
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON
FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

ELECTRONICS AND COMPUTER SCIENCE

Elias Gamma Error Correction Code

by

Tao Wang
BEng, MSc

A doctoral thesis report submitted in partial fulfilment of

the requirements for the award of Doctor of Philosophy
at the University of Southampton

January 2016

Supervisor: Prof. Lajos Hanzo
FREng, FIEEE, FIEE, DSc, EIC IEEE Press

Chair in Communications, Signal Processing and Control Group

Supervisor: Dr. Robert Maunder
PhD, CEng, MIET, SMIEEE, FHEA

Academic staff in Telecommunications Group
Electronics and Computer Science

University of Southampton
Southampton, SO17 1BJ

United Kingdom

c© Tao Wang 2016

Dedicated to my family and friends

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

Faculty of Physical Sciences and Engineering
School of Electronics and Computer Science

A thesis submitted for the award of Doctor of Philosophy

Elias Gamma Error Correction Coding

by Tao Wang

Shannon’s source-channel coding separation theorem states that near-capacity
communication is theoretically possible, when employing Separate Source and Chan-
nel Codes (SSCCs), provided that an unlimited encoding/decoding delay and com-
plexity can be afforded. However, it is typically impossible to remove all source
redundancy with the aid of practical finite-delay and finite-complexity source encod-
ing, which leads to capacity loss. As a potential remedy, Joint Source and Channel
Codes (JSCCs) have been proposed for exploiting the residual redundancy and hence
for avoiding any capacity loss. However, all previous JSCCs have been designed for
representing symbols values that are selected from a set having a low cardinality and
hence they suffer from an excessive decoding complexity, when the cardinality of the
symbol value set is large, leading to an infinite complexity, when the cardinality is
infinite.

Motivated by this, we propose the family of Unary Error Correction (UEC), Elias
Gamma Error Correction (EGEC) and Reordered Elias Gamma Error Correction
(REGEC) codes in this thesis. Our family of codes belong to the JSCC class designed
to have only a modest complexity that is independent of the cardinality of the symbol
value set. We exemplify the application of each of the codes in the context of a
serially concatenated iterative decoding scheme. In each coding scheme, the encoder
generates a bit sequence by encoding and concatenating codewords, while the decoder
performs iterative decoding using the classic Logarithmic Bahl, Cocke, Jelinek and
Raviv (Log-BCJR) algorithm. Owing to this, our proposed codes are capable of
mitigating any potential capacity loss, hence facilitating near-capacity operation.

Our proposed UEC code is the first JSCC that maintains a low decoding com-
plexity, when invoked for representing symbol values that are selected from a set
having large or even infinite cardinality. The UEC trellis is designed to describe the
unary codewords so that the transitions between its states are synchronous with the
transitions between the consecutive codewords in the bit sequence. The unary code
employed in the UEC code has a simple structure, which can be readily exploited

for error correction without requiring an excessive number of trellis transitions and
states. However, the UEC scheme has found limited applications, since the unary
code is not a universal code. This motivates the design of our EGEC code, which
is the first universal code in our code family. The EGEC code relies on trellis rep-
resentation of the EG code, which is generated by decomposing each symbol into
two sub-symbols, for the sake of simplifying the structure of the EG code. However,
the reliance on these two parts requires us to carefully tailor the Unequal Protection
(UEP) of the two parts for the specific source probability distribution encountered,
whilst the actual source distribution may be unknown or non-stationary. Addition-
ally, the complex structure of the EGEC code may impose further disadvantages as-
sociated with an increased decoding delay, loss of synchronisation, capacity loss and
increased complexity due to puncturing. This motivates us to propose a universal
JSCC REGEC code, which has a significantly simpler structure than the EGEC code.
The proposed codes were benchmarked against SSCC benchmarkers throughout this
thesis and they were found to offer significant gains in all cases.

Finally, we demonstrate that our code family proposed in this thesis can be ex-
tended by several potential directions. The sophisticated techniques that have been
subsequently proposed in the thesis for extending the UEC code, such as irregular
trellis designs and the adaptive distribution-learning algorithm, can be readily ap-
plied to the REGEC codes which is an explicit benefit of its simple trellis structure.
Furthermore, our proposed REGEC code can be extended using techniques that
been subsequently proposed for extending the EGEC both to Rice Error Correction
(RiceEC) codes and to Exponential Golomb Error Correction (ExpGEC) codes.

iv

Declaration of Authorship

I, Tao Wang, declare that the thesis entitled

Elias Gamma Error Correction Code

and the work presented in it are my own and have been generated by me as the result
of my own original research. I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree
at this University;

2. Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated;

3. Where I have consulted the published work of others, this is always clearly
attributed;

4. Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;
6. Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed myself;
7. Parts of this work have been published, as seen in the list of publications.

Signed:

Date:

v

Acknowledgements

I would like to express my heartfelt gratitude to my supervisors Professor Lajos
Hanzo and Dr. Robert G. Maunder for their outstanding supervision and support
throughout my four years study and research. Their patient guidance, continuous
encouragement and inspiring advice have greatly benefited me not only in research
but also in life.

I would also like to thank the co-authors of my papers: Robert G. Maunder, Lajos
Hanzo, Yongkai Huo, Wenbo Zhang and Matthew F. Brejza for their willingness to
help, discussions, knowledge.

Many thanks to my colleagues and the staff of the Southampton Wireless Group
for the valuable discussions and comments throughout my research. Special thanks
to my colleagues, Soon Xin Ng, Mohammed El-Hajjar, Chao Xu and all others not
mentioned here for their technical support and collaborative work.

Finally, to my family, particularly my parents, for their unconditional love, sup-
port and care. Without you, I would not be where I am today.

Contents

Abstract iii

Declaration of Authorship v

Acknowledgements vi

List of Publications xii

Chapter 1 Introduction 1

1.1 Brief history of video coding standards 2

1.2 Background on video transmission 3

1.2.1 Source coding . 3

1.2.2 Channel coding . 6

1.2.3 Channel capacity . 9

1.2.4 Joint source-channel decoding 9

1.3 Structure and novel contributions of the thesis 11

Chapter 2 Unary Error Correction Codes 1 15

2.1 Introduction . 15

2.1.1 Background and motivation 15

2.1.2 Novel contributions . 18
1Some of the results in this chapter are reproduced from the collaborative work [1, 2]. The

contribution to these papers by the author of this thesis was the video data collection and analysis,
as well as the UEC trellis codebook error floor analysis in these papers.

vii

CONTENTS CONTENTS

2.1.3 Chapter organisation . 18

2.2 Source distribution . 18

2.2.1 Symbols value sets from video compression standards 19

2.2.2 Symbols value sets having an infinite cardinality 20

2.3 Unary Error Correction (UEC) encoder 21

2.3.1 Unary encoder . 21

2.3.2 Trellis encoder . 22

2.3.3 Integration of the UEC encoder into a transmitter 27

2.3.3.1 Interleaver operation 27

2.3.3.2 Unity Rate Convolutional (URC) code 28

2.3.3.3 Interleaving and puncturing 28

2.3.3.4 QPSK modulation 30

2.4 Uncorrelated narrow-band Rayleigh fading channel 32

2.5 UEC decoder . 32

2.5.1 Integration into a receiver . 33

2.5.1.1 Soft QPSK demodulation 33

2.5.1.2 Depuncturing and deinterleaving 34

2.5.1.3 Logarithmic Bahl-Cocke-Jelinek-Raviv (Log-BCJR)-
based URC decoding 35

2.5.2 UEC trellis decoder . 39

2.5.2.1 Log-BCJR-based trellis decoding 39

2.5.2.2 EXtrinsic Information Transfer (EXIT) chart analysis 40

2.5.2.3 Iterative decoding 43

2.5.3 Unary decoder . 45

2.6 The parameterization of the Unary Error Correction code 47

2.6.1 Performance analysis . 47

2.6.2 Unary Error Correction codebook selection 50

2.7 Performance comparison with the Separate Source and Channel Code
(SSCC) benchmarker . 53

viii

CONTENTS CONTENTS

2.7.1 EG-CC SSCC benchmarker 53

2.7.2 SER performance . 58

2.8 Summary and conclusions . 60

Chapter 3 Elias Gamma Error Correction Codes 62

3.1 Introduction . 62

3.1.1 Background and motivation 62

3.1.2 Novel contribution . 63

3.1.3 Chapter organization . 64

3.2 EGEC encoder . 65

3.2.1 Decomposition of symbols into pairs of sub-symbols 65

3.2.2 EGEC(UEC) encoder . 69

3.2.3 EGEC(FLC-CC) encoder . 71

3.2.4 Integration of the Elias Gamma Error Correction (EGEC) en-
coder into a transmitter . 73

3.3 EGEC decoder . 74

3.3.1 EGEC(UEC) decoder . 74

3.3.2 EGEC(FLC-CC) decoder . 76

3.3.3 Integration of EGEC decoder into a receiver 77

3.4 Near-capacity performance of EGEC codes and Unequal Error Pro-
tection (UEP) design . 78

3.5 Performance comparison with the benchmarkers 84

3.6 Summary and Conclusions . 88

Chapter 4 Reordered Elias Gamma Error Correction Codes 90

4.1 Introduction . 90

4.1.1 Background and motivation 91

4.1.2 Novel contributions . 93

4.1.3 Chapter organization . 93

4.2 Symbol value sets having a large cardinality 94

4.3 Reordered Elias Gamma code . 96

ix

CONTENTS CONTENTS

4.4 Reordered Elias Gamma Error Correction encoder 98

4.4.1 Reordered Elias Gamma encoder 99

4.4.2 Reordered Elias Gamma Error Correction trellis encoder . . . 99

4.4.3 Integration of the Reordered Elias Gamma Error Correction
(REGEC) encoder into a transmitter 106

4.5 Reordered Elias Gamma Error Correction decoder 106

4.5.1 Integration of Reordered Elias Gamma Error Correction de-
coder into a receiver . 107

4.5.2 Reordered Elias Gamma Error Correction trellis decoder . . . 107

4.5.3 Reordered Elias Gamma decoder 109

4.6 Parametrization of the Reordered Elias Gamma Error Correction code 109

4.6.1 Reordered Elias Gamma Error Correction codebook extension 109

4.6.2 Performance analysis . 111

4.6.3 REGEC codebook candidate selection 113

4.6.4 EXIT charts of the REGEC candidate codebooks and the best
matching URCs . 114

4.6.5 Error floor analysis . 115

4.7 PERFORMANCE COMPARISON WITH THE BENCHMARKERS . 117

4.7.1 Parametrization . 118

4.7.2 SER comparison with the benchmarkers 121

4.8 Conclusions . 124

Chapter 5 Conclusions and Future Work 126

5.1 Summary and conclusions . 126

5.2 Design Guidelines . 129

5.2.1 Source distribution . 130

5.2.2 Source code design . 130

5.2.3 Channel code design . 131

5.2.4 Concatenated code design . 132

5.2.5 Modulation design . 132

x

CONTENTS CONTENTS

5.2.6 Summary . 132

5.3 Future work . 133

5.3.1 Learning-aided REGEC code 133

5.3.2 Reordered Exponential Golomb Error Correction code 133

5.3.3 REGEC-turbo scheme . 137

5.3.4 Iterative demodulation . 138

Appendices 139

Appendix A Derivation of the REGEC transition probability 139

Glossary 141

Bibliography 145

Author Index 154

Subject Index 158

xi

List of Publications CONTENTS

List of Publications
Journal Paper

1. T. Wang, W. Zhang, M. F. Brejza, R. G. Maunder, and L. Hanzo, “Reordered
Elias Gamma Error Correction Codes for the Near-Capacity Joint Source and
Channel Coding of Multimedia Information,” to be submitted, November 2015.

2. T. Wang, W. Zhang, R. G. Maunder, and L. Hanzo, “Near-capacity Joint
Source and Channel coding of Symbol values from an Infinite Source Set using
Elias Gamma Error Correction codes,” IEEE Transactions on Communications,
vol. 62, pp. 280–292, January 2014.

3. M. F. Brejza, T. Wang, W. Zhang, D. Al-Khalili, R. G. Maunder, B. M.
Al-Hashimi and L. Hanzo, “Exponential Golomb and Rice Error Correction
Codes for Near-Capacity Joint Source and Channel Coding”, to be submitted,
December 2015.

4. W. Zhang, Z. Song, M. F. Brejza, T. Wang, R. G. Maunder, and L. Hanzo,
“Learning-aided Unary Error Correction Codes for Non-Stationary and Un-
known Source”, to be submitted, September 2015.

5. W. Zhang, M. F. Brejza, T. Wang, R. G. Maunder, and L. Hanzo, “An Irreg-
ular Trellis for the Near-Capacity Unary Error Correction Coding of Symbol
Values for an Infinite Set,” IEEE Transactions on Communications, in press.

6. Y. Huo, T. Wang, R. G. Maunder, and L. Hanzo, “Two-dimensional iterative
source-channel decoding for distributed video coding,” IEEE Communication
Letters, vol. 18, pp. 90-93 January 2014.

7. Y. Huo, T. Wang, R. G. Maunder, and L. Hanzo, “Motion-aware mesh-
structured trellis for correlation modelling aided distributed multi-view video
coding,” IEEE Transactions on Image Processing, vol. 23, pp.319-331,January
2014.

8. Y. Huo, T. Wang, R. G. Maunder, and L. Hanzo, “Iterative source and channel
decoding relying on correlation modelling for wireless video transmission,” IET
Communications, vol. 7, pp. 1465–1475, September 2013.

9. R. G. Maunder, W. Zhang, T.Wang, and L. Hanzo, “A Unary Error Correction
code for the Near-capacity Joint Source and Channel Coding of Symbol Values
from an Infinite Set,” IEEE Transactions on Communications, vol. 61, pp.
1977-1987, May 2013.

xii

List of Publications CONTENTS

List of Symbols

Joint Source and Channel Error Correction Code(JSCECC)

a number of sysbols.
b number of bits.
C Trellis codewords set.
c Trellis codeword.
D realization of vector d comprising with Independent and Identically

Distributed (IID) Random Variables (RVs) .
d input symbol vector.
df The free distance of a Error Correction (EC) code.
F Number of Unary bits have separate transition in the trellis.
f Number of Unary States.
H The entropy.
h Number of Fixed Length Code (FLC) States.
L Symbol value limit for a finite-cardinality source set.
l The average codeword length.
m The trellis path for encoding binary vector.
mj The trellis state.
n The number of bit of trellis codeword.
P (·) The Probability function.
p1 Probability of occurrence of the symbol value equal to 1 in a particular

distribution.
R Coding rate.
r Number of trellis state.
t input sub-symbol vector for EGEC(UEC) encoder.
T realization of vector t comprising with IID RVs .
u binarization of sub-symbol vector t.
v interlevered bit vector of binary vector u.
w The encoded output bit vector for EGEC(FLC) encoder.
X realization of vector x comprising with IID RVs .
x input sub-symbol vector for EGEC(UEC) encoder.
y binarization of sub-symbol vector x.
z The encoded output bit vector for EGEC(UEC) encoder.
(·)a The a prior Logarithmic Likelihood Ratios (LLRs) pertaining to the

symbol/bit vector .

xiii

List of Publications CONTENTS

(·)e The extrinsic LLRs pertaining to the symbol/bit vector.
(·)p The a posteriori LLRs pertaining to the symbol/bit vector.
(̂·) Reconstrction of the symbol or bit vector having the symbol/bit vec-

tor.

xiv

Chapter 1
Introduction

Figure 1.1 illustrates the video transmission codec recommended in the first digi-
tal video coding standard published by the International Telecommunication Union
(ITU), namely H.120 [3]. When the standard was proposed in 1984, this video trans-
mission codec aimed for transmitting video conferencing signals. However, at the
time these video schemes were required for wireline communication between fixed
equipment. At the time of writing, typically mobile devices are used for video-
telephony. Given the increasing popularity of video services on mobile devices, video
codecs are applied in diverse scenarios. However, the structure of hybrid video codecs
remained relatively unchanged over the decades, as exemplified by in state-of-the-art
multimedia codecs, such as H.264 [4] and H.265 [5].

Uncompressed video sequences exhibit a high degree of intra-frame and inter-
frame correlations [6], which represents redundancy. The predictive coding scheme
of Figure 1.1 removes this redundancy in order to achieve compression and its com-
pression ratio may be further improved with the aid of entropy coding. Hence in this
thesis, we propose several novel Joint Source and Channel Code (JSCC) [7] schemes
for exploiting the residual redundancy after source coding and hence to improve the

coding
Predictive

decoding
Predictive

output
Video

input
Video

coding
Channel

processing
Pre-

processing
Post- Entropy Channel

buffer

Video source coding

Entropy
coding buffer

Transimission

Video source coding

decoding
Receiving

decoding

Figure 1.1: Video transmission using H.120 stardard [3].

1.1. Brief history of video coding standards 2

error correction capability of the video transmission system.

In Section 1.1, we briefly review the history of video coding standards. Following
this, we discuss the SSCC and JSCC philosophies in Section 1.2.1. Finally, we portray
the outline and the novel contributions of the thesis in Section 1.3.

1.1 Brief history of video coding standards

The history of video coding standardization dates back to the 1980s. Over the past
decades, several video coding standards have been proposed by the standardiza-
tion bodies, namely by the ITU and by the International Standardization Organiza-
tion/International Electrotechnical Commission (ISO/IEC). The ITU standards have
mainly aimed for lip-synchronized interactive video communications, while ISO/IEC
have focussed on delay-tolerant broadcast video distribution [8].

The ITU-T H.120 standard [3] was the first digital video coding standard pro-
posed by the ITU in 1984. The codec was designed for transmitting the video at a
similar resolution to that of the television standards of the time. Differential Pulse
Code Modulation (DPCM) [6] was used as predictive coding, while scalar quantiza-
tion of the pixels and a Variable Length Code (VLC) [9] was employed for achieving
the compression. The standard also included error correction using Bose-Chaudhuri-
Hocquenghem (BCH) [10, 11] codes for channel coding. The ITU-T H.261 stan-
dard [12] improved ITU-T H.120 and it was first published in 1988. This codec was
designed for transmitting 352× 288-pixel Common Intermediate Format [12] (Com-
mon Intermediate Format (CIF)) and for 176× 144-pixel Quarter Common Interme-
diate Format [12] (Quarter Common Intermediate Format (QCIF)) video clips over
Integrated Services Digital Networks (Integrated Services Digital Networks (ISDN)).
This standard proposed the first so-called hybrid video coding scheme, which has then
been adopted by all of its successors. The ’hybrid’ terminology was used to indicated
that motion-compensation was carried out in the spatio-temporal domain, followed by
the residual encoding Discrete Cosine Transform (DCT) domain. We will discuss the
structure of hybrid video coding in Section 1.2.1. In 1993, the Moving Picture Expert
Group (MPEG), formed by ISO/IEO in 1988, released the MPEG-1 standard [13]
for video distribution, which was also based on a hybrid coding scheme. However,
MPEG-1 only supported progressively scanned images, preventing its employment
for the interlaced video frames of the National Television System Committee’s (Na-
tional Television System Committee (NTSC)) standard or for the so-called Phase
Alternating Line (Phase Alternating Line (PAL)) television formats [14]. Motivated
by this, the MPEG-2 standard [15] was proposed in 1995, which was also adopted
as H.262 [16]. This coding standard is the first joint video coding standard of two

1.2. Background on video transmission 3

standardization bodies. It supported both (720 × 576)–pixel and (720 × 480)-pixel
resolutions, as well as high-definition (Hamming Distance (HD)) video with a resolu-
tion of 1920×1080 pixel. This standard was widely used in broadcasting for example
in the European Digital Video Broadcasting standard − Terrestrial (DVB-T) [17].
After this joint work, the H.263 [18] and MPEG-4 [19] standards were individually
released by ITU-T in 1996 and MPEG in 1999, respectively.

Although the target applications of the two main standardization bodies were
different, most of the signal processing techniques invoked for real-time video com-
munication and for broadcast of video are identical. Motivated by this, the Joint
Video Team (JVT) was founded by the video experts of ITU and of ISO/IEC. Fol-
lowing this, JVT proposed the Advanced Video Coding (AVC) standard [4] in 2003,
which is known as ITU-T H.264 and MPEG-4 part 10. Further extensions of the
H.264/MPEG-4/AVC include Scalable Video Coding (SVC) [4, Annex G] [20] and
Multiview Video Coding (MVC) [4, Annex H] [21], which were proposed in 2007 and
2009, respectively. As the collaboration between the ITU and ISO/IEC continued,
they established the Joint Collaborative Team on Video Coding (JCT-VC) in 2010.
The High Efficiency Video Coding (HEVC) standard [5] was published as a succes-
sor of H.264/AVC by JCT-VC in 2013, which is also known as ITU-T H.265/HEVC
and ISO/IEC 23008-2 MPEG-H Part 2/HEVC. HEVC supports Full High Definition
(FHD), Video Horizontal Resolution on the Order of 4,000 Pixels (4K) Ultra High
Definition (UHD) and Video Horizontal Resolution on the Order of 8,000 Pixels (8K)
UHD video formats. Compared to AVC, HEVC aims for halving the bitrate, while
maintaining the same video quality. As in AVC, HEVC also includes SVC [5, Annex
H] and MVC [5, Annex G] extensions.

1.2 Background on video transmission

The following discussions introduce the required background, which sets the scene
for the introduction of the novel contributions of this thesis in Section 1.3.

1.2.1 Source coding

As we mentioned in Section 1.1, the H.261 standard proposed the first hybrid video
coding scheme, which is the approach that has been adopted by all of its successors.
The most important components in a hybrid video coding scheme are Motion Com-
pensation (MC) [22] and the DCT [23] and quantization. Typically, a block-based
MC [22] is employed as the basis of the predictive coding of Figure 1.1, in order to ex-
ploit temporal redundancy in the video source sequence. Additionally, the DCT [23]
is employed for exploiting the spatial redundancy in the motion-compensated video

1.2.1. Source coding 4

Table 1.1: The first twelve codewords of VLC table for motion vector data.

Symbol value Motion vector Codes
1 0 1
2 0.5 010
3 -0.5 011
4 1 0010
5 -1 0011
6 1.5 00010
7 -1.5 00011
8 2 0000110
9 -2 0000111
10 2.5 00001010
11 -2.5 00001011
12 3 00001000
...

...
61 15.5 0000000000110
62 -15.5 0000000000111
63 -16 0000000000101

data. Finally, carefully considered quantization is invoked for controlling the trade
off between the reconstruction quality and the bit rate of the encoded video data.

Following this, entropy coding [24] may be used in order to reduce the number
of bits in the encoded video stream. Until the H.263 standard was proposed, video
codecs typically employed VLC tables for encoding the various parameters output
by the predictive coding, such as DCT coefficients or motion vectors. Table 1.11

exmplifies a typical VLC table employed in video coding standards. Each symbol
value in the VLC table indicates a mapping from a parameter also referred to in par-
lance as a syntax element to a binary codeword. In the example of Table 1.1, each
symbol value represents a different motion vector value, where a step size of half a
pixel is employed. In this way, a sequence of motion vectors may be converted into a
sequence of codewords, which are then concatenated for generating the encoded bit
sequence. For ensuring that a different codeword can be chosen for each physically
realistic symbol value, the set of possible symbol values must have finite cardinality
in order to design the VLC table. Similarly to entropy-coding or Huffman-coding,
these codewords have to be generated by exploiting the knowledge of the probability
of occurrence for each legitimate symbol value. In this way, the classic Huffman
code [26] may be employed to design the codewords in the VLC table. However,
encoding the syntax elements using a VLC table have a finite cardinality will restrict
the set of possible syntax elements to also have a finite cardinality. For example, the

1This is a reordered version of [25, Table 14] for the sake of allowing convenient comparison with
other codeword tables in this thesis.

1.2.1. Source coding 5

Table 1.2: The first twelve codewords of the EG code

di EG(di)
1 1
2 010
3 011
4 00100
5 00101
6 00110
7 00111
8 0001000
9 0001001
10 0001010
11 0001011
12 0001100
...

...

motion vector value is restricted to the range of [-16,15.5] in Table 1.1. By contrast,
if this restriction can be removed, then the resultant unrestricted mode will facilitate
a higher degree of flexibility for the predictive coding, hence improving its perfor-
mance. In the example of Table 1.1, this would correspond to removing the limit
imposed on the maximum number of symbol values representing the motion vectors,
as in the so-called unrestricted motion vector mode of H.263. A symbol set without
a pre-determined maximum symbol value may be considered to have an infinite car-
dinality. This prevents the employment of a Huffman code and of other near-entropy
source codes, such as adaptive arithmetic codes [27] or a Lempel-Ziv code [28], since
these require knowledge of the probability of all symbols corresponding to an infinite
amount of knowledge.

Motivated by this, the Exponential Golomb (ExpG) code [29, 30] is employed
in H.264 and H.265 codecs to encode both the syntax elements that reach large
values and those having undetermined maximum values. The ExpG code [29] is
a parametrized universal code, which subsumes the Elias Gamma (EG) code as a
special case. Table 1.2 shows the codewords of the EG code. The set of ExpG
codewords is infinite and structured, eliminating the requirement of explicit symbol
probability knowledge during their design. Note that all syntax elements are encoded
using the EG code in the H.264 Context-Based Adaptive Variable-Length Coding
(CAVLC) mode [4, 31]. Additionally, EG code is also employed in the binarization
process of the Context-Adaptive Binary Arithmetic Coding (CABAC) [32, 33] of
H.264 and H.265 [4, 5]. A timeline of entropy coding milestones is shown in Figure
1.2.1.

1.2.2. Channel coding 6

1949

2002

Shannon [34] and Fano [35], Shannon-Fano code.

Huffman [26], Huffman code.
1952

Abramson [36], arithmetic coding.1960

Golomb [37], Golomb and Rice Codes.1966

Elias [38], Elias Gamma (EG) code.
1975

Ziv and Lempel [28], Lempel-Ziv code.1978

Teuhola and Jukka [30], Exp-Golomb code.

Apostolico and Fraenkel [39], Fibonacci code.
1987

Ryabko and Rissanen [27], Adaptive arithmetic code.

Figure 1.2: Timeline of entropy coding milestones.

1.2.2 Channel coding

As shown in Figure 1.1, channel coding is employed for protecting the video sig-
nal transmitted over realistic imperfect channel by providing an error correction
capability. In contrast to source coding which removes redundancy, channel cod-
ing introduces specifically designed redundancy into the transmitted video signal.
As a benefit, the receiver may correct the channel-induced errors by exploiting this
redundancy. The Hamming code [40] was an early example of a block code [41],
which encodes fixed-length blocks of bits at a time. Other well-known block codes
include the so-called maximum-minimum-distance Reed-Solomon (RS) codes [42],
BCH codes [11, 10] and the powerful Low Density Parity Check (LDPC) codes [43].
The other main type of channel coding is based on the classic Convolutional Code
(CC) [44], which encodes streams of bits or symbols having an abitrary length. In
particular, the state-of-the-art turbo codes [45] operate on the basis of CC codes.

Shannon’s source-channel separation theorem [46] states that near-capacity com-
munication is theoretically possible, when employing SSCC. For example, this may
be achieved by combining a near-entropy source code, such as the adaptive arith-
metic code [27] or the Lempel-Ziv code [28] of Figure 1.2.1, with a near-capacity
channel code. State-of-the-art near-capacity channel codes, such as the LDPC [47]

1.2.2. Channel coding 7

Outer

encoder encoder
Innerπ1

encoder

encoder
π1

Upper

encoder
π1

encoder
π2

encoder

Lower

Upper

Lower

Inner encoder

(a)

(b)

(c)

Outer

Figure 1.3: Encoder structure of (a) serial concatenation (b) parallel concatenation
and (c) hybrid concatenation, where π1 and π2 represent interleaving operations.

and turbo codes [45] apply iterative decoding techniques for facilitating operation
near the channel’s capacity, which is the theoretical limit imposed upon the data
rate, as will be discussed in Section 1.2.3. Inspired by this, this treatise is mainly
focused on the family of concatenated schemes that have been conceived for iterative
channel coding, including serial concatenation [48] like that of LDPC codes, parallel
concatenation [45] like that of turbo codes and hybrid concatenation. Figure 1.3
shows the encoder structure of the serial concatenation, parallel concatenation and
hybrid concatenation arrangements. In particular, we consider channel codes based
on the CC, which operate on the basis of a trellis representation [49] and apply the
Log-BCJR algorithm [50], which will be detailed in Sections 2.3 and 2.5, respectively.
The error correction capability of a channel code may be characterized by its Free
Distance (FD) [9], which is equal to the minimum number of differing bits in any pair
of legitimate equal-length encoded sequence. This is because a channel code having a
high FD is capable of tolerating more corrupted bits when decoding an error-infested

1.2.2. Channel coding 8

1950

2015

Hamming [40], Hamming codes.

Reed [42], Reed-Muller (RM) code.
1954

Wozencraft [52], Sequential decoding.

1957

Bose and Ray-Chaudhuri [11], and Hocquenghem [10] Bose-Chaudhuri-
Hocquenghem (BCH) code.

1959

Reed and Solomon [53], Reed-Solomon (RS) code.

Gallager [43], Low-Density Parity-Check (LDPC) code.

1962

Bahl et at. [54], Symbol based MAP algorithm.

1972

Bahl et at. [50], Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm.

1974

Wolf [55], Trellis-decoding of block codes.

1978

Koch and Baier [56], Log-MAP algorithm.

1990

Berrou et at. [45], Turbo codes.

1993

Robertson et at. [57], Approx-Log-MAP algorithm.

1995

Richardson et at. [58], Irregular LDPC code.

2001

Luby [59], Luby Transform (LT) codes.

Shokrollahi [60], Raptor codes.

2006

Arikan [61], Polar codes.

2009

Bonello et at. [62], Reconfigurable Rateless Codes.

Maunder [63], Fully-Parallel Turbo Decoding Algorithm.

Figure 1.4: Timeline of channel coding milestones.

bit sequence. The FD of the channel codes considered in this thesis will be detailed
in Sections 2.6.2 and 4.6.3. Additionally, we will employ EXIT chart analysis [51]
for characterizing the iterative exchange of soft-information between the component
decoders of our concatenated schemes, in order to design the component decoders,
as it will be detailed in Section 2.5.2.2. A timeline of channel coding and decoding
milestones is shown in Figure 1.2.2.

1.2.3. Channel capacity 9

1.2.3 Channel capacity

The channel capacity of the noisy channel quantifies the upper bound on the rate
(expressed in bits per second) [9] which can be reliably transmitted over the channel.
The channel capacity is reduced upon reducing the channel’s Signal to Noise Ratio
(SNR), which depends on the transmit power, transmit distance the fading statistics,
and the noise. In case of video transmission a certain maximum tolerable bit rate is
associated with a minimum SNR threshold for the receiver to successfully decode the
video sequence. Near-capacity operation is desirable, since it will reduce the SNR
threshold, when transmitting the same video stream at a given quality. Capacity loss
may be imposed both by source coding and channel coding. In Chapter 2, we will
analyse the causes of capacity loss and we will consider several solutions for reducing
this capacity loss in the following chapters.

1.2.4 Joint source-channel decoding

Shannon’s source-channel separation theorem [46] states that near-capacity commu-
nication is theoretically possible, when employing SSCC, provided that an unlimited
encoding/decoding delay and complexity can be afforded. However, it is typically
impossible to remove all source redundancy with the aid of practical finite-delay
and finite-complexity source encoding, which leads to capacity loss, as described in
Section 1.2.3. As a potential remedy, JSCCs have been proposed for exploiting the
residual redundancy and avoiding capacity loss [7].

JSCCs may be employed in two different scenarios. In the first scenario, the
source encoder has extremely limited resources, hence the encoder will transmit the
source information using only simple predictive coding or even uncompressed source
streams. Thus the source correlation manifests itself in the transmitted sequence and
may readily be exploited for error correction in the receiver. Inspired by this, the
JSCCs scheme proposed in [64, 65] operated on the basis of iterative source-channel
decoding by relying on the turbo principle [66, 67] and on the Bahl-Cocke-Jelinek-
Raviv (BCJR) algorithm [50], as well as on the Soft Bit Source Decoding (SBSD)
algorithm [68]. Meanwhile, the schemes proposed in [69,70,71] exploited the spatial
redundancy between a pixel in a video sequence and its eight neighbors using a
Markov Random Field (MRF) model.

Another scenario for a JSCCs scheme is, where the source encoder employs com-
plex predictive coding. In this case, although the source encoder will exploit most
of the redundancy in the source for compression, some residual redundancy may

1.2.4. Joint source-channel decoding 10

still persist due to the limited delay and complexity of this process, as we dis-
cussed above. Variable Length Error Correction (VLEC) codes [72] may be em-
ployed for exploiting this residual redundancy for error correction in the receiver,
if the symbol values are selected from a set having a low cardinality and provided
that accurate knowledge of the symbol value probabilities is available for design-
ing the codebook of the VLEC code. However, as we discussed above, the symbol
set of state-of-the-art multimedia codecs operating in the above-mentioned unre-
stricted mode have infinite or very large cardinalities. These symbol value sets are
impractical for existing JSCCs, such as Self-Synchronizing Variable Length Codes
(SSVLCs) [73], Reversible Variable Length Codes (RVLCs) [74], VLEC codes [75],
Even Weight Variable Length Codes (EWVLCs) [76] and Irregular Variable Length
Codes (IrVLCs) [72]. More specifically, these codes operate on the basis of trellis and
graph structures [77, 78, 79, 80, 81, 82, 83] that become exponentially more complex,
when the cardinality of the symbol value set grows. Motivated by this, this trea-
tise will propose several JSCCs, where the decoder employs a trellis that has only
a modest complexity, even when the cardinality of the symbol value set is infinite.
The major milestones in the development of JSCCs are listed in Figure 1.2.4.

1986

2015

Montgomery and Abrahams [73], Self-Synchronizing Variable
Length Codes (SSVLCs).1986

Takishima etat. [74], Reversible Variable Length Codes (RVLCs).

1995

Buttigieg and Farrell [75], Variable Length Error Correction
(VLEC) code.

2000

Fingscheidt and Vary [68], a Softbit source decoding (SBSD)
scheme for speech signal.

2001

Görtz [65], a Joint Source and Channel coding (JSCC) employ-
ing turbo principle.
Kliewer et at. [69], a Joint Source and Channel coding (JSCC)
scheme with Markov Random Field.

2004
Kliewer [70], Symbol-based SBSD.

2005 Thobaben and Kliewer [76], Even Weight Variable Length Codes
(EWVLCs).2006
Nasruminallah and Hanzo [84], a JSCC scheme for H.264 video
using Short Block Code (SBC).2009
Maunder and Hanzo [72] Irregular Variable Length Codes
(IrVLCs).

Akyol et at. [85] Zero-Delay Source-Channel Coding.2014

Alustiza et at. [86] JSCC schemes based on analog mappings for
point-to-point channels.

2015

Figure 1.5: Timeline of Joint Source and Channel Coding milestones.

1.3. Structure and novel contributions of the thesis 11

Chapter 6

Conclusion and future work

Introduction

Chapter 1

Chapter 2

Chapter 3

Elias Gamma Error

Chapter 4

Unary Error

Correction (UEC) code

Correction (EGEC) code

Reordered Elias Gamma Error

Correction (REGEC) code

Figure 1.6: Outline of the thesis

1.3 Structure and novel contributions of the thesis

In this section we provide an overview of the remainder of this thesis and summarise
the novel contributions of each chapter. Figure 1.6 shows the outline of this treatise.
Through Chapters 2 to 4, we propose several novel JSCC schemes. Figure 1.7 illus-
trates the components that must be considered, when designing an iterative JSCC
scheme. In each of the following chapters, we will focus our attention on one or more
components listed in Figure 1.7.

In Chapter 2, we review the encoding and decoding operations of the UEC code
and we exemplify the application of the UEC code for JSCC [7] in the context of
a serially concatenated iterative decoding scheme. This chapter also serves as a
background chapter, since it introduces the principles that are common to our family
of JSCC codes conceived in Chapters 2 to 4. We detail the collection of video data
and we model its symbol value probability distribution using the Zeta probability

1.3. Structure and novel contributions of the thesis 12

Channel coding

Source

Iterative joint source-channel coding design

design

Joint source and channel code design

code design

Channel code

concatenation design

Concatenated

design

Modulation
distribution

Source

code design

Figure 1.7: The components that must be considered when designing an iterative
joint source and channel coding scheme.

distribution. Figure 2.2 illustrates the structure of the UEC code. We describe the
operation of the unary encoder and trellis encoder structure of the UEC encoder
in Section 2.3. Furthermore, we describe how to integrate the UEC encoder into a
transmitter by describing the operation of the concatenated URC encoder [87], as
well as of the interleaver and modulator. Additionally, we describe the operation of
the UEC decoder and URC decoder, as well as the Log-BCJR algorithm [50], which
forms the basis of the UEC trellis and URC decoding processes. Following this,
the EXIT chart [51] concept is introduced and area properties of the UEC code are
characterized. The novel contributions of Chapter 2 are as follows.

• We characterize and analyze the distribution of the symbol values produced,
when test video sequences are encoded by the H.264 and H.265 video encoders.
• We characterize various candidate parametrizations of the UEC code in terms

of the minimum channel SNR required for facilitating iterative decoding con-
vergence to a low error probability (the open tunnel bound) and quantify how
low that error probability is (the error floor).
• The error correction performance of our JSCC UEC scheme is comprehensively

compared to that of an SSCC benchmarker based on the combination of an EG
source code and a convolutional channel code.

In Chapter 3, we propose a universal JSCC EGEC code. In contrast to the UEC code
of Chapter 2, the EGEC code achieves a finite average codeword length for all Zeta
distributions. Firstly, we describe the decomposition of symbols into pairs of sub-
symbols, which are then encoded separately by two distinct sub-encoders. Following
this, we describe the operation of these sub-encoders, as well as of the corresponding
sub-decoders. Furthermore, we detail the procedure of designing an UEP schemes

1.3. Structure and novel contributions of the thesis 13

that capable of optimizing the contributions of the turbo sub-codes, facilitating near-
capacity operation at a low decoder complexity. The novel contributions of Chapter
2 are as follows.

• A universal JSCC EGEC is designed, which is capable of achieving the near-
capacity transmission of symbols that are randomly selected from infinite-
cardinality symbol alphabets using any arbitrary monotonic probability dis-
tribution.
• We propose a UEP scheme for optimizing the relative contribution of the two

EGEC sub-codes to the encoding process, facilitating near-capacity operation
at a low decoder complexity.
• The performance of the proposed JSCC EGEC scheme is compared to that of

the JSCC UEC and SSCC EG-CC benchmarkers in five scenarios, namely for
four different Zeta distribution parametrizations and the H.265 distribution of
Figure 2.3(b).

In Chapter 4, we propose a universal JSCC REGEC code, which has a significantly
simpler structure than the EGEC code of Chapter 3. We describe the Zeta source
probability distribution and we generalise the infinite cardinality source alphabet of
our previous chapters to the case of a finite cardinality, where this cardinality repre-
sents an additional parameter to be considered. Furthermore, we introduce the novel
Reordered Elias Gamma (REG) source code and describe the structure of the REG
codewords. Following this, we introduce our novel REGEC encoder and decoder.
Additionally, we analyze the parametrization of the proposed REGEC scheme and
demonstrate that it facilitates near-capacity operation. The novel contributions of
Chapter 2 are as follows.

• The REGEC universal JSCC is designed, which is capable of achieving the
near-capacity transmission of symbols that are randomly selected from large or
infinite cardinality symbol alphabets using any arbitrary monotonic probability
distribution.
• We propose a finite Zeta-like distribution for modeling the distribution of the

symbol values produced, when test video sequences are encoded by H.265 video
encoders.
• A novel REG code is proposed by reordering the bits of the EG code in order to

yield a simple codeword structure, which is suitable for trellis representation.
• We introduce a REGEC trellis, which is capable of describing the structure of

our proposed REG code using a relatively small number of trellis states. Owing
to this, our REGEC decoder has a low decoding complexity.

1.3. Structure and novel contributions of the thesis 14

• We characterize various candidate parametrizations of the REGEC code, con-
sidering the corresponding inner code in terms of the SNR required for facilitat-
ing iterative decoding convergence to a low error probability (the open tunnel
bound) and how low that error probability is (the error floor).
• A wide range of finite Zeta-like distributions and the H.265 distribution of

Figure 2.3(b) are considered, when comparing the performance of the proposed
JSCC REGEC scheme to that of the JSCC UEC and EGEC schemes, as well
as the SSCC EG-CC benchmarker.

In Chapter 5, we summarise the thesis and the major findings of our work, as
well as offer several potential directions for future work.

Chapter 2
Unary Error Correction Codes 1

2.1 Introduction

In this chapter, we introduce the structure of a novel Joint Source and Channel Code
(JSCC) [7] Unary Error Correction (UEC) codes [1,2]. This was the first JSCC that
has a low decoding complexity, when invoked for representing symbols values that
are selected from an alphabet having a large or infinite cardinality. Near-capacity
operation is facilitated, when our UEC code is serially concatenated with a Unity Rate
Convolutional (URC) code [87], allowing an iterative exchange of increasingly reliable
extrinsic information between the corresponding decoders [1]. Note that the JSCC
schemes of Chapters 3 and 4 will also operate on the basis of serial concatenation and
iterative decoding. Therefore, this chapter also serves as a background chapter and we
will use the UEC code as an example to illustrate the structure of our family of JSCC
codes, as well as to illustrate their encoding and decoding operations. Furthermore,
this chapter will introduce the background knowledge required for designing and
analyzing a JSCC scheme. More specifically, we will discuss the techniques listed in
the boxes of the Figure 2.1, which we will refer back to in the following chapters.

2.1.1 Background and motivation

Shannon’s source-channel separation theorem [46] states that near-capacity communi-
cation is theoretically possible, when employing Separate Source and Channel Code
(SSCC). For example, this may be achieved by combining a near-entropy source
code, such as an adaptive arithmetic code [27] or a Lempel-Ziv code [28], with a
near-capacity channel code, such as a Low Density Parity Check (LDPC) code [47]

1Some of the results in this chapter are reproduced from the collaborative work [1, 2]. The
contribution to these papers by the author of this thesis was the video data collection and analysis,
as well as the UEC trellis codebook error floor analysis in these papers.

2.1.1. Background and motivation 16

distribution

Source Outer code

coding

Channel coding
serial concatenation

Inner code

designs

Joint source and outer code design

Source
Modulation

Iterative joint source-channel coding

design

Figure 2.1: The components that must be considered when designing an iterative
joint source and channel coding scheme based on serial concatenation.

or a turbo code [45]. However, the source-channel separation theorem relies upon a
number of assumptions, which may not be valid in practice [9]. For example, near-
entropy adaptive arithmetic coding or Lempel-Ziv coding requires both the transmit-
ter and receiver to accurately estimate the occurrence probability of every value that
is adopted by the symbols that the source produces. However, the occurrence prob-
ability of rare symbol values cannot be accurately estimated until a sufficiently high
number of symbols have been generated, imposing an excessive latency which can-
not be tolerated in many practical applications. This problem becomes particularly
severe, when the symbol values are selected from a set having an infinite cardinality,
such as the set of all positive integers. Furthermore, transmission errors may cause
the estimated symbol probabilities to become desynchronized between the transmit-
ter and receiver, potentially causing an avalanche-like propagation of decoding errors.

These issues motivate the design of universal source codes, such as the Elias
Gamma (EG) code [38]. These codes facilitate the communication of symbols se-
lected from infinite sets, without requiring any knowledge of the corresponding occur-
rence probabilities at either the transmitter or receiver. Other examples of universal
codes include the Elias delta code [38], the Elias omega code [38], the Even-Rodeh
code [88], the Stout code [89] and the Fibonacci code [90]. Furthermore, the Expo-
nential Golomb (ExpG) code [30] is a parametrized universal code, which subsumes
the EG code as a special case. Universal codes are typically employed in multimedia
codecs, such as the H.264 video codec [4], where they are employed for encoding the
values of various symbols, such as motion vectors. However, typically some residual
redundancy remains in the source-coded bit-stream when EG codes are employed
for representing symbols that are produced by multimedia codes, hence imposing a
capacity loss and preventing near-capacity operation when SSCC is employed [1].

2.1.1. Background and motivation 17

Furthermore, SSCC is sensitive to transmission errors, with a single bit error poten-
tially causing the corruption of several video frames in H.264, for example.

Motivated by this, various JSCCs have been proposed for mitigating the impact
of transmission errors, as well as for mitigating the capacity loss that is imposed
by residual redundancy. However, all previous JSCCs have been designed for rep-
resenting symbols values that are selected from a set having a low cardinality and
they suffer from an excessive decoding complexity, when the cardinality of the symbol
value set is large, leading to an infinite complexity, when the cardinality is infinite [1].
For example, the complexity of Variable Length Error Correction (VLEC) codes was
characterized in [72], which was shown to increase rapidly with the cardinality of the
symbol value set. This motivates our UEC code [1, 2] of Figure 2.2 , which is the

UEC encoder

UEC decoder

Trellis
decoder

Trellis
encoder

yd

d̂

Unary
encoder

Unary
decoder

z

z̃e

z̃a
ỹp

URC
encoder

decoder
URC

modulator

demodulator

QPSK

QPSK
π1

π2π1

π−1
2

π−1
1

w u g

w̃a

w̃e

e

ẽũ g̃

Figure 2.2: Schematic of the UEC code, when serially concatenated with URC and
Gray-coded QPSK modulation schemes. Bold notation without a diacritic is used to
denote a symbol vector or a bit vector. A diacritical hat represents a reconstruction
of the symbol or bit vector having the corresponding notation. A diacritical tilde
represents an LLR vector pertaining to the bit vector with the corresponding nota-
tion. A roman superscript ‘a’ is employed to denote an a priori LLR vector, while ‘e’
is employed for extrinsic LLR vectors. Furthermore, π1 and π2 represent interleavers,
while π−1

1 and π−1
2 represent the corresponding deinterleavers. Puncturing may also

be performed in π2, while the corresponding depuncturing operations take place in
π−1

2 .

first JSCC that maintains a low decoding complexity, when employed for represent-
ing symbols values that are selected from a set having large or infinite cardinalities.
When the channel’s Signal to Noise Ratio (SNR) is sufficiently high, our UEC code
facilitates reliable communication, without requiring any knowledge of the symbol
value occurrence probabilities at either the transmitter or receiver. However, once
the UEC decoder has succeeded in recovering a sufficiently high number of source
symbols, the receiver may be capable of improving the attainable performance by
estimating the occurrence probabilities of the symbol values. This knowledge may
then be invoked for exploiting the remaining residual redundancy for error correction,
hence facilitating reliable communication at near-capacity SNRs.

2.1.2. Novel contributions 18

2.1.2 Novel contributions

In addition to outlining the background of UEC coding, this chapter details the
author’s novel contributions, listed as follows.

• We characterize and analyze the distribution of the symbol values produced,
when test video sequences are encoded by the H.264 and H.265 video encoders.
• We characterize various candidate parametrizations of the UEC code in terms

of the SNR required to facilitate iterative decoding convergence to a low er-
ror probability (the open tunnel bound) and how low that error probability
becomes at high SNR (the error floor).
• The error correction performance of our JSCC UEC scheme is compared to

that of an SSCC benchmark based on the EG source code and a convolutional
channel code.

2.1.3 Chapter organisation

The rest of this chapter is organised as follows.

• In Section 2.2, we characterize the H.264 and H.265 source symbol value dis-
tributions and justify their modelling using the Zeta probability distribution.
• In Section 2.3, we introduce the proposed UEC encoder, detailing the operation

of its unary encoder and trellis encoder. Furthermore, we describe the integra-
tion of the UEC encoder into a transmitter by introducing the operation of the
interleaver, concatenated URC encoder and modulator.
• In Section 2.4, we introduce the wireless channel model used in our simulations,

namely the uncorrelated narrow-band Rayleigh fading channel.
• In Section 2.5, we describe the integration of the UEC decoder into a receiver

by detailing the operation of the demodulator, deinterleaver and URC decoder.
Following this, we detail the operation of the UEC trellis decoder as well as of
the iterative decoding process.
• In Section 2.6, we discuss the UEC’s capability of facilitating near capacity

operation, as well as the parameterization of the UEC.
• In Section 2.7, we introduce the SSCC EG-CC-URC benchmarker and compare

its error correction performance to that of our UEC scheme.
• In Section 2.8, we conclude this chapter.

2.2 Source distribution

The Golomb code [37], Rice code [91] and EG code [38] facilitate the communication
of symbols having values selected from infinite sets, without requiring any knowledge

2.2.1. Symbols value sets from video compression standards 19

of the corresponding occurrence probabilities at either the transmitter or receiver.
Furthermore, the Golomb code is optimal if the source symbol probabilities obey
the geometric distribution [92]. In this case, a separate Golomb code and channel
code can achieve near capacity error correction performance without any capacity
loss, provided that the receiver has the knowledge of how the geometric distribu-
tion is parametrized. The Golomb code itself can be parametrized and its simplest
parametrization is identical to the special case constituted by the unary code. Like-
wise, the ExpG code [30] can be parametrized and the simplest parametrization yields
the EG code as a special case. These codes have found application in multimedia
codecs, such as the H.264 [4] and H.265 [5] video codec, where they are employed for
encoding the values of various so-called syntax elements, which are symbols produced
by motion vectors, for example [8]. In the following subsections, we will characterise
the probability distributions of the symbols produced by the H.264 and H.265 codecs,
as well as propose the employment of the Zeta probability distribution to model them.

2.2.1 Symbols value sets from video compression standards

The codes described above are designed to encode symbols that have values selected
from the set of all positive integers. However, many of the syntax elements in the
video codes have negative integer and zero values. Owing to this, a mapping rule
may be used to map all the negative and zero-valued integers into the positive integer
interval, as shown in Table 2.1. In the case of having syntax elements that do not have

syntax element remapped symbol value
0 1
-1 2
1 3
-2 4
2 5
-3 6
3 7

Table 2.1: Mapping rule for mapping the negative integers to positive integers

any negative values, but include the value of zero, the above-mentioned remapping
may be achieved by adding one to the value of each syntax element. Figure 2.3
demonstrates that both the H.264 and H.265 video encoders produce symbol values
that may be represented using positive integers having values of up to about 1000,
where higher values are observed with lower probabilities. In practice, the symbols
may have values above 1000, albeit with low probabilities. Note that the H.264
and H.265 probability distributions have a near-constant gradient, when plotted on
the log-log axes of Figure 2.3. This is a manifestation of Zipf’s law [93], hence the

2.2.2. Symbols value sets having an infinite cardinality 20

H.265

Zeta

p1

(b)

p1

x

P
(x
)

1000100101

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

H.264

Zeta

(a)

p1

x

P
(x
)

1000100101

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Figure 2.3: The Zeta probability distributions for p1 ∈ {0.2, 0.4, 0.6, 0.8}, as well as
the (a) H.264 distribution which was obtained by recording the values of the 44.6
million symbols that are EG encoded when the JM 18.2 H.264 video encoder em-
ploys the ‘encoder_baseline.cfg’ configuration to encode the 175 s of video that are
comprised by 4:2:0 versions of the Video Quality Expert Group (VQEG) test se-
quences and (b) H.265 distribution which was obtained by recording the values of
the 112.9 million symbols when the HM-9.0 H.265 video encoder employs the ‘en-
coder_lowdelay_main.cfg’ and ‘encoder_random_access_main.cfg’ configurations
to encode the 220 s of video that are comprised by 4:2:0 versions of the 24 video test
sequences that are commonly used for testing in H.265 [8, page 94].

symbol values may be modeled using a Zeta probability distribution [93], as it will
be discussed in the following subsection.

2.2.2 Symbols value sets having an infinite cardinality

The UEC scheme considered in this this chapter is designed to convey a vector
d = [di]

a
i=1 comprising a number of symbols. This symbol vector is obtained as the

realization of a corresponding vector D = [Di]
a
i=1 of Independent and Identically

Distributed (IID) Random Variables (RVs). Each RV Di adopts the symbol value
d ∈ N1 with probability Pr(Di = d) = P (d), where N1 = {1, 2, 3, . . .} is the infinite-
cardinality set comprising all positive integers. Here, the symbol entropy is given
by

HD =
∑

d∈N1

H[P (d)], (2.1)

where H[p] = p log2(1/p).

Figure 2.3 depicts the Zeta distribution [94], which is defined as

P (d) =
d−s

ζ(s)
, (2.2)

2.3. UEC encoder 21

where ζ(s) =
∑

d∈N1
d−s is the Riemann Zeta function, s > 1 and p1 = 1/ζ(s).

Here, the Zeta distribution is parametrized by s, which gives the negative gradient
of the distribution plotted versus the log-log axes of Figure 2.3. Equivalently and
more conveniently, the Zeta distribution may be parametrized by p1, which gives the
probability of the most frequently occurring symbol value, namely Pr(Di = 1). In
the case, where the RVs of D obey the Zeta distribution, the symbol entropy is given
by

HD =
ln (ζ(s))

ln(2)
− sζ ′(s)

ln(2)ζ(s)
, (2.3)

where ζ ′(s) = −∑d∈N1
ln(x)x−s is the derivative of the Riemann Zeta function.

Figure 2.3 plots the Zeta distribution for p1 ∈ {0.2, 0.4, 0.6, 0.8}, which crrespond
to parameter values of s ∈ {1.2269, 1.5303, 1.9774, 2.7884} and symbol entropies of
HD ∈ {9.1711, 4.4022, 2.4215, 1.1541} bits per symbol, respectively. By comparison,
the H.264 distribution of Figure 2.3(a) corresponds to a symbol entropy of HX =

2.980 bits per symbol, while the symbol values of the H.265 distribution have an
entropy of HD = 2.3922 bits per symbol.

2.3 UEC encoder

As shown in Figure 2.2, the UEC encoder comprises a unary encoder and a UEC
trellis encoder. The UEC encoder may be integrated into a transmitter by serially
concatenating it with a URC and a Quaternary Phase Shift Keying (QPSK) mod-
ulator, where these serially concatenated components are separated by interleavers,
as shown in Figure 2.2. In the following subsections, we will detail the operation of
the above-mentioned components.

2.3.1 Unary encoder

As shown in Table 2.2, unary encoders represent each symbol di in the vector d using
a corresponding binary codeword, namely Unary(d). Note that for the convenience of
our discussions in the following chapters, the unary codewords shown in Table 2.2 are
the complements of those that are conventionally employed, for example in [1, Table
I]. Note that the dthi codeword Unary(di) comprises lUnary(di) = di number of bits,
namely (d−1) zeros followed by a single logical one-valued bit. Since different symbol
values and hence different codewords occur with different probabilites, the average
codeword length of a binary code like the unary code is given by

l =
∑

d∈N1

P (d)l(d). (2.4)

2.3.2. Trellis encoder 22

Table 2.2: The first twelve codewords of the unary and EG codes
di Unary(di) EG(di)
1 1 1
2 01 010
3 001 011
4 0001 00100
5 00001 00101
6 000001 00110
7 0000001 00111
8 00000001 0001000
9 000000001 0001001
10 0000000001 0001010
11 00000000001 0001011
12 000000000001 0001100
...

...
...

In the case where the source symbols obey the Zeta distribution of (2.2), the average
unary codeword length is given by

lUnary = ζ(s− 1)/ζ(s). (2.5)

Note that, the average unary codeword length is only finite for s > 2 and hence for
p1 > 0.608. Therefore, the unary code and hence the UEC code are not universal
codes. More specifically, they have infinite average codeword lengths for many source
distributions, including the Zeta distributions having p1 6 0.608. This problem
associated with the UEC motivates the Elias Gamma Error Correction (EGEC) and
Reordered Elias Gamma Error Correction (REGEC) codes proposed in Chapter 3
and 4, which are by definition universal codes, since they have finite average codeword
lengths for any monotonic source probability distribution.

The unary encoder of Figure 2.2 represents each symbol di in the vector d using
the corresponding unary codeword Unary(di), as shown in Table 2.2. These code-
words are then concatenated to obtain the b-bit vector y = [yj]

b
j=1 shown in Figure

2.2, where we have b =
a∑
i=1

di. For example, the vector d = [2, 1, 3, 4, 1, 1, 2, 1] of a = 8

symbols yields the b = 15-bit vector y = 011001000111011.

2.3.2 Trellis encoder

As shown in Figure 2.2, the bit vector of concatenated unary codewords y is forwarded
to a trellis encoder. This employs a UEC trellis of the sort depicted in Figure 2.4(a)
to encode the value of each bit yj in the vector y, in order of increasing bit-index
j. Each bit forces the trellis encoder to traverse from its particular previous state

2.3.2. Trellis encoder 23

yj = 0

yj = 1

Holding

state

Holding

state

Unary

states

Holding

state

Holding

state

Holding

state

Unary

states

Unary

states

1/c2

1/c1

0/cr/2−1

0/c2

0/c1

0/cr/2

1/cr/2−1

1/cr/2

(a)

1

3

2

4

1

3

2

4

r − 3

r − 1

r − 3

r − 1

r − 2

r

r − 2

r

yj/zjmj−1 mj

0/c2

0/c1

1/cr/2−1

1/c2

1/c1

1/cr/2

0/cr/2−1

0/cr/2

(b)

1

3

2

4

yj/zj mj

(c)

yj/zjmj−1 mj

1

3

5

2

4

6

1

3

5

2

4

6

0/01

1/10

0/00

1/11

0/10

1/01

0/11

1/00

0/10

1/01

1/10

0/01

1

3

2

4

mj−1

0/01

1/10

0/00

1/11

0/10

1/01

1/00

0/11

Holding

state

Figure 2.4: (a) The generalized UEC trellis, having r states and n-bit codewords,
where C = [c1; c2; . . . ; cr/2−1; cr/2]. (c) An r = 4-state n = 2-bit UEC trellis, where
C = [00; 01]. (d) An r = 6-state n = 2-bit UEC trellis, where C = [00; 01; 01].

2.3.2. Trellis encoder 24

mj−1 ∈ {1, 2, . . . , r} to a new state mj ∈ {1, 2, . . . , r} that is selected from two
legitimate alternatives, depending on the bit value yj. More specifically, we have

mj =

{
min[mj−1 + 2, r − odd(mj−1)] if yj = 0

1 + odd(mj−1) if yj = 1
, (2.6)

where the number of possible states r is required to be even and the encoding process
commences from the state m0 = 1, with the function odd(·) yielding 1, if the operand
is odd or 0 if it is even. In this way, the bit vector y identifies a path through the
trellis, which may be represented by a vector m = [mj]

b
j=0 comprising (b + 1) of

state values. For example, the bit vector y = 011001000111011 corresponds to
the path m = [1, 3, 2, 1, 3, 3, 2, 4, 4, 4, 1, 2, 1, 3, 2, 1] through the r = 4-state trellis of
Figure 2.4(b), as shown in Figure 2.5. The path created by the first six bits in this

yj = 1yj = 0

0/10

1/00

1/11

1/10

0/01

0/00

0/11

1/01

0/10

1/00

1/11

1/10

0/01

0/00

0/11

1/01

0/10

1/00

1/11

1/10

0/01

0/00

0/11

1/01

0/10

1/00

1/11

1/10

0/01

0/00

0/11

1/01

0/10

1/00

1/11

1/10

0/01

0/00

0/11

1/01

0/10

1/00

1/11

1/10

0/01

0/00

0/11

1/01

0/10

1/00

1/11

1/10

0/01

0/00

0/11

1/01

y2/z2m2 y4/z4 m5y3/z3m3 m4m1 y1/z1 y5/z5 m6 y6/z6 m7

1

3

2

4

Figure 2.5: The trellis of the UEC code shown in Figure 2.4(b). Here the dashed
transitions correspond to an input bit of yj = 0 while the solid transitions correspond
to an input bit of yj = 1. In the label of each transition, the bit before the slash is
the input bit yj, while the bits after the slash are the output bits Zj. The transitions
highlighted in bold indicate the path taken when encoding the input bit vector y =
[011001].

example bit vector y is shown in Figure 2.5.

The trellis path m may be modeled as a particular realization of a vector M =

[Mj]
b
j=0 comprising (b+1) RVs, which are associated with the transition probabilities

Pr(Mj = m,Mj−1 = m′) = P (m,m′) of (2.7). These transition probabilities may
be derived by observing that the UEC trellis of Figure 2.4(a) is designed so that
the transitions between its states are synchronous with the transitions between the
consecutive unary codewords in the bit vector y. For example, the trellis path will
merge into the state mj = 2 if and only if yj is constituted by the last bit of a
unary codeword yi having an odd symbol-index i. Furthermore, Figure 2.4(a) shows
that when r ≥ 4, the above-mentioned transition will emerge from the particular
state mj−1 = 1, if and only if the corresponding symbol has the particular value of

2.3.2. Trellis encoder 25

P (m,m′) =





1
2l

[
l − r

2
+
∑ r

2
−1

d=1 P (d)
(
r
2
− d
)]

if
⌈
m′

2

⌉
= r

2
, m = m′

1
2l

[
1−∑

r
2
−1

d=1 P (d)
]

if
⌈
m′

2

⌉
= r

2
, m = 1 + odd(m′)

1
2l

[
1−∑

⌈
m′
2

⌉
d=1 P (d)

]
if
⌈
m′

2

⌉
< r

2
, m = m′ + 2

1
2l
P (d)

∣∣∣d=dm′2 e if
⌈
m′

2

⌉
< r

2
, m = 1 + odd(m′)

0 otherwise
(2.7)

xi = 1. Hence, there will be a one-to-one correspondence between the transitions
of this type and the symbols having an odd symbol-index i and simultaneously the
particular value xi = 1. Since we may expect ap1/2 of the a symbols in the vector x to
simultaneously have an odd symbol-index i and the particular value xi = 1, we may
expect ap1/2 of the b transitions in the pathm to be of the described type. Therefore,
in the specific case, where r ≥ 4, we obtain P (Mj = 2,Mj−1 = 1) = ap1

2b
= p1

2l
in

agreement with (2.7), where we expect that b = al. The other transition probabilities
may be derived by following similar logic. Note that owing to the synchronization
between the UEC trellis and the unary codewords, the trellis path m is guaranteed to
terminate in a particular state. More specifically, the final state is guaranteed to be
mb = 1, when the symbol vector x has an even length a, while mb = 2 is guaranteed
when a is odd. The joint probabilities of (2.7) may be converted into the conditional
transition probabilities Pr(Mj = m|Mj−1 = m′) = P (m|m′), according to

P (m|m′) =
P (m,m′)∑r
m̌=1 P (m̌,m′)

. (2.8)

The trellis encoder represents each bit yj in the vector y by an n-bit codeword zj.
This codeword is selected from the set of r/2 codewords C = [c1; c2; . . . ; cr/2−1; cr/2] or
from the complementary set C = [c1; c2; . . . ; cr/2−1; cr/2]. As shown in Figure 2.4(a),
this is achieved according to

zj =

{
cdmj−1/2e if yj 6= odd(mj−1)

cdmj−1/2e if yj = odd(mj−1)
. (2.9)

Following this, the selected codewords are concatenated to obtain the bn-bit vector
z = [zk]

bn
k=1 of Figure 2.2. For example, the vector y = 011001000111011 of b = 15

bits is represented by the vector z = 110111111001000101100011110111 of bn = 30

2.3.2. Trellis encoder 26

bits, when employing the r = 4-state UEC trellis of Figure 2.2, with the n = 2-bit
codebook C = [00; 01].

The bit vector z may be modeled as a specific realization of a vector Z = [Zk]
bn
k=1

comprising bn binary RVs. Furthermore, the UEC trellis of Figure 2.4(a) has been
designed to obey symmetry and to rely on complementary codewords, so that it
produces equiprobable bits2satisfying that Pr(Zk = 0) = Pr(Zk = 1) and the bit
entropy is HZ = 1. The average length of the bit vector z is a · l · n and the average
coding rate of the UEC encoder is given by

Ro =
HD

ln
=

1

ln

∑

d∈N1

H[P (d)]. (2.10)

Here, we employ the roman superscript ‘o’ to indicate that this coding rate relates
to the outer encoder of a serial concatenation, namely the UEC encoder shown in
Figure 2.2. In Figure 2.6 we use (2.3) and (2.5) to plot Ron = HD

lUnary
for the case

of using the UEC encoder to represent the symbols obeying the Zeta distribution of
(2.2), as a function of p1. Here, the coding rate R is zero for p1 ≤ 0.608, since the
average unary codeword length l becomes infinite in this case, as discussed in Section
2.3.1.

EG-CC Rn

EG-CC An

UEC Rn

UEC An

r

p1

R
n
or

A
n

10.90.80.70.60.5

1

0.8

0.6

0.4

0.2

0

Figure 2.6: Plots of Ron and Aon that are obtained for the UEC and EG-CC schemes,
in the case where the symbol values obey a Zeta distribution having the parameter
p1. The value of Aon is provided for UEC codes having various numbers of states
r ∈ {2, 4, 6, 30} [1].

2Note that owing to the edge effect, the binary RVs near either end of the vector Z do not adopt
equiprobable values in general, like those in the middle of the vector. In practice however, this is
only apparent for RVs that are within a few positions from the ends of the vector Z. As a result,
the edge effect is negligible for practical values of the bit vector length bn and will be disregarded
throughout the remainder of this thesis.

2.3.3. Integration of the UEC encoder into a transmitter 27

2.3.3 Integration of the UEC encoder into a transmitter

As shown in Figure 2.2, the UEC encoder may be integrated into a transmitter by
concatenating it with a URC encoder and a QPSK modulator, where these compo-
nents are separated by interleavers. These transmitter components will be discussed
in the following subsections.

2.3.3.1 Interleaver operation

Following UEC encoding, the bit vector z may be interleaved in the block π1 shown
in Figure 2.2. Since the UEC scheme employs iterative decoding, interleaving is
necessary to mitigate the correlation within the soft information exchanged between
the inner and outer decoder, as it will be detailed in Section 2.5. In the UEC scheme,
we employ pseudo-random interleaver designs. Note that the receiver is required to
employ the same pseudo-random interleaver designs as the transmitter. However, the
entire set of interleavers can be generated independently by both the transmitter and
receiver using only a single pseudo-random number generator seed. This seed may
be hard-coded into both the transmitter and receiver, or may be reliably conveyed
using only a very small amount of side information.

In our example, the UEC trellis encoded vector z = 11011111100100010110

0011110111 of bn = 30 bits may be provided to the interleaver design of Figure 2.7,
which is parametrized according to π1 = [6, 22, 3, 2, 26, 9, 13, 21, 18, 20, 12, 27, 29, 8, 5, 17, 7,

11, 19, 30, 14, 15, 1, 4, 24, 25, 28, 23, 16, 10]. The interleaver π1 outputs the bit vector

24 25 26 27 28 29 30

2018211392623226 101623282524411514

1 1

1 0

1 1 1 1 011

0 0110 101

1 2 3 4 5 6 7 8 9 10

0 0

1 1

1 0 1 1 1111

1 0111 100

21 22 23

z 0

w

Figure 2.7: An example pseudo-random interleaver design having the parametriza-
tion π1 = [6, 22, 3, 2, 26, 9, 13, 21, 18, 20, 12, 27, 29, 8, 5, 17, 7, 11, 19, 30, 14, 15, 1, 4,
24, 25, 28, 23, 16, 10]. Here the z and w are the corresponding bit vectors shown
in Figure 2.2.

W = [Wk]
bn
k=1, which is generated according to the interleaving rule wj = zπ(j), where

w1 = z6 since π(1) = 6, for example. In our example, the interleaved output bit
vector is w = 100111001010111010110011111110.

2.3.3. Integration of the UEC encoder into a transmitter 28

2.3.3.2 URC code

As shown in Figure 2.2, the bit vector w is encoded by a URC encoder [87]. A URC
code is a special case of a Convolutional Code (CC) that has a coding rate of 1. A
URC encoder comprises a linear feedback shift register, having m register stages, as
well as feed-forward and feed-back polynomials, as shown in Figure 2.8. Each URC
parametrization has a corresponding trellis representation, comprising r = 2m states
and 2r transitions, as shown in Figure 2.8.

Each bit wk in the vector w is encoded by the URC encoder of Figure 2.2, in
order of increasing bit-index k. Commencing from an initial state of m0 = 1, each
bit forces the trellis encoder to traverse from its particular previous state mk−1 ∈
{1, 2, . . . , r} to a new state mk ∈ {1, 2, . . . , r} that is selected from two legitimate
alternatives, depending on the bit value wk, according to the trellis diagrams of
Figure 2.8. The selected transition identifies a value for the corresponding encoded
bit uk, which contributes to the bit vector U = [Uk]

bn
k=1, as shown in Figure 2.8.

When employing the r = 2-state URC parametrization of Figure 2.8(a), the bit
vector w = 100111001010111010110011111110 of bn = 30 bits is URC encoded into
u = 111010001100101100100010101011. Figure 2.9 shows the path through the trellis
of Figure 2.8(a) that is selected by the first six bits in the example bit sequence w

above.

Note that in an Irregular Unity Rate Code (IrURC), different parametrizations
are used for encoding different fractions of the bit vector w. The careful selection
of these parametrizations provide us with a substantial design freedom, which the
URC may be exploit for improving the performance of the system [95]. However
the parametrization of an IrURC must be tailored to a specific source distribution,
hence preventing its application in cases, where the source distribution is unknown
or non-stationary.

2.3.3.3 Interleaving and puncturing

The UEC scheme of Figure 2.2 employs another interleaver π2 after the URC en-
coder, having a different pseudo-random design from that of π1. However, for the
sake of simplicity, we illustrate the operation of π2 using the same interleaver de-
sign as in Figure 2.7. More specifically, when provided with the bit vector u =

111010001100101100100010101011 of bn = 30 bits, the interleaver π2 of Figure 2.2
outputs the interleaved bit vector g = 001101100001101000110110010111 according
to the interleaver rule of gk = uπ2(k). Note that in addition to the interleaving oper-
ation, a puncturing operation may also be performed in π2, in order to control the
overall coding rate of the UEC scheme of Figure 2.2. This is achieved by discarding

2.3.3. Integration of the UEC encoder into a transmitter 29

+

+

+

+

+ +

mk−1 mk

1

2

1

2

0/1

1/0

1/1

0/0

wk/uk

2

1

3

4

2

1

3

4

wk/ukmk−1 mk

1/1

0/0

0/1

1/0

0/0

1/1

1/0

0/1

wk/ukmk−1 mk

3

2

1

4

3

2

1

4

1/1

0/0

1/0

0/1

1/0

0/1

0/0

1/1

7

8

7

1/1

0/0

1/0

0/1

5

6

5

0/1

1/0

0/0

1/1

6

8

URC2

wk = 0

wk = 1

URC4

URC8

(a)

(b)

(c)

Figure 2.8: Linear feedback shift register encoder schematic for the recursive URC
codec with the corresponding trellis representation, where (a) m = 1 and r = 2, (a)
m = 2 and r = 4, (a) m = 3 and r = 8.

2.3.3. Integration of the UEC encoder into a transmitter 30

0/1

1/0

1/1

0/0

0/1

1/0

1/1

0/0
1

2

1/1

0/0

w1/u1m0 w2/u2 w3/u3 w4/u4m2m1 m3

1/1

0/0

0/1

1/0

1/1

0/0

0/1

1/0

1/1

0/0

w5/u5m4 w5/u5 m6

1

2
0/1

1/0

0/1

1/0

m5

Figure 2.9: The trellis of the URC shown in Figure 2.4(a). Here the dashed transitions
correspond to an input bit of wk = 0, while the solid transitions correspond to an
input bit of wk = 1. In the label of each transition, the bit before the slash is the input
bit wk, while the bit after the slash is the output bit uk. The transitions highlighted
in bold indicate the path taken when encoding the input bit vector w = [100111].

a fraction of the bn bits from the end of the bit vector g. This fraction (1− 1
Ri) may

be chosen in order to give the desired inner coding rate Ri, which quantifies the ratio
of the number of bits in w to the number of bits in g.

2.3.3.4 QPSK modulation

Following the URC encoder and the interleaver π2 of Figure 2.2, M = 4-ary Gray-
coded QPSK modulation may be employed for transmission, as shown in Figure
2.2. The classic Gray Mapping (GM) is employed here, since the performance of
Gray-coded QPSK is superior to that of QPSK using Anti-Gray Mapping (AGM),
when no iterations are performed between the demapper and URC decoder in the
receiver [96]. The bits of g are processed log2(M) = 2 bits at a time, as shown in
Figure 2.10. According to the Gray-coded QPSK mapping rule of Figure 2.10, each
pair of bits identifies one of the M = 4 constellation points, which modulate the
amplitude of the In-phase (I) and Quadrature-phase (Q) carries. Here Es is the
energy per modulated constellation point. Without loss of generality, we assume
that Es = 1 throughout this treatise.

For example, the vector g = 001101100001101000110110010111 of bn = 30 bits
corresponds to the vector of e = [0.7071 + 0.7071i,−0.7071 − 0.7071i,−0.7071 +

0.7071i, 0.7071−0.7071i, 0.7071+0.7071i,−0.7071+0.7071i, 0.7071−0.7071i, 0.7071−
0.7071i, 0.7071+0.7071i,−0.7071−0.7071i,−0.7071+0.7071i, 0.7071−0.7071i,−0.7071+

0.7071i,−0.7071 + 0.7071i,−0.7071 − 0.7071i] of bn
log2(M)

= 15 constellation points,
which are represented using complex numbers where the real and imaginary parts
correspond to I and Q, respectively.

The effective throughput of the transmitter shown in Figure 2.2 is given by

η = Ro ·Ri · log2(M), (2.11)

which quantifies the number of bits in the source symbol vector d that are transmitted

2.3.3. Integration of the UEC encoder into a transmitter 31

01 00

11 10

I

Q

q

Es
2

√
Es

q

Es
2

00

10

11

01

(b)

QI
pair of

bits from
g

+
√

Es

2

+
√

Es

2

-
√

Es

2

-
√

Es

2

+
√

Es

2

-
√

Es

2

-
√

Es

2

+
√

Es

2

(a)

Figure 2.10: (a) Constellation diagram for QPSK modulation with Gray mapping [97]
(b) Mapping rule for QPSK with Gray mapping

by each constellation point. The transmitted energy per bit of information in the
source symbol vector d is Eb = Es/η.

Note that other mapping schemes or a modulation scheme having a higher M
may be employed instead, although this may increase the complexity of the re-
ceiver. In [98], AGM QPSK is employed and the corresponding demodulator is
serially concatenated for the sake of iteratively exchanging extrinsic information with
a UEC-turbo scheme [99], since classic GM QPSK is unable to provide any iteration
gain [96]. Reliable communication is theoretically possible, provided that the effec-
tive throughput η does not exceed the Discrete-input Continuous-output Memoryless
Channel (DCMC) capacity [100] of the modulation scheme and channel. However,
the DCMC capacity depends only on the distance between the constellation points of
the modulation scheme and it is independent of the specific bit-to-symbol mapping
method [97]. Owning to this, both GM and AGM facilitate near-capacity operation.
Furthermore, GM has the advantage that its demodulation complexity may be sub-
stantially reduced by exploiting its constellation symmetry [101]. More specifically,
the first bit in each pair from g depends only on the Q component of a received
constellation point, while the second bit depends only on the I component, as shown
in Figure 2.10.

2.4. Uncorrelated narrow-band Rayleigh fading channel 32

2.4 Uncorrelated narrow-band Rayleigh fading channel

After the modulator of Figure 2.2, the symbol vector e is upsampled, band limited
by smooth pulse shaping and up converted to the carrier frequency, amplified and
transmitted through an uncorrelated narrow-band Rayleigh fading channel. In the
receiver, the received symbol is amplified, mixed down from the carrier frequency,
matched-filtered and down sampled in order to obtain the vector of received constel-
lation points ẽ. These operations of the transmitter, the uncorrelated narrow-band
Rayleigh fading channel and the receiver can be modelled by

ẽ = h · e + o. (2.12)

where h is a vector of complex channel gains and the o is a vector of Additive
White Gaussian Noise (AWGN) sampler. Note that both h and o are modeled using
complex-valued Gaussian distributions. More specifically, both the real and imagi-
nary parts of h have a mean of 0 and a variance of 1/2, while the real and imaginary
parts of o both have a mean of 0 and a variance of N0/2, where N0 is the Power Spec-
tral Density (PSD) of the AWGN. In a communication scheme having an effective
throughput of η, the channel quality is typically characterized by the SNR per bit of
information in the source, according to Eb/N0 [dB] = Es/N0 [dB] − 10 · log10(η),
where the effective throughput η can be calculated using (2.11). For example,
when Eb/N0 = 5.5[dB], we may have a channel gain vector of h = [−0.7478 +

0.7380i, 0.2859+0.7960i,−0.7396+0.4949i,−0.8272−0.1781i,−0.3165−0.7541i,−0.7457+

0.0939i, 0.2121−0.6739i,−0.4047+0.3735i, 0.9777−0.2317i,−0.3057−0.0450i, 0.6493+

0.1448i, 0.0325+0.4178i,−0.9116−0.0850i,−0.7511−0.7348i,−0.0166−0.0801i] and
an AWGN vector o = [−0.3913+0.0150i,−0.6857+0.7339i, 0.6027+0.2811i, 0.4036−
0.0047i,−0.3163+0.2076i, 0.3451−0.8253i,−0.5091+0.7529i,−0.9656−0.2282i,−0.2450−
0.6508i,−0.1054+0.3645i, 0.7284−0.0507i,−0.4161+0.3724i,−0.1376−0.4943i, 0.3954+

0.7921i, 0.3996− 0.3983i]. By using (2.12), we have ẽ = [−0.1758− 0.1831i, 1.0821−
1.2587i, 0.8379−1.0520i,−0.8181+0.2400i, 0.6493−0.6443i,−0.3568−0.9577i,−0.4769−
0.8638i, 0.0867+0.5710i, 0.2536+1.1124i,−0.4408+0.6165i,−0.2676+0.3788i, 0.5131−
0.1331i,−0.4568− 0.3829i, 1.0941 + 0.2831i,−0.5488− 0.0143i]

2.5 UEC decoder

In this section, we describe the operation of the UEC decoder of Figure 2.2. More
specifically, Section 2.5.1 discusses the integration of the UEC decoder with the
URC decoder and soft QPSK demodulator of Figure 2.2. Following this, we detail
the operation of the UEC trellis decoder and the unary decoder in Section 2.5.2.

2.5.1. Integration into a receiver 33

2.5.1 Integration into a receiver

In the receiver of Figure 2.2, soft QPSK demodulation [97], depuncturing and dein-
terleaving π−1

2 , Logarithmic Bahl-Cocke-Jelinek-Raviv (Log-BCJR)-based URC de-
coding [9] and further deinterleaving π−1

1 may be performed, before invoking the
proposed UEC decoder. These steps are discussed in the following subsections.

2.5.1.1 Soft QPSK demodulation

Soft QPSK demodulation is employed in the scheme of Figure 2.2 and the soft infor-
mation is passed to the URC decoder in the form of Logarithmic Likelihood Ratios
(LLRs). We will introduce the concept of LLRs in Section 2.5.1.1.1 and discuss the
operation of soft demodulation in Section 2.5.1.1.2.

2.5.1.1.1 Log Likelihood Ratio

In communication systems employing iterative decoding, the LLR [102] is widely
used for exchanging soft information between the concatenated decoders. As shown
in Figure 2.2 the receiver of our UEC scheme operates on the basis of LLR vectors,
rather than bit vectors. Each LLR conveys not only what the most likely value of
the corresponding bit in the transmitter is, but also how likely this value is. More
specifically, an LLR x̃ pertaining to a bit x in the transmitter can be defined as

x̃ = ln

(
P (x = 1)

P (x = 0)

)
= ln

(
P (x = 1)

1− P (x = 1)

)
. (2.13)

Figure 2.11 shows how the value of the LLR x̃ varies as a function of the probabil-
ity P (x = 1). The sign of the LLR x̃ expresses what the most likely value of the bit x
is, where a positive value of x̃ indicates that x = 1 is most likely. The magnitude |x̃|
quantifies how likely this value is, where a higher magnitude represents a higher con-
fidence. When the LLR has the value of x = 0, we have P (x = 0) = P (x = 1) = 0.5,
which means that the LLR expresses no confidence either way about the value of the
bit x. For example, x̃ = −0.1758 indicates that the probability of the bit x having
the value 0 is 54%, while this probability is increased to 98% when the LLR has the
value x̃ = −4.18.

2.5.1.1.2 Soft Demodulator

In the soft demodulator of Figure 2.2, two LLRs can be derived for the vector g̃ from
each received constellation point in the vector ẽ according to [97] :

2.5.1. Integration into a receiver 34

P (x = 1)

x̃

10.80.60.40.20

8

6

4

2

0

-2

-4

-6

-8

Figure 2.11: The LLR x̃ versus the probability P (x = 1)

g̃2j−1 = −4|hj|2
N0

· Im
(
ẽj
hj

)

g̃2j = −4|hj|2
N0

· Re

(
ẽj
hj

)
,

(2.14)

where ẽj is the jth constellation point in the vector ẽ, hj is the corresponding channel
gain in h and N0 is the PSD of the AWGN. Here, it is assumed that the receiver has
perfect knowledge of both the channel gain vector h and of the PSD N0. In the case
of the received vector ẽ of Section 2.4, we have g̃ = [−2.0302, 0.0278, 9.2971, 5.2724,

−2.7662, 8.6817, 2.6201,−4.8266,−5.2804,−2.1344,−5.6918,−1.3403, 3.8418,−3.6613,

2.0059,−1.3563,−8.7267, 0.0749, 1.5856,−0.8144,−2.1675, 0.9050, 1.6650, 0.2962,−2.3619,

−3.4178,−4.5016, 7.8396, 0.3327,−0.0780]

2.5.1.2 Depuncturing and deinterleaving

Depuncturing may be achieved by replacing any punctured bits in g with zero-valued
LLRs in g̃. Deinterleaving may be achieved accoding to the rule of ũπ2(k) = g̃k.
Note that in order to achieve this, the receiver is required to employ the same
pseudo-random interleaver design π2 as the transmitter. However, the entire set
of interleavers can be generated independently by both the transmitter and receiver
using only a single pseudo-random number generator seed. This seed may be hard-
coded into both the transmitter and receiver, or may be reliably conveyed using
only a very small amount of side information. After the deinterleaver π−1

2 of Figure
2.2, we have the vector ũ = [1.6650, 5.2724, 9.2971, 0.2962, 2.0059,−2.0302,−8.7267,

−3.6613, 8.6817,−0.0780, 0.0749,−5.691, 8, 2.6201,−2.1675, 0.9050, 0.3327,−1.3563,−5.2804,

1.5856,−2.1344,−4.8266, 0.0278, 7.8396,−2.3619,−3.4178,−2.7662,−1.3403,−4.5016, 3.8418,−0.8144],
which comprises bn = 30 LLRs.

2.5.1. Integration into a receiver 35

2.5.1.3 Log-BCJR-based URC decoding

The URC decoder may invoke the Log-BCJR algorithm for converting the vectors of
b·n a priori LLRs w̃a = [w̃ak]

bn
k=1 and ũ = [uk]

bn
k=1 into the vector of b·n extrinsic LLRs

w̃e = [w̃ek]
bn
k=1. A step by step demonstration of the Log-BCJR algorithm decoding

process is provided in Section 2.5.1.3.1. Following this, Section 2.5.1.3.2 introduces
the fundamental Add, Compare and Select (ACS) operations that form the basis of
the Log-BCJR algorithms.

2.5.1.3.1 Log-BCJR algorithm

In order to present the Log-BCJR algorithm step by step, we consider the inner code
URC decoder of Figure 2.2, when employing the r = 2-state trellis of Figure 2.8(a).
As shown in Figure 2.2, the URC decoder converts the input a priori LLR vectors
w̃a = [w̃ak]

bn
k=1 and ũ = [uk]

bn
k=1into the output extrisic LLR vectors w̃e = [w̃ek]

bn
k=1. The

Log-BCJR algorithm calculates each extrisic LLR w̃ek in the vector w̃e by calculating
for intermediate terms, αk−1(m′) βk(m) and γk(m

′,m) , as shown in Figure 2.12,
while the fourth intermediate term δk(m

′,m) is obtained by combining the results of
the other three terms.

0/1

1/0

1/1

0/0

0/1

1/0

1/1

0/0

m′

m

1/1

0/0

0/1

1/0

1/1

0/0

0/1

1/0

1/1

0/0

0/1

1/0

wk−2/uk−2 wk−1/uk−1 wk/uk wk+1/uk+1mk−1mk−2 mk wk+2/uk+2mk+1 wk+3/uk+3mk+3

αk−1(m
′) γk(m

′,m) βk(m)

Figure 2.12: The decoder trellis of the URC with r = 2 [97]. In this section, we will
use the transition highlighted in bold from m′ to m as an example to demonstrate
the calculation of each term in Log-BCJR algorithm.

The Log-BCJR algorithm begins its operation by calculating the first term γk(m
′,m)

for each transition in the trellis, from the previous state m′ to the new state m. The
term γk(m

′,m) is calculated according to

γk(m,m
′) = w̃a

k · w(m,m′) + ũk · u(m,m′) + ln[P (m|m′)], (2.15)

where w(m,m′) and u(m,m′) are the corresponding bit values that are tentatively
assumed for w and u, when the trellis traverses from state m′ to state m. Further-
more, P (m|m′) is the conditional transition probability of the trellis transition from
state m′ to state m. Note that for the URC decoder, all trellis transitions have the
same conditional probability of P (m|m′) = 0.5. So (2.15) can be further simplified to
γk(m,m

′) = w̃a
k ·w(m,m′) + ũk ·u(m,m′) for the case of the URC decoder. Note that

2.5.1. Integration into a receiver 36

when either w(m,m′) or u(m,m′) adopt the value of ok, the addition in the simplified
calculation of γk(m,m′) is not required. Since only one of the four transitions seen
in Figure 2.8(a) have both w(m,m′) = 1 and u(m,m′) = 1, only a single addition
is required for computing γk(m,m′) for the set of four transitions corresponding to
each bit in the vector w.

The second step of the Log-BCJR algorithm is constituted by the calculation of
the αk(m) term for each state m in the trellis, according to

αk(m) = max∗
m′�m

[(α(m′) + γk(m,m
′)], (2.16)

where the notation of m′ → m represents the set of all previous states m′ that have a
transition terminating in the state m. We calculate the additions in the logarithmic
domain using the max* operator [103] as follows,

ln(a+ b) = ln(eA + eB) = max(A,B) + ln(1 + e−|A−B|) = max∗(A,B), (2.17)

where we have A = ln(a) and B = ln(b). Here, the max* operation is defined for
a pair of operands in equation 2.17, but it may be readily extended to more than
two operands by exploiting its associative property. Note that the calculation of the
αk(m) terms in equation 2.16 must be completed in a forward recursive manner, owing
to the dependencies upon the αk−1(m′) terms of the previous states. This forward
recursion starts from k = 1 using α0(1) = 0 and α0(2) = −∞, since the encoding
process always starts from state m0 = 1, as described in Section 2.3.2. Noting that
one of the four transitions in Figure 2.8(a) is guaranteed to have γk(m,m′) = 0 and
the corresponding addition in (2.16) is not required, a total of three additions and
two max* operations are required per bit of w, in order to complete the second step
of the Log-BCJR algorithm.

The third step of the Log-BCJR algorithm is to calculate the βk−1(m′) term for
each state m′ in the trellis, according to

βk−1(m′) = max∗
m′←m

[βk(m) + γk(m
′,m)], (2.18)

where m′ ← m is the set of all states m that have a transition connecting to the
previous state m′of Figure 2.12. In contrast to the αk(m) terms, the calculation
of βk−1(m′) depends upon the βk(m) terms of the next states, hence it must be
completed in a backward recursive manner. This backward recursion commences
from k = b · n using βbn(1) = 0 and βbn(2) = 0, since the final state is unknown
during URC encoding. As in the calculation of the αk(m) terms, a total of three

2.5.1. Integration into a receiver 37

additions and two max* operations are required per bit of w, in order to complete
the third step of the Log-BCJR algorithm on the URC trellis of Figure 2.8(a).

The fourth step of the Log-BCJR algorithm is to combine all the previous steps
and calculate the δk(m′,m) term for each transition in the trellis, according to

δk(m,m
′) = αk−1(m′) + γk(m,m

′) + βk(m). (2.19)

Noting that one of the four transitions in Figure 2.8(a) is guaranteed to have γk(m,m′) =

0 and the corresponding addition in (2.19) is not required, a total of seven additions
are required per bit of w, in order to complete the fourth step of the Log-BCJR
algorithm.

Finally, the extrinsic LLR w̃e
k can be obtained based on δj(m,m′) according to

w̃e
k = max∗

m,m′|w(m,m′)=1
[δk(m,m

′)]− max∗
m,m′|w(m,m′)=0

[δk(m,m
′)]− w̃a

k, (2.20)

where m,m′|w(m,m′) = 1 and m,m′|w(m,m′) = 0 are the sets of transitions
having w(m,m′) = 1 and w(m,m′) = 0, respectively. A total of two subtrac-
tions and two max* operations are required per bit of w, in order to complete
the final step of the Log-BCJR algorithm applied to the URC trellis of Figure
2.8(a). When using the example of the deinterleavered LLR vector ũ used in Section
2.5.1.2 and the a priori LLR vector w̃a comprising only zero-valued LLRs, we have
w̃e = [1.6650,−1.6392,−5.2547,−0.2962,−0.2253, 1.3423,−2.0290,−3.6550, 3.6547,

0.0780, 0.0029, 0.0744, 2.5750, 1.6835, 0.7011,−0.1400, 0.1952,−1.3381, 1.5621, 1.1536,

−2.0698, 0.0273,−0.0277, 2.3578,−2.0665,−2.3488,−1.1413,−1.3017, 3.4253, 0.7766].

In Section 2.3.3.2, we recommend the employment of URC Linear Feedback Shift
Registers (LFSRs) having generator polynomials of the form [1, 0, . . . , 0] and feedback
polynomials of the form [1, 1 . . . , 1]. This is because this kind of URC outputs the
non-zero extrisic LLR vectors w̃e [9], when provided with an all-zero a priori LLR
vector w̃a, as shown in Figure 2.13(b). By contrast, the extrisic LLR vectors w̃e of the
URC LFSRs having generator and feedback polynomials of other formats will have
all-zero values, as shown in Figure 2.13(c). Furthermore, the URCs having LFSRs of
the recommended format produce extrinsic LLRs w̃e having very high magnitudes,
when provided the with a priori LLR vector w̃a having very high magnitudes. Owing
to these properties, the URCs having the recommended form of polynomials reduce
the number of erroreous bit-decisions during iterative decoding. These features are
important for the inner code of our UEC iterative decoding process, as it will be
discussed in Section 2.5.2.2.

2.5.1. Integration into a receiver 38

(c)

Bit index k

ex
tr
is
ic

L
L
R

w̃
e k

10008006004002000

10

5

0

-5

-10

(b)

Bit index k

ex
tr
is
ic

L
L
R

w̃
e k

10008006004002000

10

5

0

-5

-10

(a)

Bit index k

a
pr
io
ri

L
L
R

w̃
a k

10008006004002000

10

5

0

-5

-10

Figure 2.13: (a) All-zero a prior LLRs w̃a. (b) Corresponding non-zero extrin-
sic LLRs w̃e produced by the URC of Figure 2.8(a) with input of (a) and mutual
information I(w̃e,w) = 0.4081. (c) Corresponding non-zero extrinsic LLRs w̃e pro-
duced by the URC3 in [9, page 354]. In this example, the URC scheme of Figure
2.2 transmits frames comprising a = 2 · 104 symbols that obey the Zeta distibution
with p1 = 0.7967 using QPSK modulation over an uncorrelated narrowband Rayleigh
fading channel having Eb/N0 = 5.5 dB.

Note that the UEC trellis decoder will also use the Log-BCJR algorithm, as it
will be discussed in Section 2.5.2.1.

2.5.1.3.2 ACS operation

As described in Section 2.5.1.3.1, the Log-BCJR algorithm operates entirely on
the basis of addition, subtraction and max∗ operations. In order to characterise the
computational complexity of iterative decoding, each step of the Log-BCJR algorithm
may be further decomposed into the fundamental ACS operations. As in [95], we
assume that the addition and subtraction operations performed by the Log-BCJR
each require a single ACS operation, while each max∗ operation may be approximated
by a look up table operation, which can be completed using five ACS operations
[103]. As shown in Table 2.3, the complexity of the URC decoder of Figure 2.8
increases, as the number of states r is increased. Note that we assume that all
components in Figure 2.2 that do not operate on the basis of the Log-BCJR algorithm
may be considered to have a relatively insignificant complexity [95, 68]. Table 2.3
also characterises the complexity of the LTE turbo code [104], which includes the
complexity of both of its parallel-concatenated BCJR decoders. Note that when the
UEC scheme employs a UEC trellis having r = 10 states and a URC trellis having
r = 8 states, its complexity in each iteration is lower than that of the LTE turbo
decoder. Furthermore, when the UEC scheme employs a UEC trellis having r = 4

states and and a URC trellis having r = 2 states, the complexity of the UEC scheme
per iteration is roughly a quarter of that of the LTE turbo decoder.

2.5.2. UEC trellis decoder 39

Table 2.3: Number of max* and addition operations that are performed per bit of z
for UEC, URC and turbo decoder employing trellis having r states.

Decoder r max* add ACS

UEC BCJR decoder
4 8 20 60
6 12 29 89
8 16 38 118
10 20 47 147

URC BCJR decoder 2 6 16 46
4 14 28 98
8 30 52 202

LTE turbo decoder 8 60 106 406

2.5.2 UEC trellis decoder

The UEC trellis decoder is invoked after completing QPSK demodulation, depunc-
turing and deinterleaving π−1

2 , URC decoding and deinterleaving π−1
1 , as shown in

Figure 2.2. Here, the deinterleaver π−1
1 operates according to the rule z̃aπ1(k) = w̃ek.

During iterative decoding, the interleaver π1 operates according to w̃ak = z̃eπ1(k). In this
section, we will discuss the UEC trellis decoder, its EXtrinsic Information Transfer
(EXIT) chart properties and its iterative decoding operation.

2.5.2.1 Log-BCJR-based trellis decoding

As shown in Figure 2.2, the UEC trellis decoder is provided with a vector of a priori
LLRs z̃a = [z̃a

k]
bn
k=1 that pertain to the corresponding bits in the vector z. The trellis

decoder applies the Log-BCJR algorithm [41] to a UEC trellis of the sort shown
in Figure 2.4(a) in order to consider every legitimate realization of Z having the
particular length b · n. Note that the values of a and b are assumed to be perfectly
known to the receiver. In practice, the transmitter may employ a small amount
of side information to reliably convey these values. Here, the Log-BCJR algorithm
operates as described in Section 2.5.1.3.1, but uses (2.21) to (2.26) , rather than
(2.15) to (2.20):

γj(m,m
′) =

n∑

n̈=1

z̃a
k · zn̈(m,m′) + ln[P (m|m′)], (2.21)

αj(m) = max∗
m′�m

[αj−1(m′) + γj(m,m
′)], (2.22)

βj−1(m′) = max∗
m′←m

[βj(m) + γj(m
′,m)], (2.23)

δj(m,m
′) = αj−1(m′) + γj(m,m

′) + βj(m). (2.24)

z̃e
k = max∗

m,m′|zn̈(m,m′)=1
[δj(m,m

′)]− max∗
m,m′|zn̈(m,m′)=0

[δj(m,m
′)]− z̃a

k, (2.25)

ỹp
j = max∗

m,m′|zn̈(m,m′)=1
[δj(m,m

′)]− max∗
m,m′|zn̈(m,m′)=0

[δj(m,m
′)]. (2.26)

2.5.2. UEC trellis decoder 40

Here, k = n(j − 1) + n̈, where zn̈(m,m′) is the value of the n̈th bit in the UEC
codeword z, that is implied by the transition from m′ to m. The synchronization
between the UEC trellis and the unary codewords is exploited during the Log-BCJR
algorithm’s γj(m,m′) calculation of (2.24). More specifically, the conditional tran-
sition probabilities P (m|m′) of (2.8) may be substituted into (2.21). Note that the
UEC trellis should be terminated at m0 = 1 and at mb = 1 + odd(a), which de-
pends on whether the length a of the symbol vector d is even or odd, respectively.
More specifically α0(1) = 0 and βb(1 + odd(a)) = 0, while all other α0(m′) and
βb(m) adopt the value of −∞. As shown in Figure 2.2, the Bahl-Cocke-Jelinek-
Raviv (BCJR) decoder generates the vector of extrinsic LLRs z̃e = [z̃e

k]
bn
k=1, as well

as the vector of a posteriori LLRs ỹp = [ỹpj]
b
j=1. In our example, the a priori

LLRs z̃a = [−0.0277,−0.2962,−5.2547, 2.3578, 0.7011, 1.6650, 0.1952, 1.6835, 1.3423,

0.7766,−1.3381, 0.0029,−2.0290,−2.0698, 0.0273, 3.4253,−0.1400, 3.6547, 1.5621, 0.0780,

−3.6550,−1.6392,−1.3017,−2.0665,−2.3488,−0.2253, 0.0744,−1.1413, 2.5750, 1.1536]

generate the extrisic LLR vector z̃e = [2.4682, 2.7366, 0.6174, 0.2073, 1.2578, 0.5970,

0.7132,−0.4847, 0.5066,−1.3697,−1.505, 4, 0.5621,−0.4169,−0.4811,−2.0287, 0.7633,

−2.5809, 0.7344, 1.3093,−2.0033,−0.9102,−1.0814,−0.8777,−0.5282, 2.3261,−0.0925,

−∞, 0.8141,+∞,−1.1763], as well the a posteriori LLR vector ỹp = [−2.4405,

2.5651, 1.8948,−1.1564,−0.4963, 1.9868,−2.0558,−2.7558,−2.3210, 2.6359, 2.8822,−2.1556,

0.3272,−0.0227,+∞].

As shown in Figure 2.14 the UEC trellis requires non-zero a priori LLRs z̃a in
order to generate non-zero extrinsic LLRs z̃e. Owing to this, the URC recommended
in Section 2.3.3.2 must be used, since it can provide a non-zero a priori LLR vector
z̃a .

2.5.2.2 EXIT chart analysis

The transformation of z̃a into z̃e may be characterized by plotting the inverted UEC
EXIT curve in an EXIT chart [51], as exemplifies in Figure 2.15. Here, the x axis
of the EXIT chart quantifies the quality of the extrisic LLR vector z̃e, using its
Mutual Information (MI), I(z̃e; z) ∈ [0, 1], where an MI of 0 indicates the absence
of any information in z̃e about z corresponding to all-zero LLRs, while an MI of 1
indicates the knowledge of perfect information, corresponding to LLRs having the
correct sign and very high magnitudes. The EXIT curve characterizes the MI of the
extrinsic LLR vector z̃e as a function of the MI I(z̃a; z) of the a priori LLR vector
z̃a, which is plotted on the y axis. Note that if codewords comprising at least n = 2

bits are employed, then the free distance dfree of the UEC code will be at least two,
and having dfree = 2 is a sufficient condition for its EXIT curve to reach the (1, 1)

2.5.2. UEC trellis decoder 41

(d)

Bit index k

ex
tr
is
ic

L
L
R

z̃e k

10008006004002000

20

15

10

5

0

-5

-10

-15

-20

(c)

Bit index k

a
pr
io
ri

L
L
R

z̃a k

10008006004002000

20

15

10

5

0

-5

-10

-15

-20

(b)

Bit index k

ex
tr
is
ic

L
L
R

z̃e k

10008006004002000

10

5

0

-5

-10

(a)

Bit index k

a
pr
io
ri

L
L
R

z̃a k

10008006004002000

10

5

0

-5

-10

Figure 2.14: (a) ALL-zero a priori LLRs z̃a. (b) Corresponding all-zero extrisic
LLRs z̃e. (c) Non-zero a priori LLRs z̃a. (d) Corresponding non-zero extrisic LLRs
z̃e. In this example, the UEC scheme of Figure 2.2 transmits frames comprising a = 2·
104 symbols that obey the Zeta distibution with p1 = 0.7967 using QPSK modulation
over an uncorrelated narrowband Rayleigh fading channel having Eb/N0 = 5.5 dB.

2.5.2. UEC trellis decoder 42

URC 4 dB
UEC No probs

URC 2.5 dB
UEC

I(z̃e; z)

I
(z̃

a
;z
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 2.15: EXIT charts of the UEC scheme. Here the symbols of d obey a Zeta
distribution having p1 = 0.7967, while the UEC codewords C = [00; 01] comprise
n = 2 bits and result in a UEC trellis having r = 4 states. Furthermore, a URC
decoder having r = 2 states is concatenated with Gray-coded QPSK modulation,
for communication over an uncorrelated narrowband Rayleigh fading channel having
various Eb/N0 values.

point of perfect convergence to a vanishingly low Bit Error Ratio (BER) associated
with the top right corner of the EXIT chart [71].

The EXIT chart area A that is situated below the inverted UEC EXIT curve is
given by3

A =
1

n

r∑

m′=1

r∑

m=1

P (m,m′) log2

(
1

P (m|m′)

)
. (2.27)

Substituting (2.7) and (2.8) into (2.27) and then rearranging the resultant expression
yields [1]

A = 1
ln

∑ r
2
−1

d=1 H[P (x)] + 2
ln
H
[
1−∑

r
2
−1

d=1 P (d)
]

+ 1
ln
H
[
l − r

2
+
∑r/2−1

d=1 P (d)
(
r
2
− d
)]

− 1
ln
H
[
l + 1− r

2
+
∑r/2−1

d=1 P (d)
(
r
2
− 1− d

)]
.

(2.28)

Note that the UEC EXIT chart area Ao is independent of the UEC codebook
design C, but the design of the codebook C does affect the shape of the EXIT curve,

3 This result may be obtained from [105, Equation (23)], where the notation may be con-
verted according to A = 1 − A/I2

A,max and
∑m

i=1H(Vi) = alnHZ . Furthermore, we employ
H(V |Y) = H(V) as in [105, Equation (27)], since the UEC decoder is employed as an outer
decoder, which has no access to channel information. Finally, we employ H(V) = HM, where
HM = al

∑r
s′=1

∑r
s=1 P (s, s′) log2

(
1

P (s|s′)

)
is the entropy of the trellis path M. This is justified

since the proposed trellis decoder is an A Posteriori Probability (APP) decoder for a bit vector z
that may be accurately modeled by the statistics of the trellis path M.

2.5.2. UEC trellis decoder 43

as it will be discussed in Section 2.6.1. Figure 2.6 uses (2.28) to plot Ao ·n for the case
of using the UEC trellis decoder having various numbers of states r ∈ {2, 4, 6, 30} to
decode symbols obeying the Zeta distribution of (2.2), as a function of p1.

2.5.2.3 Iterative decoding

The extrinsic LLR vector z̃e of Figure 2.2 may be iteratively exchanged with the
serially concatenated URC decoder. In order to facilitate iterative decoding conver-
gence to an infinitesimally low BER, an open tunnel is required between the inverted
UEC EXIT curve and the URC EXIT curve. Here, the URC EXIT curve quantifies
the MI of the a priori LLR vector z̃a abtained by deinterleaving the extrinsic LLR
vector w̃e output by the URC decoder with the aid of π−1, as a function of the MI
of the extrinsic LLR vector z̃e, which are interleaved by π of Figure 2.2 to provide
the a priori LLR vector w̃a to be input to the URC decoder, of Figure 2.2. As we
discussed in Section 2.5.2.1, if the UEC scheme employs URCs different from those
recommended in Section 2.3.3.2, the URC decoder will provide an all-zero a priori
LLR vector z̃a, when provided with an all-zero extrinsic LLR vector z̃e and hence
the URC EXIT curve will emerge from the (0,0) point in the EXIT chart of Figure
2.15, hence preventing the creation of an open tunnel, regardless of the Eb/N0 value.
By contrast, the URC parametrizations recommended in Section 2.3.3.2 will facili-
tate the creation of an open tunnel, when the Eb/N0 is sufficiently high, as shown
in Figure 2.16, where the open tunnel Eb/N0 bound is seen to be 2.5 dB. Since the
URC decoder also has an EXIT curve that reaches the (1, 1) point in the top right
corner of the EXIT chart [106], iterative decoding convergence towards the Maximum
Likelihood (ML) performance bound is facilitated [107].

Figure 2.17 shows how the extrinsic LLR vector z̃e evolves, as I = 1, 3, and
5 decoding iterations are completed. As seen in Figure 2.17(a), the LLRs in the
extrinsic LLR vector z̃e have values close to 0 after the first decoding iteration,
indicating a low decoding confidence. The MI of the LLR vector z̃e obtained during
the first iteration is I(z̃e, z) = 0.4914. After the third iteration, most of the LLR
values have moved away from 0, as shown in Figure 2.17(b), indicating an increased
decoding confidence associated with the MI I(z̃e, z) = 0.9588. Finally, after the
fifth iteration, all the LLR values are far away from 0, as shown in Figure 2.17(c)
in conjunction with the MI I(z̃e, z) = 1. Figure 2.18 shows the so-called iterative
decoding trajectories, when the UEC scheme transmits frames comprising a number
of various symbols. These trajectories are obtained by measuring and plotting the MI
of z̃a and z̃e after each decoding iteration during the simulation of the transmitter and
receiver of Figure 2.2. Observe that the iterative decoding trajectory corner-points

2.5.2. UEC trellis decoder 44

URC
UEC

6.5 dB

-0.5 dB

I(z̃e; z)

I
(z̃

a
;z
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 2.16: EXIT charts of the UEC scheme. Here the symbols of d obey a Zeta
distribution having p1 = 0.7967, while the UEC codewords C = [00; 10] comprise
n = 2-bit and result in an UEC trellis having r = 4 states. Furthermore, a URC
decoder having r = 2 states is concatenated with Gray-coded QPSK modulation,
for communication over an uncorrelated narrowband Rayleigh fading channel having
Eb/N0 values from -0.5 dB to 6.5 dB with steps of 1 dB.

(c)

Bit index

z̃e

10008006004002000

60

40

20

0

-20

-40

-60

(b)

Bit index

z̃e

10008006004002000

60

40

20

0

-20

-40

-60

(a)

Bit index

z̃e

10008006004002000

60

40

20

0

-20

-40

-60

Figure 2.17: Extrinsic LLRsz̃e of the UEC trellis decoder of Figure 2.2 when trans-
mitting frames comprising a = 2 · 104 symbols that obey the Zeta distibution with
p1 = 0.7967 using QPSK modulation over an uncorrelated narrowband Rayleigh fad-
ing channel having Eb/N0 values equals to 5.5 dB. (a) Extrinsic LLRsz̃e output
after the first iteration with mutual information I(z̃e, z) = 0.4914. (b) Extrinsic
LLRsz̃e output after the third iteration with mutual information I(z̃e, z) = 0.9588.
(c) Extrinsic LLRsz̃e output after the fifth iteration with mutual information
I(z̃e, z) = 1

2.5.3. Unary decoder 45

Traj a = 20
Traj a = 200
Traj a = 2000
Traj a = 20000

URC 5.5 dB
UEC

I(z̃e; z)

I
(z̃

a
;z
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 2.18: EXIT charts and iterative decoding trajectories for the UEC scheme,
when transmitting frames comprising various numbers of symbols a . Here the
symbols of d values obey a Zeta distribution having p1 = 0.7967, while the UEC
codewords C = [00; 01] comprise n = 2 bits and result in an UEC trellis having
r = 4 states. Furthermore, a URC decoder having r = 2 states is concatenated with
Gray-coded QPSK modulation, for communication over an uncorrelated narrowband
Rayleigh fading channel having Eb/N0 = 5.5 dB.

are on the EXIT curve of the inner and outer code in the case of frames comprising
a = 20 000 symbols. However, when the scheme employs shorter frames, the iterative
decoding trajectory has a poorer match with the EXIT curve, which may prevent the
trajectory from reaching the (1,1) point of the EXIT chart. This may be explained
by the Log-BCJR algorithm’s sensitivity to the correlation that is manifested in short
vectors of a priori LLRs [9].

2.5.3 Unary decoder

Following the completion of the iterative decoding process, the UEC trellis decoder
may invoke the Log-BCJR algorithm for generating the vector of a posteriori LLRs
ỹp = [ỹp

j]bj=1 that pertain to the corresponding bits in the vector y. Following this,
the unary decoder of Figure 2.2 exploits the obseration that each unary codeword
contains exactly one bit having the value 1 and hence there must be a number of
logical one valued bits in the bit vector y. More specifically, the unary decoder sorts
the values in the a-posteriori LLR vector ỹp in order to identify the a number of bits
in the vector y that are most likely to have values of logical one. A hard decision
vector ŷ is then obtained by setting the value of these bits to logical zero and the
value of all other bits to logical one. Finally, the bit vector ŷ can be unary decoded in
order to obtain the symbol vector x̂ of Figure 2.2, which is guaranteed to comprise a

2.5.3. Unary decoder 46

number of symbols. Figure 2.19 shows the SER performance of the scheme shown in

8 Iter
7 Iter
6 Iter
5 Iter
4 Iter
3 Iter
2 Iter
1 Iter

Unlimited

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

121086420

100

10−1

10−2

10−3

10−4

URC 5.5 dB
Tracjectory 5.5 dB

UEC

I(z̃e; z)

I
(z̃

a
;z
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 2.19: SER performance of the UEC scheme and the related EXIT chart when
transmitting frames comprising a = 2 · 104 symbols that obey the Zeta distibution
with p1 = 0.7967 using QPSK modulation over an uncorrelated narrowband Rayleigh
fading channel.

Figure 2.2 after different number of iterations. Note that each iteration achieves more
than 1 dB gain over the previous iteration, until five iterations have been completed.
After the fifth iteration, the gain becomes less than 1 dB since the decoding trajectory
converges to the (1,1) point of the EXIT chart. The capacity bound in Figure 2.2
will be discussed in Section 2.7.2.

Figure 2.20 illustrates the associated SER performance, when the UEC scheme
transmits frames comprising a number of symbol.

In the example detailed in this chapter, the following reconstructed symbol vectors
are obtained after each iteration.

1st iteration : d̂ = [2, 1, 3, 4, 1, 2, 1, 1]

...

5th iteration : d̂ = [2, 1, 3, 4, 1, 2, 1, 1] .

Note that because the UEC scheme only employs the interleaver length of 30 bits,
one symbol error remains, even when we have Eb/N0 = 5.5 dB in conjunction with 5
iterations.

2.6. The parameterization of the Unary Error Correction code 47

a = 20000
a = 2000
a = 200
a = 20

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

876543210

100

10−1

10−2

10−3

10−4

10−5

Figure 2.20: SER performance of the UEC scheme when transmitting frames com-
prising having various number of symbols a that obey the Zeta distibution with
p1 = 0.7967 and when using QPSK modulation for transmission over an uncorre-
lated narrowband Rayleigh fading channel.

2.6 The parameterization of the Unary Error Correction

code

In the following subsections, we detail the considerations that dictate the selection
of the number of UEC trellis states r to employ in order to achieve near-capacity
operation, as well as the selection of the UEC codebook C in order to optimise the
UEC SER performance.

2.6.1 Performance analysis

Near-capacity operation is achieved, when reliable communication can be maintained
at effective throughputs η that approach the DCMC capacity C of the channel. When
the UEC code of Figure 2.2 is serially concatenated with an URC code, near-capacity
operation is facilitated, provided that the area Ao beneath the UEC code’s inverted
EXIT curve is equal to its coding rate Ro [105]. In this case, near-capacity operation
will be achieved, if the CC decoder’s EXIT curve has a shape closely matching that
of the UEC decoder, hence creating a narrow but still open EXIT chart tunnel and
facilitating iterative decoding convergence towards the ML performance.

In the case of the Zeta distribution of (2.2), Figures 2.6 and 2.21 suggest that
the UEC EXIT area Ao asymptotically approaches the UEC coding rate Ro, as the
number of states employed in the UEC trellis decoder r is increased. In fact, this is
the case, regardless of which particular symbol value distribution is adopted by the

2.6.1. Performance analysis 48

r = 10

r = 8

r = 6

r = 4

UEC

I(z̃e; z)

I
(z̃

a
;z
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 2.21: EXIT charts of the UEC scheme. Here the symbols of d obey a Zeta
distribution having p1 = 0.7967, while the UEC codewords C = [00; 01] comprise
n = 2 bits and result in an UEC trellis having number of states r ∈ {4, 6, 8, 10} .

RVs in the vector X. This may be proved by observing that the last three terms in
(2.28) tend to zero as r is increased, leaving only the first term of

lim
r→∞

Ao =
1

ln

∑

d∈N1

H[P (d)], (2.29)

which is equal to the expression provided for the coding rate Ro in (2.10). Figure 2.22
plots the discrepancy between Ron and Aon as a function of the number of UEC states
r for Zeta distributions employing various values for the parameter p1. Note that in
all considered cases, the discrepancy becomes less than 10−2, when at least r = 30

states are employed.

As described in Section 2.3.2, a UEC trellis having r number of states is parametrized
by a set of r/2 codewords C, each comprising n number of bits, where C = [00; 01]

in the r = 4, n = 2 example of Figure 2.4(b) and C = [00; 01; 01] in the r = 6, n = 2

example of Figure 2.4(c). Note that when provided with the same unary-encoded bit
vector y, UEC trellis encoders employing the trellises of Figures 2.4(b) and 2.4(c) are
guaranteed to generate identical UEC-encoded bit vectors z, despite using different
codebooks C. This is because the r = 6 codebook of Figure 2.4(c) is an extension of
the r = 4 codebook of Figure 2.4(b). In this way, the employment of extension allows
a higher number of states r to be used in the UEC trellis decoder than in the UEC
trellis encoder. This allows us to dynamically change the number of states employed

2.6.1. Performance analysis 49

H.264

Zeta

p1

r/2

A
n
−
R
n

1000100101

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Figure 2.22: The discrepancy between Aon and Ron for the UEC scheme as a function
of the number of states employed by the UEC trellis decoder r, for the case of various
source distributions associated with p1 ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.

in the decoder in order to strike an attractive trade-off between its trellis complex-
ity, which is proportional to r and near-capacity performance, which improves with
r [99].

Figures 2.23 and 2.24 illustrate the SER performance of the UEC scheme having

(c)

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

4.543.532.521.510.5

100

10−1

10−2

10−3

10−4

10−5

(b)

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

4.543.532.521.510.5

100

10−1

10−2

10−3

10−4

10−5
UEC r = 10
UEC r = 8
UEC r = 6
UEC r = 4

(a)

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

4.543.532.521.510.5

100

10−1

10−2

10−3

10−4

10−5

Figure 2.23: The SER performance of the UEC scheme of Figure 2.2 using as ex-
tended version of the codebook C = [00; 01] having r ∈ {4, 6, 8, 10} number of states,
when conveying symbols obey a Zeta distribution having the parameter p1 = 0.7967
Furthermore, a URC decoder having r = 2 states is concatenated with Gray-coded
QPSK modulation, for communication over an uncorrelated narrowband Rayleigh
fading channel having various Eb/N0 values. A complexity limit of (a) unlimited,
(b) 8000 and (c) 4000 ACS operations per decoding iteration is imposed for decoding
each of the symbols in d.

r ∈ {4, 6, 8, 10} states when conveying symbols obeying a Zeta distribution having
the parameter of p1 ∈ {0.7967, 0.9}. In the case when p1 = 0.7967 and there is no
complexity limit, the UEC schemes associated with r ∈ {8, 10} states have around

2.6.2. Unary Error Correction codebook selection 50

(c)

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

3.532.521.510.50-0.5

100

10−1

10−2

10−3

10−4

10−5

(b)

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

3.532.521.510.50-0.5

100

10−1

10−2

10−3

10−4

10−5
UEC r = 10
UEC r = 8
UEC r = 6
UEC r = 4

(a)

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

3.532.521.510.50-0.5

100

10−1

10−2

10−3

10−4

10−5

Figure 2.24: The SER performance of the UEC scheme of Figure 2.2 using as ex-
tended version of the codebook C = [00; 01] having r ∈ {4, 6, 8, 10} number of states,
when conveying symbols obeying a Zeta distribution having the parameter p1 = 0.9
Furthermore, a URC decoder having r = 2 states is concatenated with Gray-coded
QPSK modulation, for communication over an uncorrelated narrowband Rayleigh
fading channel having various Eb/N0 values. A complexity limit of (a) unlimited,
(b) 6000 and (c) 3000 ACS operations per decoding iteration is imposed for decoding
each of the symbol in d.

0.3 dB gain over the UEC scheme with the r = 4-state trellis, while the gain is 0.2 dB
for the UEC scheme using the r = 6-state trellis over the UEC associated with the
r = 4-state trellis, as shown in Figure 2.23(a). When the complexity limit of 8000
ACS operations is imposed for decoding each of the symbols in d, this gain reduces
to 0.1 dB for the schemes with r ∈ {6, 8}, while the r = 10-state scheme has the
same SER performance, as the r = 4 scheme . The r = 4-state trelllis has the best
performance for ACS=4000, offering the largest gain of 1 dB over the other schemes.
The SER performance is similar, when p1 = 0.9. Thus having r = 4 UEC trellis
states represents an attractive trade-off between maintaining a low trellis complexity
and facilitating near-capacity operation.

2.6.2 Unary Error Correction codebook selection

In this section, we will discuss the design of the codebook C for the case of the n = 2

r = 4 REGEC trellis. This selection is motivated since n = 2 is the minimum Free
Distance (FD) required for achieving an infinitesimally low BER and for the EXIT
curve to reach the (1,1) point in the EXIT chart. Furthermore, r = 4 was shown in
Section 2.6.1 to offer an attractive trade off between the trellis complexity imposed
and approaching near-capacity operation. An n = 2 r = 4 codebook C comprises
r/2 = 2 codewords, each constituted by n = 2 bits. Therefore, there are 24 possible
n = 2 r = 4 codebooks. However it can be readily shown that all of these are
equivalent to one of the 3 codebooks shown in Table 2.4, which contains no pairs
of equivalent codebooks. More specifically, recall that two codebooks are equivalent

2.6.2. Unary Error Correction codebook selection 51

Table 2.4: Candidate REGEC codebooks {Ci}3
i=1 for n = 2 bits and r = 4 states

as well as their corresponding FD df . For Zeta probability distributions having
p1 = 0.7967, the number of states in the URC having the best matching EXIT curve
is provided, together with the corresponding Eb/No tunnel bound in brackets.

candidate codebook C1 C2 C3

c1 00 00 00
c2 00 01 11
df 2 4 4

Number of states in URC having best

matching EXIT chart and resultant

Eb/N0 tunnel bound in dB

p1 =0.7967 8 2 4

(1.8) (2.5) (2.3)

if each pairing of codewords within one of the codebooks has the same Hamming
Distance (HD) as the corresponding pairing of codewords within the other codebook.
Owing to this, two codebooks are equivalent if one of them can be transformed into
the other by toggling all bits and/or changing the order of the bits in each codeword
using the same reordering pattern.

The error correction capability of a codebook may be characterized by the FD
of legitimate codewords at the output of the UEC trellis encoder [75]. The FD
represents the minimum HD between any pair of encoded bit vectors produced by
the different paths traversing through the UEC trellis. The total number of possible
pairings of paths emerging from a particular state in a UEC trellis of length b is
given by 2b−1(2b − 1), which grows exponentially with b. However, considering the
symmetry of a UEC trellis, it is possible to use a step-by-step directed search for
determining the FD, rather than using a brute force exhaustive search. Note that
in the UEC trellis generalised in Figure 2.4(a), a bit vector y = [yj]

b
j=1 identifies a

unique path m = [mj]
b
j=0 that emerges from state 1 and terminates at either state 1

or 2, hence accordingly identifying a corresponding output bit sequence z = [zj]
bn
j=1.

By exploiting this observation, the FD df can be obtained by computing the HD
between each pair of paths and then selecting the specific pair having the minimum
HD, whenever two paths merge at a particular state in the trellis [2]. Table 2.4 shows
that the largest possible FD of the n = 2-bit r = 4-state UEC codes is 4.

As discussed in Section 2.6.1, the area Ao beneath the inverted UEC EXIT func-
tion and the UEC coding rate Ro are independent of the codebook design C. However
the shape of the UEC EXIT curve and therefore its match with the URC EXIT curve
does depend on the codebook design C. Since the candidate codebooks of Table 2.4
are unique with no pair of codebooks that are equivalent to each other, their inverted
EXIT curves are all different from each other. Owing to this, different candidate
codebooks have inverted EXIT curves that match best with the EXIT curve of URC

2.6.2. Unary Error Correction codebook selection 52

codes having different parametrizations. Figure 2.15, 2.25 and 2.26 show the resul-
tant EXIT charts for the cases of using each of the candidate codebooks in Table
2.4 to encode symbols obeying the Zeta distribution having p1 = 0.7967, as well as
the resultant EXIT charts recorded for the cases where the receivers have no knowl-
edge of the symbol probability distribution. In this case the P (m|m′) term is simply
omitted from (2.21) during the UEC trellis decoder’s Log-BCJR algorithm. Table
2.4 suggests that C1 should offer the best performance in the turbo cliff region of the
Symbol Error Ratio (SER) plot, since it offers an open EXIT chart tunnel at the low-
est Eb/N0 value, implying that iterative decoding convergence to an approximation
of the ML SER performance can be achieved [108].

URC 3.5 dB
UEC C1 No probs

URC 1.8 dB
UEC C1

I(z̃e; z)

I
(z̃

a
;z
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 2.25: EXIT charts of the UEC scheme. Here the symbols of d obey a Zeta
distribution having p1 = 0.7967, while the UEC codewords C1 = [00; 00] comprise
n = 2 bits and result in a UEC trellis having r = 4-state. Furthermore, a URC
decoder having r = 2 states is concatenated with Gray-coded QPSK modulation,
for communication over an uncorrelated narrowband Rayleigh fading channel having
various Eb/N0 values.

However, codebook C1 may not offer the best performance in the error floor region
of the SER plot, as shown in Figure 2.27. Codebooks C2 and C3 offer steep turbo cliffs
at Eb/N0 values near the corresponding Eb/N0 tunnel bounds, as predicted by the
EXIT chart results of Table 2.4. The SER of these schemes drops to 10−4 within 0.3
dB of these Eb/N0 tunnel bounds. By contrast, the SER of codebook C1 has an error
floor above 10−3, even when the Eb/N0 value is 3 dB above its corresponding tunnel
bound. In the case when the decoder has no knowledge of the symbol distribution,
codebook C2 avoids having an error floor, while codebook C1 and C3 both suffer from
pronounced error floors. Also, the candidate codebook C2 works best in conjunction
with the URC inner code having the lowest complexity, namely that employing only

2.7. Performance comparison with the SSCC benchmarker 53

URC 3.8 dB
UEC C3 No probs

URC 2.3 dB
UEC C3

I(z̃e; z)

I
(z̃

a
;z
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 2.26: EXIT charts of the UEC scheme. Here the symbols of d obey a Zeta
distribution having p1 = 0.7967, while the UEC codewords C3 = [00; 11] comprise
n = 2 bits and result in a UEC trellis having r = 4 states. Furthermore, a URC
decoder having r = 2- state is concatenated with Gray-coded QPSK modulation,
for communication over an uncorrelated narrowband Rayleigh fading channel having
various Eb/N0 values.

r = 2 states. Therefore, we employ the candidate codebook C2 throughout the next
section, when we compare the performance of the UEC scheme to a suitably designed
SSCC benchmarker.

2.7 Performance comparison with the SSCC benchmarker

In this section, we introduce the EG-CC SSCC benchmarker and compare its perfor-
mance to that of our UEC scheme.

2.7.1 EG-CC SSCC benchmarker

Figure 2.28 illustrates the architecture of an EG-CC SSCC benchmarker, which offers
a fair comparison with the proposed UEC JSCC scheme. In the transmitter, the
unary encoder of the UEC scheme seen in Figure 2.2 is replaced by an EG encoder.
This employs the codewords shown in Table 2.2, yielding the b = 18-bit vector
y = 010101100100110101, when the vector of a = 8 symbols d = [2, 1, 3, 4, 1, 1, 2, 1]

is encoded, for example. The average EG codeword length is given by

lEG =
∑

d∈N1

P (d) (2blog2(d)c+ 1) , (2.30)

2.7.1. EG-CC SSCC benchmarker 54

No probs
With probs

C3 URC r=4
C2 URC r=2
C1 URC r=8

2.
3
d
B

2.
5
d
B

1.
8
d
B

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

543210-1

100

10−1

10−2

10−3

10−4

Figure 2.27: SER vs Eb/N0 plot for the UEC codes employing the n = 2-bit
r = 4-state codebooks C ∈ {C1,C2,C3}, when combined with URC codes having
r ∈ {2, 4, 8} states with Gray-coded QPSK modulation, for communication over an
uncorrelated narrowband Rayleigh fading channel.

ỹa

y

ŷ

CC
encoder

CC
decoder

d

d̂

EG
encoder

EG
decoder

z

z̃e

z̃a

URC

URC

encoder

decoder

modulator

demodulator

QPSK

QPSK

π1

π1

π−1
2

π2

π−1
1

Figure 2.28: Schematic of the EG-CC code, when serially concatenated with URC
and Gray-coded QPSK modulation schemes. Bold notation without a diacritic is
used to denote a symbol vector or a bit vector. A diacritical hat represents a recon-
struction of the symbol or bit vector having the corresponding notation. A diacritical
tilde represents an LLR vector pertaining to the bit vector with the corresponding
notation. A roman superscript ‘a’ is employed to denote an a priori LLR vector,
while ‘e’ is employed for extrinsic LLR vectors. Furthermore, π1 and π2 represent
interleavers, while π−1

1 and π−1
2 represent the corresponding deinterleavers. Punctur-

ing may also be performed in π2, while the corresponding depuncturing operations
take place in π−1

2 .

2.7.1. EG-CC SSCC benchmarker 55

which is guaranteed to be finite for any monotonic symbol value distribution having
P (d) ≥ P (d + 1) ∀ d ∈ N1, including the Zeta distribution of (2.2), when we have
p1 ≤ 0.608. When d obeys the Zeta distribution, the average EG codeword length is
given by

lEG = 1− 2ζ ′(s)

ln(2)ζ(s)
− 2

ζ(s)

∑

x∈N1

x−si frac[log2(xi)], (2.31)

where the frac(·) operator yields the fractional part of the operand, as in frac(3.4) =

0.4 and x = blog2(d)c + 1. Even though the H.264 distribution of Figure 2.3 is not
monotonic, a finite average EG codeword length of l = 3.029 bits per symbol is
obtained. As in the proposed UEC scheme, the b-bit vector y may be modeled as
a realization of a vector Y = [Yj]

b
j=1 comprising b binary RVs. In the general case,

these RVs do not adopt equiprobable values Pr(Yj = 0) 6= Pr(Yj = 1), hence we have
a less than unity bit entropy:

HYj = H[Pr(Yj = 0)] +H[Pr(Yj = 1)]. (2.32)

In order to generate equiprobable bits, the trellis encoder of the UEC scheme is
replaced by a 1/n-rate r-state CC encoder, as shown in Figure 2.28. We recommend
the specific CCs obeying the generator and feedback polynomials provided in Ta-
ble 2.5. More specifically, we found that these non-systematic recursive CCs offer the
optimal distance properties [109] subject to the constraint of producing equiproba-
ble bits Pr(Zk = 0) = Pr(Zk = 1). This HZ = 1 constraint has to be satisfied for
avoiding any capacity loss, when the EG-CC scheme is serially concatenated with an
URC [87].

The average coding rate Ro of the EG-CC encoder is given by (2.10). When the
RVs in the vector D obey the Zeta distribution of (2.2), the product of the EG-CC
coding rate Ro and the codeword length n is related to the distribution parameter
p1, as shown in Figure 2.6.

Table 2.5: The optimal generator and feedback polynomials that satisfy the HZ = 1
constraint. Polynomials are provided in the format (g, f, dfree), where g is an n-
element vector of octal generator polynomials, f is the octal feedback polynomial
and dfree is the decimal free distance [1].

r n
2 3 4

2 ([2,2],3,2) ([2,2,2],3,3) ([2,2,2,2],3,4)
4 ([4,7],6,4) ([4,7,7],6,6) ([4,7,7,7],6,8)
8 ([15,17],16,6) ([13,15,17],16,10) ([13,15,15,17],16,13)
16 ([27,31],34,7) ([25,33,37],36,12) ([25,33,35,37],32,16)

2.7.1. EG-CC SSCC benchmarker 56

In the receiver, the trellis decoder of the UEC scheme is replaced by a CC decoder,
as shown in Figure 2.28. This employs the Log-BCJR algorithm during the iterative
decoding process, in order to convert the a priori LLR vector z̃a into the extrinsic
LLR vector z̃e. As shown in Figure 2.28, the BCJR algorithm is capable of exploiting
some of the residual redundancy present within the bit vector y by employing the
corresponding vector of a priori LLRs ỹa = [ỹa

j]
b
j=1. Here, we have

ỹa
j = ln

(
Pr(Yj = 0)

Pr(Yj = 1)

)
, (2.33)

where the bit value probabilities may be obtained heuristically.

As in the UEC scheme, the Log-BCJR algorithm may be characterized by the
corresponding inverted EG-CC EXIT curve, as exemplified in Figure 2.29. It can be

r = 16

r = 8

r = 4

EG-CC

URC 3.7 dB

URC 3.5 dB

URC 3.0 dB

I(z̃e; z)

I
(z̃

a
;z
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 2.29: EXIT charts of the EG-CC scheme. Here the symbols of d obey a Zeta
distribution having p1 = 0.7967, while the CC trellis employs r ∈ {2, 8, 16} states and
n = 2 bits. Furthermore, a URC decoder having r = 2 states is concatenated with
Gray-coded QPSK modulation, for communication over an uncorrelated narrowband
Rayleigh fading channel having various Eb/N0 values.

shown that the EXIT chart area A that is situated below the inverted EG-CC EXIT
curve is given by [1]

Ao =

∑b
j=1HYj

bn
. (2.34)

Note that unlike in the UEC scheme, the EG-CC EXIT chart area Ao is independent
of the number of states r employed in the CC, as exemplified in Figure 2.29. Moreover,
in contrast to the UEC scheme, increasing the number of states r employed in the
CC will increase the open tunnel bound and hence degrades the performance of the

2.7.1. EG-CC SSCC benchmarker 57

Table 2.6: Open tunnel bound of EG-CC scheme when employing CC trellises having
n = 2 bits and different numbers of states r. Here, d obeys the Zeta probability
distribution having p1 = 0.7967. The number of states in the URC having the best
matching EXIT curve is provided, together with the corresponding Eb/No tunnel
bound in brackets.

Scheme p1 r Ao

Number of states in URC having best

matching EXIT chart and resultant

Eb/N0 tunnel bound in dB

0.7967
4

0.4410
2 (3.0)

EG-CC 8 2 (3.5)
16 2 (3.7)

EG-CC scheme, as shown both in Table 2.6 and Figure 2.29. This is because different
number of states r employed in the CC will change the shape of the EXIT curve.
Owing to this, we will use the CC code of Table 2.5 having r = 4 states and n = 2

bits as the benchmark throughout this thesis.

Note that in the EG-CC scheme, the values of Aon and Ron are separated by
significant discrepancies of up to about 0.2, preventing near-capacity operation, as
shown in Figure 2.5. This represents a significant disadvantage compared to the
proposed UEC scheme, which is capable of eliminating the discrepancy, when the
symbol values obey the Zeta distribution of (2.2). Meanwhile, the proposed UEC
scheme can reduce the discrepancy to an infinitesimally small value by employing a
sufficiently high number r of states, as discussed in Section 2.6.1.

Additionally, the EG-CC suffers from another significant disadvantage compared
to the proposed UEC scheme, once iterative decoding convergence has been achieved.
Explicitly, in this event, the CC decoder of Figure 2.2 may generate the decoded bit
vector ŷ by employing the Viterbi algorithm, which can also exploit the a priori LLR
vector ỹa. Following this, the EG decoder of Figure 2.2 extracts the symbol vector
d̂ by interpreting ŷ as a concatenation of the EG codewords shown in Table 2.2.
However, if ŷ contains any bit errors, there is no guarantee that it will comprise
the correct number a of codewords, or even that it will comprise an integer number
of codewords. For example, the first 13 bits in the vector ŷ = 011001010111111

correspond to a legitimate concatenation of eight EG codewords, but the last two
bits do not form a complete legitimate codeword. In the case where ŷ does not
correspond to a number of symbols, some symbols may be truncated from d̂ or a
number of 1-valued symbols may be appended to d̂, as appropriate.

2.7.2. SER performance 58

2.7.2 SER performance

Table 2.7 provides several parametrizations of the UEC scheme, which are designed
for transmitting symbols that obey the Zeta distribution of (2.2) having different
values of p1. Table 2.7 also provides the corresponding parametrizations for the
SSCC EG-CC benchmarker, which offer the same throughput η as our UEC scheme
parametrizations. We parametrize the Zeta distribution using p1 ∈ {0.9, 0.7967, 0.694},
which represents a wide selection of the p1 values higher than 0.608, as shown in Fig-
ure 2.6. Recall that the specific value of p1 = 0.7967 is chosen, since it results in
the same coding rate for the unary code and the EG code, hence yielding the same
outer coding rate Ro for both the UEC scheme and the EG-CC scheme. We selected
codewords comprising n = 2 bits and employ r = 4-state trellises for both the UEC
and for the CC, as we recommended in Sections 2.6.1 and 2.7.1, respectively.

Table 2.7: Outer coding rate Ro, inner coding rate Ri and throughput η for the UEC
and EG-CC schemes designed for encoding Zeta distributed symbols having different
p1 values.

p1 Scheme n r Ro Ao Ri η

Eb/N0

[dB] for

C = η

Eb/N0

[dB] for

Ai = Ao

Eb/N0

[dB] for

open

tunnel

Complexity

per iteration

per symbol of

d

0.9
UEC 2 4 0.2636 0.2682 1

0.5272 0.01
0.1 1.5 250

EG-CC 2 4 0.2492 0.3247 1.0578 1.6 2.4 257

0.7967
UEC 2 4 0.3810 0.4041 1

0.7620 0.84
1.3 2.5 331

EG-CC 2 4 0.3810 0.4410 1 2.0 3.0 322

0.6940
UEC 2 4 0.3112 0.3654 1.4565

0.9066 1.43
2.7 4.5 614

EG-CC 2 4 0.4533 0.4877 1 2.0 3.0 410

The other parameters listed in Table 2.7 are described as follows.

1. Capacity bound (Eb/N0 [dB] for C = η)
The capacity bound is the lowest SNR, where reliable transmission is theoret-
ically possible. It is the specific Eb/N0 value, where the DCMC capacity C

becomes equal to the effective throughput η of (2.11). Note that the capacity
bound depends on the value of the parameter p1 because of the different ef-
fective throughputs that result. However, the capacity bound of the UEC and
EG-CC schemes designed for the same p1 are the same, as shown in Figure 2.30.
This is because we use puncturing to maintain the same effective throughput
η for both schemes, in order to achieve a fair comparison.

2. Area bound (Eb/N0 [dB] for Ai = Ao)
As we discussed in Section 2.5.2.3, the area Ao beneath the URC EXIT function
will increase with the Eb/N0 value. The area bound identifies the specific Eb/N0

2.7.2. SER performance 59

EG-CC
UEC

Tunnel bound
Area bound

Capacity bound

p1

E
b
/N

0
[d
B
]

10.90.80.70.60.5

5

4

3

2

1

0

-1

Figure 2.30: Capacity bound, area bound and tunnel bound for the UEC and EG-CC
schemes designed for encoding Zeta distributed symbols having different p1 values.

value, where the area Ao beneath the inverted outer decoder’s EXIT curve
becomes equal to the area Ai beneath the inner decoder’s EXIT curve. This
is the theoretical bound, where it is possible to create an open tunnel and to
achieve a low SER during iterative decoding. Note that the area bounds of the
UEC and EG-CC schemes are different, since these two schemes have different
values for the areas Ao. The gap between the area bound and capacity bound
quantifies the capacity loss of the scheme, as shown in as shown in Figure 2.30.
This capacity loss can be reduced by increasing the number of states r employed
in the trellis of the UEC code, as we discussed in Section 2.6.1. However, the
capacity loss will remain the same for the SSCC EG-CC schemes regardless of
the number of states r employed in the CC trellis. In particular, the EG-CC
scheme can be seen to suffer from upto 1.59 dB of capacity loss in Table 2.7.

3. Tunnel bound
The tunnel bound is the lowest Eb/N0 value required for creating an actual
open tunnel in the EXIT chart, , as shown in as shown in Figure 2.30. Note
that the tunnel bound typically has a higher Eb/N0 value than the area bound,
since the shape of the inner and outer EXIT curves are typically not perfectly
matched. The gap between the area bound and tunnel bound may be reduced
by using irregular outer and inner codes for both schemes. However, as we
discussed in Section 2.3.3.2, an irregular code must be tailored for a certain
value of the parameter p1, hence preventing its general applicability.

As shown in Figure 2.31, the proposed UEC scheme facilitates reliable communication

2.8. Summary and conclusions 60

within 2 dB of the capacity bound and consistently offers the best SER performance
for the cases of Zeta distributions having the parameters of p1 = 0.9 and 0.7967,
while having similar complexities to that of the EG-CC benchmarker. In the scenario
where p1 = 0.7967, the unary code and EG code have the same outer coding rate,
allowing the same inner coding rate of 1 to be used for both scheme. In this case,
our UEC scheme offers 0.6 dB gain over the EG-CC benchmarker. In the case where
p1 = 0.9, this gain is increased to 1.6 dB, where puncturing is employed by the EG-
CC scheme. When p1 = 0.694 however, the performance of our UEC scheme is 3 dB
worse than that of the EG-CC benchmarker. This may be attributed to the severe
puncturing that is required in our UEC scheme. Furthermore, the UEC scheme
imposes a significantly higher decoding complexity than the EG-CC benchmarker,
when p1 = 0.6940, as shown in Table 2.7. This disappointing UEC performance in
the case of low p1 values will be addressed by the EGEC and REGEC schemes of the
following chapters.

(c)

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

6543210

100

10−1

10−2

10−3

10−4

10−5
EG-CC

UEC

(b)

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

6543210

100

10−1

10−2

10−3

10−4

10−5
EG-CC

UEC

(a)

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

6543210

100

10−1

10−2

10−3

10−4

10−5

Figure 2.31: The SER performance of the UEC and EG-CC schemes when con-
veying symbols obeying a Zeta distribution having the parameter (a) p1 = 0.9, (b)
p1 = 0.7967 and (c) p1 = 0.6940. In all cases, a URC decoder having r = 2 states
is concatenated with Gray-coded QPSK modulation, for communication over an un-
correlated narrowband Rayleigh fading channel having various Eb/N0 values. No
complexity limit is imposed during these iterative decoding processes.

2.8 Summary and conclusions

Multimedia codecs, such as the H.264 and H.265 video codecs, often employ source
codes like the EG code, which are designed for encoding symbol values that are
selected from a set having an infinite cardinality, such as the set of all positive
integers. However, following the application of these source codes, typically some
residual redundancy is retained, which can impose up to 1.59 dB of capacity loss
and hence prevents near-capacity operation, as discussed in Section 2.6. Previously,

2.8. Summary and conclusions 61

JSCCs have been proposed for exploiting all the residual redundancy in order to avoid
any potential capacity loss. However, existing JSCCs are impractical for symbol
values that are selected from a set having an infinite cardinality, since a distinct
codeword is required for every legitimate symbol value. This motivates the novel
UEC code proposed in this chapter.

In Section 2.2, we detailed how to collect the video data and model its symbol
value probability distribution using the Zeta probability distribution.

In Section 2.3, we introduced the proposed UEC encoder, detailing the operation
of both the unary encoder and of a trellis encoder. Furthermore, we described how
to integrate the UEC encoder into a transmitter by introducing the operation of the
concatenated URC encoder, interleaver and modulator of Figure 2.2.

In Section 2.4, we introduced the wireless channel model, namely the uncorrelated
narrow-band Rayleigh fading channel. In Section 2.5, we described the integration
of the UEC decoder into a receiver by discussing the operation of the demodulator,
deinterleaver and URC decoder. In addition, we detailed the operation of the UEC
trellis decoder, its iterative decoding process and the unary decoder.

In Section 2.6, we discussed the near-capacity operation of the UEC and its
parameterization, including the appropriate selection of the number of trellis states
and the codebook design.

In Section 2.7, we introduced an SSCC EG-CC-URC benchmarker. The perfor-
mance of this benchmarker was compared to that of the proposed UEC scheme for
the case of Zeta distributed source symbols having different p1 parameters.

Our proposed UEC code [1] was the first JSCC that has a low decoding complex-
ity, when invoked of representing symbols values that are selected from an alphabet
having a large or infinite cardinality. However, the UEC code is based on the unary
code [92], which is not a universal code, hence resulting in a rate Ro of zero for
p1 ≤ 0.608,. Owing to this, the UEC code has limited applicability, since it only
has a guaranteed finite average codeword length for particular source distributions,
including only a limited subset of the Zeta probability distributions that does not
include the specific Zeta distribution that most closely models the symbols produced
by the H.264 or H.265 codec. Motivated by this, the next chapter will propose the
EGEC code [110], which is based on the universal EG source code [38].

Chapter 3
Elias Gamma Error Correction Codes

3.1 Introduction

In this chapter, we propose a universal Joint Source and Channel Code (JSCC)
for the near-capacity transmission of infinite-cardinality symbol alphabets that are
randomly selected using any arbitrary monotonic probability distribution. As high-
lighted in Figure 3.1, this chapter addresses the source coding and outer code design
aspects of the JSCC. We commence by introducing the background and motivation
of this research, before discussing the novel contributions of the chapter, as well as
its structure.

Channel coding

Source

Iterative joint source-channel coding design

design

Joint source and channel code design

code design

Channel code

concatenation design

Concatenated

design

Modulation
distribution

Source

code design

Figure 3.1: The component that must be considered when designing an iterative
JSCC having serial concatenation. This chapter addresses the design aspects high-
lighted using the bold boxes.

3.1.1 Background and motivation

As we discussed in Section 2.1.1, following the encoding process of multimedia codecs,
such as H.264 [111] and H.265 [5], typically some residual redundancy is retained in
the encoded data, which leads to a capacity loss. The Unary Error Correction (UEC)

3.1.2. Novel contribution 63

code introduced in Chapter 2 [1] was the first JSCC to exploit the residual redundancy
in order to eliminate the capacity loss, while achieving a low decoding complexity,
when invoked for representing symbols values that are selected from an alphabet
having a large or infinite cardinality. However, the UEC code is based on the unary
code [92], which is not a universal code1. This limits the employment of the UEC to
specific situations, where the symbol values obey particular probability distributions,
only including a limited subset of the Zeta probability distributions. Therefore,
the employment of the UEC code is prevented in the case of arbitrary probability
distributions, since its average codeword length may become infinite in these cases.
Furthermore, some Zeta probability distributions that are supported by the UEC
code may be outperformed by their Separate Source and Channel Code (SSCC)
benchmarker, even though the latter imposes a capacity loss [95]. This is exemplified
by the Zeta distribution having p1 = 0.6970, when the UEC in outperformed by the
EG-CC benchmarker, as described in Section 2.7.

Against this background, in this chapter we propose a universal JSCC for the
near-capacity transmission of infinite-cardinality symbol alphabets that are randomly
selected using any arbitrary monotonic probability distribution. As benefit of this,
the proposed JSCC has a much wider applicability than the UEC of Chapter 2,
facilitating its employment for the entire set of Zeta probability distributions. Like
the UEC code of Chapter 2, the proposed JSCC does not require any knowledge of
the symbol occurrence probabilities at either the transmitter or the receiver, when the
channel’s Signal to Noise Ratio (SNR) is sufficiently high. However, once the receiver
has estimated the occurrence probabilities of the most frequently occurring symbol
values, reliable communication at near-capacity SNRs is facilitated. Rather than
employing a unary code as its basis, the proposed code is based upon the universal
Elias Gamma (EG) code, hence we refer to it as the Elias Gamma Error Correction
(EGEC) code.

3.1.2 Novel contribution

• A universal JSCC EGEC is designed, which is capable of achieving the near-
capacity transmission of symbols that are randomly selected from infinite-
cardinality symbol alphabets using any arbitrary monotonic probability dis-
tribution.

1A universal code is a countably infinite prefix code set. When encoding a symbol set following
any monotonic probability distribution, the average codeword length is bounded by a function of
the entropy of the distribution [38].

3.1.3. Chapter organization 64

• We propose a Unequal Error Protection (UEP) scheme for optimizing the rel-
ative contribution of the two EGEC sub-codes to the encoding process, facili-
tating near-capacity operation at a low decoder complexity.
• The performance of the proposed JSCC EGEC scheme is compared to that of

the JSCC UEC and SSCC EG-CC benchmarkers in five scenarios, namely for
four different Zeta distribution parametrizations and the H.265 distribution of
Figure 2.3(b).

3.1.3 Chapter organization

The rest of this chapter is organised as follows:

• As described in Section 3.2, the EGEC encoder decomposes each input sym-
bol into two sub-symbols, which are encoded separately by two distinct sub-
encoders. The first sub-encoder is referred to as the EGEC(UEC) encoder,
which operates in the same manner as the UEC encoder of [1]. The second
sub-encoder employs a serial concatenation of a Fixed Length Code (FLC) and
a Convolutional Code (CC) encoders, which we refer to as the EGEC(FLC-CC)
encoder.
• As described in Section 3.3, the EGEC decoder has corresponding sub-decoders,

which operate on the basis of the Logarithmic Bahl-Cocke-Jelinek-Raviv (Log-
BCJR) algorithm [50] and the Soft Bit Source Decoding (SBSD) algorithm [68].
• In Section 3.4, we detail the procedure to design a UEP scheme for optimizing

the relative contribution of the two sub-codes to the encoding process, facili-
tating near-capacity operation at a low decoder complexity. Furthermore, the
parametrizations of our EGEC scheme as well as the benchmarkers are intro-
duced.
• We will demonstrate in Section 3.5 that if the source symbols obey a particular

Zeta probability distribution, our EGEC scheme offers a 3.4 dB gain over a
UEC benchmarker, when Quaternary Phase Shift Keying (QPSK) is employed
for transmission over an uncorrelated narrowband Rayleigh fading channel.
For another Zeta probability distribution, our EGEC scheme will be shown
to offer a 1.9 dB gain over a SSCC benchmarker, which we refer to as the
Elias Gamma and Convolutional Code (EG-CC) scheme. Additionally, we will
consider a wide range of other Zeta probability distributions and will show that
our EGEC scheme is capable of offering gains over the relevant benchmarkers
in each case.
• Finally, we offer our conclusions in Section 3.6.

3.2. EGEC encoder 65

3.2 EGEC encoder

In this section, we introduce the EGEC encoder, which is illustrated in Figure 3.2.
In Section 3.2.1, we discuss the motivation for decomposing the input symbols into
two sub-symbols and describe the operation of the corresponding symbol splitter in
Figure 3.2, which is labeled S. The operation of the EGEC(UEC) and EGEC(FLC-
CC) encoders is described in Sections 3.2.2 and 3.2.3. Finally, Section 3.2.4 describes
the serial concatenation of the EGEC encoder with the Unity Rate Convolutional
(URC) encoder and QPSK modulator of Figure 3.2.

π1

modulator
QPSK

demodulator
QPSK

Trellis
encoder

z URC
encoder

π1

CC
encoder

URC
encoder

π5
w π4π3

π2

u

encoder

t FLC
encoder

Unary
S

d x y

v

EGEC(FLC-CC) encoder

EGEC(UEC) encoder

EGEC encoder

EGEC decoder

Trellis
decoder z̃a

URC
decoder

π−1
1

CC
decoder

URC
decoder

π−1
5

π3
w̃e

w̃a

ŷ

π4

π−1
4

Unary
decoder

t̂ FLC
decoder

π−1
2

x̂d̂
z̃e

EGEC(UEC) decoder

EGEC(FLC-CC) decoder

ṽaũe

ũa
π−1
3

ṽe

S−1

Figure 3.2: Schematic of the EGEC code, when serially concatenated with URC and
Gray-coded QPSK modulation schemes. Bold notation without a diacritic is used
to denote a symbol vector or a bit vector. A diacritical hat represents a reconstruc-
tion of the symbol or bit vector having the corresponding notation. A diacritical
tilde represents an LLR vector pertaining to the bit vector with the corresponding
notation. A roman superscript ‘a’ is employed to denote an a priori LLR vector,
while ‘e’ is employed for extrinsic LLR vectors. Furthermore, {π1, . . . , π5} represent
interleavers, while {π−1

1 , . . . , π−1
5 } represent the corresponding deinterleavers. Punc-

turing may also be performed in π2 and π5, while the corresponding depuncturing
operations take place in π−1

2 and π−1
5 . Multiplexing and demultiplexing is performed

in the crossed boxes.

3.2.1 Decomposition of symbols into pairs of sub-symbols

As shown in Figure 3.2, the EGEC encoder is designed for representing a vector
d = [di]

a
i=1 comprising a number of symbols, which can be obtained as a realization

of a corresponding vector D = [Di]
a
i=1 comprising a number of Independent and Iden-

tically Distributed (IID) Random Variables (RVs). Each RV Di adopts the symbol

3.2.1. Decomposition of symbols into pairs of sub-symbols 66

Table 3.1: The first twelve codewords of various source codes.

di Unary(di) EG(di) xi ti Unary(xi) FLC(ti,xi − 1)
1 1 1 1 0 1
2 01 010 2 0 01 0
3 001 011 2 1 01 1
4 0001 00100 3 0 001 00
5 00001 00101 3 1 001 01
6 000001 00110 3 2 001 10
7 0000001 00111 3 3 001 11
8 00000001 0001000 4 0 0001 000
9 000000001 0001001 4 1 0001 001
10 0000000001 0001010 4 2 0001 010
11 00000000001 0001011 4 3 0001 011
12 000000000001 0001100 4 4 0001 100
...

...
...

...
...

...
...

value d ∈ N1 with probability Pr(Di = d) = P (d), where N1 = {1, 2, 3, . . .} is the
infinite-cardinality source set comprising all positive integers.

In this chapter, we focus our attention on symbol values that are randomly se-
lected from a Zeta distribution [93], since the parameters of multimedia codecs typ-
ically obey Zipf’s law, as discussed in Section 2.2.1 [1]. Here, the Zeta distribution
defined in Section 2.2.2 is repeated for convenience, as

P (d) =
d−s

ζ(s)
, (3.1)

where ζ(s)=
∑

d∈N1
d−s is the Riemann Zeta function and s > 1. In this case, p1 =

Pr(Di = 1) = 1/ζ(s) and the symbol entropy is given by

HD =
∑

d∈N1

H[P (d)] =
ln[ζ(s)]

ln(2)
− sζ ′(s)

ln(2)ζ(s)
, (3.2)

where we have H[p] = p log2(1/p) and ζ ′(s) = −∑d∈N1
ln(d)d−s is the derivative of

the Riemann Zeta function.

As shown in Table 3.1 , source encoders such as unary or EG encoders repre-
sent each symbol di in the vector d using a corresponding binary codeword, namely
Unary(d) or EG(d), respectively. Note that for the convenience of our ensuing discus-
sions, we will revisit several of the equations introduced in Chapter 2. The average
codeword length is given by

l =
∑

d∈N1

P (d)l(d), (3.3)

3.2.1. Decomposition of symbols into pairs of sub-symbols 67

where l(d) is the length of the dth codeword.

In the case of a unary code, the length of the codeword Unary(d) is given by
l(d) = d, yielding an average codeword length of

lUnary =
ζ(s− 1)

ζ(s)
, (3.4)

when the source symbols obey the Zeta distribution of (3.1). However, the average
unary codeword length l is only finite for s > 2 and hence for p1 > 0.608. Despite
this, we proposed a JSCC scheme based on the unary code in Chapter 2, since its
codewords have a relatively simple structure, which can be readily exploited for error
correction. More specifically, the structure of the unary codewords can be described
by the UEC trellis of Section 2.3.1, without requiring an infinite number of trellis
transitions and states.

By contrast, an EG codeword EG(d) has a length of l(d) = 2blog2(d)c+ 1. When
the source symbols obey the Zeta distribution, the average codeword length becomes

lEG = 1− 2ζ ′(s)

ln(2)ζ(s)
− 2

ζ(s)

∑

x∈N1

x−sfrac[log2(x)], (3.5)

where the frac(·) operator yields the fractional part of the operand, as in frac(3.4) =

0.4. Note that the average EG codeword length lEG is finite for all Zeta distributions,
not only for those for which we have p1 > 0.608.

In this chapter, we develop a trellis representation of the EG code by observ-
ing that the codeword EG(d) is prefixed by a unary codeword Unary(x), where we
have [38]

xi = blog2(di)c+ 1, (3.6)

as may be observed in Table 3.1. Furthermore, the length of the EG codeword’s
remaining suffix FLC(t) depends on the selected unary codeword Unary(x). More
specifically, the suffix FLC(t) comprises (x − 1) bits, which form the binary repre-
sentation of the decimal value ti, where

ti = di − 2blog2(di)c. (3.7)

This approach is motivated by the difference in the structures of the unary and
EG codewords shown in Table 3.1. In Chapter 2, a UEC code was designed for the
joint source and channel coding of unary-encoded symbols, in order to facilitate near-
capacity communication. This is achieved by designing the UEC trellis of Section

3.2.1. Decomposition of symbols into pairs of sub-symbols 68

2.3.2 for ensuring that the path through the trellis remains synchronised with the
unary codewords. More specifically, the UEC trellis uses the logical 1-valued bit at
the end of each codeword to detect the boundary between consecutive codewords and
to trigger a return to state 1 or 2. By contrast, maintaining trellis synchronisation
during the JSCC of EG-coded symbols is more complicated. This is because the
length of the EG codeword depends on the length of its unary prefix, which may be
detected using the logical 1-valued bit at the end. However, an EGEC trellis designed
for maintaining synchronisation with the EG codewords would require states, i.e.
memory for storing the length of the unary prefix until the end of the FLC suffix is
reached, whereupon a return to state 1 or 2 could be triggered. Since the unary prefix
can have any arbitrary length selected from an infinite set, an infinite number of states
would be required for storing this information, hence preventing the construction
of a practical trellis. Instead, we can maintain synchronisation by decomposing the
sequence of EG codeword into separate sequences of unary prefixes and FLC suffixes,
supporting the separate UEC encoding and FLC-CC encoding of the two sequences,
hence facilitating near-capacity joint source and channel coding.

Inspired by this, the splitter S of Figure 3.2 decomposes each symbol di in the
vector d into two sub-symbols, namely into xi and ti according to (3.6) and (3.7),
where

di = 2xi−1 + ti. (3.8)

Each set of sub-symbols is concatenated to form the vectors x = {xi}ai=1 and t =

{ti}ai=1. For example, the vector d = [6, 15, 1, 17, 2, 1, 1, 2] of a = 8 symbols yields the
vector x = [3, 4, 1, 5, 2, 1, 1, 2] of a = 8 sub-symbols and the vector t = [2, 7, 0, 1, 0, 0, 0, 0]

comprising a = 8 sub-symbols.

shown in Figure 3.2, each sub-symbol xi in the vector x is encoded by the
EGEC(UEC) encoder of Section 3.2.2, while each sub-symbol ti in the vector t is
encoded by the EGEC(FLC-CC) encoder of Section 3.2.3, in order to produce the
codewords Unary(x) and FLC(t), as exemplified in Table 3.1, respectively. Note that
since the codewords Unary(x) and FLC(t) collectively comprise the same number of
bits as the codeword EG(d), the proposed EGEC code produces the same number of
unary- and FLC-encoded bits as are produced by an EG encoder. Therefore, since
an EG code is a universal code, so too is the proposed EGEC code, granting it a
finite average codeword length when the symbol values are selected according to any
monotonic probability distribution.

3.2.2. EGEC(UEC) encoder 69

3.2.2 EGEC(UEC) encoder

As shown in Figure 3.2, the vector x = [xi]
a
i=1 is encoded by the EGEC(UEC) encoder,

which operates in the same way as the UEC encoder of Section 2.3. The vector of
sub-symbols x can be modeled as a realization of a vector of RVs X = [Xi]

a
i=1,

where each RV Xi adopts a symbol value from the set x ∈ N1 with a probability of
Pr(Xi = x) = P (x). In the scenario where the RV Di obeys the Zeta distribution of
(3.1), the RV Xi will obey the distribution

P (x) =
1

ζ(s)

2x−1∑

d=2x−1

d−s, (3.9)

where the entropy of the RV Xi is given by

HX = log2[ζ(s)]− 1

ζ(s)

∑

x∈N1

(
2x−1∑

d=2x−1

d−s
)

log2

(
2x−1∑

d=2x−1

d−s
)
, (3.10)

The sub-symbol vector x is forwarded to the unary encoder of Figure 3.2, which
represents each symbol xi in the vector using the corresponding xi-bit unary code-
word Unary(x) of Table 3.1. When the sub-symbols in the vector x obey the Zeta
distribution of (3.9), the average unary codeword length is given by l1 = lUnary, where
we have

l1 =
∑

x∈N
P (x) · x

= 1− ζ ′(s)

ln(2)ζ(s)
− 1

ζ(s)

∑

x∈N1

x−sfrac[log2(x)],

(3.11)

which is guaranteed to be finite, regardless of the value of s > 1. Note that (3.11)
may be derived from (3.5) by observing that lUnary(xi) = (lEG(di) + 1)/2, as shown in
Table 3.1. Following this, the unary codewords are concatenated for generating the
b-bit vector y = [yj]

b
j=1 of Figure 3.2. For example, the vector x = [3, 4, 1, 5, 2, 1, 1, 2]

of a = 8 sub-symbols is represented by the vector y = 0010001100001011101 of
b = 19 bits.

As shown in Figure 3.2, the vector of concatenated unary codewords y is input to
the trellis encoder of Section 2.3.2. This operates on the basis of a UEC trellis, such
as the r1 = 4-state trellis that is exemplified in Figure 3.3. This represents a special
case of the generalized r1-state UEC trellis in Figure 2.4. Each bit yj of the input

3.2.2. EGEC(UEC) encoder 70

bit sequence y = [yj]
b
j=1 forces the trellis encoder to traverse from its previous state

mj−1 ∈ {1, 2, . . . , r1} to its next state mj ∈ {1, 2, . . . , r1}, in order of increasing bit-
index j. Each next state mj is selected from two legitimate alternatives, depending
on the bit value yj, according to

mj =

{
1 + odd(mj−1) if yj = 1

min[mj−1 + 2, r1 − odd(mj−1)] if yj = 0
, (3.12)

where the number of possible states r1 has to be even and the encoding process
always begins from the state m0 = 1. The function odd(·) yields 1, if the operand
is odd or 0, if it is even. In this way, the bit vector y identifies a path through
the trellis, which may be represented by a vector m = [mj]

b
j=0 comprising (b + 1)

state values. For example, the bit vector y = [0010001100001011101] yields the path
m = [1, 3, 3, 2, 4, 4, 4, 1, 2, 4, 4, 4, 4, 1, 3, 2, 1, 2, 4, 1] through the r1 = 4-state trellis of
Figure 3.3. Following this, the trellis encoder represents each bit yj in the vector
y by an n1-bit codeword zj. This is selected from the set of r1/2 codewords C =

[c1; c2; . . . ; cr1/2] or from the complementary set C = {c1; c2; . . . ; cr1/2}, which is
achieved according to

zj =

{
cdmj−1/2e if yj 6= odd(mj−1)

cdmj−1/2e if yj = odd(mj−1)
. (3.13)

Following this, the selected codewords are concatenated to obtain the bn1-bit vector
z = [zk]

bn1
k=1 of Figure 3.2. For example, the vector y = [0010001100001011101] of b =

19 bits is represented by the vector z = [11100100010110000001010110110111000010]

of bn1 = 38 bits, when employing the UEC trellis of Figure 3.3, which has r1 = 4

states and the n1 = 2-bit codewords C = [00; 01]. Note that the selection of the
parameter r1 is discussed in Section 3.4.

Note that UEC trellis encoder operates in a similar manner to a CC encoder, but
with some important differences, as follows.

1. The UEC trellis encoder is specifically designed for maintaining synchronization
with the unary codewords that are concatenated to form the bit vector y. More
specifically, the last bit yj in each unary codeword Unary(xi) is guaranteed to
induce a transition in the state mj = 1 or state mj = 2, depending on whether
the corresponding symbol xi has an odd or even index i. This is exploited
by the UEC trellis decoder in order to mitigate capacity loss, as described in
Section 3.3.1. By contrast, in a generalized CC encoder, the last bit in each
unary codeword can potentially cause a transition into any state, preventing

3.2.3. EGEC(FLC-CC) encoder 71

Holding
state

Unary
states

Holding
state

1

3

2

4

1

3

2

4

yj/zjmj−1 mj

0/11

1/00

0/01

1/10

0/00

1/11

0/10

1/01

yj = 1

yj = 0

Figure 3.3: An r1 = 4-state n1 = 2-bit UEC trellis, where C = [00; 01].

synchronization.
2. The unary encoded bit vector y is guaranteed to terminate the UEC trellis into

state mb = 1 or state mb = 2, depending on whether the length a of the symbol
vector x is odd or even. This may be exploited by the UEC trellis decoder
in order to assist its operation, as described in Section 3.3.1. By contrast, a
generalized CC encoder is not terminated by the unary encoded bit vector y.

3. The UEC trellis is designed to obey symmetry and to rely on complementary
codewords, so that the binary values in the vector z are equiprobable. As
described in [1], this is a necessary condition for avoiding capacity loss. By
contrast, CC encoders produce binary values that are not guaranteed to be
equiprobable, unless they are specifically parametrized for this purpose.

Since the binary values in the vector z are equiprobable, the average coding rate of
the EGEC(UEC) encoder is given by

Ro
1 =

HX

l1n1

. (3.14)

Here, we employ the roman superscript ‘o’ to indicate that this coding rate relates
to the outer code of a serial concatenation, namely the EGEC(UEC) code shown in
Figure 3.2.

3.2.3 EGEC(FLC-CC) encoder

As shown in Figure 3.2, the EGEC(FLC-CC) encoder requires both t and x vectors,
in order to perform FLC encoding. As described in Section 3.2.1, this is because each

3.2.3. EGEC(FLC-CC) encoder 72

sub-symbol ti in the vector t is mapped to an FLC codeword FLC(ti), having the
length (xi− 1), where xi is the corresponding sub-symbol in the vector x. When the
sub-symbols in the vector x obey the distribution of (3.9), the average FLC codeword
length is given by l2 = lFLC(ti), where we have

l2 =
∑

x∈N
P (x) · (x− 1)

= − ζ ′(s)

ln(2)ζ(s)
− 1

ζ(s)

∑

x∈N1

x−sfrac[log2(x)],

(3.15)

which is guaranteed to be finite, regardless of the value of s > 1.

to the dependencies between t and x, we model the sub-symbol vector t as a
realization of a RV vector T = [Ti]

a
i=1, where each RV Ti is dependent on the corre-

sponding RV Xi. By considering (3.1) and (3.8), the joint probability Pr(Ti = t,Xi =

x) = P (t, x) is given by

P (t, x) =
1

ζ(s)
(2x−1 + t)−s, (3.16)

where 0 ≤ t < 2x−1. Furthermore, the conditional probability Pr(Ti = t|Xi = x) =

P (t|x) is given by

P (t|x) =
P (t, x)

P (x)
=

(2x−1 + t)−s

2x−1∑
d=2x−1

d−s
, (3.17)

where 0 ≤ t < 2x−1. Finally, the conditional entropy of the RV Ti is given by

HT |X =
∑

x∈N1

2x−1−1∑

t=0

P (t, x) log2

(
1

P (t|x)

)
. (3.18)

The codewords FLC(ti) are concatenated to obtain the (b − a)-bit vector u =

[ue]
b−a
e=1 of Figure 3.2. the example of x = [3, 4, 1, 5, 2, 1, 1, 2] and t = [2, 7, 0, 1, 0, 0, 0, 0],

the combination x1 = 3 and t1 = 2 yields the codeword FLC(t1) = 10, as shown in
Table 3.1. Similarly, x2 = 4 and t2 = 7 yields FLC(t2) = 111, while x3 = 1 and
t3 = 0 yields an empty bit vector for FLC(t3). Completing this encoding process
and concatenating the resultant codewords yields the vector u = [10111000100] of
(b − a) = 11 bits. The bit vector u is interleaved in the block π3 of Figure 3.2, in
order to obtain the vector v = [ve]

b−a
e=1. Note that the binary values in the vectors u

and v will not be equiprobable in general.

This motivates the employment of the r2-state n2-bit recursive CC encoders of
Table 2.5, since these produce equiprobable binary values for the encoded bit vector

3.2.4. Integration of the EGEC encoder into a transmitter 73

w = [wf]
n2(b−a)
f=1 of Figure 3.2. This is necessary because producing equiprobable

binary values is a necessary condition for avoiding capacity loss [1]. For example,
if the r2 = 4-state n2 = 2-bit recursive CC encoder of Table 2.5 is employed for
encoding the (b − a) = 11-bit vector v = [00101100110], the n2(b − a) = 22-bit
vector of w = [0000111000101011001010] is generated. The average coding rate of
the EGEC(FLC-CC) encoder is given by

Ro
2 =

HT |X
l2n2

. (3.19)

3.2.4 Integration of the EGEC encoder into a transmitter

Following EGEC encoding, the bit vectors z and w are interleaved by π1 and π4,
URC encoded using accumulators [87] and then interleaved again by π2 and π5, as
shown in Figure 3.2. These URC encoders are recursive and have a coding rate of
unity, satisfying the corresponding conditions that are sufficient for facilitating near-
capacity operation [112, 113]. Alternatively, Low Density Parity Check (LDPC) or
turbo codes may be employed for this purpose, although this implies a significantly
increased complexity. This is because turbo decoders employ the iterative operation
of two component decoders, while LDPC decoders employ the iterative operation
of variable nodes and check nodes. By contrast, URC codes comprise only a single
component, requiring no internal iterations. Note that the lengths required for these
interleavers and URC codes depend on the particular sub-symbol values in the vector
x. However, these components can glean the required lengths from the lengths of their
respective input bit vectors. Puncturing may also be performed within π2 and π5,
in order to achieve the desired throughput for the transmitter, as well as for UEP,
as discussed in Section 3.4. While interleaving and URC encoding are associated
with one input bit per output bit, puncturing within π2 and π5 are respectively
associated with coding rates of Ri

1 ≥ 1 and Ri
2 ≥ 1 input bits per output bit.

Here, we employ the roman superscript ‘i’ to indicate that these coding rates relate
to the inner codes of serial concatenations, namely the two URC codes shown in
Figure 3.2. Following URC encoding, the multiplexer of Figure 3.2 appends the
encoded bit sequence derived from the EGEC(FLC-CC) encoder onto the end of
that derived from the EGEC(UEC) encoder. Following this, M = 4-ary Gray-coded
QPSK modulation may be employed for transmission, as shown in Figure 3.2. Note
that other mapping schemes or a modulation scheme having a higher order M can
be employed instead, although this may increase the complexity of the receiver, as

3.3. EGEC decoder 74

we will discuss in Section 3.4. The throughput of the transmitter is given by

η =
HD log2(M)

l1n1/Ri
1 + l2n2/Ri

2

. (3.20)

3.3 EGEC decoder

In this section, we describe the operation of the EGEC decoder of Figure 3.2. The
EGEC(UEC) decoder and EGEC(FLC-CC) decoder are described in Sections 3.3.1
and 3.3.2, respectively. Following this, Section 3.3.3 discusses the serial concatenation
of the EGEC decoder with the URC decoder and QPSK demodulator of Figure 3.2.

3.3.1 EGEC(UEC) decoder

As shown in Figure 3.2, the EGEC(UEC) decoder’s trellis decoder is provided with
a vector of a priori Logarithmic Likelihood Ratios (LLRs) z̃a = [z̃a

k]
bn1
k=1 that pertain

to the corresponding bits in the vector z. The trellis decoder operates on the basis
of the Log-BCJR algorithm of Section 2.5.2. This generates the vector of extrinsic
LLRs z̃e = [z̃e

k]
bn1
k=1, which is provided for the next iteration of the concatenated

URC decoder’s operation. Following the completion of iterative decoding, the trellis
decoder may also be employed to generate the vector of a posteriori LLRs ỹp = [ỹp

j]bj=1

that pertain to the corresponding bits in the vector y. The unary decoder of Figure
3.2 sorts the values in this LLR vector in order to identify the a number of bits
in the vector y that are most likely to have values of one. A hard decision vector
ŷ = [ŷj]

b
j=1 is then obtained by setting the value of these a bits to one and the value

of all other bits to zero. Here, the value of a is assumed to be perfectly known to
the receiver and may be reliably conveyed by the transmitter using a small amount
of side information in practice. Finally, the bit vector ŷ can be unary decoded in
order to generate the sub-symbol vector x̂ = [x̂i]

a
i=1 of Figure 3.2, which is guaranteed

to comprise a number of sub-symbols. This has the benefit of mitigating, although
not totally eliminating, the error propagation that may occur owing to the variable
lengths of the unary codewords.

Note that the trellis decoder’s Log-BCJR algorithm has only a modest complexity,
since it may employ a low number r1 of states. Furthermore, it facilitates error correc-
tion even if the sub-symbol probability distribution P (x) is unknown, provided that
the channel SNR is sufficiently high, as we shall demonstrate in Section 3.5. How-
ever, once a sufficient number of sub-symbol vectors x̂ has been recovered, the average
unary codeword length l1 and the sub-symbol probabilities P (x) for x ≤ r1/2−1 may

3.3.1. EGEC(UEC) decoder 75

be heuristically estimated. When decoding subsequent sub-symbol vectors, this in-
formation may be exploited by the Log-BCJR algorithm as illustrated Section 2.5.2.1
in order to facilitate error correction at near-capacity SNRs as discussed in Section
2.6.1. Note that this is made possible by the termination of the UEC trellis and
its synchronization with the unary codewords, as described in Section 3.2.2. Also
note that the availability of l1 and P (x) for x ≤ r1/2− 1 is assumed throughout the
remainder of this chapter, unless explicitly stated otherwise.

The transformation of z̃a into z̃e may be characterized by plotting the inverted
EGEC(UEC) EXtrinsic Information Transfer (EXIT) curve in an EXIT chart [51],
as exemplified in Figure 3.4. Note that if UEC codewords comprising at least n1 = 2

bits are employed, then the free distance dfree of the UEC code will be at least two,
and its EXIT curve will reach the (1, 1) point at the top right corner of the EXIT
chart [71]. Reaching this point is important because in this case a vanishingly low
Bit Error Ratio (BER) may be attained.

URC Ri
2 = 1 2.9 dB

URC Ri
1 = 1 1.9 dB

EGEC(FLC-CC) n2 = 2

EGEC(UEC) n1 = 2

EEP EGEC

I(z̃e; z) or I(w̃e;w)

I
(z̃

a
;z
)
or

I
(w̃

a
;w

)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 3.4: EXIT charts of the EEP EGEC scheme. Here, the symbols of d obey
a Zeta distribution having p1 = 0.7967 and the codewords comprise the numbers of
bits n1 and n2. Furthermore, the punctured URC decoders adopt the coding rates
Ri

1 and Ri
1, for Gray-coded QPSK modulation onto an uncorrelated narrowband

Rayleigh fading channel having various Eb/N0. The EXIT curves are provided for
an EGEC(UEC) code having r1 = 4 states, as well as for an EGEC(FLC-CC) code
having xmax = 3.

3.3.2. EGEC(FLC-CC) decoder 76

The EXIT chart area Ao
1 that is situated below the inverted EGEC(UEC) EXIT

curve of the demodulator is given by

Ao
1 = 1

l1n1

∑ r1
2
−1

x=1 H[P (x)] + 2
l1n1

H
[
1−∑

r1
2
−1

x=1 P (x)
]

+ 1
l1n1

H
[
l1 − r1

2
+
∑r1/2−1

x=1 P (x)
(
r1
2
− x
)]

− 1
l1n1

H
[
l1 + 1− r1

2
+
∑r1/2−1

x=1 P (x)
(
r1
2
− 1− x

)]
.

(3.21)

as described in Section 2.5.2.2.

3.3.2 EGEC(FLC-CC) decoder

As shown in Figure 3.2, the EGEC(FLC-CC) decoder iteratively exchanges extrinsic
information between the CC decoder and the FLC decoder. More specifically, the
n2-bit r2-state CC decoder employs the Log-BCJR algorithm for transforming the a
priori LLR vectors ṽa = [ṽa

e]
b−a
e=1 and w̃a = [w̃a

f]
n2(b−a)
f=1 into the extrinsic LLR vectors

ṽe = [ṽe
e]
b−a
e=1 and w̃e = [w̃e

f]
n2(b−a)
f=1 . Here, the extrinsic LLR vector w̃e is provided

for the next iteration of the concatenated URC decoder’s operation. Meanwhile, the
extrinsic LLRs of ṽe are deinterleaved π−1

3 , in order to obtain the a priori LLR vector
ũa = [ũa

e]
b−a
e=1. As shown in Figure 3.2, the a priori LLR vector ũa is then forwarded

to the FLC decoder, together with the sub-symbol vector x̂, which is provided by
the EGEC(UEC) decoder. The sub-symbols of x̂ are employed for partitioning the
a priori LLR vector ũa into sub-vectors, where the ith sub-vector comprises (x̂i − 1)

bits. Note that since x̂ is guaranteed to contain a number of sub-symbols, the sum
of the sub-vector lengths is given by

∑a
i=1(x̂i − 1), which is guaranteed to be equal

to the length (b − a) of the LLR vector ũa. The FLC decoder employs the SBSD
algorithm of [68] to generate the vector of extrinsic LLRs ũe = [ũe

e]
b−a
e=1. This is then

interleaved in the block π3 of Figure 3.2, in order to obtain the a priori LLR vector
ṽa for the next iteration of the CC decoder’s operation. Following the completion of
iterative decoding, the FLC decoder may also be employed to generate the vector of
a sub-symbols t̂ = [t̂i]

a
i=1, as shown in Figure 3.2.

Note that the FLC decoder can recover the sub-symbol vector t̂ even if the con-
ditional probabilities of (3.17) are unknown, provided that the channel SNR is suffi-
ciently high, as we shall demonstrate in Section 3.5. However, once a sufficient num-
ber of sub-symbol vectors t̂ has been recovered, the conditional probabilities P (t|x)

can be heuristically estimated for all pairs of t and x where x ≤ xmax. When decod-
ing subsequent sub-symbol vectors, this information may be exploited by the SBSD
algorithm in order to facilitate error correction at near-capacity SNRs as discussed
in Section 2.6.1. More specifically, the SBSD algorithm can apply the conditional

3.3.3. Integration of EGEC decoder into a receiver 77

probabilities of (3.17) to each of the a sub-vectors of ũa for which the correspond-
ing sub-symbols in x̂ do not exceed xmax. This improves the reconstruction of the
corresponding sub-symbols in t̂, as well as providing extrinsic information for the
corresponding LLRs in ũe. Note that zero values are adopted by the LLRs in ũe

which correspond to sub-symbols in x̂ that do exceed xmax. Also note that the avail-
ability of the conditional probabilities P (t|x) for x ≤ xmax is assumed throughout
the remainder of this paper, unless explicitly stated otherwise.

The transformation of w̃a into w̃e using the iterative operation of the CC and FLC
decoders may be characterized by plotting the inverted EGEC(FLC-CC) EXIT curve
in an EXIT chart [51]. This is exemplified in Figure 3.4 for the scenario where the
CC and FLC decoders are operated, until iterative decoding convergence is achieved.
Note that if CC codewords comprising at least n2 = 2 bits are employed, then the
free distance dfree of the CC code will be at least two, and the EGEC(FLC-CC) EXIT
curve will reach the (1, 1) point at the top right corner of the EXIT chart [71]. The
EXIT chart area that is situated below the inverted EGEC(FLC-CC) EXIT curve is
given by

Ao
2 = 1

n2

∑xmax

x=2

∑2x−1−1
t=0

H[P (t|x)]
x−1

(x−1)P (x)
l2

+ 1
n2

(
1−∑xmax

x=2

∑2x−1−1
t=0

(x−1)P (x)
l2

)
.

(3.22)

3.3.3 Integration of EGEC decoder into a receiver

At the receiver of Figure 3.2, QPSK demodulation, demultiplexing, depuncturing as
well as deinterleaving, URC decoding as well as deinterleaving and is performed before
invoking the EGEC(UEC) and EGEC(FLC-CC) decoders. Note that the receiver is
required to employ the same pseudo-random interleaver designs as the transmitter.
However, the entire set of interleavers can be generated independently by both the
transmitter and receiver using only a single pseudo-random number generator seed.
This seed may be hard-coded into both the transmitter or receiver, or may be reliably
conveyed using only a very small amount of side information. As shown in Figure 3.2,
it is necessary to operate the EGEC(UEC) decoder before the EGEC(FLC-CC) de-
coder, since the former outputs the sub-symbol vector x̂, which is required as an
input to the latter. The extrinsic LLR vector z̃e of Figure 3.2 may be iteratively
exchanged with the serially concatenated URC decoder. In-turn, the URC decoder
may also iteratively exchange extrinsic LLRs with the demodulator [114], in order
to avoid capacity loss, when a mapping scheme other than Gray coding or a higher-
order modulation scheme is employed. Since the combination of the URC decoder
and the demodulator will also have an EXIT curve that reaches the (1, 1) point at
the top right corner of the EXIT chart [106], iterative decoder convergence towards

3.4. Near-capacity performance of EGEC codes and UEP design 78

an approximation of the Maximum Likelihood (ML) performance is facilitated [107].
After completing the EGEC(UEC) decoding process, a similar iterative operation is
performed for the EGEC(FLC-CC) decoder.

Following the completion of both the EGEC(UEC) and the EGEC(FLC-CC)
iterative decoding processes, the sub-symbol vectors x̂ and t̂ are input to the sub-
symbol recombination block S−1 of Figure 3.2, which recomposes the symbol vector d̂,
according to (3.8). Observe that since the sub-symbol vectors x̂ and t̂ are guaranteed
to comprise a number of symbols, the symbol vector d̂ will also comprise a number
of symbols.

3.4 Near-capacity performance of EGEC codes and UEP

design

Near-capacity operation is achieved, when reliable communication can be maintained
at transmission throughputs η that approach the Discrete-input Continuous-output
Memoryless Channel (DCMC) capacity C that is associated with M = 4 QPSK
modulation and uncorrelated narrowband Rayleigh fading. This is facilitated, if the
following conditions are satisfied [112]:

1. The area Ao
1 beneath the inverted EGEC(UEC) EXIT curve is required to

approach the corresponding coding rate Ro
1;

2. Likewise, the area Ao
2 beneath the inverted EGEC(FLC-CC) EXIT curve is

required to approach the corresponding coding rate Ro
2;

3. The URC EXIT curves are required to satisfy Ai
1 = C/[Ri

1 log2(M)] and Ai
2 =

C/[Ri
2 log2(M)].

If these three conditions are satisfied, then near-capacity operation will be achieved
when the shape of URC decoders’ EXIT curves are matched to those of the EGEC(UEC)
and EGEC(FLC-CC) decoders. This creates narrow, but marginally open EXIT
chart tunnels, which facilitate iterative decoding convergence towards an approxima-
tion of the ML performance.

When the RVs in the vector X obey the Zeta distribution of (3.9), Figure 3.5
suggests that the first two of the above-mentioned conditions are satisfied. This
figure plots the EGEC(UEC) coding rate Ro

1 of (3.14) and the EGEC(FLC-CC)
coding rate Ro

2 of (3.19), when multiplied with the codeword lengths n1 and n2,
respectively. Note that since the proposed EGEC code is a universal code, its coding
rates are non-zero, regardless of the parameter value 0 < p1 < 1 employed for the
Zeta distribution of (3.1). Furthermore, Figure 3.5 plots the product of n1 and the
EGEC(UEC) EXIT area Ao

1 of (3.21), for the case where the trellis decoder employs

3.4. Near-capacity performance of EGEC codes and UEP design 79

EGEC(FLC-CC)

EGEC(UEC)

Ron

Aon

p1

R
o
n
or

A
o
n

10.90.80.70.60.5

1

0.8

0.6

0.4

0.2

0

Figure 3.5: Plots of Ron and Aon that are obtained for the EGEC scheme, in the
case where the system input symbol values of d obey a Zeta distribution having
the parameter p1. Here, Ro is the coding rate, Ao is the area beneath the inverted
EXIT curve and n is the codeword length of the corresponding scheme. The value
of Aon is provided for an EGEC(UEC) code having r1 = 4 states, as well as for an
EGEC(FLC-CC) code having xmax = 3.

r1 = 4 states. Likewise, the product of n2 and the EGEC(FLC-CC) EXIT area
Ao

2 of (3.22) is plotted in Figure 3.5, for the case where xmax = 3 is employed.
Figure 3.5 shows that in all cases, the EXIT chart areas Ao

1 and Ao
2 approach the

corresponding coding rates Ro
1 and Ro

2. Figure 3.6 plots the discrepancy between
Ao

1n1 and Ro
1n1 as a function of the number of EGEC(UEC) states r1, where the

source symbols of d obey the Zeta distribution of (3.1) for various values for the
parameter p1. Note that in all the scenarios considered, the discrepancy becomes
less than 10−3 for r1 = 4, demonstrating that the EGEC(UEC) code imposes only
an insignificant amount of capacity loss. Therefore, r1 = 4 represents an attractive
trade-off between facilitating near-capacity operation and maintaining a low trellis
complexity. Similarly, the discrepancy between Ao

2n2 and Ro
2n2 is plotted for the

EGEC(FLC-CC) code as a function of xmax in Figure 3.7, for Zeta distributions
having various values for the parameter p1. Note that in all the scenarios considered,
the discrepancy is around 10−2 for xmax = 3, demonstrating that the EGEC(FLC-
CC) code imposes only an insignificant amount of capacity loss. Therefore, xmax = 3

represents an attractive trade-off between facilitating near-capacity operation and
maintaining a low computational complexity. Note that unlike the EGEC(UEC),
the EGEC(FLC-CC) EXIT chart area Ao

2 is independent of the number of states r2

3.4. Near-capacity performance of EGEC codes and UEP design 80

p1

r1/2

A
o 1
n
1
−
R

o 1
n
1

654321

100

10−1

10−2

10−3

10−4

10−5

10−6

Figure 3.6: The discrepancy between Ao
1n1 and Ro

1n1 that results when
EGEC(UEC) codes having various numbers of states r1 are employed to en-
code symbol values having Zeta distributions with the parameters p1 ∈
{0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95}.

employed in the CC. Finally, the third condition is satisfied by a punctured URC
code, as discussed in [112].

Figure 3.5 shows that the areas beneath the EGEC(UEC) and EGEC(FLC-CC)
EXIT curves Ao

1 and Ao
2 are different from each other in general. Owing to this,

different areas are required beneath the URC EXIT curves Ai
1 and Ai

2, so that nar-
row but still open EXIT chart tunnels can be created simultaneously for both the
EGEC(UEC) and EGEC(FLC-CC) codes. This can be achieved by employing differ-
ent values for the coding rates Ri

1 and Ri
2, hence exhibiting UEP. More specifically,

when decreasing one of these coding rates, the other should be increased, in order
to maintain the same throughput η and facilitate a fair comparison with the Equal
Error Protection (EEP) scheme in which Ri

1 = Ri
2.

The advantages of UEP may be illustrated by comparing Figures 3.4 and 3.8,
which consider the scenario where the symbols of d obey a Zeta distribution having
p1 = 0.7967. More specifically, Figure 3.4 considers an EEP scheme having an
n1 = 2-bit EGEC(UEC) code and an n2 = 2-bit EGEC(FLC-CC) code, as well as
inner coding rates of Ri

1 = 1 and Ri
2 = 1, which gives a throughput of η = 0.7620

bit/s/Hz. Observe in Figure 3.4 that an open EXIT chart tunnel is created by the
EGEC(UEC) code at an Eb/N0 of 1.9 dB, but by contrast this is not facilitated until
reaching an Eb/N0 of 2.9 dB for the EGEC(FLC-CC) code.

3.4. Near-capacity performance of EGEC codes and UEP design 81

p1

xmax

A
o 2
n
2
−
R

o 2
n
2

654321

100

10−1

10−2

10−3

10−4

10−5

10−6

Figure 3.7: The discrepancy between Ao
2n2 and Ro

2n2 that results when EGEC(FLC-
CC) codes having various values for the parameter xmax are employed to
encode symbol values having Zeta distributions with the parameters p1 ∈
{0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95}.

Let us now consider an UEP scheme, which employs an n1 = 2-bit EGEC(UEC)
code and an n2 = 3-bit EGEC(FLC-CC) code, as well as inner coding rates of
Ri

1 = 1.0385 and Ri
2 = 1.2767, in order to achieve the same throughput of η = 0.7620

bit/s/Hz. Observe in Figure 3.8 that this scheme can simultaneously create open
EXIT chart tunnels for both the EGEC(UEC) code and the EGEC(FLC-CC) code
at an Eb/N0 of 2.4 dB, offering 0.5 dB of gain over the EEP scheme.

In general, an UEP scheme can be designed by appropriately choosing n1, n2, R1

and R2 for ensuring that the desired throughput η is achieved and the two EXIT chart
tunnels become marginally open at the same Eb/N0 value. Here, we recommend the
value of n1 = n2 = 2 for the codeword lengths when possible, while the value of
n2 = 3 whenever necessary to achieve the desired throughput η.

Table 3.2 provides parametrizations for both EEP and UEP EGEC schemes,
designed for transmitting symbols that obey the Zeta distribution of (3.1). We
parametrize the Zeta distribution using p1 ∈ {0.9000, 0.7967, 0.6940, 0.6000}, which
represents a wide selection of the p1 values shown in Figure 3.5. Here, p1 = 0.7967

is chosen for consistency with the results of Chapter 2, while p1 = 0.6940 is chosen
because it is the specific value, where Ro

1 and Ro
2 are equal to each other. Table 3.2

also considers the case of source symbols obeying the H.265 distribution of Figure
2.3(b). The EGEC(UEC) scheme adopts the n1 = 2-bit r1 = 4-state UEC trellis

3.4. Near-capacity performance of EGEC codes and UEP design 82

URC Ri
2 = 1.2767 2.4 dB

URC Ri
1 = 1.0385 2.4 dB

EGEC(FLC-CC) n2 = 3

EGEC(UEC) n1 = 2

UEP EGEC

I(z̃e; z) or I(w̃e;w)

I
(z̃

a
;z
)
or

I
(w̃

a
;w

)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 3.8: EXIT charts of the UEP EGEC scheme. Here, the symbols of d obey
a Zeta distribution having p1 = 0.7967 and the codewords comprise the numbers of
bits n1 and n2. Furthermore, the punctured URC decoders adopt the coding rates
Ri

1 and Ri
1, for Gray-coded QPSK modulation onto an uncorrelated narrowband

Rayleigh fading channel having various Eb/N0. The EXIT curves are provided for
an EGEC(UEC) code having r1 = 4 states, as well as for an EGEC(FLC-CC) code
having xmax = 3.

of Figure 3.3, while the EGEC(FLC-CC) scheme adopts xmax = 3, as well as the
r2 = 4-state recursive CC of Table 2.5 having either n2 = 2-bit codewords or n2 = 3-
bit codewords, as appropriate. As discussed above, we select r1 = 4 UEC states,
since this is sufficiently high for imposing only an insignificant amount of capacity
loss, while r2 = 4 CC states were selected, because having a higher number of states
was found to be detrimental in Section 2.7.1.

Table 3.2 also characterizes the complexity of the EEP and UEP EGEC schemes.
Here, the complexity is quantified by the average number of Add, Compare and Se-
lect (ACS) operations performed per decoding iteration and per symbol in the vector
d. This is justified, since the EGEC(UEC) trellis decoder, the EGEC(FLC-CC) de-
coder and the URC decoder operate entirely on the basis of addition, subtraction and
max∗ operations, while all other components in Figure 3.2 may be considered to have
a relatively insignificant complexity [95, 68]. As we discussed in Section 2.5.1.3.2,
we assume that each max∗ operation may be completed using five ACS operations,
while the addition and subtraction operations each require a single ACS operation.
As shown in Table 3.2, the complexity tends to increase as the Zeta distribution pa-
rameter p1 is reduced, which is due to the resultant increases in the average codeword
lengths l1 and l2. Furthermore, since the UEC EGEC schemes employ n2 = 3-bit

3.4. Near-capacity performance of EGEC codes and UEP design 83

Table 3.2: Outer coding rate Ro, inner coding rate Ri and throughput η for three
schemes with different p1 values.

p1 Scheme n r Ro Ao Ri η

Eb/N0

[dB] for

C = η

Eb/N0

[dB] for

Ai = Ao

Eb/N0

[dB] for

open

tunnel

Complexity

0.9

EGEC

EEP
UEC 2 4 0.2378 0.2378

1.0578

0.5272 0.01

2.4 3.9 267
FLC-CC 2 4 0.3609 0.3636

UEP
UEC 2 4 0.2378 0.2378 1.1251

0.1 1.0 286
FLC-CC 3 4 0.2406 0.2424 1

UEC 2 4 0.2636 0.2682 1 0.1 1.5 250

EG-CC 2 4 0.2492 0.3247 1.0578 1.6 2.4 257

0.7967

EGEC

EEP
UEC 2 4 0.3721 0.3721

1

0.7620 0.84

1.6 2.9 338
FLC-CC 2 4 0.4229 0.4283

UEP
UEC 2 4 0.3721 0.3721 1.0385

0.9 2.4 379
FLC-CC 3 4 0.2820 0.2855 1.2767

UEC 2 4 0.3810 0.4041 1 1.3 2.5 331

EG-CC 2 4 0.3810 0.4410 1 2.0 3.0 322

0.6940

EGEC EEP
UEC 2 4 0.4533 0.4535

1

0.9066 1.43

1.5 2.5 431
FLC-CC 2 4 0.4533 0.4599

UEC 2 4 0.3112 0.3654 1.4565 2.7 4.5 614

EG-CC 2 4 0.4533 0.4877 1 2.0 3.0 410

0.6
EGEC EEP

UEC 2 4 0.4906 0.4910
1

0.9690 1.69
1.8 2.8 547

FLC-CC 2 4 0.4699 0.4766

EG-CC 2 4 0.4845 0.4998 1 2.0 3.0 522

H.265

EGEC EEP
UEC 2 4 0.4639 0.4652 1

0.8786 1.3

1.8 2.9 588
FLC-CC 2 4 0.3862 0.3955 1

UEC 2 4 0.3480 0.4249 1.2624 3.1 4.7 715

EG-CC 2 4 0.4393 0.4961 1 2.4 3.3 558

EGEC(FLC-CC) codes, they are associated with a higher complexity than the cor-
responding EEP schemes, which employ shorter n2 = 2-bit codes.

Table 3.2 provides the Eb/N0 values, where the DCMC capacity C becomes equal
to the throughput η of each scheme considered. These Eb/N0 values represent capac-
ity bounds, above which it becomes practically possible to achieve reliable commu-
nication, provided that the scheme facilitates near-capacity operation. Furthermore,
the specific Eb/N0 values, where we have Ai = Ao are provided for each of the schemes
considered in Table 3.2. These area bounds represent the lowest Eb/N0 values, where
it is theoretically possible to create an open EXIT chart tunnel, provided that the
EGEC and URC EXIT functions have shapes that closely match each other. Note
that the discrepancy between the capacity bound and the area bound of each scheme
represents capacity loss. For each of the UEP schemes considered, the capacity loss
is less than 0.1 dB, demonstrating that the proposed EGEC scheme facilitates near-
capacity operation. Finally, Table 3.2 provides the tunnel bound of each scheme,
which quantifies the lowest Eb/N0 value, where an open EXIT chart tunnel can be
created upon employing the two-state accumulator of Figure 2.8 for the URC code.
Note that in all cases, our experiments revealed that two-state URC codes facilitate
the creation of open tunnels at lower Eb/N0 values than four- or eight-state URCs,

3.5. Performance comparison with the benchmarkers 84

as well as having a lower decoding complexity. The proposed EGEC schemes facil-
itate reliable communication at Eb/N0 values that exceed the corresponding tunnel
bound, provided that the symbol vector d comprises a sufficiently high number a of
symbols.

3.5 Performance comparison with the benchmarkers

In this section, we compare the proposed EEP and UEP EGEC schemes to the
UEC and EG-CC benchmarkers of Chapter 2. Table 3.2 provides parametrizations
for these benchmarkers, which offer the same throughput η as the proposed EGEC
schemes. Here, the UEC benchmarker adopts the n = 2-bit r = 4-state UEC trellis
of Figure 2.4(b), since this is recommended in Section 2.6. Furthermore, the UEC
is serially-concatenated with a URC, for the sake of facilitating iterative decoding.
While the proposed EGEC schemes and the UEC benchmarker constitute examples
of JSCCs, the EG-CC benchmarker represents SSCC. More specifically, the EG-CC
benchmarker employs an EG code for source coding, while an iteratively-decoded
serial-concatenation of a CC and a URC is employed for separate channel coding.
Here, we select the n = 2-bit r = 4-state CC of Table 2.5, since higher numbers of
states were found to be detrimental, as discussed in Section 2.7.1. As in the proposed
EGEC schemes, the UEC and EG-CC benchmarkers employ the two-state accumula-
tor of Figure 2.8(a) for their URCs, since these were found to yield open EXIT chart
tunnels at the lowest Eb/N0 values. Note that the UEC and EG-CC benchmarkers
offer fair and natural comparisons with the proposed EGEC schemes, since they all
employ simple unary, FLC or EG codewords, as well as UEC or CC trellises having
four states. Furthermore, EG codes and CCs are employed in numerous multimedia
transmission standards, such as H.264 [4], DVB-T [115] and H.265 [5].

Figure 3.9 characterizes the Symbol Error Ratio (SER) performance of the schemes
parametrized in Table 3.2. We consider the transmission of source symbol vectors
d comprising a = 2 · 104 symbols, which we found to be typical of the number
of EG-encoded symbols that appear in the H.265-encoded bit stream of a slice [5].
Therefore, the SER performance of Figure 3.9 may be considered to be achievable,
without imposing any additional latency in multimedia applications. We employed
QPSK modulation for transmission over an uncorrelated narrowband Rayleigh fading
channel, since this is representative of transmission over realistic wireless channels
and because this facilitates direct comparison with the results of Chapter 2. In the
receivers, iterative decoding was continued until convergence was achieved, without
imposing a complexity limit.

3.5. Performance comparison with the benchmarkers 85

No probs
With probs

EG-CC
UEC

EEP EGEC
UEP EGEC

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

76543210-1-2

100

10−1

10−2

10−3

10−4
No probs

With probs
EG-CC

UEC
EEP EGEC
UEP EGEC

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

76543210-1-2

100

10−1

10−2

10−3

10−4

(a) p1 = 0.9 (b) p1 = 0.7967

No probs
With probs

EG-CC
UEC

EEP EGEC

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

76543210-1-2

100

10−1

10−2

10−3

10−4
No probs

With probs
EG-CC

EEP EGEC

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

76543210-1-2

100

10−1

10−2

10−3

10−4

(c) p1 = 0.6940 (d) p1 = 0.6

Figure 3.9: The SER performance that is obtained following the achievement of it-
erative decoding convergence in the EGEC scheme of Figure 3.2, as well as in the
UEC and EG-CC benchmarkers of Chapter 2, when transmitting frames compris-
ing a = 2 · 104 symbols using QPSK modulation over an uncorrelated narrowband
Rayleigh fading channel. The plots labeled ‘With probs’ and ‘No probs’ indicate the
SER performance that is achievable when the source distribution P (d) is known and
unknown to the receiver, respectively.

3.5. Performance comparison with the benchmarkers 86

With probs
UEC

EG-CC
EGEC

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

654321

100

10−1

10−2

10−3

10−4

10−5

Figure 3.10: The SER performance of the EGEC scheme, as well as of the UEC and
EG-CC benchmarkers of Chapter 2, when transmitting frames comprising a = 2 ·104

symbols that obey the H.265 distribution, using QPSK modulation for transmission
over an uncorrelated narrowband Rayleigh fading channel.

As shown in Figure 3.9, the proposed EGEC schemes facilitate reliable commu-
nication within 1.2 dB of the capacity bound and consistently offer the best SER
performance for each of the p1 values considered. This consistency is a key benefit of
the proposed EGEC scheme, because while it offers only a modest gain over the best
of the two benchmarkers in each case, the performance of these benchmarkers is par-
ticularly inconsistent. More explicitly, while the proposed EGEC scheme offers only
a marginal gain over the UEC benchmarker for p1 ∈ {0.9, 0.7967}, this gain becomes
3.4 dB for p1 = 0.6940, owing to the severe puncturing that the UEC scheme requires
in this case, as discussed in Section 2.7 [95]. Furthermore, the UEC benchmarker
cannot be invoked for p1 = 0.6, since the average unary codeword length lUnary be-
comes infinite in this case. Similarly, while the proposed EGEC scheme offers only
a marginal gain over the EG-CC benchmarker p1 ∈ {0.6940, 0.6}, this gain becomes
1.9 dB for p1 = 0.9 and 0.8 dB for p1 = 0.7967, as shown in Figure 3.9.

In the case where the source symbols obey the H.265 distribution of Figure 2.3(b),
our EGEC scheme offers a gain of 0.4 dB over the SSCC EG-CC benchmarker, as
shown in Figure 3.10. Note that the EGEC scheme only employs EEP, since we found
that UEP does not improve the performance of the EGEC scheme in this scenario.
The UEC benchmarker has the worst performance of all the schemes considered in
this scenario, owing to the severe puncturing that it requires for achieving the same
effective throughput as the other schemes.

3.5. Performance comparison with the benchmarkers 87

The complexity of the proposed EGEC schemes is compared to that of the bench-
markers in Table 3.2. For each source distribution considered, it can be seen that
the complexity of the various schemes is similar, demonstrating that the gains of-
fered by the proposed EGEC scheme are not accrued at the cost of a significantly
increased complexity. Instead, these gains may be attributed to the EGEC scheme’s
avoidance of the capacity loss suffered by the EG-CC benchmarker, as well as due to
avoiding the UEC scheme’s requirement for excessive puncturing, in the cases of the
p1 = 0.6940 Zeta distribution and the H.265 distribution.

Note that the UEP EGEC schemes offer superior SER performance over the EEP
schemes, as shown in Figure 3.9. The stair-case shaped SER performance of the EEP
schemes may be attributed to the opening of the EGEC(UEC) EXIT chart tunnel
at a lower Eb/N0 value than the EGEC(FLC-CC) EXIT chart tunnel, as shown in
Table 3.2. At Eb/N0 values where the EGEC(UEC) EXIT chart tunnel is open, but
the EGEC(FLC-CC) EXIT chart tunnel is closed, symbols having a value of di = 1

are typically correctly decoded, since these symbols are conveyed without using any
EGEC(FLC-CC)-encoded bits. By contrast, symbols having values of di > 1 are
typically incorrectly decoded in this case, owing to transmission errors affecting their
corresponding EGEC(FLC-CC)-encoded bits.

A similar phenomenon may be observed for the EG-CC benchmarker, increasing
the SER as the Eb/N0 value is increased towards the threshold value, where the
EXIT chart tunnel becomes open. More specifically, at very low Eb/N0 values, the
information received over the channel is associated with a very low confidence and
hence the iterative decoding process is dominated by the a priori knowledge that
the symbol value di = 1 is most likely. This causes a value of 1 to be selected for
all symbols in the vector d̂, resulting in an SER of (1 − p1). As the Eb/N0 value
is increased, the information received over the channel gradually achieves a higher
influence on the iterative decoding process, allowing values other than unity to be
increasingly selected for some symbols in d̂. However, these non-unity values are
typically allocated to the wrong symbols, owing to the loss of synchronization that
is caused by the frequent occurrence of decoding errors at Eb/N0 values below the
open tunnel threshold. This effect occurs more frequently as the Eb/N0 value is
further increased towards the threshold value, causing the SER to increase, as shown
in Figure 3.9. By contrast, for Eb/N0 values above the threshold, the decoding errors
are mitigated and the SER reduces rapidly.

Note that throughout the discussions above, it is assumed that the receiver of
the proposed EGEC scheme has knowledge of the average unary codeword length
l1. Furthermore, we assume knowledge of the sub-symbol probabilities P (x) for

3.6. Summary and Conclusions 88

x ≤ r1/2− 1, as well as the conditional sub-symbol probabilities P (t|x) for all pairs
of t and x, where we have x ≤ xmax. These probabilities can be calculated with
the knowledge of P (d) for d ≤ 2max(xmax,r1/2−1) − 1. Since we employ r1 = 4 and
xmax = 3, the SER results presented above may be obtained with knowledge of
only the first seven symbol probabilities P (d), as well as of l1. However, Figure 3.9
shows that when the channel SNR is sufficiently high, the proposed EGEC receiver
facilitates a low SER, even if it does not have access to this information. This may
be exploited to recover a sufficiently high number of symbol vectors d̂, in order to
heuristically estimate the small amount of required information, hence facilitating
the near-capacity transmission of the subsequent symbol vectors.

3.6 Summary and Conclusions

In this chapter we have proposed novel EGEC codes for the near-capacity transmis-
sion of symbol values that are randomly selected from a source symbol set having an
infinite cardinality. In contrast to the UEC code previously proposed for the same
purpose, our EGEC code is a universal code, facilitating the transmission of symbol
values that are randomly selected using any mototonic probability distribution.

As described in Section 3.2, the EGEC encoder decomposes each input symbol
into two sub-symbols, which are encoded separately by two distinct sub-encoders, as
shown in Figure 3.2. The first sub-encoder is referred to as the EGEC(UEC) encoder,
which operates in the same manner as the UEC encoder of Chapter 2. The second
sub-encoder employs a serial concatenation of a FLC and a CC encoders, which we
refer to as the EGEC(FLC-CC) encoder.

As seen in Figure 3.2 of Section 3.3, the EGEC decoder has corresponding sub-
decoders, which operate on the basis of the Log-BCJR algorithm [50] and the SBSD
algorithm [68].

In Section 3.4, we detailed the procedure of designing a UEP scheme that op-
timizes the relative contribution of the two sub-codes to the encoding process, fa-
cilitating near-capacity operation at a low decoder complexity. Furthermore, the
parametrizations of both our EGEC scheme as well as of the benchmarkers were
introduced.

We demonstrated in Section 3.5 that when the source symbols obey a particular
Zeta probability distribution, our EGEC scheme was shown to offer a 3.4 dB gain
over a UEC benchmarker, when QPSK modulation is employed for transmission over
an uncorrelated narrowband Rayleigh fading channel. In the case of another Zeta
probability distribution, our EGEC scheme was shown to offer a 1.9 dB gain over

3.6. Summary and Conclusions 89

the SSCC EG-CC benchmarker. Furthermore, we considered a wide range of Zeta
probability distributions and our EGEC scheme was found to offer beneficial gains
over the relevant benchmarkers in each case. Additionally, we considered the case,
when the source symbols obey the H.265 distribution of Figure 2.3(b), demonstrating
that our EGEC scheme offers a 0.4 dB gain over the EG-CC benchmarker.

However the EGEC scheme has a complex structure and the UEP must be specif-
ically designed for a particular source probability distribution, which prevents the
application of the EGEC scheme to sources having an unknown or non-stationary
probability distribution. Motivated by this, in next chapter we will introduce a uni-
versal JSCC having a simpler structure.

Chapter 4
Reordered Elias Gamma Error

Correction Codes

4.1 Introduction

In this chapter, we propose a universal Joint Source and Channel Code (JSCC) hav-
ing a significantly simpler structure than the EGEC code of Chapter 3. We refer
to this novel code as the Reordered Elias Gamma Error Correction (REGEC) code,
which is designed for the near-capacity transmission of symbols that are randomly
selected either from a large or even infinite alphabet using any arbitrary monotonic
probability distribution. As highlighted in Figure 4.1, this chapter addresses the
source coding, channel coding and concatenated code design aspects of the entire
JSCC design. We commence by introducing the background and motivation of this
research, before discussing the novel contributions of the chapter, as well as its struc-
ture.

Channel coding

Source

Iterative joint source-channel coding design

design

Joint source and channel code design

code design

Channel code

concatenation design

Concatenated

design

Modulation
distribution

Source

code design

Figure 4.1: The components that must be considered, when designing an iterative
JSCC relying on serial concatenation. This chapter addresses the design aspects
highlighted using the bold boxes.

4.1.1. Background and motivation 91

4.1.1 Background and motivation

As we discussed in the previous chapters, JSCCs [7] have been proposed for exploiting
the residual redundancy that remains following source coding in order to enhance the
attainable channel coding performance, whilst avoiding capacity loss. We previously
proposed two JSCCs schemes, which were designed for the near-capacity transmis-
sion of source symbols that are randomly selected either from a large or even infinite
alphabet, namely the Unary Error Correction (UEC) code [1] and the Elias Gamma
Error Correction (EGEC) code [110], which are detailed in Chapters 2 and 3, re-
spectively. More specifically, our previously proposed UEC code of Chapter 2 was
the first JSCC scheme that exhibited a low decoding complexity, when employed
for representing symbol values that are selected from an alphabet having a large or
infinite cardinality. However, the UEC code is based on the unary code [92], which
is not a universal code. Owing to this, the UEC code has a limited applicability,
since it only has a finite average codeword length for particular source distributions,
including only a limited subset of the Zeta probability distributions that does not
include the particular Zeta distribution that is capable of most closely modeling the
symbols produced by the H.264 and H.265 video encoders. Motivated by this, we
proposed the EGEC code of Chapter 3, which is based on the universal Elias Gamma
(EG) source code [38] and hence it was the first universal JSCC, allowing the low
complexity and near-capacity transmission of symbol values that are randomly se-
lected from a large or infinite alphabet using any arbitrary monotonic probability
distribution. Since the average codeword length of the EGEC code is always finite,
it has a much wider applicability than the UEC code. However the EGEC scheme
has a complex structure, comprising two parts, namely the EGEC(UEC) part and
the EGEC(FLC-CC) part, as shown in Figure 3.2. Meanwhile the EGEC(UEC) part
operates on the basis of the UEC code of Chapter 2. The EGEC(FLC-CC) part
employs a serial concatenation of a Fixed Length Code (FLC) with a Convolutional
Code (CC) and relies on side information provided by the EGEC(UEC) part. Owing
to this, the EGEC(FLC-CC) part cannot be operated until after the operation of the
EGEC(UEC) part has been completed, which imposes additional processing delay.
Furthermore, if the side information provided by the EGEC(UEC) part contains any
decoding errors, it will cause the EGEC(FLC-CC) part becoming desynchronised,
hence introducing a high number of decoding errors. Depending on the particular
source probability distribution, the two parts of the EGEC code typically have dif-
ferent error correction performances, with one or other of the parts becoming the
bottle-neck on the overall error connection performance. This can be solved by using

4.1.1. Background and motivation 92

REGEC decoder

Trellis
decoder

Trellis
encoder

yd

d̂

REG
encoder

REG
decoder

z

z̃e

z̃a
ỹ

URC
encoder

decoder
URC

modulator

demodulator

QPSK

QPSK
π1

π2π1

π−1
2

π−1
1

REGEC encoder

Figure 4.2: Schematic of the REGEC scheme, when serially concatenated with URC
and Gray-coded QPSK modulation schemes. Bold notation without a diacritic is
used to denote a symbol vector or a bit vector. A diacritical hat represents a recon-
struction of the symbol or bit vector having the corresponding notation. A diacritical
tilde represents an LLR vector pertaining to the bit vector with the corresponding
notation. A roman superscript ‘a’ is employed to denote an a priori LLR vector,
while ‘e’ is employed for extrinsic LLR vectors. Furthermore, π1 and π2 represent
interleavers, while π−1

1 and π−1
2 represent the corresponding deinterleavers. Punctur-

ing may also be performed in π2, while the corresponding depuncturing operations
take place in π−1

2 .

puncturing to introduce Unequal Error Protection (UEP) for the two parts, as dis-
cussed in Section 3.4, giving them identical error correction performances. However,
the puncturing will impose some capacity loss and it will also increase the complexity
of the system, since the punctured bits still have to be decoded. Furthermore, the
UEP must be specially parametrized for a particular source probability distribution.
If the actual source distribution is unknown or is non-stationary, then it will typically
not match the distribution chosen to parametrize the UEP, hence imposing a further
capacity loss.

Against this background, this chapter proposes a universal JSCC scheme, which
we refer to as the REGEC code. This has a simple structure, which facilitates
the low-complexity near-capacity transmission of symbol values that are randomly
selected from large or infinite alphabets using any arbitrary monotonic probability
distribution. Since it is a universal code, the applicability of the REGEC code is
not limited to any particular source symbol distribution, like the UEC. Furthermore,
since the REGEC code has a simple structure comprising only a single part, as
shown in Figure 4.2, it does not suffer from the delay, loss of synchronisation, loss of
capacity and increased complexity of puncturing, that are unavoidable by the EGEC
scheme. Furthermore, the REGEC code is a “one size fits all” solution, since in
contrast to the EGEC code it does not require UEP that is tailored for a specific
source distribution. Our REGEC code is based on a novel source code, which we
termed as the Reordered Elias Gamma (REG) code. This reorders the bits in each
of the EG codewords in order to give them a relatively simple structure. Since this is
achieved without changing the length of the codewords, the REG code is a universal

4.1.2. Novel contributions 93

code, like the EG code. The proposed REGEC code combines the REG source code
with a novel trellis-based channel code. Reordering the bits in the EG codewords
allows the REGEC trellis to be designed so that the transitions between its states
are synchronous with the transitions between the consecutive codewords in the REG
encoded bit sequence. This allows the residual redundancy in the REG encoded-bit
sequence to be exploited for error correction by the REGEC trellis decoder, hence
facilitating near-capacity operation.

4.1.2 Novel contributions

The author’s novel contributions that are detailed in this chapter are as follows

• The REGEC universal JSCC is designed, which is capable of achieving the
near-capacity transmission of symbols that are randomly selected from large or
infinite cardinality symbol alphabets using any arbitrary monotonic probability
distribution.
• We propose a finite Zeta-like distribution for modeling the distribution of the

symbol values produced, when test video sequences are encoded by H.265 video
encoders.
• A novel REG code is proposed by reordering the bits of the EG code in order to

yield a simple codeword structure, which is suitable for trellis representation.
• We introduce a REGEC trellis, which can describe the structure of our proposed

REG code using a relatively small number of trellis states. Owing to this, our
REGEC decoder has a low decoding complexity.
• We characterize various candidate parametrizations of the REGEC code, con-

sidering the corresponding inner code in terms of the Signal to Noise Ratio
(SNR) required for facilitating iterative decoding converge to a low error prob-
ability (the open tunnel bound) and quantify how low that error probability is
(the error floor).
• A wide range of finite Zeta-like distributions and the H.265 distribution of

Figure 2.3(b) are considered when comparing the performance of the proposed
JSCC REGEC scheme to that of the JSCC UEC and EGEC schemes as well as
to the conventional Separate Source and Channel Code (SSCC) based EG-CC
benchmarker.

4.1.3 Chapter organization

The rest of this chapter is organised as follows:

• In Section 4.2, we describe the Zeta source probability distribution and we gen-
eralise the infinite cardinality source alphabet of our previous work to the case

4.2. Symbol value sets having a large cardinality 94

of a finite cardinality, where this cardinality represents an additional parameter
to be considered.
• In Section 4.3, we introduce the novel REG code and describe the structure of

the REG codewords.
• Section 4.4 and 4.5 introduce our novel REGEC encoder and decoder, repec-

tively.
• In Section 4.6, we analyze the parametrization of the proposed REGEC scheme

and demonstrate that it facilitates near-capacity operation.
• In Section 4.7, we will consider a wide range of finite Zeta-like probability dis-

tributions as well as the H.265 distribution and we will show that our REGEC
scheme is capable of offering gains over the best of the UEC, EGEC and SSCC
benchmarkers in each case, when employing Quaternary Phase Shift Keying
(QPSK) for communication over an uncorrelated narrowband Rayleigh fading
channel.
• Finally, we offer our conclusions in Section 4.8.

4.2 Symbol value sets having a large cardinality

The schemes considered in this chapter are designed for conveying a vector d = [di]
a
i=1

comprising a symbols. This symbol-vector is obtained as the realization of a corre-
sponding vector D = [Di]

a
i=1 of Independent and Identically Distributed (IID) Ran-

dom Variables (RVs). Each RV Di adopts the symbol value d ∈ NL with probability
Pr(Di = d) = P (d), where NL = {1, 2, 3, . . . , L} is the finite-cardinality alphabet
comprising positive integers with the cardinality L. Our previous contributions in
Chapters 2 and 3 characterized the performance of the UEC, EGEC and EG-CC
schemes invoked for representing symbols values that are selected from a set having
an infinite cardinality. Instead, in this chapter we will use the symbol set NL having
the finite cardinality of L = 1000, since the symbol values produced by H.264 and
H.265 are selected from alphabets having finite cardinalities of approximately 1000
as shown in Figure 2.3. Here, the symbol entropy is given by HD =

∑
d∈NL

H[P (d)],

where H[p] = p log2(1/p). Figure 4.3 illustrates the proposed finite Zeta-like distri-
bution having different parametrization as well as the H.265 distribution of Figure
2.3(b). Here, we define the finite Zeta-like distribution as

P (d) =
d−s

H
(s)
L

, (4.1)

4.2. Symbol value sets having a large cardinality 95

H.265

Zeta

p1

d

P
(d
)

1000100101

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Figure 4.3: The finite Zeta-like probability distribution for L = 1000 and
p1 ∈ {0.1, 0.2, . . . , 0.7, 0.8, 0.9} which have the corresponding entropies of HD ∈
{8.0297, 6.5140, 5.2299, 4.1314, 3.1974, 2.4085, 1.7388, 1.1541, 0.6118}, as well as the
H.265 distribution, which has the entropy HD = 2.3922. This was ob-
tained by recording the values of the 112.9 million symbols produced when the
HM-9.0 H.265 video encoder employs the ‘encoder_lowdelay_main.cfg’ and ‘en-
coder_random_access_main.cfg’ configurations to encode the 220 s of video that
are comprised by 4:2:0 versions of the 24 video test sequences that are commonly
used for testing in H.265 [8, page 94].

whereH(s)
L =

∑
d∈NL

d−s is the generalized harmonic number1 of order L of s, where s ∈
R for a finite L. The limit of L→∞ exists when s > 1 and the generalized harmonic
number converges to the Riemann Zeta funtion2. The finite Zeta-like distribution
may be more conveniently parameterized by the probability of the symbols adapting
the most likely value of 1, which is given by p1 = Pr(Di = 1) = 1/H

(s)
L . In the case

of the finite Zeta-like distribution, the symbol entropy is given by

HD =
∑

d∈NL

H[P (d)] =
ln(H

(s)
L)

ln(2)
− s(∂H

(s)
L /∂s)

ln(2)H
(s)
L

, (4.2)

where ∂H(s)
L /∂s = −∑d∈NL

ln(d)d−s is the derivative of the harmonic number with
respect to s.

1Note the difference between the notation H• of the entropy and the notation H(•)
• of generalized

harmonic number.
2When L→∞, we have lim

L→∞
H

(s)
L = ζ(s), where ζ(s)=

∑
d∈N1

d−s is the Riemann Zeta function

and N1 = {1, 2, 3, . . .∞} is the infinite-cardinality set comprising positive integers.

4.3. Reordered Elias Gamma code 96

Table 4.1: The first twelve codewords of various source codes
di Unary(di) EG(di) xi ti Unary(xi) FLC(ti,xi − 1) REG(di)
1 1 1 1 0 1 1
2 01 010 2 0 01 0 001
3 001 011 2 1 01 1 011
4 0001 00100 3 0 001 00 00001
5 00001 00101 3 1 001 01 00011
6 000001 00110 3 2 001 10 01001
7 0000001 00111 3 3 001 11 01011
8 00000001 0001000 4 0 0001 000 0000001
9 000000001 0001001 4 1 0001 001 0000011
10 0000000001 0001010 4 2 0001 010 0001001
11 00000000001 0001011 4 3 0001 011 0001011
12 000000000001 0001100 4 4 0001 100 0100001
...

...
...

...
...

...
...

...

4.3 Reordered Elias Gamma code

As shown in Table 4.1, source encoders such as the unary or EG encoders repre-
sent each symbol di in the vector d using a corresponding binary codeword, namely
Unary(di) or EG(di), respectively. Note that for the convenience of our ensuing
discussions, the unary codewords shown in Table 4.1 are the complements of those
that are conventionally employed, for example in [1, Table I]. The average codeword
length is given by

l =
∑

d∈NL

P (d)l(d), (4.3)

where l(d) is the length of the dth codeword.

In the case of a unary code, the length of the codeword Unary(di) is given by
lUnary(di) = di, giving an average codeword length of

lUnary =
H

(s−1)
L

H
(s)
L

, (4.4)

when the source symbols obey the finite Zeta-like distribution of (3.1). However, the
average unary codeword length l is only finite for s > 2 and hence for p1 > 0.608

when L tends to infinity. For the case of the finite Zeta-like distribution having the
cardinality L = 1000, the average codeword length of the unary code is almost double
that of the EG code when p1 = 0.608, as we will characterise below. Despite this,
the unary code was used as the basis of the JSCC UEC scheme of Figure 4.2(c) [1],
since its codewords have a relatively simple structure, which can be readily exploited
for error correction. More specifically, the structure of the unary codewords can be
described by the UEC trellis of [1], without requiring an excessive number of trellis
transitions and states.

By contrast, an EG codeword EG(di) has a length of lEG(di) = 2blog2(di)c +

1. When the source symbols obey the finite Zeta-like distribution, the average EG

4.3. Reordered Elias Gamma code 97

codeword length becomes [110]

lEG = 1− 2(∂H
(s)
L /∂s)

ln(2)H
(s)
L

− 2

H
(s)
L

∑

d∈NL

d−sfrac(log2(d)), (4.5)

where the frac(·) operator yields the fractional part of the operand, where frac(3.4) =

0.4 for example [110]. Note that the average EG codeword length l is finite for all Zeta
distributions as L→∞, not just for those for which we have p1 > 0.608. For the case
of L = 1000, the average EG codeword length is lower than that of the unary code for
all cases where p1 < 0.794. However, the conventional EG codewords have a relatively
complicated structure, which cannot be readily described by a single trellis and hence
cannot be readily exploited for low-complexity error correction using a simple JSCC
structure. Owing to this, our previous work [110] was only able to develop a trellis
representation of the EG code by decomposing each symbol di into two sub-symbols
xi and ti as shown in Figure 4.2(b). This was motivated by the observation that
each EG codeword EG(di) may be considered to be a concatenation of a unary
codeword Unary(xi) and a FLC suffix FLC(ti, xi − 1), where xi = blog2(di)c + 1

and ti = di − 2blog2(di)c as shown in Table 4.1. Here FLC(ti, xi − 1) is the binary
representation of the integer ti using (xi − 1) bits. As shown in Figure 4.2(b), each
sub-symbol xi is encoded by the EGEC(UEC) part of the EGEC code, while each
sub-symbol ti is encoded by the EGEC(FLC-CC) part. However, the reliance on
these two parts leads to the requirement to tailor the UEP of the two parts for
the specific source probability distribution, which may not match with the actual
source distribution if it is unknown or non-stationary, as well as imposing for the
disadvantages associated with an increased delay, loss of synchronisation, capacity
loss and increased complexity due to puncturing, as described in Section 4.1.

In order to eliminate the requirement for a complicated code structure comprising
two parts with the design-objective of neating a simple trellis structure, we propose
a novel reordering of the bits in each EG codeword. We refer to the reordered code
as the REG code, where the generalized structure of each REG codeword is shown
in Figure 4.4. The reordering is conceived as follows. As described above, the first

bxi−1

b2 bxi−1

b1 b2

5th4th3rd2nd 2(xi − 1)th [2(xi − 1) + 1]th1st

0 0 0

0 00b1

Unary(xi)

1

FLC(ti, xi − 1)

1

REG(di):

EG(di):

Figure 4.4: The reordering of an EG codeword to obtain the corresponding REG
codeword

4.4. Reordered Elias Gamma Error Correction encoder 98

xi bits of the conventional EG codeword, EG(di) are given by a unary codeword
Unary(xi). These bits become the odd-indexed bits of the our corresponding REG
codeword. Notice that the final 1-valued bit in Unary(xi) becomes the final bit in
REG(di), since all REG codewords comprise an odd number of bits, in common
with all EG codewords. The last xi − 1 bits of the conventional codeword EG(di)
comprise the FLC codeword FLC(ti, xi − 1), which become the even-indexed bits
of the corresponding REG codeword REG(di). Since each REG codeword has the
same length of lREG(di) = 2blog2(di)c + 1 as the corresponding EG codeword, the
REG code will have the same average codeword length lREG as the EG code, which
is given by (4.5). Therefore, since the EG is a universal code, so too is the REG.
This approach is motivated by the difference in the structures of the unary and EG
codewords shown in Table 4.1. In Chapter 2, a UEC code was designed for the JSCC
of unary-encoded symbols, in order to facilitate near-capacity communication. This
is achieved by designing the UEC trellis of Section 2.3.2 for ensuring that the path
through the trellis remains synchronised with the unary codewords. More specifically,
the UEC trellis uses the logical 1-valued bit at the end of each codeword to detect
the boundary between consecutive codewords and to trigger a return to state 1 or 2.
By contrast, maintaining trellis synchronisation during the joint source and channel
coding of EG-coded symbols is more complicated. This is because the length of
the EG codeword depends on the length of its unary prefix, which may be detected
using the 1-valued bit at the end. However, an EGEC trellis designed for maintaining
synchronisation with the EG codewords would require states, i.e. memory for storing
the length of the unary prefix all the way until the end of the FLC suffix is reached,
whereupon a return to state 1 or 2 could be triggered. Since the unary prefix can
have any length selected from an infinite set, an infinite number of states would be
required to store this information, hence preventing the construction of a practical
trellis. Instead, we can maintain synchronisation by reordering the bits in the EG
codeword, so that the logtical 1-valued bit at the end of the unary prefix appears
instead at the end of the REG codeword. In this way, this logical 1-valued bit may
be used for detecting the boundary between consecutive codewords and to trigger a
return to state 1 or 2 in the proposed REGEC trellis. In this way, synchronisation can
be maintained and near-capacity joint source and channel coding can be achieved,
as it will be introduced in Section 4.4.

4.4 Reordered Elias Gamma Error Correction encoder

In this section, we introduce the REGEC encoder, which is illustrated in Figure 4.2(a).
In Section 4.4.1, we discuss the operation of the REG source encoder. The operation

4.4.1. Reordered Elias Gamma encoder 99

of the REGEC trellis is described in Section 4.4.2. Finally, Section 4.4.3 describes
the serial concatenation of the REGEC encoder with the Unity Rate Convolutional
(URC) encoder and QPSK modulator of Figure 4.2(a).

4.4.1 Reordered Elias Gamma encoder

The REG encoder of Figure 4.2(a) represents each symbol di in the vector d using
the corresponding REG codeword REG(di), as shown in Table 4.1. These codewords
are then concatenated to obtain the b-bit vector y = [yj]

b
j=1 shown in Figure 4.2(a).

For example, the vector x = [6, 3, 1, 9, 2, 1, 1, 2] of a = 8 symbols yields the b = 24-bit
vector y = 010010111000001100111001.

4.4.2 Reordered Elias Gamma Error Correction trellis encoder

As shown in Figure 4.2(a), the bit vector of concatenated REG codewords y is for-
warded to a trellis encoder, which employs a novel REGEC trellis for encoding
each bit yj in the vector y, in order of increasing bit-index j. The trellis com-
prises b number of concatenated trellis stages of the type depicted in Figure 4.5.
Each trellis stage comprises 2r number of transitions between r number of states,
where r is required to satisfy r = 2f + 2, where f must be even. For example,
an r = 6-state trellis is shown in Figure 4.5(a), an r = 14-state trellis is shown
in Figure 4.5(b) and the general case is given in Figure 4.5(c). Each successive
bit of y forces the trellis encoder to transition from its particular previous state
mj−1 ∈ {1, 2, . . . , r} into a new state mj ∈ {1, 2, . . . , r} that is selected from two
legitimate alternatives, depending on the bit value yj. In the trellis stages of Fig-
ure 4.5, yj = 0 forces the trellis to make the dashed transition, while yj = 1 forces
the trellis to obey the solid transition. The encoding process always commences
from the state m0 = 1. The bit vector y identifies a path through the trellis,
which may be represented by a vector m = [mj]

b
j=0 comprising (b + 1) state val-

ues. For example, the bit vector y = 010010111000001100111001 yields the path
m = [1, 3, 6, 4, 6, 1, 3, 6, 1, 2, 4, 6, 4, 6, 4, 5, 2, 4, 6, 1, 2, 1, 3, 5, 2, 1] through the r = 6-
state trellis of Figure 4.5(a).

As discussed in Section 4.3, the odd-indexed bits in the REG codewords derive
from a unary codeword, while the even-indexed bits come from an FLC codeword.
These unary and FLC bits force the trellis path into different sub-sets of the r trellis
states. More specifically, we decompose the set of r states in to three sub-sets, namely
the unary states, the FLC states and the holding states. The trellis is designed for
ensuring that each input bit yj that is provided by a unary bit causes a transition
from one of the first f number of states mj−1 ∈ {1, 2, . . . , f}, which we refer to as the

4.4.2. Reordered Elias Gamma Error Correction trellis encoder 100

unary states, where f must be even. The transition enters a next state mj, according
to

mj =





1 + odd(mj−1)

if yj = 1 and mj−1 ∈ {1, 2, . . . , f}
mj−1 + f

if yj = 0 and mj−1 ∈ {1, 2, . . . , f}

, (4.6)

where odd(·) yields 1 if its operand is odd or 0 if it is even. Note that since each
REG codeword ends with a unary bit having the value yj = 1, the trellis path m is
guaranteed to enter either state mj = 1 or mj = 2 after each codeword. In this way,
the transitions between the states of the REGEC trellis are synchronised with the
transitions between the REG codewords in the bit vector y. For the same reason,
the trellis path m is guaranteed to terminate in the state mb = 1 or mb = 2 of
the end of the encoding process. By contrast, the other unary bits in each REG
codeword have the value yj = 0, which cause transitions to one of the next (f − 2)

states mj−1 ∈ {f + 1, f + 2, . . . , 2f − 2}, which we refer to as the FLC states, since
the next bit will be an FLC bit. This FLC bit is guaranteed to cause a transition
from the FLC state to a unary state, since an FLC bit is always followed by a unary
bit in the REG codewords. The next state mj, is selected according to

mj =





mj−1 − f + 2 · odd(mj−1) + 1

if yj = 1 and mj−1 ∈ {f + 1, . . . , 2f − 2}
mj−1 − f + 2

if yj = 0 and mj−1 ∈ {f + 1, . . . , 2f − 2}

. (4.7)

Observe that when f = 2, there are no FLC states in the trellis, as shown in Figure
4.5(a). Note that REG codewords having a length l(di) 6 (2f − 2) cause the path m

to enter only the unary and FLC states described above. However, REG codewords
having a length l(di) > (2f − 2) require four additional states, which we refer to
as the holding states, since they act as a ‘holding pattern’ for the bits in the REG
codeword from the (2f − 1)st bit onward. More specifically, the FLC holding states
mj ∈ {2f − 1, 2f} are entered into, if the unary bit yj = 0 is encountered, while
being in one of the unary states of the set mj−1 ∈ {f − 1, f}, as shown in (4.6).
Upon emerging from the FLC holding states mj−1 ∈ {2f − 1, 2f}, the next state will
be chosen from the unary holding states of the set mj ∈ {2f + 1, 2f + 2} according
to

4.4.2. Reordered Elias Gamma Error Correction trellis encoder 101

(a)

(c)

(b)

states
Holding

states
FLC

states
FLC

states
Holding

states
Unary

states
Unary

states
Holding

states
Holding

0/01
6

2

3

5

1

4

mjyj/zj

6

3

5

1

2

4

1/01
0/00

1/11
0/11

1/00
1/11

0/00
1/00

0/11
1/10

0/10

states
FLC

states
Unary

states
Holding

states
Holding

yj = 1

yj = 0

mj−1

mj−1

0/cf

0/cf−1

1/cf/2+1

1/cf−1

1/cf

0/cf/2+1

1/c2

1/c1

1/c2

1/cf/2−1

0/cf+1

1/cf/2−1

1/cf+1

1/cf/2

0/cf/2

1

3

f − 3

2

4

mj−1

2f + 1

2f − 1

2f − 3

f + 1

f − 1

2f + 2

0/c2

0/c1

0/c1

0/c2

0/cf/2−1

1/cf+1

1/cf

1/cf/2+1

1/cf/2

2f − 2

f + 2

f

0/cf/2−1

0/cf/2

0/cf/2+1

0/cf

0/cf+1

f − 2

2f

1/cf−1

1

3

f − 3

2

4

2f + 1

2f − 1

mj

f − 1

2f

f − 2

f + 2

2f − 2

2f − 3

f + 1

f

2f + 2

1/c1

0/cf−1

0/11

10

6

10

6

2

3

7

11

3

9

5

4

8

12

7

9

5

1

8

12

2

4

0/00
1/11

0/00

1/11
0/10

1/01
0/10

1/01
0/11

1/00
1/11

0/00
1/10

0/01
1/10

0/01
1/00

0/11
1/00

0/11
1/00

1

1/10
14
0/01

14

yj/zj mj

11
1/11

0/00

13
1/01

13
0/10

states
FLC

yj/zj

Figure 4.5: (a) An f = 2, r = 6-state n = 2-bit REGEC trellis using the codebook
C = [00; 11; 01]. (b) An f = 6, r = 14-state n = 2-bit REGEC trellis where using
the codebook C = [00; 01; 01; 11; 11; 11; 01] which is constructed by extending the
codebook C = [00; 11; 01]. (c) The generalized REGEC trellis, having r states and
n-bit codewords, where C = [c1; c2; . . . , cf , cf+1] .

4.4.2. Reordered Elias Gamma Error Correction trellis encoder 102

mj =





mj−1 + 2 · odd(mj−1) + 1

if yj = 1 and mj−1 ∈ {2f − 1, 2f}
mj−1 + 2

if yj = 0 and mj−1 ∈ {2f − 1, 2f}

. (4.8)

Likewise, upon traversing from the unary holding states mj−1 ∈ {2f + 1, 2f + 2},
the next state will be chosen according to

mj =





1 + odd(mj−1)

if yj = 1 and mj−1 ∈ {2f + 1, 2f + 2}
mj−1 − 2

if yj = 0 and mj−1 ∈ {2f + 1, 2f + 2}

. (4.9)

Note that the trellis path m will remain in the holding states, as long as unary bits
having the value of yj = 0 are encountered. When the final yj = 1-valued unary bit of
the REG codeword is encountered, the trellis path returns to state mj = 1 or mj = 2,
ready for the start of the next REG codeword. Finally, combining Equations (4.6)
to (4.9) yields (4.10). Note that the total number of states is given by r = (2f + 2).

The path m may be modeled as a particular realization of a vector M = [Mj]
b
j=0

comprising (b+1) RVs, which are associated with the transition probabilities Pr(Mj =

m,Mj−1 = m′) = P (m,m′) of (4.11), which depends on the source symbol probabili-
ties P (d), as derived in the Appendix. In (4.11), l1 is the average length of Unary(xi),
as described in Section 4.3. In the case of the finite Zeta-like distribution of (3.1), l1
is given by [110]

l1 = 1− H
(s)
L

ln(2)H
(s)
L

− 1

H
(s)
L

∑

d∈NL

d−sfrac[log2(d)]. (4.12)

The conditional transition probabilities Pr(Mj = m|Mj−1 = m′) are given by [1]

P (m|m′) =
P (m,m′)∑r
m̌=1 P (m̌,m′)

. (4.13)

Once the path m has been determined, the trellis encoder uses it to represent
each bit yj in the vector y by an n-bit codeword zj. This is selected from the
matrix of r/2 codewords C = [c1; c2; . . . ; cf+1] or from the complementary matrix
C = [c1; c2; . . . ; cf+1]. As shown in Figure 4.5(c), this is achieved according to

4.4.2. Reordered Elias Gamma Error Correction trellis encoder 103

m
j

=

                      

1
+

o
d
d
(m

j−
1
)

if
y j

=
1

an
d
m
j−

1
∈
{1
,2
,.
..
,f
,2
f

+
1,

2f
+

2}
m
j−

1
+
f

if
y j

=
0

an
d
m
j−

1
∈
{1
,2
,.
..
,f
}

m
j−

1
−
f

+
2
−
y j

+
2
·y

j
·o

d
d
(m

j−
1
)

if
y j
∈
{0
,1
}

an
d
m
j−

1
∈
{f

+
1,
f

+
2,
..
.,

2f
−

2}
m
j−

1
+
y j
·(

2
·o

d
d
(m

j−
1
)

+
1)

+
2
·o

d
d
(y
j

+
1)

if
y j
∈
{0
,1
}

an
d
m
j−

1
∈
{2
f
−

1,
2f
}

m
j−

1
−

2
if
y j

=
0

an
d
m
j−

1
∈
{2
f

+
1,

2f
+

2}

(4
.1
0)

4.4.2. Reordered Elias Gamma Error Correction trellis encoder 104

P
(m
,m
′)

=

    

1 2
l

[1−
2
ẋ
−

1
∑ d
=

1

P
(d

)]
if
m
′
∈
{1
,.
..
,f
}

a
n

d
m

=
m
′ +

f

1 2
l

2
ẋ
−

1
∑

d
=

2
ẋ
−

1

P
(d

)
if
m
′
∈
{1
,.
..
,f
}

a
n

d
m

=
o
d

d
(m
′)

+
1

1 2
l

bl
og

2
(L

)c
∑

x
=
ẍ

+
1

2
ẍ
−

1
∑ ẗ=

0

o
d

d
(ẗ

+
1

+
y j

)
2
x
+

(ẗ
+

1
)

2
x

2
ẍ
−

1
∑

d
=

2
x
+
ẗ

2
x

2
ẍ

P
(d

)
if
m
′
∈
{f

+
1
,.
..
,2
f
−

2}
a
n

d
m

=
d̈
−
y j

+
2
y j
·o

d
d

(m
′)

1 2
l

bl
o
g
2
(L

)c
∑ x
=
f

x ∑ x̊
=
f

2
x̊
−

1
∑ t̊=

0

o
d

d
(̊t

+
1

+
y j

)
2
x
+

(̊t
+

1
)

2
x

2
x̊
−

1
∑

d
=

2
x
+
t̊

2
x

2
x̊

P
(d

)
if
m
′
∈
{2
f
−

1,
2f
}

a
n

d
m

=
m
′ +

y j
(2
·o

d
d

(m
′)

+
1
)

+
2
·o

d
d

(y
j

+
1
)

1 2
l

[l 1
−

f 2
+

2
(
f
/
2
+

1
)
−

1
∑ d
=

1

p
(d

)(
blo

g
2
(d

)c
+

1
−

f 2
)]

if
m
′
∈
{2
f

+
1
,2
f

+
2
}

a
n

d
m

=
m
′ −

2

1 2
l

[1−
2
f
/
2
−

1
∑ d
=

1

p
(d

)]
if
m
′
∈
{2
f

+
1
,2
f

+
2
}

a
n

d
m

=
o
d

d
(m
′)

+
1

0
o
th

er
w

is
e

(4
.1
1)

d
∈
{1
,2
..
.,
L
};

y j
∈
{0
,1
};
ẋ

=
dm
′ /

2e
;
d̈

=
m
′ −

f
+

2
;
ẍ

=
dd̈
/
2e
−

1

l 1
=
P

(d
i)
·[
blo

g
2
(d

i)
c+

1
]

4.4.2. Reordered Elias Gamma Error Correction trellis encoder 105

zj =

{
cdmj−1/2e if yj 6= odd(mj−1)

cdmj−1/2e if yj = odd(mj−1)
. (4.14)

Following this, the selected codewords are concatenated to obtain the bn-bit vector
z = [zk]

bn
k=1 of Figure 4.2. For example, the vector y = 010010111000001100111001 of

b = 24 bits is represented by the vector z = 111101111011111000001101110100010011100011110001

of bn = 48 bits, when employing the r = 6-state REGEC trellis of Figure 4.5(a), with
the n = 2-bit codebook C = [00; 11; 01].

Note that the selection of the number of trellis states r is discussed in Section 4.6.4,
while the selection of the codebook C is discussed in Section 4.6.5. We emphasize
that REGEC trellis encoder operates in a similar manner to a UEC trellis encoder
and a CC encoder, but subject to the following important differences, as follows.

1. As in the UEC trellis encoder, a bit having the value of yj = 1 will force a
transition from the odd-indexed states at the top half of the REGEC trellis
to the even-indexed states in the bottom half and vice-versa. Owing to this
symmetry and due to using complementary codewords, the REGEC trellis en-
coder produces equiprobable bit values for the bit vector z. This results in a
bit entropy of Hz = 1, which is a necessary condition for avoiding capacity loss,
as described in [1]. However, in contract to the unary codewords of the UEC
encoder, yj = 1 does not only occur at the end of a REG codeword, resulting
in transitions between the top and bottom halves of the REGEC trellis more
frequently than only at the end of each codeword. By contrast, CC encoders
produce binary values that are not guaranteed to be equiprobable, unless they
are specifically parametrized for this purpose, as characterized in [1, Table II].

2. As we described above, the final unary-bit yj in each REG codeword is guar-
anteed to induce a transition to either state mj = 1 or state mj = 2 of the
REGEC trellis, in analogy with the UEC trellis. However, unlike in the UEC
encoder, the particular one from the pair of states mb = 1 or state mb = 2

that is selected at the end of the REGEC trellis path m depends on more than
factors just deciding whether the length a of the symbol vector d is odd or
even. This is due to the transitions between the top and bottom halves of the
REGEC trellis that are caused by bits having the value yj = 1 in the middle of
REG codewords, as described above. By contrast, in a generalized CC encoder,
the trellis path can potentially end in any state, since the transitions between
states are not synchronized with the codewords of the source encoder.

4.4.3. Integration of the REGEC encoder into a transmitter 106

Since the binary values in the vector z are equiprobable, the average coding rate of
the REGEC encoder is given by

Ro =
HD

lREGn
. (4.15)

Here, we employ the roman superscript ‘o’ to indicate that this coding rate relates
to the outer encoder of a serial concatenation, namely the REGEC encoder shown
in Figure 4.2(a).

4.4.3 Integration of the REGEC encoder into a transmitter

Following REGEC encoding, the bit vector z is interleaved by the block π1, URC
encoded [87] and then interleaved again by the block π2, as shown in Figure 4.2(a).
Puncturing may also be performed within π2 in order to achieve a particular desired
effective throughput η for the transmitter. This is achieved by discarding an appro-
priate number of bits following interleaving. The inner coding rate Ri is defined by
the ratio of bits input into the URC encoder to the number of bits output by π2,
where Ri > 1 will be obtained if puncturing is used. Here we employ the roman
superscript ‘i’ to indicate that this coding rate relates to the inner code of a serial
concatenation, namely the punctured URC code shown in Figure 4.2(a). Following
this, M = 4-ary Gray-coded QPSK modulation may be employed for transmission,
as shown in Figure 4.2(a). Note that other mapping schemes or a modulation scheme
having a higher order M can be employed instead, although this may increase the
complexity of the receiver, as we will discuss in Section 4.6. The effective throughput
of the transmitter is given by

η = Ro ·Ri · log2(M). (4.16)

Note that no knowledge of the source probability distribution P (x) is required any-
where in the transmitter.

4.5 Reordered Elias Gamma Error Correction decoder

In this section, we describe the operation of the REGEC decoder of Figure 4.2(a).
In Section 4.5.1, we discuss the integration of the REGEC decoder with the URC
decoder and QPSK demodulator of Figure 4.2(a). Following this, we detail the
operation of the REGEC trellis decoder in Section 4.5.2, while the REG decoder is
described in Section 4.5.3.

4.5.1. Integration of Reordered Elias Gamma Error Correction decoder
into a receiver 107

4.5.1 Integration of Reordered Elias Gamma Error Correction decoder

into a receiver

In the receiver, soft QPSK demodulation [97], depuncturing and deinterleaving π−1
2 ,

Bahl-Cocke-Jelinek-Raviv (BCJR)-based URC decoding [9] and further deinterleav-
ing π−1

1 may be performed, before invoking the proposed REGEC decoder of Fig-
ure 4.2(a). Note that the receiver is required to employ the same pseudo-random
interleaver designs as the transmitter. However, the entire set of interleavers can
be generated independently by both the transmitter and receiver using only a single
pseudo-random number generator seed. This seed may be hard-coded into both the
transmitter and receiver, or may be reliably conveyed using only a very small amount
of side information. The REGEC decoder is provided with the a priori Logarithmic
Likelihood Ratio (LLR) vector z̃a and in response it generates the extrinsic LLR
vector z̃e of Figure 4.2(a), which may be iteratively exchanged with the serially con-
catenated URC decoder, until iterative decoding convergence to an infinitesimally
low SER is achieved. In turn, the URC decoder may also iteratively exchange extrin-
sic LLRs with the demodulator [114], in order to avoid capacity loss when a mapping
scheme other than Gray coding or when a higher-order modulation scheme is em-
ployed. Note that the combination of the URC decoder and the demodulator will
have an EXtrinsic Information Transfer (EXIT) curve that reaches the (1, 1) point
at the top right corner of the EXIT chart [106].

4.5.2 Reordered Elias Gamma Error Correction trellis decoder

As shown in Figure 4.2(a), the REGEC trellis decoder is provided with a vector of a
priori LLRs z̃a = [z̃a

k]
bn
k=1 that pertain to the corresponding bits in the vector z. The

trellis decoder applies the BCJR algorithm [50] to a REGEC trellis of the sort shown
in Figure 4.5(c) to consider every legitimate bit vector that could be represented by z̃a,
having the particular length bn. Here the value of bn is assumed to be perfectly known
to the receiver, where the transmitter may employ a small amount of side information
to reliably convey this value in practice. Here, the synchronization between the
REGEC trellis and the REG codewords is exploited during the BCJR algorithm’s γt
calculation of [50, Equation (9)], by employing the conditional transition probabilities
P (m|m′) of (4.11). Note that the REGEC trellis should be terminated at m0 =

1 and at both possibilities for the final state, namely mb = 1 and mb = 2, as
described in Section 4.5.1. As shown in Figure 4.2(a), the BCJR decoder generates
the vector of extrinsic LLRs z̃e = [z̃e

k]
bn
k=1 which is provided for the next iteration of

the concatenated URC decoder’s operation. Note that the REGEC trellis decoder’s
BCJR algorithm has only modest complexity, since it may employ a low number r

4.5.2. Reordered Elias Gamma Error Correction trellis decoder 108

of states. Furthermore, it facilitates error correction even if the symbol probability
distribution P (d) is unknown, provided that the channel SNR is sufficiently high,
as we shall demonstrate in Section 4.6.5. In this case, the conditional transition
probabilities P (m|m′) of (4.11) will also be unknown and so they are simply omitted
from the BCJR algorithm’s γt calculation.

The transformation of z̃a into z̃e by the trellis decoder of Figure 4.2(a) may be
characterized by plotting the inverted REGEC EXIT curve in an EXIT chart [51],
as exemplified in Figure 4.6. Note that if a suitably designed codebook C comprising

URC 4.2 dB
REGEC No probs

URC 2.2 dB
REGEC

I(z̃e; z)

I
(z̃

a
;z
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 4.6: EXIT charts of the REGEC scheme. Here, the symbols of d obey a
finite Zeta-like distribution having L = 1000 and p1 = 0.7942, while the REGEC
codewords C = [00; 11; 01] comprise n = 2 bits and result in an REGEC trellis having
r = 6 states. Furthermore, a URC decoder having r = 2 states is concatenated with
Gray-coded QPSK modulation, for communication over an uncorrelated narrowband
Rayleigh fading channel having various Eb/N0 values.

codewords having at least n = 2 bits is employed, then the free distance dfree of the
REGEC code will be at least two, as it will be quantified in Section 4.6. In this case
the inverted REGEC EXIT curve will reach the (1, 1) point in the top right corner
of the EXIT chart [71]. Since the URC decoder and demodulator also have an EXIT
curve that reaches the (1, 1) point in the top right corner of the EXIT chart [106] as
shown in Figure 4.6, iterative decoder convergence towards the Maximum Likelihood
(ML) performance is facilitated [107].

The EXIT chart area Ao that is situated below the inverted REGEC EXIT curve
is given by [110,112]

Ao =
1

n

r∑

m′=1

r∑

m=1

P (m,m′) log2

(
1

P (m|m′)

)
. (4.17)

4.5.3. Reordered Elias Gamma decoder 109

Note that, the REGEC EXIT chart area Ao is independent of the codebook design,
but using different codebooks can affect the shape of the EXIT curve, as will be dis-
cussed in Section 4.6.2. Following the completion of iterative decoding, the REGEC
trellis decoder may employ the Viterbi algorithm to generate the vector ŷ = [ŷj]

b
j=1

of recovered bits, which pertain to the corresponding bits in the vector y, as shown
in Figure 4.2(a).

4.5.3 Reordered Elias Gamma decoder

The decoded bit vector ŷ can be REG decoded in order to obtain the recovered
symbol vector d̂ of Figure 4.2(a). If there are any bit errors in the vector ŷ, then we
might arrive either at the wrong legitimate REG codeword or fail to find a legitimate
codeword. In this case, these bits are discarded. If the decoded symbol vector d̂

does not contain the correct number a of symbols, then an appropriate number of
symbols is removed from the end of d̂ or an appropriate number of 1-valued symbols is
appended to the end of d̂, accordingly. Here, it is assumed that the REG decoder has
perfect knowledge of a. In practice, this value may be fixed in both the transmitter
and receiver, or it may be reliably conveyed from transmitter to receiver using a small
amount of side information.

4.6 Parametrization of the Reordered Elias Gamma Error

Correction code

In this section, we discuss the parametrization of the REGEC code. In Section
4.6.1, we introduce the extension rule of the REGEC codebook extension. In Section
4.6.2, we analyse the the near-capacity operation of the REGEC decoder. In Section
4.6.3, we discuss the codebook design of the REGEC trellis encoder, considering the
free distance properties of various candidate codebooks. The EXIT curves of the
candidate codebooks and their EXIT chart matching are discussed in Section 4.6.4.
Finally we analyse the error floor of the candidate codebooks in Section 4.6.5 and
selected a recommended codebook.

4.6.1 Reordered Elias Gamma Error Correction codebook extension

As described in Section 4.4.2, an REGEC trellis having r number of states is parametrized
by a set of r/2 codewords C, each comprising n number of bits, where C = [00; 11; 01]

in the r = 6, n = 2 example of Figure 4.5(a) and C = [00; 01; 01; 11; 11; 11; 01] in the
r = 14, n = 2 example of Figure 4.5(b). Any codebook C′ corresponding to a trellis
having r′ = 2f ′+2 number of states can be extended to a codebook C′′ corresponding
to r′′ > r′ number of states including several new unary and FLC states. Note that

4.6.1. Reordered Elias Gamma Error Correction codebook extension 110

(a)

insert the codeword serveral times

copy the codeword once

(b)

Unary
states

FLC
states

Holding
states

Holding
states

Unary
state Unary

states

FLC
states

Holding
states

Holding
states

FLC
states

Unary
states

r′ = 6 r′′ = 14

1 1

0 0

0 1

1 1

1 1

0 1

1 1

0 1

0 1

f ′ = 2 f ′′ = 6

0 0

C′ C′′

c′′f ′′+2
2

= c′f ′
2 +1

c′′f ′
2

= c′f ′
2

f = f ′′

r′′ = 2f ′′ + 2

f = f ′
C′′C′

c′1

c′f ′+1

r′ = 2f ′ + 2

c′f ′
2

c′f ′−1

c′f ′

c′′1 = c′1

c′′f ′′
2

= c′f ′+1

c′′f ′′−1 = c′f ′

c′′f ′′ = c′f ′

c′f ′
2 +1

c′′f ′′+1 = c′f ′+1

c′′f ′+2
2

= c′f ′+1

f ′

2

f ′−2
2

f ′′−f ′

2

f ′′−f ′

2

c′′f ′′+f ′
2

= c′f ′

c′′f ′′+f ′−2
2

= c′f ′−1

Figure 4.7: (a) Codebook extension from the codebook C′ of the r′ = 6-state trellis
of Figure 4.5(a) to the codebook C′′ of the r′′ = 14-state trellis of Figure 4.5(b). (b)
The generalized extension of a codebook C′ for an r′ = (2f ′ + 2)-state trellis to a
codebook C′′ for an r′′ = (2f ′′ + 2)-state trellis, where f ′′ > f ′.

when provided with the same REG-encoded bit vector y, REGEC trellis encoders
employing the trellises of Figure 4.5(a) and Figure 4.5(b) are guaranteed to generate
identical REGEC-encoded bit vectors z, despite using different codebooks C. This is
because the r = 14 codebook of Figure 4.5(b) is an extension of the r = 6 codebook
of Figure 4.5(a). In this way, the use of extension allows a higher number of states r
to be used in the REGEC trellis decoder than in the REGEC trellis encoder. This
allows us to dynamically change the number of states employed in the decoder in or-
der to strike an attractive trade-off between its performance versus trellis complexity,
as characterized in Section 4.6.2 [99].

This process is illustrated in Figure 4.7(a) for the specific case of extending the
f ′ = 2 r′ = 6-state codebook C′ = [00; 11; 01] of Figure 4.5(a) to the f ′′ = 6 r′′ = 14-
state codebook C′′ = [c1; c2; c3; c4; c5; c6; c7] of Figure 4.5(b). Meanwhile, Figure
4.7(b) illustrates the process for the generalised case. The process comprises 5 steps
listed as follows:

1. The first f ′/2 codewords in the codebook C ′ relate to the unary states, as
described in Section 4.4. These codewords should be copied to the first f ′/2
codewords of the new codebook C ′′. In the example of Figure 4.7(a), this gives
C′′ = [00; c2; c3; c4; c5; c6; c7].

2. The next f ′/2 − 1 codewords in the codebook C ′ relate to the FLC states, as
described in Section 4.4. These codewords should be copied to the codewords
in codebook C ′′ having the indices from f ′′/2 + 1 to f ′′+f ′−2

2
. Note that as

described in Section 4.4.2, there are no FLC states when we have f ′ = 2 unary

4.6.2. Performance analysis 111

states. Therefore in the example of Figure 4.7(a), nothing is copied to the
codebook C ′′ in this step.

3. The (f ′ + 1)th codeword of the codebook C ′ relates to the FLC holding state.
This codeword should be copied f ”−f ’

2
times to form the codewords [c f′

2
+1

; . . . ; c f′′
2
]

of the codebook C”. In the example of Figure 4.7(a), this gives C′′ = [00,01,01, c4, c5, c6, c7].
4. Similarly, the f ′th codeword of the codebook C ′ relates to the unary holding

state. This codeword should be copied f ′′−f ′
2

times to form the codewords
[c f′′+f′

2
; . . . ; cf′′−1] of the codebook C ′′, which relate to the new unary states. In

the example of Figure 4.7(a), this gives C′′ = [00; 01; 01;11;11; c6; c7].
5. Finally, the f ′th and (f ′ + 1)th codewords of codebook C′ should be copied to

form the f ′′th and (f ′′ + 1)th codewords of the codebook C′′. In the example of
Figure 8(a), this gives C′′ = [00; 01; 01; 11; 11;11;01];

4.6.2 Performance analysis

Near-capacity operation is achieved, when reliable communication can be maintained
at transmission throughputs η that approach the Discrete-input Continuous-output
Memoryless Channel (DCMC) capacity C [100] that is associated withM = 4 QPSK
modulation and uncorrelated narrowband Rayleigh fading. This is facilitated, if the
following conditions are satisfied [112]:

1. The URC decoder of Figure 4.2(a) is required to have an EXIT curve having
an area beneath it of Ai = C/[Ri log2(M)] ;

2. The area Ao beneath the inverted EXIT curve of the REGEC trellis decoder is
required to approach the REGEC coding rate Ro.

If these two conditions are satisfied, then near-capacity operation will be achieved,
when the shape of URC decoder’s EXIT curve is closely matched to that of the
inverted REGEC EXIT curve. This creates a narrow, but marginally open EXIT
chart tunnel, which facilitates iterative decoding convergence towards the ML per-
formance [107].

The first condition listed above is satisfied by a punctured URC code, as dis-
cussed in [112]. Figure 4.8 shows that the second of the above-mentioned conditions
is satisfied when the RVs in the vector D obey the finite Zeta-like distribution of (3.1)
having the cardinality L = 1000 and various values for the parameter p1. This figure
plots the REGEC coding rate Ro of (4.15) when multiplied with the REGEC trellis
codeword lengths n. Furthermore, Figure 4.8 plots the product of n and the area Ao

of (4.17) beneath the inverted REGEC EXIT curve for the case where the trellis de-
coder employs f/2 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}, giving r ∈ {6, 10, 14, 18, 22, 26, 30, 34, 38}

4.6.2. Performance analysis 112

UEC Ron

UEC Aon

REGEC/EG-CC Ron

REGEC Aon

EG-CC Aon

r

f/2

p1

R
n
or

A
n

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 4.8: Plots of Ron and Aon that are obtained for the REGEC scheme, EG-CC
scheme and UEC scheme, in the case where the symbol values of d obey a finite
Zeta-like distribution having the parameter p1 and cardinality L = 1000. Here, Ro

is the coding rate, Ao is the area beneath the inverted EXIT curve and n is the
codeword length of the corresponding scheme. The value of Aon is provided for an
REGEC code having f/2 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}, while the value of Aon is provided
for a UEC code having r ∈ {2, 4, 6, 8, 30} .
states. Note that according to (4.15) and (4.17), the area Ao and coding rate Ro are
dependent on the symbol entropy HD, average REG codeword length lREG and trellis
codeword length n, but are independent of the codebook design C. Furthermore, the
product of the REGEC EXIT chart area Ao and the codeword length n is related
to the number of unary states f , as shown in Figure 4.8. In the case of the H.265
symbol value distribution of Figure 4.3, we obtain Ron = 0.8787.

Figure 4.9 plots the discrepancy between Aon and Ron for the REGEC code as a
function of f/2, where the source symbols of d obey the finite Zeta-like distribution of
(3.1) for a cardinality of L = 1000 and for various values for the parameter p1. Note
that in all the scenarios considered, the discrepancy is less than 10−1 and becomes less
than 10−2 when f/2 ≥ 4, including the case of the H.265 symbol value distribution
of Figure 4.3.

However, the trellis complexity and hence the complexity of REGEC decoding
is proportional to the number of states. Our experiments revealed that f = 2 and
r = 6 represents an attractive trade-off between maintaining a low trellis complexity
and facilitating near-capacity operation.

4.6.3. REGEC codebook candidate selection 113

H.264

Zeta

p1

f/2

A
n
−
R
n

987654321

10−1

10−2

10−3

10−4

10−5

Figure 4.9: The discrepancy between Aon and Ron that results when REGEC
codes having various values of f/2 are employed to encode symbol values hav-
ing finite Zeta-like distributions with the parameters L = 1000 and p1 ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, as well as for symbol values obeying the H.265
distribution of Figure 4.3.
Table 4.2: Candidate REGEC codebooks {Ci}10

i=1 for n = 2 bits and r = 6 states
and their corresponding FD df . For finite Zeta-like probability distributions having
L = 1000 and various values of p1, the number of states in the URC having the best
matching EXIT curve is provided, together with the corresponding Eb/No tunnel
bound in brackets.
candidate codebook C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

c1 00 00 00 00 00 00 00 00 00 00
c2 00 00 00 01 01 01 01 11 11 11
c3 00 01 11 00 01 10 11 00 01 11
df 2 3 2 3 4 4 3 4 3 4

N
u
m

b
er

of
st

at
es

in
U

R
C

h
av

in
g

b
es

t
m

at
ch

in
g

E
X

IT
cu

rv
e

an
d

re
su

lt
an

t

E
b
/
N

o
tu

n
n
el

b
ou

n
d

in
d
B

p1 =0.7942 8 4 4 4 2 2 2 4 2 4
(1.6) (2.2) (1.9) (2.1) (2.2) (2.2) (2.2) (1.9) (2.2) (1.8)

p1 =0.6 8 2 8 2 2 8 2 8 2 8
(2.2) (2.7) (2.3) (2.7) (2.7) (2.7) (2.8) (2.3) (2.8) (2.3)

p1 =0.4 8 2 8 2 2 2 2 8 2 8
(2.2) (2.7) (2.3) (2.7) (2.9) (2.9) (2.7) (2.4) (2.7) (2.3)

p1 =0.2 8 2 8 2 2 2 2 4 2 4
(1.8) (2.4) (2) (2.4) (2.7) (2.7) (2.4) (2.4) (2.4) (2.2)

4.6.3 REGEC codebook candidate selection

In this section, we will discuss the codebook design for an n = 2 r = 6 REGEC
trellis. An n = 2 r = 6 codebook comprises r/2 = 3 codewords, each comprising
n = 2 bits. Therefore, there are 26 possible n = 2 r = 6 codebooks. However it
can be shown that all of these are equivalent to one of the 10 codebooks shown in
Table 4.2, which contains no pairs of equivalent codebooks. More specifically, two
codebooks are equivalent, if each pairing of codewords within one of the codebooks
has the same Hamming Distance (HD) as the corresponding pairing of codewords
within the other codebook. Owing to this, two codebooks are equivalent, if one can

4.6.4. EXIT charts of the REGEC candidate codebooks and the best
matching URCs 114

be transformed into the other by toggling all bits and/or changing the order of the
bits in each codeword using the same reordering pattern.

The 10 n = 2 r = 6 candidate REGEC codebooks are shown in Table 4.2, where
the bits of the codewords have been toggled and reordered in order to minimise the
decimal values that are represented by successive codewords. The error correction
capability of a codebook may be characterized by the Free Distance (FD) that results
at the output of the REGEC trellis encoder [75]. Table 4.2 quantifies the FD of each
candidate codebook, which was obtained using a brute-force search. As described
in Section 4.4, the REGEC trellis path always starts at the state m0 = 1 and will
always end at either state mb = 1 or state mb = 2. Therefore, our brute-force search
only needs to consider the free distance between paths that start and end at these
states. Owing to this, our experiments revealed that a trellis comprising five stages
like that of Figure 4.5(a) is sufficient for finding the free distance, resulting in only a
moderate searching complexity.

Table 4.2 suggest that the candidate codebooks C5, C6, C8 and C10 will produce
the best error correction capability, since they have the highest FD of 4. However, in
iterative decoding schemes it is necessary to separately consider the error correction
capability in the turbo cliff and error-floor regions of the Symbol Error Ratio (SER)
plot, before the best candidate parametrization can be identified with certainty, as
we shall discuss in the following sections.

Note that the FD of on REGEC code remains unaltered if its codebook is extended
using the process of Section 4.6.1, since extension does not change the REGEC-
encoding bit vector z produced for a given REG-encoded bit vector y. Furthermore,
depending on the length n of each codeword, the FD of an REGEC code cannot be
increased by increasing the number of states r above a particular limit. For example,
the largest possible FDs of n = 2-bit REGEC codes is 4, regardless of whether r = 6

or r > 6 number of states are employed. This is because the legitimate transition
path set of an r state trellis is a subset of the legitimate transition path set of a
trellis having a higher number of possible states r′ > r. Therefore, we will focus our
attention on codebooks corresponding to trellises having r = 6 states throughout the
remainder of this chapter.

4.6.4 EXIT charts of the REGEC candidate codebooks and the best

matching URCs

As discussed in Section 4.6.2, the area Ao beneath the inverted REGEC EXIT func-
tion and the REGEC coding rate Ro are independent of the codebook design C.
However, the shape of the REGEC EXIT curve and therefore its match with the

4.6.5. Error floor analysis 115

URC EXIT curve does depend on the specific codebook design C. Since the candi-
date codebooks of Table 4.2 are unique with no pair of codebooks that are equivalent
to each other, their inverted EXIT curves are all different from each other. Owing to
this, different candidate codebooks have inverted EXIT curves that match best with
the EXIT curve of URC codes having different parametrizations. In order to investi-
gate this, we plotted the inverted EXIT curves of each candidate REGEC codebook,
when used to encode source symbols obeying finite Zeta-like distributions having the
cardinality L = 1000 and various values for the parameter p1 ∈ {0.7942, 0.6, 0.4, 0.2}.
In each case, the resultant EXIT curve was plotted together with the EXIT curves
of URC codes having 2, 4 and 8 states. Here generator polynomials of the form
[1, 0, . . . , 0] and feedback polynomials of the form [1, 1 . . . , 1] were employed, since
they are capable of creating open EXIT chart tunnels [9]. The channel Eb/N0 value
was adjusted in each case, until marginally open EXIT chart tunnels were obtained.
For each of the cases considered, Table 4.2 quantifies the number of states employed
by the URC code that creates a marginally open EXIT chart tunnel at the lowest
Eb/N0 value, as well as providing this Eb/N0 tunnel bound.

Figures 4.6, 4.10(a) and 4.10(b) show the resultant EXIT charts for the cases of
using the candidate codebooks C1,C8 and C9 to encode symbols obeying the finite
Zeta-like distribution for L = 1000 and p1 = 0.7942. Figures 4.6, 4.10(a) and 4.10(b)
also show the corresponding EXIT charts that result in the case, where the symbol
probability distribution is unknown in the receiver, as described in Section 4.5.2.
The results of Table 4.2 show that C1 is the codebook that facilitates an open EXIT
chart tunnel at the lowest Eb/N0 value. This suggests that C1 should offer the best
performance in the turbo cliff region of the SER plot, since an open EXIT chart
tunnel implies that iterative decoding convergence to an ML SER performance can
be achieved [108]. However, C1 may not offer the best performance in the error floor
region of the SER plot, as we will investigate in the next section.

4.6.5 Error floor analysis

The error correction capability of the candidate REGEC codebooks in the error floor
region may be evaluated by considering the SER plots of Figure 4.10(c). Note that
when knowledge of the source probability distribution P (d) is available at the receiver,
the candidate codebooks C8 and C9 offer steep turbo cliffs at Eb/N0 values near the
corresponding Eb/N0 tunnel bounds, as predicted by the EXIT charts analysis of
Section 4.6.4. However, the candidate codebook C1 can be seen to suffer from an
error floor, which prevents us from achieving a low SER at Eb/N0 values near the
corresponding Eb/N0 tunnel bound of 1.6 dB. This may explained by the observation

4.6.5. Error floor analysis 116

URC r=8 3.5 dB

REGEC C1 No probs

URC r=8 1.6 dB

REGEC C1

I(z̃e; z)

I
(z̃

a
;z
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

URC r=4 3.9 dB

REGEC C8 No probs

URC r=4 1.9 dB

REGEC C8

I(z̃e; z)

I
(z̃

a
;z
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(a) (b)

No probs
With probs

C9 URC r=2
C8 URC r=4
C1 URC r=8

2.
2
d
B

1.
9
d
B

1.
6
d
B

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

543210-1

100

10−1

10−2

10−3

10−4
No probs

With probs
REGEC C9

REGEC C8

REGEC C4

REGEC C1

I(z̃a; z)

S
E
R

0 0.9 0.99 0.999 0.9999

100

10−1

10−2

10−3

10−4

(c) (d)

Figure 4.10: (a) and (b) EXIT charts of the proposed REGEC scheme. The EXIT
curves are provided for REGEC codes employing the n = 2-bit r = 6-state codebooks
C ∈ {C1,C8}, as well as for a URC having r ∈ {4, 8} states. (c) SER vs Eb/N0

plot for the REGEC codes employing the n = 2-bit r = 6-state codebooks C ∈
{C1,C8,C9}, when combined with URC codes having r ∈ {2, 4, 8} states. (d) SER
vs I(z̃a; z) plot for the REGEC codes employing the n = 2-bit r = 6-state codebooks
C ∈ {C1,C4,C8,C9} when a priori LLR vectors z̃a having different MI I(z̃a; z) are
provided to the REGEC trellis decoder. In all plots, the symbols of d obey the finite
Zeta-like distribution having p1 = 0.7942 and L = 1000. The plots labeled ‘No Probs’
indicate the case where the source distribution P (d) is unknown to the receiver.

4.7. PERFORMANCE COMPARISON WITH THE BENCHMARKERS117

that the candidate codebook C1 requires the a priori LLR vector z̃a of Figure 4.2(a)
to have a higher Mutual Information (MI) I(z̃a; z) than C8 and C9 require, in order
to achieve a low SER, as shown in Figure 4.10(d). Owing to this, the candidate
codebook C1 requires the iterative decoding process to converge closer towards the
(1,1) point of the EXIT chart, which becomes difficult when the interleaver π1 of
Figure 4.2(a) has only a moderate length [116]. As shown in Figure 4.10(d), the
candidate codebooks C8 and C9 require the lowest MIs I(z̃a; z) in order to achieve
low SERs.

Meanwhile, the codebooks C5, C6, and C7 have similar SER vs MI curves as C4

while C2, C3 and C10 have similar performance with C1. Note that the FD-3 codebook
C9 offers better SER performance than serveral of the other codebooks having FDs
of 4. We may speculate that this is because the the error correction capability
of a candidate codebook is not only decided by the overall FD but also by the
Hamming distances between the codewords that are associated with the transitions
in the REGEC trellis having the highest transition probabilities of (4.11). In the
case where the receiver has no knowledge of the source probability distribution P (d),
the SER curve of each candidate codebook is degraded, as shown in Figure 4.10(c).
However, this degradation is particularly apparent in the case of C8, since this causes
it to develop an error floor. By contrast, the candidate codebooks C4, C5, C6, C7 and
C9 do not suffer from an error floor, regardless of whether knowledge of the source
probability distribution is available in the receiver while C1, C2, C3 and C10 suffer
from error floors for both cases. Overall, we recommend the candidate codebook
C9, since it offers the best performance among the candidate codebooks that never
suffer from an error floor. Also, the candidate codebook C9 works best with the URC
inner code having the lowest complexity, namely that employing only r = 2 states.
Therefore, we employ the candidate codebook C9 throughout the next section, when
we compare the performance of the proposed REGEC scheme with suitably designed
benchmarkers.

4.7 PERFORMANCE COMPARISON WITH THE

BENCHMARKERS

In this section, we compare the proposed REGEC scheme to the EGEC, UEC and
EG-CC benchmarkers of Figures 4.2(b), 4.2(c) and 4.2(d), respectively. Like the
proposed REGEC schemes, both the EGEC and the UEC benchmarkers constitute
examples of JSCCs, while the EG-CC benchmarker represents SSCC. More specif-
ically, the EG-CC benchmarker employs an EG code for source coding, while an
iteratively-decoded serial-concatenation of a CC and a URC is employed for separate

4.7.1. Parametrization 118

channel coding. We used QPSK modulation for transmission over an uncorrelated
narrowband Rayleigh fading channel for all schemes, since this is representative of
transmission over realistic wireless channels and because this facilitates direct com-
parison with the results of [1,95]. In Section 4.7.1, we will discuss the parameteriza-
tion of the REGEC scheme as well as of the three benchmarkers, in order to facilitate
fair comparisons. Then we will analyse the SER performance of the proposed REGEC
scheme and the three benchmarkers in Section 4.7.2.

4.7.1 Parametrization

Table 4.3 provides several parametrizations of the REGEC scheme, which are de-
signed for transmitting symbols that obey the finite Zeta-like distribution of (3.1).
Table 4.3 also provides corresponding parametrizations for the three benchmarkers,
which offer the same throughput η as our REGEC scheme parametrizations. We
parametrize the finite Zeta-like distribution using a cardinality of L = 1000 and the
parameter of p1 ∈ {0.7942, 0.6, 0.4, 0.2}, which represents a wide selection of the p1

values shown in Figure 4.8. Note that the specific value of p1 = 0.7942 is chosen,
since it results in the same coding rate for the unary code and the EG code, and
hence the same outer coding rate Ro for all schemes considered in this section. Note
that, when we have L→∞, the UEC code becomes impractical for p1 = 0.2, 0.4 and
0.6, since the average unary codeword length becomes infinite in these cases [1]. For
finite case of L = 1000, the average unary codeword length is more than twice that
of the EG code when p1 = 0.2 and 0.4, hence severely degrading the performance of
the UEC benchmarker. For this reason, the UEC benchmarker is not considered for
these values of p1. Table 4.3 also considers the case of source symbols obeying the
H.265 distribution of Figure 4.3. Note that as described in Section 4.1, the EGEC
benchmarker has two parts that must be jointly optimized for each particular source
symbol distribution using UEP. More specifically, the puncturing rates Ri for the
UEC part and the FLC-CC part must be carefully selected so that they have the
same Eb/N0 tunnel bound [110], as shown in Table 4.3.

For all the schemes considered, we selected codewords comprising n = 2 bits
when possible, while n = 3-bit codewords were selected for the FLC-CC part of the
EGEC benchmarker, whenever necessary to achieve the desired effective throughput
η for designing the UEP. We selected r = 6 states for the proposed REGEC scheme,
since this is sufficiently high for imposing only an insignificant amount of capacity
loss, as discussed in Section 4.6.1. Furthermore, we employ the REGEC codebook
C9 = [00; 11; 01] in order to avoid the error floors that are charactorized in Section
4.5.2. Futhermore, we adopt the r = 4-state UEC trellis of [1] for both the UEC

4.7.1. Parametrization 119

Table 4.3: The parameters and characteristic of each scheme considered, for the case
of source symbols obeying finite Zeta-like distributions having L = 1000 and different
p1values, as well as for the H.265 distribution of Figure 4.3.

P1 Scheme n r Ro Ao Ri η
Eb/N0

[dB] for
C = η

Eb/N0

[dB] for
Ai = Ao

Eb/N0

[dB] for
open
tunnel

Complexity

0.7942

REGEC 2 6 0.3834 0.3903 1

0.7669 0.85

1.0 2.2 412

EGEC UEC 2 4 0.3746 0.3815 1.0422 1.0 2.4 344FLC-CC 3 4 0.2862 0.2953 1.2623
UEC 2 4 0.3834 0.4021 1 1.0 2.5 322

EG-CC 2 4 0.3834 0.4444 1 2.1 3.2 317

0.6

REGEC 2 6 0.4842 0.4877 1

0.9684 1.69

1.8 2.8 662

EGEC UEC 2 4 0.4904 0.4910 1 1.8 2.8 530FLC-CC 2 4 0.4696 0.4775 1
UEC 2 4 0.2482 0.2910 1.9505 2.9 5.7 1009

EG-CC 2 4 0.4842 0.4995 1 2.0 2.9 510

0.4

REGEC 2 6 0.4789 0.4845 1

0.9578 1.65

1.8 2.7 1147

EGEC UEC 2 4 0.4735 0.4783 1 2.0 2.9 907FLC-CC 2 4 0.4876 0.4930 1
EG-CC 2 4 0.4789 0.4845 1 1.8 2.7 884

0.2

REGEC 2 6 0.4231 0.4401 1

0.8462 1.18

1.4 2.4 2048

EGEC UEC 2 4 0.3678 0.3956 1.1512 1.7 3.0 1596FLC-CC 3 4 0.3301 0.3390 1.2814
EG-CC 2 4 0.4231 0.4584 1 1.8 2.9 1578

H.265

REGEC 2 6 0.4393 0.4486 1

0.8786 1.3

1.5 2.6 724

EGEC UEC 2 4 0.4639 0.4652 1 1.8 2.9 588FLC-CC 2 4 0.3862 0.3955 1
UEC 2 4 0.3480 0.4249 1.2624 3.1 4.7 715

EG-CC 2 4 0.4393 0.4961 1 2.4 3.3 558

benchmarker and for the UEC part of the EGEC benchmarker. Meanwhile, we
employ an r = 4-state CC trellis in both the FLC-CC part of the EGEC benchmarker
and in the EG-CC benchmarker, as recommended in [95, 110] and because using
higher numbers of states was found to be detrimental in [1]. All of the schemes
considered in this section employ URC inner codes, for the sake of facilitating iterative
decoding. As discussed in Section 4.6.4, the selected REGEC codebook C9 has an
EXIT curve that matches best with that of a URC code having 2 states, shown in
Table 4.2. The EGEC, UEC and EG-CC benchmarkers also have EXIT curves that
match best with a 2-state URC, since these were found to yield open EXIT chart
tunnels at the lowest Eb/N0 values in [110]. Therefore, we employ 2-state URCs
for the inner codes of all schemes considered in this section. Note that the EGEC,
UEC and EG-CC benchmarkers offer fair and natural comparisons with the proposed
REGEC scheme, since they all employ simple unary, FLC or EG codewords, as well
as trellis-based iterative decoding.

Table 4.3 provides the Eb/N0 values where the DCMC capacity C becomes equal
to the throughput η of each scheme considered. These Eb/N0 values represent capac-
ity bounds, above which it is theoretically possible to achieve reliable communication,
provided that the scheme facilitates near-capacity operation. Furthermore, the spe-
cific Eb/N0 values, where we have Ai = Ao are provided for each scheme considered

4.7.1. Parametrization 120

in Table 4.3. These area bounds represent the lowest Eb/N0 values, where it is the-
oretically possible to create an open EXIT chart tunnel, provided that the outer
and inner EXIT curves have shapes that closely match each other. Note that the
discrepancy between the capacity bound and the area bound of each scheme repre-
sents an Eb/N0 capacity loss , as exemplified by Figure 4.8 for the REGEC, UEC and
EG-CC schemes. As in the proposed REGEC code, the EXIT chart area Ao below
the inverted UEC curve approaches the UEC coding rate Ro, when the number of
states r is increased. By contrast, the EXIT chart area Ao below the inverted EG-CC
EXIT curve is not affected by the number of states in the CC trellis, hence resulting
in large discrepancies between Ao and Ro, therefore imposing significant amounts of
capacity loss.

As shown in Table 4.3, the Eb/N0 the capacity loss of all JSCC schemes is more
significant for smaller p1 values, indicating that trellises having higher numbers of
states are required to mitigate capacity loss in these cases. However, these capacity
losses are smaller than those of the SSCC EG-CC benchmarker, as shown in Table
4.3. For each of the source symbol distributions considered the capacity loss of the
REGEC scheme is less than 0.3 dB, which is the smaller than the capacity loss of
all the benchmarkers in each case, demonstrating that the proposed REGEC scheme
facilitates near-capacity operation. Finally, Table 4.3 provides the tunnel bound of
each scheme, which quantifies the lowest Eb/N0 value, where an open EXIT chart
tunnel can be created upon employing a two-state accumulator for the URC code,
as it was discussed in Section 4.6.4.

The proposed REGEC schemes facilitate reliable communication at Eb/N0 values
that exceed the corresponding tunnel bound, provided that the symbol vector d

comprises a sufficiently high number a of symbols. Note that higher Eb/N0 values
will be required to achieve low SERs, when employing short frames [117]. For all
considered values of p1 as well as for the H.265 distribution, our proposed REGEC
scheme offers an open tunnel at the lowest Eb/N0 values, facilitating low SERs at
low Eb/N0 values. At high Eb/N0 values, the REGEC scheme will offer the widest
open EXIT chart tunnel, requiring fewer decoding iterations to achieve a low SER
than the benchmarkers.

Table 4.3 also characterizes the complexity of all the schemes considered in this
section. Here, the complexity is quantified by the average number of Add, Compare
and Select (ACS) operations performed per decoding iteration and per symbol in the
vector d. This is justified, since the REGEC trellis decoder UEC trellis decoder, FLC
decoder, CC decoder and the URC decoder operate entirely on the basis of addition,

4.7.2. SER comparison with the benchmarkers 121

subtraction and max∗ operations, which can be further decomposed into ACS oper-
ations. All other components in Figure 4.2 may be considered to have a relatively
insignificant complexity [95,68]. As in [95], we assume that the addition and subtrac-
tion operations each require a single ACS operation, while each max∗ operation may
be approximated by a look up table operation, which can be completed using five
ACS operations [103]. As shown in Table 4.3, the complexity tends to increase as the
Zeta distribution parameter p1 is reduced, which may be explained by the resultant
increases in the average codeword lengths lREG, lEG and lUnary. Note that the com-
plexity of the proposed REGEC scheme is higher than those of the benchmarkers,
because the REGEC scheme employs an r = 6-state trellis, while all benchmarkers
employ r = 4-state trellises. In order to make fair comparisons in Section 4.7.2,
we will limit the number of decoding iterations performed by the proposed REGEC
scheme, so that all schemes operate within the same overall complexity limits. These
complexity limits will be chosen to be sufficient for the benchmarker having the lowest
complexity to achieve an SER performance that is within 0.1 dB of the performance
it can achieve with unlimited complexity. This facilitates a fair comparison by ensur-
ing that the selected complexity limit is not sufficiently high to favour the schemes
having the highest complexity, such as the proposed REGEC scheme.

4.7.2 SER comparison with the benchmarkers

Figures 4.11 and 4.12 characterize the SER performance of the schemes parametrized
in Table 4.3. We consider the transmission of source symbol vectors d comprising
a = 2 · 104 symbols, which we found to be typical of the number of symbols in a
H.265 [5] slice. Therefore, the SER performance of Figures 4.11 and 4.12 may be
considered to be achievable without imposing any additional latency in multimedia
applications.

As shown in Figure 4.11, the proposed REGEC scheme facilitates reliable com-
munication within 1.5 dB of the capacity bound and consistently offers the best SER
performance for each of the finite Zeta-like distribution p1 values considered. This
consistency is a key benefit of the proposed REGEC scheme, because while it offers
only a small gain over the best of the three benchmarkers in each case, the per-
formance of these benchmarkers is particularly inconsistent. More explicitly, while
the proposed REGEC scheme offers a gain of 0.4 dB over the UEC benchmarker for
p1 = 0.7942, this gain becomes 5 dB for p1 = 0.6, owing to the severe puncturing that
the UEC scheme requires in this case [95]. Similarly, while the proposed REGEC
scheme offers only a marginal gain over the EGEC benchmarker for p1 = 0.6, this gain
becomes 0.8 dB for p1 = 0.2, owing to the severe puncturing of the two parts of the

4.7.2. SER comparison with the benchmarkers 122

No probs
With probs

UEC
EG-CC
EGEC

REGEC

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

4.543.532.521.510.5

100

10−1

10−2

10−3

10−4

10−5
No probs

With probs
UEC

EG-CC
EGEC

REGEC

U
E
C

C
on

ve
rg
e
at

8
d
B

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

4.543.532.521.510.5

100

10−1

10−2

10−3

10−4

10−5

(a) p1 = 0.7942 ACSlimit = 11000 (b) p1 = 0.6 ACSlimit = 22000

No probs
With probs

EG-CC
EGEC

REGEC

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

4.543.532.521.510.5

100

10−1

10−2

10−3

10−4

10−5
No probs

With probs
EG-CC
EGEC

REGEC

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

4.543.532.521.510.5

100

10−1

10−2

10−3

10−4

10−5

(c) p1 = 0.4 ACSlimit = 44000 (d) p1 = 0.2 ACSlimit = 66000

Figure 4.11: The SER performance of the REGEC scheme and the UEC, EGEC and
EG-CC benchmarkers of Figure 4.2, when transmitting frames comprising a = 2 ·104

symbols that obey the finite Zeta-like distribution having the cardinality of L = 1000
and various p1values, using QPSK modulation is employed for transmission over an
uncorrelated narrowband Rayleigh fading channel. Iterative decoding continues until
ACSlimit number of ACS operation have been performed per symbol in the vector d.

4.7.2. SER comparison with the benchmarkers 123

No probs
With probs

UEC
EG-CC
EGEC

REGEC
C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

654321

100

10−1

10−2

10−3

10−4

10−5

ACSlimit = 25000

Figure 4.12: The SER performance of the REGEC scheme and the UEC, EGEC and
EG-CC benchmarkers of Figure 4.2, when transmitting frames comprising a = 2 ·104

symbols that obey the H.265 distribution, using QPSK modulation is employed for
transmission over an uncorrelated narrowband Rayleigh fading channel. Iterative
decoding continues until ACSlimit number of ACS operation have been performed per
symbol in the vector d.

EGEC benchmarker in order to achieve UEP [95], as described in Section 4.1. Note
that the EGEC scheme has worse performance than the SSCC EG-CC benchmarker
for p1 ∈ {0.2, 0.4}. In the case of p1 = 0.2, this may also be attributed to the severe
puncturing invoked for UEP. In the case of p1 ∈ {0.4, 0.6}, UEP does not improve
the performance of the EGEC benchmarker, beyond that of the Equal Error Protec-
tion (EEP). Since our proposed REGEC scheme does not have two parts that must
be carefully balanced, it does not suffer from these problems. Similarly, while the
proposed REGEC scheme offers only a marginal gain over the EG-CC benchmarker
for p1 = 0.4, this gain becomes 0.6 dB for p1 = 0.2 and 0.9 dB for p1 = 0.7942, as
shown in Figure 4.11.

In the case where the source symbols obey the H.265 distribution of Figure 4.3,
our REGEC scheme offers a gain of 0.7 dB over the SSCC EG-CC benchmarker, as
shown in Figure 4.12 . Furthermore, our REGEC scheme offers 0.3 dB gain over the
EGEC benchmarker, where UEP does not improve the performance of the EGEC
benchmarker in this scenario. The UEC benchmarker has the worst performance of
all the schemes considered in this scenario, owing to the severe puncturing that it
requires to achieve the same effective throughput as the other schemes.

Note that since the SER results of Figures 4.11 and 4.12 offer fair comparisons
in terms of complexity and effective throughput, the gains offered by our proposed

4.8. Conclusions 124

REGEC scheme are obtained for free, with no cost in terms of transmit-duration,
transmit-bandwidth, transmit-energy or decoding complexity. Therefore, these gains
of up to 0.9 dB can be considered to be significant, particularly since they are achieved
within about 1.5 dB of the Eb/N0 capacity bound.

Note that throughout our discussions above, it was assumed that the receiver of
the proposed REGEC scheme has knowledge of the average REG codeword length
l. Furthermore, it was assumed that the decoder has knowledge of the probabilities
of occurrence P (d). However, Figure 4.11 and 4.12 show that when the channel
SNR is sufficiently high, the proposed REGEC receiver facilitates a low SER, even
if it does not have any knowledge of the symbol probabilities P (d). The symbol
probabilities may be estimated by storing a sufficient number of symbol vectors d̂,
in order to heuristically estimate the required information, hence facilitating near-
capacity communication for the subsequent symbol vectors.

4.8 Conclusions

In this chapter, we have proposed a novel REGEC code for the near-capacity trans-
mission of symbol values that are randomly selected from a source set having a large
or infinite cardinality. In contrast to the UEC code previously proposed for the same
purpose, our REGEC code is a universal code, facilitating the transmission of sym-
bol values that are randomly selected using any mototonic probability distribution.
On the other hand, in contrast to the EGEC code previously proposed for the same
purpose, our REGEC code has a simple structure, which solves the delay, synchro-
nization and computational complexity problems associated with the two parts of
the EGEC code. In particular, the EGEC code must be specifically parametrized for
operation in conjunction with the particular source distribution, preventing its ap-
plication for unknown or non-stationary sources. By contrast, the proposed REGEC
code can be applied for any distribution, without requiring specific parametrization.

In Section 4.2, we described the Zeta source probability distribution and we
adapted the infinite cardinality source alphabet of our previous work to the case
of a finite cardinality, where this cardinality represents an additional parameter to
be considered. In Section 4.3, we introduced the novel REG code and described the
structure of the REG codewords. Section 4.4 and 4.5 introduced our novel REGEC
encoder and decoder, repectively. In Section 4.6, we analyzed the parametrization
of the proposed REGEC scheme and demonstrated that it facilitates near-capacity
operation. In Section 4.7, we considered a wide range of finite Zeta-like probabil-
ity distributions as well as the H.265 distribution and we showed that our REGEC
scheme is capable of offering gains over the best of the UEC, EGEC and SSCC

4.8. Conclusions 125

benchmarkers in each case, when employing QPSK for communication over an uncor-
related narrowband Rayleigh fading channel. In some practical scenarios, where the
source symbols obey particular finite Zeta-like probability distributions, our REGEC
scheme was shown to offer gains of up to 0.9 dB over the best benchmarkers. In
the scenario where the source symbols obey the H.265 distribution, our REGEC
scheme was shown to offer a gain of 0.7 dB over the SSCC benchmarker. These gains
are achieved for free, without increasing the required transmit-duration, transmit-
bandwidth, transmit-energy or decoding complexity.

Chapter 5
Conclusions and Future Work

In this thesis, we have introduced several novel Joint Source and Channel Code
(JSCC) schemes in order to exploit the residual redundancy that typically remains
following the source coding process, which would otherwise cause capacity loss. As
we described in Section 2.2, the symbols generated by multimedia codecs, such as
H.264 and H.265 typically have values that are selected from an alphabet having a
large cardinality, which may be modeled using a Zeta-like probability distribution. In
order to exploit the knowledge of the Zeta-like probability distribution in the receiver
to aid channel decoding, we developed a low-complexity universal Reordered Elias
Gamma Error Correction (REGEC) code through Chapters 2 to 4. In Section 5.1, we
will proceed by presenting a summary of each chapter and the main findings of our
investigations. In Section 5.2, we will discuss a range of tangible design guidelines,
while in Section 5.3 we will provide a range of future research ideas.

5.1 Summary and conclusions

Chapter 1 portrayed the background of the research presented in this thesis. In
Section 1.1, we briefly reviewed the history of video compression techniques and
discussed the intra-frame and inter-frame correlations that exist in an uncompressed
video sequence. Multimedia codecs are capable of exploiting most of this correlation
in order to achieve compression, although typically some residual redundancy remains
following this process. Separate Source and Channel Code (SSCC) and JSCC schemes
are discussed in Section 1.2.1. According to Shannon’s source and channel separation
theorem, a SSCC is capable of near-capacity transmission, provided that a potentially
unlimited encoding/decoding delay and complexity can be afforded. However, it is
typically impossible to remove all source redundancy with the aid of practical finite-
delay and finite-complexity source encoding. As a remedy, various JSCC schemes

5.1. Summary and conclusions 127

have been proposed for mitigating the capacity loss imposed by the residual source
redundancy. Despite their benefits, JSCCs have only found limited applications in
practice, since their decoding complexity increases rapidly with the cardinality of the
symbol set.

Against this background, in Chapters 2, 3 and 4 we considered the family of
Unary Error Correction (UEC), Elias Gamma Error Correction (EGEC) and the
REGEC codes, respectively. Their applications, characteristics and performance was
investigated in these chapters. Figure 5.1 lists the components to be considered

Channel coding

Source

Iterative joint source-channel coding design

design

Joint source and channel code design

code design

Channel code

concatenation design

Concatenated

design

Modulation
distribution

Source

code design

Figure 5.1: The components that must be considered when designing an iterative
joint source and channel coding scheme.

when designing an iterative JSCC scheme. Note that the operation of our proposed
JSCC schemes follows similar principles to each other. Hence Chapters 2, 3 and 4
considered similar subsets of the components portrayed in Figure 5.1. The important
conclusions of these chapters are as follows.

In Chapter 2, we reviewed the encoding and decoding operations of the UEC
code and exemplified the application of the UEC code in the context of a serially
concatenated iterative decoding scheme. This chapter also served as a background
chapter, since it introduced the principles that are common to our family of JSCC
codes. In Section 2.2, we detailed the collection of video data used and modeled its
symbol value probability distribution using the Zeta probability distribution. Figure
2.2 illustrates the structure of the UEC code. We described the operation of the
unary encoder and the trellis of the UEC encoder in Section 2.3. Furthermore, we
described how to integrate the UEC encoder into a transmitter by describing the
operation of a concatenated Unity Rate Convolutional (URC) encoder, as well as
of the interleaver and modulator. Section 2.5 described the operation of the UEC
decoder and URC decoder, providing the equations of the Logarithmic Bahl-Cocke-
Jelinek-Raviv (Log-BCJR) algorithm, which forms the basis of the UEC trellis and of
the URC decoding processes. The EXIT chart and its area properties exemplified in

5.1. Summary and conclusions 128

the context of the UEC code were characterized in Section 2.6. Figure 2.6 shows that
in the case of Zeta distributions having a parameter value p1 > 0.608, the capacity
loss asymptotically approaches zero, as the affordable complexity of the UEC trellis
is increased. Additionally, we discussed the near-capacity operation of the UEC and
its parameterization, including the selection of the number of trellis states and the
codebook design. Figures 2.23 and 2.24 indicate that having r = 4 UEC trellis
states represents an attractive trade-off between maintaining a low trellis complexity
and facilitating near-capacity operation, while Figure 2.27 shows that the codebook
C = [00; 01] has the best performance for a r = 4-state UEC trellis. In Section 2.7,
the performance of the SSCC EG-CC-URC benchmarker was compared to that of
the proposed UEC scheme for the case of Zeta distributed source symbols having
different values of the parameter p1. Figure 2.31 demonstrated that our proposed
UEC scheme outperforms the EC-CC benchmarker of Figure 2.28, offering a 1.6 dB
gain.

In Chapter 3, we proposed a universal JSCC EGEC code. In contrast to the
UEC code of Chapter 2, the EGEC code achieves a finite average codeword length
for all Zeta distributions, not just those having p1 > 0.608. As described in Sec-
tion 3.2 and motivated by the observation that each EG codeword is comprised of a
unary codeword prefix and a Fixed Length Code (FLC) post-fix, the EGEC encoder
decomposes each input symbol into two sub-symbols, which are encoded separately
by two distinct sub-encoders, as shown in Figure 3.2. The first sub-encoder is re-
ferred to as the EGEC(UEC) encoder, which operates in the same manner as the
UEC encoder of Chapter 2. The second sub-encoder employs a serial concatenation
of a FLC and of a Convolutional Code (CC) encoders, which we refer to as the
EGEC(FLC-CC) encoder. As described in Section 3.3, the EGEC decoder has corre-
sponding sub-decoders, which operate on the basis of the Log-BCJR algorithm and
the Soft Bit Source Decoding (SBSD) algorithm. As shown in Figure 3.8, an open
EXtrinsic Information Transfer (EXIT) chart tunnel is created by the EGEC(UEC)
code at an Eb/N0 of 1.9 dB in a particular practical scenario, but by contrast, this
is not facilitated until reaching an Eb/N0 of 2.9 dB for the EGEC(FLC-CC) code.
Thus the parametrization of our proposed EGEC code has to optimize the relative
contribution of the two EGEC sub-codes to the encoding process. In Section 3.4, we
detailed the procedure of designing an Unequal Error Protection (UEP) scheme that
optimizes these contributions, facilitating near-capacity operation at a low decoder
complexity. Furthermore, the parametrizations of our EGEC scheme as well as of
the benchmarkers were introduced in Section 3.4. We demonstrated in Section 3.5
that when the source symbols obey a particular Zeta probability distribution, our

5.2. Design Guidelines 129

EGEC scheme offers a 3.4 dB gain over a UEC benchmarker, when Quaternary Phase
Shift Keying (QPSK) modulation is employed for transmission over an uncorrelated
narrowband Rayleigh fading channel. In the case of another Zeta probability distri-
bution, our EGEC scheme was shown to offer a 1.9 dB gain over the SSCC EG-CC
benchmarker, as shown in Figure 3.9. Furthermore, we considered a wide range of
Zeta probability distributions and our EGEC scheme was found to offer gains over
the relevant benchmarkers in each case. Additionally, Figure 3.10 shows that when
the source symbols obey the H.265 distribution of Figure 2.3(b), our EGEC scheme
offers a 0.4 dB gain over the EG-CC benchmarker.

In Chapter 4, we proposed a universal JSCC REGEC code, which has a sig-
nificantly simpler structure than the EGEC code of Chapter 3. This avoids the
requirement of tailoring UEP for the particular scenario considered and reduces ca-
pacity loss and the complexity by avoiding puncturing. In Section 4.2, we described
the Zeta source probability distribution and we generalised the infinite cardinality
source alphabet of our previous chapters to the case of a finite cardinality, where this
cardinality represents an additional parameter to be considered. In Section 4.3, we in-
troduced the novel Reordered Elias Gamma (REG) code and described the structure
of the REG codewords. Section 4.4 and 4.5 introduced our novel REGEC encoder
and decoder, respectively. In Section 4.6, we analyzed the parametrization of the pro-
posed REGEC scheme and demonstrated that it facilitates near-capacity operation.
In Section 4.7, we considered a wide range of finite Zeta-like probability distributions
as well as the H.265 distribution and we showed that our REGEC scheme is capable
of offering gains over the best of the UEC, EGEC and EG-CC benchmarkers in each
case, when employing QPSK for communication over an uncorrelated narrowband
Rayleigh fading channel. In some practical scenarios where the source symbols obey
particular finite Zeta-like probability distributions, our REGEC scheme was shown
to offer gains of up to 0.9 dB over the best benchmarkers. In the scenario where the
source symbols obey the H.265 distribution, our REGEC scheme was shown to offer a
gain of 0.7 dB over the EG-CC benchmarker. These gains are achieved for free, with-
out increasing the required transmit-duration, transmit-bandwidth, transmit-energy
or decoding complexity.

5.2 Design Guidelines

Based on the above-mentioned investigations, this section summarizes the general
design guidelines of each component that must be considered when designing an
iterative joint source and channel coding scheme, as depicted in Figure 5.1,

5.2.1. Source distribution 130

5.2.1 Source distribution

The design of a JSCC scheme should start by analyzing the source distribution. Fig-
ure 2.3 demonstrates that both the H.264 and H.265 video encoders produce symbol
values that may be represented using positive integers having values of up to around
1000, where higher values are observed with lower probabilities. Note that the H.264
and H.265 probability distributions have a roughly constant gradient, when plotted
on the log-log axes of Figure 2.3. Therefore, these symbol values obey Zipf’s law and
their distribution may be approximated by the Zeta distribution. The UEC, EGEC
and REGEC codes of Chapters 2 to 4 are designed for conveying a vector d = [di]

a
i=1

comprising a number of Zeta-distributed symbols. This symbol vector is obtained as
the realization of a corresponding vector D = [Di]

a
i=1 of Independent and Identically

Distributed (IID) Random Variables (RVs). In Chapter 4, the source distribution
was generalized to the case where each RV Di adopts the symbol value d ∈ NL with
probability Pr(Di = d) = P (d), where NL = {1, 2, 3, . . . L} is the finite-cardinality
alphabet comprising positive integers with the cardinality L. In Chapter 4, we char-
acterized our proposed REGEC code using symbol values obeying both the finite
Zeta-like distribution and the H.265 distribution. We considered the operation of the
decoder both with and without knowledge of the source distribution. As discussed in
Section 4.6, some of the REGEC codebooks result in an error floor, when the source
distribution is unknown. Therefore, the design of a JSCC scheme must be based on
the source distribution analysis, considering whether the source distribution is known
or unknown.

Source • Zeta distribution of (2.2) Distribution • Stationary
distribution • Zeta-like distribution of (4.1) state • Non-stationary

Distribution • p1 Distribution •Known
parameter • L parameter • Unknown

availability
Distribution •Online
parameter •Offline
estimation

Table 5.1: List of considerations for source distribution analysis

5.2.2 Source code design

• Entropy coding
After analyzing the source distribution, a suitable entropy code must be selected
for the joint source and channel code design. The unary code was chosen as the

5.2.3. Channel code design 131

basis of the JSCC UEC scheme, since its codewords have a relatively simple
structure, which can be readily exploited for error correction. However, the
unary code is not a universal code, which limits the applicability of the UEC
code to only a subset of the source ditribution, which does not include the Zeta
distribution that most closely models the source symbols produced by H.264
and H.265. By contrast, the conventional Elias Gamma (EG) codewords have
a relatively complex structure, which cannot be readily described by a single
trellis and hence cannot be readily exploited for low-complexity error correction
in conjunction with a simple JSCC structure. By contrast, our proposed REG
code is a universal code associated with a simple structure. Likewise, the
design of future JSCC schemes should be based on universal source codes that
have a simple structure, which can be readily described by a single trellis.

Source • unary of Table 2.2 • ExpG • Universal
code • EG of Table 3.1 • ExpG • Not Universal

• REG of Table 4.1
Source • average codword
code length of (2.5), (3.5) and (4.5)
Parameter

Table 5.2: List of considerations for entropy coding design

5.2.3 Channel code design

The relatively simple structure of the REG codewords proposed in Chapter 4 may
be described by a simple trellis structure employed by the REGEG trellis encoder
and decoder. As discussed in Section 2.1.1, the complexity of Variable Length Error
Correction (VLEC) codes and of other previously proposed JSCCs increases rapidly
with the cardinality of the symbol value set. By contrast, the decoding complexity
of the REGEC trellis decoder is independent of the cardinality of the symbol value
set. Furthermore, our REGEC code employs a single trellis that avoids the delay,
synchronization and computational complexity problems, which may be imposed by
the EGEC code. A practical JSCC design must employ a channel code having a
relatively low-complexity with a simple structure.

• Number of states • Codeword length
• Codeword design • EXIT function
• Free distance • Complexity

Table 5.3: List of consideration for channel code design

5.2.4. Concatenated code design 132

5.2.4 Concatenated code design

Near-capacity operation is facilitated when our REGEC code is serially concatenated
and iteratively decoded by exchanging extrinsic information with a URC code, as
described in Chapter 4. EXIT chart analysis may be used for beneficially selecting the
inner concatenated code. We recommend the employment of URC Linear Feedback
Shift Registers (LFSRs) having generator polynomials of the form [1, 0, . . . , 0] and
feedback polynomials of the form [1, 1 . . . , 1]. This is because this kind of URC
outputs non-zero extrisic Logarithmic Likelihood Ratios (LLRs), when provided with
an all-zero a priori LLR vector.

• Number of states • Puncturing
• Interleaver design • EXIT function
• Interleaver length • Complexity

Table 5.4: List of to consideration for concatenated code design

5.2.5 Modulation design

M = 4-ary Gray-coded QPSK modulation was employed in Chapters 2, 3 and 4.
The classic Gray Mapping (GM) is employed here, since the performance of Gray-
coded QPSK is superior to that of QPSK with Anti-Gray Mapping (AGM), when no
iterations are performed between the demapper and URC decoder in the receiver [96].

• Number of constellation points • Iteration
• Position of constellation points •DCMC capacity
•Mapping

Table 5.5: List of considerations for modulation design

5.2.6 Summary

In this section, we have summarized the design guidelines of an iterative JSCC
scheme. The five salient considerations are: the source distribution, source code
design, channel code design, concatenated code design and the modulation design.
The design of a JSCC scheme should commence by characterizing the source distribu-
tion. Equipped with the knowledge of the source distribution, a source code having
a relatively simple structure may be selected for the JSCC design. A universal code
may be selected for ensuring the wide applicability of the JSCC scheme. Following
this, a trellis code having a low decoding complexity may be designed for describing

5.3. Future work 133

the source code. This trellis code may then be combined with a concatenated code,
in order to achieve near-capacity performance with the aid of iterative decoding. In
the case of reconstructing uncompressed video, the attainable performance can be
improved by exploiting both the inter-frame and intra-frame correlation in the video
frames.

The above-mentioned design guidelines have been demonstrated in the context
of the novel UEC, EGEC, REGEC and DVC schemes of Chapters 2 to 4, respec-
tively. These facilitate the practical near-capacity joint source and channel coding of
multimedia information.

5.3 Future work

The following section discuss several promising avenues for future work in order to
extend the schemes proposed in Chapters 2 to 4.

5.3.1 Learning-aided REGEC code

Figure 4.11 shows that the proposed REGEC scheme does not require any knowl-
edge of the symbol occurrence probabilities at either the transmitter or receiver,
when the channel Signal to Noise Ratio (SNR) is sufficiently high. However, hav-
ing no knowledge about the symbol occurrence probabilities at the receiver causes
nonetheless some capacity loss. If the receiver were capable of estimate the occurrence
probabilities of the most frequently occurring symbol values, reliable communication
at near-capacity SNRs would be facilitated for both unknown and non-stationary
source probability distributions. A novel learning-aided UEC scheme was proposed
in [118]1, which was designed for transmitting symbol values selected from unknown
and non-stationary probability distributions. In [118], the learning algorithm was
implemented using a memory storage at the receiver, which uses symbols recovered
from previous frames for estimating the symbol probabilities of each received frame.
In our future work, this technique may be used by the REGEC code for improving its
performance when transmitting symbols selected from unknown and non-stationary
source probability distributions.

5.3.2 Reordered Exponential Golomb Error Correction code

As we mentioned in Section 2.1.1, the Exponential Golomb (ExpG) code of [29] is
parametrized by the non-negative integer parameter k, where k = 0 represents the
special case of the EG code. The codewords of the ExpG code are shown in Table

1The author of this treatise contributed the source distribution statistics and to the simulations
of this paper.

5.3.2. Reordered Exponential Golomb Error Correction code 134

Table 5.6: The first twelve codewords of various source codes
di Unary(di) EG(di) REG(di) ExpG(di) k=1 RExpG(di) k=1 RExpG(di) k=2 RExpG(di) k=2
1 1 1 1 10 01 100 001
2 01 010 001 11 11 101 011
3 001 011 011 0100 0001 110 101
4 0001 00100 00001 0101 0011 111 111
5 00001 00101 00011 0110 1001 01000 00001
6 000001 00110 01001 0111 1011 01001 00011
7 0000001 00111 01011 001000 000001 01010 01001
8 00000001 0001000 0000001 001001 000011 01011 01011
9 000000001 0001001 0000011 001010 001001 01101 10011
10 0000000001 0001010 0001001 001100 100001 01110 11001
11 00000000001 0001011 0001011 001101 100011 01111 11011
12 000000000001 0001100 0100001 001111 101011 0010000 0000001
...

...
...

...
...

...
...

...

5.6 for k = 1 and k = 2. An ExpG codeword ExpG(di) has a length of lExpG(di) =

2blog2(di + 2k − 1)c+ 1− k. ExpG source coding is beneficial for the coding of Zeta
distributed source symbols having low p1 values. More specifically, when p1 is low,

RExpG/ExpG k=2

RExpG/ExpG k=1

REG/EG

Unary

p1

H
D
/l

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 5.2: Plots ofHD/l that are obtained for various source codes, in the case where
the symbol values of d obey a finite Zeta-like distribution having the parameter p1

and cardinality of L = 1000.
lower ExpG average codeword lengths lExpG are achieved by using higher values of the
parameter k, as shown in Figure 5.2. However, like the EG code, the rest of the codes
in the ExpG family have a complex structure, which cannot be readily represented
by a single trellis structure. Motivated by this, we split the ExpG codewords into
two parts in [119]2, by extending the technique of Section 3.2.1. In this way, we were
able to develop the Exponential Golomb Error Correction (ExpGEC) code of [119],
by extending the EGEC code of Chapter 3. Furthermore, [119] demonstrated that
ExpGEC associated with k = 1 offers a superior error correction performance over
the EGEC in the case of Zeta distributions having low p1values, as well as in the case

2The author of this treatise contributed the source distribution statistics presented in this paper.

5.3.2. Reordered Exponential Golomb Error Correction code 135

of the H.265 distribution. However the ExpGEC code of [119] suffers from a complex
structure similar to that of the EGEC code of Chapter 3, which may impose delay, as
well as synchronization and computational complexity problems. Motivated by this,
future research could extend the REG code of Chapter 4 to propose a RExpG code,
which has a structure that can be more readily represented by a single trellis than
that of the ExpG code. The generalized structures of each Reordered Exponential
Golomb (RExpG) codeword for k = 1 and k = 2 are shown in Figure 5.3. The RExpG

(a)

(b)

bxi+1b2 b3

b1 b2 b3

bxi

b2

b1 b2

bxi

0 0

00b1 1

FLC(ti, xi)

1

Unary(xi)

3rd2nd1st 4th (2xi − 1)th 2xthi

ExpG(di):

RExpG(di):

k = 1

k = 1

bxi+10 0

b1 1

FLC(ti, xi + 1)

1

3rd2nd1st

ExpG(di):

RExpG(di):

k = 2

k = 2 4th 2xthi

00

5th (2xi + 1)th

Unary(xi)

Figure 5.3: The reordering of (a) an ExpG k = 1 codeword and (b)(a) an ExpG
k = 2 codeword to obtain the corresponding RExpG codeword in conjunction with
k = 1

reordering rules in Figure 5.3 and 4.4 can be generalized as follows. Each codeword of
RExpG starts with the first k bits from the FLC postfix FLC(ti, xi+k−1), followed
by the first bit from the unary prefix Unary(xi) of the corresponding ExpG codeword.
The rest of the RExpG codeword is formed by alternately selecting the remaining bits
from the FLC post-fix FLC(ti, xi + k − 1) and the unary prefix Unary(xi). Notice
that the final 1-valued bit from the unary prefix Unary(xi) will always become the
final bit in RExpG(di).

5.3.2. Reordered Exponential Golomb Error Correction code 136

The RExpG code proposed above has a simple structure that may be readily
described by the RExpGEC trellis of Figure 5.4 . This may be employed as the basis

(a)

(b)

states
Holding

states
Holding

states
Unary

states
Unary

states
FLC

mj−1 mjyj/zj

0/11

10

6

10

6

2

3

7

11

3

9

5

4

8

12

7

9

5

1

8

12

2

4

0/00
1/11

0/00

1/11
0/10

1/01
0/10

1/01
0/11

1/00
1/11

0/00
1/10

0/01
1/10

0/01
1/00

0/11
1/00

0/11
1/00

1

11
1/11

0/00

yj = 1

yj = 0

states
Holding

states
Holding

states
FLC

states
Unary

states
Unary

mj−1

0/11

10

6

10

6

2

3

7

11

3

9

5

4

8

12

7

9

5

1

8

12

2

4

0/00
1/11

0/00

1/11
0/10

1/01
0/10

1/01
0/11

1/00
1/11

0/00
1/10

0/01
1/10

0/01
1/00

0/11
1/00

0/11
1/00

1

1/10
14
0/01

14

yj/zj mj

11
1/11

0/00

13
1/01

13
0/10

Figure 5.4: (a) An r = 12-state n = 2-bit Reordered Exponential Golomb Error
Correction (RExpGEC) trellis in conjunction with k = 1 using the codebook C =
[00; 01; 01; 11; 11; 11]. (b) An r = 14-state n = 2-bit RExpGEC trellis in conjunction
with k = 2 using the codebook C = [00; 01; 01; 11; 11; 11; 01].

of an RExpGEC encoder and decoder in analogy to the REGEC code of Chapter
4. Note that the initial state of the RExpGEC trellis is an FLC state, which is in
contrast to the REGEC trellis of Chapter 4, because that starts from a unary state.
This is because in contrast to the REG codewords, each RExpGEC codeword starts
with an FLC bit, as illustrated in Figure 5.3. Furthermore, the transitions from
states 1 and 2 of the RExpGEC trellis associated with k = 2 are from a FLC state,
to another FLC state as shown in Figure (a), since the codewords of RExpG having
k = 2 start with two consecutive FLC bits.

While the discussions above provide the basis of designing the JSCC RExpGEC
code, several future research issues have to be solved to complete the RExpGEC
code design. In a first step, it is necessary to calculate the conditional transition

5.3.3. REGEC-turbo scheme 137

probabilities P (m|m′), in analogy to Equations (2.7) and (4.11). Following this, we
have to design the concatenated code with the aid of EXIT chart analysis using the
guidelines of Section 5.2.4. Finally, we will have to perform the candidate codebook
selection, in analogy to that of Section 4.6.3.

5.3.3 REGEC-turbo scheme

An adaptive UEC-turbo scheme was proposed in [99], comprising a three-stage con-
catenated architecture that employs an adaptive iterative decoding technique for ex-
pediting iterative decoding convergence. Owing to the similarity between the UEC
code and the REGEC code, the adaptive technique of [99] may be readily extended to
the corresponding Adaptive-REGEC-turbo scheme of Figure 5.5. Note that since the

d̂

URC1
encoder

π1

URC2
encoder

π2

URC1
decoder

π−1
1

URC2
decoder

π−1
2

π1

REG
decoder

REGEC decoder

ŷ

Trellis
encoderencoder

REG y z

π2

d

REGEC encoder

π3 modulator
QPSK

Trellis
decoder π−1

3
demodulator
QPSK

Figure 5.5: Schematic of the REGEC-turbo scheme, which facilitates adaptive iter-
ative decoding.

turbo code of Figure 5.5 provides a strong error-correction capability, the REGEC
can afford a higher coding rate, which may be achieved using n = 1-bit codewords
in the REGEC trellis encoder. Future work may consider the parametrization of
these n = 1-bit codewords, in order to maximise the resultant error correction per-
formance. Furthermore, the REGEC codebook may be adaptively extended in the
receiver in order to allow a larger number of REGEC trellis states to be used, as
discussed in Section 4.6.1. This codebook extension technique allows the number of
states employed in the REGEC trellis decoder to be dynamically selected, in order to
strike an attractive trade-off between the decoding complexity and the error correc-
tion capability. Furthermore, the three-stage concatenation of the REGEC code with
a turbo code may be controlled using the Three-Dimensional (3D) EXIT chart anal-
ysis concept proposed in [99]. More specifically, this may be used for controlling the
dynamic adaptation of the number of states employed by the REGEC trellis decoder,
as well as for controlling the decoder activation order between the REGEC decoder

5.3.4. Iterative demodulation 138

and the turbo decoder. This will guarantee a strong error correction capability at
a significantly reduced complexity. Furthermore, the REGEC-turbo scheme of Fig-
ure 5.5 may be used as the basis of interfacing the REGEC code with standardized
communication systems based on turbo codes.

5.3.4 Iterative demodulation

M = 4-ary Gray-coded QPSK modulation was employed in Chapters 2, 3 and 4. The
classic GM is employed here, since the performance of Gray-coded QPSK is superior
to that of QPSK combined with AGM, when no iterations are performed between
the demapper and URC decoder in the receiver [96]. Note however that if the higher
complexity of iterative demodulation can be afforded, then other mapping schemes
or a modulation scheme having a higher M may be employed instead. Motivated by
this, AGM-based QPSK was employed in [98] and the corresponding demodulator
was serially concatenated and iteratively exchanged its extrinsic information with
a UEC-turbo scheme [99]. Using this approach, the REGEC scheme of Chapter 4
and of Section 5.3.3 may be enhanced with the aid of other mapping schemes or a
modulation scheme having a higher complexity, in order to achieve an improved error
correction capability.

Appendix A
Derivation of the REGEC transition

probability

Derivation of (4.11)

The method of [1, Appendix] may be used to derive the transition probabilities
P (m,m′) of (4.11) by observing the expected number of transitions of each type
when encoding symbols in the vector d. More specifically, a transition from a unary
state m′ ∈ {1, 2, . . . , f} to a FLC state m = m′+ f will occur for each symbol in the
vector d satisfying di ≥ 2dm

′/2e. The number of symbols in the vector d that satisfy
this conditions has an expected value of

a
2

L∑

d=2d
m′
2 e

P (d)

= a
2


 L∑
d=1

P (d)−
2d

m′
2 e−1∑
d=1

P (d)




= a
2


1−

2d
m′
2 e−1∑
d=1

P (d)


 .

Therefore we may expect half of this number of the transitions in the path m to be
of each of the above-mentioned types on average, since the trellis is symmetric and
the transitions where odd(m′) = 0 and odd(m′) = 1 are equiprobable.

Similarly, a transition from a unary state m′ ∈ {1, 2, . . . , f} to a unary state m =

1+odd(m′) will occur for each symbol in the vector d satisfying blog2(di)c = dm′/2e.

We can expect

[
a
2
·

2dm
′/2e−1∑

d=2dm′/2e−1

P (d)

]
of the symbols in the vector d to satisfy these

A. Derivation of the REGEC transition probability 140

conditions and therefore we can expect half of this many of the transitions in the
path m to be of each of the above-mentioned types.

Furthermore, a transition from an FLC statemj−1 ∈ {f + 1, f + 2, . . . , 2f − 2} to
a unary statem = d̈−yj+2yj ·odd(m′) will occur for each symbol in the vector d satis-

fying di ≥ 2d(m
′−f)/2e. We can expect


a

2
·
blog2(L)c∑
x=ẍ+1

2ẍ−1∑
ẗ=0

odd(ẗ+ 1 + yi)
2x+(ẗ+1) 2x

2ẍ
−1∑

d=2x+ẗ 2x

2ẍ

P (d)




of the symbols in the vector d to satisfy these conditions and therefore we can expect
half of this many of the transitions in the pathm to be of each of the above-mentioned
types.

Moreover, a transition from a holding state m′ ∈ {2f − 1, 2f} to a holding state
m = m′+yj ·(2·odd(m′)+1)+2·odd(yj+1) will occur for each symbol in the vector d

satisfying di ≥ 2df/2e. We can expect


a

2
·
blog2(L)c∑
x=f

x∑
x̊=f

2x̊−1∑
t̊=0

odd(̊t+ 1 + yi)
2x+(̊t+1) 2x

2x̊
−1∑

d=2x+t̊ 2x

2x̊

P (d)




of the symbols in the vector d to satisfy these conditions and therefore we can expect
half of this many of the transitions in the pathm to be of each of the above-mentioned
types. In addition, a transition from a holding statem′ ∈ {2f + 1, 2f + 2} to a unary
statem = 1+odd(m′) will occur for each symbol in the vector d satisfying di ≥ 2df/2e.

We can expect

[
a
2
·
[

1−
2f/2−1∑
d=1

p(d)

]]
of the symbols in the vector d to satisfy these

conditions and therefore we can expect half of this many of the transitions in the
path m to be of each of the above-mentioned types.

Finally, each symbol in the vector d satisfying di ≥ 2df/2e will yield log2(di)−f/2
transitions from a holding state m′ ∈ {2f + 1, 2f + 2} to a holding state m = m′−2.
Therefore, the number of transitions in the path m that can be expected to be of
each of the above-motioned types is given by

a
2

L∑
d=2f/2

P (d)(blog2(d)c − f
2
)

= a
2

[
L∑
d=1

P (d)(blog2(d)c − f
2
)−

2f/2−1∑
d=1

P (d)(blog2(d)c − f
2
)

]

= a
2

[
l1 − f

2
−

2f/2−1∑
d=1

P (d)(blog2(d)c − f
2
)

]
,

where l1 is the average length of the unary codeword Unary(xi), as described in
Section 4.3.

Dividing the result for all cases by the expected number of transition in the path
m, namely al, yields the trasition probability given in (4.11).

Glossary

Symbols

3D Three-Dimensional.

4K Video Horizontal Resolution on the Order of 4,000 Pixels.

8K Video Horizontal Resolution on the Order of 8,000 Pixels.

A

ACS Add, Compare and Select.

AGM Anti-Gray Mapping.

APP A Posteriori Probability.

AVC Advanced Video Coding.

AWGN Additive White Gaussian Noise.

B

BCH Bose-Chaudhuri-Hocquenghem.

BCJR Bahl-Cocke-Jelinek-Raviv.

BER Bit Error Ratio.

C

CABAC Context-Adaptive Binary Arithmetic Coding.

CAVLC Context-Based Adaptive Variable-Length Coding.

CC Convolutional Code.

CIF Common Intermediate Format.

D

Glossary 142

DCMC Discrete-input Continuous-output Memoryless Channel.

DCT Discrete Cosine Transform.

DPCM Differential Pulse Code Modulation.

DVB-T Digital Video Broadcasting standard − Terrestrial.

E

EEP Equal Error Protection.

EG Elias Gamma.

EG-CC Elias Gamma and Convolutional Code.

EGEC Elias Gamma Error Correction.

EWVLC Even Weight Variable Length Code.

EXIT EXtrinsic Information Transfer.

ExpG Exponential Golomb.

ExpGEC Exponential Golomb Error Correction.

F

FD Free Distance.

FHD Full High Definition.

FLC Fixed Length Code.

G

GM Gray Mapping.

H

HD Hamming Distance.

HEVC High Efficiency Video Coding.

I

IID Independent and Identically Distributed.

IrURC Irregular Unity Rate Code.

IrVLC Irregular Variable Length Code.

ISDN Integrated Services Digital Networks.

Glossary 143

ISO/IEC International Standardization Organization/International Electrotechnical Com-
mission.

ITU International Telecommunication Union.

J

JSCC Joint Source and Channel Code.

JVT Joint Video Team.

L

LDPC Low Density Parity Check.

LFSR Linear Feedback Shift Register.

LLR Logarithmic Likelihood Ratio.

Log-BCJR Logarithmic Bahl-Cocke-Jelinek-Raviv.

M

MC Motion Compensation.

MI Mutual Information.

ML Maximum Likelihood.

MPEG Moving Picture Expert Group.

MRF Markov Random Field.

MVC Multiview Video Coding.

N

NTSC National Television System Committee.

P

PAL Phase Alternating Line.

PSD Power Spectral Density.

Q

QCIF Quarter Common Intermediate Format.

QPSK Quaternary Phase Shift Keying.

R

Glossary 144

REG Reordered Elias Gamma.

REGEC Reordered Elias Gamma Error Correction.

RExpG Reordered Exponential Golomb.

RExpGEC Reordered Exponential Golomb Error Correction.

RS Reed-Solomon.

RV Random Variable.

RVLC Reversible Variable Length Code.

S

SBSD Soft Bit Source Decoding.

SER Symbol Error Ratio.

SNR Signal to Noise Ratio.

SSCC Separate Source and Channel Code.

SSVLC Self-Synchronizing Variable Length Code.

SVC Scalable Video Coding.

U

UEC Unary Error Correction.

UEP Unequal Error Protection.

UHD Ultra High Definition.

URC Unity Rate Convolutional.

V

VLC Variable Length Code.

VLEC Variable Length Error Correction.

Bibliography

[1] R. Maunder, W. Zhang, T. Wang, and L. Hanzo, “A unary error correction code for
the near-capacity joint source and channel coding of symbol values from an infinite
set,” IEEE Transactions on Communications, vol. 61, pp. 1977–1987, May 2013.

[2] W. Zhang, M. Brejza, T. Wang, R. Maunder, and L. Hanzo, “Irregular trellis for the
near-capacity unary error correction coding of symbol values from an infinite set,”
IEEE Transactions on Communications, vol. 63, pp. 5073–5088, Dec 2015.

[3] ITU-T, Recommendation H.120: Codecs for videoconferencing using primary digital
group transmission, March 1993.

[4] ITU-T, Recommendation H.264: Advanced Video Coding for Generic Audiovisual
Services, March 2010.

[5] ITU-T, Recommendation H.265: High efficiency video coding, June 2015.

[6] L. Hanzo, P. Cherriman, and J. Streit, Video Compression and Communications:
From Basics to H.261, H.263, H.264, MPEG2, MPEG4 for DVB and HSDPA-Style
Adaptive Turbo-Transceivers. New York: John Wiley, 2007.

[7] J. Massey, “Joint source and channel coding,” Communication Systems and Random
Process Theory, pp. 279–293, December 1978.

[8] M. Wien, High Efficiency Video Coding: coding Tools and Specification. Springer,
2015.

[9] L. Hanzo, R. Maunder, J. Wang, and L.-L. Yang, Near-Capacity Variable Length
Coding. Chichester, UK: Wiley, 2010.

[10] A. Hocquenghem, “Codes correcteurs d’Erreurs,” Chiffres (Paris), vol. 2, pp. 147–156,
September 1959.

[11] R. Bose and D. Ray-Chaudhuri, “On a class of error correcting binary group codes,”
Information and Control, vol. 3, pp. 68–79, March 1960.

[12] ITU-T, Recommendation H.261: Video codec for audiovisual services at px64 Kbit/s,
March 1993.

BIBLIOGRAPHY 146

[13] ISO/IEC 11172, Inforation technology - Coding of moving pictures and associated
audio for digital storage media at up to about 1.5 Mbit/s - Part 2: Video, 1993.

[14] ITU-R, BT.470 : Conventional analogue television systems, Febrary 2005.

[15] ISO/IEC 13818, Inforation technology - Generi coding of moving pictures and associ-
ated audio information - Part 2: Video, 1993.

[16] ITU-T, H.262 : Information technology - Generic coding of moving pictures and as-
sociated audio information: Video, Febrary 2012.

[17] ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and mod-
ulation for 11/12 GHz Satellite Services, August 1997. EN 300 421 V1.1.2.

[18] ITU-T, Recommendation H.263: Video Coding for Low Bitrate Communication,
March 1996.

[19] ISO/IEC 14496-2, Inforation technology - Coding of audio-visual objects - Part 2:
Visual, 1993.

[20] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding
extension of the H.264/AVC standard,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 17, pp. 1103–1120, September 2007.

[21] Y. Chen, Y.-K. Wang, K. Ugur, M. M. Hannuksela, J. Lainema, and M. Gabbouj,
“The emerging MVC standard for 3D video services,” EURASIP Journal on Advances
in Signal Processing, vol. 2009, pp. 1–13, January 2009.

[22] A. Netravali and J. Robbins, “Motion-compensated television coding: Part i,” The
Bell System Technical Journal, vol. 58, pp. 631–670, March 1979.

[23] N. Ahmed, T. Natarajan, and K. Rao, “Discrete cosine transform,” IEEE Transactions
on Computers, vol. C-23, pp. 90–93, Jan 1974.

[24] D. Lelewer and D. Hirschberg, “Data compression,” ACM Computing Surveys
(CSUR), vol. 19, no. 3, pp. 261–296, 1987.

[25] ITU-T, Recommendation H.263: Video Coding for Low Bitrate Communication, Jan
2005.

[26] D. Huffman, “A method for the construction of minimum-redundancy codes,” Pro-
ceedings of the IRE, vol. 40, pp. 1098–1101, Sept 1952.

[27] B. Ryabko and J. Rissanen, “Fast adaptive arithmetic code for large alphabet sources
with asymmetrical distributions,” in Proc. IEEE International Symposium on Infor-
mation Theory, (Lausanne, Switzerland), p. 319, June 2002.

[28] J. Ziv and A. Lempel, “Compression of indivdual sequences via variable-rate coding,”
IEEE Transactions on Information Theory, vol. 24, pp. 530–536, Sept. 1978.

BIBLIOGRAPHY 147

[29] S. Golomb, “Run-length encodings,” IEEE Transactions on Information Theory,
vol. 12, pp. 399–401, Jul 1966.

[30] J. Teuhola, “A compression method for clustered bit-vectors,” Information processing
letters, vol. 7, no. 6, pp. 308–311, 1978.

[31] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the h.264/avc
video coding standard,” IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 13, pp. 560–576, July 2003.

[32] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary arithmetic
coding in the h.264/avc video compression standard,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 13, pp. 620–636, July 2003.

[33] V. Sze and M. Budagavi, “High throughput cabac entropy coding in hevc,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 22, pp. 1778–1791,
Dec 2012.

[34] C. Shannon, “A mathematical theory of communication,” The Bell System Technical
Journal, vol. 27, pp. 379–423, July 1948.

[35] R. Fano, The transmission of information. Massachusetts Institute of Technology,
Research Laboratory of Electronics, 1949.

[36] N. Abramson, Information Theory and Coding. New York, USA: McGraw-Hill, 1966.

[37] S. Golomb, “Run-length encodings (corresp.),” IEEE Transactions on Information
Theory, vol. 12, pp. 399–401, Jul 1966.

[38] P. Elias, “Universal codeword sets and representations of the integers,” IEEE Trans-
actions on Information Theory, vol. 21, pp. 194–203, March 1975.

[39] A. Apostolico and A. Fraenkel, “Robust transmission of unbounded strings using fi-
bonacci representations,” IEEE Transactions on Information Theory, vol. 33, pp. 238–
245, Mar 1987.

[40] R. Hamming, “Error detecting and error correcting codes,” Bell System Technical
Journal, vol. 29, pp. 147–160, 1950.

[41] L. Hanzo, T.H.Liew, B.L.Yeap, R. Tee, and S. Ng, Turbo Coding, Turbo Equalisation
and Space-Time Coding. New York: John Wiley, 2011.

[42] I. Reed, “A class of multiple-error-correcting codes and the decoding scheme,” Trans-
actions of the IRE Professional Group on Information Theory, vol. 4, pp. 38–49,
September 1954.

[43] R. Gallager, “Low-Density Parity-Check Codes,” IEEE Transactions on Information
Theory, pp. 21–28, 1962.

[44] P. Elias, “Coding for noisy channels,” Proceeding of IRE, vol. 43, no. 3, pp. 37–47,
1955.

BIBLIOGRAPHY 148

[45] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting
coding and decoding: Turbo-codes (1),” in Proceedings of the International Conference
on Communications, vol. 2, (Geneva, Switzerland), pp. 1064–1070, May 1993.

[46] C. E. Shannon, Mathematical Theory of Communication. University of Illinois Press,
1963.

[47] D. Mackay and R. Neal, “Near Shannon limit performance of low density parity check
codes,” Electronic Letter, vol. 32, pp. 457–458, Aug. 1996.

[48] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial concatenation of in-
terleaved codes: performance analysis, design, and iterative decoding,” IEEE Trans-
actions on Information Theory, vol. 44, pp. 909–926, May 1998.

[49] G. Forney Jr, “Review of random tree codes,” NASA Ames Research Center, Moffett
Field, CA, USA, Tech. Rep. NASA CR73176, 1967.

[50] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for
minimising symbol error rate,” IEEE Transactions on Information Theory, vol. 20,
pp. 284–287, March 1974.

[51] S. Ten Brink, “Convergence behavior of iteratively decoded parallel concatenated
codes,” IEEE Transactions on Communications, vol. 49, pp. 1727–1737, October 2001.

[52] J. Wozencraft, “Sequential decoding for reliable communication,” IRE National Con-
vention Record, vol. 5, pt.2, pp. 11–25, 1957.

[53] I. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal of the
society for industrial and applied mathematics, vol. 8, pp. 300–304, June 1960.

[54] L. Bahl, C. Cullum, W. Frazer, and F. Jelinek, “An efficient algorithm for computing
free distance (corresp.),” IEEE Transactions on Information Theory, vol. 18, pp. 437–
439, May 1972.

[55] J. Wolf, “Efficient Maximum Likelihood Decoding of Linear Block Codes Using a
Trellis,” IEEE Transactions on Information Theory, pp. 76–80, 1978.

[56] W. Koch and A. Baier, “Optimum and Sub-Optimum Detection of Coded Data Dis-
turbed by Time-Varying Intersymbol Interference,” in IEEE Global Telecommunica-
tions Conference, 1990, pp. 1679–1684, 1990.

[57] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal
map decoding algorithms operating in the log domain,” in IEEE International Con-
ference on Communications,, vol. 2, (Seattle, USA), pp. 1009–1013 vol.2, Jun 1995.

[58] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-approaching
irregular low-density parity-check codes,” IEEE Transactions on Information Theory,
vol. 47, pp. 619–637, Feb 2001.

BIBLIOGRAPHY 149

[59] M. Luby, “Lt codes„” in Proceedings of 43rd Annunal IEEE Symposium Foundations of
Computer Science,, (Vancouver, BC, Canada), pp. 1009–1013 vol.2, November 2002.

[60] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information Theory, vol. 52,
pp. 2551–2567, June 2006.

[61] E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes
for symmetric binary-input memoryless channels,” IEEE Transactions on Information
Theory,, vol. 55, pp. 3051–3073, July 2009.

[62] N. Bonello, R. Zhang, S. Chen, and L. Hanzo, “Reconfigurable rateless codes,” IEEE
Transactions on Wireless Communications, vol. 8, pp. 5592–5600, November 2009.

[63] R. Maunder, “A fully-parallel turbo decoding algorithm,” IEEE Transactions on Com-
munications, vol. 63, pp. 2762–2775, Aug 2015.

[64] N. Görtz, “Joint source channel decoding using bit-reliability information and source
statistics,” in International Symposium on Information Theory, (Cambridge, MA,
USA), p. 9, August 1998.

[65] N. Görtz, “On the iterative approximation of optimal joint source-channel decoding,”
IEEE Journal on Selected Areas in Communications, vol. 19, pp. 1662–1670, Septem-
ber 2001.

[66] J. Hagenauer, “The Turbo Principle: Tutorial Introduction and State of the Art,” in
Proceedings of International Symposium on Turbo Codes and related topics, (Brest,
France), pp. 1–11, September 1997.

[67] L. Hanzo, J. Woodard, and P. Robertson, “Turbo decoding and detection for wireless
applications,” Proceedings of the IEEE, vol. 95, pp. 1178–1200, June 2007.

[68] M. Adrat, R. Vary, and J. Spittka, “Iterative Source-Channel Decoder Using Extrinsic
Information from Softbit-Source Decoding,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 4, (Salt Lake City, UT, USA), pp. 2653–
2656, May 2001.

[69] J. Kliewer, N. Görtz, and A. Mertins, “On iterative source-channel image decod-
ing with Markov random field source models,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 4, (Montreal, Canada), pp. iv–661–iv–
664, May 2004.

[70] J. Kliewer and R. Thobaben, “Iterative joint source-channel decoding of variable-
length codes using residual source redundancy,” IEEE Transactions on Wireless Com-
munications, vol. 4, pp. 919–929, May 2005.

[71] J. Kliewer, N. Görtz, and A. Mertins, “Iterative source-channel decoding with Markov
random field source models,” IEEE Transactions on Signal Processing, vol. 54,
pp. 3688–3701, October 2006.

BIBLIOGRAPHY 150

[72] R. Maunder and L. Hanzo, “Genetic algorithm aided design of component codes for
irregular variable length coding,” IEEE Transactions on Communication, vol. 57,
pp. 1290–1297, May 2009.

[73] B. Montgomery and J. Abrahams, “Synchronization of binary source codes (corresp.),”
IEEE Transactions on Information Theory, vol. 32, pp. 849–854, Nov 1986.

[74] Y. Takishima, M. Wada, and H. Murakami, “Reversible variable length codes,” IEEE
Transactions on Communications, vol. 43, pp. 158–162, Feb 1995.

[75] V. Buttigieg and P. Farrell, “Variable-length error-correcting codes,” IEE Proceedings
Communications, vol. 147, pp. 211–215, Aug 2000.

[76] R. Thobaben and J. Kliewer, “Design considerations for iterativelydecoded source-
channel coding schemes,” in Allerton Conference on Communications, Control, and
Computing, 2006. Proceedings, 2006.

[77] V. Balakirskii, “Joint source-channel coding using variable-length codes,” Problemy
Peredachi Informatsii, vol. 37, no. 1, pp. 12–27, 2001.

[78] M. Park and D. Miller, “Joint source-channel decoding for variable-length encoded
data by exact and approximate map sequence estimation,” IEEE Transactions on
Communications,, vol. 48, pp. 1–6, Jan 2000.

[79] K. Sayood, H. Otu, and N. Demir, “Joint source/channel coding for variable length
codes,” IEEE Transactions on Communications,, vol. 48, pp. 787–794, May 2000.

[80] R. Bauer and J. Hagenauer, “Symbol-by-symbol map decoding of variable length
codes,” ITG FACHBERICHT, pp. 111–116, 2000.

[81] R. Thobaben and J. Kliewer, “Robust decoding of variable-length encoded markov
sources using a three-dimensional trellis,” IEEE Communications Letters,, vol. 7,
pp. 320–322, July 2003.

[82] C. Weidmann, “Reduced-complexity soft-ln-soft-out decoding of variable-length
codes,” in IEEE International Symposium on Information Theory, 2003. Proceedings,,
pp. 201–201, June 2003.

[83] R. Maunder, J. Kliewer, S. Ng, J. Wang, L.-L. Yang, and L. Hanzo, “Joint iterative de-
coding of trellis-based vq and tcm,” IEEE Transactions on Wireless Communications,
vol. 6, pp. 1327–1336, April 2007.

[84] Nasruminallah and L. Hanzo, “Exit-chart optimized short block codes for iterative
joint source and channel decoding in h.264 video telephony,” IEEE Transactions on
Vehicular Technology,, vol. 58, pp. 4306–4315, Oct 2009.

[85] E. Akyol, K. Viswanatha, K. Rose, and T. Ramstad, “On zero-delay source-channel
coding,” IEEE Transactions on Information Theory,, vol. 60, pp. 7473–7489, Dec
2014.

BIBLIOGRAPHY 151

[86] I. Alustiza, P. Crespo, and B. Beferull-Lozano, “Analog multiple description joint
source-channel coding based on lattice scaling,” IEEE Transactions on Signal Pro-
cessing,, vol. 63, pp. 3046–3061, June 2015.

[87] D. Divsalar, S. Dolinar, and F. Pollara, “Serial concatenated trellis coded modulation
with rate-1 inner code,” in Global Telecommunications Conference, 2000. GLOBE-
COM ’00. IEEE, vol. 2, pp. 777–782 vol.2, 2000.

[88] S. Even and M. Rodeh, “Economical Encoding of Commas Between Strings.,” ommu-
nications of the ACM, vol. 21, no. 4, pp. 315–317, 1978.

[89] Q. Stout, “Improved prefix encodings of the natural numbers (Corresp.).,” IEEE
Transactions on Information Theory, vol. 26, no. 5, pp. 607–609, 1980.

[90] A. S. Fraenkel and S. T. Klein, “Robust Universal Complete Codes for Transmission
and Compression.,” Discrete Applied Mathematics, vol. 64, no. 1, pp. 31–55, 1996.

[91] R. Rice and J. Plaunt, “Adaptive variable-length coding for efficient compression
of spacecraft television data,” IEEE Transactions on Communication Technology,
vol. 19, pp. 889–897, December 1971.

[92] R. Gallager and D. van Voorhis, “Optimal source codes for geometrically distributed
integer alphabets,” IEEE Transactions on Information Theory, vol. 21, pp. 228–230,
March 1975.

[93] N. L. Johnson, A. W. Kemp, and S. Kotz, Univariate Discrete Distributions. New
York, NY, USA: John Wiley & Sons, 2005.

[94] N. Johnson, A. Kemp, and K. Samuel, Univariate Discrete Distributions. John Wiley
& Sons, 2005.

[95] W. Zhang, R. Maunder, and L. Hanzo, “On the complexity of unary error correction
codes for the near-capacity transmission of symbol values from an infinite set,” in Proc.
IEEE Wireless Communications and Networking Conference, (Shanghai, China), 2013
http://eprints.soton.ac.uk/344059/.

[96] M. El-Hajjar and L. Hanzo, “Exit charts for system design and analysis,” IEEE Com-
munications Surveys Tutorials, vol. 16, no. 1, pp. 127–153, 2014.

[97] L. Hanzo, S. Ng, T. Keller, and W. T. Webb, Quadrature amplitude modulation: From
basics to adaptive trellis-coded, turbo-equalised and space-time coded OFDM, CDMA
and MC-CDMA systems. IEEE Press-John Wiley, 2004.

[98] M. Brejza, W. Zhang, R. Maunder, B. Al-Hashimi, and L. Hanzo, “Adaptive itera-
tive detection for expediting the convergence of a serially concatenated unary error
correction decoder, turbo decoder and an iterative demodulator,” in 2015 IEEE In-
ternational Conference on Communications (ICC), pp. 2603–2608, June 2015.

BIBLIOGRAPHY 152

[99] W. Zhang, Y. Jia, X. Meng, M. Brejza, R. Maunder, and L. Hanzo, “Adaptive itera-
tive decoding for expediting the convergence of unary error correction codes,” IEEE
Transactions on Vehicular Technology, vol. 64, pp. 621–635, Feb 2015.

[100] J. Proakis, Digital Communications. New York, USA: McGraw-Hill, 3rd ed., 1995.

[101] C. Xu, D. Liang, S. Sugiura, S. Ng, and L. Hanzo, “Reduced-complexity approx-log-
map and max-log-map soft psk/qam detection algorithms,” IEEE Transactions on
Communications, vol. 61, pp. 1415–1425, April 2013.

[102] P. Robertson, “Illuminating the structure of Code and Decoder of Parallel Con-
catenated Recursive Systematic (Turbo) Codes,” in IEEE Globecom, (San Francisco,
USA), pp. 1298–1303, November 1994.

[103] L. Li, R. Maunder, B. Al-Hashimi, and L. Hanzo, “A low-complexity turbo decoder
architecture for energy-efficient wireless sensor networks,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 21, pp. 14–22, Jan 2013.

[104] “3rd Generation Partnership Project; Technical Specification Group Radio Access
Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and
Channel Coding (Release 9) 3GPP Organizational Partners TS 36.212, Rev. 8.3.0,”
tech. rep., May 2008.

[105] A. Ashikhmin, G. Kramer, and S. Ten Brink, “Extrinsic information transfer func-
tions: Model and erasure channel properties,” IEEE Transactions on Information
Theory, vol. 50, pp. 2657–2673, Nov. 2004.

[106] R. Maunder and L. Hanzo, “Iterative decoding convergence and termination of serially
concatenated codes,” IEEE Transactions on Vehicular Technology, vol. 59, pp. 216–
224, January 2010.

[107] D. Divsalar, H. Jin, and R. McEliece, “Coding theorems for ’turbo-like’ codes,”
in Proc. Allerton Conf. on Communications, Control and Computing, pp. 201–210,
September 1998.

[108] L. Hanzo, R. Maunder, J. Wang, and L.-L. Yang, Near-Capacity Variable-Length
Coding: Regular and Exit-Chart Aided Irregular Designs. John Wiley & Sons Ltd,
2010.

[109] P. Frenger, P. Orten, and T. Ottosson, “Convolutional codes with optimum distance
spectrum,” Communications Letters, IEEE, vol. 3, pp. 317–319, Nov 1999.

[110] T. Wang, W. Zhang, R. Maunder, and L. Hanzo, “Near-capacity joint source and
channel coding of symbol values from an infinite source set using elias gamma er-
ror correction codes,” IEEE Transactions on Communications, vol. 62, pp. 280–292,
January 2014.

[111] “Advanced video coding for generic audiovisual services,” tech. rep., ITU-T Std. H.264,
March 2005.

BIBLIOGRAPHY 153

[112] A. Ashikhmin, G. Kramer, and S. Ten Brink, “Extrinsic information transfer func-
tions: model and erasure channel properties,” IEEE Transactions on Information
Theory, vol. 50, pp. 2657–2673, November 2004.

[113] J. Kliewer, A. Huebner, and D. J. Costello, “On the achievable extrinsic informa-
tion of inner decoders in serial concatenation,” in IEEE International Symposium on
Information Theory 2006 , (Seattle, WA, USA), pp. 2680–2684, July 2006.

[114] M. Tuchler, “Convergence prediction for iterative decoding of threefold concatenated
systems,” in IEEE Global Telecommunications Conference, vol. 2, (Taipei, Taiwan),
pp. 1358–1362, November 2002.

[115] ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and mod-
ulation for digital terrestrial television, August 1997. EN 300 744 V1.1.2.

[116] J. Hokfelt, O. Edfors, and T. Maseng, “A turbo code interleaver design criterion based
on the performance of iterative decoding,” IEEE Communications Letters, vol. 5,
pp. 52–54, Feb 2001.

[117] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and con-
volutional codes,” IEEE Transactions on Information Theory, vol. 42, pp. 429–445,
March 1996.

[118] W. Zhang, Z. Song, M. Brejza, T. Wang, R. Maunder, and L. Hanzo, “Learning-aided
unary error correction codes for non-stationary and unknow sources,” to be submitted,
Dec 2015.

[119] M. Brejza, T. Wang, W. Zhang, D. Khalili, R. Maunder, B. Al-Hashimi, and L. Hanzo,
“Exponential golomb and rice error correction codes for near-capacity joint source and
channel coding,” to be submitted, Dec 2015.

Author Index

Abrahams, J. 10

Abramson, N. 6

Adrat, M. 9, 10, 38, 64, 76, 82, 88, 121

Ahmed, N. 3

Akyol, E. 10

Al-Hashimi, B.M. 31, 36, 38, 121, 134, 135,
138

Alustiza, I. 10

Apostolico, A. 6

Arikan, E. 8

Ashikhmin, A. 73, 78, 80, 108, 111

Bahl, L.R. 7–9, 12, 64, 88, 107

Baier, A. 8

Balakirskii, V.B. 10

Bauer, R. 10

Beferull-Lozano, B. 10

Benedetto, S. 7

Berrou, C 6–8, 16

Bjontegaard, G. 5

B.L.Yeap 6, 39

Bonello, N. 8

Bose, R.C. 2, 6, 8

Brejza, M.F. vii, 15, 17, 31, 49, 51, 110,
133–135, 137, 138

Budagavi, M. 5

Buttigieg, V. 10, 51, 114

Chen, S. 8

Chen, Y. 3

Cherriman, P. 1, 2

Cocke, J. 7–9, 12, 64, 88, 107

Costello, D J 73

Crespo, P.M. 10

Cullum, C. 8

Demir, N. 10

Divsalar, D. 7, 12, 15, 28, 43, 55, 73, 78,
106, 108, 111

Dolinar, S. 12, 15, 28, 55, 73, 106

Edfors, O. 117

El-Hajjar, M. 30, 31, 132, 138

Elias, P. 6, 16, 18, 61, 63, 67, 91

Even, S. 16

Fano, R.M. 6

Farrell, P.G. 10, 51, 114

Forney Jr, G.D. 7

Fraenkel, A.S. 6

Fraenkel, Aviezri S. 16

AUTHOR INDEX 155

Frazer, W. 8

Frenger, P. 55

Gabbouj, M. 3

Gallager, R. 6, 8, 19, 61, 63, 91

Glavieux, A 6–8, 16

Golomb, S. 5, 6, 18, 133

Görtz, N. 9, 10, 42, 75, 77, 108

Hagenauer, J. 9, 10, 120

Hamming, R.W. 6, 8

Hannuksela, M. M. 3

Hanzo, L. vii, 1, 2, 6–10, 15–17, 21, 26, 28,
30, 31, 33, 35–39, 42, 43, 45, 49, 51, 52,
55, 56, 61, 63, 64, 66, 71, 73, 77, 82, 86,
91, 96, 97, 102, 105, 107, 108, 110, 115,
118, 119, 121, 123, 132–135, 137–139

Hirschberg, D.S. 4

Hocquenghem, A. 2, 6, 8

Hoeher, P. 8

Hokfelt, J. 117

Huebner, A 73

Huffman, D.A. 4, 6

Jelinek, F. 7–9, 12, 64, 88, 107

Jia, Y. 31, 49, 110, 137, 138

Jin, H. 43, 78, 108, 111

Johnson, N. L. 19, 20, 66

Johnson, N.L. 20

Keller, T. 31, 33, 35, 107

Kemp, A. W. 19, 20, 66

Kemp, A.W. 20

Khalili, D.A. 134, 135

Klein, Shmuel T. 16

Kliewer, J 9, 10, 73

Koch, W. 8

Kotz, S. 19, 20, 66

Kramer, G. 73, 78, 80, 108, 111

Lainema, J. 3

Lelewer, D.A. 4

Lempel, A. 5, 6, 15

Li, L. 36, 38, 121

Liang, D. 31

Luby, M. 8

Luthra, A. 5

Mackay, D.J.C. 6, 15

Marpe, D. 3, 5

Maseng, T. 117

Massey, J.L. 1, 9, 11, 15, 91

Maunder, R.G. vii, 2, 7–10, 15–17, 21, 26,
28, 31, 33, 36–38, 42, 43, 45, 49, 51, 52,
55, 56, 61, 63, 64, 66, 71, 73, 77, 82, 86,
91, 96, 97, 102, 105, 107, 108, 110, 115,
118, 119, 121, 123, 133–135, 137–139

McEliece, R.J. 43, 78, 108, 111

Meng, X. 31, 49, 110, 137, 138

Mertins, A. 9, 10, 42, 75, 77, 108

Miller, D.J. 10

Montgomery, B.L. 10

Montorsi, G. 7

Murakami, H. 10

Nasruminallah 10

Natarajan, T. 3

Neal, R.M. 6, 15

Netravali, A.N. 3

Ng, S.X. 6, 10, 31, 33, 35, 39, 107

Offer, E. 120

AUTHOR INDEX 156

Orten, P. 55

Ottosson, T. 55

Otu, H.H. 10

Papke, L. 120

Park, M. 10

Plaunt, J. 18

Pollara, F. 7, 12, 15, 28, 55, 73, 106

Proakis, J.G. 31, 111

Ramstad, T.A. 10

Rao, K.R. 3

Raviv, J. 7–9, 12, 64, 88, 107

Ray-Chaudhuri, D.K. 2, 6, 8

Reed, I. 6, 8

Reed, I.S. 8

Rice, R. 18

Richardson, T.J. 8

Rissanen, J. 5, 6, 15

Robbins, J.D. 3

Robertson, P. 8, 9, 33

Rodeh, M. 16

Rose, K. 10

Ryabko, B. 5, 6, 15

Samuel, K. 20

Sayood, K. 10

Schwarz, H. 3, 5

Shannon, C. E. 6, 9, 15

Shannon, C.E. 6

Shokrollahi, A. 8

Shokrollahi, M.A. 8

Solomon, G. 8

Song, Z. 133

Spittka, J. 9, 10, 38, 64, 76, 82, 88, 121

Stout, Q.F. 16

Streit, J. 1, 2

Sugiura, S. 31

Sullivan, G.J. 5

Sze, V. 5

Takishima, Y. 10

Tee, R.Y.S. 6, 39

Ten Brink, S. 8, 12, 40, 73, 75, 77, 78, 80,
108, 111

Teuhola, J. 5, 6, 16, 19

Thitimajshima, P 6–8, 16

T.H.Liew 6, 39

Thobaben, R. 9, 10

Tuchler, M. 77, 107

Ugur, K. 3

Urbanke, R.L. 8

van Voorhis, D. 19, 61, 63, 91

Vary, R. 9, 10, 38, 64, 76, 82, 88, 121

Villebrun, E. 8

Viswanatha, K.B. 10

Wada, M. 10

Wang, J. 2, 7, 9, 10, 16, 33, 37, 38, 45, 107,
115

Wang, Jin 52, 115

Wang, T. vii, 15–17, 21, 26, 42, 51, 55, 56,
61, 63, 64, 66, 71, 73, 91, 96, 97, 102, 105,
108, 118, 119, 133–135, 139

Wang, Y.-K. 3

Webb, W. T. 31, 33, 35, 107

Weidmann, C. 10

Wiegand, T. 3, 5

AUTHOR INDEX 157

Wien, M. 2, 19, 20, 95

Wolf, J. 8

Woodard, J.P. 9

Wozencraft, J.M. 8

Xu, C. 31

Yang, L.-L. 2, 7, 9, 10, 16, 33, 37, 38, 45,
52, 107, 115

Zhang, R. 8

Zhang, W. vii, 15–17, 21, 26, 28, 31, 38, 42,
49, 51, 55, 56, 61, 63, 64, 66, 71, 73, 82,
86, 91, 96, 97, 102, 105, 108, 110, 118,
119, 121, 123, 133–135, 137–139

Ziv, J. 5, 6, 15

Subject Index

extrisic LLR vector, 40

a priori LLR vector, 40
ACS, 35, 82
ACS operation, 38
AGM, 30, 132, 138
average codeword length, 21
AWGN, 32, 34

BCJR, 128

CC, 64, 72, 84, 88, 128
CC decoder, 76
CC encoder, 105
CIF, 2
constellation point, 30

DCMC, 78
DCMC capacity, 111
Decomposition of symbols into pairs of

sub-symbols, 65–68
Deinterleaving, 34
Depuncturing, 34

EEP, 80, 81
EG, 5, 16, 66–68, 84, 96
EG code, 18
EG-CC, 64, 84
EGEC, 22, 63–65, 68, 73, 88, 97, 128
EGEC encoder, 65–78
EGEC(FLC-CC), 65
EGEC(FLC-CC) decoder, 76–77
EGEC(FLC-CC) encoder, 71–73
EGEC(UEC), 65
EGEC(UEC) decoder, 74–76
EGEC(UEC) encoder, 69–71, 73

EXIT, 75
EXIT chart, 40, 80, 128
EXIT chart analysis, 40
EXIT charts of the REGEC candidate

codebooks and the best matching
URCs, 114–115

EXIT curve, 43, 78, 80, 111
ExpG, 5, 16

FD, 114
FLC, 64, 68, 71, 88, 97, 128
FLC decoder, 76

GM, 30, 132, 138
Golomb code, 18

HD, 3, 113

IID, 20, 65, 94
Integration of EGEC decoder into a re-

ceiver, 77–78
Integration of the EGEC encoder into a

transmitter, 73–74
interleaver, 21
Interleaver operation, 27
ISDN, 2

JSCC, 10, 15, 62, 84, 90, 96

LDPC, 6, 15, 73
LFSR, 37, 132
LLR, 33, 35, 74, 76
Log Likelihood Ratio, 33
Log-BCJR, 33, 36, 64, 74, 88
Log-BCJR algorithm, 35–38
Log-BCJR-based URC decoding, 35–38

SUBJECT INDEX 159

MI, 40
ML, 78

Near-capacity performance of EGEC
codes and UEP design, 78–84

PSD, 32, 34
puncture, 28

QCIF, 2
QPSK, 21, 30, 64, 65, 132, 138
QPSK modulation, 30–31
QPSK Soft demodulation, 33–34
QPSK soft Demodulator, 33

REG, 97, 99
REG codeword, 105
REG decoder, 109
REG encoder, 99
REGEC, 13, 22, 90, 93, 99
REGEC codebook candidate selection,

113–114
REGEC codebook extension, 109–111
REGEC decoder, 106–109
REGEC encoder, 98–106
REGEC Error floor analysis, 115–117
REGEC FLC state, 100
REGEC FLC states, 99, 110
REGEC SER performance, 121
REGEC trellis, 105, 109
REGEC trellis decoder, 107–110
REGEC trellis encoder, 99–106
REGEC unary states, 99, 110
Reordered Elias Gamma code, 96–98
Rice code, 18
RV, 20, 65, 69, 72, 94

SBSD, 64, 76, 88, 128
SER, 86
SNR, 32, 63, 74
Source distribution, 18–21
SSCC, 6, 9, 15, 63, 64, 84
Symbol value sets having a large cardinal-

ity, 94–95
Symbols Value Sets from Video Compres-

sion standards codec, 19–20

Symbols Value Sets Having An Infinite
Cardinality, 21

Symbols value sets having an infinite car-
dinality, 20

throughput, 30

UEC, 15, 20, 22, 63, 64, 69, 75, 84, 88, 96,
128

UEC codebook selection, 50
UEC decoder, 32–46
UEC decoder integration into a receiver,

33–38
UEC encoder, 21–31
UEC Integration of the UEC encoder into

a transmitter, 27–31
UEC Iterative decoding, 43–45
UEC Log-BCJR-based trellis decoding, 39
UEC scheme, 27
UEC trellis, 69, 75
UEC trellis decoder, 39–45
UEC Trellis encoder, 22–26
UEC trellis encoder, 21
UEP, 12, 13, 64, 80, 81, 88, 97, 128
unary average codeword length, 22
unary code, 19
unary codeword, 21
unary decoder, 45–46
unary encoder, 21–22
URC, 15, 65, 73, 84, 111
URC code, 28
URC decoder, 35, 76
URC encode, 28
URC encoder, 21, 27, 28
URC trellis, 28

Zeta distribution, 20
Zeta-like distribution, 94

