimpaired BER performance of the SLDPCD when it operates with supply power

variations of 10% and 30%, respectively. This represents 1.07 and 1.27 times, the critical

clock period of 745 ps, respectively. The error correction capabilities of the SLDPCD

are degraded by about 0.5 dB, when applying the aggressive overclocking of (1.0 V,

1%, 600 ps). By contrast, the same degradation is offered by the relaxed overclocking

of (1.0 V, 10%, 750 ps) and (1.0 V, 30%, 750 ps), owing to the increased percentage

of power supply variations. Finally, a degradation of about 0.8 dB is imposed, when

the SLDPCD operates with the moderate overclocking of (1.0 V, 10%, 700 ps) and the

aggressive overclocking of (1.0 V, 30%, 550 ps).

In analogy to the case when the SLDPCD operates at 1.0 V, Figure 3.24 shows that,

when operated at 0.8 V and with power supply variations of 10% and 30%, the clock

period needs to be set to 1400 ps and 1600 ps, respectively, in order to guarantee the

unimpaired BER performance of the SLDPCD. This represents 1.21 and 1.38 times,

respectively, the critical clock period of the SLDPCD of 1160 ps, when operated at

0.8 V. The error correction capabilities of the SLDPCD are degraded by about 0.5 dB,

when applying the aggressive overclocking of (0.8 V, 1%, 800 ps). By contrast, the

48 Chapter3. Timing-Error-Tolerant Stochastic LDPC Decoders

43210

B
E
R

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Eb/N0 (dB)

(1.0V, 30%, 950ps)
(1.0V, 30%, 750ps)
(1.0V, 30%, 550ps)
(1.0V, 10%, 800ps)
(1.0V, 10%, 750ps)
(1.0V, 10%, 700ps)
(1.0V, 1%, 750ps)
(1.0V, 1%, 600ps)
Stochastic (ideal)

Log-SPA

Figure 3.23: BER of the SLDPCD with VDD = 1.0 V

(0.8V, 30%, 1600ps)
(0.8V, 30%, 1200ps)
(0.8V, 30%, 1000ps)
(0.8V, 10%, 1400ps)
(0.8V, 10%, 1200ps)
(0.8V, 10%, 800ps)
(0.8V, 1%, 1200ps)
(0.8V, 1%, 800ps)
Stochastic (ideal)

Log-SPA

43210

B
E
R

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Eb/N0 (dB)

Figure 3.24: BER of the SLDPCD with VDD = 0.8 V

same degradation is offered by the relaxed overclocking of (0.8 V, 10%, 1200 ps) and

(0.8 V, 30%, 1200 ps), owing to the increased percentage of power supply variations.

Finally, a degradation of about 0.7 dB is imposed, when the SLDPCD operates with the

aggressive overclocking of (0.8 V, 10%, 800 ps) and the moderate overclocking of (0.8 V,

30%, 1000 ps).

Based on these observations, we consider that the SLDPCD offers an inherent tolerance

to timing errors. However, this tolerance is significantly degraded when the SLDPCD

operates with percentage of power supply variations of 10% and 30% and when moderate

or aggressive overclocking is employed. Owing to this, Section 3.5 presents a modified

3.5. Modified Stochastic LDPC Decoder 49

EM structure designed for improving the inherent tolerance to timing errors in the

SLDPCD.

3.5 Modified Stochastic LDPC Decoder

As mentioned in Section 3.4, the SLDPCD exhibits a near optimal decoding performance

in the presence of timing errors when relaxed overclocking is employed. However, this

inherent tolerance to timing errors is degraded in the cases when moderate and aggressive

overclocking is employed. Moreover, according to the analysis presented in Figures 3.19,

3.21 and 3.22, TET II and TET III occur when the OutMUX selector signal changes

its value in consecutive clock cycles. This may be attributed to the late arrival of

the OutMUX signal, owing to its large capacitive load. More specifically, the OutMUX

selector signals is employed by the 32, 48 and 64 DFFs of the SRs in VNs of degree di = 2,

3 and 6, respectively. Motivated by this, the following sections present modifications

to the EM structure of the stochastic VNs that reduce the propagation delay of the

OutMUX selector signal, reduce the likelihood of timing error occurrences and grants

the SLDPCD a significantly increased tolerance to TET II and TET III.

3.5.1 Modified EM

In the proposed modified EM, the propagation delay of the OutMUX selector signal

is reduced by reducing its capacitive load, as shown in Figure 3.25. Note that in the

modified stochastic VN, the OutMUX signal drives only one MUX gate within the EM

of Figure 3.25(b), rather than the 32, 48 and 64 MUXs of the EM of Figure 3.25(a)

of the stochastic VNs having degrees of di = 2, 3 and 6, respectively. Moreover, the

proposed scheme changes the functionality of the EM from behaving as a SR to a Ring

Buffer (RB). In this configuration, when the update signal S5 of the RB adopts the value

of 0, the output Q of the m-th DFF is provided as the input D of the first DFF of the

RB. Owing to this, a new input is not guaranteed to replace the oldest value in the RB.

Despite this, the error correction capability of the RB-based SLDPCD is not degraded,

as will be shown in Section 3.5.4. The highlighted paths in Figure 3.25 illustrate the

difference in the driving load between the SR-based and the RB-based EMs, shown in

Figure 3.25(a) and Figure 3.25(b), respectively.

3.5.2 Hardware implementation

In analogy to the hardware implementation results of the SR-based SLDPCD presented

in Section 3.3, Table 3.6 presents the chip area, minimum clock period and energy

consumption of the RB-based SLDPCD.

50 Chapter3. Timing-Error-Tolerant Stochastic LDPC Decoders

1

0

1 1 1

0 0 0
(SR Out)

(SR In)

Random
Bits

m:1 MUX

1 2 mm-1

Clock

D Q

Clock

D Q

Clock

D Q

Clock

D Q

S7

S6

S5

(a)

1

0
(RB Out)

(RB In)

Random
Bits

m:1 MUX

1 2 mm-1

Clock

D Q

Clock

D Q

Clock

D Q

Clock

D Q
S7

S6

S5

(b)

Figure 3.25: Comparison of driving loads in SR-based and RB-based EMs: (a)
SR-based. (b) RB-based.

Table 3.6 shows that the chip area of the RB-based SLDPCD is reduced to about 0.77

times the chip area of the SR-based SLDPCD. This may be attributed to the employ-

ment of only one MUX for updating the DFFs of the RBs, compared to the 32, 48 and 64

employed in SRs for the cases of VNs of degree di = 2, 3 and 6, respectively. Moreover,

the employment of RBs facilitates lower critical clock periods. This may be attributed

to the reduced capacitive load of the OutMUX selector signal S5. As an example of this,

the maximum propagation delay of the RB-based SLDPCD, when operated at 1.0 V

is 642 ps, which represents 0.84 times the clock period of the SR-based SLDPCD of

745 ps. Similarly, the maximum propagation delay of the RB-based SLDPCD, when

operated at 0.8 V is 1033 ps, which represents 0.89 times the clock period of 1160 ps of

the SR-based SLDPCD. However, Table 3.6 shows that the energy consumption per DC

in the RB-based SLDPCD is slightly increased, when compared to that of the SR-based

SLDPCD. More specifically, the energy consumption per DC of the RB-based SLDPCD,

when operated at 1.0 V and 0.8 V is 4009 pJ and 2484 pJ, respectively. This represents

the energy consumption increased by factors of 1.045 and 1.036, when compared to the

energy consumption of 3833 pJ and 2396 pJ of the SR-based SLDPCD, respectively.

This may be attributed to the increased switching of the DFFs of the RB-based EMs,

owing to the continually-updated operation of the RB, rather than the occasionally-

updated operation of the SR. To elaborate further, in the SR shown in the blue box of

3.5.2. Hardware implementation 51

Table 3.6: Hardware implementation performance of the RB-based SLDPCD.

Node Area VDD Tclk
Energy per DC

per node all nodes

VN

di = 2 983 µm2 1.0 V 426 ps 1.55 pJ 750 pJ
(484×) (224 gates) 0.8 V 799 ps 0.98 pJ 474 pJ
di = 3 1444 µm2 1.0 V 599 ps 3.29 pJ 1159 pJ
(352×) (329 gates) 0.8 V 947 ps 2.03 pJ 716 pJ
di = 6 1916 µm2 1.0 V 642 ps 8.03 pJ 1937 pJ
(220×) (437 gates) 0.8 V 1033 ps 5.42 pJ 1192 pJ

CN

dj = 6 222 µm2 1.0 V 318 ps 0.30 pJ 105 pJ
(352×) (51 gates) 0.8 V 505 ps 0.19 pJ 67 pJ
di = 7 257 µm2 1.0 V 370 ps 0.33 pJ 58 pJ
(176×) (59 gates) 0.8 V 560 ps 0.20 pJ 35 pJ

TOTAL
1.53 mm2 1.0 V 642 ps N/A 4009 pJ

(348× 103 gates) 0.8 V 1033 ps N/A 2484 pJ

Figure 3.25, the DFFs will shift their contents only if the update signal S5 is asserted

and will maintain their value otherwise. By contrast, the DFFs of the RB shown in the

green box of Figure 3.25 will shift their contents by one position in every DC, regardless

of the value of the update signal S5.

In addition to the results presented in Table 3.6, Figure 3.26 presents the BER decoding

performance of the RB-based (1056,528) IEEE 802.16e (WiMAX) SLDPCD, assuming

BPSK transmission over an AWGN channel, when allowing a maximum of 104 DCs and

when NDS with η = 1 and ψ = 2 is employed, as described in Section 2.3.2. Figure 3.26

also plots the BER of the FP Log-SPA LDPC decoder and of the SR-based SLDPCD as

benchmarks. As shown in Figure 3.26, the BER of the RB-based SLDPCD is very similar

to that of the FP and SR-based implementations. In Section 3.5.4, we will consider the

effects that timing errors impose in the BER performance of the SLDPCD.

C++ simulations of the RB-based SLDPCD were used to measure the average number

of DCs required for successfully decoding a frame, when employing early stopping and

allowing a maximum of 104 DCs, as shown in Figure 3.27.

Figure 3.27 shows that RB-based SLDPCDs exhibit a slightly increased average num-

ber of DCs for decoding a frame, when compared to the SR-based counterpart. This

may be attributed to the operation of the RB, in which a new regenerative bit in the

RB is not guaranteed to replace older inputs. However, Figure 3.28 shows that the

latency of RB-based SLDPCDs is actually slightly reduced, owing to the reduced Tclk

values of these schemes. As a result of this, RB-based SLDPCDs exhibit an slightly

increased throughput, albeit at the cost of an increased energy consumption, as shown

in Figures 3.29 and 3.30, respectively.

Note that the SLDPCDs of [33, 34] report throughputs of 61 and 172 Gbps, which are one

order of magnitude superior to the throughput of the RB-based and SR-based SLDPCDs.

52 Chapter3. Timing-Error-Tolerant Stochastic LDPC Decoders

43210

B
E
R

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Eb/N0 (dB)

SR
Log-SPA

RB

Figure 3.26: BER of the RB-based (1056,528) SLDPCD.

RB
SR

Eb/N0 (dB)

D
C
s

43210

104

103

102

Figure 3.27: Average number of DCs for successfully decoding a frame in the
RB-based SLDPCD.

However, the authors of [33, 34] achieve this high throughput for a (2048,1723) SLDPCD

operated at Signal to Noise Ratio (SNR) values in excess of Eb/N0 = 5.5 dB, in order

to achieve target BERs below 10−12. Moreover, these high throughput implementations

do not rely on SR-based or RB-based EMs. Instead, the stochastic VN structures have

been carefully designed and optimized for the particular case of the (2048,1723) LDPC

code. Owing to this, it is not possible to directly compare the RB-based and SR-based

SLDPCDs with these high throughput implementations.

3.5.3. Error correction capabilities in the presence of timing errors 53

Eb/N0 (dB)

L
at
en
cy

43210

100 µs

10 µs

1 µs

100 ns

(RB, 0.8 V, 1033 ps)
(RB, 1.0 V, 642 ps)
(SR, 0.8 V, 1160 ps)
(SR, 1.0 V, 745 ps)

Figure 3.28: Latency of the RB-based SLDPCD.

Eb/N0 (dB)

U
n
co
d
ed

th
ro
u
gh

p
u
t

43210

10 Gbps

1 Gbps

100 Mbps

10 Mbps

(RB, 0.8 V, 1033 ps)
(RB, 1.0 V, 642 ps)
(SR, 0.8 V, 1160 ps)
(SR, 1.0 V, 745 ps)

Figure 3.29: Uncoded throughput of the RB-based SLDPCD.

3.5.3 Error correction capabilities in the presence of timing errors

In analogy to the analysis presented in Section 3.4.1, this section characterizes the error

correction capabilities of the RB-based SLDPCD in the presence of timing errors, when

it operates with different voltages and clock periods. Moreover, this section presents a

trade-off analysis of the hardware implementation of both SR- and RB-based SLDPCD

in the presence of timing errors. More specifically, we provide a comparison of the

average number of DCs, latency, throughput and energy consumption of the SLDPCDs

when operated at different clock periods and different degrees of power supply variation.

54 Chapter3. Timing-Error-Tolerant Stochastic LDPC Decoders

(RB, 0.8 V, 1033 ps)
(RB, 1.0 V, 642 ps)
(SR, 0.8 V, 1160 ps)
(SR, 1.0 V, 745 ps)

Eb/N0 (dB)

E
n
er
gy

p
er

d
ec
o
d
ed

b
it
(n
J
)

43210

100

10

1

Figure 3.30: Energy consumption per decoded bit of the RB-based SLDPCD.

3.5.3.1 Timing error analysis

The analysis of Section 3.4.1 can also be applied to characterize the occurrence of tim-

ing errors within the modified SLDPCD. Figure 3.31 demonstrates that the RB-based

SLDPCD offers reduced propagation delays tRB
p , when compared to the propagation

delays tSR
p of the SR-based SLDPCD. This may be attributed to the reduced capacitive

load of the OutMUX selector signal S5.

Note that identical propagation delays t3, t5 and t9 were found for both the SR- and the

RB-based SLDPCD, since these propagation delays are dominated by the 64:1, 48:1 and

32:1 MUX that is common to both SR- and RB-based EMs in stochastic VNs having

the degree of di = 6, 3 and 2, respectively. Propagation delays tRB
7 , tRB

8 and tRB
10 are

not considered in Figure 3.31, since these delays have been reduced below the maximum

propagation delay of the CNs tCN. These reduced propagation delays improve the BER

performance of the RB-based SLDPCD in the presence of timing errors, as we will

demonstrate in Section 3.5.4.

The analysis presented in Section 3.4.1.2 can also be employed for the SLDPCD based

on the modified EM to determine the causes and effects of timing errors in the RB-based

stochastic VN. Figures 3.32 and 3.33 show the causes and effects of timing errors in

RB-based VNs having degree of di = 6, and 3, respectively, with the analysis of VNs

degree di = 2 of Figure 3.21 presenting no changes for the case of RB-based VNs. The

combinations of the propagation delays of IMMUX and OutMUX selector signals that

trigger TET IIa and TET IIIb in RB-based VNs having degree of di = 3 have been

reduced below the maximum propagation delay tCN of the CNs. Owing to this, these

timing errors are eliminated from Figure 3.33. Furthermore, Figure 3.31 demonstrates

that lower clock periods are required for the occurrence of timing errors in RB-based

3.5.3. Error correction capabilities in the presence of timing errors 55

1200

1100

1000

900

800

700

600

500

400

300

200

t p
(p
s)

VDD

1.21.11.00.90.8

Tclk = 750 ps
Timing errors

No timing errors

t8
t7
t6

t9
t10
tCN

t5
t4
t3
t2
t1SR

RB

Figure 3.31: Comparison of propagation delays of the SR-based and RB-based
SLDPCDs as a function of the supply voltage. Here, tSR

p and tRB
p denote the

propagation delay of the path p in the SR-based and RB-based stochastic VNs,
respectively.

VNs. As a result, timing errors can be expected to occur significantly less often in

the RB-based VNs, compared to the SR-based VNs, when operated at the same clock

period.

Start

0 → 0 1 → 1

toggle

No

Yes

Yes

No

No

No

TCLK < t1

Yes

TCLK < t3

Timing
error
IIIa

Timing
error
IIb

Timing
error
IIa

Timing
error
I

No timing
errors

No

Yes

0 → 1 1 → 0

No timing
errors

OutMUX
constant

TCLK < t6

IM1 or IM2
toggle

IM1 or IM2
toggle

Timing
error
IIIb

No

1 → 1

Yes

Yes

No
TCLK < t6

TCLK < t1

toggle
OutMUX

Figure 3.32: Flowchart illustrating causes and effects of timing errors in RB-
based stochastic VNs having a degree of di = 6.

56 Chapter3. Timing-Error-Tolerant Stochastic LDPC Decoders

Start

0 → 0

TCLK < t2

1 → 1

toggle

No timing
errors

No timing
errors

Timing
error
I

Timing
error
IIb

Timing
error
IIIa

Yes

Yes

Yes Yes

Yes

No

NoNo

No

No

0 → 1 1 → 0IMMUX
toggle

IMMUX
toggle

TCLK < t5

TCLK < t2

OutMUX
constant

toggle
OutMUX

Figure 3.33: Flowchart illustrating causes and effects of timing errors in RB-
based stochastic VNs having a degree of di = 3.

3.5.4 Decoding performance in the presence of timing errors

The Monte Carlo simulation of Section 3.4.1 can be employed to characterize the error

correction capability of the modified RB-based SLDPCD. Figures 3.34 and 3.35 show

the BER of the RB-based SLDPCD in the presence of timing errors, for the cases where

the nominal supply voltage is µ=1.0 V and 0.8 V, respectively. Here, we employ the

same combinations of (µ,%, Tclk) of Table 3.5 employed in the SR-based SLDPCD. This

demonstrates that the RB-based SLDPCD offers an improved BER performance, when

operated in the same conditions as the SR-based SLDPCD. As an example of this,

Figure 3.34 shows that relaxed and moderate overclocking of Table 3.5 do not impose a

significant degradation to the BER performance in the RB-based SLDPCD. Moreover,

when the aggressive overclocking of Table 3.5 is employed in the RB-based SLDPCD,

the Eb/N0 degradation is reduced by 0.5 dB. More specifically, (1.0 V, 1%, 600 ps)

presents an unimpaired BER performance, compared to the 0.5 dB degradation of the

SR-based SLDPCD. Similarly, (1.0 V, 30%, 550 ps) offers an Eb/N0 degradation of

0.3 dB, compared to 0.8 dB offered by the SR-based SLDPCD.

Figure 3.35 shows that the Eb/N0 degradation of 0.7 dB offered by the SR-based

SLDPCD in (0.8 V, 10%, 800 ps) and (0.8 V, 30%, 1000 ps) is reduced to 0.2 dB

in the RB-based SLDPCD. Similarly, the Eb/N0 degradation of 0.5 dB in the SR-based

SLDPCD in (0.8 V, 1%, 800 ps) is reduced to 0.3 dB for the case of the RB-based

SLDPCD.

3.5.4. Decoding performance in the presence of timing errors 57

43210

B
E
R

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Eb/N0 (dB)

(1.0V, 30%, 950ps)
(1.0V, 30%, 750ps)
(1.0V, 30%, 550ps)
(1.0V, 10%, 800ps)
(1.0V, 10%, 750ps)
(1.0V, 10%, 700ps)
(1.0V, 1%, 750ps)
(1.0V, 1%, 600ps)
Stochastic (ideal)

Log-SPA

Figure 3.34: BER of the RB-based SLDPCD with VDD = 1.0 V

43210

B
E
R

10−1

10−2

10−3

10−4

10−5

10−6

10−7

100

Eb/N0 (dB)

(0.8V, 30%, 1600ps)
(0.8V, 30%, 1200ps)
(0.8V, 30%, 1000ps)
(0.8V, 10%, 1400ps)
(0.8V, 10%, 1200ps)
(0.8V, 10%, 800ps)
(0.8V, 1%, 1200ps)
(0.8V, 1%, 800ps)
Stochastic (ideal)

Log-SPA

Figure 3.35: BER of the RB-based SLDPCD with VDD = 0.8 V

In addition to the BER performance of Figures 3.34 and 3.35, Figures 3.36 and 3.37

characterize the error correction capabilities of the RB-based SLDPCD when employing

different clock periods to those presented in Table 3.5.

Figure 3.36 shows that, when the critical clock period of the RB-based SLDPCD is

reduced by a factor of 0.77 times in (1.0 V, 1%, 500 ps), the decoder exhibits an Eb/N0

degradation of 0.5 dB. Similarly, an Eb/N0 degradation of 0.4 dB is encountered if the

selected clock period is set to 0.86 times the critical clock period in (1.0 V, 10%, 550 ps)

and (1.0 V, 30%, 550 ps). The Eb/N0 degradation is increased to 1.0 dB and 0.9 dB,

when the RB-based SLDPCD operates with a clock period that is 0.63 and 0.70 times

58 Chapter3. Timing-Error-Tolerant Stochastic LDPC Decoders

43210

B
E
R

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Eb/N0 (dB)

(1.0V, 30%, 750ps)
(1.0V, 30%, 550ps)
(1.0V, 30%, 450ps)
(1.0V, 10%, 700ps)
(1.0V, 10%, 550ps)
(1.0V, 10%, 400ps)
(1.0V, 1%, 600ps)
(1.0V, 1%, 500ps)
Stochastic (ideal)

Log-SPA

Figure 3.36: BER of the RB-based SLDPCD with VDD = 1.0 V and aggressive
overclocking

(0.8V, 30%, 1000ps)
(0.8V, 30%, 900ps)
(0.8V, 30%, 800ps)
(0.8V, 10%, 800ps)
(0.8V, 10%, 700ps)
(0.8V, 10%, 600ps)
(0.8V, 1%, 900ps)
(0.8V, 1%, 800ps)
Stochastic (ideal)

Log-SPA

43210

B
E
R

10−1

10−2

10−3

10−4

10−5

10−6

10−7

100

Eb/N0 (dB)

Figure 3.37: BER of the RB-based SLDPCD with VDD = 0.8 V and aggressive
overclocking

the critical clock, respectively. This is observed in schemes (1.0 V, 10%, 400 ps) and

(1.0 V, 30%, 450 ps), respectively.

Similarly, when the critical clock period is reduced by factors of 0.58 and 0.78 times in

(0.8 V, 10%, 600 ps) and (0.8 V, 30%, 800 ps), respectively, the RB-based SLDPCD

exhibits an Eb/N0 degradation of about 1.0 dB, These results demonstrate that the

RB-based SLDPCD offer an increased tolerance to timing errors, when compared to the

SR-based SLDPCD.

In addition to the BER performance, This trade-off analysis is presented normalized

3.5.4. Decoding performance in the presence of timing errors 59

relative to the SR-based SLDPCD operated at its critical path, in the absence of timing

errors and when Eb/N0 = 3.00 dB. The selected combinations of (µ,%, Tclk) of Fig-

ure 3.38 correspond to the cases when the SLDPCDs present a near-optimal decoding

capabilities in the presence of timing errors, according to the BER results of Figures 3.23,

3.24 and 3.34 to 3.37.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50

T
C
L
K

D
C
s

L
at
en
cy

T
h
ro
u
gh

p
u
t

E
n
er
gy

(SR, 1.0 V, 0% 745 ps)
(SR, 1.0 V, 1% 750 ps)
(SR, 1.0 V, 10% 800 ps)
(SR, 1.0 V, 30% 950 ps)

A
re
a

(RB, 1.0 V, 0% 745 ps)
(RB, 1.0 V, 1% 750 ps)
(RB, 1.0 V, 10% 800 ps)
(RB, 1.0 V, 30% 950 ps)

(a)

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50

T
C
L
K

D
C
s

L
at
en
cy

T
h
ro
u
gh

p
u
t

E
n
er
gy

A
re
a

(SR, 1.0 V, 0% 745 ps)
(SR, 1.0 V, 1% 750 ps)
(SR, 1.0 V, 10% 800 ps)
(SR, 1.0 V, 30% 950 ps)
(RB, 1.0 V, 0% 642 ps)
(RB, 1.0 V, 1% 600 ps)
(RB, 1.0 V, 10% 700 ps)
(RB, 1.0 V, 30% 750 ps)

(b)

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50

T
C
L
K

D
C
s

L
at
en
cy

T
h
ro
u
gh

p
u
t

E
n
er
gy

A
re
a

(SR, 0.8 V, 0% 1160 ps)
(SR, 0.8 V, 1% 1120 ps)
(SR, 0.8 V, 10% 1400 ps)
(SR, 0.8 V, 30% 1600 ps)
(RB, 0.8 V, 0% 1033 ps)
(RB, 0.8 V, 1% 900 ps)
(RB, 0.8 V, 10% 800 ps)
(RB, 0.8 V, 30% 1000 ps)

(c)

Figure 3.38: Hardware implementation results of the RB-based SLDPCD in the
presence of timing errors. (a)VDD = 1.0 V, same Tclk values for both the SR-and
RB-based SLDPCD. (b)VDD = 1.0 V, different Tclk values for the SR-and RB-
based SLDPCD. (c)VDD = 0.8 V, different Tclk values for the SR-and RB-based
SLDPCD.

Figure 3.38(a) shows that when both RB- and SR-based SLDPCDs operate at 1.0 V, the

same clock periods and the same degree of power supply variations, RB-based SLDPCDs

suffer from increased latencies, reduced throughputs and increased energy consumptions.

This may be attributed to the increased number of DCs required by RB-based decoders

and to the values of clock period employed, which are larger than the critical clock pe-

riod of the RB-based SLDPCD. However, Figure 3.38(b) shows that reduced Tclk values

in RB-based SLDPCDs facilitate reduced latencies and increased throughputs, when

compared to the SR-based SLDPCDs, albeit at the cost of increased energy consump-

tions. As an example of this, when moderate overclocking is applied in the RB-based

SLDPCD, the scheme (RB, 1.0 V, 1%, 600 ps) exhibits a latency of 0.87 times that of

(SR, 1.0 V, 0%, 745 ps), despite the occurrence of timing errors. By contrast, a relaxed

overclocking in the SR-based SLDPCD in (SR, 1.0 V, 1%, 750 ps) exhibits a latency

60 Chapter3. Timing-Error-Tolerant Stochastic LDPC Decoders

increased by a factor of 1.04, when compared to the ideal SR-based decoder. Similarly,

the throughput of (RB, 1.0 V, 1%, 600 ps) is 1.16 times the throughput of (SR, 1.0 V,

0%, 745 ps), compared to the reduced throughput by factor of 0.96 in (SR, 1.0 V, 1%,

750 ps). However, the energy consumption of (RB, 1.0 V, 1%, 600 ps) is 1.14 times that

of (SR, 1.0 V, 0%, 745 ps), compared to the energy consumption increased by a factor

of 1.04 in (SR, 1.0 V, 1%, 750 ps).

Figure 3.38(c) shows that when SLDPCDs operate at 0.8 V, RB-based decoders offer

reduced latencies, increased throughputs and reduced energy consumptions, when com-

pared to SR-based decoders. As an example of this, when the relaxed overclocking of

(SR, 0.8 V, 10%, 1400 ps) is employed, the latency, throughput and energy consumption

are 1.29, 0.78 and 1.09 times those of (SR, 0.8 V, 0%, 1160 ps), respectively. By contrast,

the latency, throughput an energy consumption of the scheme (RB, 0.8 V, 10%, 800 ps)

are 0.82, 1.22 and 0.70 times those of (SR, 0.8 V, 0%, 1160 ps), respectively, despite the

occurrence of timing errors and aggressive overclocking.

3.6 Chapter Conclusions

In this chapter, we have analyzed the inherent error tolerance of SLDPCDs to timing

errors owing to power supply variations and overclocking for the first time. This has

been achieved by performing a timing analysis of the SLDPCDs to determine the causes

and effects of timing errors. We have applied this timing error model into our BER sim-

ulations to determine the error correction capabilities of SR- and RB-based SLDPCDs,

when operated at different nominal supply voltages, different clock periods and different

degrees of power supply variations. In addition to this, we have presented a trade-off

analysis of the chip area, critical clock period, number of DCs, latency, throughput

and energy consumption of the SLDPCDs in the presence of timing errors. This anal-

ysis demonstrate that the chip area requirements of the proposed RB-based SLDPCDs

is only 0.77 times that of SR-based SLDPCDs. When operated at 1.0 V and in the

presence of timing errors, the RB-based SLDPCD offer reduced latencies and increased

throughputs, when compared to the SR-based SLDPCD, albeit at the cost of increased

energy consumptions. However, RB-based SLDPCDs operated at 0.8 V offer reduced

latencies, increased throughputs and reduced energy consumptions, when compared to

the SR-based SLDPCDs operated at the same nominal supply voltage.

The timing analysis presented in Section 3.4.1 can be applied to determine the causes

and effects of timing errors in different designs. However, the complexity of this anal-

ysis may be increased depending on the structure and behavior of each design. As an

example of this, a significant complexity increase is observed in the flowcharts of Fig-

ures 3.19, 3.21 and 3.22 for determining the causes and effects of timing errors in VNs

having the degree of di = 3, 2 and 6, respectively. This complexity may be further

3.6. Chapter Conclusions 61

increased if the analysis is extended to VNs having higher degrees or if the occurrence of

metastability owing to timing errors is considered, for example. As a result, this chapter

has not explored timing-error-tolerant design techniques for preventing the catastrophic

propagation of metastability in SLDPCDs. In contrast to this, Chapter 4 explores error-

tolerant design techniques in order to prevent the propagation of metastability through

the circuit, with Stochastic Turbo Decoders (STDs) as a particular example. In addition

to this, the result presented in this chapter demonstrate that SLDPCDs achieve process-

ing throughputs on the order of Gbps. As a result of this, SLDPCD have the potential for

being considered in ultra-high-throughput and ultra-low-latency next-generation com-

munication standards [10, 11]. This is achieved at a low implementation complexity,

while offering an inherent tolerance to processing errors. Motivated by this, Chapter 4

explores the employment of stochastic computing in turbo codes. More specifically,

Chapter 4 characterizes the tolerance to timing errors of the STD presented in [39, 79].

This is achieved by employing a timing analysis of the causes and effects of timing errors

in STDs. Additionally, Chapter 4 presents modifications to the STD that improve its

tolerance to timing errors in the presence of power supply variations, whilst considering

a trade-off analysis of the hardware implementation of STDs, in analogy to the results

presented in this chapter for SLDPCDs.

Chapter 4
Timing-Error-Tolerant Stochastic

Turbo Decoders

The Stochastic LDPC Decoders (SLDPCDs) presented in Chapter 3 offer an attractive

trade-off between Bit Error Ratio (BER) performance, throughput, energy efficiency and

chip area. This may be attributed to the employment of stochastic computing [18], where

operations such as additions, multiplications and divisions are performed using low-

complexity digital circuits, as detailed in Chapter 2. Moreover, the SLDPCDs presented

in Chapter 3 exhibit an inherent tolerance to timing errors imposed by the reduction

of the clock period. Furthermore, timing errors are more likely to occur when the

supply voltage is reduced and the clock period is not adjusted accordingly, owing to the

quadratic dependency of propagation delays on the supply voltage. Whenever a timing

error occurs, there is a chance that the affected D-type Flip Flop (DFF) might enter into

a metastable state, in which the digital signals have an indeterminate value that does

not correspond to either a logic 0 or 1. However, given sufficient time, the metastable

state will randomly evolve to a stable but unpredictable logic value of 0 or 1 [80].

This effectively imposes an additional propagation delay on the affected signal, hence

increasing the likelihood of timing errors and metastability occurring at the next DFF.

In this way, a single metastable event can trigger subsequent metastability occurrences

in successive DFFs, causing the catastrophic propagation of metastability that destroys

the operation of the entire circuit.

Against this background, we propose enhancements of the Stochastic Turbo Decoder

(STD) of [39] for improving its tolerance to timing errors in the presence of power

supply variations. More specifically, the enhanced STD design proposes:

This chapter is partially based on the following publications.
I. Perez-Andrade, S. Zhong, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “Stochastic comput-

ing improves the timing-error tolerance and latency of turbo decoders: Design guidelines and trade-offs,”
in IEEE Access, vol. 4, pp. 1008–1038, Feb 2016.

64 Chapter4. Timing-Error-Tolerant Stochastic Turbo Decoders

1) The employment of synchronizers for preventing the catastrophic cascading of

metastability owing to timing errors.

2) The simultaneous decoding of two received frames for improving the processing

throughput.

3) The employment of Tracking Forecast Memories (TFMs) [30] in STDs for the first

time, in order to enhance their hardware implementation and decoding capabilities.

4) The inclusion of a pipelining stage for enhancing the decoding capabilities of the

STD in the presence of power supply variations.

Moreover, we analyze the different trade-offs presented in Figure 1.1 for both of the

improved STD designs.

The rest of this chapter is structured as follows. Section 4.1 reviews the operation of

turbo decoders. Section 4.2 details the hardware implementation of STDs. Section 4.3

describes how to improve the STD’s tolerance to timing errors in order to avoid the

catastrophic propagation of metastability through the circuit. Section 4.4 details the

hardware implementation trade-offs of the proposed STD designs in the absence of timing

errors. Section 4.5 characterizes the error correction performance of the proposed STD

designs in the presence of timing errors. Section 4.6 presents our concluding remarks

and offers design guidelines for timing-error-tolerant STDs.

4.1 Turbo Codes

In this section, we review the concepts of turbo encoding and turbo decoding [3] pre-

sented in Figure 4.1.

A turbo code comprises the parallel concatenation of two convolutional codes. As a result

of this, a message frame comprising N bits bu
1 = [bu1,k]

N
k=1 can be turbo encoded with the

aid of the two parallel concatenated convolutional encoders, as shown in Figure 4.1(a).

Each convolutional encoder operates in the same manner, with the upper convolutional

decoder having the bits bu
1 for its input. However, these bits are reordered by the

interleaver Π to provide bl
1, which is then input into the lower encoder. Here, the

superscripts ‘u’ and ‘l’ indicate relevance to the upper and lower convolutional encoders,

respectively. However, these superscripts will be omitted, when the discussion applies

equally to both convolutional encoders.

Each convolutional encoder operates on the basis of a trellis such as the 8-state Long

Term Evolution (LTE) trellis of Figure 4.1(c). Here, each bit of b1 triggers one of 16

different transitions among these states and the encoding of the first bit b1,1 commences

from a particular previous state s′. If tailbiting [81] is employed, then this initial state is

4.1. Turbo Codes 65

Upper
Convolutional

Encoder

Lower
Convolutional

Encoder

bu
1

∏

bu
1

bl
1 bl

2

bu
2

bu
1

(a)

∏

Upper
Convolutional

Decoder

Lower
Convolutional

Decoder

b̃u,e
1

b̂u
1

b̃l,a
1

∏−1

b̃l,e
1

∏

b̃l,c
1

b̃u,a
1b̃u,c

1

b̃u,c
1

b̃u,c
2

b̃l,c
1

(b)

s′ s
0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

00

11

11

11

11

00

00

00

10

10

10

10

01

01

01

01

b1(s
′, s) = 0

b2(s
′, s) = 0

b1(s
′, s) = 0

b2(s
′, s) = 1

b1(s
′, s) = 1

b2(s
′, s) = 0

b1(s
′, s) = 1

b2(s
′, s) = 1

(c)

Figure 4.1: (a) Simplified turbo encoder. (b) Conventional structure of a turbo
decoder. (c) State transition diagram of the LTE turbo code.

carefully selected such that it is equal to the final state s reached after encoding the final

bit b1,N . The simplified turbo encoder of Figure 4.1(a) outputs a frame of systematic

bits bu
1 = [bu1,k]

N
k=1 and two frames of parity bits bu

2 = [bu2,k]
N
k=1 and bl

2 = [bl2,k]
N
k=1,

which are provided by the upper and lower convolutional encoder, respectively. After

their transmission over a wireless channel, the received frames b̃u,c
1 = [b̃u,c1,k]

N
k=1, b̃u,c

2 =

[b̃u,c2,k]
N
k=1 and b̃l,c

2 = [b̃l,c2,k]
N
k=1 are entered into the turbo decoder, which comprises two

convolutional decoders, as shown in Figure 4.1(b). The upper convolutional decoder

of Figure 4.1(b) employs the received frames b̃u,c
1 , b̃u,c

2 and the frame of a priori soft

bits b̃u,a
1 provided by the lower convolutional decoder, in order to provide the frame of

extrinsic soft bits b̃u,e
1 . Following this, the extrinsic soft bits b̃u,e

1 are interleaved and

passed to the lower convolutional decoder as the frame of a priori soft bits b̃l,a
1 . The

lower convolutional decoder employs the received frame b̃l,c
2 and the interleaved received

frame b̃l,c
1 to provide the extrinsic soft bits b̃l,e

1 , which are de-interleaved in the block∏−1 and passed as the frame of a priori soft bits b̃u,a
1 to the upper convolutional decoder.

These soft bits express not only what the most likely value of the corresponding bits are,

but also how likely these bit values are. More specifically, each soft bit b̃u,c1,k expresses the

two probabilities P c(bu,c1,k = 0) and P c(bu,c1,k = 1), where the subscripts and superscripts

may be replaced for the case of the other soft bits in Figure 4.1(b).

The convolutional decoders are iteratively operated on the basis of the Bahl-Cocke-

Jelinek-Raviv (BCJR) algorithm [63], which comprises Equations (4.1) to (4.6). The

66 Chapter4. Timing-Error-Tolerant Stochastic Turbo Decoders

γk(s
′, s) = P a(b1,k = b1(s′, s))P c(b1,k = b1(s′, s))P c(b2,k = b2(s′, s)) (4.1)

γe
k(s
′, s) = P c(b2,k = b2(s′, s)) (4.2)

αk(s) =

∑
all s′

γ(s′, s)αk−1(s′)
∑

all (s′,s)
γ(s′, s)αk−1(s′)

(4.3)

βk−1(s′) =

∑
all s

γ(s′, s)βk(s)
∑

all (s′,s)
γ(s′, s)βk(s)

(4.4)

P e(b1,k = j) =

∑
all(s′,s)→(b1(s′,s)=j)

γe
k(s
′, s)αk−1(s′)βk(s)

∑
all (s′,s)

γe
k(s
′, s)αk−1(s′)βk(s)

(4.5)

b̂1,k = arg max
j∈{0,1}

∑

all (s′,s)→b1(s′,s)=j

γk(s
′, s)αk−1(s′)βk(s) (4.6)

BCJR algorithm employs Equation 4.1 for calculating a branch metric γk(s
′, s) for each

transition of Figure 4.1(c) from a previous state s′ into the next state s. Here, P a(b1,k =

b1(s′, s)) is the probabilities that are expressed by the a priori soft bit b̃a1,k provided

by the other convolutional decoder. Note that at the start of the iterative decoding

process, P a(b1,k = b1(s′, s)) = 0.5 is assumed. The extrinsic branch metrics γe
k(s
′, s) of

Equation 4.2 correspond to the received probability of the parity bit b2,k provided by the

other convolutional encoder. Following this, the state metrics αk(s) of Equation 4.3 and

βk(s
′) of Equation 4.4 are calculated for quantifying the probabilities associated with

each of the 8 possible previous and next states of Figure 4.1(c). Note that αk−1(s′) = 1/8

and βk(s) = 1/8 is assumed for all s′ and s at the start of the iterative decoding process.

If tailbiting [81] is employed, then α0(s′) = αN (s′) and βN (s) = β0(s) may be employed.

Furthermore, Equation 4.5 is employed for determining the probabilities P e(b1,k = 0)

and P e(b1,k = 1), which are expressed by the extrinsic soft bit b̃e1,k. Finally, Equation 4.6

is employed for determining the a posteriori hard decision b̂1,k, pertaining to the bit b1,k.

This iterative process is repeated until an accurate estimation of the decoded frame b̂1

can be obtained or until the maximum affordable number of iterations has been reached.

4.2 Stochastic Implementation of Turbo Decoders

This section reviews the hardware implementation requirements of the STD, which is

briefly summarized in [39] and is detailed in [79], although the latter is written in French.

Therefore, this thesis offers the first detailed treatment of the STD in English. In the

fully-parallel stochastic decoding of turbo codes [39, 79], the block diagram in the blue

box of Figure 4.2 is replicated for each bit decoded by each convolutional decoder of

4.2.1. Branch metrics 67

24

γ

Eq. (3)

Eq. (4)

Eq. (6)

Eq. (1)

b̂1,k

8

8

8

8

αkαk−1

βk−1 βk

γk γek

Eq. (5)

Eq. (2)

α

β

Ext

δ

P e(b1,k = 0)
P e(b1,k = 1)

Interleaver

P u,c(bu1,1 = 1)

P u,c(bu2,1 = 1)

P u,a(bu1,1 = 0)

P u,a(bu1,1 = 1)

αu
0

βu
0

P u,e(bu1,1 = 0)

P u,e(bu1,1 = 1)

P u,c(bu1,2 = 1)

P u,c(bu2,2 = 1)

P u,a(bu1,2 = 0)

P u,a(bu1,2 = 1)

αu
1

βu
1

P u,e(bu1,2 = 0)

P u,e(bu1,2 = 1)

P u,c(bu1,3 = 1)

P u,c(bu2,3 = 1)

P u,a(bu1,3 = 0)

P u,a(bu1,3 = 1)

αu
2

βu
2

P u,e(bu1,3 = 0)

P u,e(bu1,3 = 1)

P u,c(bu1,N = 1)

P u,c(bu2,N = 1)

P u,a(bu1,N = 0)

P u,a(bu1,N = 1)

αu
N−1

βu
N−1

P u,e(bu1,N = 0)

P u,e(bu1,N = 1)

αu
3

βu
3

αu
N = αu

0

βu
N = βu

0

P l,e(bl1,1 = 0)

P l,e(bl1,1 = 1)

αl
0

P l,a(bl1,1 = 0)

P l,a(bl1,1 = 1)

P l,e(bl1,2 = 0)

P l,e(bl1,2 = 1)

αl
1

P l,a(bl1,2 = 0)

P l,a(bl1,2 = 1)

P l,e(bl1,3 = 0)

P l,e(bl1,3 = 1)

αl
2

P l,a(bl1,3 = 0)

P l,a(bl1,3 = 1)

P l,e(bl1,N = 0)

P l,e(bl1,N = 1)

P l,a(bl1,N = 0)

P l,a(bl1,N = 1)

P l,c(bl1,1 = 1)

P l,c(bl2,1 = 1)

P l,c(bl1,2 = 1)

P l,c(bl2,2 = 1)

P l,c(bl1,3 = 1)

P l,c(bl2,3 = 1)

P u,c(bl1,N = 1)

P u,c(bl2,N = 1)

βl
0 βl

1 βl
2

αl
N−1

βl
N−1

αl
3

βl
3

αl
N = αl

0

βl
N = βl

0

P a(b1,k = 1)
P a(b1,k = 0)P c(b1,k = 1)

P c(b2,k = 1)

q
q

1 2 3 N

1 2 3 N

Figure 4.2: Block diagram of the fully-parallel STD.

Figure 4.1(b), with the two convolutional decoders being separated by a hard-wired

interleaver, as shown in the left part of Figure 4.2.

The STD of [39, 79] adopts tailbiting [81] as described in Section 4.1. This guarantees

that the initial and final states of the trellis of each convolutional decoder are identical.

Owing to this, the state metrics αN (s) output by the N th block are provided as the

inputs α0(s′) of the first block in each convolutional decoder, as shown in Figure 4.2.

Likewise, the state metrics β0(s′) output by the first block are provided as the inputs

βN (s) of the N th block. The incoming edges αk−1, βk, P
a(b1,k = 0) and P a(b1,k = 1)

of Figure 4.2 corresponds to one bit of a Bernoulli Sequence (BS) from a neighboring

block. In a similar manner, the outgoing edges αk, βk−1, P e(b1,k = 0) and P e(b1,k = 1)

corresponds to an outgoing bit of a BS. By contrast, the incoming edges P c(b1,k = 1)

and P c(b2,k = 1) correspond to q-bit Fixed-Point (FX) probabilities provided by the

channel. The block diagram of Figure 4.2 processes and exchanges one bit of each BS

in each Decoding Cycle (DC). Furthermore, each block of Figure 4.2 corresponds to the

stochastic implementation of Equations (4.1) to (4.6). Building on this, the following

sections present the stochastic hardware implementation requirements of Equations (4.1)

to (4.6).

4.2.1 Branch metrics

The module γ of Figure 4.2 performs the conversion of the q-bit FX representations of

the received channel probabilities P c(b1,k = 1) and P c(b2,k = 1) into BSs. In addition

to this, this module generates BSs representing the branch metrics γk(s
′, s) and the

extrinsic branch metrics γek(s
′, s) of Equation 4.1 and Equation 4.2, respectively. The

conversion of the received channel probabilities into BSs is achieved with the aid of two

68 Chapter4. Timing-Error-Tolerant Stochastic Turbo Decoders

P a(b1,k = 1) P a(b1,k = 0)

P c(b1,k = 1)

P c(b2,k = 1)





γk(0, 0)
γk(1, 4)
γk(6, 7)
γk(7, 3)




γk(2, 5)
γk(3, 1)
γk(4, 2)
γk(5, 6)




γk(2, 1)
γk(3, 5)
γk(4, 6)
γk(5, 2)




γk(0, 4)
γk(1, 0)
γk(6, 3)
γk(7, 7)

q

q

q

q





γe
k(0, 0), γ

e
k(1, 4),

γe
k(2, 1), γ

e
k(3, 5),

γe
k(4, 6), γ

e
k(5, 2),

γe
k(6, 7), γ

e
k(7, 3),




γe
k(0, 4), γ

e
k(1, 0),

γe
k(2, 5), γ

e
k(3, 1),

γe
k(4, 2), γ

e
k(5, 6),

γe
k(6, 3), γ

e
k(7, 7),

Random
bits

Random
bits

Figure 4.3: Stochastic realization of γk(s
′, s) and γe

k [79, Fig. 2.5].

q-bit FX comparators and two q-bit pseudo-random numbers, as shown in the blue box of

Figure 4.3. Here, q represents the number of quantization bits employed for representing

the received channel probabilities and its value can be chosen based on the best trade-

off between the advisable BER performance and the hardware requirements imposed,

where q = 7 in the STD of [39, 79], for example. In this structure, P c(b1,k = 1) and

P c(b2,k = 1) remain constant throughout the decoding process and the pseudo-random

numbers change in every DC. The outgoing bit of each comparator is set to 1, if the

corresponding probability is greater than the pseudo-random number and 0 otherwise.

Following their conversion to BSs, the received channel probabilities are employed for

obtaining the branch metrics γk(s
′, s) of Equation 4.1. This is achieved with the aid

of four 3-input and gates, as shown in the green box of Figure 4.3, corresponding to

the four possible combinations of the systematic and parity bits b1(s′, s) and b2(s′, s)

shown in Figure 4.1(c). In addition to this, the extrinsic branch metrics γek(s
′, s) of

Equation 4.2 express the probabilities P c(b2,k = 0) and P c(b2,k = 1), pertaining to

the parity bit b2,k. As a result of this, the stochastic realization of γek(s
′, s) can be

implemented with two BSs for representing P c(b2,k = 0) and P c(b2,k = 1), as shown in

the red box of Figure 4.3. The BSs representing the a priori probabilities P a(b1,k = 0)

and P a(b1,k = 1) are provided by the other convolutional decoder, but this will not yet

have generated any output during the first DC. Therefore, the first bits of the BSs can

be initialized with random binary values during the first DC.

4.2.2. State metrics 69

α̂k(0)
2

J(0)

K(0)

αk−1(0)

γk(0, 0)

αk−1(1)

γk(1, 0)

Psel = 1/2

α̂k(0)

J

K

αk(0)

α̂k(4)
2

α̂k(1)
2

α̂k(6)
2

α̂k(3)
2

α̂k(5)
2

α̂k(2)
2

α̂k(7)
2

8:1
MUX

P = 1/8
0

1

Psel = 1/8

0 3

EM

Clock

Figure 4.4: Stochastic realization of αk(0) [79, Fig. 2.9].

4.2.2 State metrics

The modules α and β of Figure 4.2 compute the forward recursion of Equation 4.3 and

the backward recursion of Equation 4.4, respectively. This is achieved with the aid

of and gates, Multiplexers (MUXs) and Edge Memories (EMs) for the multiplication,

addition and normalization of BSs, respectively, as shown in Figure 4.4. In the follow-

ing discussion, the stochastic implementation of the state metrics is described for the

forward recursion state metrics αk(s) of Equation 4.3, for the case where s = 0. The

implementation of Equation 4.3 for all other states s ∈ [1, 7] and of the backward recur-

sion of Equation 4.4 can be performed following the same principles. In the LTE turbo

decoder of [39, 79], Equation 4.3 can be modified as

αk(s) =

∑
all s′

γ(s′, s)αk−1(s′)
∑

all (s′,s)
γ(s′, s)αk−1(s′)

=
α̂k(s)

7∑
s=0

α̂k(s)

, (4.7)

where α̂k(s) = [
∑7

s′=0 γ(s′, s)αk−1(s′)]/2 represents the non-normalized forward recur-

sion. According to the state transition diagram of Figure 4.1(c), the state s = 0 can

only be reached from the previous states s′ = 0 and s′ = 1. Owing to this, the term

α̂k(0) of Equation 4.7, is simply α̂k(0) = [γ(0, 0)αk−1(0) + γ(1, 0)αk−1(1)]/2. Therefore,

the stochastic implementation of α̂k(0) can be performed by the circuit presented in

the blue box of Figure 4.4, using a pair of 2-input and gates and a 2-input MUX, as

described in Section 2.3.1. JK-Type Flip-Flops (JKFFs) may be employed for perform-

ing the division required for normalizing probabilities, although they are susceptible to

70 Chapter4. Timing-Error-Tolerant Stochastic Turbo Decoders

the latching problem, as described in Section 2.3.2. Owing to this, the STD of [39, 79]

employs the 32-bit Shift Register (SR)-based EMs of Figure 2.3, as shown in Figure 4.4.

Hence, Equation 4.7 can be expressed as

αk(s) =
α̂k(s)

α̂k(s) +
∑

s̄∈[0,7]\s̄=s
α̂k(s̄)

=
J(s)

J(s) +K(s)
, (4.8)

where J(s) = [α̂k(s)]/8, K(s) = [
∑

s̄∈[0,7]\s̄=s α̂k(s̄)]/8 and s̄ ∈ [0, 7] \ s̄ = s denotes

the exclusion of the state s̄ = s from the set of states s̄ ∈ [0, 7]. Here, K(s) can

be implemented with the aid of stochastic computing using an 8-input MUX with 3

pseudo-random selector bits representing a probability of Psel = 1/8 and with one of

the MUX inputs connected to logic 0, as shown in the green box of Figure 4.4. In

addition to this, the factor of 8 division in the computation of J(s) can be performed

using an and gate to multiply α̂(s) with a BS representing the probability of 1/8. In

the first DC, the inputs pertaining the BSs of αk−1(s′) can be initialized based on

the best trade-off between BER performance and latency. To elaborate further, our

simulations of Section 4.5 suggest that the decoding latency can be reduced when the

bits of the BSs of the state metrics αk−1(s′) and βk(s) are initialized with random bit

values. Moreover, the contents of the EM can be initialized as described in Section 2.3.2

during the first 32 DCs with a BS representing the probability P = 0.5. The resulting

stochastic implementation of Equation 4.3, for the case of s = 0 is shown in Figure 4.4.

Here, the inputs of the 8-input MUX are provided by structures similar to that shown

in the blue box but corresponding to the other states, s ∈ [1, 7].

4.2.3 Extrinsic Probabilities

The calculation of the extrinsic probabilities of Equation 4.5 is performed by the module

Ext of Figure 4.2. The stochastic implementation of Equation 4.5 can be implemented

using the circuit of Figure 4.5.

In the following discussion, the stochastic implementation of the extrinsic probabilities

of Equation 4.5 is described for the specific case where b1,k(s
′, s) = 0, as represented

by the blue box in Figure 4.5. The implementation of Equation 4.5 for the case where

b1,k(s
′, s) = 1 is represented by the green box in Figure 4.5 and can be performed

following the same principles. In analogy to the discussion presented in Section 4.2.2,

Equation 4.5 can be modified for the case where b1,k(s
′, s) = 0 as

P e(b1,k = 0) =
J(b1,k = 0)

J(b1,k = 0) + J(b1,k = 1)
, (4.9)

where

J(b1,k = 0) =

∑
all(s′,s)→(b1(s′,s)=0)

γe
k(s
′, s)αk−1(s′)βk(s)

8

4.2.3. Extrinsic Probabilities 71

Psel = 1/8

γek(0, 0)αk−1(0)βk(0)

γek(1, 4)αk−1(1)βk(4)

γek(2, 5)αk−1(2)βk(5)

γek(3, 1)αk−1(3)βk(1)

γek(4, 2)αk−1(4)βk(2)

γek(5, 6)αk−1(5)βk(6)

γek(6, 7)αk−1(6)βk(7)

γek(7, 3)αk−1(7)βk(3)

Psel = 1/8

γek(0, 4)αk−1(0)βk(4)

γek(2, 1)αk−1(2)βk(1)

γek(3, 5)αk−1(3)βk(5)

γek(4, 6)αk−1(4)βk(6)

γek(5, 2)αk−1(5)βk(2)

γek(6, 3)αk−1(6)βk(3)

γek(7, 7)αk−1(7)βk(7)

γek(1, 0)αk−1(1)βk(0)

K(b1,k = 1)

J(b1,k = 1)

P e(b1,k = 1)

γek(s
′, s)αk−1(s′)βk(s,)

βk(s)
αk−1(s′)
γek(s

′, s)

8:1
MUX

8:1
MUX

3

3

K(b1,k = 0)

J(b1,k = 0)

J

K

P e(b1,k = 0)
EM

Clock

J

K
EM

Clock

Figure 4.5: Stochastic realization of the calculation of the extrinsic probabilities
in Equation 4.5 [79, Fig. 2.11].

and J(b1,k = 1) = K(b1,k = 0) correspond to the set of state transitions engendered

by the input bits b1,k = 0 and b1,k = 1, respectively. According to the state transition

diagram of Figure 4.1(c), the input bit b1,k = 0 triggers the set of transitions (s′, s) =

{(0,0), (1,4), (2,5), (3,1), (4,2), (5,6), (6,7), (7,3) }. As a result of this, J(b1,k = 0) can

be expressed as

J(b1,k = 0) = [γe
k(0, 0)αk−1(0)βk(0)+

γe
k(1, 4)αk−1(1)βk(4)+

γe
k(2, 5)αk−1(2)βk(5)+

γe
k(3, 1)αk−1(3)βk(1)+

γe
k(4, 2)αk−1(4)βk(2)+

γe
k(5, 6)αk−1(5)βk(6)+

γe
k(6, 7)αk−1(6)βk(7)+

γe
k(7, 3)αk−1(7)βk(3)]/8.

(4.10)

72 Chapter4. Timing-Error-Tolerant Stochastic Turbo Decoders

Here, J(b1,k = 0) can be implemented with the aid of stochastic computing using a set

of 8 3-input and gates, one for each of the 8 multiplications of Equation 4.10, and one

8-input MUX for the averaging of the 8 product terms of Equation 4.10, as shown in the

red and the blue box of Figure 4.5, respectively. In addition to this, the normalization

of Equation 4.10 can be performed using the EM structure of Figure 2.3 with the input

bits J = J(b1,k = 0) and K = J(b1,k = 1). Similar to the initialization of the EMs of

the state metrics, the contents of the EM in this module can be initialized during the

first 32 DCs with a BS representing the probability P = 0.5.

4.2.4 A Posteriori Probability

The estimation of the decoded bit b̂1,k of Equation 4.6 is performed by the module δ

of Figure 4.2. This is achieved in stochastic computing with the aid of and gates and

8-input MUXs, as shown in Figure 4.6. The circuit of Figure 4.6 calculates the term

P̂ (b1,k = 0), which is proportional to the probability of the bit having the value 0, as

shown in the blue box of Figure 4.6. This can be obtained by analyzing Equation 4.6

for the case where b1,k(s
′, s) = 0 and with the aid of the state transition diagram of

Figure 4.1(c). In this way, P̂ (b1,k = 0) can be expressed as

P̂ (b1,k = 0) = [γk(0, 0)αk−1(0)βk(0)+

γk(1, 4)αk−1(1)βk(4)+

γk(2, 5)αk−1(2)βk(5)+

γk(3, 1)αk−1(3)βk(1)+

γk(4, 2)αk−1(4)βk(2)+

γk(5, 6)αk−1(5)βk(6)+

γk(6, 7)αk−1(6)βk(7)+

γk(7, 3)αk−1(7)βk(3)]/8,

(4.11)

The stochastic implementation of Equation 4.11 can be performed with the aid of 8 3-

input and gates, one for each of the 8 multiplications of Equation 4.11, and one 8-input

MUX for the addition of the 8 product terms of Equation 4.11, as shown in the red

and the blue box of Figure 4.6, respectively. The same principle can be applied for the

stochastic implementation of P̂ (b1,k = 1), which is proportional to the probability of the

decoded bit being 1, as shown in the green box of Figure 4.6. Additionally, the estimation

of the decoded bit b̂1,k can be performed with a signed up/down saturated counter, as

shown in Figure 4.6. The up/down counter increments its value if the BS representing

P̂ (b1,k = 0) takes the value of 1 and decreases its value if the BS representing P̂ (b1,k = 1)

takes the value of 1. The counter will not change its value if P̂ (b1,k = 0) = P̂ (b1,k = 1).

Lastly, the counter saturates its value if either the maximum or the minimum count value

has been reached. In the STD of [39, 79], a 4-bit up/down counter with a maximum

4.3. Timing-Error Tolerant Stochastic Turbo Decoder 73

Psel = 1/8

γk(0, 0)αk−1(0)βk(0)

γk(1, 4)αk−1(1)βk(4)

γk(2, 5)αk−1(2)βk(5)

γk(3, 1)αk−1(3)βk(1)

γk(5, 6)αk−1(5)βk(6)

γk(6, 7)αk−1(6)βk(7)

γk(4, 2)αk−1(4)βk(2)

γk(7, 3)αk−1(7)βk(3)

Psel = 1/8

γk(0, 4)αk−1(0)βk(4)

γk(3, 5)αk−1(3)βk(5)

γk(5, 2)αk−1(5)βk(2)

γk(6, 3)αk−1(6)βk(3)

γk(7, 7)αk−1(7)βk(7)

γk(1, 0)αk−1(1)βk(0)

γk(2, 1)αk−1(2)βk(1)

γk(4, 6)αk−1(4)βk(6) P̂ (b1,k = 1)

P̂ (b1,k = 0)

Up

Down

Sign
b̂1,k

γk(s
′, s)αk−1(s′)βk(s)αk−1(s′)

βk(s)

γk(s
′, s)

8:1
MUX

8:1
MUX

Clock

3

3

Figure 4.6: Stochastic realization of the calculation of the APP [79, Fig. 2.12].

value of +7 and a minimum value of -8 is employed. The estimation of the decoded bit

b̂1,k is performed in each DC by considering the sign bit of the saturated counter. In

this way, if the value of the counter is ≥ 0, the estimated decoded bit is b̂1,k = 0 and 1

otherwise.

4.3 Timing-Error Tolerant Stochastic Turbo Decoder

Timing errors in synchronous systems occur when the clock period is not sufficiently long

for all the signals to propagate from the output of DFFs, through the combinational logic

and to the input of other DFFs. This occurs when techniques such as voltage-scaling

or clock-scaling are employed for reducing the energy consumption or increasing the

74 Chapter4. Timing-Error-Tolerant Stochastic Turbo Decoders

throughput of the system. Furthermore, a reduction in the power supply, owing to

voltage scaling or to power supply noise, increases the likelihood of the occurrence of

processing errors, as a result of the quadratic dependency of propagation delays on the

power supply. Whenever a timing error occurs, there is a chance that the affected DFF

might enter into a metastable state, in which the digital signals have an indeterminate

value that does not correspond to either a logic 0 or 1. However, given sufficient time,

the metastable state will randomly evolve to a stable but unpredictable logic value of

0 or 1 [80]. This effectively imposes an additional propagation delay on the affected

signal, hence increasing the likelihood of timing errors and metastability occurring at

the next DFF. In this way, a single metastable event can trigger subsequent metasta-

bility occurrences in successive DFFs, causing catastrophic propagation of metastability

that destroys the operation of the entire circuit. Moreover, metastability might cause

undesired glitches, logic inconsistency and late transitions [80], which may result in the

corruption of the bits stored in the EMs in the context of stochastic decoders, hence

severely degrading the error correction capability of the decoder, as Chapter 3 demon-

strated for the case of SLDPCDs. This motivates modifications to the STD of [39, 79] in

order to enhance its tolerance to timing errors by preventing the catastrophic propaga-

tion of metastability. In the following sections, we present several novel enhancements

to the STD of [39, 79], which not only improve its tolerance to timing errors, but also

significantly improves its latency, throughput, energy efficiency and error correction ca-

pabilities in the presence of timing errors caused by power supply variations. In addition

to this, we describe how each of these enhancements affects each of the design trade-offs

presented in Figure 1.1. Each of these enhancements is detailed in the following sub-

sections, which will show that they may be implemented by replacing Figure 2.3 with

Figure 4.7 and Figure 4.6 with Figure 4.9.

4.3.1 Output Synchronizers for Mitigating the Catastrophic Propaga-

tion of Metastability

As mentioned above, variations in the power supply increase the likelihood of timing

errors and metastability, which may catastrophically propagate through the system and

destroy the entire operation of the STD. In order to reduce the probability of metasta-

bility cascading through the STD of [39, 79] owing to timing errors caused by power

supply variations, we propose the replacement of the single output DFFs of the STD’s

α, β and Ext blocks shown in Figures 4.2, 4.4 and 4.5, so that they employ the syn-

chronizer circuits of Figure 4.7, which comprise two DFFs [82], Wherever combinational

logic is present between two DFFs, the occurrence of metastability in the first DFF in-

creases the likelihood of metastability occurring at the second DFF, potentially causing

the catastrophic propagation of metastability, as described above. However, since there

is no combinational logic in the path between DFF1 and DFF2 of the synchronizers of

Figure 4.7, the propagation delay associated with this path is negligible, when compared

4.3.2. Decoding of Two Frames Concurrently 75

to the clock period. As a benefit of this, if DFF1 enters into a metastable state due to

a timing error, the time available for its metastability to be resolved is maximized and

the probability of metastability cascading to DFF2 is significantly reduced [82].

The employment of synchronizer circuits is a commonly used technique for preventing

the propagation of metastability during the transfer of data between different clock

domains in asynchronous systems [82]. However, in our timing analysis presented in

Section 4.5.1, we demonstrate that timing errors will frequently occur if the nominal

operating conditions of the STD are reduced below the recommended safety margins for

the sake of improving either the throughput or the energy consumption. Timing errors

may also occur due to power supply variations. In addition to this, in the stochastic

decoding of turbo codes presented in [39, 79], up to 250 × 103 DCs are needed before

a reliable final decision can be obtained. More specifically, our analysis suggests that

thousands of metastability events occur during the decoding of each frame, when the

STD of [39, 79] is operated continuously in the presence of power supply variations. This

results in a high likelihood of timing errors and metastability occurring and cascading

through the circuit, destroying the decoding process and severely affecting the error

correction capabilities of the STD, unless synchronizers circuits are employed.

The introduction of the synchronizer circuits enhances the decoding capabilities of the

STD in the presence of timing errors caused by power supply variations, as we will

demonstrate in Section 4.5. However, this modification increases the chip area, latency

and energy consumption of the STD and reduces its throughput, owing to the increased

number of clock cycles required for exchanging each bit of the BSs, as we will show in

Section 4.4. In order to mitigate this throughput reduction, Section 4.3.2 describes how

the STD can be modified to decode two frames concurrently.

4.3.2 Decoding of Two Frames Concurrently

The employment of the synchronizers described in Section 4.3.1 mitigates the probability

of a single metastability event destroying the entire operation of the STD. However, this

modification increases the chip area and increases the number of clock cycles required for

exchanging each bit of the BSs, hence increasing both the latency as well as the energy

consumption and reducing the throughput of the STD. Nonetheless, these additional

clock cycles can be exploited for the concurrent decoding of a second received frame, in

order to eliminate the throughput reduction. With this objective in mind, the STD can

be modified to process information pertaining to alternate received frames in alternate

clock cycles. The simultaneous decoding of two received frames has been previously

proposed for the case of Low-Density Parity-Check (LDPC) codes only [83]. However,

this thesis presents a novel technique for the simultaneous decoding of two received

frames using STDs for the first time. This is achieved by modifying the EMs in the α, β

and Ext blocks shown in Figures 4.2, 4.4 and 4.5 for simultaneously storing information

76 Chapter4. Timing-Error-Tolerant Stochastic Turbo Decoders

Mem1

Mem2

MemOut1

MemOut2

Q

Output Synchronizers

21

0

1

0

1

0

1

J

K

Update1

FrameSelect

Init2

Init1
Update

Update2

Update
MUX

Mem
MUX

0

1

U1

U2

In
Update

Address

Out9-bit TFM

9 Random Bits

In
Update

Address

Out9-bit TFM

9 Random Bits

InitBit1

InitBit2

J

TFM Out

P (t+ 1) Clock

Random
Bits

9

99

9 DFFs

D Q9

P (t)

P (t)

ADD

+

±
SUB

add/sub
Logic
shift

φ = 2−4

J(t)

Update

Clock
Gating

QE

Clock

9

EM In

Out
MUX

1

0

Clock

D Q

Clock

D Q
Init1
MUX

Init2
MUX

TFM-based EM

Figure 4.7: Modified TFM-based EM with output synchronizers, relying on two
TFMs for concurrently decoding two frames and clock gating.

pertaining to each of the two received frames. Note that while this eliminates the above-

mentioned throughput reduction that is introduced by the synchronizers, this does not

eliminate the above-mentioned latency, chip area and energy consumption increases, as

we will show in Section 4.4. Instead, these disadvantages of introducing synchronizers

will be eliminated using the techniques described in

The green box of Figure 4.7 shows how the EM structures of Figures 2.3, 4.4 and 4.5

can be modified for the simultaneous decoding of two frames, by including two inde-

pendent sets of memories, labeled Mem1 and Mem2, as shown in the red boxes. In this

configuration, each set of memories will store information related to a particular de-

coded frame. Along with the additional memory, we introduce a FrameSelect signal and

the logic required for controlling which specific set of DFFs to use in each clock cycle.

The FrameSelect signal alternately adopts values of 0 and 1 in alternate clock cycles,

alternating the activation of Mem1 and Mem2 for their update and read operations,

according to their control signals. More specifically, the contents of Mem1 and Mem2

4.3.2. Decoding of Two Frames Concurrently 77

can be updated or read according to the value of the control signals U1 and Update1, for

the case of Mem1, and U2 and Update2 for the case of Mem2. When the FrameSelect

signal has a logic value of 0 and J 6= K, the signals U1 and Update1 adopt the value of

1, whereupon the contents of Mem1 are updated according to the regenerative bit J . In

this scenario, the Update signal adopts the value of Update1=1, owing to the Update-

MUX, whereupon the regenerative bit J is passed to the first DFF of the synchronizers

through OutMUX. By contrast, when the FrameSelect signal has a logic value of 0 and

J = K, the U1 and Update1 signals adopt the value of 0. In this case, the Update signal

adopts the value of 0 and a randomly selected bit from Mem1 is xored with J and passed

to the first DFF of the synchronizers through MemMUX and OutMUX. The operation

of Mem2, for the case when FrameSelect=1, follows the same principle described above.

Note that the initialization of each memory can be performed independently from each

other and from the value adopted by FrameSelect. This is achieved using the signals

Init1 and Init2, which directly dictate the value of Update1 and Update2 and control

the initialization multiplexers Init1MUX and Init2MUX, corresponding to Mem1 and

Mem2, respectively. Moreover, a memory can be initialized whilst the other memory is

being employed during a decoding process. This allows one of the memories to be reset

so that it can begin decoding a new frame, even if the other memory is still being used

to decode a different frame. As described in Sections 4.2.2 and 4.2.3, each memory is

initialized before the beginning of each decoding process with a BS corresponding to a

probability of 0.5.

Along with the inclusion of the additional memories and control logic presented in Fig-

ure 4.7, the STD alternates between providing the corresponding systematic and the

parity probabilities related to each of the two received frames. For the purpose of our

investigation, we consider these sets of probabilities to be stored in a memory external

to the decoder, which are selected according to the value of the FrameSelect signal, as

shown in Figure 4.8. In this configuration, the set of MUXs labeled SysMUX in Fig-

ure 4.8 selects between the systematic probabilities P c(b1,k = 1) of the received frames

Frame1 and Frame2, when FrameSelect adopts the value of 0 and 1, respectively. Sim-

ilarly, the received frame of parity probabilities P c(b2,k = 1) of Frame1 and Frame2 is

selected with the aid of the ParMUX, when FrameSelect adopts the value of 0 and 1,

respectively. In each clock cycle, the selected probabilities P c(b1,k = 1) and P c(b2,k = 1)

are provided to the γ module of the corresponding section of the STD.

As described above, the synchronizers and additional EMs increase not only the chip

area, but also the energy consumption of the STD. To overcome these problems, we rec-

ommend the employment of low-power design techniques. In our investigation, we em-

ploy Clock Gating (CG) for reducing the dynamic energy consumption of the Application

Specific Integrated Circuit (ASIC) implementation of the STD, as we will demonstrate

in Section 4.4. More specifically, the dynamic energy consumption of the STD may be

reduced by only enabling the clock signal of those specific DFFs, whose contents have

78 Chapter4. Timing-Error-Tolerant Stochastic Turbo Decoders

P c(b1,k = 1)

P c(b2,k = 1)
FrameSelect

External
memory

One section of the modified
stochastic turbo decoder

q

P c(b1,k = 1)
(Frame1)

P c(b1,k = 1)
(Frame2)

0

1

q

q

P c(b2,k = 1)
(Frame1)

P c(b2,k = 1)
(Frame2)

0

1

q

q

q

to γ module

Sys
MUX

Par
MUX

Figure 4.8: External set of systematic and parity probabilities for concurrently
decoding two frames.

to be updated in a particular clock cycle, as shown in Figure 4.7. More specifically,

the clock signal is and gated with the output of an active-low latch, which is driven by

the Update signal, as shown in Figure 4.7. Moreover, the area used by the clock-gated

SR-based EMs will be significantly reduced, as we will show in Section 4.4, since the

feedback MUX used for each DFF in the SR of Figure 2.3 will no longer be required.

Instead, the DFFs will update their contents only when their clock signal is enabled,

maintaining their current value otherwise. Furthermore, the associated propagation de-

lays of the EMs are reduced, owing to the reduced fanout load of the Update signals, as

detailed in Chapter 3 for the case of the SLDPCD. More specifically, the Update signal

in the EM of Figure 2.3 has a fanout load of 32 Multiplexers, compared to a fanout load

of a single latch in the clock-gated EMs of Figure 4.7.

When decoding two frames concurrently, the STD is required to estimate two sets of

decoded bits b1,k. Owing to this, an additional up/down counter is introduced in the

δ module of Figures 4.2 and 4.6 for providing two independent decoded bits pertaining

to the two independent decoding process of Frame1 and Frame2, as shown in the blue

boxes of Figure 4.9. In this configuration, two clock-gating latches are employed for

updating the counters labeled Counter1 and Counter2. More specifically, the contents

of Counter1 determines the decoded bit b1,k of the decoded frame Frame1 and is only

updated when FrameSelect=1. By contrast, the decoded bit b1,k for the case of the

decoded frame Frame2 is determined when FrameSelect=0. As part of the trade-off

analysis of the hardware implementation of the STD presented in Section 4.4, we will

demonstrate that the chip area, latency, throughput and energy consumption of the

STD is not significantly affected by the introduction of the additional counter.

4.3.3. Tracking Forecast Memory-based Edge Memories in Stochastic
Turbo Decoders 79

Psel = 1/8

γk(0, 0)αk−1(0)βk(0)

γk(1, 4)αk−1(1)βk(4)

γk(2, 5)αk−1(2)βk(5)

γk(3, 1)αk−1(3)βk(1)

γk(5, 6)αk−1(5)βk(6)

γk(6, 7)αk−1(6)βk(7)

γk(4, 2)αk−1(4)βk(2)

γk(7, 3)αk−1(7)βk(3)

Psel = 1/8

γk(0, 4)αk−1(0)βk(4)

γk(3, 5)αk−1(3)βk(5)

γk(5, 2)αk−1(5)βk(2)

γk(6, 3)αk−1(6)βk(3)

γk(7, 7)αk−1(7)βk(7)

γk(1, 0)αk−1(1)βk(0)

γk(2, 1)αk−1(2)βk(1)

γk(4, 6)αk−1(4)βk(6)

P̂ (b1,k = 1)

P̂ (b1,k = 0)

γk(s
′, s)αk−1(s′)βk(s)αk−1(s′)

βk(s)

γk(s
′, s)

8:1
MUX

8:1
MUX

Pipelining

Clock

Clock

D Q

D Q

Counter1

Up

Down

Sign

b̂1,k

Counter2

Up

Down

Sign

FrameSelect

Clock

FrameSelect
Clock
Gating

Clock

QE

QE

Clock
Gating

(Frame1)

b̂1,k
(Frame2)

3

3

Figure 4.9: Modified stochastic realization of the calculation of the APP for
concurrently decoding two frames.

4.3.3 Tracking Forecast Memory-based Edge Memories in Stochastic

Turbo Decoders

As described in Section 4.3.2, the introduction of the additional EMs for the concurrent

decoding of two received frames increases the chip area, latency and energy consumption

of the STD. These problems can be overcome by the employment of TFM-based EMs,

whilst enhancing the error correction capability of the STD in the presence of timing

errors, as we will demonstrate in Sections 4.4 and 4.5. The employment of SR-based [27,

29] and TFM-based [30, 33] EMs has been proposed in order to overcome the latching

problem in stochastic LDPC decoders. However, in the STD of [39, 79], only SR-based

EMs have been previously employed. In this work, we demonstrate for the first time

that the employment of TFM-based EMs, as shown in the lower part of Figure 4.7, is

also beneficial in stochastic turbo decoding.

The TFM-based EM of Figure 4.10 was proposed in [30]. Here, them-bit SR of Figure 2.3

is replaced by an n-bit TFM, which stores a FX binary number to quantify a moving

average probability of the regenerative bit J assuming the value 1. This is achieved by

80 Chapter4. Timing-Error-Tolerant Stochastic Turbo Decoders

considering the previous bits of BSs, but placing special emphasis on the most recent

bits, as detailed in [30]. More specifically, TFMs employ a decaying mechanism to ensure

that only the most recent regenerative bits are considered for the calculation of the stored

probability P (t+ 1), which is calculated with the aid of the relaxation parameter φ for

determining the significance given to the most recent regenerative bit J .

As in the SR-based EM, when J 6= K in Figure 4.10, the FX probability P (t+1) ∈ [0, 1]

of the TFM in time t+ 1 is updated according to:

P (t+ 1) = (1− φ)P (t) + φJ(t), (4.12)

where φ ∈ (0, 1) is the relaxation parameter, which can be chosen to optimize the BER

performance of the stochastic LDPC decoder, and J(t) ∈ {0, 1} is the regenerative bit.

By contrast, when J = K, the output of the TFM-based EM is determined by comparing

the n-bit probability P (t) to an n-bit pseudo-random number. If the probability stored

by the TFM is larger than or equal to the random number, the outgoing bit is set to 1,

otherwise it is set to 0.

Considering that J can only take the value of 0 or 1 at any given time, Equation 4.12

can be modified as follows:

P (t+ 1) =(1− φ)P (t) + φJ(t)

=P (t)− φP (t) + φJ(t)

=P (t) + φ[J(t)− P (t)],

which can be further simplified as

P (t+ 1) =

{
P (t)− φP (t) J(t) = 0

P (t) + φP̄ (t) J(t) = 1,
(4.13)

where P̄ (t) = 1 − P (t) is the complementary probability of P (t). As a benefit of this,

the two adders of the TFM of Figure 4.10 are substituted by a single adder/subtractor,

where the complementary probability P̄ (t) can be obtained using xor gates, if P (t) is

stored as an unsigned FX number. Meanwhile, the multiplication φ ·P (t) can be readily

implemented using a hard-wired logical shift, if the relaxation parameter φ is chosen

as a negative power of 2, as shown in the lower red box of Figure 4.7. According to

Equation 4.13, the complementary probability P̄ (t) is only necessary if J(t) = 1. This

functionality can be implemented with the aid MUXs and not gates, with the selector

bits of the MUXs adopting the value of J , as described in [33]. Alternatively, the same

functionality can be obtained with 2-input xor gates, with one of the inputs adopting

the value of J and the other input connected to the individual bits of P (t), as shown

in the lower part of Figure 4.7. Additionally, the add/sub signal determines whether an

addition or a subtraction will be performed by the ADD/SUB block, when J = 1 and

J = 0, respectively. The n-bit FX comparator is employed for determining the outgoing

4.3.3. Tracking Forecast Memory-based Edge Memories in Stochastic
Turbo Decoders 81

P (t+ 1)

J(t)TFM In

TFM Out
φ

-
+

+

Update

0

Update

Clock

01

Random
Bits

n
n

n

n-bit TFM

n

n DFFs

D Q
P (t)

Init

Update
Out

In

J

K

Random Bits

U
Update

Init
MUX

0

1

Out
MUX

1

0

InitBit Address

D Q
Q

Figure 4.10: Architecture of TFM-based EMs, as proposed in [30].

bit when J 6= K, with TFMOut adopting the value of 1 if the probability stored in the

TFM is larger than or equal to the n-bit pseudo-random number. Finally, at the start

of the STD decoding process, each TFM is initialized to store the probability P = 0.5,

which can be achieved in a single clock cycle by setting the Most Significant Bit (MSB) of

each TFM to logic 1 and the rest of the bits to logic 0. This single clock cycle compares

favorably to the 32 clock cycles required to initialize the SR Figure 2.3 with a given BS.

The employment of TFMs in EMs effectively reduces the chip area requirements and

energy consumption of the STDs, when compared to the employment of SRs in EMs in

the STD of [39, 79]. More specifically, for the proposed modifications, we recommend

the employment of 9-bit TFMs, with a relaxation parameter φ = 2−4. As a result of

this, the proposed TFM-based EMs can be realized by using only 9 DFFs, compared

to the 32 DFFs required in the SR-based EMs of [39, 79]. Moreover, the SR’s 32 to 1

MUX of Figure 2.3 can be replaced with 9-bit FX comparators.

In addition to the advantages described above, TFMs are capable of tracking changes

in the regenerative bit’s probability more accurately than SRs, as detailed in [33]. This

effectively reduces the number of DCs required for successfully decoding a frame when

TFMs are employed, hence eliminating the potential latency increase resulting from the

employment of the synchronizers of Section 4.3.1 Similarly, TFM-based EMs facilitate

the use of lower clock periods than SR-based EMs, as Section 4.5 will show. This may be

attributed to the relatively low complexity of the TFMs, as well as to the relatively low

fanout loads imposed on their Update signal. Owing to this, the proposed TFMs-based

EMs offer a desirable trade-off between chip area, energy efficiency, latency, throughput

82 Chapter4. Timing-Error-Tolerant Stochastic Turbo Decoders

and decoding performance, as Sections 4.4 and 4.5 will show. Figure 4.7 illustrates the

resultant TFM-based EM circuit, relying on synchronizers, two sets of EMs and CG.

4.3.4 Pipelining

The role of the δ module of Figure 4.2 is to compute the APP and to make the final

decision for the decoded bit b̂k output by the STD. Owing to this, the occurrence of

a timing error within this module, caused by power supply variations, might lead to

an incorrect decision for a decoded bit, hence severely affecting the error correction ca-

pability of the STD. In order to overcome this problem, we propose the employment

of a pipelining stage consisting of two DFFs placed in parallel, as shown in the green

box of Figure 4.9. The additional DFFs break the combinational path that ends at the

saturated counter. This reduces the time required for signals to propagate, hence reduc-

ing the occurrence of timing errors within the computation of the APP and improving

the STD’s error correction capability, as we will show in Section 4.5.2. Moreover, the

employment of a pipeline stage does not impose a significant hardware overhead, as we

will show in Section 4.4, since only two DFFs per decoded bit are employed. Similarly,

the throughput and energy consumption of the STD are only slightly degraded, since

the decision for the decoded bit b̂1,k is only delayed by one DC.

The data flow of the modified STD is illustrated in Figure 4.11, where each set of light-

shaded and dark-shaded blocks and DFFs store information pertaining to the decoding

frames Frame1 and Frame2, respectively. In the upper part of Figure 4.11, the first set

of memories Mem1 can represent either SR-based or TFM-based EMs. These EMs and

the first DFF of the synchronizers will update their contents according to the bit of the

BS resulting from the decoding process of Frame1 at time t. In time t+ 1, the contents

of the second DFFs of the synchronizers will contain the stochastic bit generated at time

t and pertaining to Frame1, owing to the synchronizers shifting their contents to the

following DFF, as shown in the dark-shaded DFF of the lower part of Figure 4.11. In this

same manner, the contents of Mem2 and the first DFFs of the synchronizers will update

their value according to the decoding process of Frame2 in time t + 1, as shown in the

light-shaded DFFs of the lower part of Figure 4.11. Note that Counter1 is enabled one

time instant after Mem1 is enabled, owing to the introduction of the pipelining stage.

This is represented with a green solid line in the lower part of Figure 4.11. Alternatively,

a red dashed line in Figure 4.11 represents either Counter1 or Counter2 in idle mode,

in which their contents are not updated and no new estimation of b̂1,k is made for that

particular frame.

4.4. Trade-off Analysis of the Hardware Implementations of the
Timing-Error Tolerant Stochasic Turbo Decoder 83

D QD QD QD QD QD Q

D Q

Cnt1

D QD QD QD QD QD Q D Q

D QD Q

D Q D Q D Q D Q D Q D Q D Q D Q

Cnt2

γ
α

β

Ext

δ
Cnt1

Interleaver (
∏
)

γ
α

β

Ext

δ
Cnt1

γ
α

β

Ext

δ

section k section k + 1section k − 1

b̂1,k−1 (Frame1)

b̂1,k−1 (Frame2)

b̂1,k (Frame1)

b̂1,k (Frame2)

b̂1,k+1 (Frame1)

b̂1,k+1 (Frame2)
Cnt2 Cnt2

Mem1

Mem1 Mem1 Mem1

Mem1
Mem2

Mem2Mem2

Mem1
Mem2Mem2

Mem1

Mem1
Mem2 Mem2

Mem1
Mem2

Mem2

D Q

D Q

D QD Q

D Q

D Q

γ
α

β

Ext

δ

Mem1
Mem2

Mem1
Mem2

Mem1
Mem2

D Q

Cnt1
Cnt2

Interleaver (
∏
)

D Q

D Q

D QD Q

D Q

D Q

D QD Q D Q

γ
α

β

Ext

δ

Mem1
Mem2

Mem1
Mem2

Mem1
Mem2

Cnt1
Cnt2

D Q

D QD Q

D Q

D Q

γ
α

β

Ext

δ

Mem1
Mem2

Mem1
Mem2

Mem1
Mem2

D Q

Cnt1
Cnt2

section k section k + 1section k − 1

b̂1,k−1 (Frame1)

b̂1,k−1 (Frame2)

b̂1,k (Frame1)

b̂1,k (Frame2)

b̂1,k+1 (Frame1)

b̂1,k+1 (Frame2)

D QD Q

t

t + 1

Figure 4.11: Data scheduling of the modified STD.

4.4 Trade-off Analysis of the Hardware Implementations

of the Timing-Error Tolerant Stochasic Turbo Decoder

This section presents the different hardware trade-offs of various STD implementations.

Table 4.1 characterizes the STD improvements of Section 4.3 in terms of diverse char-

acteristics, including: the chip area per decoded bit, number of equivalent nand gates,

average number of DCs required for successfully decoding a frame, when employing

early stopping, minimum clock period, latency, throughput and processing energy con-

sumption per decoded bit, when using Taiwan Semiconductor (TSMC) 90 nm techno-

logy. These results are obtained for the implementation of an 8-state, 50-bit, rate 1/3,

tailbiting STD using an S-Random interleaver and the state-transition diagram of Fig-

ure 4.1(c), as presented in [39]. Additionally, we employ Noise-Dependent Scaling (NDS)

with η = 1 and ψ = 2, as described in Section 2.3.2. Here, we limit the implementa-

tion of the different STDs to the case of a 50-bit frame length, in order to reduce the

complexity of our simulations and of the physical synthesis using automatic place and

route. However, our simulations suggest that the hardware implementation results scale

84 Chapter4. Timing-Error-Tolerant Stochastic Turbo Decoders

Table 4.1: Hardware implementation results of the STD when operated at
Eb/N0 = 3.0 dB.

Scheme
Chip area per Average VDD Tclk Latency Throughput Energy
decoded bit DCs (V) (ns) (µs) (Kbps) (nJ/bit)

SR-1 0.0260 mm2

14× 103 1.20 4.0 56 892 335
(Benchmark) 8617 gates 0.84 8.0 112 446 164

SR-2 0.0260 mm2

17× 103 1.20 4.0 68 735 337
(Synch.) 8744 gates 0.84 8.0 136 367 165

SR-3 0.0495 mm2

14× 103 1.20 4.5 126 793 643
(Extra EMs) 15505 gates 0.84 8.6 240 415 315

SR-4 0.0397 mm2

14× 103 1.20 4.0 112 892 620
(CG) 12853 gates 0.84 7.6 212 469 303

SR-5 0.0397 mm2

13× 103 1.20 3.6 93 1068 621
(Pipeline) 12933 gates 0.84 6.7 174 574 304

TFM-1 0.0129 mm2

10× 103 1.20 2.2 22 2272 55
(TFM-based) 4596 gates 0.84 4.1 41 1219 27

TFM-2 0.0129 mm2

13× 103 1.20 2.2 28 1748 66
(Synch.) 4724 gates 0.84 4.1 53 938 32

TFM-3 0.0250 mm2

10× 103 1.20 2.3 46 2173 88
(Extra EMs) 8817 gates 0.84 4.2 84 1190 45

TFM-4 0.0250 mm2

10× 103 1.20 2.2 44 2272 77
(CG) 8516 gates 0.84 4.1 82 1219 37

TFM-5 0.0250 mm2

10× 103 1.20 2.2 44 2272 77
(Pipeline) 8531 gates 0.84 4.1 82 1219 37

approximately linearly with the frame length. Each scheme presented in Table 4.1 and in

Figure 4.12 corresponds to the successive inclusion of each of the improvements described

in Section 4.3, with SR-1 being the state-of-the-art STD of [39]. More specifically, SR-2

corresponds to the introduction of output synchronizers into SR-1; SR-3 refers to the

introduction of the additional set of EMs into SR-2 to enable the concurrent decoding

of two frames; SR-4 corresponds to the introduction of CG into SR-3 and finally, SR-5

refers to the introduction of the pipelining stage into SR-4. The schemes TFM-1 to

TFM-5 present the TFM-based STDs counterparts of SR-1 to SR-5, with TFM-5 being

the modified STD employing all enhancements proposed in Section 4.3.

The results of Table 4.1 were obtained from the physical layout generated by the auto-

matic place and route of the above mentioned STDs using Cadence SoC Encounter [72].

The results of chip area per decoded bit were obtained from the layout of the γ, α, β,

Ext and δ modules of Figure 4.2, where the γ module includes q=7-bit FX compara-

tors for converting the probabilities provided by the channel into BSs. Additionally,

the results of Table 4.1 were obtained for the cases, where the supply voltage of the

STDs is set to either 1.20 V or 0.84 V, in the absence of power supply variations. Both

the critical clock period and the energy consumption of the STDs are obtained from

Synopsys PrimeTime [73]. The average number of DCs, latency, throughput and energy

efficiency results were obtained from post-layout gate-level simulations, with extracted

parasitics and annotated delays without timing errors, when allowing a maximum of 105

DCs and using early stopping. More specifically, we assume that a fully-parallel Cyclic

Redundancy Check (CRC) [84] is employed in each DC for determining whether the

4.4. Trade-off Analysis of the Hardware Implementations of the
Timing-Error Tolerant Stochasic Turbo Decoder 85

0.0

0.5

1.0

1.5

2.0

2.5

3.0
SR-1

SR-2

SR-3

SR-4

SR-5

TFM-1

TFM-2

TFM-3

TFM-4

TFM-5

Area TCLK Latency Throughput EnergyDCs BER

Figure 4.12: Hardware implementation results of the modified STD schemes.
The presented results are normalized relative to SR-1, when VDD = 1.2 V and
Eb/N0 = 3.0 dB.

frame of estimated decoded bits provided by the STDs contains any errors. Although

the corresponding hardware characteristics are not considered in Table 4.1, they may be

considered to have only a negligible effect, as detailed in [85]. We also assume that the

different STDs operate at their critical clock period, for the case of Binary Phase Shift

Keying (BPSK) communication over an Additive White Gaussian Noise (AWGN) chan-

nel and a Signal to Noise Ratio (SNR) per bit of Eb/N0 = 3.0 dB. The notation (Scheme,

VDD, Tclk) will be used in the following sections in order to simplify the discussion of

the results. In addition to Table 4.1, Figure 4.12 presents the hardware implementation

trade-offs associated with each scheme of Table 4.1, relative to the benchmark scheme

SR-1, when the various different STDs operate at VDD = 1.2 V. Note that similar trends

were found for the case when VDD = 0.84 V.

We begin our discussion by analyzing the impact of each enhancement in the hardware

implementation of the STD. This is followed by a comparison of the different hardware

implementation trade-offs of SR-based and TFM-based STDs.

As discussed in Section 4.3.1 as well as confirmed in Table 4.1 and Figure 4.12, the

employment of synchronizers increases the average number of DCs, latency and energy

consumption and reduces the throughput of the STDs. This can be observed when

comparing the SR-2 and TFM-2 schemes to the SR-1 and TFM-1 arrangements of Ta-

ble 4.1 and Figure 4.12, respectively. More specifically, observe in the fourth column

of Table 4.1 that SR-2 requires an average of 17 × 103 DCs for successfully decoding

86 Chapter4. Timing-Error-Tolerant Stochastic Turbo Decoders

a frame, compared to the 14 × 103 required in SR-1, when these schemes are operated

at Eb/N0 = 3.0 dB and achieve a BER of 4.6 × 10−4, as we will show in Section 4.5.2.

Likewise, TFM-2 requires an average of 13 × 103 DCs, compared to 10 × 103 DCs re-

quired by TFM-1 to achieve a BER of 2.8× 10−4 at Eb/N0 = 3.0 dB, which is the same

BER that is achieved by the ideal Floating-Point (FP) Logarithmic BCJR (Log-BCJR)

implementation employing 8 iterations. These differences are explicitly visualized in

Figure 4.12.

The inclusion of the additional EMs for concurrently decoding two frames increases

the chip area, extends the latency of the STDs, increases the energy consumption, but

facilitates an increased throughput, as observed for the schemes SR-3 and TFM-3 of

Table 4.1 and Figure 4.12, when compared to SR-2 and TFM-2, respectively. As seen

in Table 4.1, the average numbers of DCs required by schemes SR-3 and TFM-3 are

identical to those of SR-1 and TFM-1, respectively. However, the latency of SR-3 and

TFM-3 is increased, when compared to SR-2 and TFM-2, respectively. This may be

attributed to the decoding process of SR-3 and TFM-3 being completed in alternate clock

cycles. Despite the increased latency, SR-3 and TFM-3 exhibit an increased throughput,

when compared to SR-2 and TFM-2, respectively, owing to the simultaneous decoding of

two frames, as detailed in Section 4.3.2. Similarly, SR-3 and TFM-3 exhibit an increased

energy consumption owing to the additional EMs, when compared to SR-2 and TFM-2,

respectively.

As detailed in Section 4.3.2 as well as observed in Table 4.1 and Figure 4.12, the em-

ployment of clock gating in SR-4 and TFM-4, reduces the chip area, the latency and

the energy consumption and increases the throughput of the STDs, when compared to

SR-3 and TFM-3, respectively. Particularly, the chip area reduction of SR-4 may be

attributed to the elimination of the 32 MUXs needed in the SRs, as described in Sec-

tion 4.3.2. By contrast, only the equivalent number of nand gates of TFM-4 is slightly

reduced, when compared to TFM-3. Additionally, as explained in Section 4.3.4, the

inclusion of the pipelining stage does not significantly increase the area requirements

of the STDs and does not extend the latency. As a result of this, the employment of

clock gating and the pipelining stage facilitates lower clock periods, which is reflected

in the improved latency, throughput and energy consumption of SR-4 and SR-5, when

compared to SR-3, as well as of TFM-4 and TFM-5, when compared to TFM-3.

Let us now compare the hardware implementation trade-offs of SR-based and TFM-

based STDs. When comparing the chip area requirements of SR-based and TFM-based

STDs, Table 4.1 and Figure 4.12 show that TFM-based schemes exhibit lower area

requirements than their SR-based counterparts. More specifically, TFM-1, TFM-2 and

TFM-3 present area requirements that are about 0.50 times the area of SR-1, SR-2 and

SR-3, respectively. Additionally, the implementation of TFM-4 and TFM-5 requires

0.62 times the chip area of SR-4 and SR-5, respectively. Furthermore, TFM-5, which

presents all the proposed enhancements, requires 0.96 times the area of the benchmark

4.4. Trade-off Analysis of the Hardware Implementations of the
Timing-Error Tolerant Stochasic Turbo Decoder 87

SR-1 6.4 ps
SR-2 7.7 ps

SR-3 11.7 ps

SR-4 41.6 ps

SR-5 48.3 ps-

6.4 ps (13 %) 4.8 ps (13 %)

1.3 ps (3 %)
0.5 ps (1%)

4.0 ps (8 %)
3.6 ps (10 %)

29.9 ps (62 %)

23.9 ps (64 %)

6.7 ps (14 %)

4.4 ps (12 %)

0

5

10

15

20

25

30

35

40

45

50

SR-based TFM-based

Base design PipelineOutput
Synchronizers EM

Additional Clock
Gating

TFM-1 4.8 ps
TFM-2 5.3 ps
TFM-3 8.9 ps

TFM-4 32.8 ps

TFM-5 37.2 ps

Absolute value Individual
Contribution

Absolute value Individual
Contribution

C
lo
ck

sk
ew

(p
s)

Figure 4.13: Clock skew of the different STD implementations.

SR-1. This lower area requirement of TFM-based schemes may be attributed to the

TFM’s employment of only 9 DFFs, instead of the 32 DFFs needed in a SR, as explained

in Section 4.3.2. As explained in Section 4.3.3, TFM-based STDs require fewer DCs for

achieving iterative decoding convergence, when compared to SR-based STDs. This, in

addition to the reduced clock periods offered by TFM-based STDs, facilitate reduced

latencies, reduced energy consumptions and increased throughputs, when compared to

their SR-based STDs counterparts. As an example of this, the latency, throughput an

energy consumption of (TFM-5, 1.20 V, 2.2 ns) are 0.78, 2.55 and 0.23 times those of (SR-

1, 1.20 V, 4.0 ns), respectively. Furthermore, when the STDs operate at a supply voltage

of 0.84 V, (TFM-5, 0.84 V, 4.1 ns) presents a latency of 82 µs, an energy consumption of

37 nJ/bit and a throughput of 1219 Kbps. These results suggest that (TFM-5, 0.84 V,

4.1 ns) may increase the throughput by a factor of 1.36, while consuming only 0.11 times

the energy of that of (SR-1, 1.20 V, 4.0 ns), without increasing the chip area, albeit at

the cost of increasing the latency by a factor of 1.46.

The significantly improved dynamic energy efficiency of TFM-5 relative to SR-1 may

be mainly attributed to the use of TFM-based EMs, instead of SR-based EMs. More

specifically, the energy consumption per TFM per DC in active- and standby-mode is

only 6 nJ and 0.2 nJ, respectively, compared to 88 nJ and 4.37 nJ for an SR, when the

supply voltage is set to 1.20 V. As detailed in Section 4.3.2, the static energy consumption

may be expected to be higher in the SR-3 to SR-5 and TFM-3 to TFM-5 schemes than

in the SR-1 to SR-2 and TFM-1 to TFM-2 arrangements, respectively. However, the

static energy consumption of TFM-5 may be expected to be similar to that of SR-1,

since these designs have similar chip areas and gate counts.

88 Chapter4. Timing-Error-Tolerant Stochastic Turbo Decoders

Figure 4.13 quantifies the effect of each proposed enhancement of Section 4.3 on the clock

network of the STD. Each successive enhancement increases the clock skew of the STD,

since each enhancement is achieved at the cost of increasing the number of DFFs in the

STD, with the main source of clock skew in the proposed designs being the insertion of

clock gating for the sake of reducing the dynamic energy consumption of the STDs. The

increased clock skew of the proposed designs increases the likelihood of timing errors

occurring owing to power supply variations. As part of our design methodology, these

clock skew results are considered, when performing the timing analysis of the different

STDs implementations in Section 4.5.1 for determining the critical clock period of each

design.

4.5 Error Correction Capabilities of the Timing-Error Tol-

erant Stochastic Turbo Decoders

In this section, we characterize the decoding performance of the STD in the presence

of timing errors, when BPSK modulation is used for communication over an AWGN

channel.

4.5.1 Timing Error Model

Supply voltage variations in an ASIC may be caused by effects such as IR-drop, L ·di/dt
noise, crosstalk, electrostatic discharges, particle strikes, switching noise and fabrication

process variations [12, 13, 14, 15, 16], among other causes. In accordance with [77],

we model these effects by representing the supply voltage of the ASIC with a Gaussian

distribution having a mean of µ, which represents the nominal supply voltage, and a

standard deviation of σ, which represents the power supply variations. In our analysis,

the clock period Tclk, the nominal supply voltage µ and the degree of power supply

variations σ are fixed for the whole operation of the decoder [77]. However, a different

random value of VDD is selected from the Gaussian distribution for each clock cycle,

which is then used for all gates in the STD during the current clock cycle. The selected

values of µ are 1.20 and 0.84, corresponding to the nominal supply voltage of TSMC

90 nm technology and this value scaled down 30%, respectively. The value of σ is selected

to obtain particular values of 3σ/µ, namely 0.03, 0.05 and 0.07 which correspond to the

three standard deviation variation fraction of the selected supply voltage, as detailed

in [78]. Similarly, the selected values of Tclk correspond to the critical clock periods of

each scheme presented in Section 4.4. More specifically, we considered the clock skews

of Section 4.4 and a short-path timing analysis for creating feasible timing budgets and

for determining the corresponding critical clock period of each design.

4.5.1. Timing Error Model 89

TFM-5
TFM-4
TFM-3
TFM-2
TFM-1
SR-5
SR-4
SR-3
SR-2
SR-1

Tclk = 5.2ns

3σ/µ = 0.05
µ = 1.0

Timing errors

VDD (V)

D
el
ay

(n
s)

1.31.21.110.90.80.7

14

12

10

8

6

4

2

0

Figure 4.14: Delays of critical paths of different implementations of the STD.

In order to characterize the presence of timing errors in the STD, we performed a post-

layout timing analysis with extracted parasitics and annotated delays of the different

TSMC 90 nm implementations of the STDs for a range of supply voltages. Figure 4.14

presents only the largest propagation delays of the various STDs under different values

of the supply voltage. However, for the purpose of our timing error model, we consider

the critical path delay of every DFF in each of the different STDs separately. In each

clock cycle, the chosen value of VDD, Tclk and Figure 4.14 are used for determining

the delay encountered by each signal propagating to each DFF. Moreover, Figure 4.14

reveals that in the SR-1 STD, timing errors are more likely to occur in the Ext and δ

modules of Figure 4.2, owing to their long critical paths. However, these critical paths

have been significantly reduced by the inclusion of the pipeline stage in SR-5, as shown

in Figure 4.14.

Since the STDs operate at their critical clock period, timing errors will be encountered

if the selected value VDD is smaller than the nominal supply voltage µ. Similarly, we

assume that timing errors occur, whenever the delays are larger than the fixed Tclk. As

a result of this, some paths will experience timing errors in some clock cycles, but not

in others. Similarly, a large overall number of timing errors will occur in some clock

cycles and only a small number of timing errors will be encountered in others. If a

timing error is indeed encountered, our error model assumes that a random bit value

will be clocked into the affected DFFs and the same value will be propagated through

the circuit in the subsequent clock cycles. This random value responds to unpredictable

glitches and late transitions caused by timing errors, as shown in Figure 4.15, as well

as resolved metastable states owing to the use of synchronizers [80]. For illustrative

purposes, Figure 4.14 includes a Gaussian distribution associated with µ = 1.0, 3σ/µ =

0.05 (nominal VDD of 1.0 V and three-sigma standard deviation power supply variation of

90 Chapter4. Timing-Error-Tolerant Stochastic Turbo Decoders

1.05

(V
)

0

Clock

1.05

(V
)

0

1.05

(V
)

0

SR DFF1 (D)

SR DFF1 (Q)

Clock cycle

TCLK = 5.2 ns

1 2

Clock cycle1 2

Clock cycle1 2

1

1.05

(V
)

0

at nominal VDD

Extended tCLK−Q owing to power supply variations

Timing error at VDD = 0.99 V

Correct bit value of 1

Incorrect bit value of 0

tCLK−Q

Figure 4.15: SPICE simulation of a critical path under different supply voltages
of VDD ∈{0.99, 1.00, 1.01, 1.02, 1.03, 1.04, 1.05} V.

5%) and a clock period of Tclk = 5.2 ns. In this particular example, SR-3 will be subject

to timing errors if the selected value of VDD drops below 1.05 V, since the critical path

delay exceeds the critical clock period in this condition, as shown in Figure 4.15. More

specifically, the waveforms of Figure 4.15 were obtained using SPICE simulations of the

critical path in the SR-3 scheme, when using ST 90 nm technology operated at different

supply voltages and at a fixed critical clock period of TCLK = 5.2 ns. Owing to this,

the signal output by the critical path arrives at the D input of the first DFF in the SR-

based EM at the same time, as the first clock edge shown in Figure 4.15. Here, power

supply voltages of 1.00 V ≤ VDD ≤ 1.05 V are sufficiently high to avoid generating a

timing error in the DFF. However, if the supply voltage is reduced to VDD = 0.99 V,

a timing error is observed. In this scenario, a bit value of 0 is erroneously stored in

the SR DFF and presented at its Q output after the first clock edge of Figure 4.15.

In addition to this, Figure 4.15 demonstrates that the propagation delay tCLK−Q of

the DFF is increased, when the supply voltage is reduced, increasing the likelihood

of timing errors and metastability occurring in the subsequent DFFs, as detailed in

Section 4.3. By contrast, the TFM-based STDs will not experience any timing errors in

this configuration, since their critical paths have lower critical clock periods.

4.5.2 Decoding Performance in the Presence of Timing Errors

The notation (Scheme, VDD, Tclk, %) will be used in this section to refer to a specific STD

implementation operated at the given supply voltage, clock period and three standard

4.5.2. Decoding Performance in the Presence of Timing Errors 91

deviation percentage of power supply noise 3σ/µ, respectively.

Figure 4.16 presents the BER and hardware performance of the SR- and TFM-based

STD, when operated at VDD = 1.20 V. Figure 4.16(a) presents the BER performance

for a FP implementation of the conventional Log-BCJR turbo decoder using 8 decoding

iterations as a benchmark. We also present BER plots of the SR- and TFM-based STD,

when allowing a maximum of 105 DCs in the absence of timing errors, which confirm that

STDs are capable of achieving similar BER performances as the ideal FP turbo decoder.

Note that SR-1 to SR-5 offer identical BER performance in the absence of timing errors,

since the proposed modifications only impact the BER in the presence of timing errors.

Likewise, TFM-1 to TFM-5 offer identical BER performance in the absence of timing

errors. As mentioned in Section 4.3.1, our timing analysis of Section 4.5.1 suggests

that thousands of metastability events occur when the different STDs are operated

continuously in the presence of power supply variations. Since SR-1 and TFM-1 do not

consider the employment of synchronizers for preventing the catastrophic propagation of

metastability, we do not plot their BER in the presence of timing errors, since it would

be very poor. Figure 4.16(a) presents the BER of the modified schemes SR-4, SR-5,

TFM-4, TFM-5 when operated at VDD = 1.20 V. Note that the BER performances

of SR-2, SR-3, TFM-2 and TFM-3 are not included in Figure 4.16(a), since SR-2 and

SR-3 offer similar BER performance to that of SR-4. Similarly, TFM-2 and TFM-3

offer similar BER performance to that of TFM-4. However, schemes SR-2 and SR-3 and

schemes TFM-2 and TFM-3 offer different chip area, latency, throughput and energy

consumption, when compared to SR-4 and TFM-4, respectively, as described above in

Section 4.4.

Figure 4.16(a) demonstrates that the proposed STDs offer an enhanced tolerance to

timing errors. As an example of this, Figure 4.16(a) shows that (SR-4, 1.20 V, 4.0 ns, 3%)

exhibits an Eb/N0 degradation of about 0.14 dB respect to the ideal BER performance

of SR-1. Similarly, (TFM-4, 1.20 V, 4.0 ns, 5%) offers similar BER performance of that

of the TFM-based STD in the absence of timing errors. However, schemes SR-4 and

TFM-4 exhibit an Eb/N0 degradation of about 0.75 dB and 0.5 dB, when the three

standard deviation percentage of power supply noise is increased to 5% and to 7%, as

shown in Figure 4.16(a) in (SR-4, 1.20 V, 4.0 ns, 5%) and (TFM-4, 1.20 V, 4.0 ns,

7%), respectively,. Moreover, Figure 4.16(a) demonstrates that the inclusion of the

pipeline stage described in Section 4.3.4 improves the BER performance of the STDs by

preventing the occurrence of timing errors during the estimation of the decoded bit b1,k.

This is shown in the BER performance of (SR-5, 1.20 V, 4.0 ns, 5%), which exhibits

similar BER performance of SR-1. Likewise (TFM-5, 1.20 V, 4.0 ns, 7%) presents similar

error correction capabilities to that of (SR-1, 1.20 V, 4.0 ns, 0%), which corresponds to

the state-of-the-art STD of [39] with no timing errors. This corresponds to an Eb/N0

degradation of about 0.1 dB, when compared to TFM-1 in the absence of timing errors.

92 Chapter4. Timing-Error-Tolerant Stochastic Turbo Decoders

(TFM-5, 1.20V, 2.2ns, 7%)T
(TFM-4, 1.20V, 2.2ns, 7%)T
(TFM-4, 1.20V, 2.2ns, 5%)T
(SR-5, 1.20V, 3.6ns, 5%)
(SR-4, 1.20V, 4.0ns, 5%)
(SR-4, 1.20V, 4.0ns, 3%)

TFM (ideal)
SR (ideal)
Log-BCJR

B
E
R

43210

100

10−1

10−2

10−3

10−4

10−5

10−6

Eb/N0 (dB)

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
(SR-1, 1.20V, 4.0ns, 0%) (ideal)

(SR-4, 1.20V, 4.0ns, 3%)

(SR-4, 1.20V, 4.0ns, 5%)

(SR-5, 1.20V, 3.6ns, 5%)

(TFM-1, 1.20V, 2.2ns, 0%) (ideal)

(TFM-4, 1.20V, 2.2ns, 5%)

(TFM-4, 1.20V, 2.2ns, 7%)

(TFM-5, 1.20V, 2.2ns, 7%)

Area TCLK Latency Throughput EnergyDCs BER

(b)

Figure 4.16: BER and hardware and performance of the modified STDs in the
presence of timing errors and power supply variations when VDD = 1.20 V:
(a) BER performance of the modified STDs operated at VDD = 1.20 V. (b)
Hardware performance of the modified STD operated at VDD = 1.20 V and
Eb/N0 = 3.0 dB.

In addition to the BER performance, Figure 4.16(b) shows the chip area, average number

of DCs, latency, throughput and energy consumption per decoded bit of the proposed

STDs, normalized relative to the benchmark SR-1 in the absence of timing errors, when

the different STDs operate at VDD = 1.20 V and Eb/N0 = 3.0 dB. We also present

4.5.2. Decoding Performance in the Presence of Timing Errors 93

(TFM-5, 0.84V, 4.1ns, 5%)
(TFM-5, 0.84V, 4.1ns, 3%)
(TFM-4, 0.84V, 4.1ns, 3%)
(SR-5, 0.84V, 6.7ns, 3%)
(SR-4, 0.84V, 8.0ns, 3%)

43210
Eb/N0 (dB)

B
E
R

100

10−1

10−2

10−3

10−4

10−5

10−6

TFM (ideal)
SR (ideal)
Log-BCJR

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
(SR-1, 1.20V, 4.0ns, 0%) (ideal)

(SR-5, 0.84V, 6.7ns, 3%)

(TFM-4, 0.84V, 4.1ns, 3%)

(TFM-5, 0.84V, 4.1ns, 3%)

Area TCLK Latency Throughput EnergyDCs BER

(b)

Figure 4.17: BER and hardware and performance of the modified STDs in the
presence of timing errors and power supply variations when VDD = 0.84 V:
(a) BER performance of the modified STDs operated at VDD = 0.84 V. (b)
Hardware performance of the modified STDs operated at VDD = 0.84 V and
Eb/N0 = 3.0 dB.

the hardware performance of TFM-1 in the absence of timing errors as a benchmark.

Figure 4.16(b) shows that the average number of DCs required by (SR-4, 1.20 V, 4.0 ns,

3%), (SR-4, 1.20 V, 4.0 ns, 5%) and (SR-5, 1.20 V, 3.6 ns, 5%) is 1.23, 1.29 and 1.10

94 Chapter4. Timing-Error-Tolerant Stochastic Turbo Decoders

times that of SR-1 in the absence of timing errors, respectively. This, in addition to the

decoding of two frames in alternate clock cycles, is reflected in increased latencies and

energy consumptions. However, (SR-5, 1.20 V, 3.6 ns, 5%) exhibits a similar throughput

to that of SR-1 in the absence of timing errors, albeit at the cost of an increased BER.

Figure 4.16(b) shows that TFM-based decoders in the presence of timing errors offer

a reduced number of DCs and latencies, which facilitate increased throughputs and

reduced energy consumptions, when compared to the benchmark SR-1 in the absence

of timing errors. More specifically, the latency, throughput and energy consumption of

(TFM-5, 1.20 V, 2.2 ns, 7%) are 0.83, 2.42 and 0.25 times those of SR-1 in the absence

of timing errors, respectively.

Figure 4.17(a) demonstrates that the BER performance of the different STDs is severely

affected when they are operated at VDD = 0.84 V and in the presence of power supply

variations, owing to the quadratic dependency of delays on the power supply. More

specifically, Figure 4.17(a) shows that (SR-4, 0.84 V, 8.0 ns, 3%) exhibits an Eb/N0

degradation of about 1.1 dB, compared to the ideal BER performance of the SR-1. The

introduction of the pipeline stage into SR-4 reduces the Eb/N0 degradation to 0.3 dB,

which can be observed in the BER performance of (SR-5, 0.84 V, 6.7 ns, 3%). A sim-

ilar trend is encountered in the TFM-based STDs, where (TFM-4, 0.84 V, 4.1 ns, 3%)

exhibits an Eb/N0 degradation of about 0.5 dB respect to the ideal BER performance

of TFM-1. The introduction of the pipeline stage into TFM-5 enhances the BER per-

formance, as shown in the BER plot of (TFM-5, 0.84 V, 4.1 ns, 3%), which exhibits an

Eb/N0 degradation of only about 0.1 dB. However, when the percentage of power supply

variation is increased to 5% (TFM-5, 0.84 V, 4.1 ns, 5%) exhibits a Eb/N0 degradation

of about 1.0 dB. Figure 4.17(b) presents the hardware performance of the modified STDs

when they operate at VDD = 0.84 V and Eb/N0 = 3.0 dB. Here, we present hardware

performance results for SR-1 operated at VDD = 1.20 V and in the absence of timing

errors as benchmark. Note that schemes (SR-4, 0.84 V, 8.0 ns, 3%) and (TFM-5, 0.84 V,

4.1 ns, 5%) are not considered in Figure 4.17(b), owing to their increased BER. Fig-

ure 4.17(b) shows that (SR-5, 0.84 V, 6.7 ns, 3%) increases the number of DCs, latency,

energy consumption and BERs performance, when compared to (SR-5, 1.20 V, 4.0 ns,

0%). Scheme (TFM-4, 0.84 V, 4.1 ns, 3%) exhibits a throughput similar to that of SR-1

in the absence of timing errors. However, this modified scheme presents an increased

latency and BER. By contrast, the average number of DCs, latency, throughput and

energy consumption of (TFM-5, 0.84 V, 4.1 ns, 3%) are 0.75, 1.55, 1.28 and 0.12 times

those of (SR-1, 1.20 V, 4.0 ns, 0%), respectively.

Owing to the hardware implementation results presented in Table 4.1, as well as in

Figures 4.16(b) and 4.17(b) and to the BER performance of Figures 4.16(a) and 4.17(a),

we recommend the employment of TFM-5 in the presence of timing errors.

4.6. Chapter Conclusions 95

4.6 Chapter Conclusions

In this chapter, we have presented modifications to the state-of-the-art STD of [39],

which significantly improve its timing error tolerance. This has been achieved by con-

sidering the close relationship between the different trade-offs involved in the hardware

implementation of the STD, as listed in Figure 1.1. To elaborate further, the implemen-

tation of iterative decoders is typically oriented towards the optimization of a particular

design objective. For example, a particular design may focus on achieving a low chip

area, to the detriment of all other design objectives. More specifically, only the de-

sign constraints and parameters that affect the overall chip area of the design may be

considered and optimized during the design process. However, this approach fails to con-

sider other characteristics of the hardware implementation, such as its energy efficiency,

latency, throughput, error correction capability or timing error tolerance. Hence, the

resultant implementation may not achieve the desired hardware specifications or BER

performance. Motivated by this trend, we conceived the design approach of Figure 4.18

for improving the tolerance of STDs to timing errors.

Causes and effects
of timing errors

Performance
penalty evaluation

Start

1

2

3

4

Error-tolerant
design technique

Performance

design technique
improvement

End

Figure 4.18: Design flow of error-tolerant iterative decoders.

In this case, the design guidelines of Figure 4.18 may be interpreted as follows.

1) As described in Section 4.3 and observed in Figure 4.15, power supply variations

were identified as the most detrimental cause of both timing errors and metastabil-

ity in the STD. Hence we have to conceive measures to mitigate the catastrophic

propagation of metastability through the decoder.

96 Chapter4. Timing-Error-Tolerant Stochastic Turbo Decoders

2) The employment of synchronizers is recommended as the error-tolerant design

technique for mitigating the catastrophic propagation of metastability, as detailed

in Section 4.3.1.

3a) However, as portrayed in Table 4.1 and Figure 4.12, the employment of synchro-

nizers increased the chip area, the latency as well as the energy consumption and

reduced the throughput.

4a) Therefore, an additional set of EMs may be advocated for enabling the simultane-

ous decoding of two received frames for the sake of improving the throughput of

the STD, as described in Section 4.3.2.

3b) However, observe in Table 4.1 and Figure 4.12 in Section 4.4 that the additional

set of EMs increased the chip area, the latency and the energy consumption of the

design.

4b) Therefore clock gating is proposed in Section 4.3.2 for reducing the chip area,

latency and energy consumption of the STD.

4c) Additionally, in Section 4.3.3, TFM-based EMs were proposed for reducing the

chip area, the latency as well as the energy consumption of the design and for

improving both the throughput as well as the BER performance, as portrayed in

Table 4.1 and Figure 4.12.

4d) Finally, in Section 4.3.4, pipelining was recommended for further improving the

BER performance of the STD in the presence of timing errors, as observed in

Figures 4.16 and 4.17.

Building on this, we have characterized the trade-offs among the chip area, energy ef-

ficiency, latency, throughput and error correction capabilities of different timing-error

tolerant STDs, when they operate at two different nominal supply voltages. Our simu-

lations in Figures 4.16 and 4.17 show that the proposed STD (TFM-5, 1.20 V, 2.2 ns,

7%) offers the same BER performance as the state-of-the-art STD (SR-1, 1.20 V, 4.0 ns,

0%) design of [39], despite suffering from power supply variations, while increasing the

throughput by a factor of 2.42, reducing the latency by a factor of 0.83 and consuming

only 0.25 times the energy of that of (SR-1, 1.20 V, 4.0 ns), without increasing the chip

area. Furthermore, this trade-off analysis technique may be applied to the design of

other timing-error-tolerant iterative decoder implementations in order to determine the

most desirable configuration.

Chapter 5
Reduced-Latency Stochastic

Turbo Decoders

The different Stochastic Turbo Decoder (STD) implementations presented in Chapter 4

require thousands of Decoding Cycles (DCs) for successfully decoding a frame, hence

resulting in relatively poor processing latencies, throughputs and energy efficiencies. Ow-

ing to these impediments, stochastic decoders have been deemed unsuitable for practical

low-latency next-generation Mission-Critical Machine-Type Communication (MCMTC)

systems [43]. To elaborate further, MCMTC systems require reliable machine-human

and machine-machine communication in order to achieve real-time control of dynamic

processes, such as those required by industrial process automation and manufacturing,

energy distribution, remote surgery and vehicular traffic safety, for example. In these

applications, short emergency and control messages constituted by a low number of bits

must be reliably transmitted with ultra-low latency. Moreover, MCMTC systems are

expected to rely on a large number of energy-constrained wireless sensors, actuators

and programmable controllers. As a result, the processing energy consumption must be

minimized. In the context of iterative decoders, this may be achieved by reducing the

number of iterations of the decoding algorithm, albeit at the cost of degrading the error

correction capabilities of the implementation. These scenarios motivate the employment

of short-frame-lengths error correction decoders having ultra-low processing latencies on

the order of microseconds [43].

Substantial research efforts have been made in order to reduce the number of DCs

required by STDs for achieving iterative decoding convergence. As an example of this,

the authors of [39] proposed exponential transformations [86] for the implementation of

This chapter is partially based on the following publications.
I. Perez-Andrade, S. Zhong, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “Stochastic comput-

ing improves the timing-error tolerance and latency of turbo decoders: Design guidelines and trade-offs,”
in IEEE Access, vol. 4, pp. 1008–1038, Feb 2016.

98 Chapter5. Reduced-Latency Stochastic Turbo Decoders

STDs. This technique uses stochastic computing to perform the Taylor’s expansion of

the exponential function of Bernoulli Sequences (BSs). In this way, the additions of BSs

are transformed into multiplications of exponentially transformed BSs, which can be

performed with the aid of and gates, as detailed in Section 2.3.1. However, the result of

the multiplication of the exponentially transformed BSs must be converted back into the

conventional BS representation, by employing a logarithmic transformation. The order

of the Taylor’s series determines not only the accuracy of the exponential transformation,

but also the hardware complexity of its implementation, as detailed in [79]. As an

example of this, a not gate may be employed for the first order approximation of both

exponential and logarithmic functions. By contrast, the second order approximation

requires one D-type Flip Flop (DFF) and two nand gates for the exponential function,

as well as one DFF, two and gates and a 2-input Multiplexer (MUX) for the logarithmic

function. The error correction capability of the STD is improved by using higher order

approximations, but the hardware complexity grows rapidly. Motivated by this, the

authors of [39] applied the second order exponential transformation to a 200-bit STD.

This technique reduced the maximum number of DCs from 250×103 to 32×103, without

degrading the error correction performance of the STD, albeit at the cost of increasing

the hardware complexity of the design. In order to further reduce the number of DCs,

the STD of [40] employed the multiple-stream decoding technique, which was originally

introduced for the stochastic decoding of cortex codes in [37]. This technique increases

the degree of parallelism for the STD by representing each probability with ρ ≥ 2

BSs. The exponential transform-based multiple-stream decoding of the 200-bit STDs in

conjunction with ρ = 32 allowed the reduction of the number of DCs from 32 × 103 to

1× 103∗, albeit at the cost of increasing the hardware complexity by a factor of ρ = 32.

Hence, this technique may be deemed unsuitable for practical STD implementations.

The authors of [41, 42] proposed modified BS representations for the implementation

of fully-parallel Logarithmic BCJR (Log-BCJR) decoders. More specifically, these con-

tributions proposed sign-magnitude BSs for representing Logarithmic Likelihood Ra-

tios (LLRs). Here, each LLR is represented using one BS for determining its sign and

one or more BSs for determining its magnitude. As an example of this, [41] employs

2-bit BS-based LLRs in the range of [−1,+1]. In [42], the authors proposed a sliding-

window method for converting BSs into bit-serial sign-magnitude LLRs. In each DC,

the three most-recent bits of a BS are combined to provide an LLR comprising one

sign bit and two magnitude bits. Therefore, each LLR is represented in the range of

[−3,+3]. Additionally, this implementation relies on 3-bit Fixed-Point (FX) adders and

4-bit FX comparators for the addition and max operations of the sign-magnitude BSs,

respectively. These techniques significantly reduce the number of DCs required for suc-

cessfully decoding a frame and hence yield substantial throughput gains. However, these

∗The number of DCs is reported as 1 × 103 in [40]. However, in the more detailed description of
the multiple-stream STD given in the PhD thesis of [79], the same architecture and implementation is
reported to employ 8× 103 DCs.

5.1. Proposed Reduced-Latency Stochastic Turbo Decoder 99

designs may be considered to be half-stochastic STDs or low-precision serially-operated

FX Log-BCJR decoders, rather than true-stochastic decoders. Owing to its reliance on

FX numbers, the half-stochastic STD of [42] does not benefit from the inherent tolerance

of true STDs to timing errors.

Against this background, in this chapter we propose a Reduced-Latency STD (RLSTD)

design, which reduces the number of clock cycles required for achieving near-optimal error

correction performance by an order of magnitude, without increasing the chip area. This

is achieved by employing:

1) or gates for performing approximate stochastic additions.

2) A reduced-complexity Tracking Forecast Memory (TFM) design for overcoming the

latching problem.

3) A single DFF for estimating each decoded bit.

Moreover, we analyze the different trade-offs presented in Figure 1.1 for both of the

improved STD designs.

The rest of this chapter is structured as follows. Section 5.1 details how to reduce the

number of clock cycles required by the STD. Section 5.2 quantifies its error correction

performance and Section 5.3 characterizes its hardware efficiency.

5.1 Proposed Reduced-Latency Stochastic Turbo Decoder

The following sections detail the proposed modifications to the STD of [39], which signif-

icantly reduce the number of DCs required for achieving iterative decoding convergence.

Each of these enhancements is detailed in the following subsections.

5.1.1 Approximate stochastic adders

As described in Section 4.1, the turbo decoding algorithm requires the addition of prob-

abilities, as shown in Equations (4.3) and (4.6). In stochastic computing, BSs can only

represent probabilities in the range of [0,1]. However, the addition of M probabilities

may not give a result falling in the closed interval [0,1]. To overcome this problem, the

addition of M probabilities may be performed by scaling the operands by a factor of M ,

so that we have Padd =
∑M

i=1[Pi/M], which represents the mean of the M probabilities.

In stochastic computing, this may be performed using an M -input MUX, as described

in Section 2.3.1. In this configuration, the MUX outputs the value of one of the M

input BSs, which is randomly selected in each DC. However, this means that the other

(M − 1) BSs do not directly contribute to the output BS of the MUX. As a result of

100 Chapter5. Reduced-Latency Stochastic Turbo Decoders

α̌k(0)
J(0)

K(0)

αk−1(0)

γk(0, 0)

αk−1(1)

γk(1, 0)

J

K

αk(0)

P = 1/4

0

EM

Clock

4:1
MUX

Psel = 1/4

2

α̌k(1)

α̌k(2)

α̌k(3)

α̌k(4)

α̌k(5)

α̌k(6)

α̌k(7)

or1

or2

or3

or4

Figure 5.1: Stochastic realization of αk(0) employing or gates as approximate
adders.

this, the length of the outgoing BS Padd is required to be M times longer than that of

the input BSs, in order for Padd to achieve the same precision as the input BSs [40].

As an alternative to the employment of MUXs as stochastic adders, or gates may

be employed for performing approximate additions, as detailed in [18]. This has the

advantage of granting all M input BSs influence over the output BS, hence reducing the

length required for the output to achieve the same precision as the inputs. However,

the probability Por represented by the BS output by a two-input or gate is given by

Por = PA +PB −PA ·PB, where PA and PB correspond to the probabilities represented

by the two input BSs SA and SB, respectively. Therefore, the addition Por exhibits an

error that is proportional to the product PA · PB, although this will become negligible,

if either PA or PB has a very small value.

Figure 5.1 shows how or gates may be employed to perform approximate additions

in an STD. More specifically, Figure 4.4 exemplifies the stochastic implementation

of the forward recursion αk(s) of Equation 4.3 for the case where s = 0, as it was

previously shown in Figure 4.4. The blue box of Figure 5.1 at the top left corner shows

the employment of a 2-input or gate to approximate the two-term addition α̌k(0) =

[αk−1(0)γk(0, 0) + αk−1(1)γk(1, 0)]. Similarly, the green box at the bottom right corner

of Figure 5.1 shows the employment of or gates for the approximate addition of 8

BSs. Note that an M -input or gate outputs the value of 1 if any of its M inputs

adopts this value. As a result of this, the employment of an 8-input or gate required

for providing K(0) in Figure 5.1 may result in this BS becoming stuck at 1. Owing

to this, the green box of Figure 5.1 implements the addition K(0) = [
∑7

i=1[α̌k(i)] +

0]/4 using four 2-input or gates and a single 4:1 MUX. The division by 4 in K(0)

5.1.1. Approximate stochastic adders 101

γek(0, 0)αk−1(0)βk(0)

γek(1, 4)αk−1(1)βk(4)

γek(2, 5)αk−1(2)βk(5)

γek(3, 1)αk−1(3)βk(1)

γek(4, 2)αk−1(4)βk(2)

γek(5, 6)αk−1(5)βk(6)

γek(6, 7)αk−1(6)βk(7)

γek(7, 3)αk−1(7)βk(3)

γek(0, 4)αk−1(0)βk(4)

γek(2, 1)αk−1(2)βk(1)

γek(3, 5)αk−1(3)βk(5)

γek(4, 6)αk−1(4)βk(6)

γek(5, 2)αk−1(5)βk(2)

γek(6, 3)αk−1(6)βk(3)

γek(7, 7)αk−1(7)βk(7)

γek(1, 0)αk−1(1)βk(0)

K(b1,k = 1)

J(b1,k = 1)

P e(b1,k = 1)

γek(s
′, s)αk−1(s′)βk(s,)

βk(s)
αk−1(s′)
γek(s

′, s)

K(b1,k = 0)

J(b1,k = 0)

J

K

P e(b1,k = 0)
EM

Clock

J

K
EM

Clock

Psel = 1/4

2

4:1
MUX

Psel = 1/4

2

4:1
MUX

Figure 5.2: Estimation of the extrinsic probabilities in the RLSTD.

requires the corresponding division by 4 to be employed in J(0) = α̌k(0)/4, in order

to preserve αk(0) = J(0)/[J(0) + K(0)]. This may be achieved using an and gate for

multiplying α̌k(0) with a BS representing the probability of 1/4, as shown in Figure 5.1.

Similar structures to that of Figure 5.1 may be employed for the implementation of

the forward recursion αk(s) for all other states s ∈ [1, 7], as well as for the backward

recursion βk−1(s′) of Equation 4.4. Note that the or gate labeled as or4 in Figure 5.1

is drawn with dotted lines for indicating that this gate may be eliminated, since one of

its inputs has the constant logical value of 0. However, this or gate is indeed required

for the approximate additions that may be used for the calculation of the extrinsic

probabilities of Equation 4.5 and for the calculation of the A Posteriori Probability

(APP) of Equation 4.6, as shown in Figures 5.2 and 5.3, respectively.

As we will demonstrate in Section 5.2, the employment of the approximate adders im-

poses only an imperceptible Bit Error Ratio (BER) performance degradation on the

102 Chapter5. Reduced-Latency Stochastic Turbo Decoders

γk(0, 0)αk−1(0)βk(0)

γk(1, 4)αk−1(1)βk(4)

γk(2, 5)αk−1(2)βk(5)

γk(3, 1)αk−1(3)βk(1)

γk(5, 6)αk−1(5)βk(6)

γk(6, 7)αk−1(6)βk(7)

γk(4, 2)αk−1(4)βk(2)

γk(7, 3)αk−1(7)βk(3)

γk(0, 4)αk−1(0)βk(4)

γk(3, 5)αk−1(3)βk(5)

γk(5, 2)αk−1(5)βk(2)

γk(6, 3)αk−1(6)βk(3)

γk(7, 7)αk−1(7)βk(7)

γk(1, 0)αk−1(1)βk(0)

γk(2, 1)αk−1(2)βk(1)

γk(4, 6)αk−1(4)βk(6)

P̂ (b1,k = 1)

P̂ (b1,k = 0)

b̂1,k

γk(s
′, s)αk−1(s′)βk(s)αk−1(s′)

βk(s)

γk(s
′, s)

D Q

Clock

Update

Psel = 1/4

2

4:1
MUX

Psel = 1/4

2

4:1
MUX

Figure 5.3: Estimation of the hard-decision bit b̂1,k in the RLSTD.

RLSTD. By contrast, the approximate stochastic adders reduce the chip area, the aver-

age number of DCs required, the latency and the energy consumption, while increasing

the throughput of the RLSTD.

5.1.2 Reduced-complexity tracking-forecast memory

As detailed in Section 4.4, TFM-based Edge Memories (EMs) offer significant improve-

ments in both the BER and the hardware implementation performance of STDs. This

may be attributed to the TFM’s enhanced capability for tracking changes in the regen-

erative bit’s probability and to the relatively low hardware complexity of TFMs. As

described in Section 4.3.3, TFMs employ Equation 4.13 for quantifying the moving av-

erage probability P (t + 1) of the regenerative bit J(t) having the value of 1 according

to

P (t+ 1) =

{
P (t)− φP (t) J(t) = 0

P (t) + φP̄ (t) J(t) = 1.

5.1.2. Reduced-complexity tracking-forecast memory 103

The relaxation parameter φ determines the significance given to the regenerative bit

and its value can be chosen by obtaining a compelling trade-off between the BER and

hardware efficiency, where we use φ = 2−4 in the TFM-based STDs presented in Chap-

ter 4. However, in this section, we propose the use of φ = 2−1, since this facilitates a

significant further reduction in the hardware implementation complexity of TFMs. In

this case, the probability of the TFM can be expressed as

P (t+ 1) =





P (t)− P (t)
2 = P (t)

2 J(t) = 0

P (t) + P̄ (t)
2 = P (t) + 1−P (t)

2

= P (t)
2 + 1

2 J(t) = 1.

(5.1)

We refer to the resultant scheme as Reduced-Complexity Tracking Forecast Memory

(RCTFM), which may be implemented using the arrangement shown in Figure 5.4(b).

Here, the FX TFM represents P (t) using a 9-bit unsigned FX number, where the Most

Significant Bit (MSB) has a significance of 2−1 and the Least Significant Bit (LSB) has

a significance of 2−9. The multiplication P (t)/2 can be realized by shifting the contents

of the FX TFM one position to the right. Moreover, the conditional addition of the

constant 1/2 can be realized by updating its MSB with the incoming regenerative bit

J(t).

Out

P (t+ 1) Clock

Random
Bits

9

99

9 DFFs

D Q9

P (t)

P (t)

ADD

+

±
SUB

add/sub
Logic
shift
φ

J(t)

Update

Clock
Gating

QE

Clock

9

In

gated Clock

(a)

MSB LSB

9

9

D Q

gated Clock

D Q D Q D Q

Update

Clock
Gating

QE

Clock

J(t)In

Random
Bits

Out

9

9 8 12

P (t)

(b)

Figure 5.4: Comparison of TFM structures: (a) Conventional TFM employed in
TFM-based STDs of Chapter 4. (b) Proposed RCTFM associated with φ = 2−1.

104 Chapter5. Reduced-Latency Stochastic Turbo Decoders

Figure 5.4 compares the hardware complexity of the proposed RCTFM to those of the

TFMs employed in schemes TFM-1 to TFM-5 of Chapter 4. In particular, the hardware

implementation complexity of the RCTFM is reduced by avoiding the employment of

the FX adder/subtractor and the set of xor gates employed by the TFM shown in

Figure 5.4(a).

The operation of the RCTFM-based EM follows the same principles as the Shift Regis-

ter (SR)-based and TFM-based EMs described in Sections 2.3.2 and 4.3.3, respectively.

Moreover, the RCTFM operates as a combination of an SR and a TFM. To elaborate

further, the RCTFM adopts the functionality of an SR, when J 6= K. In this situa-

tion, the DFFs of the RCTFM will shift their contents one position and the incoming

regenerative bit J(t) will be stored in the first DFF, in analogy to the behavior of an

SR-based EM. Here, the clock-gating latch and the and gate are employed to enable the

clock signal of the DFFs only when the signal Update is asserted, owing to J 6= K. By

contrast, if J = K, the unsigned FX probability P (t) stored in the RCTFM is compared

to a pseudo-random number, in order to determine the outgoing bit of the RCTFM, in

analogy to the operation of a TFM-based EM. Here, the outgoing bit assumes the value

of 1 if the probability stored in the RCTFM is larger than or equal to the 9-bit pseudo-

random number. The contents of the RCTFM-based EM can be initialized prior to the

beginning of the decoding process, in order to improve the attainable BER performance

of the STD. In our investigations detailed in the following sections, the RCTFMs are

initialized to store the probability P = 0.5, which can be achieved in a single clock cycle

by setting the MSB of each RCTFM to logic 1 and the rest of the bits to logic 0.

5.1.3 Output decision

The STDs presented in Chapter 4 employs a 4-bit saturated up/down counter for the

estimation of the decoded bit b̂1,k. The saturated counter stores a binary value that

behaves similarly to a FX representation of an LLR [29], with its MSB determining the

hard-decision bit b̂1,k, as described in Section 4.2.4. The width of the saturated counter

determines both its capability to track changes in the represented LLR and the precision

of its representation of this LLR. In this way, a wider counter provides a higher precision

for the represented LLR, as well as a more robust mechanism against rapid variations

in the value of this LLR. This is particularly useful at low channel Signal to Noise

Ratio (SNR) values, where the LLR represented may be expected to fluctuate between

consecutive DCs, owing to the low reliability of the decoding process in this SNR region.

By contrast, smaller counter widths offer a lower precision for the represented LLR and

are more susceptible to changes within the BSs. Despite this, low-precision counters may

be employed at high SNR values, owing to the high reliability of the decoding process, as

detailed in [29]. In spite of these trade-offs, we propose the employment of only a single

DFF for determining the hard-decision bit b̂1,k of the RLSTD, as shown in Figure 5.3.

5.2. Error Correction Capabilities of the Reduced-Latency Stochastic
Turbo Decoder 105

Here, the output DFF takes the value of 0 if P̂ (b1,k = 0) = 1 and P̂ (b1,k = 1) = 0.

Similarly, the output DFF takes the value of 1 if P̂ (b1,k = 0) = 0 and P̂ (b1,k = 1) = 1.

This is achieved by updating the output of the DFF with the bit of the BS representing

P̂ (b1,k = 1), when P̂ (b1,k = 0) 6= P̂ (b1,k = 1), as shown in the blue box of Figure 5.3.

By contrast, the DFF will not update its contents, if P̂ (b1,k = 0) = P̂ (b1,k = 1).

Section 5.2 will demonstrate that the error correction capability of the RLSTD is not

degraded by having only a single output DFF. Moreover, Section 5.3 will demonstrate

that the single output DFF reduces the hardware complexity of the STD.

5.2 Error Correction Capabilities of the Reduced-Latency

Stochastic Turbo Decoder

In this section, we characterize the error correction capability of the proposed RLSTD

of Section 5.1 and compare it to that of various benchmarks. Figure 5.5 presents the

BER performance achieved for different STDs employing 50-bit frames, a coding rate

of 1/3, 8 states, tailbiting, S-Random interleavers, the state-transition diagram of Fig-

ure 4.1(c) and a Noise-Dependent Scaling (NDS) associated with η = 1 and ψ = 2, as

presented in Chapter 4. Moreover, owing to the reduced the complexity of the RLSTD,

Figure 5.5 presents BER plots when employing 200-bit frames, in order to allow a di-

rect comparison with the results of [39, 42]. All results assume Binary Phase Shift

Keying (BPSK) transmission over an Additive White Gaussian Noise (AWGN) channel.

Figure 5.5 presents BER plots for the RLSTD described in Section 5.1, when allowing

a maximum of 104 DCs and when employing early stopping of the decoder’s iterations

upon achieving convergence. We also present BER plots for four benchmarks, namely

the Floating-Point (FP) Log-BCJR and Max-Log-BCJR turbo decoders, when allowing

a maximum of 8 iterations, as well as for the schemes SR-1 and TFM-1 described in

Chapter 4, when allowing a maximum of 105 DCs. Figure 5.5 demonstrates that the

RLSTD exhibits a similar BER performance to that of the TFM-1 scheme, which con-

firms that the proposed modifications do not degrade the attainable error correction

performance of the RLSTD. More specifically, the 50-bit RLSTD exhibits near-optimal

decoding performance, when compared to the FP Log-BCJR decoder. However, the 200-

bit RLSTD exhibits an Eb/N0 degradation of up to 0.2 dB and 0.5 dB, when compared

to the sub-optimal Max-Log-BCJR and to the Log-BCJR turbo decoders, respectively.

Note however that similar trends may be observed for the 200-bit TFM-1 STD described

in Section 4.3.

Figure 5.6 presents the average number of DCs required by the 50-bit and the 200-

bit STDs for successfully decoding a frame, when operated at different Eb/N0 values

and when compared to the benchmarks of SR-1 and TFM-1 presented in Chapter 4.

Figure 5.6 demonstrates that the proposed RLSTD reduces the average number of DCs

106 Chapter5. Reduced-Latency Stochastic Turbo Decoders

RLSTD, 200-bit
SR-1, 200-bit

Log-BCJR, 200-bitB
E
R

100

10−1

10−2

10−3

10−4

10−5

10−6

43210
Eb/N0 (dB)

10−7

10−8

RLSTD, 50-bit
SR-1, 50-bit

Log-BCJR, 50-bit

10−9

Figure 5.5: BER performance of the RLSTD, as well as of various benchmarks.

RLSTD, 50-bit
TFM-1, 50-bit
SR-1, 50-bit

Eb/N0

D
C
s

43210

105

104

103

102

RLSTD, 200-bit
TFM-1, 200-bit
SR-1, 200-bit

Figure 5.6: Average number of DCs for successfully decoding a frame for the
RLSTD.

by an order of magnitude, when compared to both the SR-1 and to the TFM-1 schemes.

This may be attributed to the increased switching activity owing to the employment of

or gates as approximate adders and to the employment of a single DFF for providing the

decision of the decoded bit. Figures 5.5 and 5.6 demonstrate that the proposed RLSTD

significantly reduces the number of DCs required for successfully decoding a frame,

without degrading its error correction capability. As a benefit of this, the latency, the

throughput and the energy efficiency of the STD are significantly enhanced, as we will

demonstrate in Section 5.3.

5.3. Hardware Implementation of the Reduced-Latency Stochastic Turbo
Decoder 107

5.3 Hardware Implementation of the Reduced-Latency

Stochastic Turbo Decoder

Table 5.1: Hardware complexity comparison of the SR-1, TFM-1 and RLSTD
schemes.

Module Scheme and2 or2 xor2 MUX2 MUX4 MUX8 DFFs

γ
SR-1 8 0 0 0 0 0 0

TFM-1 8 0 0 0 0 0 0
RLSTD 8 0 0 0 0 0 0

α
SR-1 40 8 16 280 0 8 264

TFM-1 40 8 16 24 0 8 73
RLSTD 32 40 16 24 8 0 73

β
SR-1 40 8 16 280 0 8 264

TFM-1 40 8 16 24 0 8 73
RLSTD 32 40 16 24 8 0 73

Ext
SR-1 32 2 16 68 0 2 66

TFM-1 32 2 16 2 0 2 20
RLSTD 32 10 16 2 2 0 20

δ
SR-1 32 0 0 0 0 2 4

TFM-1 32 0 0 0 0 2 4
RLSTD 32 8 1 0 2 0 1

TOTAL
SR-1 152 18 48 628 0 20 598

TFM-1 152 18 48 50 0 20 170
RLSTD 136 98 49 50 20 0 167

Table 5.1 presents the hardware complexity of the RLSTD in terms of the number of

basic logic gates and DFFs employed per decoded bit, when compared to the hardware

complexity of the SR-1 and TFM-1 schemes of Table 4.1 used as benchmarks. Ta-

ble 5.1 demonstrates that the number of 2-input MUX gates employed in the TFM-1

and RLSTD schemes is significantly reduced, when compared to those of SR-1 described

in Section 4.2. This may be attributed to SR-1 employing 32 MUXs for the update op-

eration of each of the 18 SR-based EMs and to the employment of 2-input MUXs for the

addition of BSs. Similarly, the number of DFFs employed in the TFM-1 scheme detailed

in Section 4.3 and in the RLSTD scheme described in Section 5.1 is significantly reduced,

owing to the employment of 9-bit TFMs. By contrast, the RLSTD scheme employs a

higher number of 2-input or gates, when compared to both SR-1 and TFM-1, owing

to the employment of these logic gates for the approximate addition of BSs. However,

Table 5.2 demonstrates that the increased number of or gates does not increase the

chip area or the overall gate count of the RLSTD.

Table 5.2 compares the hardware efficiency of different STDs, when using Taiwan Semi-

conductor (TSMC) 90 nm technology. We present results for the rate 1/3, 8-state,

tailbiting RLSTD, TFM-1 and SR-1 schemes, using S-Random interleavers and the

state-transition diagram of Figure 4.1(c), in order to allow direct comparison with the

108 Chapter5. Reduced-Latency Stochastic Turbo Decoders

results of Table 4.1 in Section 4.4. Table 5.2 characterizes the various STDs in terms of

their diverse characteristics, including the chip area per decoded bit, clock period, num-

ber of equivalent nand gates, number of DCs, latency, throughput, as well as area and

energy efficiency, when using TSMC 90 nm technology. Additionally, we employ NDS

associated with η = 1 and ψ = 2 for the proposed RLSTD as well as for the SR-1 and

TFM-1 schemes, as described in Section 2.3.2. As described in Section 4.4, the results of

Table 5.2 were obtained from the physical layout generated by the automatic place and

route of the RLSTD, TFM-1 and SR-1 STDs using Cadence SoC Encounter [72]. These

results were obtained for the cases, where the supply voltage of the STDs is set to 1.20 V

in the absence of power supply variations. Both the critical clock period and the energy

consumption are obtained from Synopsys PrimeTime [73]. The average number of DCs,

latency, throughput and energy efficiency were obtained from post-layout gate-level sim-

ulations, with the extracted parasitics and annotated delays without timing errors, when

using early stopping and allowing a maximum of 105 DCs for both SR-1 and TFM-1, as

described in Section 4.4, as well as a maximum of 104 DCs for the proposed RLSTD de-

scribed in Section 5.1. We assume that the different STDs operate at their critical clock

period, for BPSK transmission over an AWGN channel having an SNR, where a BER

of 10−5 is achieved. We also present the hardware efficiency of the half-stochastic STD,

as reported in [42]. Note that the hardware results of [42] correspond to the synthesis

of a 2048-bit fully-parallel decoder using TSMC 90 nm technology. However, the au-

thors of [42] did not quantify the area or energy consumption of this half-stochastic STD

implementation, hence the corresponding characteristics cannot be shown in Table 5.2.

Table 5.2 demonstrates that the reduced number of DCs offered by the RLSTDs fa-

cilitate reduced latencies, increased throughputs as well as improved area and energy

efficiencies, when compared to the benchmarks SR-1 and TFM-1. As shown in Ta-

ble 5.2, the proposed RLSTD has the lowest gate count and area per bit among all

the STDs considered. However, the proposed RLSTD presents a larger gate count than

that of the half-stochastic decoder of [42]. The proposed RLSTD enables the highest

clock frequency and the lowest average number of DCs, when the frame length is 50

bits, resulting in the lowest latency among all schemes considered. This is particularly

attractive in MCMTCs, where emergency or control messages comprising as low as tens

of bits must be reliably communicated with ultra-low latency.

Our simulations suggest that the number of DCs required by the proposed RLSTD scales

approximately linearly with the frame length. We performed BER simulations of the

RLSTD having a frame length of 2048 and an SNR of Eb/N0 = 1.25 dB, which we

found to result in the desired BER of 10−5. Here, the average number of DCs required

by the RLSTD is 6 × 103. Owing to this, the throughput and area efficiency of the

RLSTD having a frame length of 2048 bits are significantly lower than those of the half-

stochastic decoder of [42], as shown in Table 5.2. However, the half-stochastic decoder

employs a fixed number of 280 DCs. Therefore, the latency of this design remains

5.3. Hardware Implementation of the Reduced-Latency Stochastic Turbo
Decoder 109

Table 5.2: Hardware efficiency of different STDs.

RLSTD TFM-1 SR-1 [39] [42]

Algorithm Stochastic Stochastic Stochastic Half-stoch.

Area per bit
0.0110 0.0129 0.026 -

(mm2)

Gate count
4.4 K 4.6 K 8.6 K 3.4 K

per bit

Tclk 1.7 ns 2.2 ns 4.0 ns 1.8 ns

Frequency 588 MHz 454 MHz 250 MHz 550 MHz

Frame length
50 200 2048 50 200 50 200 2048

(bits)

BER 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5

@ Eb/N0 3.8 dB 2.6 dB 1.25 dB 3.8 dB 2.55 dB 3.95 dB 2.75 dB 1.25 dB

Average DCs 200 800 6 K 7.5 K 19 K 10 K 20 K 280

Latency
0.34 1.36 10.2 16.5 41.8 40 80 0.504

(µs)

Throughput
147 147 200 3.0 4.7 1.2 2.5 4000

(Mbps)

Area eff.
669 167 22 13 5.1 2.8 1.5 574

(bps/gates)

Area eff.
267 66 8.8 4.65 1.82 0.92 0.48 -

(Mbps/mm2)

Energy eff.
0.76 3.04 31.13 41.25 104 240 480 -

(nJ/bit)

constant regardless of the frame length, as opposed to the RLSTD implementation.

As a result, for a frame length of 50 bits, the latency of the half-stochastic decoder is

1.8 ns× 280 = 0.504 µs and its throughput is 50/0.504 µs = 99 Mbps, which are inferior

to those of the proposed RLSTD. Based on these results, we recommend the employment

of the proposed RLSTD for short-frame-length, ultra-low-latency applications, such as

MCMTCs.

The hardware efficiency of the RLSTD is further detailed in Figure 5.7, which compares

the hardware implementation trade-offs associated with the 50-bit and 200-bit versions

of the TFM-1 and RLSTD schemes, relative to the benchmark scheme SR-1, for the case

where Eb/N0 = 3.0 dB. Figure 5.7(a) shows that the average number of DCs required by

the proposed RLSTD scheme is as low as 0.035 times the corresponding number required

by SR-1. As a result of this, the latency, throughput and energy consumption of the

modified RLSTD are 0.015, 65 and 0.005 times those of the benchmark scheme SR-1,

respectively. Similar trends may be observed for the hardware implementation results

of the 200-bit STDs, as shown in Figure 5.7(b). Here, the proposed RLSTD exhibits a

latency that is just 0.013 times the latency of SR-1, which increases the throughput by

78 times and consumes 0.005 times the energy.

110 Chapter5. Reduced-Latency Stochastic Turbo Decoders

BE
R

En
er
gy

Th
ro
ug
hp
ut

La
te
nc
y

TC
LKD

Cs

102

101

100

10−1

10−2

0.
51

0.
03
5

0.
42

0.
01
5

0.
00
5

65

0.
77

(RLSTD, 1.20 V)
(TFM-1, 1.20 V)
(SR-1, 1.20 V)

Ch
ip
A
re
a

(a)

BE
R

En
er
gy

Th
ro
ug
hp
ut

La
te
nc
y

TC
LKD

Cs

102

101

100

10−1

10−2 0.
03
0

0.
42

0.
01
3

0.
00
5

78

0.
25

(RLSTD, 1.20 V)
(TFM-1, 1.20 V)
(SR-1, 1.20 V)

0.
51

Ch
ip
A
re
a

(b)

Figure 5.7: Hardware implementation results for different STDs, normalized
relative to SR-1, when operated at VDD = 1.20 V and when Eb/N0 = 3.0 dB.
(a) 50-bit STDs. (b) 200-bit STDs.

5.4 Chapter Conclusions

In this chapter, we have proposed modifications to the state-of-the-art STD that signif-

icantly reduce the average number of DCs required for successfully decoding a frame.

This has been achieved with the employment of or gates for the approximate stochastic

addition of BSs, as well as a reduced-complexity TFM and a single output DFF for the

estimation of the decoded bit. As a result of these modifications, the proposed RLSTD

improves the latency, throughput and energy efficiency of the state-of-the-art STD by an

order of magnitude, without imposing an area extension and without degrading the error

correction capabilities of the STD. Moreover, we have characterized the hardware com-

plexity and the trade-offs between the chip area, latency, throughput, energy efficiency

and error correction capabilities of the proposed RLSTD, when compared to the schemes

SR-1 and TFM-1 presented in Chapter 4. Our simulations show that the proposed 50-

bit RLSTD exhibits an improved BER, requires 0.035 times the number of DCs, 0.015

5.4. Chapter Conclusions 111

times the latency and 0.005 times the energy of the state-of-the-art SR-1, while increas-

ing the throughput 65 times and employing only 0.51 times the chip area. Similar trends

were found for the proposed 200-bit RLSTD, which offers a throughput that is 78 times

the throughput of SR-1. Based on the results presented in Section 5.3, we conclude

that the proposed RLSTD is particularly suited for short-frame-length and low-latency

communication systems, such as those required in next-generation MCMTCs.

Note that the different STDs presented in this chapter and in Chapter 4 exhibit very

low chip area per bit, but the cost of this limits the processing throughput to the order

of Mbps. However, next-generation communication standards [10, 11] are expected to

require processing throughputs on the order of tens of Gbps. In order to fulfill this

high throughput requirement, a Fully-Parallel Turbo Decoder (FPTD) algorithm has

been recently proposed in [60]. This FPTD algorithm achieves throughputs in the order

of tens of Gbps, albeit at the cost of a large computational complexity. Building on

this, Chapter 6 reviews the hardware implementation of the FPTD algorithm of [60].

In addition to this, we present a novel Reduced-Critical-Path Fully-Parallel Turbo De-

coder (RCP-FPTD) algorithm, which further enhances the attainable throughput of

turbo decoder implementations. Moreover, we present a timing analysis for determining

the causes and effects of timing errors in the FPTD and RCP-FPTD implementations.

Finally, Chapter 6 details the employment of timing-error-tolerant design techniques in

the FPTD and RCP-FPTD implementations for enhancing their BER performance and

hardware efficiency in the presence of timing errors.

Chapter 6
Timing-Error-Tolerant

Fully-Parallel Turbo Decoders

The various Stochastic Turbo Decoders (STDs) presented in the previous chapters re-

quire a large number of Decoding Cycles (DCs) for achieving iterative decoding con-

vergence. As an example of this, the STDs of Chapter 4 typically require thousands of

DCs to successfully decode each frame. This limits the attainable throughput of these

STDs to only a few Mbps. This limitation is partially overcome by the Reduced-Latency

STD (RLSTD) of Chapter 5, which requires only hundreds of DCs, achieving through-

puts in the order of hundreds of Mbps, while maintaining low chip area requirements.

However, the number of DCs required by the RLSTD scales almost linearly with the

frame length of the turbo code. As a result of this, the proposed RLSTD may only be con-

sidered suitable for short-frame-length communication systems, such as as those required

in the next-generation Mission-Critical Machine-Type Communication (MCMTC) [43].

In contrast to this, the next-generation of wireless communication standards [10, 11] are

expected to require processing throughputs on the order of tens of Gbps. Significant

efforts have been made along the way to fulfilling these throughput requirements. As an

example of this, the state-of-the-art turbo decoder implementations achieve processing

throughputs of 2.15 Gbps [57], 1.67 Gbps [58] and 1.28 Gbps [59]. These turbo de-

coder implementations rely on increasing the parallelism of the highly-serial Logarithmic

BCJR (Log-BCJR) algorithm. Despite these efforts, the proposed solutions still require

hundreds of clock periods to complete a decoding iteration, resulting in a requirement

for thousands of clock periods for completing the iterative decoding process. This may

be attributed to the inherently serial nature of the Log-BCJR algorithm. Moreover, the

This chapter is partially based on the following publications.
I. Perez-Andrade, S. Zhong, K. Li, A. Li, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo,

”Timing-error-tolerant VLSI implementation of fully-parallel turbo decoding,” in IEEE J. Solid-State
Circuits, [In preparation].

114 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

implementations of [57, 58, 59] do not consider fault tolerant design. As a result of this,

the significant throughput gains offered by these implementations may be diminished by

the occurrence of processing errors, if the operating conditions of the system fluctuate

below the recommended safety margins.

In order to fulfill the high throughput requirements of next-generation wireless commu-

nication standards, a Fully-Parallel Turbo Decoder (FPTD) algorithm has been recently

proposed in [60]. This FPTD algorithm facilitates throughputs in the order of tens of

Gbps, since it disposes with the highly-serial data dependencies of the Log-BCJR algo-

rithm. Owing to this, each FPTD decoding iteration may be completed in a single clock

period, albeit at the cost of a large computational complexity.

Against this background, this chapter reviews the recently-proposed FPTD algorithm

of [60]. Moreover, we present a novel Reduced-Critical-Path Fully-Parallel Turbo De-

coder (RCP-FPTD) algorithm, which further improves the processing throughput of turbo

decoders. In addition to this, we characterize the different trade-offs associated with the

hardware implementation of the FPTD and the RCP-FPTD. Furthermore, we investi-

gate the inherent tolerance to timing errors of the FPTD and RCP-FPTD implementa-

tions. This is achieved by performing a timing analysis to characterize the causes and

effects of timing errors in FPTD and RCP-FPTD implementations. Finally, we employ

the Better-Than-Worst-Case (BTWC) design approach [19] and Error Detection and

Correction (EDAC) techniques [13, 20, 21, 22] for mitigating the effect of timing errors

in the FPTD and RCP-FPTD implementations, which significantly enhance their error

correction capabilities and the hardware efficiency in the presence of timing errors.

The rest of this chapter is structured as follows. Section 6.1 reviews the traditional

Log-BCJR algorithm in order to allow its comparison with the recently-proposed FPTD

algorithm of [60], which is presented in Section 6.2. Moreover, Section 6.2 reviews

the hardware implementation requirements of the FPTD Section 6.3 presents the novel

RCP-FPTD algorithm and its hardware implementation requirements. Following this,

Section 6.4 presents the trade-off analysis of the FPTD and RCP-FPTD implementa-

tions, when compared to RLSTD presented in Chapter 5, as well as when compared to

the state-of-the-art turbo decoder implementations of [57, 58, 59]. Section 6.5 investi-

gates the inherent tolerance to timing errors of the FPTD and RCP-FPTD implementa-

tions. This is achieved by performing a timing analysis for determining the causes and

effects of timing errors in the FPTD and RCP-FPTD implementations. Section 6.6 de-

tails the employment of BTWC and EDAC design techniques for mitigating the negative

effects of timing errors in the FPTD and RCP-FPTD implementations. Furthermore,

Section 6.6 characterizes the trade-off between the error correction performance and

hardware efficiency of the various timing-error tolerant FPTD and RCP-FPTD imple-

mentations. Finally, Section 6.7 summarizes our main findings, while Section 6.8 presents

our concluding remarks for this chapter.

6.1. Logarithmic BCJR Algorithm 115

6.1 Logarithmic BCJR Algorithm

This section reviews the concept of turbo encoding and turbo decoding, followed by

a review of the Log-BCJR algorithm. However, the discussion of Section 4.1 regard-

ing turbo encoding is repeated in this section for the benefit of the reader. A turbo

code comprises the parallel concatenation of two convolutional codes separated by an

interleaver, as shown in Figure 4.1(a) and repeated in Figure 6.1 for convenience.

bu
1

∏

bl
1

bl
3

bu
3

bu
2

bl
2

Lower
Convolutional

Encoder

Upper
Convolutional

Encoder

Figure 6.1: Simplified turbo encoder.

A message frame bu
1 = [bu1,k]

N
k=1 comprising N bits is provided to the upper convolutional

encoder, which outputs a parity frame bu
2 = [bu2,k]

N
k=1 and a systematic frame bu

3 =

[bu2,k]
N
k=1, each comprising N bits. The message frame bu

1 is also interleaved, in order

to obtain the interleaved message frame bl
1 = [bl1,k]

N
k=1, which is provided to the lower

convolutional encoder so that it can generate the parity frame bl
2 = [bl2,k]

N
k=1 and the

systematic frame bl
3 = [bl3,k]

N
k=1. Note that in a rate 1/3 turbo code, the systematic

frame bl
3 is not transmitted, as represented by the dotted line in Figure 6.1. Here, the

superscripts ‘u’ and ‘l’ indicate relevance to the upper and lower convolutional encoders,

respectively. However, these superscripts are only used throughout the rest of this

chapter for explicitly distinguishing between the two convolutional encoders and are

omitted when the discussion applies equally to both.

As mentioned in Section 4.1, the turbo decoder operates on the basis of the Bahl-Cocke-

Jelinek-Raviv (BCJR) algorithm [63], which is described by Equations (4.1) to (4.6).

However, the BCJR algorithm relies on the multiplication and addition of probabilities

in the range [0,1], which can lead to numerical stability issues, when the probabili-

ties adopt very small values. In order to overcome this problem, the BCJR algorithm

can be operated in the logarithmic domain. The resulting algorithm is referred to as

Log-BCJR [87] and its operation is based on Logarithmic Likelihood Ratios (LLRs), as

defined in Equation 3.7 and repeated here for convenience as

LP = log
P (b = 0)

P (b = 1)
.

116 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

γk(s
′, s) = b1(s′, s) · ba1,k + b2(s′, s) · ba2,k + b3(s′, s) · ba3,k (6.1)

αk(s) = max*

all s′
[γk(s

′, s) + αk−1(s′)] (6.2)

βk−1(s′) = max*

all s
[γk(s

′, s) + βk(s)] (6.3)

δk(s
′, s) = γk + αk−1(s′) + βk(s) (6.4)

be1,k =

[
max*

{(s′,s)|b1(s′,s)=1}
[δk(s

′, s)]
]
−
[

max*

{(s′,s)|b1(s′,s)=0}
[δk(s

′, s)]
]
− ba1,k − ba3,k (6.5)

b̂1,k = (ba1,k + be1,k + ba3,k) > 0 (6.6)

The Log-BCJR operates on the basis of Equations (6.1) to (6.6), which can be obtained

by taking the natural logarithm of Equations (4.1) to (4.6). Here, Equations (6.2), (6.3)

and (6.5) employ the Jacobian logarithm, which is defined as

max*(a, b) = max(a, b) + log[1 + exp−|a+b|], (6.7)

for the case of two operands and may be extended to more operands by exploiting

its associative property, where max*(a, b, c) = max*(max*(a, b), c), for example. The

complexity of the Log-BCJR algorithm can be reduced by using the approximation

max*(a, b) ≈ max(a, b), (6.8)

at the cost of slightly degrading the Bit Error Ratio (BER) performance of the resultant

Max-Log-BCJR algorithm, as detailed in [87].

Figure 6.2 illustrates the implementation of the Log-BCJR algorithm employing Equa-

tions (6.1) to (6.6), for the case of a turbo decoder having a frame length of N -bits.

After their transmission over a wireless channel, the received frames of soft-valued LLRs

bu,a
2 = [bu,a2,k]Nk=1, bu,a

3 = [bu,a3,k]Nk=1, bl,a
2 = [bl,a2,k]

N
k=1 and bl,a

3 = [bl,a3,k]
N
k=1 are provided to the

turbo decoder, which is comprised of the upper and lower convolutional decoders sepa-

rated by an interleaver, as shown in Figure 6.2. Note that the frame of lower systematic

LLRs bl,a
3 may be obtained by interleaving the upper systematic LLRs bu,a

3 , since bl
3 is

typically not transmitted in turbo codes having coding rate of 1/3.

In each iteration of the Log-BCJR algorithm, each convolutional decoder performs a

forward recursion for calculating the state metrics αk(s) of Equation 6.2, followed by

a backward recursion for calculating βk−1(s′) of Equation 6.3. More specifically, each

iteration of the Log-BCJR algorithm comprises the following steps. The kth block of

the first row of the upper convolutional decoder combines the three a priori LLRs bu,a1,k,

bu,a2,k and bu,a3,k, in order to obtain an a priori branch metric γu
k (s′, s) for each transition

of Figure 4.1(c) from a previous state s′ into the next state s. Following this, the kth

6.1. Logarithmic BCJR Algorithm 117

αu
0 αu

1 αu
2 αu

3
αu

N−1 αu
N

Forward
recursion

Backward
recursion

Backward
recursion

Forward
recursion

Interleaver

βu
Nβu

1 βu
2 βu

3
βu
N−1βu

0

bu,a1,1 bu,a1,2 bu,a1,3 bu,a1,Nbu,e1,1 bu,e1,2 bu,e1,3 bu,e1,N

bu,a2,1 bu,a2,2 bu,a2,3 bu,a2,Nbu,a3,1 bu,a3,2 bu,a3,3 bu,a3,N

bl,a1,1 bl,a1,2 bl,a1,3 bl,a1,Nbl,e1,1 bl,e1,2 bl,e1,3 bl,e1,N

βl
1 βl

2 βl
3

βl
N−1 βl

Nβl
0

αl
0 αl

1 αl
2 αl

3
αl

N−1 αl
N

Upper convolutional decoder

Lower convolutional decoder

bl,a2,1 bl,a2,2 bl,a2,3 bl,a2,Nbl,a3,1 bl,a3,2 bl,a3,3 bl,a3,N

Figure 6.2: Data dependencies of the LogBCJR algorithm [60, Fig. 1(c)].

block of the first row of the upper convolutional decoder employs Equation 6.2 during

the forward recursion for providing the vector of state metrics αu
k = [αu

k(s)]7s=0. Note

that the calculation of the state metrics αu
k is a serial process, where the kth block of

the forward recursion may be operated only after the preceding (k − 1)th block. The

forward recursion continues until all N blocks have been processed in order. After this,

the N blocks are processed in reverse order during the backward recursion, where the

kth block of the second row of the upper convolutional decoder employs Equation 6.3

for providing the state metrics βu
k−1 = [βu

k−1(s′)]7s′=0. In analogy to the operation of

the forward recursion, the backward recursion operates serially, where the kth block

may be operated only after the block (k + 1)th block. Additionally, the kth block of the

second row of the upper convolutional decoder employs Equation 6.4 for proving the a

posteriori branch metrics δk(s
′, s). Furthermore, the kth block in the second row of the

upper convolutional decoder employs Equation 6.5 for calculating the extrinsic LLR bu,e1,k.

Following this, the frame of extrinsic LLRs bu,e
1 = [bu,e1,k]

N
k=1 is interleaved and passed

to the lower convolutional decoder as the frame of a priori LLRs bu,a
1 = [bu,a1,k]Nk=1. In

analogy to the operation of the upper decoder, the lower convolutional decoder employs

Equations (6.1) to (6.5) to combine the received LLRs bl,a
2 and bl,a

3 and the a priori LLRs

bl,a
1 provided by the upper convolutional decoder, in order to provide the extrinsic LLRs

118 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

bl,e
1 = [bl,e1,k]

N
k=1, which are de-interleaved and passed to the upper convolutional decoder

as the frame of a priori LLRs bu,a
1 . Finally, each block of the upper convolutional decoder

combines the a priori LLR bu,a1,k provided by the lower convolutional decoder with the

extrinsic LLR bu,e1,k and the received systematic LLR bu,a3,k using Equation 6.6, in order

to estimate the decoded bit b̂1,k. This iterative process is repeated until an accurate

estimation of the decoded frame can be obtained, or until the maximum affordable

number of iterations has been reached.

Each iteration of the Log-BCJR algorithm comprises the sequential operation of the 4N

blocks in the order indicated in the blue arrows of Figure 6.2. Owing to this, one iteration

of the Log-BCJR algorithm is completed in T = 4N clock periods. As a result of this,

Log-BCJR turbo decoders may exhibit a large processing latency, particularly when

decoded large frame lengths. In order to overcome this problem, various techniques

have been proposed for increasing the parallelism and reducing the number of clock

periods required by the Log-BCJR algorithm. As an example of this, the authors of [57]

proposed the employment of the Non-Sliding Window (NSW) technique for decomposing

the rows of Figure 6.2 into 32 windows, each comprising an equal number of blocks. This

technique mitigates the highly-serial data dependencies of the Log-BCJR algorithm by

operating all 32 windows simultaneously, with each window’s recursions employing the

results provided by the adjacent windows in the previous iteration. Additionally, the

authors of [57] employed the Radix-4 transform for merging two of the state-transition

diagrams of Figure 4.1(c) into one, effectively halving the number of blocks of Figure 6.2,

albeit at the cost of doubling the number of a priori LLRs employed by each block and

more than doubling their computational complexity. By combining the NSW and the

Radix-4 transform, the state-of-the-art Long Term Evolution (LTE) [9] turbo decoder

of [57] requires T = N/32 consecutive clock periods to complete one decoding iteration

of the Log-BCJR algorithm. When employing the longest frame length defined in the

LTE standard [9], the state-of-the-art turbo decoder of [57] requires T = 6144/32 =

192 consecutive clock periods per decoding iteration, which is nearly two orders-of-

magnitude higher than that of the novel FPTD algorithm recently proposed in [60]. In

the FPTD algorithm of [60], all blocks of the upper and lower convolutional decoders

may be operated concurrently, allowing the iterative decoding process to be completed

in only tens of consecutive clock periods. The FPTD algorithm of [60] and its hardware

implementation is described in the following section.

6.2 Fully-Parallel Turbo Decoder

The following sections describe the FPTD algorithm of [60] and its hardware implemen-

tation requirements, for the case of the turbo decoder specified in the LTE standard. In

Section 6.2.1, we summarize the FPTD algorithm of [60], while Section 6.2.2 details its

hardware implementation requirements.

6.2.1. Algorithm 119

6.2.1 Algorithm

The FPTD algorithm of [60] operates on the basis of Equations (6.9) to (6.13).

γtk(s
′, s) = b1(s′, s) · bt−1,a

1,k + b2(s′, s) · ba2,k + b3(s′, s) · ba3,k (6.9)

αtk(s) = max*

all s′
[γtk(s

′, s) + αt−1
k−1(s′)] (6.10)

βtk−1(s′) = max*

all s
[γtk(s

′, s) + βt−1
k (s)] (6.11)

bt,e1,k =

[
max*

{(s′,s)|b1(s′,s)=1}

[
γtk(s

′, s) + αt−1
k−1(s′) + βt−1

k (s)
]]
−

[
max*

{(s′,s)|b1(s′,s)=0}

[
γtk(s

′, s) + αt−1
k−1(s′) + βt−1

k (s)
]]
− [bt−1,a

1,k + ba3,k]

(6.12)

b̂t1,k = (bt−1,a
1,k + bt−1,e

1,k + ba3,k) > 0 (6.13)

Note that to aid our discussions, the notation t and t− 1 is included in Equations (6.9)

to (6.13), in order to explicitly indicate the clock period when each variable is calculated.

After their transmission over a wireless channel, the received LLRs bu,a
2 = [bu,a2,k]Nk=1,

bu,a
3 = [bu,a3,k]Nk=1, bl,a

2 = [bl,a2,k]
N
k=1 and bl,a

3 = [bl,a3,k]
N
k=1 are provided to the FPTD of

Figure 6.3, where bl,a
3 is obtained by interleaving bu,a

3 , as described in Section 6.1. Note

that this notation does not include the period index t, since these LLRs remain constant

throughout the iterative decoding process.

During the tth clock period, the kth block of Figure 6.3 combines the three a priori

LLRs bt−1,a
1,k , ba2,k, b

a
3,k using Equation 6.9, in order to obtain the branch metrics γtk(s

′, s).

Similarly, in the same tth clock period, the kth block of Figure 6.3 employs Equa-

tions (6.10) and (6.11) to provide the vectors of extrinsic state metrics αtk = [αtk(s)]
7
s=0

and βtk−1 = [βtk−1(s′)]7s′=0, respectively. Still in the tth clock period, the kth block in

the FPTD employs Equation 6.12 for providing the extrinsic LLR bt,e1,k. The frame of

extrinsic LLRs bt,e1 = [bt,e1,k]
N
k=1 is interleaved and provided to the other convolutional

decoder as the a priori frame of LLRs bt,a1 = [bt,a1,k]
N
k=1. Finally, the FPTD employs

Equation 6.13 for estimating the decoded bit b̂t1,k. This iterative process is repeated un-

til an accurate estimation of the decoded frame can be obtained, or until the maximum

affordable number of iterations has been reached.

Note that in contrast to the operation of the Log-BCJR turbo decoder, the FPTD does

not rely on forward and backward recursions in either the upper or lower convolutional

decoders. More specifically, all 2N blocks of the FPTD of Figure 6.3 are operated

simultaneously in the same tth clock period. As a result of this, the FPTD requires

only T = 1 clock period for completing each decoding iteration, compared to the T =

4N clock periods required by the Log-BCJR algorithm. As an explicit benefit of this,

120 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

Interleaver

· · ·

· · ·

bt,u,a1,1 bt,u,e1,1 bt,u,a1,2 bt,u,e1,2 bt,u,a1,3 bt,u,a1,Nbt,u,e1,3 bt,u,e1,N

bt,l,a1,1bt,l,e1,1 bt,l,a1,2bt,l,e1,2 bt,l,a1,3 bt,l,a1,Nbt,l,e1,3 bt,l,e1,N

bu,a2,1 bu,a3,1 bu,a2,2 bu,a3,2 bu,a2,3 bu,a3,3 bu,a2,N bu,a3,N

bl,a2,1 bl,a3,1 bl,a3,2 bl,a3,3 bl,a3,Nbl,a2,2 bl,a2,3 bl,a2,N

αu
0 αt,u

1 αt,u
2 αt,u

3
αt,u

N−1 αt,u
N

βt,u
1

βt,u
N−1 βu

Nβt,u
2 βt,u

3βt,u
0

βt,l
0 βt,l

1 βt,l
2 βt,l

3
βt,l
N−1 βl

N

αl
0 αt,l

1 αt,l
2 αt,l

3
αt,l

N−1 αt,l
N

Figure 6.3: Block diagram of the FPTD algorithm [60, Fig. 1(b)].

the processing latency and throughput of the FPTD are significantly improved, when

compared to those of the traditional Log-BCJR algorithm. However, this is achieved at

the cost of an increased overall complexity, since more decoding iterations are required

to achieve the same error correction performance, as detailed in [60].

When employed for the LTE turbo code [9], the FPTD algorithm benefits from the

odd-even nature of the LTE interleaver [88]. More specifically, the LTE interleaver only

connects odd-indexed blocks in the upper row of Figure 6.3 to odd-indexed blocks in

the lower row. Similarly, even-indexed blocks in the upper row are only connected to

even-indexed blocks in the lower row. As a result of this, none of the light-shaded

blocks of Figure 6.3 are directly connected with each other, either within a row or via

the interleaver. Likewise, none of the dark-shaded blocks of Figure 6.3 are directly

connected with each other. This connection pattern allows the 2N blocks of Figure 6.3

to be grouped into two groups. The first group corresponds to the light-shaded blocks,

comprising odd-indexed blocks in the upper row and even-indexed blocks in the lower

row. Meanwhile, the second group corresponds to the dark-shaded blocks, comprising

even-indexed blocks in the upper row and odd-indexed blocks in the lower row. Owing

to this, the simultaneous operation in clock period t of the two groups of the FPTD

may be considered as two independent iterative decoding process with no influence on

each other, as detailed in [60]. Therefore, one of the two decoding processes may be

considered to be redundant and may be discarded. This may be achieved by alternating

6.2.1. Algorithm 121

the operation of the light-shaded and dark-shaded groups in alternate clock periods t. In

this configuration, one decoding iteration of the FPTD is completed in T = 2 consecutive

clock periods. Note that this alternate operation of the light- and dark-shaded blocks of

Figure 6.3 is naturally supported by Equations (6.9) to (6.13), since all variables having

a time index of (t − 1) are provided by blocks having the opposite shading to that

of the kth block under consideration. Note that the odd-even operation of the FPTD

achieves the same error correction capability using the same number of clock periods as

the T = 1 approach. However, this is achieved with a 50% complexity reduction, owing

to the operation of only half of the 2N blocks of Figure 6.3 in each clock period t.

In order to further reduce the complexity of the FPTD algorithm, the max* operation

of Equations (6.10) to (6.12) may be approximated by the max operation, at the cost

of slightly degrading the BER performance of the decoder, in analogy with the Max-

Log-BCJR algorithm, as described in Section 6.1. To overcome this BER performance

degradation, it is possible to scale the a priori LLR bt,a1,k by a constant factor before it

is used by the kth block of the FPTD, as detailed in [89]. The scaling of bt,a1,k effectively

reduces the confidence of the LLR, preventing its magnitude from rapidly growing in

successive decoding iterations. Moreover, the scaling of the a priori LLRs is particularly

useful in the hardware implementation of Fixed-Point (FX) decoders for the sake of

improving their error correction capabilities, as we will demonstrate in Section 6.4

The LTE turbo encoder guarantees that the initial and final states of the transition

diagram of Figure 4.1(c) are s = 0. This is achieved by employing termination bits at

end of the encoding process of the N message bits. More specifically, each convolutional

encoder of Figure 4.1(a) provides three parity termination bits b1,N+1, b1,N+2 and b1,N+3,

as well as three systematic termination bits b2,N+1, b2,N+2 and b2,N+3. As a result of

this, the received LLRs ba1,N+1, ba1,N+2, ba1,N+3 and ba2,N+1, ba2,N+2, ba2,N+3 are provided

to three additional blocks positioned at the end of each row of the FPTD of Figure 6.3,

as shown in Figure 6.4.

These three blocks perform a backward recursion before the FPTD iterative decod-

ing process begins, using only Equations (6.9) and (6.11). Here βN+3(0) = 0, while

βN+3(s′) = −∞ for all other s′ ∈ [1, 7]. Likewise, α0(0) = 0 is used throughout the

iterative decoding process, while α0(s) = −∞ for all other s ∈ [1, 7]. The α0
k and β0

k−1

provided to all other blocks are initialized using zero-values before the start of the it-

erative decoding process. Similarly, the frame of a priori LLRs b0,a
1 is initialized with

zero-values.

In the general case where the interleaver pattern prevents the grouping of the 2N blocks

of Figure 6.3 into two groups, the simultaneous operation in clock period t of all 2N

blocks is recommended, as detailed in [60].

122 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

· · ·

· · ·
αt,u

N−1 αt,u
N

bt,u,a1,N bt,u,e1,N

βt,u
N−1 βu

N

bt,l,a1,Nbt,l,e1,N

αt,l
N−1 αl

N

βl
N+1 βl

N+2 βl
N+3

βt,l
N−1 βl

N

· · ·

bu,a2,N bu,a3,N

bl,a1,N+1

bl,a2,N+1bl,a3,Nbl,a2,N

bl,a1,N+2

bl,a2,N+2

bl,a1,N+3

bl,a2,N+3

βu
N+1 βu

N+2 βu
N+3

bu,a2,N+1

bu,a1,N+1

bu,a2,N+2

bu,a1,N+2

bu,a2,N+3

bu,a1,N+3

Figure 6.4: Schematic of the FPTD employing termination bits [60, Fig. 3].

6.2.2 Hardware Implementation

This section presents the hardware implementation requirements of the FPTD using FX

two’s complement arithmetic, for the case of implementing the LTE turbo decoder [9].

More specifically, we present the implementation of the 8-state FPTD using the state

transition diagram of Figure 4.1(c) and odd-even interleavers [88] supporting a frame

length in the range N = [40, 6144], as specified in the LTE standard [9]. Figure 6.5

shows how Figure 6.3 can be modified to explicitly show the employment of D-type Flip

Flops (DFFs) in the hardware implementation of the FPTD. Here, the blocks ‘Reg’

represent a group of DFFs for transferring LLRs between adjacent blocks of the FPTD.

Each block of the FPTD employs the block diagram of the blue dashed box located

in the bottom part of Figure 6.5 for the computation of Equations (6.9) to (6.13). In

this configuration, we assume that the received LLRs provided by the demodulator are

stored externally to the blocks of the FPTD. Note that the forward state metrics αN ,

as well as the backward state metrics β0 are not passed on to any of the blocks of the

FPTD. As a result of this, the blocks U1 and L1 may omit the implementation of the β

module, as represented by the dotted lines in Figure 6.5. Similarly, the blocks UN and

LN may omit the implementation of the α module.

The following sections detail the hardware implementation of Equations (6.9) to (6.13).

We begin by describing how Noise-Dependent Scaling (NDS) may be employed in the

6.2.2. Hardware Implementation 123

FPTD for overcoming the BER performance degradation associated with the employ-

ment of FX computations. Following this, we describe how the odd-even operation of

the FPTD may be achieved. After this, we detail the number of quantization bits re-

quired by each LLR,state metric and intermediate variable in the FX representation of

the FPTD algorithm. Finally, we detail the hardware requirements of Equations (6.9)

to (6.13).

Regαt,u
1

αu
0

βt,u
0

U1

Reg

Reg

bt,u,e1,1

bu,a2,1 bu,a3,1

RegReg

Regαt,u
2

βt,u
1

U2

Reg

Reg

bt,u,e1,2

bu,a2,2 bu,a3,2

RegReg

Regαt,u
3

βt,u
2

U3

Reg

Reg

bt,u,e1,3

bu,a2,3 bu,a3,3

RegReg

Regαt,u
N

βt,u
N−1

βu
N

UN

Reg

Reg

bt,u,e1,N

bu,a2,N bu,a3,N

RegReg

Regαt,l
1

αl
0

βt,l
0

L1Reg

bl,a3,1

bt,l,e1,1

RegReg

bl,a2,1

Regαt,l
2

βt,l
1

L2

Reg

Reg

bl,a3,2

bt,l,e1,2

RegReg

bl,a2,2

Regαt,l
3

βt,l
2

L3

Reg

Reg

bl,a3,3

bt,l,e1,3

RegReg

bl,a2,3

Regαt,l
N

βt,l
N−1 βl

N

LN

Reg

Reg

bl,a3,N

bt,l,e1,N

RegReg

bl,a2,N

Interleaver

Reg

γ

Eq. (6.10)

Eq. (6.11)

Eq. (6.13)

Eq. (6.9)

b̂t1,k

αt−1
k−1

γk

Eq. (6.12)

α

β

Ext

Dec

7× qe

αt
k

7× qe

2× (qe+1)

βtk−1

7× qe

βt−1
k

7× qe

bt,e1,k

qe

External
memory

External
memory

qeqcqc
ba3,kbt−1,a

1,k ba2,k

βt−1,u
1

bt−1,u,a
1,1

αt−1,u
1

βt−1,u
2

bt−1,u,a
1,2

αt−1,u
2

βt−1,u
3

bt−1,u,a
1,3

αt−1,u
N−1

bt−1,u,a
1,N

βt−1,l
1

bt−1,l,a
1,1

αt−1,l
1

βt−1,l
2

bt−1,l,a
1,2

αt−1,l
2

βt−1,l
3

bt−1,l,a
1,3

αt−1,l
N−1

bt−1,l,a
1,N

Figure 6.5: Block diagram of the FPTD showing the employment of registers.

6.2.2.1 Noise-Dependent-Scaling in FX FPTDs

As shown in Figure 6.5, the frames of parity LLRs ba
2 and systematic LLRs ba

3 are

provided to each row of the FPTD. These LLRs are provided by the demodulator,

which is assumed to employ NDS [29, 64] prior to converting the real-valued LLRs into

124 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

FX LLRs. NDS is particularly useful at high channel Signal to Noise Ratios (SNRs),

since it effectively prevents the received LLRs from adopting either very large positive of

very large negative values, which would saturate the FX number representation. In this

way, NDS mitigates the BER performance degradation associated with the restricted

dynamic range of FX computations [64]. In this method, the LLRs received from the

channel are scaled depending on the channel’s noise power spectral density N0. Assuming

a Binary Phase Shift Keying (BPSK) transmission over an Additive White Gaussian

Noise (AWGN) channel, the kth LLR bai,k is converted into a scaled LLR b
′a
i,k according

to

b
′a
i,k =

ηN0

ψ
· bai,k, (6.14)

where η and ψ are parameters than can be chosen to optimize the BER performance of

the decoder and i ∈ {2, 3} for the case of the FPTD. Note that in order to facilitate our

following discussions throughout the rest of this chapter, the scaled LLRs are simply

referred to as bai,k, since this does not modify the operation of the FPTD algorithm

or its hardware implementation. Our experimental results of Section 6.4 show that

different FPTD hardware implementations benefit from different NDS values, which are

determined by the constants η and ψ. Moreover, since we assume that the demodulator

performs the NDS of the received LLRs, its hardware implementation is not explored in

this work.

6.2.2.2 Odd-Even scheduling

As mentioned in Section 6.2.1, the LTE FPTD benefits from the alternate operation

between the light- and dark-shaded blocks of Figure 6.5. This behavior can be imple-

mented in hardware by using clock gating for enabling and disabling the clock signals of

each group of light- and dark-shaded Reg blocks of Figure 6.5, as shown in Figure 6.6.

Here, two independent clock gating units, each comprising a D-type latch and an and

gate, are employed for generating the Clocklight and Clockdark clock signals, respectively.

This is achieved with the aid of the light/dark signal, which alternates its value in each

clock cycle, as shown in Figure 6.6(b). Moreover, the light/dark signal may be gener-

ated by a simple clock divider. When light/dark takes the value of 1, the clock gating

unit located in the top part of Figure 6.6(a) enables the Clocklight clock signal. In this

condition, the clock gating unit located in the bottom part of Figure 6.6(a) disables the

Clockdark signal. By contrast, light/dark = 0 enables the clock signal Clockdark and

disables Clocklight. In this way, the two clock signals Clocklight and Clockdark will never

be enabled at the same time. Figure 6.6(b) exemplifies how these two clock signals may

be employed by the FPTD for alternating the operation of the light- and dark-shaded

blocks. Here, the output Qlight adopts the value of Dlight only after the rising edge of

Clocklight and retains its value otherwise. Similarly, the output Qdark adopts the value

of Ddark only after the rising edge of Clockdark and retains its value otherwise.

6.2.2. Hardware Implementation 125

light/dark QD

QD

Clockmain

Clocklight

ClockdarkE

E

(a)

Clockmain

Clocklight

Dlight

Clockdark

Ddark

Qlight

Qdark

light/dark

(b)

Figure 6.6: Clock signals for the light- and dark-shaded blocks of the FPTD.
(a) Clock signals generation circuit. (b) Timing diagram.

Note that each of the three termination blocks of Figure 6.4 are operated only once

before the beginning of the iterative decoding process, as described in Section 6.2.1.

Owing to this, these termination blocks may employ the Clockmain for their operation.

Alternatively to the generation of two independent clock signals, a single clock signal

may be employed for updating all blocks of the FPTD. This may be achieved by op-

erating each group of blocks on different edges of the clock, as detailed in [61]. In this

configuration, the DFFs of the light-shaded blocks may update their contents only at

the rising edge of the clock. Similarly, the DFFs of the dark-shaded blocks may update

their contents only at the falling edge of the clock. This configuration requires the clock

signal to have a duty cycle of 50%, in order to allow equal time for the operation of

both groups of blocks. For the purpose of our investigations, we use the clock genera-

tion approach of Figure 6.6, since this configuration facilitates the employment of the

error-tolerant design techniques that will be detailed in Section 6.6.

As mentioned in Section 6.2.1, when the interleaver pattern prevents the grouping of the

2N blocks of Figure 6.3 into two groups, all 2N blocks may be simultaneously operated

126 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

in each clock period t. As a result of this, all 2N blocks may employ the Clockmain signal

for their operation and the clock generation circuits of Figure 6.6(a) may be omitted.

6.2.2.3 LLR quantization

As mentioned in Section 2.2, the number of quantization bits used in FX iterative de-

coders determines both their BER performance and their hardware complexity [64]. To

elaborate further, the number of quantization bits q used in the two’s complement num-

ber representation determines the dynamic range [−2q−1, 2q−1−1] of the FX LLRs. Here,

larger values of q result in larger dynamic ranges, which aid the iterative decoding pro-

cess [64]. However, larger q values also results in larger hardware complexities, owing to

the employment of larger arithmetic circuits. As a result of this, it is necessary to select

a q value for the various a priori and extrinsic LLRs described in Section 6.2.1, in order

to strike an attractive trade-off between BER performance and hardware complexity.

For the purpose of our investigations, the received a priori parity and systematic LLRs

ba2,k, b
a
3,k are quantized using qc = 4 bits. Similarly, the state metrics αk(s), βk−1(s′)

and the extrinsic LLRs be1,k are quantized using qe = 6 bits. Finally, the branch metrics

γk(s
′, s) are quantized using qe + 1 = 7 bits. These values were chosen based on the

best trade-off between the BER performance and hardware efficiency results, as will be

presented in Section 6.4.

6.2.2.4 Branch metrics

The module γ of Figure 6.5 performs the scaling of the a priori LLR bt−1,a
1,k and provides

the branch metrics γk(s
′, s) of Equation 6.9 to the α and β modules. As mentioned

in Section 6.2.1, the a priori LLRs bt−1,a
1,k may be scaled by a constant factor in order

to mitigate the BER performance degradation associated with the employment of FX

numbers [89]. Moreover, the value of the scaling factor can be chosen to optimize the

BER performance of the FPTD. Our experimental results suggest that a scaling factor

of τ = 3/4 = 0.75 facilitates the best trade-off between BER performance and hardware

complexity. More specifically, the multiplication 0.75 × bt−1,a
1,k can be implemented in

FX arithmetic by performing logical shifts and additions, as shown in the lower part of

Figure 6.7. Here, the a priori LLR bt−1,a
1,k is shifted one position to the left in order to

obtain 2 · bt−1,a
1,k . Following this, the shifted LLR is added to bt−1,a

1,k in order to obtain

3 · bt−1,a
1,k . Finally, the result is truncated to obtain only the qe Most Significant Bits

(MSBs), discarding the two Least Significant Bits (LSBs). This truncation is equivalent

to shifting 3 · bt−1,a
1,k two positions to the right in order to obtain 3 · bt−1,a

1,k /4. Note that

in this approach, the hardware complexity of the scaling is equivalent to only a single

adder.

6.2.2. Hardware Implementation 127

bt−1,a1,k

ba2,kba3,k

τ

Scaling

ba2,k
bt−1,a1,k + ba2,k + ba3,k
bt−1,a1,k + ba3,k




γtk(s

′, s)

qc qc

qe

qe + 1

qe + 1

Eq. (6.9)

2bt−1,a1,k 3bt−1,a1,kbt−1,a1,k Logical
shift
<<

Truncation

3
4
bt−1,a1,k

qe qe+1 qe+2 qe

Figure 6.7: Schematic of the hardware implementation of the state metrics
γtk(s

′, s) of the FPTD.

The scaled bt−1,a
1,k is added to the a priori LLRs ba2,k and to ba3,k in order to obtain the

branch metrics γk(s
′, s) of Equation 6.9. More specifically, Equation 6.9 quantifies the

branch metric γk(s
′, s) for each of the 16 transitions of the LTE transition diagram

of Figure 4.1(c) from a previous state s′ into the next state s. However, all of these

16 transitions are caused by one of only four possible combinations of the systematic

and parity b1(s′, s), b2(s′, s) and b3(s′, s), since b3(s′, s) ≡ b1(s′, s). As a result of this,

Equation 6.9 can be expressed as

γtk(s
′, s) =





0 (s′, s) = {(0, 0), (7, 3), (1, 4), (6, 7)}
ba2,k (s′, s) = {(3, 1), (4, 2), (2, 5), (5, 6)}
bt−1,a
1,k + ba3,k (s′, s) = {(2, 1), (5, 2), (3, 5), (4, 6)}
bt−1,a
1,k + ba2,k + ba3,k (s′, s) = {(1, 0), (6, 3), (0, 4), (7, 7)}

Note that some state metrics γtk(s
′, s) adopt zero-values and so there is no need for the

module γ of Figure 6.5 to explicitly provide these values. Owing to this, the branch

metrics γtk(s
′, s) of Equation 6.9 can be implemented as shown in the green box of

Figure 6.7.

The additions bt−1,a
1,k + ba3,k and bt−1,a

1,k + ba2,k + ba3,k of γtk(s
′, s) require (qe + 1) bits in

order to prevent these value from overflowing. By contrast, the a priori LLR ba2,k may

be provided to the α and β modules using only qe bits.

6.2.2.5 State metrics

The modules α and β of Figure 6.3 compute the forward state metrics of Equation 6.10

and the backward state metrics of Equation 6.11, respectively. The hardware imple-

mentation of the state metrics is exemplified for the case of the forward state metric

αtk(s) of Equation 6.10. The implementation of the backward state metrics βtk−1(s′) of

128 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

Equation 6.11 can be performed following the same principles. According to the state

transition diagram of Figure 4.1(c) employed in the LTE standard, the forward state

metrics αtk(s) of Equation 6.10 can be expressed for each of the s = 8 states as follows

αtk(0) = max[αt−1
k (0), αt−1

k (1) + bt−1,a
1,k + ba2,k + ba3,k]

αtk(1) = max[αt−1
k (2) + bt−1,a

1,k + ba3,k, α
t−1
k (3) + ba2,k]

αtk(2) = max[αt−1
k (4) + ba2,k, α

t−1
k (5) + bt−1,a

1,k + ba3,k]

αtk(3) = max[αt−1
k (6) + bt−1,a

1,k + ba2,k + ba3,k, α
t−1
k (7)]

αtk(4) = max[αt−1
k (0) + bt−1,a

1,k + ba2,k + ba3,k, α
t−1
k (1)]

αtk(5) = max[αt−1
k (2) + ba2,k, α

t−1
k (3) + bt−1,a

1,k + ba3,k]

αtk(6) = max[αt−1
k (4) + bt−1,a

1,k + ba3,k, α
t−1
k (5) + ba2,k]

αtk(7) = max[αt−1
k (6), αt−1

k (7) + bt−1,a
1,k + ba2,k + ba3,k].

As a result of this, Equation 6.10 can be implemented using FX adders and max op-

erations, as shown in Figure 6.8. Here, (qe + 1)-bit FX adders are employed for the

additions of the non-zero-values of γtk(s
′, s) with the incoming state metrics αt−1

k−1(s),

which were calculated by the (k − 1)th block of the FPTD in the (t− 1)th clock pe-

riod. Note that the incoming forward state metrics αt−1
k−1(s) are quantized using qe bits.

However, the branch metrics γtk(s
′, s) are quantized using (qe + 1) or qc bits, according

to the combination of previous and current state (s′, s). Owing to this, the incoming

forward state metrics αt−1
k−1(s) are required to have the same number of quantization bits

as γtk(s
′, s), before these LLRs can be provided to the FX adders. This is achieved by

performing the sign extension of αt−1
k−1(s) and of γtk(s

′, s) = ba2,k. More specifically, the

MSB of each αt−1
k−1(s) represents the sign of the LLR and is replicated (qe + 1)− qe = 1

times before being positioned as the MSBs of the sign-extended state metrics. Similarly,

the MSB of ba2,k is replicated (qe + 1)− qc = 3 times and positioned as the two MSBs of

the sign-extended ba2,k. This process is not explicitly shown in Figure 6.8 for the sake of

simplifying the schematic representation.

Following the addition of the incoming branch metrics and forward state metrics, the

resulting (qe + 2)-bit LLRs are provided to the max blocks, which perform the approx-

imate max* operation. In analogy to the stochastic implementation of turbo decoders,

the state metrics of the FPTD must be normalized to prevent the FX implementation of

αtk(s) from overflowing. This may be achieved by subtracting αtk(0) from the vector of

state metrics αtk = [αtk(s)]
7
s=0 and clipping the result using qe bits [61]. This is achieved

using the subtractors and the ‘sat’ blocks of Figure 6.8. Here, the state metrics are

saturated to the maximum value of 2qe−1 and a minimum value of −2qe according to

αtk(s) =





2qe−1 − 1 αtk(s) > 2qe−1 − 1

−2qe−1 αtk(s) < −2qe−1

αtk(s) otherwise.

(6.15)

6.2.2. Hardware Implementation 129

αt−1
k−1(0)

αt−1
k−1(1)

αt−1
k−1(2)

αt−1
k−1(3)

αt−1
k−1(4)

αt−1
k−1(5)

αt−1
k−1(6)

αt−1
k−1(7)

αtk(0)

qe+2

max

qe+2

qe+2

max

qe+2

qe+2

max

qe+2

qe+2

max

qe+2

qe+2

max

qe+2

qe+2

max

qe+2

qe+2

max

qe+2

qe+2

max

sat

sat

sat

sat

sat

sat

sat

sat

qe

qe

qe

qe

qe

qe

qe

qe
D Q

Clock

αtk(1)
D Q

Clock

αtk(2)
D Q

Clock

αtk(3)
D Q

Clock

αtk(4)
D Q

Clock

αtk(5)
D Q

Clock

αtk(6)
D Q

Clock

αtk(7)
D Q

Clock

ba2,k
bt−1,a
1,k + ba2,k + ba3,k

bt−1,a
1,k + ba3,k

γtk





qe

qe

qe

qe

qe

qe

qe

qe

qe+1

qe+1

qc

Figure 6.8: Schematic of the hardware implementation of the forward state
metrics αtk(s) of the FPTD.

Note that in this configuration, αtk(0) adopts the constant value of 0 and so its hardware

implementation may be omitted, as shown using dotted lines in Figure 6.8. Moreover,

the clock signal of Figure 6.8 is simply referred to as ‘Clock’, since this signal may adopt

either of the Clocklight and Clockdark signals according to the index of the block of the

FPTD, as detailed in Section 6.2.2.2.

In analogy to the hardware implementation of αtk(s), Figure 6.9 shows the hardware

implementation of the state metrics βtk−1(s′) of Equation 6.11. As mentioned in Sec-

tion 6.2.1, at the start of the decoding process, αtk and βtk−1 adopt zero values. An excep-

tion to this are the state metrics αt0 and βtN+3. Here βN+3(0) = 0, while βN+3(s′) = −∞
for all other s′ ∈ [1, 7]. Likewise, α0(0) = 0, while α0(s) = −∞ for all other s ∈ [1, 7].

130 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

βt−1
k−1(0)

βt−1
k−1(1)

βt−1
k−1(2)

βt−1
k−1(3)

βt−1
k−1(5)

βt−1
k−1(6)

βt−1
k−1(7)

βtk(0)

qe+2

max

qe+2

qe+2

max

qe+2

qe+2

max

qe+2

qe+2

max

qe+2

qe+2

max

qe+2

qe+2

max

qe+2

qe+2

max

qe+2

qe+2

max

sat

sat

sat

sat

sat

sat

sat

sat

qe

qe

qe

qe

qe

qe

qe

qe
D Q

Clock

βtk(1)
D Q

Clock

βtk(2)
D Q

Clock

βtk(3)
D Q

Clock

βtk(4)
D Q

Clock

βtk(5)
D Q

Clock

βtk(6)
D Q

Clock

βtk(7)
D Q

Clock

ba2,k
bt−1,a
1,k + ba2,k + ba3,k

bt−1,a
1,k + ba3,k

γtk





qe

βt−1
k−1(4) qe

qe

qe

qe

qe

qe

qe

qe+1

qe+1

qc

Figure 6.9: Schematic of the hardware implementation of the backward state
metrics βtk−1(s′) of the FPTD.

Since −∞ cannot be represented using FX numbers, this value may be replaced by

the most negative number that can be represented by the FX number representation,

namely −2qe−1. This may be achieved by initializing the MSB of each LLR of α0(s)|7s=1

and βN+3(s′)|7s′=1 with the bit value of 1 and the rest of the bits with logic 0.

6.2.2.6 Extrinsic LLR

The calculation of the extrinsic LLR of Equation 6.12 is performed by the module Ext of

Figure 6.5. The hardware implementation of Equation 6.12 can be performed using the

circuit of Figure 6.10. In the following discussion, the hardware implementation of the

6.2.2. Hardware Implementation 131

αt−1
k−1(0)

qe+1

max

sat qe

bt,e1,k
D Q

Clock

ba2,k
qe

qeβt−1
k (0)

qe

qe

αt−1
k−1(1)

βt−1
k (4)

qe+1

αt−1
k−1(6)

qe+1

max

qe

qeβt−1
k (7)

qe

qe

αt−1
k−1(7)

βt−1
k (3)

qe+1

αt−1
k−1(2)

qe+1

max

qe

qeβt−1
k (5)

qe

qe

αt−1
k−1(3)

βt−1
k (1)

qe+1

αt−1
k−1(4)

qe+1

max

qe

qeβt−1
k (2)

qe

qe

αt−1
k−1(5)

βt−1
k (6)

qe+1

αt−1
k−1(2)

qe+1

max

qe

qeβt−1
k (1)

qe

qe

αt−1
k−1(3)

βt−1
k (5)

qe+1

αt−1
k−1(4)

qe+1

max

qe

qeβt−1
k (6)

qe

qe

αt−1
k−1(5)

βt−1
k (2)

qe+1

αt−1
k−1(0)

qe+1

max

qe

qeβt−1
k (4)

qe

qe

αt−1
k−1(1)

βt−1
k (0)

qe+1

αt−1
k−1(6)

qe+1

max

qe

qeβt−1
k (3)

qe

qe

αt−1
k−1(7)

βt−1
k (7)

qe+1

max

qe+1

qe+1

max

qe+1

qe+1

max

qe+1

qe+1

max

qe+1

qe+1

maxqe+1

qe+2
qe+1

qc

maxqe+1

qe+2
qe+1

qc

qc

Figure 6.10: Schematic of the hardware implementation of the extrinsic LLR
bt,e1,k of the FPTD.

extrinsic LLRs is described for the specific case where b1(s′, s) = 0 in Equation 6.12, as

shown in the blue box in the upper part of Figure 6.10. The hardware implementation

of Equation 6.12 for the case where b1(s′, s) = 1 can be performed following the same

principles. According to the state transition diagram of Figure 4.1(c), the input bit

b1(s′, s) = 0 triggers the set of transitions (s′, s) = {(0,0), (1,4), (2,5), (3,1), (4,2), (5,6),

(6,7), (7,3)}. As a result of this, max*{(s′,s)|b1(s′,s)=0}
[
γtk(s

′, s) + αt−1
k−1(s′) + βt−1

k (s)
]

can

132 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

be expressed as

max*[γtk(0, 0) + αtk−1(0) + βtk(0), γtk(1, 4) + αtk−1(1) + βtk(0),

γtk(2, 5) + αtk−1(2) + βtk(5), γtk(3, 1) + αtk−1(3) + βtk(1),

γtk(4, 2) + αtk−1(4) + βtk(2), γtk(5, 6) + αtk−1(5) + βtk(6),

γtk(6, 7) + αtk−1(6) + βtk(7), γtk(7, 3) + αtk−1(7) + βtk(3)].

Substituting the values of γtk(s
′, s) and exploiting the associative property of the max*

operations max*(a, b, . . . , x, y) = max*(max*(a, b),max*(. . .), . . . ,max*(x, y)) and the

observation that max*(a+ c, b+ c) = max*(a, b) + c, we have

max*[αtk−1(0) + βtk(0),+αtk−1(1) + βtk(4),

αtk−1(6) + βtk(7),+αtk−1(7) + βtk(7),

αtk−1(2) + βtk(5) + ba2,k,+α
t
k−1(3) + βtk(1) + ba2,k,

αtk−1(4) + βtk(2) + ba2,k,+α
t
k−1(5) + βtk(6) + ba2,k] =

max*[A,B + ba2,k],

where

A = max*[αtk−1(0) + βtk(0), αtk−1(1) + βtk(4), αtk−1(6) + βtk(7), αtk−1(7) + βtk(7)]

and

B = max*[αtk−1(2) + βtk(5), αtk−1(3) + βtk(1), αtk−1(4) + βtk(2), αtk−1(5) + βtk(6)].

As a result of this, the hardware implementation of Equation 6.12 for the case where

b1(s′, s) = 0 may be performed with the aid of FX adders and max blocks, as shown

in the blue box of Figure 6.10. Note that the number of additions required has been

minimized by performing only one addition of the a priori LLR ba2,k. In analogy to

the hardware implementation of the state metric of the α and β modules described in

Section 6.2.2.5, the sign extension of the qc-bit a priori LLR ba2,k is required, prior its

addition with the (qe + 1)-bit shown in Figure 6.10.

The hardware implementation of Equation 6.12 for the case where b1(s′, s) = 1 is shown

in the green box in the bottom part of Figure 6.10. Finally, the red box of Figure 6.10

shows the saturation of the extrinsic LLR bt,e1,k using qe bits.

6.2.2.7 Hard Decision

The estimation of the decoded bit b̂t1,k of Equation 6.13 is performed by the module Dec

of Figure 6.5. This is achieved with the aid of FX adders, as shown in Figure 6.11. Here,

the hard decision is calculated using the addition of the a priori LLRs bt−1,a
1,k and ba3,k,

6.3. Reduced-Critical-Path Fully-Parallel Turbo Decoder 133

as well as the extrinsic LLR bt−1,e
1,k . The decoded bit b̂t1,k is calculated according to

b̂t1,k =

{
1 (bt−1,a

1,k + bt−1,e
1,k + ba3,k) > 0

0 otherwise,
(6.16)

which is implemented by inverting the MSB of the sum bt−1,a
1,k + bt−1,e

1,k + b3,k.

ba3,k

bt−1,a
1,k

qe

qc

qe

bt−1,e
1,k

b̂t1,kMSB
D Q

Clock

Figure 6.11: Schematic of the hardware implementation of the hard decision
performed by the FPTD.

6.3 Reduced-Critical-Path Fully-Parallel Turbo Decoder

The FPTD hardware implementation presented in Section 6.2 exhibits a critical path

comprising six data path stages. More specifically, one scaling operation and two addi-

tions are required for the calculation of the branch metrics γtk(s
′, s) of Equation 6.9, as

shown in Figure 6.7. Following this, the branch metrics γtk(s
′, s) are combined in Equa-

tions (6.10) and (6.11) for calculating the state metrics αtk(s) and βtk−1(s′), respectively.

This is achieved in three data path stages involving one addition, one max operation

and one saturated subtraction, as shown in Figures 6.8 and 6.9. When combined with

the three data path stages of the γ module, this results in a total of six data path stages,

each equivalent to a FX adder. In parallel to this, the calculation of the extrinsic LLR

bt,e1,k of Equation 6.12 employs six data path stages comprising two additions, three max

operations and one saturated subtraction, as shown in Figure 6.10. This motivates a

novel modification to the FPTD algorithm and hardware implementation for the sake of

reducing the number of data path stages in the critical path. We refer to this modified

algorithm as RCP-FPTD, which is described in Section 6.3.1. Moreover, the hardware

implementation requirements of the RCP-FPTD algorithm are detailed in Section 6.3.2

6.3.1 Algorithm

The RCP-FPTD is described by Equations (6.17) to (6.22) for the specific case of a

turbo decoder adopting the LTE standard.

134 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

γtk(s
′, s) = b1(s′, s) · bt−1,a

1,k + b2(s′, s) · ba2,k + b3(s′, s) · bt−1,a
3,k (6.17)

αtk(s) = max*

all s′
[γt−1
k (s′, s) + αt−1

k−1(s′)] (6.18)

βtk−1(s′) = max*

all s
[γt−1
k (s′, s) + βt−1

k (s)] (6.19)

εtk,m,n = max*

{(s′,s)|{b1(s′,s)=m,b2(s′,s)=n}}
[αt−1
k−1(s′) + βt−1

k (s)] (6.20)

bt,e1,k =

[
max*

{n∈{0,1}}

[
n · bt−1,a

2,k + εt−1
k,1,n

]]
−
[

max*

{n∈{0,1}}

[
n · b̄t−1,a

2,k + εt−1
k,0,n

]]

+
[
bt−1,a
1,k + ba3,k

] (6.21)

b̂t1,k = (bt−1,a
1,k + bt−1,e

1,k + b,a3,k) > 0 (6.22)

Equations (6.18) and (6.19) in clock period t are a function of the a priori branch metrics

γt−1
k (s′, s) calculated in the previous clock period (t − 1). This is in contrast to Equa-

tions (6.10) and (6.11), which are functions of the branch metrics γtk(s
′, s) calculated in

the same clock period t. Furthermore, Equations (6.20) and (6.21) split Equation 6.12

into two stages, which are calculated in two consecutive clock periods. This reduces

the number of stages in the critical path from six to three. More specifically, the ex-

trinsic LLR bt,e1,k of Equation 6.21 becomes a function of the intermediate calculations

results εt−1
k,m,n of Equation 6.20 obtained in previous clock period (t− 1). Note that the

RCP-FPTD processes the state metrics at a different rate to the extrinsic LLRs. More

specifically, while the extrinsic state metrics αtk(s) and βtk−1(s′) are affected by the a

priori state metrics αt−1
k−1(s′) and βt−1

k (s) provided in the previous clock period (t− 1),

they are not affected by the a priori LLR bt−1,a
1,k provided in clock period (t−1). Instead,

they are affected by the a priori LLR bt−2,a
1,k provided in clock period (t− 2). Similarly,

the extrinsic LLR bt,e1,k is not affected by the a priori state metrics αt−1
k−1(s′) and βt−1

k (s)

provided in the previous clock period (t− 1). Instead, it is affected by the a priori state

metrics provided in clock period (t−2), namely αt−2
k−1(s′) and βt−2

k (s). Owing to this, the

propagation of the state metrics αk and βk along each row of the RCP-FPTD occurs

faster than the propagation of the extrinsic LLRs be
1 between the two rows. As a result

of this, the FPTD and RCP-FPTD algorithms are different from each other. This results

in the RCP-FPTD algorithm requiring more decoding iterations for achieving the same

BER performance as the FPTD algorithm. However, the RCP-FPTD algorithm exhibits

a reduced number of data path stages, which facilitates the employment of lower clock

periods. Hence the RCP-FPTD facilitates improved latencies and throughputs, when

compared to the FPTD algorithm, as we will demonstrate in Section 6.3.2.

Figure 6.12 shows the representation of the RCP-FPTD, which exploits the odd-even

interleaver design of the LTE standard. Here, the top and bottom shaded regions of

each block implement Equations (6.17) and (6.21), respectively, while the middle shaded

6.3.2. Hardware Implementation 135

Interleaver

· · ·

· · ·

bt,u,a1,1 bt,u,e1,1 bt,u,a1,2 bt,u,e1,2 bt,u,a1,3 bt,u,a1,Nbt,u,e1,3 bt,u,e1,N

bt,l,a1,1bt,l,e1,1 bt,l,a1,2bt,l,e1,2 bt,l,a1,3 bt,l,a1,Nbt,l,e1,3 bt,l,e1,N

bu,a2,1 bu,a3,1 bu,a2,2 bu,a3,2 bu,a2,3 bu,a3,3 bu,a2,N bu,a3,N

bl,a2,1 bl,a3,1 bl,a3,2 bl,a3,3 bl,a3,Nbl,a2,2 bl,a2,3 bl,a2,N

βt,l
0 βt,l

1 βt,l
2 βt,l

3
βt,l
N−1 βl

N

βt,u
1

βt,u
N−1 βu

Nβt,u
2 βt,u

3βt,u
0

αu
0 αt,u

1 αt,u
2 αt,u

3
αt,u

N−1 αt,u
N

αl
0 αt,l

1 αt,l
2 αt,l

3
αt,l

N−1 αt,l
N

Figure 6.12: Block diagram of the RCP-FPTD algorithm.

regions implement Equations (6.18) to (6.20) and (6.22). In analogy to the FPTD of

Section 6.2, the RCP-FPTD alternates the operation of the light-shaded regions and the

dark-shaded regions of Figure 6.12 in alternate clock periods t. Note that the alternate

operation of the light- and dark-shaded regions of Figure 6.12 is naturally supported by

Equations (6.17) to (6.22), since all variables having a time index of (t−1) are provided

by regions having the opposite shading to that of the region under consideration.

In analogy to the FPTD algorithm, in the general case where the interleaver pattern

prevents the grouping of the 2N blocks of Figure 6.12 into two groups, the simultaneous

operation in clock period t of both light- and dark-shaded regions of Figure 6.12 is

recommended.

6.3.2 Hardware Implementation

Figure 6.13 shows how Figure 6.12 may be modified to explicitly show the employment

of DFFs in the hardware implementation of the RCP-FPTD algorithm. The hardware

implementation of the RCP-FPTD employs DFFs for pipelining the calculation of the

branch metrics γtk(s
′, s), as well as for pipelining the calculation of the intermediate

results εtk,m,n, as shown in the ‘Reg’ modules in lower part of Figure 6.13. The pipeline

stages of the RCP-FPTD split the six-stage data paths of the α, β and Ext modules

of the FPTD into two three-stage data paths, as described in Section 6.3.1. Moreover,

136 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

αt,l
3

Reg

bt,u,e1,2

bu,a2,2 bu,a3,2

bt−1,u,a
1,2

Reg

bt,u,e1,N

bu,a2,N bu,a3,N

bt−1,u,a
1,N

bl,a3,1

bt,l,e1,1 bt−1,l,a
1,1

bl,a2,1

Reg

bl,a3,3

bt,l,e1,3 bt−1,l,a
1,3

bl,a2,3

Reg

βt−1,u
1

U1
Regαt,u

1
αu

0

βt,u
0

Reg

Regαt,u
3αt−1,u

2

βt,u
2 βt−1,u

3

U3Reg

Regαt,l
2αt−1,l

1

βt,l
1 βt−1,l

2

L2Reg

Regαt,l
Nαt−1,l

N−1

βt,l
N−1 βl

N

LNReg

Reg

bt,u,e1,1

bu,a2,1 bu,a3,1

RegReg

bt−1,u,a
1,1

Regαt,u
2αt−1,u

1

βt,u
1 βt−1,u

2

U2Reg

RegReg

Reg

bt,u,e1,3

bu,a2,3 bu,a3,3

RegReg

bt−1,u,a
1,3

Regαt,u
N

αt−1,u
N−1

βt,u
N−1 βu

N

UNReg

RegReg

Regαt,l
1αl

0

βt,l
0 βt−1,l

1

L1Reg

RegReg

Reg

bl,a3,2

bt,l,e1,2 bt−1,l,a
1,2

RegReg

bl,a2,2

Regαt−1,l
2

βt,l
2 βt−1,l

3

L3Reg

RegReg

Reg

bl,a3,N

bt,l,e1,N bt−1,l,a
1,N

RegReg

bl,a2,N

Interleaver

γ

Eq. (6.18)

Eq. (6.19)

Eq. (6.22)

Eq. (6.17)

b̂t1,k

αt−1
k−1

γt−1
k

Eq. (6.20)

α

β

Dec

7× qe

αt
k

7× qe

2× (qe+1)

βtk−1

7× qe

βt−1
k

7× qe

bt,e1,k

Ext

ε

qe
4× (qe+1)

Eq. (6.21)

External
memory

External
memory

qeqcqc
ba3,kbt−1,a

1,k ba2,k

Reg

Reg

εt−1
k,m,n

Figure 6.13: Block diagram of the RCP-FPTD algorithm.

the pipeline stage in the γ module causes the α and β modules to employ the branch

metrics obtained in the previous clock period (t−1). Similarly, the pipeline stage in the

ε module causes the Ext module to employ the intermediate results εk,m,n generated in

the previous clock period (t− 1).

Figure 6.14 shows how Figure 6.7 may be modified in order to implement the pipeline

stage in the γ module of Figure 6.13. The pipeline stage of the γ module does not modify

the hardware implementation of the α and β modules, which implement Equations (6.18)

and (6.19), respectively. Instead, the modules α and β of Figure 6.12 are implemented

using the circuits shown in Figures 6.8 and 6.9 for the case of the FPTD, where the

6.3.2. Hardware Implementation 137

bt−1,a1,k

ba2,kba3,k

τ

Scaling
ba2,k
bt−1,a1,k + ba2,k + ba3,k
bt−1,a1,k + ba3,k




γtk(s

′, s)

qc qc

qe

qe + 1

qe + 1

Eq. (6.17)

D Q

Clock

D Q

Clock

Figure 6.14: Schematic of the hardware implementation of the pipelined state
metrics γtk(s

′, s) of the RCP-FPTD.

incoming branch metrics correspond to γt−1
k (s′, s) obtained in the previous clock period

(t− 1).

The pipeline introduced in the calculation of the extrinsic LLRs bt,e1,k causes the module

Ext of Figure 6.3 to be split into the modules ε and Ext in Figure 6.12. The hardware

implementation of the module ε consists of a three-stage data path comprising one

addition and two max operations, as shown in Figure 6.16.

The Ext module of the RCP-FPTD consists of a three-stage data path comprising one

addition, one max and one saturated subtraction, as shown in Figure 6.15. Finally, the

hardware implementation of the module Dec of the RCP-FPTD corresponds to that of

the FPTD of Figure 6.11, since this module is not affected by any of the two pipeline

stages.

sat qe

bt,e1,k

ba2,k

max

qe+2

qc

D Q

Clock

εtk,0,0

εtk,0,1
qe+1

qe+1

max

qe+2
qe+1

qe+1εtk,1,0

εtk,1,1
qe+2

qe+2

Figure 6.15: Schematic of the hardware implementation of the pipelined extrin-
sic LLR bt,e1,k of the RCP-FPTD.

In analogy to the hardware implementation of the FPTD presented in Section 6.2.2,

the hardware implementation of the RCP-FPTD assumes the employment of NDS by

the demodulator for scaling the received parity and systematic LLRs ba
2 and ba

3, respec-

tively, as detailed in Section 6.2.2.1. Similarly, the RCP-FPTD employs the odd-even

scheduling described in Section 6.2.2.2. Here, both of the clock signals Clocklight and

Clockdark of Figure 6.6 are provided to each block of Figure 6.13 for driving each of

138 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

αt−1
k−1(0)

qe+1

max

qe

qeβt−1
k−1(0)

qe

qe

αt−1
k−1(1)

βt−1
k−1(4)

qe+1

αt−1
k−1(6)

qe+1

max

qe

qeβt−1
k−1(7)

qe

qe

αt−1
k−1(7)

βt−1
k−1(3)

qe+1

αt−1
k−1(2)

qe+1

max

qe

qeβt−1
k−1(5)

qe

qe

αt−1
k−1(3)

βt−1
k−1(1)

qe+1

αt−1
k−1(4)

qe+1

max

qe

qeβt−1
k−1(2)

qe

qe

αt−1
k−1(5)

βt−1
k−1(6)

qe+1

αt−1
k−1(2)

qe+1

max

qe

qeβt−1
k−1(1)

qe

qe

αt−1
k−1(3)

βt−1
k−1(5)

qe+1

αt−1
k−1(4)

qe+1

max

qe

qeβt−1
k−1(6)

qe

qe

αt−1
k−1(5)

βt−1
k−1(2)

qe+1

αt−1
k−1(0)

qe+1

max

qe

qeβt−1
k−1(4)

qe

qe

αt−1
k−1(1)

βt−1
k−1(0)

qe+1

αt−1
k−1(6)

qe+1

max

qe

qeβt−1
k−1(3)

qe

qe

αt−1
k−1(7)

βt−1
k−1(7)

qe+1

max

qe+1

qe+1

max

qe+1

qe+1

max

qe+1

qe+1

max

qe+1

qe+1

qe+1

qe+1

qe+1

qe+1

D Q

Clock

D Q

Clock

D Q

Clock

D Q

Clock

εtk,0,0

εtk,0,1

εtk,1,0

εtk,1,1

Figure 6.16: Schematic of the hardware implementation of the pipelined εtk,m,n
of the RCP-FPTD.

the light- and dark-shaded regions of each block, respectively. This is contrast to the

FPTD, where only one clock signal is required in each block. In addition to this, when

the interleaver pattern prevents the grouping of the 2N blocks of into two groups, both

light- and dark-shaded regions of Figure 6.12 may employ the Clockmain signal for their

operation and the clock generation circuits of Figure 6.6(a) may be omitted.

6.4. Trade-off Analysis of the FPTD and RCP-FPTD Implementations 139

6.4 Trade-off Analysis of the FPTD and RCP-FPTD Im-

plementations

The following sections present the error correction capabilities of both the FPTD and

the RCP-FPTD algorithms. We also characterize the trade-offs associated with the

hardware implementation of the algorithms.

In the following discussions, we employ the concept of DC for the case of the FPTD

algorithms, in analogy to the Stochastic LDPC Decoder (SLDPCD) of Chapter 3 and to

the STDs of Chapters 4 and 5. As mentioned in Sections 6.2.1 and 6.3.1, one iteration

of the FPTD and RCP-FPTD algorithm requires two consecutive clock periods for ac-

tivating all 2N blocks of Figures 6.3 and 6.12, respectively. As a result of this, we refer

to the activation of each group of blocks as a DC, where one iteration of the FPTDs is

I = 2DC. Additionally, one DC corresponds to one clock period.

6.4.1 Error Correction Capabilities of the Floating Point FPTD and

RCP-FPTD algorithms

Figure 6.17 presents the BER performance of the Floating-Point (FP) versions of both

the FPTD and the RCP-FPTD algorithms, when adopting the LTE standard for the

cases where the frame length is N ∈ {48, 480, 4800}. These results were obtained

for the case of BPSK communication over an AWGN channel and using the exact

max* operation, when performing {2,4,8,16,32,64,128,256} DCs, which corresponds to

{1,2,4,8,16,32,64,128} iterations.

Figures 6.17(a) to 6.17(c) show how the BER of the FPTDs is only marginally improved

by performing 128 or 256 DCs, instead of 64 DCs. Moreover, Figure 6.17 shows that

the proposed RCP-FPTD algorithm exhibits a slight BER performance degradation,

when employing the same number of DCs as the FPTD algorithm. However, the time

duration of a DC of the RCP-FPTD may expected to be significantly lower than that of

the FPTD, owing to the significantly reduced data path length of the RCP-FPTD, as

described in Section 6.3. As a result of this, a fair comparison of the two algorithms is

obtained by comparing the BER performance when the decoding time is fixed, as we will

present in Section 6.4.3 and further expand in Section 6.6. Furthermore, Figure 6.17

compares the BER of the FPTD and the RCP-FPTDs algorithms to that of the FP

version of the Log-BCJR algorithm, when using the exact max* operation and perform-

ing I = 6 iterations. Figure 6.17 demonstrates that when performing 64 DCs, the FP

versions of the FPTD and RCP-FPTD algorithms achieve the same BER performance

as the Furthermore, when performing higher numbers of DCs, the FP FPTD and FP

RCP-FPTD algorithms outperform the

140 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

FP RCP-FPTD
FP FPTD

FP Log-BCJR (I=6)

Eb/N0 (dB)

B
E
R

43210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

DC

N=48

(a)

FP RCP-FPTD
FP FPTD

FP Log-BCJR (I=6)

Eb/N0 (dB)

B
E
R

43210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

DC

N=480

(b)

FP RCP-FPTD
FP FPTD

FP Log-BCJR (I=6)

Eb/N0 (dB)

B
E
R

43210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

DC

N=4800

(c)

Figure 6.17: BER performance of FP versions of the FPTD and RCP-FPTD
algorithms, as well as of the FP Log-BCJR algorithm. The BER performance
was obtained for the case of the exact max* operation, when using BPSK mod-
ulation to transmit N={48,480,4800}-bit frames over an AWGN channel, where
the FPTD and RCP-FPTD algorithms perform DC=∈{2,4,8,16,32,64,128,256}
DCs and the Log-BCJR algorithm performs I = 6 iterations. (a) N = 48. (b)
N = 480. (c) N = 4800.

6.4.2. Error Correction Capabilities of the Fixed-Point FPTD and
RCP-FPTD algorithms 141

N = 6144

N = 40

Eb/N0 (dB)

B
E
R

43210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

FP Log-BCJR (I = 6)
FP FPTD (DC = 48)
FP RCP-FPTD (DC = 48)

FP Log-BCJR (I = 6)
FP FPTD (DC = 80)
FP RCP-FPTD (DC = 100)

Figure 6.18: BER performance of FP versions of the FPTD, RCP-FPTD and
Log-BCJR algorithms. The BER performance was obtained for the case of
the exact max*, when using BPSK modulation to transmit N ∈ {40, 6144}-bit
frames over an AWGN channel.

Figure 6.18 presents the BER performance of the FP FPTD, FP RCP-FPTD and Here,

the number of DCs performed by the FP FPTD and FP RCP-FPTD algorithms is set to

the values required to obtain the same BER performance as the Note that the FP version

of the FPTD and RCP-FPTD algorithms may seem to require a large number of DCs

to achieve the same BER as the However, one iteration of the Log-BCJR requires 4N

consecutive clock periods, as detailed in Section 6.1. As a result of this, the Log-BCJR

algorithm requires a total of 6×4×40 = 960 consecutive clock periods for a frame length

of N = 40 bits, compared to the 48 DCs required by both the FPTD and RCP-FPTD

algorithms. Similarly, the Log-BCJR requires 6 × 4 × 6144 = 147456 consecutive clock

periods for the case of a frame length of N = 6114 bits, compared to the 80 and 100

DCs required by the FPTD and RCP-FPTD algorithms, respectively.

6.4.2 Error Correction Capabilities of the Fixed-Point FPTD and

RCP-FPTD algorithms

Figure 6.19 presents the BER performance of FX versions of both the FPTD and

RCP-FPTD algorithms presented in Sections 6.2.2 and 6.3.2, respectively, when using

the approximate max* operation of Equation 6.8 and frame lengths of N ∈ {40, 6144}-
bits. Figure 6.19 also plots the BER of the FP versions of the FPTD and RCP-FPTD

algorithms as benchmarks. The results of the FX FPTD and RCP-FPTD were obtained

for the cases where the LLRs are quantized using the {qe, qc} values specified in Table 6.1.

Additionally, we employ NDS associated with the values {η, ψ} of Table 6.1. The val-

ues of {qe, qc} were chosen based on the best trade-off between BER performance and

142 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

hardware complexity. Similarly, the values of {η, ψ} of Table 6.1 were obtained based

on the best BER performance of each FX FPTD.

Table 6.1: Simulation parameters for the FX FPTD and FX RCP-FPTD.

FPTD RCP-FPTD

Parameter N = 40 N = 6144 N = 40 N = 6144

{qc, qe} {4,6} {4,6} {4,6} {4,6}
{η, ψ} {1,2} {7,10} {1,2} {7,10}

Figure 6.19 shows that when N = 40, the FX versions of the FPTD and RCP-FPTD

algorithms achieve similar BER performance as their FP counterparts using the exact

max* operation of Equation 6.7 and employing the same number of DCs. However,

when N = 6144, the FX versions exhibit a 0.3 dB Eb/N0 degradation, when compared

to their FP counterparts using the exact max* operation of Equation 6.7 and the same

number of DCs. However, owing to their use of NDS and to the scaling of the a priori

LLR ba1,k, the FX versions of the FPTD and RCP-FPTD algorithms offer slight BER

improvements, when compared to their FP counterparts using the approximate max*

operation of Equation 6.8.

Eb/N0 (dB)

B
E
R

43210

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

FX RCP-FPTD (DC=48)
FP RCP-FPTD (DC=48)
FX FPTD (DC = 48)
FP FPTD (DC = 48)

FX RCP-FPTD (DC =100)
FP RCP-FPTD (DC=100)
FX FPTD (DC=80)
FP FPTD (DC=80)

FP FPTD (approx max∗, DC=80)
FP RCP FPTD (approx max∗, DC=100)

N = 6144

N = 40

Figure 6.19: Comparison of the BER performance of the FX and FP FPTDs.
The BER performance of the FP FPTDs was obtained for the cases of both the
exact and approximate max∗, when N ∈ {40, 6144}

Our experimental results suggest that the BER performance of the FPTD and of the

RCP-FPTD implementations remains unchanged, whether the three termination blocks

of Figure 6.4 are operated prior the beginning of the decoding process or during the first

three DCs. As a result of this, the three termination blocks of the FPTD and RCP-FPTD

implementations are operated simultaneously to all other blocks, only during the first

6.4.3. Hardware Efficiency 143

three DCs of the iterative decoding process. Based on these results, we recommend 80

and 100 as the maximum number of DCs performed by the FX versions of the FPTD

and the RCP-FPTD algorithms, respectively.

6.4.3 Hardware Efficiency

This section presents the different hardware trade-offs associated with the FPTD and

RCP-FPTD hardware implementations of Sections 6.2 and 6.3, respectively. Table 6.2

characterizes the FPTD and RCP-FPTD hardware implementations in terms of diverse

characteristics, including the chip area per decoded bit, number of equivalent nand

gates, clock period, clock frequency, latency, throughput, as well as as area and energy

efficiency, when using Taiwan Semiconductor (TSMC) 40 nm technology. The results of

Table 6.2 were obtained from the physical layout generated by the automatic place and

route of one block of the FPTD and RCP-FPTD implementations using Cadence SoC

Encounter [72]. These results were obtained for the cases where the supply voltage is set

to 1.0 V and in the absence of power supply or clock period variations. Both the critical

clock period and the energy consumption are obtained from Synopsys PrimeTime [73].

For the case of using early stopping, the average number of DCs, latency, throughput

and energy efficiency were obtained from post-layout gate-level simulations with the

extracted parasitics and annotated delays without timing errors, when allowing a maxi-

mum of 80 and 100 DCs for the FPTD and RCP-FPTDs, respectively. For the purpose

of our investigations throughout this chapter, we assume that an external fully-parallel

Cyclic Redundancy Check (CRC) [84] is employed in each DC for determining whether

the frame of estimated decoded bits provided by the FPTD and RCP-FPTD contains

any errors. We assume that the FPTDs operate at their critical clock period, for BPSK

transmission over an AWGN channel having the particular SNR where a BER of 10−5

is achieved.

We first compare the hardware efficiency of the FPTD and RCP-FPTD implementa-

tions with the RLSTD presented in Chapter 5. Table 6.2 presents results for the rate

48/156, 8-state, FPTD and RCP-FPTD having a frame length of N = 48 bits, using the

LTE interleaver and the state transition diagram of Figure 4.1(c). We also present the

hardware efficiency of the 50-bit, rate 1/3, 8-state, tailbiting RLSTD of Chapter 5, when

using an S-Random interleaver and TSMC 90 nm technology. In order to facilitate a fair

comparison with the FPTD and RCP-FPTD implementations, the characteristics of the

RLSTD in 90 nm technology have been scaled to 40 nm technology, in accordance to the

scaling techniques of [90]. Here, the technology scaling factor s = 40/90 corresponds to

the ratio between the two different technologies. More specifically, the 90 nm chip area

is scaled according to Area40nm = Area90nm×s2, the 90 nm clock period is scaled accord-

ing to Tclk 40nm = Tclk 40nm × s and the 90 nm energy consumption is scaled according

to Energy40nm = Energy90nm × s × Vs
2, where Vs = 1/1.2 corresponds to the ratio of

144 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

the nominal supply voltages in 40 nm and 90 nm, respectively. The results of chip area

of Table 6.2 do not consider the hard-wired interleaver connecting the upper and lower

rows of each FPTD. However, it is assumed that the hard-wired interleaver may be

routed using the different metal layers available in TSMC 40 nm technology, without

significantly increasing the chip area requirements, as detailed in [61]. Similarly, it is as-

sumed that the clock distribution network does not impose additional timing constraints

when increasing the frame length from N = 40 to N = 6144.

Table 6.2: Hardware efficiency of short-frame FPTDs.

FPTD RCP-FPTD RLSTD

Implementation FX FX Stochastic

Frame length
48 48 50

(bits)

Coding rate 48/156 48/156 1/3

Technology 40 nm 40 nm 90 nm

Voltage 1.0 V 1.0 V 1.2 V

Area per bit
6800 7100

11000

(µm2) (4888)a

Gate count
13.2 K 14.0 K 4.4 K

per bit

Tclk
4.5 3.0

1.7

(ns) (0.755)b

Frequency
222 333

588

(MHz) (1324)b

BER 10−5 10−5 10−5

@ Eb/N0 4.0 dB 4.0 dB 3.8 dB

Average DCs 64 64 200

Latency
288 192

340

(ns) (0.151)b

Throughput
166 250

147

(Mbps) (331)b

Area eff.
262 384

669

(bps/gates) (1504)a,b

Area eff.
508 744

267

(Mbps/mm2) (1354)a,b

Energy eff.
72 74

38

(nJ/frame) (12)a,b,c

a Area ∼ s2
b Tclk ∼ s
c Energy ∼ s ·V2

s

As discussed above, Figure 6.19 demonstrates that the RCP-FPTD algorithm requires

a larger number of DCs than the FPTD for achieving the same BER performance.

However, Table 6.2 shows that the latency and throughput of the RCP-FPTD imple-

mentation are superior to those of the FPTD implementation, owing to the employment

of a lower clock period. Moreover, Table 6.2 demonstrates that both the FPTD and

RCP-FPTD algorithms require fewer DCs than the RLSTD algorithm. This facilitates

6.5. Fixed-Point FPTDs in the Presence of Timing Errors 145

latency, throughput and area efficiency improvements in terms of Mbps/mm2, when com-

pared to those of the RLSTD using 90 nm technology. However, the RLSTD outperforms

both the FPTD and RCP-FPTD implementations, if the implementation results of the

RLSTD are scaled to a 40 nm technology. Note that the RLSTD uses an S-Random

interleaver, in contrast to the LTE interleaver used in the FPTD and RCP-FPTD imple-

mentations. Owing to this, the number of DCs, latency, throughput and area efficiency

of the RLSTD may be further improved, when using the LTE interleaver. These re-

sults suggest that, when using short-frame lengths and the same technology scaling,

the RLSTD offers a superior performance over the FPTD and RCP-FPTD, which con-

firms that RLSTD is suitable for short-frame length applications, such as MCMTC,

as described in Chapter 5. Motivated by these results, we now compare the hardware

efficiency of the FPTDs when using a frame length of N =6144.

Table 6.3 compares the hardware efficiency of the proposed FPTD and RCP-FPTD im-

plementations with different state-of-the-art Log-BCJR LTE hardware implementations.

Note that the proposed FPTD and RCP-FPTD implementation achieve the lowest la-

tency and therefore the highest throughput, compared to all other implementations.

More specifically, the proposed FPTD and RCP-FPTD implementations improve the

throughput by factors of 7.9 and 9.5, respectively, when compared to that of the state-of-

the-art turbo decoder of [57]. Moreover, although the proposed FPTD and RCP-FPTD

have the largest area and gate count per bit, their normalized area efficiency is superior

to that of [59]. Furthermore, the proposed FPTDs have lower energy consumptions than

the other implementations.

6.5 Fixed-Point FPTDs in the Presence of Timing Errors

This section investigates the inherent tolerance to timing errors of the FPTD and

RCP-FPTD algorithms. This is achieved by characterizing the BER performance and

hardware efficiency of the FX FPTD and RCP-FPTD implementations in the presence

of timing errors owing to the employment of overclocking for the sake of further improv-

ing the attainable throughput of the decoders. Here, the employment of overclocking

is justified since the critical path delay of a Very-Large-Scale Integration (VLSI) circuit

may be rarely incurred, with most clock cycles having significantly lower propagation

delays. Hence timing errors may only occasionally occur when employing overclocking

and the performance of the circuit may not be significantly degraded. In this way, the

system may be operated using a clock period below the delay of the critical path, for the

sake of improving its hardware characteristics such as latency, throughput and energy

efficiency [19]. Sections 6.5.1 and 6.5.2 provide a timing analysis and a timing error

model, respectively, of the FPTD and RCP-FPTD implementations. Following this,

146 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

Table 6.3: Hardware efficiency of long-frame FPTDs.

FPTD RCP-FPTD
Ilnseher Wang Sun

2012, [57] 2014, [58] 2011, [59]

Frame length
6144 6144 6144 6144 6144

(bits)

Coding rate 6144/18444 6144/18444 6144/184444 1/3 6144/6468

Technology 40 nm 40 nm 65 nm 45 nm 65 nm

Voltage 1.0 V 1.0 V 1.1 V 0.81 V 0.9 V

Area per bit
6800 7000

1280 395 1350

(µm2) (484)a (312)a (511)a

Gate count
13.2 K 13.5 K - 244 940

per bit

Tclk
4.5 3.0

2.2 1.6 2.5

(ns) (1.35)b (1.42)b (1.54)b

Frequency
222 333

450 600 400

(MHz) (740)b (704)b (649)b

Average 80 100 6 5.5 6

iterations DCs DCs I I I

Latency
360 300

2857 3679 4800

(ns) (1723)b (3200)b (2953)b

Throughput
17.1 20.48

2.15 1.67 1.28

(Gbps) (3.56)b (1.92)b (2.08)b

Area eff.
210 247 - 1114 221

(bps/gates)

Area eff.
409 476

279 687 154

(Mbps/mm2) (1197)a,b (871)a,b (407)a,b

Energy eff.
2.7 2.4 -

3.2 4.05

(µJ/frame) (4.35) (3.07)
a Area ∼ s2
b Tclk ∼ s

Section 6.5.3 characterizes the BER performance of the FPTD and RCP-FPTD imple-

mentations, when operating in the presence of timing errors caused by different degrees

of overclocking.

6.5.1 Timing analysis

As detailed in Section 3.4, the propagation delay of a logic gate depends on the previous

and current values of its inputs, as well as its supply voltage and its driving load.

Hence, the cumulative propagation delay of a path comprising several logic gates may

vary between consecutive clock cycles. One section of each of FX FPTD comprises

qc × 2 + qe × 15 = 98 input bits, when {qc, qe} = {4, 6}. As a result of this, there

are 22×98 ≈ 1059 combinations of current and previous input values in a block of each

FPTD. Owing to this, it is not feasible to perform a timing analysis based on all possible

combinations of inputs. Instead, we propose to perform a Monte Carlo simulation to

determine the propagation delay distribution of the various paths in a block of the

6.5.1. Timing analysis 147

FX FPTD and of the FX RCP-FPTD, when using TSMC 40 nm technology and a

nominal supply voltage of VDD = 1.0 V. We present results obtained from the physical

layout generated by the automatic place and route of a block of the FPTD and of

the RCP-FPTD using Cadence SoC Encounter [72]. In this analysis, we determine

the propagation delay distribution for each of the qe × 7 bits comprising the output

state metrics αk = [αk(s)]
7
s=1, the qe × 7 bits of the output βk−1 = [βk−1(s′)]7s′=1, as

well as for the qe output bits of the extrinsic LLR be1,k of one block of the FPTD and

RCP-FPTD. We also present the propagation delay distribution of the (qe + 1)× 2 bits

of the intermediate results γk and the (qe + 1)× 4 bits of the intermediate results εk,m,n

for the case of the RCP-FPTD. In this way, our analysis considers the propagation

delay of all 90 output bits of the FPTD, as well as the 90 output bits and the 42 internal

bits of the RCP-FPTD. These delay distributions were obtained by performing a digital

simulation using the extracted parasitics and annotated delays of the physical layouts

using Cadence SimVision [72]. More specifically, different random input patterns were

provided to one block of each FPTD and the propagation delay generated by each of

the input patterns was quantified. To elaborate further, in each clock cycle, each of

the 98 input bits of a block of each FPTD adopts an equiprobable bit value. This is

justified since the delays using input patterns recorded during the Matlab simulations

of the FPTDs’ iterative decoding process at different SNR ranges were found to have

a similar distribution to that of the equiprobable random bit patterns. Moreover, the

distributions obtained using random inputs may be employed for all SNR ranges and

for all frame lengths of the FPTDs, which significantly reduces the overall complexity

of the timing analysis. For the purpose of our analysis, we employed 106 input patterns

and a clock period of Tclk = 100 ns for allowing sufficient time for all the signals to

correctly propagate, hence preventing the occurrence of timing violations during this

characterization.

The results of our Monte Carlo simulations were used for obtaining a Complementary

Cumulative Distribution Function (CCDF) of the propagation delay for each of the 90

output bits of each block of the FPTD and RCP-FPTD, as well as for the 42 internal bits

of the RCP-FPTD. As an example of this, Figure 6.20 shows the CCDFs corresponding

to the delays of the MSBs of αk(1), βk−1(1) and be1,k for the FPTD, as well as of the

MSBs of αk(1), βk−1(1), be1,k, εk,0,1 and γk and the LSB of γk for the RCP-FPTD, in

the case when γk = b1,k + b2,k + b3,k.

Similar CCDFs were obtained for the MSBs of all other state metrics [αk(s)]
7
s=2 and

[βk+1(s′)]7s′=2 in the FPTD and RCP-FPTD. Moreover, similar CCDFs were obtained for

all the other bits of these state metrics. In addition to this, similar CCDFs were obtained

for all other bits of the extrinsic LLR be1,k and for all other bits of the intermediate

variables εk,m,n. The similarity of these CCDFs may be attributed to the operation of

the ‘max’ and ‘sat’ blocks employed in the FPTD and RCP-FPTD. To elaborate further,

a max block employs a FX comparator and Multiplexers (MUXs) for determining the

148 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

Delay (ns)
4.54.03.53.02.52.01.51.00.50

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

C
C
D
F

FPTD
αk(1)
βk−1(1)
be1,k

RCP-FPTD
αk(1)
βk−1(1)
be1,k
εk,0,1

Pe(Tclk = 2.5 ns) = 0.4

γk
MSB
LSB

Figure 6.20: Example of CCDFs of propagation delays for the FPTD and RCP-
FPTD. These CCDFs were obtained for the case of the MSB of αk(1), βk−1(1)
and be1,k for the FPTD, as well as of the MSB of αk(1), βk−1(1), be1,k, εk,0,1 and
γk the LSB of γk for the RCP-FPTD, in the case when γk = b1,k + b2,k + b3,k.

maximum of two LLRs, as shown in Figure 6.21. Here, all qe output bits of the MUX

are updated according to the bit value of the A > B signal, which is provided by the

comparator. As a result of this, all the bits of the output LLRs may exhibit a similar

propagation delay. A similar structure to that of Figure 6.21 is employed for performing

the saturation operation of the ‘sat’ blocks.

A

qe

qe
B

A>B

0

1

qe

qe

qe

max(A,B)

Figure 6.21: Structure of a max block.

Note that the maximum propagation delays reported by the place and route tool are

4.5 ns and 3.0 ns for the FPTD and RCP-FPTD, respectively. However, these propaga-

tion delays were not observed in our Monte Carlo simulations. Instead, the maximum

propagation delays obtained from our simulations are 4.0 ns and 2.6 ns for the FPTD

and RCP-FPTD, respectively.

Figure 6.20 demonstrates that the bits of the extrinsic LLRs in the FPTD exhibit larger

propagation delays, when compared to the propagation delays of the bits of the state

metrics αk(s) and βk−1(s′). This may be attributed to the three max operations involved

6.5.2. Timing error model 149

in the six-stage data path of the extrinsic LLRs, compared to only one max operation

involved in the six-stage data path of αk(s) and βk−1(s′). Moreover, Figure 6.20 demon-

strates that the extrinsic LLRs, as well as αk(s) and βk−1(s′) of the RCP-FPTD exhibit

propagation delays similar to those of the state metrics of the FPTD, owing to the

reduced critical path consisting of only three data path stages. In addition to this,

the propagation delays of the intermediate results εk,m,n and γk of the RCP-FPTD are

significantly smaller, compared to all other propagation delays of Figure 6.20.

6.5.2 Timing error model

The CCDFs obtained in Section 6.5.1 may be used in order to model the occurrence

of timing errors in the FPTD and RCP-FPTD, when operated at a fixed clock period

Tclk, as shown in Figure 6.20. More specifically, during a BER simulation, a timing

error may be imposed upon a particular bit if Pe(Tclk) > R(DC), where Pe(Tclk) is the

probability of an error occurring for that bit at the clock period Tclk and R(DC) ∈ [0, 1]

is a uniform random number generated in the current DC. In each DC of the BER

simulations, random numbers are compared to the probabilities of error obtained from

the CCDF, in order to simulate the occurrence of timing errors in each bit of each

FPTD. To elaborate further, each block of the FPTD employs its 90 CCDFs and 90

random numbers in each DC to determine the occurrence of timing errors. Similarly,

each block of the RCP-FPTD employs its 132 CCDFs and 132 random numbers in each

DC. Note that owing to the odd-even operation of each FPTD, the CCDFs and the

random numbers are employed only in those blocks of each FPTD that are operated in

each DC. Owing to this error model, some bits of each FPTD will experience timing

errors in some clock cycles, but not in others. Similarly, a large overall number of timing

errors will occur in some clock cycles and only a small number of timing errors will be

encountered in others. When a timing error is encountered in a particular bit, our error

model assumes that a random bit value will be clocked into the corresponding DFF of

the affected register and that this bit value will be propagated to the subsequent stages

of the decoder.

In addition to this, the CCDFs may be employed for estimating the propagation delay

of each signal path tp in each FPTD and for determining the causes and effects of timing

errors, as shown in Figure 6.22 and Table 6.4, respectively. The particular example of

Figure 6.22 shows two possible propagation delays. The effect of each delay of Figure 6.22

is summarized in Table 6.4 as follows.

150 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

Clock

ts

tp1

tp2

th

Tclk

Figure 6.22: Example of propagation delays in the FPTDs.

Table 6.4: Causes and effects of timing errors in the FPTDs.

Scenario Propagation delay Effect

1 tp ≤ Tclk − ts No error

2 tp > Tclk − ts Timing error

Scenario 1.

Cause: The signal p1 arrives before the required setup time ts of the DFF at the end

of the combinational path.

Effect: No timing error occurs, since the signal is correctly propagated in the time

allotted. The DFF will propagate the correct bit value to the subsequent

stages.

Scenario 2.

Cause: The signal p2 arrives after the required setup time ts of the DFF at the end

of the combinational path.

Effect: A timing error occurs. The DFF will propagate a random bit value to the

subsequent stages.

Note that propagation delay Tclk ≤ tp ≤ Tclk + th results in a hold time violation of

the DFF. However, this is equivalent to the situation described in Scenario 2, owing to

tp > Tclk − ts. Similarly, a timing error occurring during the interval Tclk − ts < tp <

Tclk + th may trigger the occurrence of metastability in the affected DFF, which may

propagate to the rest of the circuit, as detailed in Chapter 4. For the purpose of our

investigations in this chapter, we assume that the metastability event is resolved to a

defined, but random logic state, for the sake of simplifying our timing error model.

As a result of this error model, the effect of the timing error is determined by the

significance of each affected bit. More specifically, an error in the MSB of an LLR

6.5.3. Error decoding performance 151

results in an absolute error of 2qe−1. However, an LSB error results in a maximum

absolute error of 20 = 1. In the example of Figure 6.20, a timing error will occur on the

MSB of the extrinsic LLR be1,k of the FPTD with probability of Perror = 0.4, when the

clock period is set to Tclk = 2.5 ns. By contrast, timing errors in the state metrics αk(s)

and βk−1(s′) of the FPTD will only occur if the clock period is set below 2.5 ns.

6.5.3 Error decoding performance

Figure 6.23 shows the BER performance of the FX FPTD and FX RCP-FPTD employing

the timing error model described in Section 6.5.2. These results correspond to the cases

of transmitting N = {40, 6144} bits using BPSK modulation over an AWGN channel,

when using different degrees of overclocking.

Figure 6.23 compares the BER obtained at the maximum number of DCs required by

each FPTD for achieving iterative decoding convergence in the absence of timing errors,

as previously shown in Figure 6.19. More specifically, we employ a maximum of 48

DCs for both the FPTD and the RCP-FPTD, when N = 40. Similarly, we employ

a maximum of 80 and 100 DCs for the FPTD and RCP-FPTD, respectively, when

N = 6144. According to the simulation results of Figure 6.23, the FPTD operated at

the clock periods of 4.5 ns and 3.4 ns exhibit similar BER performance, when N = 40.

Similarly, the clock period of the FPTD having a frame length of 6144 may be reduced

to 3.5 ns, without imposing a significant BER degradation. Moreover, the overclocked

RCP-FPTDs operating at 2.3 ns and 2.4 ns achieve similar BER performances to those of

the RCP-FPTDs operated at 3.0 ns, when the frame length is 40 and 6144, respectively.

The employment of clock periods moderately lower than the critical path may be ex-

pected to enhance the latency, throughput and energy efficiency of the decoders, without

significantly affecting their error correction capability, as we will show in Section 6.6.2.3.

Similarly, the BER performance of the various overclocked FPTDs of Figure 6.23 may be

improved by increasing the number of DCs beyond the maximum suggested limits. How-

ever, this degrades the hardware efficiency of the decoders, as we will also demonstrate

in Section 6.6.2.3.

The results presented in this section suggest that the FPTD and RCP-FPTD implemen-

tations of Sections 6.2.2 and 6.3.2 have an inherent, but only partial, tolerance to timing

errors. Section 6.6 details how the inherent tolerance to errors of the FPTDs may be

further enhanced by applying error-tolerant design techniques.

152 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

Eb/N0 (dB)

B
E
R

43210

100

10−1

10−2

10−3

10−4

10−5

BER at 48 DCs

FPTD (3.2 ns)
FPTD (3.3 ns)

FPTD (4.5 ns)
FPTD (3.4 ns)

FPTD (3.1 ns)

(a)

Eb/N0 (dB)

B
E
R

2.01.51.00.50

1000

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

BER at 80 DCs
FPTD (3.5 ns)

FPTD (3.2 ns)
FPTD (3.3 ns)

FPTD (4.5 ns)

FPTD (3.4 ns)

(b)

Eb/N0 (dB)

B
E
R

43210

100

10−1

10−2

10−3

10−4

10−5

BER at 48 DCs

RCP-FPTD (2.1 ns)
RCP-FPTD (2.2 ns)

RCP-FPTD (3.0 ns)
RCP-FPTD (2.3 ns)

RCP-FPTD (2.0 ns)

(c)

Eb/N0 (dB)

B
E
R

2.01.51.00.50

1000

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

BER at 100 DCs

RCP-FPTD (2.1 ns)
RCP-FPTD (2.2 ns)

RCP-FPTD (3.0 ns)

RCP-FPTD (2.3 ns)
RCP-FPTD (2.4 ns)

(d)

Figure 6.23: BER performance of the FPTD and RCP-FPTD in the presence
of timing errors owing to different degrees of overclocking, when transmitting
N={40,6144} bits using BPSK over an AWGN channel. (a) BER of the FPTD,
when N=40, DC=48 and Tclk ={4.5, 3.4, 3.3, 3.2, 3.1} ns. (b) BER of the
FPTD, when N=6144, DC=80 and Tclk ={4.5, 3.5, 3.4, 3.3, 3.2} ns. (c) BER
of the RCP-FPTD, when N=40, DC=48 and Tclk ={3.0, 2.3, 2.2, 2.1, 2.0} ns.
(d) BER of the RCP-FPTD, when N=6144, DC=100 and Tclk ={3.0, 2.4, 2.3,
2.2, 2.1} ns.

6.6 Better-than-worst-case Design in FPTDs

The results of Section 6.5.3 suggest that the BER performance of the FPTD and

RCP-FPTD is not significantly degraded, when timing errors occur owing to the em-

ployment of a clock period smaller than the critical path. Motivated by this, we propose

the employment of EDAC techniques [13, 20, 21, 22] for mitigating the effect of timing

errors in the FPTD and RCP-FPTD in overclocking scenarios, for the sake of improving

both their BER performance and their hardware efficiency. This methodology is com-

monly referred to as BTWC design [19], since the operating conditions of the system are

relaxed below the recommended safety margins and the occasional occurrence of timing

errors is compensated by the employment of EDAC techniques.

6.6.1. Razor DFF 153

6.6.1 Razor DFF

Figure 6.24 presents the structure of a Razor D-Type Flip Flop (RDFF) [13] and a

timing diagram showing its operation. An RDFF consists of one MUX, one main DFF,

one shadow DFF and one xor gate, as shown in the blue box of Figure 6.24(a). The

operation of the RDFF is exemplified in Figure 6.24(b). In the RDFF, both the main

DFF and the shadow DFF are provided with the same input D. However, the clock

signal of the shadow DFF is delayed by a time θ, with respect to the clock signal of the

main DFF, as shown in the top part of Figure 6.24(b).

D Q

D Q

Error

Combinational
logic

QS

QM

D

Clock

Main DFF

Shadow DFF

0

1

Combinational
logic

Razor DFF

DIN QOUT

θ Clockθ

(a)

Error

QS

QM

Clock

Clockθ

D A

A

A B

B

B

θ

Cycle 1 Cycle 2 Cycle 3

(b)

Figure 6.24: Razor DFF. (a) Razor circuit. (b) Timing diagram showing the
operation of a Razor DFF.

The operation of the RDFF is summarized as follows. In Cycle 1 of Figure 6.24(b),

the input data A arrives before the first rising edge of the Clock signal, whereupon the

output QM of the main DFF updates its value with A. Following the rising edge of the

154 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

delayed signal Clockθ, the output QS of the shadow DFF updates its value with A. In

Cycle 2 of Figure 6.24(b), a timing error results in the input data B arriving after the

rising edge of Clock but before the rising edge of Clockθ. In this case, the output QM

maintains the value of A from the previous clock cycle, while QS is updated with B. As

a result of this, the output Error of the xor gate of Figure 6.24(a) adopts the value of 1

for indicating that a timing error has been detected in Cycle 2. In Cycle 3, the output

QM is corrected with B. This is achieved with the aid of the MUX of Figure 6.24(a),

which provides the value of B to the input D of both DFFs, owing to Error=1 driving

the selector signal of the MUX. In this way, the penalty for detecting and correcting

an error is only one clock cycle. Note that the Error signal exhibits a glitch in Cycle

1, owing to the outputs QM and QS updating their values at different instants. Despite

this, the operation of the RDFF is not affected, since the Error signal is cleared after

the rising edge of Clockθ, when QM = QS. Moreover, the locally generated Error signal

may be employed by a global control unit in order to halt the operation of the system

and avoid the propagation of unreliable computations.

The delay θ is usually referred to as the error-detection window, since this is the period

in which late transitions of D may be correctly detected. In this way, a late transition

of D occurring after θ will not be detected by the RDFFs. Note that effectively, the

detection window θ corresponds to delay between the two clock signals minus the re-

quired setup time of the shadow DFF. However, the error-detection window may also

detect changes in D owing to short combinational paths, when the RDFF is required

to sample input data in consecutive clock cycles. This is referred to as the short-path

problem, which occurs when the propagation delay of a path is smaller than the delay

θ. In this case, the RDFFs may trigger a false positive error detection. In order to

avoid this situation, additional timing constraints must be considered during the design

phase of the system. This results in a significant design complexity increase, owing

to the careful insertion of buffers in the short paths of the system for extending their

propagation delay above the value of θ [13]. Moreover, this solution increases the area

requirements and energy consumption of the system. Alternatively, the delay θ may be

reduced below the propagation delay of the short paths, hence avoiding the insertion of

buffers, albeit at the cost of reducing the detection window of the RDFFs. Note that the

occurrence of timing errors in the interval comprising the required setup and hold times

of the main DFF of the RDFF may trigger the occurrence of metastability. Similarly,

metastability may occur in the shadow DFF if the input D changes during the interval

comprising its required setup and hold times. In order to prevent the catastrophic propa-

gation of metastability through the circuit, the authors of [13, 20, 21, 22] have proposed

the employment of metastability detector circuits within the RDFF. However, these

techniques rely on determining the optimal dimensions of Complementary Metal-Oxide

Semiconductor (CMOS) transistors, in order to detect the occurrence of metastability,

resulting in a significant increase in the complexity of the implementation of RDFFs.

For the purpose of our investigations, we assume that the occurrence of metastability

6.6.2. BTWC-FPTD 155

does not affect the operation of the RDFF, in order to reduce the complexity of the

implementation.

Sections 6.6.2 and 6.6.3 detail how the RDFFs may be employed in the FPTD and

RCP-FPTD, respectively, for improving their tolerance to timing errors, as well as their

BER performance and hardware efficiency. Furthermore, Sections 6.6.2 and 6.6.3 de-

scribe how the odd-even operation of the FPTDs and RCP-FPTD effectively overcomes

the short path problem in the RDFFs described above.

6.6.2 BTWC-FPTD

The following sections detail the employment of RDFFs in the FPTD of Section 6.2,

for the sake of improving its tolerance to timing errors and its hardware efficiency.

We refer to this implementation as the Better-Than-Worst-Case Fully-Parallel Turbo

Decoder (BTWC-FPTD). Section 6.6.2.1 details the hardware implementation of the

BTWC-FPTD. Following this, Section 6.6.2.2 presents a timing analysis and a timing

error model of the BTWC-FPTD. This timing error model is employed in Section 6.6.2.3

for characterizing the different trade-offs associated with the hardware implementation

of the BTWC-FPTD in the presence of timing errors owing to overclocking.

6.6.2.1 Hardware Implementation

As described in Section 6.2, the LTE FPTD operates using an odd-even scheduling,

where only one group of blocks of the FPTD is operated in each DC. This is exemplified

in Figure 6.25. In the ith DC of Figure 6.25(a), only the blocks of the upper row

having odd indexes and the blocks of the lower row having even indexes are operated.

Following this, only the blocks having even indexes in the upper row and the blocks

having odd indexes in the lower row are operated in the (i+ 1)th DC, as shown in

Figure 6.25(b). This operation guarantees that each block of the FPTD is not operated in

two consecutive DCs. To elaborate further, let us analyze in more detail the operation of

the block U1 of Figure 6.25, as a particular example. In the ith DC of Figure 6.25(a), the

block U1 provides the forward state metrics αt,u1 to its neighboring block U2. Likewise,

U1 will provide the extrinsic LLR bt,u,e1,1 as the a priori LLR bt,l,a1,3 to L3 in the same

ith DC. After this, in the (i+ 1)th DC of Figure 6.25(b), U2 and L3 will employ their

inputs provided by U1 and their other neighboring blocks for generating the outputs

αt,u2 , βt,u1 , bt,u,e1,2 for U2, as well as αt,l3 , βt,l2 and bt,l,e1,3 for L3. However, U1 is not operated

in the (i+ 1)th DC. Hence the outputs of U1 maintain the values that they had in the

ith DC. This operation eliminates the short-path problem of the RDFF described in

Section 6.6.1, since the outputs of the blocks of the FPTD do not update their value

in consecutive clock cycles. As an explicit benefit of this, it is possible to eliminate

the short-path constraint of the RDFF of Figure 6.24 for the implementation of the

156 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

Regαt,u
1

αu
0

βt,u
0

U1

Reg

Reg

bt,u,e1,1

bu,a2,1 bu,a3,1

RegReg

Regαt,u
2

βt,u
1

U2

Reg

Reg

bt,u,e1,2

bu,a2,2 bu,a3,2

RegReg

Regαt,u
3

βt,u
2

U3

Reg

Reg

bt,u,e1,3

bu,a2,3 bu,a3,3

RegReg

Regαt,u
N

βt,u
N−1

βu
N

UN

Reg

Reg

bt,u,e1,N

bu,a2,N bu,a3,N

RegReg

Regαt,l
1

αl
0

βt,l
0

L1Reg

bl,a3,1

bt,l,e1,1

RegReg

bl,a2,1

Regαt,l
2

βt,l
1

L2

Reg

Reg

bl,a3,2

bt,l,e1,2

RegReg

bl,a2,2

Regαt,l
3

βt,l
2

L3

Reg

Reg

bl,a3,3

bt,l,e1,3

RegReg

bl,a2,3

Regαt,l
N

βt,l
N−1 βl

N

LN

Reg

Reg

bl,a3,N

bt,l,e1,N

RegReg

bl,a2,N

Reg

Interleaver

DC=i

βt−1,u
1

bt−1,u,a
1,1

αt−1,u
1

βt−1,u
2

bt−1,u,a
1,2

αt−1,u
2

βt−1,u
3

bt−1,u,a
1,3

αt−1,u
N−1

bt−1,u,a
1,N

βt−1,l
1

bt−1,l,a
1,1

αt−1,l
1

βt−1,l
2

bt−1,l,a
1,2

αt−1,l
2

βt−1,l
3

bt−1,l,a
1,3

αt−1,l
N−1

bt−1,l,a
1,N

(a)

Regαt,u
1

αu
0

βt,u
0

U1

Reg

Reg

bt,u,e1,1

bu,a2,1 bu,a3,1

RegReg

Regαt,u
2

βt,u
1

U2

Reg

Reg

bt,u,e1,2

bu,a2,2 bu,a3,2

RegReg

Regαt,u
3

βt,u
2

U3

Reg

Reg

bt,u,e1,3

bu,a2,3 bu,a3,3

RegReg

Regαt,u
N

βt,u
N−1

βu
N

UN

Reg

Reg

bt,u,e1,N

bu,a2,N bu,a3,N

RegReg

Regαt,l
1

αl
0

βt,l
0

L1Reg

bl,a3,1

bt,l,e1,1

RegReg

bl,a2,1

Regαt,l
2

βt,l
1

L2

Reg

Reg

bl,a3,2

bt,l,e1,2

RegReg

bl,a2,2

Regαt,l
3

βt,l
2

L3

Reg

Reg

bl,a3,3

bt,l,e1,3

RegReg

bl,a2,3

Regαt,l
N

βt,l
N−1 βl

N

LN

Reg

Reg

bl,a3,N

bt,l,e1,N

RegReg

bl,a2,N

Reg

Interleaver

DC=i + 1

βt−1,u
1

bt−1,u,a
1,1

αt−1,u
1

βt−1,u
2

bt−1,u,a
1,2

αt−1,u
2

βt−1,u
3

bt−1,u,a
1,3

αt−1,u
N−1

bt−1,u,a
1,N

βt−1,l
1

bt−1,l,a
1,1

αt−1,l
1

βt−1,l
2

bt−1,l,a
1,2

αt−1,l
2

βt−1,l
3

bt−1,l,a
1,3

αt−1,l
N−1

bt−1,l,a
1,N

(b)

Figure 6.25: Odd-even operation of the FPTD. Only those blocks highlighted
in blue lines are operated in each DC.(a) Odd blocks of the upper row and even
blocks of the lower row are operated. (b) Even blocks of the upper row and odd
blocks of the lower row are operated.

BTWC-FPTD. In this way, the operation of the BTWC-FPTD guarantees that the

data sampled during the detection window θ corresponds to the data generated in the

previous (i− 1)th DC, rather than data generated in the current ith DC owing to a short

combinational path.

Figure 6.26 shows how the RDFF of Figure 6.24 may be modified for eliminating the

short-path constraint in the BTWC-FPTD. Here, the shadow DFF of Figure 6.24 is

6.6.2. BTWC-FPTD 157

replaced by a shadow D-type latch and the delay block θ is eliminated. In this configu-

ration, the output QM of the main DFF will take the value of the input D at the rising

edge of the clock. By contrast, the output QS of the shadow D-type latch will take the

value of the input D, when the clock signal takes the value of 1. The output Error of

the xor gate will take the value of 1, if QM 6= QS, to indicate that a timing error has

been encountered, in analogy to the behavior of the RDFF of Figure 6.24. As a result of

this, the detection window θ of this configuration corresponds to the time that the clock

signal has the value of 1, minus the required setup time of the shadow D-type latch.

Moreover, note that the MUX of Figure 6.24 is no longer needed in the BTWC-FPTD,

since the output QM of the main DFF does not need to be updated with the correct

value, if a timing error is encountered. This is justified since an erroneous value of QM

in the ith DC will prevent the propagation of unreliable data, as will be described later

in this section.

D Q

Error

Combinational
logic

QS

QM

D

Clock

Main DFF

Shadow D-type latch

Combinational
logic

Razor DFF

DIN QOUT

D Q

E

Figure 6.26: Razor DFF employed in the BTWC-FPTD and BTWC-RCP-
FPTD.

In the BTWC-FPTD, we replace some of the conventional DFFs with the latch-based

RDFFs of Figure 6.26. More specifically, we replace only the DFFs of the MSBs of the

extrinsic LLR be1,k with RDFFs, as shown in Figure 6.27. The rest of the (qe − 1) bits

of be1,k, as well as all qe bits of the state metrics αk(s) and βk−1(s′) employ conventional

DFFs. As a result of this, only 1 out of the 90 DFFs of each block of the FPTD

employ a RDFF. Note however that the BTWC-FPTD requires the interleaving and de-

interleaving of the Error signals of each block of the FPTD. This additional Error signal

does not affect the timing characteristics or the area efficiency of the BTWC-FPTD, as

Sections 6.6.2.3 and 6.7 will demonstrate. This is justified since the CCDFs of the FPTD

of Figure 6.20 demonstrate that the extrinsic LLRs be1,k are more susceptible to timing

errors, when compared to the bits of the state metrics, as described in Section 6.5.2.

Moreover, we only employ RDFFs in the MSB of be1,k, since this bit determines the

sign of the represented LLR and timing errors in this bit severely degrade the BER

performance of iterative decoders [46, 91].

158 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

αt
k(1)

αt
k(2)

αt
k(3)

αt
k(4)

αt
k(5)

αt
k(6)

αt
k(7)

Errorb
t−1,a
1,k

Clock
Gating

En Q

gClock

Clock

qe

qe

qe

qe

qe

qe

qe

Reg

Reg

Reg

Reg

Reg

Reg

Reg

gClock

DFF
D Q

qe qe

gClock

RDFF
MSB

qe

D Q

DFF
D Q

DFF
D Q

DFF
D Q

DFF
D Q

qe

LSB

Error

Error

α

γ

R
eg
s

ba3,kbt,a1,k b
a
2,k

αt−1
k−1

βt
k−1 R

eg
s

αt
k

βt−1
kβ

Errorb
t−1,a
1,k

Ext

Dec

b̂1,kbt,e1,k Errorb
t,e
1,k

RReg

Figure 6.27: Implementation of RDFFs in a block of the BTWC-FPTD.

Figure 6.27 shows how the Error signal of the RDFFs may be employed for preventing

the propagation of unreliable LLRs. Here, the DFFs are grouped in the ‘Reg’ blocks

in order to simplify the discussions. In the example of Figure 6.27, the incoming error

signal Errort−1,a
b1,k is employed by a clock gating module for disabling the clock signal of

all the Regs of a block of the BTWC-FPTD. In this way, if an error is encountered in

the a priori LLR ba1,k, the Regs of the modules α, β, as well as the Razor-based Reg of

the module Ext of Figure 6.27, denoted as ‘RReg’, will maintain the value that they had

in the previous DC. In this way, the a priori LLR bt,a1,k is effectively discarded during

the current DC of the BTWC-FPTD’s iterative decoding process.

This error containment scheme avoids the need to provide an update with the cor-

rect bit value for the main DFF of the RDFF of bt,a1,k, reducing the complexity of the

BTWC-FPTD implementation. Instead, the subsequent data path stages are not op-

erated using the unreliable data. This differs from the traditional EDAC strategies

presented in the open literature [13, 20, 21, 22], where the state of the system is cor-

rected and restored by repeating those operations that triggered the timing error, after

increasing either the clock period or the supply voltage, in order to allow the correct

completion of the operation.

6.6.2. BTWC-FPTD 159

Regαt,u
1αu

0

βt,u
0

U1

Reg

Reg

bt,u,e1,1

bu,a2,1 bu,a3,1

RegReg

Regαt,u
2

βt,u
1

U2

Reg

Reg

bt,u,e1,2

bu,a2,2 bu,a3,2

RegReg

Regαt,u
3

βt,u
2

U3

Reg

Reg

bt,u,e1,3

bu,a2,3 bu,a3,3

RegReg

Regαt,u
N

βt,u
N−1 βu

N

UN

Reg

Reg

bt,u,e1,N

bu,a2,N bu,a3,N

RegReg

Regαt,l
1αl

0

βt,l
0

L1Reg

bl,a3,1

bt,l,e1,1

RegReg

bl,a2,1

Regαt,l
2

βt,l
1

L2

Reg

Reg

bl,a3,2

bt,l,e1,2

RegReg

bl,a2,2

Regαt,l
3

βt,l
2

L3

Reg

Reg

bl,a3,3

bt,l,e1,3

RegReg

bl,a2,3

Regαt,l
N

βt,l
N−1 βl

N

LN

Reg

Reg

bl,a3,N

bt,l,e1,N

RegReg

bl,a2,N

Reg

Interleaver

DC=i

βt−1,u
1

bt−1,u,a
1,1

αt−1,u
1

βt−1,u
2

bt−1,u,a
1,2

αt−1,u
2

βt−1,u
3

bt−1,u,a
1,3

αt−1,u
N−1

bt−1,u,a
1,N

βt−1,l
1

bt−1,l,a
1,1

αt−1,l
1

βt−1,l
2

bt−1,l,a
1,2

αt−1,l
2

βt−1,l
3

bt−1,l,a
1,3

αt−1,l
N−1

bt−1,l,a
1,N

(a)

Regαt,u
1αu

0

βt,u
0

U1

Reg

Reg

bt,u,e1,1

bu,a2,1 bu,a3,1

RegReg

Regαt,u
2

βt,u
1

U2

Reg

Reg

bt,u,e1,2

bu,a2,2 bu,a3,2

RegReg

Regαt,u
3

βt,u
2

U3

Reg

Reg

bt,u,e1,3

bu,a2,3 bu,a3,3

RegReg

Regαt,u
N

βt,u
N−1 βu

N

UN

Reg

Reg

bt,u,e1,N

bu,a2,N bu,a3,N

RegReg

Regαt,l
1αl

0

βt,l
0

L1Reg

bl,a3,1

bt,l,e1,1

RegReg

bl,a2,1

Regαt,l
2

βt,l
1

L2

Reg

Reg

bl,a3,2

bt,l,e1,2

RegReg

bl,a2,2

Regαt,l
3

βt,l
2

L3

Reg

Reg

bl,a3,3

bt,l,e1,3

RegReg

bl,a2,3

Regαt,l
N

βt,l
N−1 βl

N

LN

Reg

Reg

bl,a3,N

bt,l,e1,N

RegReg

bl,a2,N

Reg

Interleaver

DC=i + 1

βt−1,u
1

bt−1,u,a
1,1

αt−1,u
1

βt−1,u
2

bt−1,u,a
1,2

αt−1,u
2

βt−1,u
3

bt−1,u,a
1,3

αt−1,u
N−1

bt−1,u,a
1,N

βt−1,l
1

bt−1,l,a
1,1

αt−1,l
1

βt−1,l
2

bt−1,l,a
1,2

αt−1,l
2

βt−1,l
3

bt−1,l,a
1,3

αt−1,l
N−1

bt−1,l,a
1,N

(b)

Figure 6.28: Operation of the BTWC-FPTD in the presence of timing errors.
(a) A timing error is detected in the MSB of the extrinsic LLR of U1. (b) L3 is
not operated owing to the timing error detected in U1.

Figure 6.28 shows how the odd-even operation of the FPTD is no longer guaranteed in

the BTWC-FPTD. Here, the red line represents a timing error, that is encountered in

bu,e1,1 in the block U1 in the ith DC of Figure 6.28(a). Following this, in the i+ 1th DC

of Figure 6.28(b), the block L3 is not operated, owing to the detection of the timing

error encountered in the previous DC. As a result of this, only a small number of light-

shaded blocks of Figure 6.5 may be operated in alternate DCs, but a large number of

160 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

light-shaded blocks may be operated in others. Similarly, only a small number of dark-

shaded blocks of Figure 6.5 may be operated in alternate DCs, but a large number of

dark-shaded blocks may be operated in others. This operation effectively modifies the

FPTD algorithm in a dynamic way, resulting in the operation of different algorithms

for different received frames, depending on the occurrence of timing errors. However,

the BTWC-FPTD exhibits an enhanced tolerance to timing errors and to the dynamic

changes in the algorithm, as we will demonstrate in Section 6.6.2.3.

6.6.2.2 Timing analysis and timing error model

In this section, we characterize the timing characteristics of the BTWC-FPTD, in anal-

ogy to the timing analysis presented in Section 6.5.1 for the case of the FPTD. We

performed a Monte Carlo simulation for determining the CCDFs of each bit of the

BTWC-FPTD, when using TSMC 40 nm technology and a nominal supply voltage of

VDD = 1.0 V. We present results for the physical layout generated by the automatic

place and route of the BTWC-FPTD using Cadence SoC Encounter [72]. According to

our post-layout results, the employment of RDFF does not modify the timing character-

istics of the FPTD. As a result of this, the critical clock period, as well as the CCDFs

of Figure 6.20 obtained for the case of the FPTD remain unchanged, for the case of the

BTWC-FPTD design. This allows us to employ the timing error model of Section 6.5.2

for determining the occurrence of timing errors in the BTWC-FPTD. In each DC of

the BER simulations, we employ random numbers and the CCDFs of Figure 6.20 for

determining the propagation delay of each signal. Following this, we employ Figure 6.22

and Table 6.4 for determining the causes and effects of timing errors for each of the

bits of the BTWC-FPTD that are implemented using conventional DFFs, as detailed in

Section 6.6.1. However, we employ Figure 6.29 and Table 6.5 for determining the causes

and effects of timing errors in each of the bits of the BTWC-FPTD that employ RDFFs.

Clock

tMs

θ

tp1

tp2

tp3

tp4

tSs

Tclk

Figure 6.29: Example of propagation delays in the BTWC FPTDs.

6.6.2. BTWC-FPTD 161

Table 6.5: Timing error conditions in BTWC designs.

Scenario Propagation delay Effect

1 tp ≤ Tclk − tMs No error

2 Tclk − tMs < tp < Tclk Undetected error

3 Tclk ≤ tp ≤ Tclk + θ Detected error

4 tp > Tclk + θ Undetected error

Each of the four possible scenarios of Figure 6.29 and Table 6.5 is further detailed as

follows.

Scenario 1.

Cause: The signal p1 arrives before the required setup time tMs of the main DFF of

the RDFF at the end of the combinational path.

Effect: No timing error occurs, since the signal is correctly propagated in the time

allotted. The RDFF will propagate the correct bit value to the subsequent

stages.

Scenario 2.

Cause: The signal p2 arrives during the interval comprising the setup time tMs of the

main DFF of the RDFF at the end of the combinational path and the rising

edge of the clock.

Effect: A timing error occurs but it is not detected by the RDFF, since it occurs

outside the detection window θ. The RDFF will propagate a random bit

value to the subsequent stages.

Scenario 3.

Cause: The signal p3 arrives after the rising edge of the clock but before the required

setup time tSs of the shadow D-type latch of the RDFF.

Effect: A timing error occurs and it is detected by the RDFF, since it occurs during

the detection window θ. The Error signal of the RDFF will be asserted,

preventing the updating of the subsequent DFFs.

Scenario 4.

Cause: The signal p4 arrives after the required setup time tSs of the shadow D-type

latch of the RDFF.

Effect: A timing error occurs but it is not detected by the RDFF, since it occurs

outside the detection window θ. The RDFF will propagate a random bit

value to the subsequent stages.

162 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

Note that in analogy to the causes and effects of timing errors of Figure 6.22 and Ta-

ble 6.4, a hold time violation of the main DFF of the RDFF will result in a timing error.

However, in this case, the RDFF will detect this error. By contrast a hold time violation

of the shadow D-type latch of the RDFF will result in an undetected error, as described

in Scenario 4.

For the purpose of our investigations, our timing error model assumes clock signals

associated with a 50% duty cycle. As a result of this, the detection window is θ =

Tclk/2 − tSs , where the typical required setup time of the shadow D-type latch is tSs =

100 ps for TSMC 40 nm technology [92].

6.6.2.3 Trade-off analysis in the presence of timing errors

This section characterizes the different trade-offs associated with the BER performance

and hardware efficiency of the BTWC-FPTD in the presence of timing errors owing to

overclocking. We employ the timing error model described in Section 6.6.2.2 for our

BER simulations of the BTWC-FPTD, for the cases when transmitting N={40,6144}-
bit frames, using BPSK modulation for communication over an AWGN channel, when

using different degrees of overclocking and when allowing a maximum of 256 DCs with

early stopping. We also present benchmark results for the FPTD operating at a clock

period equal to its critical path delay in the absence of timing errors, as well as at

different degrees of overclocking in the presence of timing errors.

Figure 6.30 characterizes the BER performance, average number of DCs performed,

throughput and energy efficiency of the FPTD and BTWC-FPTD implementations, for

the case when N = 40. These results suggest that the BER performance and hardware

efficiency of the BTWC-FPTD are improved, when compared to those of the FPTD.

As an example of this, Figure 6.30(a) demonstrates that the BER performance of the

N = 40 BTWC-FPTD operated at 3.3 ns is similar to that of the FPTD operated at the

critical clock period of 4.5 ns. Similarly, the BTWC-FPTD operated at 3.3 ns requires

a similar number of DCs for achieving iterative decoding convergence to a target BER

of 10−4, when compared to the FPTD operated at the critical clock period of 4.5 ns

and in the absence of timing errors, as shown in Figure 6.30(b). As a result of this,

the BTWC-FPTD operated at 3.3 ns exhibits the largest throughput and lowest energy

consumption per decoding frame of the presented schemes, as shown in Figures 6.30(c)

and 6.30(d), respectively. More specifically, the BTWC-FPTD operated at 3.3 ns offers

1.18 and 1.33 times improvements to throughput and energy, when compared to those

of the FPTD operated at 3.3 ns and 4.5 ns, respectively. This is achieved despite the

occurrence of timing errors in the BTWC-FPTD.

Furthermore, the results of Figure 6.31 suggest that the BTWC-FPTD significantly

enhances both the BER performance and the hardware efficiency of the FPTD in the

6.6.2. BTWC-FPTD 163

Eb/N0 (dB)

B
E
R

43210

100

10−1

10−2

10−3

10−4

10−5

BER at 48 DCs

BTWC-FPTD (3.2 ns)
BTWC-FTPD (3.3 ns)
BTWC-FPTD (3.4 ns)
FPTD (3.2 ns)
FPTD (3.3 ns)

FPTD (4.5 ns)
FPTD (3.4 ns)

(a)

Eb/N0 (dB)

A
ve
ra
ge

D
C
s

43.93.83.73.63.5

280
260
240
220
200
180
160
140
120
100
80
60
40
20
0

BTWC-FPTD (3.2 ns)
BTWC-FTPD (3.3 ns)
BTWC-FPTD (3.4 ns)

FPTD (3.2 ns)
FPTD (3.3 ns)

FPTD (4.5 ns)
FPTD (3.4 ns)

BER = 10−4

(b)

Eb/N0 (dB)

T
h
ro
u
gh

p
u
t
(M

b
p
s)

43.93.83.73.63.5

550

500

450

400

350

300

250

200

150

100

50

0

BTWC-FPTD (3.2 ns)
BTWC-FTPD (3.3 ns)
BTWC-FPTD (3.4 ns)

FPTD (3.2 ns)
FPTD (3.3 ns)

FPTD (4.5 ns)
FPTD (3.4 ns)

BER = 10−4

(c)

Eb/N0 (dB)

E
n
er
gy

p
er

fr
am

e
(n
J
)

43.93.83.73.63.5

500

450

400

350

300

250

200

150

100

50

0

BTWC-FPTD (3.2 ns)
BTWC-FTPD (3.3 ns)
BTWC-FPTD (3.4 ns)
FPTD (3.2 ns)
FPTD (3.3 ns)

FPTD (4.5 ns)
FPTD (3.4 ns)

BER = 10−4

(d)

Figure 6.30: Trade-off analysis of the FPTD and of the BTWC-FTPD in the
presence of timing errors owing to different degrees of overclocking, when trans-
mitting N = 40 bits using BPSK over an AWGN channel. The results of average
DCs, throughput and energy efficiency were obtained for the case of a target
BER of 10−4 and when using a maximum of 256 DCs with early stopping. (a)
BER performance at 48 DCs. (b) Average number of DCs for achieving a BER
of 10−4. (c) Throughput. (d) Energy per decoding frame.

presence of timing errors, when N = 6144. Here, the BER performance may be improved

by an order of magnitude by employing the BTWC-FPTD, when the clock period is set to

3.3 ns. Similarly, the BTWC-FPTD improves the throughput and energy efficiency of the

FPTD, despite the occurrence of timing errors. As an example of this, the throughput

of the BTWC-FPTD operated at 3.3 ns and an Eb/N0 = 0.8 dB for achieving a BER of

10−5 is 2.07 and 1.18 greater than those of the FPTD operated at the same SNR value

and 3.3 ns and 4.5 ns, respectively.

Figures 6.30 and 6.31 demonstrate that the BTWC-FPTD enhances the tolerance to

timing errors of the FPTD. This is particularly observed in Figure 6.31, where the FPTD

operated at the critical clock period and in the absence of timing errors outperforms the

FPTD operated at overclocked periods. However, the FPTD operated at the critical

clock period does not outperform the BTWC-FPTD operated at an overclocked period

of 3.3 ns. As a result of this, we propose the employment of the BTWC-FPTD operated

at a clock period of 3.3 ns.

164 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

Eb/N0 (dB)

B
E
R

2.01.51.00.50

1000

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

BER at 80 DCs

BTWC-FPTD (3.2 ns)
BTWC-FTPD (3.3 ns)
BTWC-FPTD (3.4 ns)

FPTD (3.2 ns)
FPTD (3.3 ns)

FPTD (4.5 ns)
FPTD (3.4 ns)

(a)

Eb/N0 (dB)

A
ve
ra
ge

D
C
s

10.90.80.70.6

280
260
240
220
200
180
160
140
120
100
80
60
40
20
0

BTWC-FPTD (3.2 ns)
BTWC-FTPD (3.3 ns)
BTWC-FPTD (3.4 ns)
FPTD (3.2 ns)
FPTD (3.3 ns)

FPTD (4.5 ns)
FPTD (3.4 ns)

BER = 10−5

(b)

Eb/N0 (dB)

T
h
ro
u
gh

p
u
t
(G

b
p
s)

10.90.80.70.6

35

30

25

20

15

10

5

0

BTWC-FPTD (3.2 ns)
BTWC-FTPD (3.3 ns)
BTWC-FPTD (3.4 ns)

FPTD (3.2 ns)
FPTD (3.3 ns)

FPTD (4.5 ns)
FPTD (3.4 ns)

BER = 10−5

(c)

Eb/N0 (dB)

E
n
er
gy

p
er

fr
am

e
(µ
J
)

n

10.90.80.70.6

8

7

6

5

4

3

2

1

0
BTWC-FPTD (3.2 ns)
BTWC-FTPD (3.3 ns)
BTWC-FPTD (3.4 ns)
FPTD (3.2 ns)
FPTD (3.3 ns)

FPTD (4.5 ns)
FPTD (3.4 ns)

BER = 10−5

(d)

Figure 6.31: Trade-off analysis of the FPTD and of the BTWC-FTPD in the
presence of timing errors owing to different degrees of overclocking, when trans-
mitting N = 6144 bits using BPSK over an AWGN channel. The results of
average DCs, throughput and energy efficiency were obtained for the case of a
target BER of 10−5 and when using a maximum of 256 DCs with early stopping.
(a) BER performance at 80 DCs. (b) Average number of DCs for achieving a
BER of 10−5. (c) Throughput. (d) Energy per decoding frame.

Motivated by these results, Section 6.6.3 details the employment of the BTWC design

techniques in the RCP-FPTD of Section 6.3.

6.6.3 BTWC-RCP-FPTD

In analogy to Section 6.6.2, the following sections detail the employment of RDFFs in the

RCP-FPTD described in Section 6.3 for the sake of improving its tolerance to timing

errors and its hardware efficiency. We refer to this implementation as Better-Than-

Worst-Case Reduced-Critical-Path Fully-Parallel Turbo Decoder (BTWC-RCP-FPTD).

Section 6.6.3.1 details the hardware implementation of the BTWC-RCP-FPTD. Fol-

lowing this, Section 6.6.3.2 presents a timing analysis and a timing error model of the

BTWC-RCP-FPTD. This timing error model is employed in Section 6.6.3.3 for char-

acterizing the different trade-offs associated with the hardware implementation of the

BTWC-FPTD in the presence of timing errors owing to overclocking.

6.6.3. BTWC-RCP-FPTD 165

6.6.3.1 Hardware Implementation

In analogy to the behavior of the FPTD, the RCP-FPTD operates using an odd-even

scheduling, as described in Section 6.3. However, in the RCP-FPTD, only specific

sections of each block are operated. This is exemplified in Figure 6.32. Here, the lower

part of U1 provides the extrinsic LLR bu,e1,1 as the a priori LLR bl,a1,3 to L3 in the ith

DC of Figure 6.32(a). In the same ith DC, the middle part of U2 provides αu
2 and βu

1

to U3 and U1, respectively. However, in (i+ 1)th DC of Figure 6.32(b), the top and

bottom parts of U1 are not operated. Similarly, the middle part of U2 is not operated

in the (i+ 1)th DC. This scheduling avoids the operation of the same section of each

block of the RCP-FPTD in two consecutive DCs. As an explicit benefit of this, the

BTWC-RCP-FPTD may employ the latch-based RDFF of Figure 6.26, rather than the

short-path constrained RDFF of Figure 6.24(a).

Figures 6.33 and 6.34 show how RDFFs may be employed in the RCP-FPTD. In Fig-

ure 6.33, RDFF are employed by the MSB of the state metrics αk and βk, as well as

by the MSB of the extrinsic LLR be1,k. By contrast, the γ, ε and Dec modules employ

conventional DFFs. This is justified since the CCDFs of the RCP-FPTD of Figure 6.20

demonstrate that αk, βk and be1,k are more susceptible to the occurrence of timing errors

in the RCP-FPTD. As a consequence of the employment of RDFFs in the α module of

Figure 6.27, this module is required to provide the error signal Errorα
t
k to the (k + 1)th

neighboring block. This signal is the result of the logical or of the individual error

signals generated by each RDFF of αk, as shown in the blue box of Figure 6.27. Owing

to this, the kth block of the BTWC-RCP-FPTD prevents the module α from operating,

if a timing error has been detected in the module α of the (k − 1)th block in the (i− 1)th

DC. This is achieved by the clock gating unit of the α module shown in Figure 6.27.

Likewise, the module β of Figure 6.27 employs a structure similar to that of the blue

box for providing the error signal Errorβ
t
(k−1) to the (k − 1)th neighboring block, which

corresponds to the logical or of the individual error signals generated by each RDFF of

βk−1. As a result of this, the kth block of the BTWC-RCP-FPTD prevents the module

β from operating by using a clock gating unit in the β module, if a timing error has

been detected in the module β of the (k + 1)th block in the (i− 1)th DC. Finally, the

module ε performs the logical or operation of the incoming error signals Errorα
t−1
(k−1)

and Errorβ
t−1
k , in order to determine the occurrence of errors in the α module of the

(k − 1)th block or in the β module of the (k + 1)th block. When a timing error is en-

countered in a neighboring block owing to Errorα
t−1
(k−1) or Errorβ

t−1
k , a clock gating unit

in the ε module disables the clock signal Clockmiddle for preventing the operation of its

DFFs. Note that the clock gating of the ε module is not explicitly shown in Figure 6.27

for the sake of simplifying the schematic diagrams. In addition to this, the incoming

error signal Errort−1,a
b1,k prevents the updating of the Dec module. In this configuration,

each of the four middle modules of Figure 6.27 employ a clock gating unit in order to

prevent their DFFs from being updated with unreliable data. Moreover, the incoming

166 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

Regαt,u
1αu

0

βt,u
0

U1

Reg

Reg

bt,u,e1,1

bu,a2,1 bu,a3,1

RegReg

Regαt,u
2

βt,u
1

U2

Reg

Reg

bt,u,e1,2

bu,a2,2 bu,a3,2

RegReg

Regαt,u
3

βt,u
2

U3

Reg

Reg

bt,u,e1,3

bu,a2,3 bu,a3,3

RegReg

Regαt,u
N

βt,u
N−1 βu

N

UN

Reg

Reg

bt,u,e1,N

bu,a2,N bu,a3,N

RegReg

Regαt,l
1αl

0

βt,l
0

L1Reg

bl,a3,1

bt,l,e1,1

RegReg

bl,a2,1

Regαt,l
2

βt,l
1

L2

Reg

Reg

bl,a3,2

bt,l,e1,2

RegReg

bl,a2,2

Regαt,l
3

βt,l
2

L3

Reg

Reg

bl,a3,3

bt,l,e1,3

RegReg

bl,a2,3

Regαt,l
N

βt,l
N−1 βl

N

LN

Reg

Reg

bl,a3,N

bt,l,e1,N

RegReg

bl,a2,N

Reg

Interleaver

bt−1,l,a
1,2 bt−1,l,a

1,3

βt−1,u
1

bt−1,u,a
1,1

αt−1,u
1

βt−1,u
2

bt−1,u,a
1,2

αt−1,u
2

βt−1,u
3

bt−1,u,a
1,3

αt−1,u
N−1

bt−1,u,a
1,N

βt−1,l
1

bt−1,l,a
1,1

αt−1,l
1

βt−1,l
2

αt−1,l
2

βt−1,l
3

αt−1,l
N−1

bt−1,l,a
1,N

(a)

Regαt,u
1αu

0

βt,u
0

U1

Reg

Reg

bt,u,e1,1

bu,a2,1 bu,a3,1

RegReg

Regαt,u
2

βt,u
1

U2

Reg

Reg

bt,u,e1,2

bu,a2,2 bu,a3,2

RegReg

Regαt,u
3

βt,u
2

U3

Reg

Reg

bt,u,e1,3

bu,a2,3 bu,a3,3

RegReg

Regαt,u
N

βt,u
N−1 βu

N

UN

Reg

Reg

bt,u,e1,N

bu,a2,N bu,a3,N

RegReg

Regαt,l
1αl

0

βt,l
0

L1Reg

bl,a3,1

bt,l,e1,1

RegReg

bl,a2,1

Regαt,l
2

βt,l
1

L2

Reg

Reg

bl,a3,2

bt,l,e1,2

RegReg

bl,a2,2

Regαt,l
3

βt,l
2

L3

Reg

Reg

bl,a3,3

bt,l,e1,3

RegReg

bl,a2,3

Regαt,l
N

βt,l
N−1 βl

N

LN

Reg

Reg

bl,a3,N

bt,l,e1,N

RegReg

bl,a2,N

Reg

Interleaver

DC=i + 1

βt−1,u
1

bt−1,u,a
1,1

αt−1,u
1

βt−1,u
2

bt−1,u,a
1,2

αt−1,u
2

βt−1,u
3

bt−1,u,a
1,3

αt−1,u
N−1

bt−1,u,a
1,N

βt−1,l
1

bt−1,l,a
1,1

αt−1,l
1

βt−1,l
2

bt−1,l,a
1,2

αt−1,l
2

βt−1,l
3

bt−1,l,a
1,3

αt−1,l
N−1

bt−1,l,a
1,N

(b)

Figure 6.32: Odd-even operation of the RCP-FPTD. Only those sections high-
lighted in blue lines are operated in each DC. (a) Operation of the top and
bottom sections of the blocks of the upper row having odd indexes, middle sec-
tions of the block of the upper row having even indexes, top and bottom sections
of the blocks of the lower row having even indexes and middle sections of the
block of the lower row having odd indexes. (b) Operation of the top and bottom
sections of the blocks of the upper row having even indexes, middle sections of
the block of the upper row having odd indexes, top and bottom sections of the
blocks of the lower row having odd indexes and middle sections of the block of
the lower row having even indexes.

error signal Errort−1,a
b1,k prevents the update of the DFFs of the γ module, which is driven

by clock signal Clocktop, as shown in the red box of Figure 6.27. Note that the inputs

of the Ext module correspond to the outputs provided by the ε module, as well as the

6.6.3. BTWC-RCP-FPTD 167

Errorα
t−1
(k−1)

α

Ext

Dec

γ

R
R
eg
s

ba3,kbt,a1,k b
a
2,k

αt−1
k−1

βt
k−1

b̂1,kbt,e1,k Errorb
t,e
1,k

Reg

ε
Reg

R
R
eg
s

Errorα1

Errorα7

Errorα

αtk(1)

αtk(2)

αtk(3)

αtk(4)

αtk(5)

αtk(6)

αtk(7)

gClocktop

DFF
D Q

qe+1 qe+1

αt
k

Errorα
t−1
(k−1) Errorα

t
k

βt−1
k

Errorβ
t−1
k

Errorβ
t
(k−1)

β

Errorb
t−1,a
1,k

Clock
Gating

En Q

gClockmiddle

Clockmiddle

qeRReg

RReg

RReg

RReg

RReg

RReg

qe

qe

qe

qe

qe

qe

RReg

RReg

Clock
Gating

En Q

Clocktop

Errorb
t−1,a
1,k

Figure 6.33: Implementation of RDFFs in a block of the BTWC-RCP-FPTD.

received channel LLR ba2,k. However, the outputs ε do not employ RDFFs, owing to

their low probability of timing error occurrence, as detailed above. Furthermore, the

received channel LLR ba2,k remains constant throughout the iterative decoding process.

As a consequence of this, we do not employ clock gating in the Ext module, since the

inputs provided to this module are not susceptible to timing errors. Here, only one

clock gating module is required in each block of the BTWC-RCP-FPTD for enabling

and disabling the top modules of the decoding blocks. As a result of this, each block of

the BTWC-RCP-FPTD employs a total of five clock gating modules. Additionally, only

14 out of a total of 132 DFF employ RDFFs.

In analogy to the BTWC-FPTD, only a small number of light-shaded blocks of Fig-

ure 6.13 may be operated in alternate DCs, but a large number of light-shaded blocks

may be operated in others. Similarly, only a small number of dark-shaded blocks of Fig-

ure 6.13 may be operated in alternate DCs, but a large number of dark-shaded blocks

may be operated in others. As a result of this, the BTWC-RCP-FPTD dynamically mod-

ifies the RCP-FPTD algorithm, owing to the occurrence of timing errors, as exemplified

in Figure 6.34. Here, timing errors in bu,e1,1 and αu
2 in the ith DC prevent the operation of

the bottom part of L3, as well as the α module in the middle part of U3, respectively, in

the i+ 1th DC. Section 6.6.3.3 will demonstrate that both the BER performance and the

hardware efficiency are significantly improved by the BTWC-RCP-FPTD, when com-

pared to those of the RCP-FPTD in the presence of timing errors, despite this dynamic

algorithm adaptation.

168 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

Regαt,u
1αu

0

βt,u
0

U1

Reg

Reg

bt,u,e1,1

bu,a2,1 bu,a3,1

RegReg

Regαt,u
2

βt,u
1

U2

Reg

Reg

bt,u,e1,2

bu,a2,2 bu,a3,2

RegReg

Regαt,u
3

βt,u
2

U3

Reg

Reg

bt,u,e1,3

bu,a2,3 bu,a3,3

RegReg

Regαt,u
N

βt,u
N−1 βu

N

UN

Reg

Reg

bt,u,e1,N

bu,a2,N bu,a3,N

RegReg

Regαt,l
1αl

0

βt,l
0

L1Reg

bl,a3,1

bt,l,e1,1

RegReg

bl,a2,1

Regαt,l
2

βt,l
1

L2

Reg

Reg

bl,a3,2

bt,l,e1,2

RegReg

bl,a2,2

Regαt,l
3

βt,l
2

L3

Reg

Reg

bl,a3,3

bt,l,e1,3

RegReg

bl,a2,3

Regαt,l
N

βt,l
N−1 βl

N

LN

Reg

Reg

bl,a3,N

bt,l,e1,N

RegReg

bl,a2,N

Reg

Interleaver

DC=i

βt−1,u
1

bt−1,u,a
1,1

αt−1,u
1

βt−1,u
2

bt−1,u,a
1,2

αt−1,u
2

βt−1,u
3

bt−1,u,a
1,3

αt−1,u
N−1

bt−1,u,a
1,N

βt−1,l
1

bt−1,l,a
1,1

αt−1,l
1

βt−1,l
2

bt−1,l,a
1,2

αt−1,l
2

βt−1,l
3

bt−1,l,a
1,3

αt−1,l
N−1

bt−1,l,a
1,N

(a)

Regαt,u
1αu

0

βt,u
0

U1

Reg

Reg

bt,u,e1,1

bu,a2,1 bu,a3,1

RegReg

Regαt,u
2

βt,u
1

U2

Reg

Reg

bt,u,e1,2

bu,a2,2 bu,a3,2

RegReg

Regαt,u
3

βt,u
2

U3

Reg

Reg

bt,u,e1,3

bu,a2,3 bu,a3,3

RegReg

Regαt,u
N

βt,u
N−1 βu

N

UN

Reg

Reg

bt,u,e1,N

bu,a2,N bu,a3,N

RegReg

Regαt,l
1αl

0

βt,l
0

L1Reg

bl,a3,1

bt,l,e1,1

RegReg

bl,a2,1

Regαt,l
2

βt,l
1

L2

Reg

Reg

bl,a3,2

bt,l,e1,2

RegReg

bl,a2,2

Regαt,l
3

βt,l
2

L3

Reg

Reg

bl,a3,3

bt,l,e1,3

RegReg

bl,a2,3

Regαt,l
N

βt,l
N−1 βl

N

LN

Reg

Reg

bl,a3,N

bt,l,e1,N

RegReg

bl,a2,N

Reg

Interleaver

DC=i + 1

βt−1,u
1

bt−1,u,a
1,1

αt−1,u
1

βt−1,u
2

bt−1,u,a
1,2

αt−1,u
2

βt−1,u
3

bt−1,u,a
1,3

αt−1,u
N−1

bt−1,u,a
1,N

βt−1,l
1

bt−1,l,a
1,1

αt−1,l
1

βt−1,l
2

bt−1,l,a
1,2

αt−1,l
2

βt−1,l
3

bt−1,l,a
1,3

αt−1,l
N−1

bt−1,l,a
1,N

(b)

Figure 6.34: Odd-even operation of the BTWC-RCP-FPTD in the presence of
timing errors. (a) Timing errors are detected in the MSB of the extrinsic LLR
of U1 and in the forward state metrics αt,u2 . (b) The middle part of L3, as well
as the top and lower parts of U3 are not operated, owing to the timing errors.

6.6.3.2 Timing analysis and timing error model

According to our post-layout Monte Carlo simulations for determining the CCDFs of

each bit of the BTWC-RCP-FPTD, the employment of RDFF does not modify the tim-

ing characteristics of the RCP-FPTD. As a result of this, the critical clock period, as

well as the CCDFs of the RCP-FPTD of Figure 6.20 remain unchanged, for the case of

6.6.3. BTWC-RCP-FPTD 169

the BTWC-RCP-FPTD design. This allows us to employ the timing error model of Sec-

tion 6.6.2.2 for determining the occurrence of timing errors in the BTWC-RCP-FPTD.

In each DC of the BER simulations, we employ random numbers and the CCDFs of Fig-

ure 6.20 for determining the propagation delay of each signal in the BTWC-RCP-FPTD.

Following this, we employ Figure 6.22 and Table 6.4 for determining the causes and ef-

fects of timing errors for each of the bits of the BTWC-RCP-FPTD that are implemented

using conventional DFFs, as detailed in Section 6.6.1. However, we employ Figure 6.29

and Table 6.5 for determining the causes and effects of timing errors in each of the bits of

the BTWC-RCP-FPTD that employ RDFFs, as described in Section 6.6.2.2. Similarly,

our timing error model assumes clock signals associated with a 50% duty cycle and a

typical required setup time of the shadow D-type latch of tSs = 100 ps for TSMC 40 nm

technology [92]. As a result of this, the detection window is θ = Tclk/2− tSs .

6.6.3.3 Trade-off analysis in the presence of timing errors

This section characterizes the different trade-offs associated with the BER performance

and hardware efficiency of the BTWC-RCP-FPTD in the presence of timing errors ow-

ing to overclocking. We employ the timing error model described in Section 6.6.2.2

for our BER simulations of the BTWC-RCP-FPTDs, for the cases when transmitting

N={40,6144}-bit frames, using BPSK modulation over an AWGN channel, when using

different degrees of overclocking and when allowing a maximum of 256 DCs with early

stopping. We also present benchmark results for the RCP-FPTD operating at a clock

period equal to its critical path delay in the absence of timing errors and at different

degrees of overclocking in the presence of timing errors.

Figure 6.35 characterizes the BER performance, average number of DCs, throughput and

energy efficiency of the RCP-FPTD and BTWC-RCP-FPTD implementations, for the

case when N = 40. In analogy to the BTWC-FPTD, the results of Figure 6.35 demon-

strate that the BER performance and hardware efficiency of the BTWC-RCP-FPTD

are improved, when compared to those of the RCP-FPTD. More specifically, the

BTWC-RCP-FPTD operated at 2.2 ns offers a 1.3 times throughput improvement,

compared to the RCP-FPTD operated at both 3.0 ns and 2.2 ns, as shown in Fig-

ure 6.35. The same 1.3 times throughput improvement is observed for the N = 6144

BTWC-RCP-FPTD operated at 2.2 ns, when compared to the RCP-FPTD operated at

both 3.0 ns and 2.2 ns, as shown in Figure 6.36. This is achieved despite the occurrence

of timing errors in the BTWC-FPTD.

These results confirm that the BTWC designs of each FPTD enhances not only their

inherent tolerance to timing errors, but also their hardware efficiency. This is particularly

observed for the case of the BTWC-RCP-FPTD in Figure 6.31, where the RCP-FPTD

operated at the critical clock period and in the absence of timing errors outperforms

the RCP-FPTD operated at overclocked periods. However, the RCP-FPTD operated

170 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

Eb/N0 (dB)

B
E
R

43210

100

10−1

10−2

10−3

10−4

10−5

BER at 48 DCs

RCP-FPTD (2.1 ns)
RCP-FPTD (2.2 ns)

RCP-FPTD (3.0 ns)
RCP-FPTD (2.3 ns)

BTWC-RCP-FTPD (2.2 ns)
BTWC-RCP-FPTD (2.3 ns)

BTWC-RCP-FTPD (2.1 ns)

(a)

Eb/N0 (dB)

A
ve
ra
ge

D
C
s

43.93.83.73.63.5

280
260
240
220
200
180
160
140
120
100
80
60
40
20
0

RCP-FPTD (2.1 ns)
RCP-FPTD (2.2 ns)

RCP-FPTD (3.0 ns)
RCP-FPTD (2.3 ns)

BTWC-RCP-FTPD (2.2 ns)
BTWC-RCP-FPTD (2.3 ns)

BTWC-RCP-FTPD (2.1 ns)

BER = 10−4

(b)

Eb/N0 (dB)

T
h
ro
u
gh

p
u
t
(M

b
p
s)

43.93.83.73.63.5

550

500

450

400

350

300

250

200

150

100

50

0

RCP-FPTD (2.1 ns)
RCP-FPTD (2.2 ns)

RCP-FPTD (3.0 ns)
RCP-FPTD (2.3 ns)

BTWC-RCP-FTPD (2.2 ns)
BTWC-RCP-FPTD (2.3 ns)

BTWC-RCP-FTPD (2.1 ns)

BER = 10−4

(c)

Eb/N0 (dB)

E
n
er
gy

p
er

fr
am

e
(n
J
)

43.93.83.73.63.5

500

450

400

350

300

250

200

150

100

50

0

RCP-FPTD (2.1 ns)
RCP-FPTD (2.2 ns)

RCP-FPTD (3.0 ns)
RCP-FPTD (2.3 ns)

BTWC-RCP-FTPD (2.2 ns)
BTWC-RCP-FPTD (2.3 ns)

BTWC-RCP-FTPD (2.1 ns)

BER = 10−4

(d)

Figure 6.35: Trade-off analysis of the RCP-FPTD and of the BTWC-RCP-
FTPD in the presence of timing errors owing to different degrees of overclocking,
when transmittingN = 40 bits using BPSK over an AWGN channel. The results
of average DCs, throughput and energy efficiency were obtained for the case of a
target BER of 10−4 and when using a maximum of 256 DCs with early stopping.
(a) BER performance at 48 DCs. (b) Average number of DCs. (c) Throughput.
(d) Energy per decoding frame.

at the critical clock period does not outperform the BTWC-RCP-FPTD operated at

an overclocked period of 2.2 ns. As a result of this, we propose the employment of the

BTWC-RCP-FPTD operated at a clock period of 2.2 ns.

6.7 Hardware Efficiency of the Various FPTD Implemen-

tations

Tables 6.6 and 6.7 summarize the hardware efficiency of the various FPTD implemen-

tations presented in this chapter, for the cases of the shortest and longest frame lengths

specified in the turbo code of the LTE standard [9], respectively.

Table 6.6 presents results for the hardware efficiency of the various FPTD designs, when

using the frame length of N = 40, as well as results for a benchmark, namely the

RLSTD presented in Chapter 5. Note that the BTWC-RCP-FPTD achieves the highest

processing throughput, compared to all other implementations listed in Table 6.6. By

6.7. Hardware Efficiency of the Various FPTD Implementations 171

Eb/N0 (dB)

B
E
R

2.01.51.00.50

1000

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

BER at 100 DCs

RCP-FPTD (2.1 ns)
RCP-FPTD (2.2 ns)

RCP-FPTD (3.0 ns)
RCP-FPTD (2.3 ns)

BTWC-RCP-FTPD (2.2 ns)
BTWC-RCP-FPTD (2.3 ns)

BTWC-RCP-FTPD (2.1 ns)

(a)

Eb/N0 (dB)

A
ve
ra
ge

D
C
s

10.90.80.70.6

280
260
240
220
200
180
160
140
120
100
80
60
40
20
0

RCP-FPTD (2.1 ns)
RCP-FPTD (2.2 ns)

RCP-FPTD (3.0 ns)
RCP-FPTD (2.3 ns)

BTWC-RCP-FTPD (2.2 ns)
BTWC-RCP-FPTD (2.3 ns)

BTWC-RCP-FTPD (2.1 ns)

BER = 10−5

(b)

Eb/N0 (dB)

T
h
ro
u
gh

p
u
t
(G

b
p
s)

10.90.80.70.6

35

30

25

20

15

10

5

0

RCP-FPTD (2.1 ns)
RCP-FPTD (2.2 ns)

RCP-FPTD (3.0 ns)
RCP-FPTD (2.3 ns)

BTWC-RCP-FTPD (2.2 ns)
BTWC-RCP-FPTD (2.3 ns)

BTWC-RCP-FTPD (2.1 ns)

BER = 10−5

(c)

Eb/N0 (dB)

E
n
er
gy

p
er

fr
am

e
(µ
J
)

10.90.80.70.6

8

7

6

5

4

3

2

1

0

RCP-FPTD (2.1 ns)
RCP-FPTD (2.2 ns)

RCP-FPTD (3.0 ns)
RCP-FPTD (2.3 ns)

BTWC-RCP-FTPD (2.2 ns)
BTWC-RCP-FPTD (2.3 ns)

BTWC-RCP-FTPD (2.1 ns)

BER = 10−5

(d)

Figure 6.36: Trade-off analysis of the RCP-FPTD and of the BTWC-RCP-
FTPD in the presence of timing errors owing to different degrees of overclocking,
when transmitting N = 6144 bits using BPSK over an AWGN channel. The
results of average DCs, throughput and energy efficiency were obtained for the
case of a target BER of 10−5 and using a maximum of 256 DCs with early
stopping. (a) BER performance at 100 DCs. (b) Average number of DCs. (c)
Throughput. (d) Energy per decoding frame.

contrast, the area efficiency of the RLSTD scaled to 40 nm is superior to all other listed

schemes. However, this area efficiency may be expected to be reduced, when timing

errors occur in the RLSTD, since this design does not employ timing-error-tolerant

techniques.

Table 6.7 presents the hardware efficiency of the various FPTD designs, when using the

largest frame length N = 6144 of the turbo code specified in the LTE standard [9], as

well as results for a benchmark, namely the state-of-the-art Application Specific Inte-

grated Circuit (ASIC) turbo decoder of [57]. Note that the proposed BTWC-RCP-FPTD

achieves the highest processing throughput, compared to all other implementations listed

in Table 6.7. Moreover, the throughput of the BTWC-RCP-FPTD is 12.2 and 7.4 times

the throughput of the state-of-the-art turbo decoder, when it uses 65 nm and 40 nm

technologies, respectively. This is achieved by increasing the chip area by a factor of

5.7 and 15.2, for the cases of 65 nm and 40 nm technologies, respectively. However, the

normalized area efficiency of the BTWC-RCP-FPTD using 40 nm is superior to that of

the state-of-the-art turbo decoder using 65 nm.

172 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

Table 6.6: Hardware efficiency comparison of various 40-bit frame length FPTD
implementations, when using TSMC 40 nm technology and VDD = 1.0 V.

FPTD BTWC-FPTD RCP-FPTD BTWC-RCP-FPTD
RLSTD

(Stoch.)

Frame length
40 40 40 40 40

(bits)

Coding rate 40/132 40/132 40/132 40/132 1/30

Technology 40 nm 40 nm 40 nm 40 nm 90 nm

Voltage 1.0 V 1.0 V 1.0 V 1.0 V 1.2 V

Area per bit
6800 7100 7000 7250

11000

(µm2) (4888)a

Gate count
13.2 K 14.0 K 13.5 K 14.5 K 4.4 K

per bit

Tclk
4.5 3.3 3.3 3.0 2.2 2.2

1.7

(ns) (0.755)b

Frequency
222 300 300 333 455 455

588

(MHz) (1324)

Eb/N0 (dB)
3.82 3.82 3.82 3.87 3.87 3.87 3.6

@ BER = 10−4

Average DCs 48 57 49 48 62 50 160

Latency
216 188 159 144 136 110

272

(ns) (120)b

Throughput
185 212 251 277 294 363

147

(Mbps) (333)

Area eff.
349 400 447 512 543 626

835

(bps/gates) (1892)b

Area eff.
680 779 884 989 1050 1252

334

(Mbps/mm2) (1703)a,b

Energy eff.
108 89 77 75 74 56

32

(nJ/frame) (10)a,b,c

a Area ∼ s2
b Tclk ∼ s
c Energy ∼ s ·V2

s

As a result of this trade-off analysis, we consider that the BTWC-RCP-FPTD is the

most compelling design, owing to its attractive area efficiency, its significantly improved

throughput and its enhanced tolerance to timing errors.

6.8 Chapter Conclusions

In this chapter, we have summarized the FPTD algorithm of [60]. We have presented

a RCP-FPTD algorithm for reducing the number of data path stages in the decoder

and hence the required clock period. We have detailed the hardware implementation

of each of the FPTD and RCP-FPTD, as well as the corresponding trade-off analysis

between chip area, latency, throughput and energy efficiency, when using TSMC 40 nm

technology. Our results of Table 6.2 demonstrate that the proposed N = 48-bit FPTD

6.8. Chapter Conclusions 173

Table 6.7: Hardware efficiency comparison of various 6144-bit frame length
FPTD implementations, when using TSMC 40 nm technology and VDD = 1.0 V.

FPTD BTWC-FPTD RCP-FPTD BTWC-RCP-FPTD
Ilnseher

2012, [57]

Frame length
6144 6144 6144 6144 6144

(bits)

Technology 40 nm 40 nm 40 nm 40 nm 65 nm

Area per bit
6800 7100 7000 7250

1280

(µm2) (484)a

Core area
41.7 43.6 43.0 44.5

7.7

(µm2) (2.92)a

Gate count
13.2 K 14.0 K 13.5 K 14.5 K -

per bit

Tclk
4.5 3.3 3.3 3.0 2.2 2.2

2.2

(ns) (1.35)a

Frequency
222 300 300 333 455 455

450

(MHz) (740)b

Eb/N0 (dB)
0.90 0.90 0.90 0.95 0.95 0.95 -

@ BER = 10−5

Average 80 151 94 100 142 106 6

iterations DCs DCs DCs DCs DCs DCs I

Latency
360 498 310 300 312 233

2857

(ns) (1723)b

Throughput
17.1 12.3 19.8 20.4 19.6 26.3

2.15

(Gbps) (3.56)b

Area eff.
210 151 230 245 235 295 -

(bps/gates)

Area eff.
409 294 453 474 455 590

279

(Mbps/mm2) (1197)a,b

Energy eff.
2.7 3.7 2.4 2.4 2.5 1.8 -

(µJ/frame)
a Area ∼ s2
b Tclk ∼ s

implementations offer an attractive trade-off between the different hardware character-

istics, when compared to the N = 48-bit RLSTD of Chapter 5. Similarly, our results

of Table 6.3 demonstrate that the proposed N = 6144-bit FPTD and RCP-FPTD im-

plementations achieve throughputs that are 7.9 and 9.5 times superior to those of the

state-of-the-art turbo decoder of [57], respectively. However this is achieved by employ-

ing chip areas that are 5.42 and 5.58 times greater than that of the state-of-the-art turbo

decoder. In addition to this, we have investigated the inherent tolerance to timing errors

of the FPTD and RCP-FPTD. This was achieved by developing the timing error model

of Section 6.5 for determining the causes and effects of timing errors in each FPTD, when

overclocking is employed for the sake of improving the processing throughput. This was

achieved by performing extensive digital post-layout simulations of each FPTD using

Cadence SimVision [72], in order to determine the probability of observing timing er-

rors, when the decoders are operated at different clock periods. In addition to this, we

174 Chapter6. Timing-Error-Tolerant Fully-Parallel Turbo Decoders

have proposed the employment of BTWC design techniques in FPTD implementations,

for the sake of further enhancing the inherent tolerance to timing errors of the various

FPTDs, as detailed in Section 6.6. Our results were summarized in Section 6.7 and

demonstrate that the proposed BTWC-FPTD and BTWC-RCP-FPTD operating in the

presence of timing errors achieve a processing throughput that is 1.7 and 2.47 times

superior to that of the proposed RLSTD of in Chapter 5, respectively, when employ-

ing the shortest frame length of N = 40 supported by the LTE standard. Similarly,

when employing LTE’s longest frame length of N = 6144, the proposed BTWC-FPTD

and BTWC-RCP-FPTD operating in the presence of timing errors achieve processing

throughputs that are 9.2 and 12.3 times superior than that of the state-of-the-art turbo

decoder of [57] in the absence of timing errors, respectively.

Chapter 7
Conclusions and Future Work

This chapter presents our concluding remarks and summarizes our main findings in Sec-

tion 7.1, while ideas for future research are discussed in Section 7.2. Finally, Section 7.3

presents our concluding remarks.

7.1 Conclusions and Summary

In this thesis, we have investigated the timing-error tolerance of various iterative de-

coders, with Stochastic LDPC Decoders (SLDPCDs), Stochastic Turbo Decoders (STDs)

and Fixed-Point (FX) Fully-Parallel Turbo Decoders (FPTDs) as particular cases. We

have demonstrated that these different iterative decoders have an inherent tolerance to

correct not only transmission errors but also timing errors, which occur when the clock

period or the supply voltage of the circuit are modified below the recommended safety

margins, for the sake of improving their throughput or energy consumption, respectively.

Along this way, we have developed different timing analyses in order to characterize the

causes and effects of timing errors in iterative decoders. This has been achieved by per-

forming extensive simulations of each implementation. Moreover, we have proposed dif-

ferent enhancements to the hardware implementations of the various iterative decoders,

which significantly improve their tolerance to timing errors. Throughout this thesis,

this has been achieved by considering the close relationship between the different trade-

offs involved in the hardware implementation of Low-Density Parity-Check (LDPC) and

turbo decoders, as listed in Figure 1.1. In this context, a compelling Pareto-optimal

design has a set of characteristics, where none of them can be further enhanced without

degrading at least one of the others. As a result, our proposed timing-error-tolerant de-

sign methodology simultaneously considers the design constraints and parameters that

affect not only the Bit Error Ratio (BER) performance, but also the chip area, latency,

176 Chapter7. Conclusions and Future Work

throughput and energy efficiency of each implementation. We summarize the our main

contributions and findings as follows.

In Chapter 1, we have presented the introduction of this thesis, including a perspective

of the related previous work in the selected areas of fault-tolerance in iterative decoders.

We have also presented the motivation and structure of this thesis, as well as a summary

of our novel contributions.

In Chapter 2, we have reviewed the basic concepts of iterative decoding and some fun-

damental aspects of the hardware implementation of iterative decoders. We have also

reviewed the concept of stochastic computing, which was the foundation for the stochas-

tic implementation of LDPC decoders in Chapter 3 and the stochastic implementation

of turbo decoders in Chapters 4 and 5.

In Chapter 3, we have reviewed the concept of LDPC decoding and the implemen-

tation of the Sum-Product Algorithm (SPA) algorithm using stochastic computing. In

Section 3.3 we have characterized the hardware efficiency and the BER performance of

the (1056,528) WiMAX SLDPCD of [29], when using ST 90 nm technology. Following

this, our extensive SPICE simulations of Section 3.4 allowed us to determine the causes

and effects of timing errors in the SLDPCD of [29]. Our results of Figures 3.23 and 3.24

demonstrate that the SLDPCD has an inherent tolerance to timing errors caused by

overclocking and power supply variations. Motivated by these results, in Section 3.5,

we proposed a modified SLDPCD that further improves the timing error tolerance of

the stochastic implementation of LDPC decoders. This has been achieved by replacing

the Shift Register (SR)-based Edge Memory (EM) by a Ring Buffer (RB)-based EM

structure, in order to mitigate the latching problem in SLDPCD. Our proposed RB-

based SLDPCD operated at a supply voltage of 0.8 V, an overclock period of 800 ps

and in the presence of timing errors owing to 10% power supply variations, offers the

same BER performance as the SLDPCD of [29] operated a 0.8 V and a clock period of

1160 ps in the absence of timing errors, while increasing the throughput by a factor of

1.22, reducing the energy consumption by a factor of 0.7 and requiring only 0.77 the

chip area of that of the SR-based SLDPCD of [29].

In Chapter 4, we have first reviewed the concept of turbo decoding and the implemen-

tation of the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm using stochastic computing.

In Section 4.3, we have presented various modifications to the STD of [39] that en-

hanced its tolerance to timing errors and significantly improved its hardware efficiency,

when using TSMC 90 nm technology, as characterized in Table 4.12 and Figure 4.12

of Section 4.4. Moreover, our timing analysis of Section 4.5 allowed us to determine

the causes and effects of timing errors caused by power supply variations in the various

STD designs. This has been achieved by carefully considering the close relationship of

the different trade-offs associated with each modification. As a result, our proposed

Tracking Forecast Memory (TFM)-5 STD design operated at 1.20 V, a clock period of

7.1. Conclusions and Summary 177

2.2 ns and in the presence of timing errors owing to 7% power supply variation offers the

same BER performance as the state-of-the-art STD of [39], when operated at 1.20 V,

a clock period of 4.0 ns and in the absence of power supply variations. This has been

achieved while increasing the throughput by a factor of 2.42, reducing the latency by

a factor of 0.83 and consuming only 0.25 times the energy, without increasing the chip

area.

In Chapter 5, we have further improved the hardware efficiency of the STD of [39] by

significantly reducing the number of Decoding Cycles (DCs) required in order to achieve

iterative decoding convergence. This has been achieved by employing or gates in order

to perform approximate additions in stochastic computing. Additionally, we have pro-

posed a Reduced-Complexity Tracking Forecast Memory (RCTFM), which benefits from

the low-complexity of a SR, as well as from the TFMs’s enhanced capability for tracking

changes in the represented probabilities. Our proposed Reduced-Latency STD (RLSTD)

design achieves the same BER performance as the state-of-the-art STD of [39], while

improving its latency, throughput and energy efficiency by an order of magnitude and

without imposing an area extension. More specifically, our proposed RLSTD requires

only 0.015 times the latency, 0.005 times the energy consumption and 0.51 times the

chip area of the state-of-the-art STD, while offering a 65 times throughput increase. We

found that our proposed RLSTD design is particularly suited for short-frame-length and

low-latency communication systems, such as those required in next-generation Mission-

Critical Machine-Type Communication (MCMTC).

In Chapter 6, we have expanded the review of the BCJR algorithm into the logarith-

mic domain, in order to directly compare it with the recently-proposed FPTD algorithm

of [60]. We have also reviewed the hardware implementation of the FPTD algorithm,

as detailed in [61]. In Section 6.3, we have presented a novel Reduced-Critical-Path

Fully-Parallel Turbo Decoder (RCP-FPTD) algorithm that reduced the number of data

path stages required in the FPTD and hence the required clock period of its implementa-

tion. Moreover, in Section 6.3, we detailed the hardware implementation of the proposed

RCP-FPTD, as well as its corresponding trade-off analysis, when using TSMC 40 nm

technology. Our results of Tables 6.2 and 6.3 in Section 6.4 demonstrate that the FPTD

and RCP-FPTD implementations offer significant throughput increases, when compared

to both the RLSTD of Chapter 5 and the state-of-the-art turbo decoder implementa-

tion of [57], while achieving the same BER performance. As an example of this, the

FPTD and RCP-FPTD implementations offer throughputs that are 7.9 and 9.5 times

superior to those of the turbo decoder of [57], respectively, albeit at the cost of requiring

5.42 and 5.58 times the chip area. Furthermore, in Section 6.5 we have developed a

timing error model of the FPTD and RCP-FPTD implementations. This error model

allowed us to demonstrate that the FPTD and RCP-FPTD implementations have an

inherent tolerance to timing errors, when overclocking is employed for the sake of further

178 Chapter7. Conclusions and Future Work

improving their throughput. In addition to this, in Section 6.6, we have employed Better-

Than-Worst-Case (BTWC) design techniques for the implementation of the FPTD, in

order to significantly enhance its inherent tolerance to timing errors and its hardware

efficiency. Our results of Section 6.7 demonstrated that the proposed Better-Than-

Worst-Case Fully-Parallel Turbo Decoder (BTWC-FPTD) and Better-Than-Worst-Case

Reduced-Critical-Path Fully-Parallel Turbo Decoder (BTWC-RCP-FPTD) operated in

the presence of timing errors achieve a processing throughput that is 1.7 and 2.47 times

superior to that of the proposed RLSTD of Chapter 5, respectively, when employing

the shortest frame length of N = 40 supported by the Long Term Evolution (LTE)

standard. Similarly, when employing LTE’s longest frame length of N = 6144, the pro-

posed BTWC-FPTD and BTWC-RCP-FPTD operating in the presence of timing errors

achieve processing throughputs that are 9.2 and 12.3 times superior than that of the

state-of-the-art turbo decoder of [57] in the absence of timing errors, respectively.

7.2 Future Work

This section presents suggestions for future research. Section 7.2.1 highlights opportu-

nities for improving the hardware efficiency of some of the implementations of iterative

decoders presented in this thesis. Section 7.2.2 summarizes opportunities for further

enhancing our different timing analyses. Finally, Section 7.2.4 presents opportunities

regarding the validation of our timing error models.

7.2.1 Hardware Efficiency of Iterative Decoders

The hardware efficiency of the different implementations of iterative decoders conceived

in this thesis may be further enhanced. As an example of this, the proposed RLSTD

design presented in Chapter 5 design does not consider error-tolerant design techniques,

such as those presented in Sections 3.5, 4.3 and 6.6. As a result of this, the occurrence

of timing errors may degrade the error correction capabilities and the hardware perfor-

mance of the RLSTD. More specifically, the number of DCs required by the RLSTD

may be expected to increase in the presence of timing errors, as our simulations of Fig-

ures 4.16 and 4.17 suggest for the case of the STDs in Chapter 4. To overcome this

problem, a timing analysis similar to those presented in Sections 3.4, 4.5 and 6.5 may be

employed for determining the causes and effects of timing errors in the RLSTD. Simi-

larly, the design techniques such as those described in Sections 4.3 and 6.6 may be used

in the RLSTD for improving its tolerance to timing errors. More specifically, output

synchronizers may be employed for mitigating the catastrophic propagation of metasta-

bility through the circuit, albeit at the cost of increasing the latency of the RLSTD.

Similarly, Razor D-Type Flip Flops (RDFFs) may be employed in the RCTFM of the

RLSTD, in order to prevent timing errors from affecting the Most Significant Bit (MSB)

7.2.2. Timing Error Model 179

of the TFM, which severely degrades the BER performance of the STD, as Section 4.5.2

demonstrated.

The hardware efficiency of the FPTD and RCP-FPTD implementations of Chapter 6

may be further improved by the more efficient chip area utilization. More specifically,

this may be achieved by operating all 2N blocks of the FPTD in each DC for the simulta-

neous decoding of two received frames, in analogy to the proposed timing-error-tolerant

STD presented in Chapter 4. Owing to the odd-even operation of the various FPTDs,

two independent decoding processes may be achieved. This will result in a significant

throughput increase and a negligible chip area increase, which will significantly increase

the normalized area efficiency of the decoders. Alternatively, the chip area requirements

may be halved by reusing hardware to alternate between the decoding process of the

light- and dark-shaded blocks of Figures 6.5 and 6.13 in alternate clock cycles. However,

this will require the employment of an alternative BTWC design, since the same hard-

ware block of each FPTD will be operated in two consecutive DCs, which may cause

timing errors occurring in one block to affect the operation of the other block operated

using the same hardware.

7.2.2 Timing Error Model

The different timing error models conceived in this thesis assume a static operation of the

circuit, where the nominal supply voltage and the clock period are fixed throughout the

operation of the decoder. In these error models, power supply variations are assumed to

have a Gaussian distribution with a fixed mean µ corresponding to the nominal supply

voltage. However, these error models do not consider the employment of Dynamic

Voltage and Frequency Scaling (DVFS) [68], which is a technique commonly found in

current System-on-Chip (SoC) designs. In DVFS, the supply voltage and the clock

period of the SoC are dynamically adjusted according to a workload metric, which is

determined by the performance of the SoC core, as shown in Figure 7.1.

DVFS
Controller

Voltage
Regulator

Frequency
Regulator

Iterative
Decoder

VDD

Tclk

Workload

Voltage control

Frequency control

Figure 7.1: Example of DVFS in iterative decoders.

180 Chapter7. Conclusions and Future Work

If DVFS is applied to the various iterative decoders presented in this thesis, the supply

voltage may be dynamically overscaled in order to reduce the dynamic energy consump-

tion. Similarly, the clock period may be dynamically overscaled, in order to increase the

processing throughput of the decoders. In this way, the DVFS decoder may employ a

workload metric related to the number of timing errors encountered in each decoding

iteration, for example. However, this approach is expected to significantly increase the

hardware complexity, owing to the employment of voltage and frequency regulators. Fi-

nally, the clock periods and nominal supply voltages recommended for the operation of

the various iterative decoders in this thesis may be considered as a first step towards

the DVFS design, since these values determine ranges of operating conditions in which

the decoders exhibit near-optimal performance.

7.2.3 Power Gating in Stochastic Turbo Decoders

The employment of Clock Gating (CG) for reducing the dynamic energy consumption of

the STDs of Chapter 4 does not mitigate the additional static energy consumption that is

associated with the inclusion of the additional set of EMs for the simultaneous decoding

of two received frames. In order to overcome this static energy increase, the STD

may employ other low-power design techniques, such as power gating or multiple- and

variable-threshold transistor design, although this is achieved at the cost of increasing

the complexity of the design. As an example of this, power gating may be employed for

switching off specific blocks of the STD, when they are not being operated. However,

state retention registers are required for restoring the state of the blocks upon power-

up. Owing to this overhead, power gating is only effective when specific blocks may be

switched off for a significant amount of time. Motivated by this, our future work will

conceive techniques for applying early-stopping to different blocks at different stages in

the iterative decoding process.

7.2.4 FPTD ASIC Fabrication and Error Model Validation

The various timing error models presented in this work rely on transistor-level or digital

post-layout simulations with extracted parasitics and annotated delays of specific blocks

of each design. However, a full characterization of each design may only be possible after

its tapeout. Motivated by the significant throughput improvement and timing-error tol-

erance offered by the different FPTDs and RCP-FPTDs implementations of Chapter 6,

our future research will consider the fabrication of an FPTD and an BTWC-RCP-FPTD

using TSMC 40 nm technology. Owing to the large chip area requirements of the FPTD

and BTWC-RCP-FPTD implementations, we will limit the size of the frame length to

only N = 40 for both designs. Despite this limitation, the tapeout of these designs will

allow us to effectively determine and enhance the accuracy of our timing error model.

7.3. Closing Remarks 181

7.3 Closing Remarks

This thesis has demonstrated that iterative decoders are capable of exploiting their in-

herent error correction capability to correct not only transmission errors, but also

timing errors caused by overclocking and power supply variations. Moreover, this the-

sis has proposed modifications to the iterative decoders designs, which further enhance

their inherent tolerance to timing errors. This has been achieved by considering the close

relationship between the different trade-offs associated with the hardware implementa-

tion of iterative decoders, with the aim of achieving Pareto optimality. As a result,

our proposed implementations are particularly suited for short-frame-length and low-

latency communication systems, such as the next-generation MCMTCs, as well as for

next-generation high-throughput wireless communication standards, such as 5G.

Appendix A
Design Flow

This appendix presents the design flow used throughout this thesis, as shown in Fig-

ure A.1. A typical Application Specific Integrated Circuit (ASIC) design process starts

with the design of the algorithm or specifications and proceeds through each of the steps

of Figure A.1 until the fabrication of the ASIC. This complete process is detailed as

follows for the specific case of the implementation of iterative decoders.

1. Algorithm design. In this step, parameters of the algorithm such as frame-length,

coding rate and scheduling are defined.

2. Floating-Point (FP) simulation. In this step, a FP simulation of the algorithm is

performed in order to validate that the algorithm may achieve the target Bit Error

Ratio (BER) performance. This step may be performed with the aid of C++ or

Matlab, for example.

3. Fixed-Point (FX) simulation. Following the FP simulation, a FX simulation is

performed in order to validate that the employment of FX numbers does not

degrade the error correction capabilities of the algorithm. In parallel to this,

this step is performed to evaluate the bit width requirements of FX numbers

in order to strike an attractive trade-off between the hardware complexity and

error correction capabilities of the implementation. Similarly, this step allows to

estimate the average number of Decoding Cycles (DCs) required by the hardware

implementation. This step may be performed using C++ or Matlab, for example.

4. Hardware description. This step uses hardware description languages, such as

SystemVerilog, in order to model the algorithm using elements of digital circuit

design. This is achieved by considering the bit width requirements obtained in

step 3, the data flow between processing elements in consecutive clock cycles and

the control signals required by the design.

184 Appendix A

Tape Out

Logic
Synthesis

Physical
Synthesis

Algorithm
Design

Behavioral
Simulation

Hardware
Description

Fixed-Point
Simulation

Floating-Point
Simulation

Chip area

and

Gate-Level
Simulation

Timing
Analysis

and

Transistor-Level
Simulation

Timing
Analysis

Timing Error
Model

BER
DCs

Tclk,
Chip Area,

BER, DCs,
Latency,

Energy
Throughput,

Timing Errors

1

2

3

4

5

6

7

8

9

10

Tclk, Energy

BER, DCs,
Latency,

Energy
Throughput,

Energy,
Parasitics

and
Delays

Tclk,

Chip area

(Simulated)

(Measured)

Target
Technology

Energy,
Parasitics

and
Delays

Tclk,

Figure A.1: Design flow used throughout this thesis.

5. Behavioral simulation. The hardware description of step 4 is simulated in order to

validate the correct functionality of the algorithm using hardware description lan-

guages. This step may be performed using Cadence’s SimVision [72], for example.

6. Logic synthesis. The hardware description of step 4 is translated into basic logic

digital gates for a target technology. This steps allows to make an initial estima-

tion of the chip area requirements of the implementation. More specifically, the

Design Flow 185

synthesis tools generate automatic reports to estimate the chip area of the de-

sign, based on the target technology. This step may be performed using Synopsys’

DesignCompiler [73] or Cadence’s RTL Compiler [72], for example.

7. Gate-level simulation and timing analysis. This step is performed in order to

validate the correct functionality of the algorithm using the basic logic gates ob-

tained in step 6. This simulation may be performed with the aid of Cadence’s

SimVision [72], for example. In parallel to this, a timing analysis is performed in

order to determine the minimum clock period Tclk at which the gate-level version

of the algorithm may operate without causing timing errors. Additionally, this

step allows the initial estimation of the energy consumption and an approximate

extraction of the parasitics and propagation delays, which may be employed in a

timing error model, as shown in the blue lines of Figure A.1. The timing analysis

and the parasitics extraction may be performed using Synopsys’ PrimeTime [73],

for example.

8. Physical synthesis. In this step, the specific gate geometries are considered in order

to design an ASIC layout. Here, the gate-level version of the algorithm of step 6

is translated into a transistors-level version. An accurate estimation of the chip

area may be performed in this step. This may be achieved through the processes

of placement and routing using Cadence’s Encounter [72].

9. Transistor-level simulation and timing analysis. In this step, a digital simulation

using Cadence’s SimVision [72] may be performed in order to validate the cor-

rect functionality of the algorithm using the transistor-level version of the design.

Similarly, a timing analysis is performed in order to determine the minimum clock

period Tclk at which the transistor-level version of the algorithm may operate with-

out causing timing errors. Additionally, this step allows the accurate estimation

of the energy consumption and an approximate extraction of the parasitics and

propagation delays, which may be employed in a timing error model in order to

evaluate the performance of the algorithm in the presence of timing errors, as

shown in the blue arrows of Figure A.1. The timing analysis and the parasitics

extraction may be performed using Cadence’s Encounter [72].

10. Tape out. This is the final step in the ASIC design flow and consists of the

fabrication of the chip. After the chip is fabricated, it is possible to obtain accurate

results of the chip area, clock period, BER, DCs, latency, throughput and energy

efficiency of the ASIC.

The design steps of Figure A.1 may be iterated several times, before the final fabrication

of the ASIC. Moreover, the design flow is enhanced during each step, providing a

more accurate characterization of the behavior of the implementation. However, the

complexity of the design is significantly increased through each subsequent step. As an

186 Appendix A

example of this, during the logic synthesis process of step 6, the area required by the

interconnections is not considered. Owing to this, the results obtained after steps 6 and

7 may be only considered as an initial approximation of the chip area, clock period and

energy consumption, as shown by the dotted lines of Figure A.1. In contrast to this, the

physical synthesis process of step 8 considers the interconnections of the design. As a

result of this, the chip area, clock period and energy consumption of steps 8 and 9 may

be considered more accurate and closer to the final fabricated ASIC, albeit at the cost

of increasing the complexity of the design as well as the simulation time.

As an alternative to the digital simulation of the transistor-level design of step 9 of

Figure A.1, an analogue simulation may be performed using SPICE [73]. Here, SPICE

allows to evaluate the voltages and currents associated with each transistor of a design.

Moreover, SPICE allows to simulate the resistive and capacitive parasitics associated

with the interconnections of the transistors. As a result of this, an even more accurate

estimation of the energy consumption and propagation delays may be obtained, albeit

at the cost of a significant complexity and simulation time increase. Owing to this, we

recommend the employment of SPICE simulations only on critical stages of the design.

For example, in Chapter 3, we used SPICE simulations to determine the causes and

effects of timing errors in Stochastic LDPC Decoders (SLDPCDs). A brief overview of

the steps necessary to perform the analogue simulation of the SLDPCDs using SPICE

is listed as follows.

i) Determine the logic gates associated with the critical path of the SLDPCDs.

ii) Interconnect the transistor-level version of the logic gates, using the extracted

resistive and capacitive parasitics.

iii) Provide a clock signal and a supply voltage in order to avoid the occurrence of

timing errors.

iv) Generate test patterns and perform the analogue simulation.

v) Measure the propagation delays.

vi) In order to observe timing errors, reduce the nominal supply voltage or reduce the

clock period and perform step iv).

Note that the parameters obtained from steps 7 and 9 allow the elaboration of a timing

error model, which may be used in a FX simulation in order to estimate the effects of

timing errors in the algorithm. This is represented using a feedback loop using blue

arrows in the design flow of Figure A.1. By considering the timing error model in the

FX simulation, it is possible to estimate the error correction capabilities, number of

DCs, latency, throughput and energy efficiency of the algorithm’s implementation in

the presence of timing errors. This is achieved without the high risk and financial cost

associated with the ASIC fabrication of step 10 of Figure A.1.

Design Flow 187

References

[1] C. Shannon, “Communication in the presence of noise,” Proc. IRE, vol. 37, no. 1,

pp. 10 – 21, jan. 1949.

[2] R. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 8,

no. 1, pp. 21–28, Jan 1962.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-

correcting coding and decoding: Turbo-codes,” in Rec. IEEE Int. Conf. Communi-

cations, (ICC-1993), Geneva, Switzerland, May 1993, pp. vol. 2, 1064–1070.

[4] IEEE Standard for Wireless Metropolitan Area Networks, IEEE 802.16 Std., 2012.

[5] IEEE Standard for Wireless Local Area Networks, IEEE 802.11 Std., 2012.

[6] IEEE Standard for Ethernet, IEEE 802.3 Std., 2012.

[7] DVB-S2 Standard, ETSI EN 302 307 Std., 2009.

[8] UMTS Standard, ETSI TS 125 331 Std., 2011.

[9] LTE Standard, 3GPP TS 36.212 Std., 2011.

[10] “5G: A technology vision,” White paper, HUAWEI Technologies Co., Nov 2013.

[11] E. Dahlman, G. Mildh, S. Parkvall, J. Peisa, J. Sachs, and Y. Selén, “5G Radio

Access,” Ericsson, Stockholm, Sweden, Tech. Rep., June 2014.

[12] R. Ahmadi and F. N. Najm, “Timing analysis in presence of power supply and

ground voltage variations,” in Proc. Int. Conf. Computer Aided Design, (ICCAD-

2003), San Jose, CA., Nov 2003, pp. 176–183.

[13] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw,

T. Austin, K. Flautner, and T. Mudge, “Razor: a low-power pipeline based on

circuit-level timing speculation,” in Proc. 36th Annu. IEEE/ACM Int. Symp. Mi-

croarchitecture, (MICRO-2003), San Diego, CA., Dec 2003, pp. 7–18.

190 REFERENCES

[14] N. Ahmed, M. Tehranipoor, and V. Jayaram, “A novel framework for faster-than-

at-speed delay test considering IR-drop effects,” in Proc. Int. Conf. Computer Aided

Design, (ICCAD-2006, San Jose, CA., Nov 2006, pp. 198–203.

[15] M. S. Gupta, J. L. Oatley, R. Joseph, G.-Y. Wei, and D. M. Brooks, “Understanding

voltage variations in chip multiprocessors using a distributed power-delivery net-

work,” in Proc. Design, Automation Test Europe Conf. Exhibition, (DATE-2007),

Nice, France, April 2007, pp. 1–6.

[16] M. Alioto, G. Palumbo, and M. Pennisi, “Understanding the effect of process varia-

tions on the delay of static and domino logic,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 18, no. 5, pp. 697–710, May 2010.

[17] R. Lyons and W. Vanderkulk, “The use of triple-modular redundancy to improve

computer reliability,” IBM J. Research and Development, vol. 6, no. 2, pp. 200–209,

April 1962.

[18] B. R. Gaines, “Stochastic computing systems,” in Advances in Information Systems

Science. New York, NY: Plenum, 1969, ch 2, pp. 37–172.

[19] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge, “Opportunities and challenges

for better than worst-case design,” in Proc. Asia South Pacific Design Automation

Conf. (ASPDAC-2005). Shanghai, China: ACM, 2005, pp. 2–7.

[20] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim, and K. Flaut-

ner, “Razor: circuit-level correction of timing errors for low-power operation,” IEEE

Micro, vol. 24, no. 6, pp. 10–20, Nov 2004.

[21] S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner, and

T. Mudge, “A self-tuning DVS processor using delay-error detection and correc-

tion,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 792–804, April 2006.

[22] S. Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D. Bull, and

D. Blaauw, “RazorII: In situ error detection and correction for PVT and SER

tolerance,” IEEE J. Solid-State Circuits, vol. 44, no. 1, Jan 2009.

[23] V. C. Gaudet and A. C. Rapley, “Iterative decoding using stochastic computation,”

IET Electron. Lett., vol. 39, no. 3, p. 299, April 2003.

[24] A. C. Rapley, C. Winstead, V. C. Gaudet, and C. Schlegel, “Stochastic iterative

decoding on factor graphs,” in Proc. 3rd Int. Symp. Turbo Codes Related Topics,

Brest, France, September 2003, pp. 507–510.

[25] C. Winstead, V. C. Gaudet, A. C. Rapley, and C. Schlegel, “Stochastic iterative

decoders,” in Proc. IEEE Int. Symp. Information Theory, (ISIT-2005), Adelaide,

Australia, Sep 2005, pp. 1116–1120.

REFERENCES 191

[26] W. J. Gross, V. C. Gaudet, and A. Milner, “Stochastic implementation of LDPC

Decoders,” in Conf. Rec. 39th Asilomar Conf. Signals, Systems Computers, Pacific

Grove, CA, Nov 2005, pp. 713–717.

[27] S. Sharifi Tehrani, W. J. Gross, and S. Mannor, “Stochastic decoding of LDPC

codes,” IEEE Commun. Lett., vol. 10, no. 10, pp. 716–718, Oct 2006.

[28] S. Sharifi Tehrani, S. Mannor, and W. J. Gross, “An area-efficient FPGA-based

architecture for fully-parallel stochastic LDPC decoding,” in Proc. IEEE Workshop

Signal Processing Systems (SiPS-2007), Oct 2007, pp. 255–260.

[29] S. Sharifi Tehrani, S. Mannor, and W. J. Gross, “Fully parallel stochastic LDPC

decoders,” IEEE Trans. Signal Process., vol. 56, no. 11, pp. 5692–5703, Nov 2008.

[30] S. Sharifi Tehrani, A. Naderi, G.-A. Kamendje, S. Mannor, and W. J. Gross, “Track-

ing forecast memories in stochastic decoders,” in Proc. IEEE Int. Conf. Acoustics,

Speech Signal Processing, (ICASSP-2009), Taipei, Taiwan, April 2009, pp. 561–564.

[31] F. Leduc-Primeau, S. Hemati, W. J. Gross, and S. Mannor, “A relaxed half-

stochastic iterative decoder for LDPC codes,” in Proc. IEEE Global Telecommun.

Conf., (GLOBECOM-2009), Honolulu, HI, Nov 2009, pp. 1–6.

[32] G. Sarkis and W. Gross, “Reduced-latency stochastic decoding of LDPC codes over

GF(q),” in Proc. European Wireless Conf. (EW-2010), Lucca, Italy, April 2010, pp.

994–998.

[33] S. Sharifi Tehrani, A. Naderi, G.-A. Kamendje, S. Hemati, S. Mannor, and W. J.

Gross, “Majority-based tracking forecast memories for stochastic LDPC decoding,”

IEEE Trans. Signal Process., vol. 58, no. 9, pp. 4883–4896, Sept 2010.

[34] A. Naderi, S. Mannor, M. Sawan, and W. Gross, “Delayed stochastic decoding of

LDPC codes,” IEEE Trans. Signal Process., vol. 59, no. 11, pp. 5617–5626, Nov

2011.

[35] C. Ceroici and V. Gaudet, “FPGA implementation of a clockless stochastic LDPC

decoder,” in Proc. IEEE Workshop Signal Process. Syst., (SiPS-2014), Belfast,

Northern Ireland, Oct 2014, pp. 1–5.

[36] S. Sharifi Tehrani, C. Jego, Z. Bo, and W. Gross, “Stochastic decoding of linear

block codes with high-density parity-check matrices,” IEEE Trans. Signal Process.,

vol. 56, no. 11, pp. 5733–5739, Nov 2008.

[37] M. Arzel, C. Lahuec, C. Jego, W. Gross, and Y. Bruned, “Stochastic multiple

stream decoding of cortex codes,” IEEE Trans. Signal Process., vol. 59, no. 7, pp.

3486–3491, July 2011.

192 REFERENCES

[38] C. Te-Hsuan and J. Hayes, “Design of stochastic Viterbi decoders for convolutional

codes,” in IEEE 16th Int. Symp. Design Diagnostics Electronic Circuits Systems,

(DDECS-2013), Karlovy Vary, Czech Republic, April 2013, pp. 66–71.

[39] Q. T. Dong, M. Arzel, C. Jego, and W. J. Gross, “Stochastic decoding of turbo

codes,” IEEE Trans. Signal Process., vol. 58, no. 12, pp. 6421–6425, Dec 2010.

[40] Q. T. Dong, M. Arzel, C. Jego, and W. J. Gross, “Design and FPGA implementation

of stochastic turbo decoder,” in Proc. IEEE 9th Int. New Circuits Systems Conf.,

(NEWCAS-2011), Bordeaux, France, June 2011, pp. 21–24.

[41] J. Hu, Y. Deng, J. Chen, and X. Ling, “High speed turbo decoder design based

on stochastic computation,” in Proc. Int. Conf. Communications Circuits Systems

(ICCCAS-2013), vol. 1, Chengdu, China, Nov 2013, pp. 235–239.

[42] J. Chen and J. Hu, “High throughput stochastic Log-MAP turbo-decoder based on

low bits computation,” IEEE Trans. Signal Process., vol. 20, no. 11, pp. 1098–1101,

Nov 2013.

[43] O. N. C. Yilmaz, Y.-P. Wang, N. Johansson, N. Brahmi, S. Ashraf, and J. Sachs,

“Analysis of ultra-reliable and low-latency 5G communication for a factory au-

tomation use case,” in Proc. Int. Conf. Communication Workshop (ICCW-2015),

London, UK, June 2015, pp. 1190–1195.

[44] M. Alles, T. Brack, and N. Wehn, “A reliability-aware LDPC code decoding al-

gorithm,” in Proc. IEEE 65th Vehicular Technology Conf. (VTC-2007-Spring),

Dublin, Ireland, April 2007, pp. 1544–1548.

[45] C. Winstead and S. Howard, “A probabilistic LDPC-coded fault compensation

technique for reliable nanoscale computing,” IEEE Trans. Circuits Syst. II, Exp.

Briefs, vol. 56, no. 6, pp. 484–488, June 2009.

[46] V. C. Gaudet, “Low-power LDPC decoding by exploiting the fault-tolerance of the

sum-product algorithm,” in Contemporary Mathematics. American Mathematical

Society, 2010, pp. 523:165–171.

[47] Y. Tang, C. Winstead, E. Boutillon, C. Jego, and M. Jezequel, “An LDPC decod-

ing method for fault-tolerant digital logic,” in IEEE Int. Symp. Circuits Systems

(ISCAS-2012), Seoul, Korea, May 2012, pp. 3025–3028.

[48] C. Winstead, Y. Tang, E. Boutillon, C. Jego, and M. Jezequel, “A space-time

redundancy technique for embedded stochastic error correction,” in Proc. 7th Int.

Symp. Turbo Codes Iterative Information Processing (ISTC-2012), Gothenburg,

Sweden, Aug 2012, pp. 36–40.

[49] J. Geldmacher and J. Gotze, “EXIT-optimized index assignments for turbo decoders

with unreliable LLR transfer,” IEEE Commun. Lett., vol. 17, no. 5, pp. 992–995,

May 2013.

REFERENCES 193

[50] C. Kameni Ngassa, V. Savin, and D. Declercq, “Faulty stochastic LDPC decoders

over the binary symmetric channel,” in Proc. Int. Symp. Turbo Codes Iterative

Information Processing (ISTC-2014),, Bremen, Germany, Aug 2014, pp. 112–116.

[51] J. Andrade, A. Vosoughi, G. Wang, G. Karakonstantis, A. Burg, G. Falcao, V. Silva,

and J. Cavallaro, “On the performance of LDPC and turbo decoder architectures

with unreliable memories,” in Conf. Rec. 48th Asilomar Conf. Signals, Systems

Computers, Pacific Grove, CA, Nov 2014, pp. 542–547.

[52] C.-H. Huang, Y. Li, and L. Dolecek, “Belief propagation algorithms on noisy hard-

ware,” IEEE Trans. Commun., vol. 63, no. 1, pp. 11–24, Jan 2015.

[53] M. May, M. Alles, and N. Wehn, “A case study in reliability-aware design: a resilient

LDPC code decoder,” in Proc. Design, Automation Test Europe Conf. Exhibition,

(DATE-2008), Munich, Germany, March 2008, pp. 456–461.

[54] R. Abdallah and N. Shanbhag, “Error-resilient low-power Viterbi decoder architec-

tures,” IEEE Trans. Signal Process., vol. 57, no. 12, pp. 4906–4917, Dec 2009.

[55] E. Kim and N. Shanbhag, “Energy-efficient LDPC decoders based on error-

resiliency,” in Proc. IEEE Workshop Signal Processing Systems (SiPS-2012), Que-

bec, Canada, Oct 2012, pp. 149–154.

[56] B. Sedighi, N. Anthapadmanabhan, and D. Suvakovic, “Timing errors in LDPC

decoding computations with overscaled supply voltage,” in Proc. Int. Symp. Low

Power Electronic Design, (ISLPED-2014). La Jolla, CA, USA: ACM, 2014, pp.

201–206.

[57] T. Ilnseher, F. Kienle, C. Weis, and N. Wehn, “A 2.15GBit/s turbo code decoder

for LTE advanced base station applications,” in Proc. 7th Int. Symp. Turbo Codes

Iterative Information Processing (ISTC-2012), Gothenburg, Sweden, Aug 2012, pp.

21–25.

[58] G. Wang, H. Shen, Y. Sun, J. Cavallaro, A. Vosoughi, and G. Yuanbin, “Par-

allel interleaver design for a high throughput HSPA+/LTE multi-standard turbo

decoder,” IEEE Trans. Circuits Syst. I, vol. 61, no. 5, pp. 1376–1389, May 2014.

[59] Y. Sun and C. J. R., “Efficient hardware implementation of a highly-parallel 3GPP

LTE/LTE-advance turbo decoder,” Integr. VLSI J., vol. 44, no. 4, pp. 305–315,

Sept 2011.

[60] R. G. Maunder, “A fully-parallel turbo decoding algorithm,” IEEE Trans. Com-

mun., vol. 63, no. 8, pp. 2762–2775, Aug 2015.

[61] A. Li, L. Xiang, T. Chen, R. G Maunder, B. M. Al-Hashimi, and L. Hanzo, “VLSI

implementation of fully-parallel LTE turbo decoders,” IEEE Access, vol. 4, pp.

323–346, January 2016.

194 REFERENCES

[62] I. Levi and A. Fish, “Dual mode logic-design for energy efficiency and high perfor-

mance,” IEEE Access, vol. 1, pp. 258–265, May 2013.

[63] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes

for minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol. IT-20, no. 2, pp.

284–287, Mar 1974.

[64] Y. Wu, and B. Woerner, “The influence of quantization and fixed point arithmetic

upon the BER performance of turbo codes,” in 49th IEEE Vehicular Technology

Conf. (VTC-1999), vol. 2, Houston, TX, Jul 1999, pp. 1683–1687 vol.2.

[65] B. Brown and H. Card, “Stochastic neural computation. I. Computational ele-

ments,” IEEE Trans. Comput., vol. 50, no. 9, pp. 891–905, Sep 2001.

[66] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM Trans. Embed.

Comput. Syst., vol. 12, no. 2s, pp. 92:1–92:19, May 2013.

[67] F. Kschischang, B. Frey, and H.-a. Loeliger, “Factor graphs and the sum-product

algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498–519, 2001.

[68] T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A dynamic voltage scaled

microprocessor system,” IEEE J. Solid-State Circuits, vol. 35, no. 11, pp. 1571

–1580, nov. 2000.

[69] N. Bonello, C. Sheng, and L. Hanzo, “”low-density parity-check codes and their

rateless relatives”,” IEEE Commun. Surveys Tuts., vol. 13, no. 1, pp. 3–26, May

2010.

[70] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and

convolutional codes,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 429–445, March

2006.

[71] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decod-

ing of low-density parity check codes based on belief propagation,” IEEE Trans.

Commun., vol. 47, no. 5, pp. 673–680, May 1999.

[72] Cadence Desing Systems Inc., “User manuals for cadence toolset,” 2015.

[73] Synopsys Inc., “User manuals for synopsys toolset,” 2015.

[74] N. H. E. Weste and D. M. Harris, CMOS VLSI Design: A circuits and systems

perpsective, 4th ed. Addison Wesley, 2011.

[75] M. Nourani and A. Radhakrishnan, “Power-supply noise in SoCs: ATPG, estima-

tion and control,” in Proc. IEEE Int. Test Conf. (ITC-2005), Austin, TX, USA,

Nov 2005, pp. 507–516.

REFERENCES 195

[76] S. Pant, D. Blaauw, V. Zolotov, S. Sundareswaran, and R. Panda, “Vectorless

analysis of supply noise induced delay variation,” in Proc. Int. Conf. Computer

Aided Design,(ICCAD-2003), San Jose, CA, USA, Nov 2003, pp. 184–191.

[77] P. N. Whatmough, S. Das, D. M. Bull, and I. Darwazeh, “Circuit-level timing error

tolerance for low-power DSP filters and transforms,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 21, no. 6, pp. 989–999, June 2013.

[78] S. Purohit and M. Margala, “Investigating the impact of logic and circuit implemen-

tation on full adder performance,” IEEE Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 20, no. 7, pp. 1327–1331, July 2012.

[79] Q. T. Dong, “Le principe de calcul stochastique appliqué au décodage des tur-

bocodes: conception, implémentation et prototypage sur circuit FPGA,” Ph.D.

dissertation, Télécom Bretagne, Brest, France, December 2011.

[80] R. Ginosar, “Metastability and synchronizers: A tutorial,” IEEE Des. Test. Com-

put., vol. 28, no. 5, pp. 23–35, Sept 2011.

[81] J. Anderson and S. Hladik, “Tailbiting MAP decoders,” IEEE J. Sel. Areas Com-

mun., vol. 16, no. 2, pp. 297–302, Feb 1998.

[82] S. Beer, J. Cox, R. Ginosar, T. Chaney, and D. Zar, “Variability in multistage

synchronizers,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 12,

pp. 2957–2969, December 2015.

[83] A. W. Eckford, and W. Yu, “Density evolution for the simultaneous decoding of

LDPC-based Slepian-Wolf source codes,” in Proc. IEEE Int. Symp. Information

Theory, (ISIT-2005), Adelaide, Australia, Sep 2005, pp. 1401–1405.

[84] G. Albertengo and R. Sisto, “Parallel CRC generation,” IEEE Micro, vol. 10, no. 5,

pp. 63–71, Oct 1990.

[85] Y. Huo, X. Li, W. Wang, and D. Liu, “High performance table-based architecture

for parallel CRC calculation,” in Proc. IEEE Int. Workshop Local and Metropolitan

Area Networks (LANMAN-2015), Beijing, China, April 2015, pp. 1–6.

[86] C. Janer, J. Quero, J. Ortega, and L. Franquelo, “Fully parallel stochastic compu-

tation architecture,” IEEE Trans. Signal Process., vol. 44, no. 8, pp. 2110–2117,

Aug 1996.

[87] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-

optimal MAP decoding algorithms operating in the log domain,” in IEEE Int.

Conf. Communications (ICC-95), vol. 2, Seattle, WA, USA, Jun 1995, pp. 1009–

1013 vol.2.

196 REFERENCES

[88] A. Nimbalker, Y. Blankenship, B. Classon, and T. Blankenship, “ARP and QPP

interleavers for LTE turbo coding,” in Proc. IEEE Wireless Communications Net-

working Conf., (WCNC-2008), Las Vegas, NV, USA, Mar 2008, pp. 1032–1037.

[89] J. Vogt and A. Finger, “Improving the max-log-MAP turbo decoder,” IET Electron.

Lett., vol. 36, no. 23, pp. 1937–1939, Nov 2000.

[90] R. Dennard, V. Rideout, E. Bassous, and A. LeBlanc, “Design of ion-implanted

MOSFET’s with very small physical dimensions,” IEEE J. Solid-State Circuits,

vol. 9, no. 5, pp. 256–268, Oct 1974.

[91] Y. Liu, T. Zhang, and J. Hu, “Design of voltage overscaled low-power trellis de-

coders in presence of process variations,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 17, no. 3, pp. 439–443, March 2009.

[92] Taiwan Semiconductor Manufacturing Company Ltd, “TSMC 40nm core library

databook,” 2012.

Author Index

A
Abdallah, R. [54] . 6

Ahmadi, R. [12] 2, 42, 88

Ahmed, N. [14]2, 42, 88

Alaghi, A. [66] . 18

Albertengo, G. [84] 84, 143

Alles, M. [44] . 6

Alioto, M. [16] 2, 42, 88

Anderson, J. [81] 64, 66, 67

Andrade, J. [51] . 6

Arzel, M. [37] 4, 5, 98

Austin, T. [19] 3, 11, 114, 145, 152

B
Bahl, L. R. [63] 14, 65, 115

Beer, S. [82] . 74, 75

Berrou, C. [3] 1, 14, 64

Bonello, N. [69] . 24

Brown, B. [65]. .18

Burd, T. [68] 21, 179

C
Cadence Inc. [72] . 35, 84, 108, 143, 147,

160, 173, 184, 185

Ceroici, C. [35] .4, 5

Chen, J. [42] 4, 5, 98, 99, 105, 108

D
Dahlman, E. [11] 1, 7, 61, 111, 113

Das, S. [21] 3, 11, 114, 152, 154, 158

Das, S. [22] 3, 11, 114, 152, 154, 158

Dennard, R. [90] 143

Dong, Q. T. [39] 4, 5, 9–11, 61, 63,

66–70, 72, 74, 75, 79, 81, 83, 84,

91, 95–99, 105, 109, 176, 177

Dong, Q. T [40] 4, 5, 98, 100

Dong, Q. T [79] . . . 61, 66–75, 79, 81, 98

DVB-S2 standard. [7]1

E
Eckford, A. W. [83].75

Ernst, D. [13]2, 3, 11, 42, 88, 114,

152–154, 158

Ernst, D. [20] . .3, 11, 114, 152, 154, 158

F
Fossorier, M. [71] . 26

G
Gaines, B. R. [18] . 3, 15, 16, 18, 27, 63,

100

Gallager, R. [2] 1, 14

Gaudet, V. C. [23] 4, 5

Gaudet, V. C. [46] 6, 21, 157

Geldmacher, J. [49] 6

Ginosar, R. [80] 63, 74, 89

Gupta, M. S. [15] 2, 42, 88

Gross, W. J. [26] 4, 5

H
Hagenauer, J. [70] 24, 25

Hu, J. [41] . 4, 5, 98

Huang, C.-H. [52] 6, 7

HUAWEI Technologies Co. [10] 1, 7, 61,

111, 113

Huo, Y. [85] . 85

198 AUTHOR INDEX

I
IEEE 802.11 [5] . 1

IEEE 802.16 [4] 1, 39

IEEE 802.3 [6]. .1

Ilnseher, T. [57] 7, 11,

12, 113, 114, 118, 145, 146, 171,

173, 174, 177, 178

J
Janer, C. [86] . 97

K
Kameni Ngassa, C. [50] 6, 7

Kim, E. [55] . 6

Kschischang, F. [67] 18, 22, 25, 27

L
Leduc-Primeau, F. [31]4, 5

Levi, I. [62] . 8

Li, A. [61] 7, 10, 125, 128, 144, 177

Liu, Y. [91] . 157

LTE standard [9] . 1, 118, 120, 122, 170,

171

Lyons, R. [17] . 2

M
Maunder, R. G. [60] 7, 10, 11, 111, 114,

118–121, 172, 177

May, M. [53] . 6, 21

N
Naderi, A. [34].4, 5, 51, 52

Nimbalker, A. [88] 120, 122

Nourani, M. [75] . 39

O

P
Pant, S. [76] .42

Purohit, S. [78] 46, 88

Q

R
Rapley, A. C. [24] 4, 5

Robertson, P. [87] 115, 116

S
Sarkis, G. [32] . 4, 5

Sedighi, B. [56] . 6

Shannon, C. [1] .1

Sharifi Tehrani, S. [27] . . 4, 5, 18, 19, 79

Sharifi Tehrani, S. [28] 4, 5

Sharifi Tehrani, S. [29]4, 5, 9, 10, 18, 19,

27, 28, 30–35, 79, 104, 123, 176

Sharifi Tehrani, S. [36] 4, 5

Sharifi Tehrani, S. [30] . 4, 5, 11, 33, 64,

79–81

Sharifi Tehrani, S. [33] . 4, 5, 33, 51, 52,

79–81

Sun, Y. [59] 7, 113, 114, 145, 146

Synopsys Inc. [73] 35, 84, 108, 143, 185,

186

T
Taiwan Semiconductor[92] 162, 169

Tang, Y. [47] . 6

Te-Hsuan, C. [38] 4, 5

U
UMTS standard [8] 1

V
Vogt, J. [89] 121, 126

W
Wang, G. [58] 7, 113, 114, 146

Weste, N. H. E. [74] 39

Whatmough, P. N. [77].42, 46, 88

Winstead, C. [25] 4, 5, 18

Winstead, C. [45] . 6

Winstead, C. [48] . 6

Wu, Y. [64] 15, 123, 124, 126

X

Y
Yilmaz, O. N. C. [43] 4, 97, 113

Z

