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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Doctor of Philosophy

INTEGRATING FORMAL VERIFICATION AND SIMULATION OF HYBRID

SYSTEMS

by Vitaly Savicks

An increasing number of today’s systems can be characterised as cyber-physical, or

hybrid systems that combine the concurrent continuous environment and discrete com-

putational logic. In order to develop such systems as safe and reliable one needs to be

able to model and verify them from the early stages of the development process. Current

modelling technologies allow us to specify the abstractions of these systems in terms of

the procedural or declarative modelling languages and visual notations, and to simulate

their behaviour over a period of time for analysis. Other means of modelling are formal

methods, which define systems in terms of logics and enable rigorous analysis of system

properties. While the first class of technologies provides a natural notation for describing

physical processes, but lacks the formal proof, the second class relies on mathematical

abstractions to rationalise and automate the complex task of formal verification. The

benefits of both technologies can be significantly enhanced by a collaborative method-

ology. Due to the complexity of the considered systems and the formal proof process

it is critical that such a methodology is based on a top-down development process that

fully supports abstraction and refinement. We develop this idea into a tool extension

for the state of the art Rodin platform for system-level formal modelling and analysis in

the Event-B language. The developed tool enables integration of the physical simulation

with refinement-based formal verification in Event-B, thus enhancing the capabilities of

Rodin with the simulation-based validation that supports refinement. The tool utilises

the Functional Mock-up Interface (FMI) standard for industrial-grade model exchange

and co-simulation and is based on a co-simulation principle between the discrete models

in Event-B and continuous physical models of FMI. It provides a graphical environment

for model import, composition and co-simulation, and implements a generic simulation

algorithm for discrete-continuous co-simulation.
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Chapter 1

Introduction

1.1 Cyber-Physical Systems

As defined by Lee [91], Hybrid, or Cyber-Physical Systems (CPS) are the integration of

the networked and concurrent computing with physical processes. This technology is be-

coming an evolving trend both in the academic field and industry. The U.S. President’s

Council of Advisors has placed CPS on top of the national priority list in R&D [78],

emphasising on particular importance of CPS. The benefits of this technology are ap-

parent as intelligent embedded computing adds plenty of new capabilities to existing

physical systems. Such a merge of computation and communication with physical pro-

cesses would make systems safer, more efficient, cheaper to produce and operate, and,

very importantly, capable of working in collaboration to form larger systems, such as

a national power grid or an automated transportation control. The implications are

enormous and considered by many as the next computing revolution [120]. In order to

achieve this merge a lot of challenges need to be solved, some of which lay down the

foundation for this research.

1.2 Design Challenges

The most involving challenges result from the fundamental properties of CPS that are yet

barely present in embedded systems on the market. The majority of systems are designed

using the same computing abstractions as 25 years ago, when resources were limited

and the problem of embedded software was reduced to the problem of optimisation [88].

‘Closed box’ architecture and reliance on bench testing for verification of concurrency

and timing properties remains a standard practice in industry. Functional behaviour of

CPS, however, is emerging through the interaction of computing with the physical world

and cannot be examined separately. The plant, computer, network and environment are

tightly integrated and dependent on each other.

1



2 Chapter 1 Introduction

The key features of CPS are high responsiveness to a real-world environment, time-

precision and predictability, networking, concurrency, safety and reliability. The most

challenging, but also essential of these properties, as argued by Lee [92], is the notion

of time, which is missing on most levels of the current computing abstractions, starting

from the microprocessor architectures with sophisticated memory models and speculative

execution for performance gain, up to unreliable stochastic networking technologies.

The fundamental property of the correctness of execution is defined by a terminating

sequence of state transformations and therefore is not related to time, which makes it

impossible to guarantee predictability. Likewise, the concurrency abstraction based on

threads is extremely nondeterministic and unpredictable [89], which makes threads a

constant source of difficulty and misconception among software engineers.

At the same time the increasing scale and omnipresence of today’s sociotechnical sys-

tems puts reliability and safety engineering at the top of priorities. The historically

established engineering practices, however, are not capturing the types of modern sys-

tems and associated evolving context, which includes a rapid technological innovation,

reduced time to market (and hence reduced available timeframe for verification/valida-

tion), changing human-computer interaction and increasing coupling and complexity –

not only of individual components, but also of their interaction, system evolution over

time, structural and functional inconsistency, and indirect causality [95]. Understanding

system safety at the early stages of requirement analysis and understanding the require-

ments themselves becomes a greater challenge. Software engineering is transforming

into an integral part of system engineering, in which thorough theoretical analysis of all

requirements and constraints of both the system and environment is essential for safety

and reliability assurance. This necessitates new methods and tools for the top-down

rigorous analysis and the integration of these tools into a single process.

All the problems mentioned are related and are caused either by currently employed

engineering practices that are falling behind the technology or by incorrect abstractions

that do not reflect specific properties of CPS, especially, the notion of time. No system

can be made predictable unless the time is introduced to as many abstraction layers

as possible [92]. For software engineers it means programming languages with tempo-

ral semantics, synchronisation capabilities and understandable predictable concurrency

models. The gap between two system theories: physical and computational, must be

reduced as the current practice, based on the separation of concerns, is not effective

when the environment and computation are highly integrated. Therefore we need a new

collaborative engineering approach, with top-down methods centred on the model-based

design. This leads to a high demand for formal modelling techniques that are capable

of verifying timing properties and properties of the environment. Along with developing

new technologies it is important to develop sound methods for transforming the exist-

ing real-time embedded systems to the ones that would conform with the standards of

modern CPS [27].
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1.3 Existing Technologies

The solutions for the challenges we face in the development of CPS will span mul-

tiple computer science disciplines. From the software engineering perspective several

approaches seem promising:

– Programming languages with timing properties. A number of attempts were made

in the past to introduce time in programming languages and to increase predictabil-

ity. For instance, synchronous programming languages like Esterel and Lustre,

developed in the 80s for reactive systems, are based on a synchronous abstraction

similar to digital circuits, where the computation is assumed to be instantaneous

within a single clock [61]. The concept of logical time and synchronous concurrency

eliminate non-determinism and result in more predictable code. In Ada task delays

are possible. The latest version’s (Ada 2005) Real-Time Systems Annex enhances

this with timing events, execution time monitoring and execution time events [41].

For the Java language, Sun and IBM developed a Real-Time Specification (RTSJ)

with a high resolution time, an improved memory management and a concurrency

model [26]. Simulation-oriented modelling languages with temporal semantics are

particularly promising. The equation-based multi-domain Modelica language for

complex system design and simulation has a global time variable and time-based

events [11]. Simulink, from MathWorks, provides a graphical environment with

a block diagram notation for timed system modelling and simulation, with add-

ons for real-time and embedded code generation [102]. The visual programming

environment LabVIEW [52], from National Instruments, can be extended with a

Real-Time module that allows time constraints to be specified with Timed Loop

and Timed Sequence structures, and graphically represent timing relationships.

All these solutions, especially model-based languages, are very helpful in devel-

opment of CPS, but currently require better integration into existing engineering

processes.

– Formal methods. Formal methods use mathematical formalisms for system specifi-

cation, design and verification. Many computer science theories have contributed

to this field. The Automata theory was extended to the Timed Automata, which

provides a way to annotate state-transition graphs with timing constraints using

real-valued clocks [8]. Statecharts [63] were extended for real-time and hybrid

systems, resulting in the Timed and Hybrid Statecharts and a corresponding for-

mal language with statements for delays, preemption and timeouts [76]. Such

formalisms as hybrid automata provide a natural notation for mixed discrete-

continuous systems [65]. Some theories have been successfully applied in mod-

elling and simulation tools for real-time systems. For instance, the tool environ-

ment UPPAAL models systems as networks of timed automata, extended with

data types [19]. In the AnyLogic simulation tool the formalism of hybrid state



4 Chapter 1 Introduction

machines is used to model complex interdependencies between discrete and con-

tinuous time behaviour [31]. Moreover, a number of temporal logics [99] have been

developed to allow specification of system behaviour in terms of logical formulas,

including temporal constraints, events and the relationships between the two [17].

Formal specification and modelling languages with automated verification capabil-

ities are very useful when system reliability and safety are the primary concerns.

Although these languages are usually state-based and do not handle temporal dy-

namics, attempts are made to close this gap. The Z notation was augmented with

Real-Time Logic [54]. The VDM-RT extended VDM++ with the time and time

invariants [143]. Similar efforts have been observed for the Event-B formal method,

where time constraints [46] and continuous behaviour [145] were modelled. Finally,

the UML has been extended with a MARTE profile for real-time and embedded

system modelling and analysis, adding a range of new language units, including

the Time unit [111].

– Simulation tools. Simulation tools enable model-based design by replacing proto-

typing, manufacturing and testing with computer-aided modelling and simulation-

based analysis, thus reducing risk of the design errors and lowering cost and time

of the design process. The capability of simulating the environment and time is

particularly useful for hybrid systems. These tools can be categorised into three

classes: block-based, equation-based and based on hybrid state machines [32].

The Simulink environment for MATLAB is a popular example of the block-based

approach. In addition to continuous and discrete blocks of the standard library

it allows custom blocks to be modelled as state machines via the Stateflow ex-

tension [103], making it a suitable choice for designing control systems. In the

equation-based approach the continuous dynamics are described by algebraic/dif-

ferential equations while the discrete part is described by conditional and timed

events. Such notation is more natural for physical modelling and is leveraged

by tools like 20-sim [35], from Controllab Products, and a number of simulators

that utilise the Modelica modelling language, e.g. Wolfram SystemModeler [147],

Modelon Optimica [7]. To conveniently model hybrid and reactive systems the

StateGraph library extends Modelica with components for deterministic hierarchi-

cal state diagrams [114]. Other tools support both causal (data flow) and acausal

(equation) modelling. MapleSim [67], from Maplesoft, supports traditional sig-

nal flow blocks together with Modelica components. SimulationX [149], from ITI

GmbH, in addition to a rich component library provides open comprehensive CAx-

interfaces (computer-aided technologies) for external engineering applications and

a co-simulation interface to other simulation software. Third class of the tools is

similar by means to the StateGraph library, where equations are associated with

states of a hybrid state machine. This provides a better integration of the contin-

uous behaviour with the discrete logic. AnyLogic [30], from XJ Technologies, is a

good example of this approach.
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The advances in programming languages, formal methods, modelling and simulation

tools outlined above are undoubtedly important for the development of CPS. Further-

more, mainstream adoption of these tools, integration and incorporation into a unified

engineering process promises to build a strong basis for the incremental evolution of

technology towards amalgamation of computing and environment. While there exists

an argument on the fundamental flaws in the computing abstractions, such as threads

and the lack of time, the development and integration of existing tools can be a good

transfer step before the new technologies with in-build timing appear.

1.4 Limitations

Major limitations of existing tools relate to the outdated core abstractions of computing.

In particular, the lack of timing and inadequate models of concurrency force industrial

developers to stick to old and proven engineering practices. New programming languages

with temporal semantics are still at the evolution stage and are seldom applied on real-

scale problems. Most of the embedded systems are developed in “good old” C [75].

With domain-specific languages (DSL) the situation is less gloomy. The advances in

the object-oriented modelling techniques, modelling frameworks, tools and standards,

such as UML, as well as processes supporting them are widely used by industry. Mainly

popular among the general computing in the past they are getting more attention in

embedded real-time systems and are understood by experts as a simple and efficient

means of system specification, abstraction and early analysis [86]. Disadvantages of

these languages are the lack of constructs to express time-related constraints and their

semi-formal semantics, not sufficient for the rigorous analysis of complex safety-critical

systems [87]. More recent attempts from the Object Management Group consortium [98]

address the lack of time semantics, but the standards are still evolving. Hence, the use of

DSLs is not fully integrated into development processes and is often limited to abstract

specification and design, leaving the task of analysis of system properties to simulation

and extensive testing.

Formal methods solve the problem of the lack of formalism in DSLs by providing precise

and sound mathematical specification languages and rigorous verification techniques,

such as theorem proving and model checking. Unfortunately, the expressiveness of for-

mal methods can be limited compared to DSLs. For example, modelling of timed physical

systems is not always possible without considerable abstraction due to constrained data

types and verification capabilities of tools. Broadly speaking, formal methods also have a

number of historically established and attached myths, notably identified and challenged

by Hall [62]. However, the continued and emerging use of formal methods in recent years,

the development of tools that mask the formality behind the automation and abstrac-

tion, and evolving language support effectively debunk these myths and “domesticate”
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formal methods for a wide range of system engineering applications [71]. Myths such

as the increased complexity, high cost of development and hindered scalability are ad-

dressed by the advancements in tooling, introduction of higher abstractions (DSLs for

formal methods) and effective modular and incremental modelling techniques, but the

lack of timing properties, in particular for modelling continuous dynamics processes of

environment, is going to impede the adoption of formal methods in the development of

CPS. Therefore, industry gives favour to pragmatic solutions over rigorous approaches.

Tools for simulation, analysis and implementation were first developed using common

sense reasoning, and only afterwards – formalisation [47]. Simulation-centric tools are

the most popular among designers, although their semantics are too general for formal

analysis. Such simulation tools as Simulink/Stateflow provide an excellent modelling

and simulation capability for design and functional verification of embedded systems,

but there is a need for rigorous domain-specific analysis and methods for refinement of

high-level models towards implementation, ideally with fully-fledged unified process that

leverages the advantages of DSLs, formal verification and simulation [14].

1.5 Addressing the Issues

Several approaches that address existing limitations have been mentioned already in

Section 1.3. DSLs and formal methods had a number of attempts to introduce contin-

uous semantics and timing properties. In the Event-B, for instance, the discrete time

relations: delay, expiry and deadline, have been added via an extension to the Rodin

platform [125]. Other work has focused on modelling continuous behaviour using the

existing constructs [145], proposing new extensions of the mathematical language [6] or

adding theories of real numbers and continuous functions over real intervals using cur-

rent tools [43]. Another means of facilitating the application of formal languages in the

development of hybrid systems is to combine them with other technologies, such as sim-

ulation. This was studied, for example, by Su, Abrial and Zhu [140], who have developed

patterns and collaborative techniques based on model transformation between Event-B

and Simulink. A collaborative approach based on co-simulation was proposed by Tudoret

et al. [142], in which the discrete behaviour was modelled using the formalism of clocked

data flow in Signal and continuous dynamics done in Simulink. A good example of a

co-simulation framework is the DESTECS project, which enables discrete-event models

specified in VDM to be co-simulated with continuous-time models of 20-sim [55]. Other

co-simulation methods are supported by the tool-independent industrial architectures

and interface standards, such as the High Level Architecture [49] and Functional Mock-

up Interface [24]. Interactive simulation is another useful technique that links models

from various simulation tools (control systems designed in Matlab/Simulink, physical

models from Modelica and hybrid-DAE models from Dymola) and allows them to be

simulated interactively [100]. The lack of rigorous analysis techniques for simulated
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models was addressed, for instance, in a methodology called “invisible formal methods”

for Simulink [141].

We believe that a collaborative approach between multiple state of the art technologies

including formal methods is a practical solution. The design of CPS demands that all

effects of the system are considered, including the interaction between the environment,

plant and digital controller. This requires methods capable of dealing with heterogeneous

components that exhibit different behaviour. The continuous-time environment maps

particularly well to modelling constructs of equation-based and block-based simulation

frameworks, whilst controllers can be naturally represented as discrete-event systems.

High complexity of CPS components is anticipated, therefore powerful abstraction meth-

ods, modularity and iterative (refinement-oriented) development are essential. Finally,

the technology must be able to mix appropriate mathematical representations and pro-

vide the means for overall analysis of system behaviour on different abstraction levels.

The major challenge here is in the correct interaction (and mixing) of different domains,

which requires formal techniques [101].

The objective of this research is to tackle the problem of hybrid system and CPS develop-

ment by applying the refinement-based formal methods and physical system simulation

technologies in a single framework. The idea is based on a premise that layered formal

modelling and analysis of control systems helps to break down system complexity and

better understand requirements, hence it reduces the design errors at the early stages

of development and provides high level of assurance of design correctness with respect

to functional and safety requirements. At the same time state of the art physical sim-

ulation tools are capable of emulating and validating extremely complex models of the

environment. However, simulation tools do not support formal reasoning about system

properties, while the formal modelling is limited in capabilities at describing complex

physical processes. We propose a collaborative technique based on the co-simulation be-

tween the well-established Rodin toolset for the automated formal modelling and analysis

of complex systems, and a Functional Mock-up Interface standard for tool-independent

model exchange and co-simulation, which enables integration of the physical simulation

models.

The approach for hybrid system development proposed in this work emphasises:

• Model-driven development, in a sense that system requirements and behaviour

are captured by the model of the system and are verified through the modelling

process, which facilitates better understanding of system requirements, constraints

and hazards, thus reducing the number of errors in the next stage of system design.

• Rigorous analysis, by applying a formal method on the modelling process, which

requires the developer to formally specify system behaviour and invariants, and to

verify them in a systematic manner. A supporting tool that aids verification with



8 Chapter 1 Introduction

the automated model-checking and/or theorem proving can significantly facilitate

this process.

• Step-wise modelling, in which the modelling process starts from a reduced set

of the most essential functional requirements that are specified as an abstract

model, which hides away system complexity. This facilitates verification since

the abstract properties are easier to formalise and prove. More requirements and

functional details are systematically added to the abstract model in small steps

called refinements, so that the complexity of the model and required verification

effort increase gradually.

• Physical simulation, which enables detailed modelling and validation of the dy-

namic physical behaviour of the system’s environment and other continuous-time

components that are hard or impossible to specify and verify with a formal method.

• Co-modelling and co-simulation, as a technique to combine the application of the

rigorous analysis and physical simulation, such that formal modelling and verifi-

cation is supplemented by the physical simulation. A refined formal model of the

discrete system co-exists with a more concrete physical model of the environment

and is co-simulated to validate the interaction between them.

Given that the presented method requires simultaneous co-modelling of system sub-

components in a formal specification language and a physical modelling language, we

propose a development workflow that includes the following key steps:

1. The initial specification of the system starts from an abstract formal model that

captures the basic set of functional requirements. This can be a model that includes

both the control system and its (abstract) environment, or just the discrete-event

controller component.

2. Specification of the discrete part of the system, which is typically a discrete-event

controller, in a formal notation, starting from the basic set of requirements incorpo-

rated into an abstract model that is gradually refined by adding more requirements

and details.

3. The abstract specification is elaborated, and the remaining system requirements

and constraints are incorporated into the model in small refinement steps, main-

taining the lowest possible increase rate of complexity. This process is accompanied

by the formal verification and is iterative and non-linear, in a sense that several

design choices can be made at each refinement step that may not always lead to a

verifiable specification, hence refinements may be redone.

4. A physical model of the environment is developed after the formal model includes

sufficient functionality to enable its co-simulation with the physical part. Similarly,
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the physical model can be abstract enough to exhibit the behaviour required only

for co-simulation. The abstract model is then refined in parallel with the formal

model refinement.

To enable this workflow it is necessary to employ a systematic formal modelling, refine-

ment and verification method as well as physical simulation technology, and provide a

flexible co-simulation mapping of the formal and physical co-models at each refinement

step. In this work we focus on the Event-B method (and its automated Rodin toolset)

as the refinement-based formal verification method that enables high-level abstraction

of system requirements and incremental development through step-wise refinement. The

advantage of this approach over other formal methods for hybrid systems is the ability

to distribute system complexity via the abstraction and layered refinement, which re-

duces the complexity of formal proof whilst maintaining requirement traceability. With

respect to simulation we consider the general class of simulation technologies that are

open-source and supported by existing tools. The proposed concept is developed into a

tool extension for the Rodin platform that supports refinement and provides the capa-

bility of combined discrete-continuous verification through co-simulation, thus bridging

the gap between the refinement-based formal analysis of discrete-event systems in Event-

B and continuous-time simulation technologies (with the emphasis on an open-source

Modelica language). Synergy of both technologies should reduce their individual limi-

tations and result in an integrated method, capable of covering the whole development

process: from requirements specification, design and analysis to implementation and

verification-validation.

In order to validate the output of this project, evaluate its suitability and demonstrate

the benefits for the hybrid system development we devise the following assessment cri-

teria:

• The effectiveness of the approach at discovering and validating design errors in the

discrete and continuous parts of the hybrid system that is being developed;

• The improvements over existing methods and addressed limitations;

• The level of expertise and resources required for the modelling and verification;

• The level of reusability and extensibility of the developed solution.
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1.6 ADVANCE Project

This work was partially funded and driven by the ADVANCE project1 (Advanced Design

and Verification Environment for Cyber-physical System Engineering) whose objective

was to develop a unified tool-based framework for automated formal verification and

simulation-based validation of CPS. The project tried to build on the existing formal

modelling language (Event-B) and associated toolset (Rodin), and augment those with

novel approaches for verification, validation and testing, which included application

of the system interaction and hazard analysis based on the System-Theoretic Process

Analysis [95], multi-simulation via FMI standard and automated test case generation

for the Modified Condition/ Decision Coverage [64]. To follow the objectives of the

project we took a pragmatic approach that used existing tools and technologies as much

as possible rather than re-inventing them.

The developed multi-simulation tool was used by the industrial partners of the project

(Critical Software, Selex ES) on one of the main ADVANCE case studies. The case

study explored a real problem in energy grids that concerns with automated voltage

distribution and control in smart grid networks with domestic micro-generation via solar

panels. Our tool was used to validate the developed formal model of the voltage control

algorithm and the communication network of sensor interface units. The validation was

performed by simulating the formal model against a developed Modelica model of the

environment, represented by the low voltage network topology of a real test site. The

iterative evaluation lead to constant feedback and significant improvements of the multi-

simulation tool. This evaluation process and its outcomes are described in more detail

in the project deliverable of the case study [22].

1.7 Work Outline

As a first step we determine the role of formal methods in the system engineering process.

We evaluate a number of existing tools and methods of formal analysis (Event-B, Clas-

sical B, Z Notation, VDM, TLA) and introduce the theory for hybrid system modelling:

hybrid automata and state charts. Next, we evaluate physical modelling and simulation

technologies (Modelica, MATLAB Simulink, Ptolemy) and co-simulation frameworks

(Functional Mock-up Interface, High Level Architecture, DESTECS). The important

aspect at this stage is to identify technologies that are applicable to CPS development,

mature (have reliable and maintained tool support) and widely used in both academia

and industry on real-life problems. Other important criteria for the right choice of

technologies are the openness and portability of code, ease of extension and wide sup-

port/interoperability with other tools.

1http://www.advance-ict.eu

http://www.advance-ict.eu
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In the next step we formulate the concept of our integration approach, which is based

on the architecture of the FMI for Co-simulation standard and the Rodin platform, and

essentially is a signal-based graphical composition of components for combined simu-

lation. Here we formalise the semantics of both discrete and continuous-time steps of

simulation and data exchange, and describe the actions of the simulation orchestration

algorithm between Event-B and FMI components. The algorithm and the corresponding

abstract data structures lay down the design foundation for implementation of our tool.

Following the actual design and implementation we validate the resulting tool on a

number of case studies from different domains. The Modelica language and Dymola

modelling environment are used for the development of the physical part of each system,

while the discrete control part is specified in Event-B with the aid of Rodin tools. Two

parts are then composed and simulated using the developed environment. The analysis of

the obtained results against the devised assessment criteria indicates that the introduced

improvements to the Rodin toolset facilitate verification process of multi-domain hybrid

systems. We also highlight the advantages of such approach compared to the traditional

simulation and suggest possible further improvements.

As an outcome of this work we provide an improvement to the existing Rodin toolset

that addresses limitations of the Event-B language with respect to modelling of com-

plex hybrid systems and facilitates validation of the mixed discreet-continuous system

behaviour. The developed MultiSim tool equips Rodin with a simple to use graphical

environment for modular composition and generic co-simulation of discrete-continuous

components. It is based on the latest Rodin and Eclipse frameworks and supports state

of the art physical modelling technologies via an established standard.

The remainder of the document is structured as follows. Second chapter introduces the

evaluated methods of formal analysis, physical simulation technologies and co-simulation

frameworks, concluding with a comparison analysis and a working plan for the develop-

ment of proposed solution. Third chapter presents our concept of a generic simulator and

explains its semantics with respect to discrete-event and continuous-time components.

Fourth chapter describes the implemented tool and technologies behind it. Chapter 5

illustrates the experimental evaluation of the tool on a number of case studies from

multiple domains. Final chapter summarises the achieved results and concludes with a

plan for future work.

The main contributions of this work are following:

• A tool for the Rodin platform that extends its formal verification capabilities with

the simulation-based validation that supports refinement and co-simulation with

continuous physical models in the FMI format.
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• A formalised discrete step simulation semantics for Event-B components that sup-

ports refinement and enables iterative development and simulation of Event-B

models.

• A generic simulation orchestration algorithm that can simulate deterministically

an arbitrary number of interconnected discrete-event (Event-B) and continuous-

time (FMI) subsystems.

• A successful evaluation of the developed tool on a number of case studies from

different domains, including the ADVANCE smart grid industrial case study, and

comparison of the Rodin-based development process with traditional simulation.



Chapter 2

Background

In this chapter we describe state-of-the-art tools and methods, which we have identified

as potential building blocks for the development of our integrated framework. First we

briefly review some of commonly used formal methods. Then we give an introduction

to a number of accepted formalisms for hybrid systems, such as hybrid automata and

hybrid state machines, and the latest tools and languages for hybrid modelling. Finally,

we describe co-simulation technologies suitable for integrating the first two aspects and

conclude with a summary of the weaknesses of presented tools regarding the design of

CPS, and an outline of the working plan to address those weaknesses by extending the

existing tools and methods. The specific list of the reviewed technologies is by all means

not comprehensive, but is intended to be representative of the domain of formal methods

and simulation tools.

2.1 Formal Methods

Formal methods are the mathematical techniques for developing software and hardware

systems. Based on mathematical theories they enable rigorous analysis and verification

of system models at any stage of the development life-cycle. A good analogy for formal

development, as opposed to a common code and test approach, is the use of blueprints

in traditional engineering disciplines, where a formal artifact called blueprint is used for

reasoning about the future system during its construction [2].

Despite a broad view on formal methods as being applied solely for formal proving, this

is only one of their aspects. In fact, the key feature of the formalised development is the

precise specification of what a system should do that is a prerequisite for verifying its

correctness [62]. This involves a number of activities:

• Writing a specification

13
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• Proving properties of the written specification

• Constructing an implementation from the specification via mathematical manip-

ulations

• Verifying the implementation by mathematical argument

The vital step in the system development process is requirements engineering. Under-

standing system requirements, constraints and faults is a difficult task, which is often

postponed to testing, when the system is already implemented and full coverage is

problematic, leading to poor understanding of requirements and increased cost of fixing

design errors. Verified modelling of requirements results in better understanding of the

system being built, hence better design, quality and reliability. A precise specification

acts as a technical contract between the client and developer and provides a common

understanding of the purpose of the system [106].

Moreover, the discrete nature of computers and the fact that software is intrinsically

unstable – if an implementation is not exact, the system is likely to collapse – makes

non-rigorous verification weak [121]. Rigorous design means that a design is subjected to

mathematical quantification of the desired system behaviour and through mathematical

reasoning is proven to satisfy the requirements. It does not negate testing or ensure that

a formally constructed system is correct, but it helps to identify conditions under which

a system may fail.

Finally, formal methods and supporting tools enable verified construction from an ab-

stract to a concrete model through refinement and subsequent transformation of the

mathematical structures into executable code. Complex specifications can be decom-

posed into subcomponents and reused (reuse without a rigorous specification mechanism

is a disastrous risk [72]).

Nevertheless, formal methods are by no means universal and have a number of limita-

tions [77]. First of all, they cannot fully guarantee correctness and completeness of the

specification with respect to the informal requirements. Secondly, complete formality

is hard to achieve. It is also generally undecidable whether or not an implementation

satisfies its specification. Particularly, in the context of cyber-physical systems a formal

description of the environment in which the system is supposed to operate is required.

A completely formal and correct specification of the physical environment is difficult to

accomplish. In addition, formal methods generally require a higher degree of mathe-

matical skill from software engineers. With respect to tools, formal methods are not

integrated into systems that cover the full development process. Few tools support a

combination of formal and informal technologies. Finally, formal methods only address

certain aspects of software quality, mainly reliability and correctness, and are not always

economically sensible.
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Despite these limitations formal methods are a valuable tool for the development of

complex systems, in which correctness and reliability are critical. In summary, software

should be no exception to engineering design, and within the context of complex multi-

domain systems such as CPS it is advantageous to use a rigorous development approach.

In the following sections we review a list of formal methods that we have selected as a

representative of the formal technologies with a record of successful applications in both

the industry and academia. We introduce each method and evaluate it based on the

assessment criteria, outlined in Section 1.5. The review starts from the Event-B method

as our formal method of choice for this work.

2.1.1 Event-B

Event-B [2] is a formal method for system-level specification, modelling and analysis of

discrete systems. The design of the Event-B language is greatly influenced by Action

Systems [12] and the B Method [4]. Thus system behaviour is modelled in Event-B

as a collection of state variables and discrete events that change system state. The

employed mathematical notation is based on a simple formalism of set theory and first-

order logic with the intent to facilitate formal proof. Key features of Event-B are the

refinement mechanism that enables abstraction and incremental construction to over-

come system complexity, and formal verification by deductive proof that allows to verify

system properties in a rigorous way. Backed by the Rodin platform [3], formal proof can

be performed automatically and interactively.

An Event-B model consists of contexts and machines that can have relationships between

them. Contexts describe static parts of the model: sets, constants and axioms. They

can extend other contexts, introducing new static data. The structure of the context

that contains sets s, constants c and axioms A(s, c) is as follows.

CONTEXT name

EXTENDS context

SETS s

CONSTANTS c

AXIOMS A(s, c)

END

Event-B machines describe dynamic part of the system: variables that determine system

state, invariants (constraints on variables) that must hold to satisfy certain system

properties and events that update variables and model system behaviour. A machine

can see contexts and refine an abstract machine:

MACHINE name

SEES context

REFINES machine
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VARIABLES v

INVARIANTS I (v)

EVENTS e

END

An event consists of guards (conditions, on which the event occurs) and actions (state

modifiers) that are specified via before-after predicates. It can also declare parameters,

or bound local variables that may represent inputs from the environment. A machine

can have multiple events, but it must contain a special INITIALISATION event that

executes first and initialises system variables to a valid state. An event has the following

syntax.

EVENT name

ANY t

WHERE H (u, v)

THEN act

END

where H (u, v) is a guard predicate on event parameters u and machine variables v ,

and act is an action that consist of a collection of assignments (deterministic or non-

deterministic) to state variables, executed simultaneously. A deterministic assignment

has the form: x := E (x , y), where E is an expression on some initial values x , y . A

nondeterministic assignment can either pick a value from a set: x :∈ Set , or assign a

value that satisfies a before-after predicate, with x ′ denoting the value of x after the

assignment: x :| P(x , y , x ′). All events in Event-B are atomic, i.e. only one event can

execute at any moment. If a number of events are enabled (their guards evaluate to true),

one is picked nondeterministically. This property, however, should not be considered a

limitation of the language since any atomic event can be broken down into multiple

events via refinement.

Event-B has a simple type system that consists of basic discrete types, such as boolean,

integer or a declared set. Structured types, such as relations and functions, can be cre-

ated using type constructors: powerset and cartesian product. Types of model elements

are inferred using a type inference system, which is implemented in Rodin.

The top-down structured development approach via refinement is a primary feature of

Event-B. A specification starts from an abstract model that describes the most essential

system properties and elaborates to a concrete specification that covers all the require-

ments. Each refinement step can introduce new variables and events (horizontal, or

superposition refinement), incorporating more requirements into the model. The re-

finement can also replace abstract variables with more concrete ones (vertical, or data

refinement). Here is shown an example of an abstract Event-B model from Abrial [3]

that specifies the access register system of a building:
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MACHINE m0

SEES c0

VARIABLES register , in, out

INVARIANTS

register ⊆ USER // set of registered users

in ⊆ register // users inside the building

out ⊆ register // users outside the building

in ∩ out = ∅ // cannot be simultaneously in&out

registered ⊆ in ∪ out // reg. users are in or out

EVENTS

INITIALISATION

BEGIN register := ∅
in := ∅
out := ∅

END

Register

ANY u

WHERE u ∈ USER\register
THEN register := register ∪ {u}

out := out ∪ {u}
END

Enter

ANY u

WHERE u ∈ out

THEN in := in ∪ {u}
out := out\{u}

END

END

The abstract machine above models the access register as a set of registered users

(register), split into two disjoint subsets: in and out , representing users who are in-

side and outside the building. The event Register models the registration process by

taking a parameter u that denotes some (nondeterministically chosen) non-registered

user and adding it to a set of registered/outside users. The event Enter models a user

u, who is registered and located outside, entering the building by moving it from out

to in. The refinement step below represents an implementation decision to replace the

abstract variables in and out with a database-like user record status, modelled as a total

function status. Register and Enter events are refined: guards and actions on variables

in and out are replaced to use the status function. In order to ensure that the refined

machine/events imply the abstract model, concrete variables must be formally related to

abstract variables through so called gluing invariants. Two gluing invariants therefore

are defined in the refined machine that relate the status function to the sets in and out .

MACHINE m1

REFINES m0

SEES c1

VARIABLES register , in, out , status

INVARIANTS

status ∈ register → STATUS // user status

∀ u · u ∈ register ∧ status(u) = IN ⇒ u ∈ in // a gluing invariant relating user status to indoor users

∀ u ·u ∈ register ∧ status(u) = OUT ⇒ u ∈ out // a gluing invariant relating status to outdoor users

EVENTS
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INITIALISATION

BEGIN register := ∅
status := ∅

END

Register

REFINES Register

ANY u

WHERE u ∈ USER\register
THEN register := register ∪ {u}

status(u) := OUT

END

Enter

REFINES Enter

ANY u

WHERE status(u) = OUT

THEN status := IN

END

END

The semantics of machines and refinement relationships in Event-B is expressed via proof

obligations (PO) of various types: well-definedness of expressions, invariant preservation,

refinement POs, all of which need to be proven in order to verify model correctness. For

example, invariant POs must be proven to guarantee that a model invariant is preserved

by all events. The Rodin platform facilitates the verification process by automatically

generating all proof obligations and trying to discharge them automatically with built-in

and third-party provers.

Compared to other methods described below, and in particular to its predecessor Classi-

cal B, the Event-B method offers a very simple general approach to system specification

and automated verification, backed up by a well-supported and easily extensible Rodin

toolset with an active user and developer community. The latest release of Rodin is

dated 22 June 2015, with over 401 available third-party plug-ins that enable theory ex-

tension, refactoring, decomposition, modular development, UML modelling, animation,

code generation, etc. In particular, a very useful extension (and a standalone tool) for

validating Event-B models in addition to the automated formal proof capabilities offered

by Rodin is the ProB model-checker and animator tool [94]. It enables bounded model

checking of Event-B models by initialising declared sets to finite values and exploring the

state space by executing events in order to find theorem/invariant violations, deadlocks

and other constraints. In addition to the validation, modelling extensions such as State

machines [131] enable visual abstraction and high level modelling in Event-B using the

graphical state chart notation. Based on these features we have chosen Event-B and

Rodin to be the formal technology for this work, which has also extensively utilised

both of the mentioned Rodin extensions.

1According to the official Event-B Wiki at http://wiki.event-b.org/index.php/Rodin_Plug-ins

http://wiki.event-b.org/index.php/Rodin_Plug-ins
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2.1.2 B Method

B Method [5], also known as classical B, is a predecessor of the Event-B language.

Although the latter is considered an extension of B, the two methods differ in their

design and goals. While Event-B is a general formal approach for designing distributed

concurrent systems, B Method is targeted at specification, design and implementation

of software. It has a long and successful history of industrial applications in the fields

of railway transportation, automotive and aeronautics, and is supported by commercial

tools such as Atelier B from ClearSy2 for the development of certified software (according

to ClearSy in 2014 more than 25% of automatic metros had safety-critical software

developed with Atelier B). In fact, it was one of the first formal methods to be backed

up by an industrial strength tool suite that incorporated full development process from

the abstract modelling using refinement and automated proof, to implementation and

automatic code generation [133].

The specification language of B Method is close to Event-B – it is state-oriented and

based on the Abstract Machine Notation (AMN), first-order predicate calculus, Zermelo-

Fraenkel set theory for data modelling and General Substitution Language (GSL) for

modelling operations, which must perform according to specification if called within a

given precondition. Similar to Event-B the key notion of B Method is the top-down

stepwise development from a high-level specification towards a concrete implementation

using the refinement mechanism accompanied by mathematical proofs. Refinement de-

creases the complexity of the proof process and improves the traceability of requirements

as specification details are introduced in small steps. Proof obligations guarantee that

refinements are consistent with their abstractions. The last step in a refinement chain

is the implementation, written in a language called B0 that resembles a programming

language.

A system is modelled in B as a collection of related components, where a component is

either an abstract machine, refinement or implementation. The modelling process starts

from the abstract machine, which has a static definition of sets, constants and proper-

ties over sets and constants. Compared to Event-B both static and dynamic aspects

are defined in a single component. The dynamic aspect comprises variables, inductive

invariant (properties over variables), assertions (safety properties), initialisation sub-

stitution and a list of operations. An operation in B consists of a precondition, body

(generalised substitutions on variables) and an optional list of input and output pa-

rameters. Operations are defined in terms of the weakest precondition semantics, which

means that a precondition must be true when one calls an operation (otherwise any state

can be reached and the invariant is not guaranteed). Unlike in Event-B the generalised

substitution language in B is not limited to three basic substitutions (assignment, rela-

tional assignment and non-deterministic choice from a set) and includes guard, choice

2http://www.atelierb.eu

http://www.atelierb.eu


20 Chapter 2 Background

and iteration substitutions. An illustrative example of an abstract machine from [122],

which specifies an array element search algorithm, is shown below.

MACHINE search

CONSTANTS t ,n // array t of size n

PROPERTIES n ∈ N ∧ t ∈ 0..N→ N
OPERATIONS

b ← search(v) =

PRE v ∈ N THEN

IF v ∈ ran(t)

THEN b := true

ELSE b := false

END

END

END

The abstract machine represents the concept that must be developed into a program. It

does not specify how the search algorithm should be implemented, but rather formalises

the main requirement, that is, the algorithm must return true if an element v is found

in the array t , otherwise it must return false. In order to resemble the executable code

the abstract specification has to be refined.

During the development process abstract machines are refined through a sequence of

design steps into refinements and subsequently into implementations. This process is

facilitated by the modular development, supported in B method via different structuring

primitives, which include the language clause for refinement refines, hierarchy: promotes

(makes hidden identifiers visible in the component’s signature), includes (a machine

includes another machine and promotes its operations) and extends (inclusion without

promotion), and sharing, or reuse of the existing machine’s constructs: sees (read-only

sharing of services) and uses (read/write sharing). In addition, the imports clause

allows an implementation to call operations of imported machines. Thanks to modular

development B specifications can be refined independently and then composed, which

helps to reduce the proof complexity and allows for model re-use. The goal of the

development is to obtain a proved implementation that can be translated into code. An

example implementation of the search algorithm specified above may look as follows:

IMPLEMENTATION searchImlp

REFINES search

OPERATIONS

b ← search(v) =

VAR i IN

i := 0

WHILE i < n DO

IF t(i) = v THEN

b := true

END

i := i + 1

INVARIANT 0 ≤ i ≤ n ∧ b ∈ B ∧ b = true ↔ v ∈ t [0..i − 1]

VARIANT n − i

END
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END

END

The refined specification modifies the search operation by describing concrete steps of the

algorithm that implement the abstract requirement. The refinement uses an unbounded

choice substitution (VAR x IN Sx END), guarded substitution (IF P THEN T END)

and iteration substitution (WHILE P DO S INVARIANT J VARIANT V END) to

implement a while loop with a counter variable i that traverses the array t and sets the

return variable b to true if the element v is found in t . The loop requires an invariant and

variant to be specified, which must be proved. The important step of each refinement

is to prove that: 1) the refined specification is correct (proof of correctness), 2) the

refinement is a valid replacement of the abstract machine in all possible situations the

abstract machine is defined (proof of consistency).

The implementation corresponds to the program level, where the GSL is restricted to

its subset language B0 that is close to the target programming language, hence it can

be translated directly to executable code, such as C or Ada, using tools like Atelier B.

Thus, the resulting code can be proved to be consistent with the original specification

and correct. The B method guarantees that on a checked development the generated

program terminates and causes no runtime errors [20].

2.1.3 Z Notation

Z Notation [138] is another formal language for specifying computer-based systems that

shares roots with B. Similar to B, it supports refinement and is based on the math-

ematical notation of set theory, lambda calculus and first-order predicate logic. The

distinguishing feature of Z is the schema notation for structuring and modularising

mathematical specifications, which enables their reuse and composition. Schemas are

a named box notation that combines and structures mathematical objects and their

properties. A schema can describe a system state in terms of variables and their rela-

tions (state schemas) or the way that state can change using functions that modify state

variables (operation schemas). Schemas are also used to describe system properties and

to reason about refinements [148]. A simple schema of the book database from [139] is

shown below:

BookCollection

collection : P BOOK

# collection ≤ max size
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The state schema BookCollection declares a variable collection as a set of elements

of type BOOK. The predicate below expresses a system invariant that the size of the

collection must not exceed max size.

Similar to B the operations on states are expressed in Z via before-after predicates.

However, instead of assignment Z makes use of identifier decorations: a variable with

no decoration represents the current (before) state, variables decorated by prime (′)
represent the new (after) state, input variables are decorated by ‘?’ and output variables

are decorated by ‘!’. An operation schema that lets to add a new book to the book

collection can be defined as follows:

AddBook

∆BookCollection

newbook? : BOOK

newbook? /∈ collection

collection ′ = collection ∪ {newbook?}

The AddBook operation schema includes the original schema BookCollection, thus adding

all its state components and associated predicates. The ∆-inclusion convention denotes

that the included schema’s state variables may be changed, in other words, the operation

modifies its state. A similar Ξ-inclusion leaves the state unchanged, and is often used

for specifying error handling operations.

Defined schemas can be further structured using various schema operators, such as logical

connectives and quantification, decoration, change of state, renaming, hiding, projection

and sequential composition. Z also supports generic (parameterised) schemas.

With some similarities to B the Z notation has important differences. For instance,

invariants in Z are incorporated into operation specifications and alter their meaning,

whereas in B invariants are checked against the state changes described by operations

to ensure consistency. B also makes a careful distinction between the logical properties

of preconditions and guards, which is not as clear in Z, where preconditions are implicit

in operation definitions [45].

Although Z is a powerful formal specification language, it is not intended for describing

timed and concurrent systems. Several works address this limitation by combining

it with other formal languages, for example, with Timed Communicating Sequential

Processes [97], which is a process-based formalism for modelling concurrency that also

supports real-time semantics.
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Among still actively maintained tools for development in Z are the ProofPower3 tool suite

for Higher Order Logic, which also supports Z, and the ongoing Community Z Tools4

project that aims at developing a toolset for editing, type checking and animating Z

specifications and its extensions.

2.1.4 TLA

Temporal Logic of Actions is a formal method based on a temporal logic targeted at

specifying and reasoning about concurrent algorithms [81]. The central idea of TLA

is that reasoning about and verifying correctness of an abstract algorithm expressed

in terms of a simple mathematical logic is much easier than verifying a program that

implements the algorithm. It offers a single logic for specifying both the algorithm

and its properties as formulas. To prove the correctness of the algorithm one must

prove that the formula specifying the algorithm implies that of the properties. TLA

is designed to be simple yet powerful to express complex concurrent algorithms. It

combines two logics: a logic of actions and a standard temporal logic. The semantics

is defined in terms of states, where a state is an assignment of values to variables.

State functions correspond to expression of an ordinary programming language, while

predicates correspond to boolean expressions and assertions to be verified. Actions

correspond to atomic operations of a concurrent program.

An action is a boolean expression, such as x ′+ 1 = y , formed from unprimed variables

(referring to the old state), primed variables (referring to the new state) and constants.

Formally, the semantic meaning JAK of an action A is a function that assigns a boolean

sJAKt to a pair of states s, t that denote an old state and a new state, respectively. The

meaning of the above action sJy = x ′ + 1Kt , which asserts that the old state value of

y is greater than the new state value of x by 1, equals to the boolean sJyK = tJxK + 1

(unprimed variables v are replaced by sJvK and primed variables v ′ are replaced by tJvK).
If sJAKt is true, the pair s, t is called A step, which, in the context of a program, means

that executing an operation denoted by action A in state s produces state t . Action

A is valid if it is true regardless of the value substitutions for all primed and unprimed

variables. The validity of an action expresses a theory about values.

Temporal logic [117] is used in TLA for reasoning about algorithms, which requires

reasoning about their executions – sequences of states. Temporal formulas are built

from elementary formulas with boolean operators and the unary operator 2 (always).

The semantics of temporal logic is based on behaviours – infinite sequences of states that

a computer goes through when executing an algorithm. Thus, a temporal formula is an

assertion about a behaviour. Formally, the meaning JF K of a formula F is a boolean

function on behaviours, and σJF K denotes the value that F assigns to behaviour σ. The

3http://www.lemma-one.com/ProofPower/getting
4http://czt.sourceforge.net

http://www.lemma-one.com/ProofPower/getting
http://czt.sourceforge.net
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behaviour σ satisfies F if σJF K is true. A temporal formula is called valid if it is satisfied

by all possible behaviours. For example, 〈s0, s1, s2, . . .〉J2F K asserts that F is true at all

times during the behaviour 〈s0, . . .〉. Other temporal formulas of TLA include:

�F F is eventually true

2 � F F is true infinitely often

�2F F is eventually always true

F ; G F leads to G (at any time F is true, G is true then or at some later time)

Algorithms and properties are defined in TLA in terms of temporal formulas. An al-

gorithm specified by a temporal formula F satisfies a property G if every behaviour

representing its possible execution satisfies G , or more formally, if σJF ⇒ GK is true for

every behaviour σ. As algorithms are specified using actions, for an action A to satisfy a

behaviour first pair of states in that behaviour must be an A step: 〈s0, s1, s2, . . .〉J2AK ,
s0JAKs1. Consequently, a behaviour satisfies a temporal formula 2A if every step of that

behaviour is an A step. Formulas such as 2A are called RTLA (Raw Temporal Logic

of Actions) – they allow assertions on behaviours that should not be assertable. Hence,

TLA is defined as a subset of RTLA by allowing stuttering steps that do not modify

variable values. As an illustration of how a program can be specified in TLA follows an

example from [81] of a simple program with two incrementing counters:

var natural x , y = 0;

do 〈true → x := x + 1〉
8
〈true → y := y + 1〉 od

This program uses Dijkstra’s do-od construct and 8 (bar) separator for unordered alter-

natives [51]. An RTLA formula Φ representing this program may be defined as follows:

InitΦ , (x = 0) ∧ (y = 0)

M1 , (x ′ = x + 1) ∧ (y ′ = y)

M2 , (x ′ = x ) ∧ (y ′ = y + 1)

M ,M1 ∨M2

Φ , InitΦ ∧2M

Predicate InitΦ denotes the initial condition, M1 and M2 are the atomic operations

of incrementing either x or y , and M is a step representing an execution of one of

operations. To enable stuttering (steps that leave both x and y unchanged) Φ needs to

be modified:

Φ , InitΦ ∧ (2M∨ ((x ′ = x ) ∧ (y ′ = y)))

In the TLA notation actions (unless they are predicates) can only appear in the form

2[A]f , where f is a state function and [A]f , A ∨ (f ′ = f ). A shorthand notation for

ordered pairs with equal components lets one to rewrite a conjunction (x ′ = x )∧(y ′ = y)
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to an equality 〈x ′, y ′〉 = 〈x , y〉, in which 〈x ′, y ′〉 can be further rewritten as 〈x , y〉′. Using

this notation the above formula Φ can be rewritten in TLA as

Φ , InitΦ ∧2[M]〈x ,y〉

Formula Φ describes a safety property – an assertion than something bad may never

happen. In this case, that the program may not start in any state other than InitΦ

followed by a step no other than [M]〈x ,y〉. To complete the definition of a program

one must also add a liveness property – an assertion than something will eventually

happen, such as x and y will be incremented infinitely often, and a fairness property

– an assertion that a possible operation will eventually be executed, such as both x

and y will be incremented infinitely often. Liveness in TLA is expressed in terms of

fairness [136], for which two definitions are available:

Weak fairness: WFf (A) , (2 � 〈A〉f ) ∨ (2 � ¬Enabled〈A〉f )

Strong fairness: SFf (A) , (2 � 〈A〉f ) ∨ (�2¬Enabled〈A〉f )

The TLA+ specification language [82], which is a syntactic extension to TLA, can be

compared to B Method, since it includes ZF set theory, functions and constructs for

modular development such as extends and instance. The semantics of temporal operators

is expressed over traces of states, as opposed to the weakest precondition calculus for B

actions. Both semantics are equivalent with respect to safety properties, but TLA allows

expression of fairness and eventuality properties, not directly supported by B (one can

still use a tool such as ProB with LTL for model-checking temporal properties).

The most recent development environment for TLA+ is the TLA Toolbox5, which com-

bines the PlusCal translator from an algorithmic language to TLA+, TLC model checker

and TLAPS mechanised prover (currently limited to non-temporal safety properties).

The toolbox is made open-source and is available free of charge under the MIT license.

Although not as active and rich in contributions from community as toolsets like Rodin,

the TLA Toolbox is still maintained, with the latest release dated 25 February 2014.

2.1.5 VDM

Vienna Development Method (VDM) is one of the oldest model-oriented formal methods

for the development of computer-based systems [57]. It comprises a set of mathematically

well-defined languages and tools for construction and analysis of systems and helps to

identify the areas of incompleteness or ambiguity in informal specifications. Models are

expressed in the VDM-SL (specification language), which supports the definition of data

– (constructed) structured data types, collections and basic types, and functionality –

operations over data types, defined either implicitly by preconditions and postconditions

or explicitly by algorithms. An extension of the VDM-SL – VDM++, adds support for

5http://research.microsoft.com/en-us/um/people/lamport/tla/toolbox.html
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object-oriented and concurrent system modelling. VDM, however, does not prescribe

a particular development process or methodology and gives developers the freedom of

using VDM components as they fit.

The key principles of VDM are the abstraction from the details that are not relevant to

the purpose of the model (hence, the model’s purpose must be well-understood), and the

rigour, i.e. the capacity to perform a mathematical analysis of the model’s properties in

order to gain confidence in the validated characteristics of its implementation.

The structure of the models in the VDM-SL consists of the declaration of data and

functionality. Data includes inputs/outputs and state (internal) data, while functionality

includes operations that can be invoked from the system interface, as well as auxiliary

functions. The VDM++ adds capability to structure models into class definitions, where

state variables take the role of instance variables and operations represent class methods.

The data is defined in VDM using the basic abstract data types (natural, integer, ra-

tional, real, character) and type constructors. The data can be restricted by invariants

that represent conditions to be respected by all elements of the data type to which they

are attached. For instance, a variable type to represent the latitude of an aircraft can

be declared as follows6:

Latitude = real

inv lat == lat >= -90 and lat <= 90

The Latitude type can then be used in constructed types to represent the position of

an aircraft and its path:

Position :: lat : Latitude

long : Longitude

alt : Altitude

FlightPath = seq of Position

FlightDetails = map AircraftId to FlightPath

The functionality is described in terms of functions and operations that accept input

values and produce output values. Functions can be implicit or explicit. The explicit

function is an expression that denotes the returned result in terms of input parameters,

as in the following function declaration that adds a new position to the end of a flight

path:

AddPos: FlightPath * Position -> FlightPath

AddPos(fp, p) == fp^[p]

6Code examples are from [57]
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Here the first line declares the input parameters and a return type, while the second

line defines the body of the function, i.e. adding a position to the end of the path. The

definition of this function, and explicit functions in general, is biased towards imple-

mentation, therefore an implicit function definition is more suitable for the abstraction

of functionality in VDM. Implicit definitions are given in terms of logical expressions

(postconditions) that must be satisfied by the return result and do not have a direct ref-

erence to a particular computation algorithm. The following example shows an implicit

declaration of a function that selects an aircraft for landing:

Select(fd:FlightDetails) a:AircraftId

pre dom fd <> {}

post a in set dom fd

Here the function only defines that the returned aircraft a is present in the domain of

flight details fd, with no explicit indication of how to compute the result. The latter

means that implicit functions are not directly executable. Additionally, both explicit and

implicit functions may be not well-defined for all inputs, e.g. a map of flight details fd can

be empty. Such constraints on inputs are explicitly declared in VDM as preconditions.

The second line in the above example declares a precondition on non-emptiness of the

input to ensure a correct result can be returned.

Finally, the operations in VDM are special type of functions that, in addition to returning

a result, can have side effects on state variables. A variable can be defined as a state

variables using the state construct:

state Airspace of

fd: FlightDetails

end

Similar to functions, operations can be implicit or explicit. For instance, an implicit

operation to add a new aircraft with the initial position in its path can be defined as

follows:

New(a:AircraftId, p:Position)

ext wr fd: FlightDetails

pre a not in set dom fd

post fd = ~fd munion {a |-> [p]}

The ext clause specifies that the operation has a read/write access wr on the variable

fd. The ~ symbol on the state variable in the postcondition denotes its value before the

execution of the operation. The munion operator forms the union of two mappings.
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Most of the validation in VDM can be performed using proof obligations – static and

run-time error checks on the constructed model, and validation conjectures – checks on

expected emergent behaviour. A range of POs is common for all models in VDM, such as

data type POs (values belong to a specified type) and invariant preservation/satisfiability

POs (functionality respects invariants).

Besides proof obligations and mathematical analysis via formal proof, which is more

relevant for critical applications, a less rigorous technique of exploring the properties of

a model is testing. Explicit operations and functions can be executed directly by the

interpreter, provided their expressions are within the executable subset of the language.

This may not always be the case due to the expressiveness of the VDM-SL, e.g. a

quantification over unbounded data types makes expressions non-executable. Despite

these caveats, the models of industrial applications are usually built as executable and

validated via testing/coverage analysis.

A much more rigorous and general validation technique compared to testing is the formal

proof, which is supported in the VDM-SL semantics by the proof theory [21] and the

development of the automated tools, such as the open-source Overture project7 and the

VDMTools commercial tool8, which also supports code generation.

When compared to Event-B and classical B, VDM follows similar design principles and

objectives. For instance, it also uses predicate logic to describe invariants and postcon-

ditions of the operations on data (implicit function definitions). Similarly, VDM uses

sets and partial functions for modelling data. The latter property can lead to undefined

terms if a function is applied outside of its domain [45]. To deal with undefinedness

VDM uses the Logic of Partial Functions (LPF) in which, for instance, the value of a

conjunction in which either operand is false is defined to be false [56], as opposed to

Event-B, which uses classical logic that simplifies proof, but hence requires more care

to specify well-definedness conditions9.

2.2 Hybrid Modelling and Simulation

In this section we describe the hybrid modelling formalisms and simulation technologies

that support them. Our development workflow involves co-modelling and co-simulation

of the continuous-time physical environment alongside the formal modelling of the dis-

crete control. Hence, it requires a physical modelling and simulation technology that,

according to our stipulated assessment criteria, should have the following properties:

7http://www.overturetool.org
8http://www.vdmtools.jp/en/
9The tools for VDM actually use two-valued logic assuming left-to-right evaluation (McCarthy con-

ditionals [104]) and not full LPF.

http://www.overturetool.org
http://www.vdmtools.jp/en/
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• It supports abstraction, modularity and hierarchical development to enable the

top-down co-modelling and validation process, starting from an abstract model of

the system towards its realisation.

• It is capable of modelling and simulating complex physical processes of the con-

tinuous environment in which the developed hybrid system shall be operating.

• It is a free and open technology that is supported by as many tools as possible to

be fully integrated and versatile.

• It supports a free and open standard for the model co-simulation, which can be

easily adopted and implemented into a supporting tool for the integrated develop-

ment.

One of the technologies that is gaining recent popularity in multi-domain simulation

field is the Modelica language, described later in this section. Compared to other sim-

ulation technologies it matches all the listed criteria. Hence, we chose Modelica as

a preferred physical modelling and simulation language. But first, we introduce the

discrete-continuous formalisms that are at the foundation of any hybrid system mod-

elling.

2.2.1 Hybrid Formalisms

The concept of automaton is often used to effectively model state-based computation

processes. Here we describe two automata-based formalisms particularly designed for

hybrid systems. They both derive from the conventional finite-state automaton [60],

which can be defined as a 4-tuple (S ,S0,A,T ) with a

• finite set of control states S

• subset of initial locations S0 ⊆ S

• finite set of events A, including the internal event τ ∈ A

• finite set of transitions T ⊆ S ×A× S of the form t = (s, a, s′) ∈ T , also written

as s
α−→ s′, where s ∈ S is the source state, s′ ∈ S is target state, and a ∈ A is

transition action.

A transition system of the finite automaton M = (S ,S0,A,T ) can be defined using the

enabling condition Enabled(l0, (l , a, l ′)) ⇔ (l0 = l), where l0 is the current configura-

tion from the set of all possible configurations S , and configuration transition function

Γl ,a,l ′(l) := l ′. The resulting action rule is:
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Enabled(l ,t)

l
t−→Γt (l)

action

The rule states that if a transition t from the location l is enabled, a transition to a

new location, determined by the transition function Γ, can be taken, which produces a

specified action.

For the finite behaviour a set of accepting locations Sf ⊆ S can be defined using the valid

finite traces s0
a0−→ s1 . . . sn with s0, s1 . . . sn ∈ S ∗ that are given by all finite sequences of

transitions starting from the initial location s0 ∈ S0 and ending at the accepting location

sn ∈ Sf .

Hybrid Automata

The formalism of hybrid automata [65] has been developed to describe mixed discrete-

continuous systems, for example where a digital controller interacts with an analog

plant. A hybrid automaton has two kinds of transitions: discrete jumps in the state

space, caused by mode switches, and continuous evolution along continuous flows within

a mode. Mathematically such an automaton H can be defined by

• continuous state space Rn

• control graph, or finite directed multigraph (Q ,E ) with control modes (vertices)

Q and control switches (edges) E

• initial conditions initq ⊆ Rn that are predicates, which initially hold in q ∈ Q

• invariant conditions invq ⊆ Rn that are evolution domain restrictions, which must

be true while in q ∈ Q

• flow conditions flowq ⊆ Rn × Rn that are relationships between continuous state

x ∈ Rn and its derivative ẋ ∈ Rn during continuous evolution in q ∈ Q

• jump conditions jumpe ⊆ Rn × Rn that determine a new continuous state value

x ′ ∈ Rn from its old value x ∈ Rn when edge e ∈ E is followed

The jump condition jumpe is defined as a conjunction of transition guards guarde ⊆ Rn

that determine conditions on which an edge can be taken, and variable resets resete ⊆
Rn×Rn , specified by a list of assignment statements x1 := θ1, . . . xn := θn , which update

state variables if transition e ∈ E is followed. In turn, flow conditions are specified by

a set of differential equations ẋ1 := θ1, . . . ẋn := θn . As an example, a temperature

regulation system can be modelled by the following hybrid automaton.
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Figure 2.1: Hybrid automaton of a thermostat

In Figure 2.1 the temperature is denoted by x . The controller has two modes: Off,

in which the heater is off and the temperature falls according to the flow condition

ẋ = −1.8x , and On, in which the heater is on and the temperature rises according to

ẋ = 5− 0.1x . The initial condition is the Off mode and the temperature of 20 degrees.

Jump conditions specify control dynamics: the heater may go on if the temperature

drops below 19 degrees or go on if it rises above 21 degrees. Furthermore, invariants

guarantee that at the latest the heater will be turned on if the temperature drops to 18

degrees, or it will go off if the temperature rises to 22 degrees.

The execution of hybrid automata involves continuous flows and discrete jumps between

modes. The automaton can be abstracted to a timed transition system, which retains

the information only on the source, target and duration of each flow. It can be abstracted

further to a time-abstract transition system that abstracts duration of flows, resulting

in a fully discrete system.

Hybrid automata support composition. Two automata H1 and H2 can be composed to

a parallel composition H1 ‖ H2, with the timed and time-abstract semantics, defined by

interaction via joint events. If H1 and H2 have a common event α, they are synchronised

on α-transition. If only one automaton has event α, each α-transition is synchronised

with 0-duration time transition of the other automaton. For each real δ > 0 a time

transition of H1 with duration δ must synchronise with a time transition of H2 of the

same duration.

Statecharts

Finite state machines and their corresponding transition systems (state diagrams) are

well-recognised formalisms for event-based dynamic systems. However, they have a dis-

advantage of a ‘flat’ structure that leads to an exponentially growing multitude of states

and, as a result, in unstructured and chaotic diagrams. For example, a flat model of N

parallel state machines, each containing M states, requires a total number of M N states

instead of M × N states of the equivalent structured model. This problem was tackled

by Harel in his visual notation, called Statecharts [63], designed as extension of con-

ventional state machines with clustering, orthogonality (concurrency) and refinement,

and ‘zoom’ capabilities (moving between levels of abstraction) by introducing AND/OR
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decomposition of states, inter-level transitions and a broadcast mechanism for commu-

nication between concurrent components. In a nutshell statecharts = state-machines +

depth + orthogonality + broadcast-communication.

The clustering and refinement is achieved in statecharts by allowing encapsulation of

states, and transitions that could originate and terminate at any level of depth. A state

machine10 in Figure 2.2(a) can be transformed to two-level statechart in Figure 2.2(c):

states A and B can be clustered into a new state D with XOR (exclusive or) semantics,

and two transitions on event β replaced by a single transition, outgoing from the super-

state. Conversely, the resulting statechart could be achieved via refinement of state D in

Figure 2.2(b) by introducing substates A and C , extending α and δ triggered transitions

to point to substates and adding the γ transition.
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Figure 2.2: Statechart clustering and refinement

The term orthogonality describes the AND decomposition of states, which captures

the property that if a state is active, the system must be in all of its AND components.

This is achieved in statechart notation by splitting a state into components using dashed

lines. Orthogonality can exhibit independence or synchronisation behaviour, respectively

triggering either a single or multiple transitions in orthogonal regions at the same time.

Finally, functional behaviour of the system is described in statecharts by actions and

activities that are allowed on both transitions and states. The transition labelling has

the form α(P)/S , where α is the triggering event, P is the guard and S is the action

to be carried out upon transition. Actions can be also carried out on entering and

exiting a state. An activity can be associated with a state, denoting it is carried out

continually throughout the system being in that state. As opposed to actions, which are

instantaneous, activities take some time. Figure 2.3 shows an example of orthogonality

with AND states A and F , state actions S and T and state activity X .

10State machine examples are from [63].
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Figure 2.3: Orthogonal states and state actions/activities

Hybrid Statecharts

Although discrete event approach, employed by statecharts, is justified for modelling the

discrete reactive systems, it is not always appropriate to model both the system and the

environment as discrete processes. Hybrid statecharts [76] are the extension of Harel’s

statecharts with continuous semantics. They introduce timed transition annotations,

given by time intervals {l , u} between the lower and upper bound of transition, and

state labelling by differential equations, denoting the continuous change that occurs

while the state is active. A simple hybrid statechart is shown below.

Mouse Cat

M C

MouseWins CatWins

Figure 2.4: Hybrid statechart of the cat and mouse game

Figure 2.4 models a game of cat and mouse from [76]: at time t = 0 a mouse starts

to run with constant velocity Vm from some initial position towards a hole in the wall

at distance X0. After ∆ time units a cat is released from the same initial position.

It starts to chase the mouse at velocity Vc along the same path. Depending on the

parameters chosen either the mouse reaches the hole, or the cat catches the mouse. The

system is modelled by two continuous variables xm and xc , denoting the distance of
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the mouse and cat, respectively, from the wall. Initially both variables are set to X0.

Then each player proceeds in its local behaviour, described by corresponding orthogonal

region. The mouse immediately enters its operation state, in which the variable xm

changes according to equation ẋm = −Vm . The cat enters its operation state only after

a delay of ∆. The win conditions are modelled by transition guards xm = 0 (mouse

wins) and xc = xm (cat wins), each generating an event m-wins or c-wins, respectively,

which moves the whole system to the final state MouseWins or CatWins (the result is

nondeterministic if xm = xc = 0).

2.2.2 Simulink/Stateflow

Simulink is a graphical environment for model-based design and simulation of dynamic

and embedded systems that integrates with MATLAB, which is a high-level language

and interactive environment for numerical computation, visualisation, and programming,

and provides a diagram editor with a library of components for multiple domains, in-

cluding signal processing, communications and controls [102]. Models are designed using

diagrammatic language of hierarchical interconnected blocks. Key features of Simulink

are

• Rich and expandable library of customisable blocks, including algorithmic (Sum,

Product, Lookup Table), structural (Mux, Switch, Bus Selector), continuous and

discrete dynamics (Integrator, Unit Delay)

• Ability to construct new blocks by assembling and grouping the existing ones

• Functions and algorithms written in MATLAB can be incorporated into Simulink

as Embedded Function blocks

• Model Explorer, which allows to navigate, create and configure all the signals,

parameters and properties of a designed model

• Finished models can be simulated either interpretively (Normal, Accelerator or

Rapid Accelerator mode) or as compiled C-code using fixed- or variable-step solvers

• Results of simulation are plotted via Scope blocks and can be examined with a

graphical debugger and profiler, which allows to diagnose model performance and

unexpected behaviour

• Provided API allows developers to connect Simulink to other simulation software

and incorporate custom code
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The principle behind the modelling technique in Simulink is similar to actor models,

where a continuous-time physical system, described by a differential or integral equation

that relates input signals to output signals, can be viewed as a box with an input port

and output port, where signal of the input port x and signal of the output port y are

functions over time to a signal value: x , y ∈ R→ R [90]. Such a model of a system that

can be defined as a function S ∈ X → Y , where X = Y = RR, is called an actor. Two

actors S1 and S2 can be then composed by the output/input port, such that y1 = x2.

Figure 2.5: Composition of two actors

The same approach is followed in Simulink, where blocks are elementary signal processing

units, interconnected by input/output ports. The model is described as a directed graph

of blocks that formalises interaction between the individual components. The resulting

model is close to the solution algorithm. For instance, a typical control system with

feedback that measures an error e, which represents the difference between the desired

behaviour r and actual behaviour y , is modelled with a directed loop in Figure 2.6.

Figure 2.6: Basic model of a control loop in Simulink

Such design is typical to closed-loop feedback systems [105]. Signal u from the con-

troller is sent to the plant where a new output y is obtained and sent back to the

sensor to calculate new error value e. The essential part of the feedback system is the

proportional-integral-derivative (PID) controller, which is responsible for calculating the

desired response to error by applying a proportional gain Kp (reduces rise time), integral

gain Ki (eliminates steady-state error) and derivative gain Kd (reduces overshoot):

u(t) = Kpe + Ki

∫
e dt + Kd

de

dt
(2.1)

The Simulink model in Figure 2.6 uses two transfer function blocks from the collection

of continuous blocks of the standard library to model the controller (PI Controller) and

the plant. The Step block is a source block that generates a step input signal, while the

Scope block is a sink block that displays the input signal on a plot. The Sum and Gain

are math operation blocks that respectively add two input signals and multiply a signal

by a coefficient. When modelling and simulation is completed a corresponding Scope

block can be opened to display the plot of input signals, such as in Figure 2.7.
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Figure 2.7: PID-controlled signal step from 0 to 1 at time = 1s

All blocks used in the model must be connected by directed lines that define how signals

(either scalar or vector) are transmitted. A line can also split the signal, as we have seen

in the feedback model. Simulink provides a few general classes of blocks:

• Sources – generate various signals

• Sinks – output or display signals

• Discrete – linear, discrete-time system elements (transfer functions, state-space

models, etc.)

• Continuous – linear, continuous-time system elements and connections (summing

junctions, gains, etc.)

• Nonlinear – nonlinear operators (arbitrary functions, saturation, delay, etc.)

• Connections – multiplex, demultiplex, system macros, etc.

Additional blocks can be introduced to Simulink either from MATLAB functions, C-

code S-functions (system functions) or using the hierarchical modelling capability by

grouping a set of linked blocks into a subsystem. Another option is to use a Stateflow

block, which can be either Truth Table or Chart. The last approach is particularly

useful when modelling the control logic for hybrid systems, as it is based on a variant

of finite state machine notation established by Harel [63], where states and transitions

form the basic building blocks of the system. Stateflow charts can represent hierarchy

(states having nested states), parallelism (orthogonal states that can be active at the

same time) and history (destination of transition depends on historical information).

Additionally, Stateflow allows to represent flow graphs (stateless charts). In general, a

Stateflow chart is used to specify the discrete controller, while the continuous dynamics

of the plant/environment is specified in Simulink [124].
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Figure 2.8: Stateflow of air controller

The example state chart in Figure 2.8 is modelling an air control system, consisting of

two similar fans that can be switched on/off independently. The system can be switched

on/off itself, which is described by the SWITCH event that triggers the transitions

between two system states: PowerOff and PowerOn. The latter state contains three

parallel states: one for each fan (FAN1 and FAN2 ) and a helper state SpeedValue that

calculates the amount of air flow, which equals to the number of working fans. Airflow

signal is modified in the chart using two types of state actions: du (during) and en

(entry). Other types supported by Stateflow include exit, bind and on event.

2.2.3 Modelica

Modelica is a freely available equation-based object-oriented language for modelling and

simulation of complex heterogeneous physical systems that may involve subsystems from

multiple domains, including mechanical, electrical, hydraulic, thermodynamic, control

and process-oriented applications. The language was designed to allow tools to automat-

ically generate efficient simulation code with the main objective to facilitate exchange

of models, model libraries and simulation specifications [59].

Models in Modelica are mathematically described by differential, algebraic and discrete

equations. Interaction between models is formalised in terms of connection equations

without any specification on causality, i.e. relationship between inputs and outputs11.

This enables high reusability and readability of declarative (acausal) models, as op-

posed to context-sensitive procedural approach where causality is fixed (e.g. Simulink).

For example, the same equation of a resistor R × i = v can be used in three ways:

11The term causality is used here in a different context from the standard definition of causality
accepted in control systems, where it signifies the dependency of output y(t0) on the values of input x (t)
for t ≤ t0 [112].
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v := R * i; i := R / v; R := v / i. On the other hand equation-based models are

not oriented to a solution (algorithm) and therefore require more sophisticated symbolic

analysis capabilities from the simulation tool.

Every object in Modelica has a class that defines its data and behaviour. A class

declaration consists of a list of component declarations and a list of equations after

the equation keyword. For instance, a low-pass filter can be modelled by the following

class12.

class LowPassFilter

parameter Real T = 1;

Real u, y(start = 1);

equation

T * der(y) + y = u;

end LowPassFilter;

Three component declarations are used in this class. The component T is prefixed with

a specifier parameter , indicating that the value of T is constant during simulation runs.

The component y is using a modification (parentheses), which allows its attribute start

to be initialised. In the equation block a single equation is declared. Construct der()

denotes the time derivative of y . After a new class is declared it can be instantiated,

i.e. instances (objects) of that class can be created and used by other classes as sub-

components:

class FiltersInSeries

LowPassFilter F1(T=2), F2(T=3);

equation

F1.u = sin(time);

F2.u = F1.y;

end FiltersInSeries;

In the above example two instances of low-pass filter are created with different time

constants T and connected by equations. The dot notation used in equations allows

components to be referenced within structured components. time is a built-in global

independent variable that denotes the current time during simulation.

For simplicity and maintainability Modelica provides the following restricted versions

of the class keyword: model (dynamic model that cannot be used as a connector),

connector (contains only interface ports, no equations), record (only data, no equations),

block (fixed input-output causality), function (only public inputs and outputs, one algo-

rithm and no equations), type (derived from built-in data types or defined records) and

package (collection of class declarations).

12Modelica examples are from [9].
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When created, components can be connected by means of the connector class, which

declares variables that define a component’s communication interface. For example, an

electrical resistor component with two pin connectors can be modelled as follows.

connector Pin

Voltage v;

flow Current i;

end Pin;

model Resistor

Pin p, n; // "positive" and "negative" pins

parameter Real R(unit="Ohm");

equation

R*p.i = p.v - n.v;

p.i + n.i = 0; // positive currents into component

end Resistor;

The Pin connector defines an interface in terms of voltage and current. Notice that its

variable i is declared with a prefix flow , which is used for flow variables. When connectors

of different components are connected by equations, non-flow (default) variables are set

to equal according to Kirchhoff’s first law, whereas flow variables are summed to zero

(Kirchhoff’s current law). Modelica provides a special operator connect , which allows

two connectors of the same type to be coupled and generates equations based on the

variable kind (flow or non-flow). For example, a simple circuit shown in Figure 2.9 can

be modelled by connecting three resistor components together.

Figure 2.9: Simple electrical circuit

model SimpleCircuit

Resistor R1(R=100), R2(R=200), R3(R=300);

equation

connect(R1.p, R2.p);

connect(R1.p, R3.p);

end SimpleCircuit;

The equations of the model above are equivalent to:

R1.p.v = R2.p.v;

R1.p.v = R3.p.v;

R1.p.i + R2.p.i + R3.p.i = 0;
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As an object-oriented language Modelica supports encapsulation, aggregation and spe-

cialisation, although its type system is influenced by the type theory [1], which separates

subclassing (inheritance) from subtyping (structural relationship for type compatibility).

Inheritance is used in Modelica as a structuring concept and not for classification or type

checking, i.e. a class can be defined as a subtype of another class not only by using an

extends clause, but also by including all the public components of that class [10]. Addi-

tionally, reusable abstract classes can be created using the partial specifier. For instance,

we might want to have a generic electrical component with two pins, which can be used

as a base class for creating a resistor or inductor. This can be achieved as follows.

partial model OnePort

Pin p, n;

Voltage v "Voltage drop";

equation

v = p.v - n.v;

p.i + n.i = 0;

end TwoPin;

model Inductor extends OnePort;

parameter Real L(unit="H"); // inductance

equation

L*der(i) = v;

end Inductor;

Apart from acausal modelling based on equations Modelica provides the means to model

causal systems, such as digital controllers, which can be represented more naturally

as algorithms that consist of ordered assignment statements, branches and loops. A

Modelica algorithm block is designed to hold only assignment statements, denoted by

the assignment operator :=, as well as if-then-else expressions and loops.

Finally, Modelica supports the modelling of hybrid systems through unification and con-

current execution of continuous and discrete models. For the discrete part it uses the

principle of the synchronous data flow, which states that computation and communica-

tion at an event instant does not take time unless the duration is modelled explicitly [58].

The continuous part is described by differential-algebraic equations that follow the single

assignment rule, stating that the total number of equations must be equal to the num-

ber of unknown variables [115]. Discontinuous dynamics can be modelled by if-then-else

expression in equation statements, such as in the following equation of a limiter:

y = if u > HighLimit then HighLimit

else if u < LowLimit then LowLimit else u;
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This approach can also be applied to model conditional components, whose equations

depend on a component’s parameters. In addition, an if-then-else statement can be used

to replace a set of equations with another set depending on some condition.

Discrete-time and sampled systems are modelled in Modelica by discrete state variables,

whose values are changing only at specific points in time, and a when clause, which ac-

tivates equations instantaneously when its condition becomes true. A built-in function

sample(start , interval) can be used as a condition of a when clause to trigger it when

time = start + n × interval ,n ≥ 0, which is particularly useful for modelling sampling.

In equations an operator pre is used to denote the left limit of a discrete state variable.

An operator reinit(state, value) can be used on a continuous state variable to reassign

its value at an event defined by when clause. Some of these constructs can be demon-

strated in a hybrid model of a classical example of the bouncing ball that involves both

continuous motion of the ball and discrete changes in velocity at bounce times:

model BouncingBall

parameter Real g=9.81;

parameter Real c=0.90; // elasticity constant of ball

Real height(start=0); // height above ground

Real v(start=10); // velocity

equation

der(height) = v;

der(v) = -g;

when height<0 then

reinit(v, -c*v);

end when;

end BouncingBall;

A lot of predefined Modelica components for multiple domains are available as part of

the Modelica Standard Library that comes with the language. Besides the textual rep-

resentation Modelica provides a visual component modelling capability, which can be

implemented by graphical editors in modelling/simulation tools. The simulation pro-

cess itself involves a number of steps, including model translation, analysis, sorting and

optimisation of equations, C code generation and compilation to an executable simula-

tion. A number of Modelica compilers are available, including the free OpenModelica

Compiler (OMC), provided by the open-source OpenModelica environment13.

13https://www.openmodelica.org

https://www.openmodelica.org
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2.2.4 Ptolemy

Ptolemy II is an open-source framework for modelling and simulation of distributed hy-

brid systems [39]. The framework is developed within the Ptolemy project that studies

the design of concurrent, real-time, embedded systems based on the concept of heteroge-

neous hierarchical assembly of concurrent components and the use of well-known models

of computation (MoC) that govern their interaction. The models are constructed as

a set of interacting components, where the semantics of the interaction is defined by

the chosen MoC. The framework has implementations of a number of MoCs including

Synchronous Data Flow, Kahn Process Networks, Discrete Event, Continuous Time,

Synchronous/Reactive and Modal Models.

The basic element in Ptolemy II is an actor, which is a software component that exe-

cutes concurrently and communicates with other actors using message passing via in-

terconnected ports [96]. Multiple actors and their connections can be aggregated into

a composite actor that can have its own ports, linked to the ports of nested actors. A

hierarchical interconnection of multiple actors constitutes a model.

The semantics of the actor is deliberately incomplete to handle multiple heterogeneous

models, required by complex systems. This abstract semantics reduces interactions

between diverse models to a minimum that achieves a well-defined composition [93].

The concrete semantics of a model is determined in Ptolemy II by a software component

called a director, which implements a particular MoC that defines the communication

mechanism and the execution order of the actors under its control. Each level of the

hierarchy in the model can have a distinct director, which allows heterogeneous models

to coexist in one system. The emphasis of the Ptolemy project is to explore such

combinations of models of computation implemented by various directors. For instance,

a hierarchical combination of continuous-time (CT) models with finite state machines

(FSM) yields hybrid systems, such as the example system of two sticky point masses

from the Ptolemy II demo models, displayed in Figure 2.10.

Figure 2.10: Hybrid model of the two sticky point masses in Ptolemy II (screen-
shot from the Ptolemy II environment)
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This example models two sticky point masses on springs, oscillating on a flat frictionless

table. When the two masses collide, they stick to each other and continue oscillating

together. The stickiness decays with time (defined by a stickiness decay rate parameter)

and eventually the masses come apart again. This is an example of a modal model,

where the system has two modes of operation: Together and Separate, corresponding

to whether the masses are stuck together. Modes are modelled by states in an FSM,

governed by a discrete-event (DE) director at the top level (not shown in the figure).

Input/output ports are used for data signals: the velocities of the two masses V1 and

V2, their positions P1 and P2, Force, Stickiness and touched event indicator. Each

state is refined by a continuous-time model of the dynamics in that mode. For instance,

the Together mode is refined to the following CT model:

Figure 2.11: Continuous model of Together mode from the FSM

Notice that continuous model is governed by a continuous director (CD). The model has

an ordinary differential equation for the joined point masses attached to a spring. The

second differential equation models the decaying stickiness.

The resulting model can be easily simulated in Ptolemy II. There are built-in signal sink

actors for plotting timed signals. Figure 2.12 shows the results of the simulation of the

sticky masses model, plotted by the TimedPlotter sink actor.

Figure 2.12: Simulation results of the two sticky point masses model

As mentioned earlier, the actual execution semantics of an actor is determined by the

associated director, which implements a particular MoC. The execution of an executable

actor comprises three main phases:
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• Setup phase, divided into two steps: preinitialise and initialise. The preinitialise

step is performed only once at the very beginning of the execution and relates to

a static analysis of the actor’s actions. It is followed by the initialise step, which

initialises parameters, resets local state and sends initial messages to output ports.

• Iterate phase or sequence of iterations (atomic executions of the actor), divided

into three steps: prefire, fire and postfire. The prefire step checks the execution

preconditions. The fire step performs the computation of the actor by reading the

data from the input ports, processing it and producing the output data on the

output ports. The postfire step updates the state, allowing a number of iterations

to be executed before a steady state is reached.

• Wrapup phase that ensures the execution is properly terminated.

2.3 Co-Simulation Frameworks

2.3.1 Functional Mock-up Interface

FMI is an industrial level tool-independent standard, initially designed by Daimler AG

and as of today developed through the participation of 16 companies and research in-

stitutes14. The standard defines cross-platform API for the exchange and simulation of

dynamic models and comes as a set of C header files to be implemented by each indi-

vidual model, and a modelDescription.xml file schema for describing model-specific

properties and state variables [24]. The implemented code must be compiled into a

dynamic/shared library for the target platform and bundled together with the model

description file into a Functional Mock-up Unit (FMU), which is essentially a .zip

archive that can be used for modelling and simulation.

.fmu
modelDescription.xml
- unit definitions
- type definitions
- model variables
- tool capabilities
- etc.

model.dll
- fmiInstantiateSlave(...)
- fmiSetReal(...)
- fmiDoStep(...)
- etc.

simulator 
GUI

simulator 
solver

controls

reads

runs

FMI model description 
XML schema

cross-platform 
C-headers (API)

references implements

CoSim *

and

CStep DStep

Wait

level

water tank controller
valve

ReadWrite

...

Figure 2.13: The structure of the FMU and its application

14As reviewed on 25th August 2015 at https://www.fmi-standard.org/development

https://www.fmi-standard.org/development
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The standard is divided into two parts: Model Exchange, for generating C-code of a

dynamic system model in the form of an input/output block, which can be utilised by

other environments; and Co-Simulation, for coupling simulators and subsystem models,

exported from different environments, in a co-simulation. The key difference between

two parts is in the absence of the generated solver in the Model Exchange – dynamic

models are described by differential, algebraic or discrete equations that require a solver

from the destination environment. The Co-Simulation, on the other hand, is designed for

generating self-sufficient FMUs and coupling them with other models in a co-simulation

environment, where each subsystem is solved independently by its individual solver

and the data exchange happens only at discrete communication points. The latter

aspect raises the requirement for a coordination mechanism to run the co-simulation of

composed models. The FMI for Co-Simulation calls such a mechanism Master, whereas

co-simulated models are called Slaves. The main goal of the master is to control the

data exchange between composed slaves and synchronise their simulation solvers.

time

gF
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Figure 2.14: FMI master-slave architecture

As seen in Figure 2.14, a slave can represent either an exported DLL (Subsystem A in the

figure) or a coupled simulation tool that simulates some model (Subsystem B), and may

be instantiated multiple times, such as A1 and A2. A coupled subsystem can be either

continuous in time (described by differential equations) or discrete (difference equations),

and can be represented as a block with inputs, outputs and state (internal) variables.

Subsystem variables, their causality (input, output, internal) and type (Real, Integer,

Boolean, String), along with the information about the model, solver and simulation

capabilities are described in the slave-specific description XML-file.

The physical connections between subsystems are represented by mathematical coupling

conditions between their inputs and outputs [79]. This information can be effectively

encoded in a component connection graph, as in Figure 2.14, and used for the data ex-

change aspect of the FMI for Co-Simulation. The synchronisation of the simulation from

time tc0 = tstart to tcN = tstop in communication steps tci → tci+1 is the responsibility

of the master’s algorithmic component. The FMI for Co-Simulation supports not only
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fixed-step master algorithms, but also more sophisticated approaches that adapt the

step size to the solution behaviour, use higher order signal extrapolation to approximate

subsystem inputs, or handle simulation steps sequentially such that the intermediate

results from the first subsystems may be used to improve the approximation of subsys-

tem inputs in later stages of the communication step [107, 16, 132]. The standard is

designed to support a very general class of algorithms and gives the guidelines on the

basic implementation. However, it does not define the master algorithm itself.

2.3.2 High Level Architecture

HLA is a general specification for reuse and interoperability of simulations, first devel-

oped by the U.S. Department of Defence [50]. The specification is designed to overcome a

common “one size fits all” problem with simulation, i.e. it is practically infeasible to im-

plement a single simulation for all applications. The solution from the HLA perspective

is to make specific simulations reusable and (re)composable for each particular applica-

tion under a so called federation, thus reducing the time and cost required to create a

synthetic environment for a new purpose [49]. In this regard HLA provides a modular

design of simulation components, with a well-defined and separated functionality and

interface.

The key principe of federation in HLA is based on the Service Bus topology (Figure 2.15),

where each simulation system called a federate has a single connection to the service

bus called the Runtime Infrastructure (RTI) and provides/consumes a set of services it

is interested in. This enables flexible replacement of one system for another without

affecting other systems, and a scalable addition of new systems and capabilities [108].

  Interface
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Figure 2.15: Service bus topology of the HLA

The main functional components of the HLA are:

• Federates, which are computer simulations, utilities (simulation data collectors

and monitors of simulation activities) or interfaces to live players – instrumented

platforms and C2 (command and control) systems that interact with the real world.

HLA requires that all federates incorporate a set of agreed capabilities to be able

to interact with objects from other federates via the RTI.



Chapter 2 Background 47

• RTI, which is a software component that provides a set of services and functions

for the federation of simulations. Services comprise federation management, decla-

ration management, object-level operations, dynamic transfer of attribute/object

ownership, synchronisation of the simulation and data routing among federates.

• Runtime interface, an interface between the RTI and federates that is independent

of the object model and data exchange requirements.

The standard is defined by the IEEE specification documents: the Federate Interface

Specification [68], which describes the services provided by the RTI and federates, the

Framework and Rules Specification [69] that summarises the key principles and rules

of the federates and their interacting simulations (federations), and the Object Model

Template Specification [70] that documents the essential sharable objects in terms of

the Federation Object Model (FOM) – a description of the data exchange, and the

Simulation Object Model (SOM) – an information on the capabilities of the simulation.

The services of the HLA are provided as a C++ and Java API.

2.3.3 DESTECS

The focus of the DESTECS project is on the multidisciplinary collaborative modelling

and simulation for the early-stage design space exploration [55]. Within the project

a namesake open tools platform has been developed to support co-modelling and co-

simulation of discrete and continuous system aspects, with the explicit modelling of

faults and fault-tolerance mechanisms. The platform uses continuous-time (CT) models

expressed as differential equations in the Bond Graph notation [74], supported by the

simulation tool 20-sim [34], and discrete event (DE) models in the VDM, supported by

Crescendo [84].

The architecture of the platform is based on a concept of co-model that consist of

two component models, one describing a DE computing subsystem and one – a CT

environment or plant15, and a contract that identifies shared design parameters, variables

and common events used in the communication between DE and CT subsystems. The

fault modelling is achieved by extending a co-model to include a faulty behaviour, which

can be triggered during the simulation via a script.

The formal language of the Crescendo/DE part is VDM-RT, which is an extension of

VDM++ (see Section 2.1.5) with timing and models of deployment to virtual networked

CPUs, so there is at least a theoretical basis for modelling distributed control [143]. The

modelling language of the 20-sim tool/CT is the SIDOPS+ [33], which supports model

description at three levels of abstraction:

15The limitation of the platform is that only one DE and one CT model can be co-simulated. However,
the advantage of such limitation is a performance gain for simulation, a simplified maintenance and
arguably a better understanding of a co-simulation since only one interaction between the simulators
exists [85].
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• Technical component level, where models are represented by component graphs

resembling the actual system of networked devices.

• Physical concept level, where physical processes of the devices are modelled us-

ing one of the supported representations: bond graphs, block diagrams or ideal

physical models (IPMs).

• Mathematical level, which captures the quantitative phenomena of the physical

processes, either using a set of (acausal) equations or computer code that calculates

the output from the input.

The other key features of the SIDOPS+ are: polymorphic modelling that separates the

model’s type (interface) from its specification (implementation of the internal behaviour),

thus allowing a single model type to be realised by different specifications depending on

the required behaviour and domain; combined (discrete-continuous) systems modelling

through the use of discrete variables, linked to the continuous variables via sample and

hold primitives and used in the sequential statements (as opposed to the continuous equa-

tions); reusability of the models with a compatibility validation mechanism that checks

physical type consistency and constraints on the values of variables/parameters; open-

ness of the language to any tool and domain, which is achieved by the tool-independent

design of the SIDOPS+.

A promising continuation of the DESTECS project is the INTO-CPS initiative [13],

started in 2015. It investigates the development of an integrated tool chain for com-

prehensive model-based design of cyber-physical systems, and has similar goals to our

approach. The project also explores integrated application of the formal modelling

(VDM) and physical simulation (Modelica) with the aid of the FMI for co-simulation

standard.

2.3.4 Framework Comparison

In order to identify a suitable technology for the co-simulation of discrete and continu-

ous models within our developed tool we have performed a comparison of the reviewed

co-simulation frameworks based on the key criteria of tool independence, cross-platform

capabilities, the range and popularity of existing tools supporting the technology, avail-

ability and openness of the standard, completeness of the documentation and the ease

of implementation. An additional important factor regarding the tools is the support of

the Modelica language as our language of choice for the physical modelling. Currently

it is directly supported only by some of the modelling environments that also support

FMI. The comparison has also shown that the FMI standard displays the best balance

between the technical capabilities, ease of adoption and compatibility with existing tools.

Therefore, our development is based on the FMI standard, more specifically – FMI 1.0,
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since no full support of the FMI 2.0 was available at the time of implementation of this

work. Table 2.1 summarises the compared criteria of each technology.

Table 2.1: Comparison of the co-simulation frameworks

Framework FMI HLA DESTECS

Tool
independent

Yes Yes
No (Crescendo and

20-sim)

Cross-
platform

Yes Yes No (Windows only)

Number of
tools

7316 N/A
2 (Crescendo/VDM-

RT and
20-sim)

Availability
and

openness of
the standard

Free and
open-source

Requires IEEE
subscription

Combination of
open-source

(Crescendo) and
commercial (20-sim)

Availability
of the docu-
mentation

Freely available
single specification

document with code
examples, C header

files and a
compliance checker

Three specification
and two

recommended
practices documents
from the IEEE, free
tutorial, C++ and

Java API and
FOM/SOM samples

Freely available
tool-suite manual,

examples and a wiki

Ease of
implementa-

tion

Two platform-
independent C

header files,
open-source

implementation in C
and Java

Complex
Tied to the
DESTECS

environment

2.4 Summary

All the listed technologies provide a valuable contribution to the evolutionary develop-

ment of CPS. State-based formalisms like Event-B and VDM and continuous dynamics

simulation tools like Simulink and Modelica are both useful in the design of hybrid

systems. However, at the moment they have evident limitations, namely, not fully

supported continuous and temporal semantics in the discrete formal methods and the

absence of refinement and rigorous analysis capabilities in the simulation tools. Clearly,

if combined, they could reduce each other’s weaknesses. We think such an integration

is achievable not only as an interface solution, but as a methodology and development

framework. This requires a formal approach and a unified formalism that combines two

16According to the official information from the FMI standard as of 25th August 2015, available at
https://www.fmi-standard.org/tools

https://www.fmi-standard.org/tools
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domains, as the systems we are looking at can be highly complex, real-time and safety-

critical. In this view well-established formalisms of hybrid automata and statecharts,

supported by the DSL abstractions, can act as a binding material. A good starting point

for such an integration is in the development of interfacing tools between discrete and

continuous components that are based on the open and widely accepted standards.

2.5 Working Plan

The following chapters describe in detail the concept of our integrated development

approach for hybrid systems, its design, implementation and evaluation. We use Event-

B method and Rodin platform, Modelica language and FMI for Co-simulation standard

as the core technologies of our approach. The working plan of this development comprises

the following steps:

1. To establish the architecture of our integrated development approach based on the

co-modelling and co-simulation between Event-B and Modelica; the design must

support our intended workflow, outlined in Section 1.5.

2. To define the executional semantics of the continuous and discrete co-models that

are involved in the development process.

3. To define the semantics of refinement and the compositional semantics of co-

simulation of the composed discrete-continuous model.

4. To design and implement a co-simulation master algorithm in accordance with the

FMI specification.

5. To implement a tool that supports our workflow, i.e. co-modelling and co-simulation

of the step-wise formal modelling in Event-B and physical modelling in Modelica.

6. To validate the developed tool on the case studies representative of the hybrid

system domain and compare the obtained results with traditional modelling and

validation techniques, drawing the conclusions about the benefits and limitations

of our approach.
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Co-simulation

In this chapter we introduce our concept of co-simulation of discrete and continuous

models within the Rodin toolset. We first give an overview of our approach and provide

a formal description of the simulation step for each type of the simulated component.

We then present a generic simulation interface and define its mapping to the formal

semantics of two types of components. The chapter concludes with the design of the

simulation master algorithm.

3.1 Overview

Cyber-physical and hybrid systems involve multiple components that are typically de-

scribed in terms of time-continuous differential and algebraic, and discrete-event equa-

tions. These components often cannot be modelled and simulated in a single tool, or

an individual component is best modelled in a domain specific tool. In these scenarios

coupling of different simulators is required. For the cyber-physical systems it is also nec-

essary to couple the simulation with a model of environment. Such a coupling generally

means a tailored solution for specific components of the system and therefore requires

high development effort.

Co-simulation is an approach for the joint simulation of sub-models of the developed

system that are modelled in different tools. Each sub-model is simulated by an individual

tool and the intermediate results are exchanged between the tools during simulation at

discrete communication points, where within these points each sub-model is numerically

solved by its simulator [16]. Coupling of simulators in a co-simulation is performed by an

algorithm that takes into account the capabilities of each tool, such as event handling,

support of the variable step size and backtracking (rejection of steps). These algorithms

differ in the sequence of time integration and data exchange. Classical examples of a

numerical model coupling include the Jacobi method (sub-systems are solved in parallel)

and Gauss-Seidel method (sub-systems are solved sequentially).

51
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3.2 Concept

Our system development approach relies on the application of the Event-B formal

method to modelling of discrete-event control components of hybrid systems and the gen-

eral class of physical modelling tools for modelling the continuous environment. Hence,

it requires a co-simulation between Event-B and physical model simulators. In order to

enable this co-simulation we employ the FMI for Co-Simulation standard. The advan-

tage of the FMI standard over proprietary solutions, which are typically tailored to a

limited number of simulators and use algorithms that are strongly coupled to a propri-

etary interface, is that it allows the use of different coupling algorithms within the same

interface and does not impose a specific algorithm (the algorithm is not included in the

standard) [116]. In addition, FMI has the industrial support [25], integration with well-

known physical simulation tools [110, 118], cross-platform capability and availability of

the open-source implementations [119, 146]. As explained in Section 2.3.1, the FMI

standard is built upon the Master-Slave architecture, where the master is responsible

for data exchange and synchronisation of the simulation of all coupled slaves, also called

components. We reflect the logic of the FMI master in our simulator and adopt the FMI

interface in our co-simulation architecture.

Our concept of generic simulator is designed based on a master algorithm example from

the FMI specification document [107]. The evolution of the simulation according to

the FMI standard is divided into simulation steps of certain size. The boundaries of

these steps are called synchronisation or communication points, at which the master

communicates with the slaves and transfers data between them. The data is exchanged

between the slaves via connected input and output ports that each slave may have. The

simulation step is defined within FMI as a request to a slave to carry out the simulation

at a certain time, e.g. a synchronisation point, for an interval that equals the step size.

This request is specified in FMI by a function prototype fmiDoStep(...), which takes

as an argument an FMI component, current communication point and communication

step size. The communication step is normally preceded by a call to fmiGetXXX(...)

function to retrieve the value of a specific output port, and a corresponding call to

fmiSetXXX(...) of another slave to set that value of an input port. We combine all

operations on an individual slave within a single simulation cycle into a semantic Step.

3.3 Formalisation of Co-simulation

Our simulation operates on two types of slaves: continuous FMI models (FMUs) and

discrete Event-B machines. Hence, we categorise the Step semantics of all slaves into

two groups: continuous and discrete. We refer to the continuous step of FMI models as

a CStep, to distinguish it from the discrete step of Event-B machines. The semantics

of the CStep is dependent on the actual implementation of an FMU, but in general it
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denotes the evolution of a model, specified in terms of continuous equations, over a time

period equal to the step size and produces a solution to either a single set of continuous

equations or multiple sets of equations applicable to different internal states. The state

of a continuous slave can be defined as a time function:

F : Time→ V (3.1)

where Time is the global simulation time and V is a state of the slave’s internal variables.

Hence, the evolution of continuous slaves over time can be represented on a graph:

time

gF

time + h0

Figure 3.1: The state of a continuous slave over time

where g is a continuous state function defined over interval [time, time + h]. The master

synchronises simulation at fixed communication points when data is exchanged between

components prior to the next simulation step. If the values time and time + h are

assumed to be communication points and the value h equals the communication step

size, the simulation semantics of a continuous slave at the abstract level can be formally

defined using Event-B notation1 as follows:

machine C

variables F , time

event CStep

any i , o, g , h

where

g ∈ [time . . . time + h]→ V

g(time) = F (time)

P(g , i , time, h)

i = g(time)

o = g(time + h)

then

time := time + h

F := F ∪ g

end

where parameter i represents slave inputs whose values are defined by other components,

o represents slave outputs that depend on the model state at the end of a simulation step

and P defines model properties, or properties that g must satisfy given a particular input,

1Because we already use Event-B in our modelling approach, for simplicity we formalise the step
semantics using Event-B notation.
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time and step size. The model of an FMU slave depends on time and therefore is based

on the continuous function F , defined over real-valued sets. More on the development

of reals and continuous functions in Event-B can be found in [43].

The above specification of CStep represents continuous evolution of a simulated sub-

model at the abstract level. This evolution includes reading inputs, evolving the con-

tinuous state and generating outputs. Since continuous (FMI) components and the

simulation master execute these operations independently, we refine CStep to events

that are associated with individual FMI function calls. Because of one to one mapping

of events to FMI function calls, this is a trivial refinement step that can be represented

graphically using the abstraction of Event Refinement Structures (ERS) – a notation

proposed by Fathabadi [53]. The ERS notation gives the means to specify refinement

relationships and control ordering between events at different refinement levels.

Figure 3.2: Event Refinement Structure of the continuous simulation step se-
mantics

The ERS diagram in Figure 3.2 shows the relationships between the abstract event

CStep, denoted by the parent node, and concrete events (leaf nodes) that are introduced

in the refinement. The DoStep event is a direct refinement of CStep, which is indicated

by the solid connection line (part of the ERS notation). It models the evolution of the

continuous component’s state over a given time interval. The parameter c of events

denotes a component instance, since the same model can be associated with multiple

components, i.e. instantiated and simulated by multiple slaves. Events ReadInputs and

WriteOutputs are new events (indicated by the dashed line) that refine skip, which is

an implicit Event-B event that is always enabled and does nothing. ReadInputs sets

the values of all input ports to the component’s input variables. WriteOutputs gets the

values of all component’s output variables and assigns them to the output ports. Besides

the refinement structure the ERS diagram explicitly shows the sequential control flow

from left to right among refinement events, hence ReadInputs is executed first, followed

by DoStep and concluded by WriteOutputs.

The discrete simulation step of Event-B machines that we refer to as DStep represents the

evolution of a discrete state in accordance with Event-B semantics, which is defined by

state variables modified through the execution of a finite sequence of events. We define

discrete state changes as a function over states and event inputs. Therefore the discrete

state does not explicitly depend on time, which enables simulation of untimed Event-B

models. If required, time can be incorporated as an event parameter and modelled as a

state variable in the machine. The following is the abstract formal definition of DStep.
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machine D

variables V

event DStep

any i , o, v

where

i ∈ T

P(v , i ,V )

o = Q(v)

then

V := v

end

Variable V represents internal state of the associated discrete model, which is indepen-

dent of duration of the simulation cycle, in contrast to CStep. Parameter i represents

the input of some abstract type T . Parameter v represents the new state after a sim-

ulation cycle, and is constrained together with the current state V and slave inputs i

by a predicate P that defines the model’s properties. Slave outputs are specified by the

parameter o, whose value is constrained on the new state v by some predicate Q .

Since our semantics of DStep does not depend on time directly, we let the modeller

decide on the appropriate simulation step size of Event-B components. This step size

can be different for different components or instances of the same component. The

mechanism of how components with different step sizes are synchronised is described in

detail further in this chapter when we talk about the master algorithm.

As the individual simulation (execution) of an Event-B model is equivalent to a finite

trace of its events, we interpret the discrete simulation step as a sub-trace that com-

prises either a single event or a sequence of multiple events. This interpretation enables

simulation of the abstract Event-B machines, in which every event models a complete

step. If such a machine has multiple events enabled at the time of the simulation step,

according to Event-B semantics one of them is chosen non-deterministically. We call this

definition an abstract case of DStep, which is shown as a refinement structure below.

Figure 3.3: ERS diagram of the discrete step semantics of abstract Event-B
machines

The event DoStep represents execution of one Event-B event, selected randomly from the

set of all enabled events of the abstract Event-B machine, associated with the component

instance c. ReadInputs and WriteOutputs are not involved in execution of Event-B

events – they accordingly read/write the values from/to ports of the component. Input
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values (if present) can be read by the event executed in DoStep via input parameters,

which entails that abstract machine events must be associated with component’s input

ports and match them by data type.

The discrete step semantics presented in Figure 3.3 enables simple refinement process,

consistent with the standard Event-B refinement approach. The abstract machine events

associated with DoStep can be decomposed (refined) to a number of events. The order

of execution of refinement events within a step is not enforced by the simulation. We

leave this order to be determined by the Event-B semantics: an event is executed if it is

enabled (its guards evaluate to true), unless multiple events are enabled, in which case

one of them is chosen non-deterministically.

To indicate the start and end of the discrete simulation step that involves multiple events

we introduce two sets of machine events:

• StartStep, a set of start step events. An Event-B machine event is a StartStep

event if it is the first event to be executed at the synchronisation point with

another model that is coupled with the current Event-B model via input-output

variables. We do not restrict the modeller to have a single StartStep event since

different events can be enabled at different synchronisation points.

• EndStep, a set of end step events. An Event-B machine event is an EndStep

event if it is the last event to be executed before the next synchronisation point.

Fundamentally, an EndStep event is required to indicate the end of the simulation

step and, if the model is timed, to produce the value of the duration of the executed

step. Having an EndStep event is also necessary for the refinement of abstract

control events, in which case it becomes the refinement of the abstract event.

The modeller is required to determine which events of the Event-B machine constitute

each set. The simulation step commences with the execution of one event e ∈ StartStep,

followed by a finite sequence of intermediate events e /∈ StartStep ∪ EndStep and con-

cluded with one event e ∈ EndStep. Consistency of this semantics with the abstract

case of DStep is ensured by allowing events satisfying ∃ e · e ∈ StartStep ∩ EndStep, in

which case we impose a rational constraint that there are no intermediate events and

the event e is executed only once within a step. This semantics of DStep is illustrated

in Figure 3.4 as a refinement structure of the abstract DStep from Figure 3.3.

The DoStep event is refined to a sequential execution of one StartStep event, zero or more

Intermediate events (represented by a star node called loop constructor in ERS) and one

EndStep event on a component instance c. The StartStep event denotes nondeterministic

execution of one enabled Event-B event from the previously defined StartStep set, while

the EndStep event denotes a similar semantics with respect to the EndStep set, unless the

same event is in the StartStep set and therefore not executed again. The Intermediate
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Figure 3.4: ERS diagram of the discrete step semantics of concrete Event-B
machines

event denotes nondeterministic execution of any enabled Event-B event e /∈ StartStep ∪
EndStep. As in the abstract case of DStep, input values from the component’s input

ports are read at the beginning of the DoStep operation – in this case by Event-B

events from StartStep, hence input parameters of all events in the StartStep set must

be associated with input ports of the component and should match those by data type.

This concludes our formal definition of the discrete simulation step semantics of Event-B

components.

To summarise, the key aspects of Event-B components for co-simulation are:

• Event-B machines can be simulated without explicitly modelling time in Event-B.

In a scenario where simulation time is required for the logic of the model, it can

be provided via input parameters of the executed simulation step events.

• The modeller decides on the duration of the simulation step for each Event-B

component. Different components or instances of the same component can have

different simulation step sizes. Simulation step size involves the modeller and is

not the same as the model sampling size.

• The modeller defines StartStep and EndStep sets of machine events to indicate start

and end of simulation steps, accordingly. Both sets can have multiple events en-

abled upon simulation, in which case one of them is selected non-deterministically.

The sequence of executed internal events (within the step) allows for nondetermin-

ism in line with the Event-B semantics.

• Components that expect input signals from other components, either discrete or

continuous, must have their input ports associated by the modeller with the input

parameters of events in StartStep, as those events are responsible for reading the

values of input ports upon execution.

• Co-simulation supports refinement of Event-B components. An abstract machine

can have events that model full simulation step. Such an event needs to be specified

by the modeller as both StartStep and EndStep event. In the refinement of the
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abstract machine the latter event can be refined into multiple StartStep events,

intermediate events and EndStep events. Both StartStep and EndStep events,

as well as intermediate events can be refined further in the next refinement step.

This flexibility of indicating multiple and/or same events as StartStep and EndStep

events enables the refinement of control events and, most importantly, verification

and co-simulation of Event-B components from the early stage of development,

which is crucial to ensuring system correctness.

3.4 Combined View of Co-Simulation

The combined semantics of the simulator that includes continuous and discrete com-

ponents is presented on the ERS diagram in Figure 3.5. The simulator is denoted by

the oval root node MultiSim. Oval nodes in ERS notation denote a grouping of events,

as opposed to the rectangular nodes that designate individual events. As indicated

by the loop constructor (star node) the co-simulation involves zero or more simulation

Cycles, each of which comprises parallel execution of an abstract simulation Step on

all of the component instances c, where C represents the set of components to be co-

simulated. Component instances are synchronised at fixed time intervals depending on

their specified step size. Simulation steps are followed by the smallest possible incre-

ment in simulation time, performed by the master (event IncrementTime). The oval

node all(c:C) is called replicator constructor in ERS. It introduces a new parameter for

its sub-event. The all constructor specifies execution of its sub-event for all instance

values of its parameter. The abstract Step involves exclusive execution, indicated by a

logical constructor xor, of either CStep or DStep, depending on the type of instance c,

indicated by the guard of each event in square brackets.

Figure 3.5: ERS diagram of the combined discrete-continuous co-simulation
semantics
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CStep represents evolution of continuous variables of an FMU over the step interval.

DStep represents evolution of a discrete system, modelled in Event-B, through the exe-

cution of some finite sequence of events according to semantics we defined earlier in Fig-

ure 3.4. The CStep and the DStep evolve independently during the simulation interval.

In between each interval the CStep and DStep components synchronise by exchanging

information about their new state. What information is exchanged between compo-

nents is determined by the modeller by connecting components via input and output

ports. Simulation master algorithm is responsible for driving both the CStep and the

DStep of components by executing their semantic operations (ReadInputs, WriteOutputs

or DoStep) from the formal definition in Section 3.3 and exchanging data through con-

nected ports on synchronisation points, which are determined by the specified simulation

step size.

3.5 Example Mapping

In this section we demonstrate on the representative example of a hybrid system how

models are mapped to co-simulation components based on the semantics we defined

earlier. We leave out the trivial case of a direct mapping of FMI procedures to FMI

components and present the mapping of an Event-B model. We also show how simulation

caters for refinement.

As an example we look at the simplified hybrid model of the water tank control system

shown in Figure 3.6. The model consists of the continuous environment (and plant),

represented by the water tank with a valve, and the digital controller. The water tank

is characterised by a constant water outflow (leakage) and a controlled water input that

can be turned on or off via a discrete valve. The controller is responsible for maintaining

the water level between two thresholds by controlling the opening of the valve and thus

adjusting the water input to the tank. We assume that the valve has two discrete states:

open and closed , and operates without delays.

Figure 3.6: Controlled water tank model

The water tank and controller can be modelled as a continuous and discrete component,

accordingly, that exchange the water level reading from a sensor and the valve control

order from the controller. At the abstract level we can model the controller as an Event-

B machine TankController, which contains three control events that operate the valve

depending on the current water level reading: CloseValve, which closes the valve if the

level is above the high threshold HT , OpenValve, which opens the valve if the level is

below the low threshold LT , and KeepValve, which maintains the current state of the
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valve when the level is within two thresholds. Each event models a single control cycle,

where the duration of the cycle is determined by the modeller.

machine TankController

variables valve

events
CloseV alve =̂ any level where level > HT

then valve := closed end

OpenV alve =̂ any level where level < LT

then valve := open end

KeepV alve =̂ any level where level ≥ LT ∧ level ≤ HT

then skip end


StartStep

&

EndStep

end

The machine TankController represents the abstract case of DStep, where execution of

one of the three events models the complete simulation step with no intermediate events.

Using our notion of StartStep and EndStep events we can assign the simulation step

semantics to the machine TankController by specifying each event as both the StartStep

and EndStep event. This ensures that at the start of the simulation step one of these

events is chosen non-deterministically by the simulator and executed once per simulation

cycle. Furthermore, since events take the water level reading as an input parameter level ,

the component needs to have an input port associated with this parameter and connected

to the level signal from the water tank component. Accordingly, an output port needs

to be associated with the control variable valve. Associations of the ports to Event-B

elements are graphically represented in Figure 3.7.

Figure 3.7: Controller component and its mapping to the Event-B machine
elements

As a possible refinement of the TankController we can imagine modelling a state machine

that describes the state of the water tank as seen by the controller. The refinement may

introduce a dedicated event ReadLevel for sensing the controller’s inputs, in this case

the level signal, that is written to a new state variable clevel , representing the controller

view on the water level in the tank. The state machine can be modelled by a variable

state and new events DecideClose, DecideOpen and DecideKeep that represent state

transitions, dependent on the value of clevel . The abstract events are refined to use the

new state data to decide on the issued control order to the valve.
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machine RefinedTankController refines TankController

variables valve, clevel , state

events
ReadLevel =̂ any level where state = 0

then clevel := level ‖ state := 1 end

]
StartStep

DecideOpen =̂ where state = 1 ∧ clevel < LT

then state := 2 end

DecideKeep =̂ where state = 1 ∧ clevel ≥ LT ∧ clevel ≤ HT

then state := 3 end

DecideClose =̂ where state = 1 ∧ clevel > HT

then state := 4 end

OpenV alve refines OpenV alve =̂ witness level = clevel

where state = 2 then valve := open ‖ state := 0 end

KeepV alve refines KeepV alve =̂ witness level = clevel

where state = 3 then state := 0 end

CloseV alve refines CloseV alve =̂ witness level = clevel

where state = 4 then valve := closed ‖ state := 0 end


EndStep

end

The refinement RefinedTankController decomposes atomic events of the abstract ma-

chine TankController into multiple events. This is covered by our concrete definition of

DStep. The event ReadLevel, which is executed first within a step, becomes a StartStep

event. The refined events CloseValve, OpenValve and KeepValve become the EndStep

events. The input argument of the abstract counterparts of these events is now replaced

with the witness construct, which links the abstract event’s input argument level with a

new state variable clevel via an equality predicate. New events DecideClose, DecideOpen

and DecideKeep are intermediate events. Since ReadLevel is now responsible for reading

the water level, parameter rl should be associated with the input port of the component

that receives the level signal.

3.6 Simulation Interface

Before we specify our master algorithm that coordinates co-simulation we must devise

a simulation interface, which will be used by the master to command components. Here

we explain the interface and its methods. We also give a semantic interpretation of each

method depending on the component type (FMI or Event-B).

Since we have identified the key events that constitute both the discrete and continuous

step semantics of components (see ReadInputs, WriteOutputs and DoStep in Section 3.3),

we derive the simulation interface based on the aforementioned events that operates on

an abstract component. In the design of the interface we adopt the FMI standard. The

interface consists of the following functions:
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• instantiate() creates an instance of the simulation component. For Event-B

components it is loading an Event-B machine for simulation. For FMI components

it is a call of a dedicated function prototype fmiInstantiateSlave(...).

• initialise(c, start, stop) initialises a component instance c with the sim-

ulation start and end time. For Event-B components it initialises the machine

by executing the initialisation event. For FMI components it calls the FMI

function fmiInitializeSlave(...).

• readInputs(c) reads values from all connected input ports of the instance c. For

Event-B components it constructs an input predicate of the parameter values to

be passed to a StartStep event that reads the model’s inputs. This method does

not modify the state of Event-B models. For FMI components it calls the function

fmiSet(...) for each input variable of the model. This can potentially modify

system state.

• writeOutputs(c) write values to all output ports of the instance c. For Event-B

components it reads the values of model variables associated with output ports.

For FMI components it calls the function fmiGet(...) for each output variable

of the model.

• doStep(c, time, step) executes a simulation step of the size step on instance c

provided the current simulation time. For Event-B components it executes a finite

sequence of events according to DStep::DoStep semantics, i.e. executes one of the

StartStep events, followed by a nondeterministic execution of zero or more inter-

mediate events, concluded with one of the EndStep events. For FMI components

it calls the function fmiDoStep(...).

• terminate(c) terminates the simulation of instance c. For FMI components it

calls the function fmiTerminate(...). Event-B components do not require termi-

nation handling. The model simulation resources are handled and freed by ProB.

3.7 Master Algorithm

Our co-simulation can involve Event-B components with a different step size. To handle

different step sizes of components we adopt the two-list evaluation technique from [83],

which enables evaluation of connected components based on their individual evaluation

time. The idea is to have two lists: an update list that records the simulated components

and their future evaluation time, and an evaluation list that stores components, which

must be evaluated at current time. As the simulation time progresses the components

from the update list are moved to the evaluation list. If a component issues a value to

another component, the latter component is added to the evaluation list. Components



Chapter 3 Co-simulation 63

from the evaluation list get evaluated (executed) and removed from the list. Future

evaluations are added to the update list and the simulation time gets incremented.

Another critical aspect of the simulation is the right order of execution of the data

exchange operations, such as fmiSetXXX(...) and fmiGetXXX(...). The outputs of a

model may have algebraic dependencies on the inputs, in which case it is necessary that

the inputs are set before the outputs can be read and exchanged with another component.

According to the FMI standard this dependency can be explicitly indicated via the

DirectDependency attribute of a variable definition of the FMU model description.

However, the standard leaves this attribute as optional (the default assumption is that

each output has a dependency on all inputs). Having direct dependencies of outputs on

inputs for two or more connected components can lead to unsolvable algebraic loops,

as explained in [36]. For this reason we disallow direct connection of FMI components,

that is, if multiple FMI components are co-simulated they are not connected directly,

but only via Event-B components.

At the same time we assume no direct dependencies in Event-B components, which is

justified by the fact that setting inputs of an Event-B component does not modify its

state according to our semantics of DStep::ReadInputs (no events are executed), and the

output is not updated immediately after the input is set, but at the next communication

point tinput + hc , where hc > 0 is the component’s step size. Since Event-B components

have no direct dependencies between their inputs and outputs at the start of a cycle,

they can be connected directly, and the data exchange can be performed in any order.

Before we specify the master algorithm for co-simulation we give a formal definition of

the sets and functions involved:

Set of component instances C

Set of Event-B component instances CB ⊆ C

Set of FMI component instances CF ⊆ C , where CB ∩ CF = ∅
Set of input port variables for instance c Uc

Set of output port variables for instance c Yc

Port mapping function P ∈ U → Y

Update list as a mutable function of evaluation

time over components

listu ∈ C → Time

Evaluation list as a mutable set liste ⊆ C

To simplify the master we specify a separate procedure for exchanging data between

components that is shown in the Algorithm 1. As an input the procedure takes a

set of interconnected components that need to exchange some data, denoted by Cdx ,

a set of existing Event-B components CB and a set of existing FMI components CF .

The input set Cdx is determined by the current evaluation list, as will be explained

further. This procedure executes our simulation interface routines for reading inputs
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and writing outputs of Event-B and FMI components from Cdx . The order of read and

write operations is defined by our assumptions on the input-output dependencies for

each component type, i.e. we assume that all FMI components have direct input-output

dependencies while no such dependencies exist for Event-B components. As a result,

the inputs of each FMI component are read before the outputs are written.

Input: Set of components for data exchange Cdx , set of all Event-B components
CB , set of all FMI components CF .

Result: Exchanged input/output data between components from Cdx .
foreach c ∈ Cdx ∩ CB do

writeOutputs(c)
end
foreach c ∈ Cdx ∩ CF do

readInputs(c)
writeOutputs(c)

end
foreach c ∈ Cdx ∩ CB do

readInputs(c)
end

Algorithm 1: Input/Output Data Exchange

The master algorithm is shown in the Algorithm 2. It starts by instantiating and ini-

tialising each co-simulated component (lines 2-4). The update list is initialised with a

proper evaluation time of each component instance, based on the simulation start time

tstart and component’s step size hc . For Event-B components hc ∈ R>0. For FMI com-

ponents hc = 0 because the actual step size is determined dynamically at the time of

the doStep(...) call. After the initialisation the master performs data exchange be-

tween all components at line 6 by executing readInputs(...) and writeOuputs(...)

operations according to the Algorithm 1.

The simulation loop begins at line 7, where the simulation time tsim is incremented from

tstart to tend . At each time increment the update list listu is checked for components to

be evaluated (line 8). A due component is added to the evaluation list liste at line 9.

Besides the components from the update list all FMI components cf that are connected

to either inputs or outputs of an evaluated component c are also added to the evaluation

list (lines 10-12). This is where the master synchronises FMUs that either receive discrete

signals from evaluated Event-B components or produce continuous signals for Event-B

components.

The actual simulation step of each component from the evaluation list is performed at

line 18. Notice that the call to doStep(...) executes the simulation step of component

c ∈ liste at time teval for a step size | tsim − teval |, where teval is the last evaluation time

of component c. In this rendition of the algorithm all Event-B components are untimed,

hence the time and step size passed to doStep(...) are not being used. Consequently,

we can use listu to store and retrieve the last evaluation time teval of FMI components
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Input: Sets of components C ,CB ,CF and their step size hc , component inputs
U , outputs Y and input/output mapping P , simulation start time tstart
and end time tend .

Result: Component instances c ∈ C get simulated from tstart to tend .
1 foreach c ∈ C do
2 instantiate(c)
3 initialise(c, tstart , tend )
4 listu(c) := tstart + hc
5 end
6 DataExchange(C )
7 for tsim := tstart to tend do
8 foreach c ∈ C and listu(c) = tsim do
9 liste := liste ∪ c

10 foreach cf ∈ CF and listu(cf ) 6= tsim do
11 if P [Uc ] ∩Ycf 6= ∅ or P [Ucf ] ∩Yc 6= ∅ then

12 liste := liste ∪ c
13 end

14 end

15 end
16 foreach c ∈ liste do
17 teval := listu(c)
18 doStep(c, teval , tsim − teval )
19 listu(c) := tsim + hc
20 end
21 DataExchange(liste)
22 liste := ∅
23 end
24 foreach c ∈ C do
25 terminate(c)
26 end

Algorithm 2: Master

(line 17). This time is always equal to the last synchronisation point with Event-B

components. For an Event-B component teval = tsim − hc , since its evaluation time

teval = tstart + n × hc for all n ∈ N. To handle timed Event-B models the only necessary

alteration of the master is to add a dedicated variable that would store teval and update

it on each evaluation. Finally, the next evaluation time is scheduled at line 19.

After the components are evaluated the master exchanges the data at line 21 (only for

the elements of liste) and clears the evaluation list at line 22. Since we disallow direct

connections between FMI components that have direct input-output dependencies, and

since Event-B components update their outputs in a discrete fashion after a certain

interval hc > 0 from the time inputs get updated, the algorithm avoids the problem

with potential algebraic loops. Hence, no re-evaluation of components is required after

the data is exchanged. The algorithm proceeds with the simulation time increment and

the next simulation cycle from line 8.
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To aid the understanding of the evaluation order of components and the data exchange

that is performed at discrete communication points by the master we visualise the eval-

uation sequence of a sample component connection graph, shown in Figure 3.8. Com-

ponents are represented on the graph as blocks with input (grey) and output (white)

ports. Non-zero step sizes of components are indicated by the variable h. The direction

of the data exchange from one component’s output port to another component’s input

port is indicated by an arrow. The graph consists of two continuous (FMI) components

C1 and C2, and two discrete (Event-B) components D1 and D2, which have a step size

of 3 and 4 time units, accordingly.

Figure 3.8: An example of the component connection graph

According to the master algorithm and the order of evaluation, which is based on each

component’s predefined step size, components of the graph Figure 3.8 are evaluated

as illustrated on the timeline in Figure 3.9. Initially all components are evaluated at

time = 0. The next evaluation time is determined by the shortest step size among all

components c ∈ C where hc > 0. Hence, the component D1 is evaluated at time = 3.

Because D1 has an input and an output port connected to C1, the step size of C1 is

set dynamically to hC1 = 3. As a result C1 is evaluated at time = 3. Furthermore, D2

is also connected to D1 by an input and an output port. However, because of its step

size hD2 = 4 it cannot be evaluated at this point, but rather is evaluated at time = 4.

Because D2 expects an input from C2 and produces and output to C1, both continuous

components are also being evaluated at time = 4. The co-simulation proceeds in the

same fashion by incrementing the time until one of the fixed step-size components needs

to be evaluated and also by evaluating every connected component with a dynamic step

size.

Figure 3.9: Evaluation time of each component
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The specified algorithm is capable of simulating an arbitrary graph of connected com-

ponents in a time-based fashion. The termination of the algorithm is ensured by these

properties: 1) we do not re-evaluate components within a simulation cycle, 2) each eval-

uation of component c progresses the time by the value of its step size hc ≥ 0 and 3)

simulation terminates if a step gets rejected. As demonstrated on the example in Fig-

ure 3.9 continuous components with h = 0 (dynamic step size) are only being evaluated

if they are connected to some discrete component d with hd > 0 that is being evaluated

at the current simulation time, hence their evaluation does not affect the passage of

time.

The determinacy of the algorithm is ensured by our assumptions on the existing input-

output dependencies of each component type and the limitations on the allowed connec-

tivity between components. All continuous components are assumed to have a potential

direct dependency between an input and an output, hence the output cannot be read

before the input is provided. This order is maintained by the Algorithm Figure 1. Also,

no direct input-output dependencies are assumed to exist in discrete components, i.e.

the input does not change the output until the simulation step of size h > 0 is executed

on the discrete component. This is ensured by our semantics of the DStep and its map-

ping to Event-B machines. On top of that, two or more continuous components are not

allowed to be connected directly to each other, but rather via a discrete component,

thus breaking potential algebraic loops. The drawback of this limitation is that the

continuity of a continuous-time signal may be disrupted. In a scenario where multiple

continuous components need to be connected to exchange this type of signal they can

be combined into a single component. This coupling can be done via the FMI for Model

Exchange standard [113]. Alternatively, continuous models can be combined directly at

the model level, for example, in Modelica. For best simulation results this is in fact the

recommended approach [116].

3.8 Summary

The proposed co-simulation design provides the simulation of discrete-event models of

control systems, specified formally in Event-B, against continuous-time physical models

via FMI. The simulation step semantics of continuous components complies with the

FMI 1.0 standard in terms of the use of the API, which ensures the valid simulation

results of the physical subsystems.

The discrete step semantics of Event-B components that is based on the finite traces

of events, commencing with the StartStep events and concluded by the EndStep events,

is designed to be consistent with the Event-B language semantics and supports the

refinement-based development. Hence, a discrete model can be simulated and validated

against a physical model starting from the abstract level and down the refinement chain,
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which allows the modeller to break down system complexity by introducing the system

details gradually. In addition, this makes it easier for the modeller to formally prove

system safety and other properties, as they can be introduced and elaborated at different

refinement steps. Since Event-B aspect of the simulation is intended to be used for

developing discrete control systems, the discrete step is defined to have a fixed step

size, which can be interpreted as a control cycle interval. The step size is a configurable

parameter of the component and does not need to be modelled in the associated Event-B

machine. Simulation supports untimed Event-B models. Multiple co-simulated Event-B

components can have different step sizes that will be evaluated by the master algorithm

accordingly.

The designed algorithm is easily implementable in a Java-based environment like Rodin.

The execution of Event-B traces within a simulation step can be delegated to the ProB

animator tool, whilst the simulation of FMI components is to be performed directly by

the FMU, since Co-simulation FMUs must have an integrated solver. The only additional

requirement for implementing the simulation is a Java-based interface to interact with

an FMU, as they come compiled as a native (C code) shared library. For that purpose

we are utilising an open-source solution, as will be described in the following chapter.
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MultiSim Tool

As part of this work we have developed a co-simulation framework, which is an extension

of the Rodin platform. In this chapter we give details of its design and implementation

and describe the capabilities of the tool, its features and elements of the user interface.

4.1 Overview

The outlined concepts from the previous chapter were developed into a single tool called

MultiSim. The tool is designed as a plug-in extension for the Rodin platform and

provides a generic multi-simulation capability for engineers of hybrid systems. Our main

goal is to allow engineers to validate their formal Event-B models against the realistic

physical models of environment by simulating them in a single tool. The idea and design

of the extension was proposed for and funded by the ADVANCE project and developed

in collaboration with researchers of the University of Dusseldorf (developers of the ProB

model-checker [94]). The initial prototype implementation was refined and updated,

and is now based on the latest version of the Rodin platform and its frameworks. It has

been successfully validated on a number of hybrid system models, illustrated in the next

chapter. In addition, it was validated on a smart grid case study by Critical Software [23]

in the final year of the ADVANCE project.

4.2 Tool Requirements

In order to support the proposed development workflow within the context of selected

modelling and simulation technologies, i.e. Rodin, Modelica and FMI, the tool must

meet the following requirements:

69
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• The tool must provide facilities for mapping discrete (Event-B) and continuous

(Modelica) models to simulation components, executable under co-simulation via

the FMI master according to the semantics we defined in Section 3.3.

• The mapping of Event-B models to simulation components must handle Event-B

refinements in order to support a step-wise modelling and validation process that

is the core of the workflow: a formal model should be mappable to a simulation

component that can be co-simulated with a physical model; a refinement of the

model should be also mappable to a component that can be co-simulated with the

same physical model or its refinement.

• The tool must implement a generic FMI master algorithm that is capable of co-

simulating an arbitrary number of interconnected discrete and continuous compo-

nents (see Section 3.7); the master must provide an adequate performance level on

a typical machine and be scalable, e.g. maintain linear memory consumption with

the increase in simulation time.

• The tool should offer a visual notation and a graphical environment for easy com-

position of co-simulated models. That includes:

– A block diagram editor for composing co-simulated models into a component

graph: each co-simulated model is represented as a component block with a

set of input and output port variables that can be connected to the ports of

other components via connectors

– A facility for importing Event-B and Modelica models onto the diagram

– A capability to instantiate components (create multiple instances of the same

model) and configure parameters of each instance individually

– Configurable parameters of each co-simulated model that can be modified

and persisted between simulations

– Configurable number and properties of the input and output ports of a com-

ponent block that can be modified and persisted between simulations

• The tool should be able to run co-simulation of the component connection graph

and display the simulation state with time, including the exchanged signal values

between the input/output ports of components.

• The results of the simulation should be available at the end of a simulation exe-

cution and be persisted in a readable text format, which includes a record of the

values of input/output variables of each component over simulation time and a

trace of executed events of each co-simulated Event-B model.
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4.3 Characteristics

4.3.1 Physical Models and FMI

The objective of this work is to fill the gap between existing formal modelling and

physical simulation methods, with the focus on the application of Event-B formal method

and Modelica modelling language in the development of cyber-physical systems. The

Event-B method and accompanying Rodin toolset is a powerful technology for assuring

system correctness by construction from the early stages of requirements specification.

But the model of a hybrid system has to be abstracted to discrete terms due to the

discrete-event semantics of the Event-B language. The intrinsically continuous and

unpredictable environment is more naturally expressed in physical terms. Modelica1 is

a free and open-source physical modelling language, with a large number of supported

tools and a rich library of domain-specific components, making it a compelling candidate

for modelling the physical aspect of hybrid systems. Integration of this technology into

Rodin makes it possible to validate formal specifications in conjunction with the models

of environment that are expressed in a physical language.

Composition of the formal discrete models with continuous physical models of environ-

ment from Modelica is implemented in the MultiSim extension using the Functional

Mock-up Interface for Co-Simulation standard. The advantage of this standard over

other co-simulation frameworks is its openness, tool and platform-independence and

high level of adoption by industry, which enables integration of the Rodin toolset with

the state of the art physical modelling and simulation technologies. For the purpose of

this work and the goals of the ADVANCE project an interface to FMI 1.0 slave import

has been added to the ProB 2.0 package via the JFMI library from Berkeley2. MultiSim

utilises this interface for the physical model import and implements a generic simulation

master algorithm based on a two-list evaluation concept [83] hence enabling deterministic

and scalable simulation of multiple Event-B and FMI components in Rodin.

4.3.2 Visual Notation and Extensibility

In order to provide convenient facilities for composing Event-B and FMI components the

plug-in is designed as a graphical block-based editor, similar to the familiar tools such

as the MATLAB Simulink and Modelica-based environments. This makes it extremely

simple for the users to import components on a diagram canvas as blocks and connect

them via input and output port signals. The editor performs automatic validation of

composed graphs before the simulation.

1http://www.modelica.org
2http://ptolemy.eecs.berkeley.edu/java/jfmi

http://www.modelica.org
http://ptolemy.eecs.berkeley.edu/java/jfmi
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The plug-in is designed to be extensible, which is facilitated by employing the latest

model-based Eclipse technologies: Eclipse Modelling Framework (EMF) and Graphical

Modelling Framework (GMF). EMF and GMF are the standard frameworks of Eclipse

platform that provide domain-specific language modelling and code generation capabil-

ities for developing specialised model-based tools and graphical editors. Using the UML

class diagram notation a model of the domain-specific language can be designed in EMF

and automatically translated into an executable boilerplate code of the structural editor.

GMF allows the generated code to be further developed into a graphical editor. Gen-

erated editors can be easily customised and extended to accommodate the desired logic

and user interface capabilities. We have developed an EMF model of the component

connection graph notation and a corresponding GMF editor. Simulation is performed

on a generic EMF component class, which hides implemented logic from the master

algorithm. Hence, the plug-in can be easily extended to support additional simulation

blocks besides Event-B and FMI without redefining the master.

4.3.3 Dependencies and Features

The plug-in uses the latest version of the Event-B EMF framework, which is an extension

for the Rodin platform that provides developers with a complete EMF model of the

Event-B language and the mechanisms for its extension and serialisation. This makes

MultiSim compatible with other tools that are based on the Event-B EMF framework,

such as the iUMLB State-Machines for modelling systems using visual abstraction of

state charts. In fact, we have used state machines extensively in this work to model the

control aspects of hybrid systems in Event-B.

MultiSim makes use of the ProB API for simulating Event-B machines, as well as the

new features of ProB 2.0 [18], in particular, the linear temporal logic (LTL) execution

at the Prolog client level and the optimised state-space data structure for improved

simulation time and memory consumption. The ProB kernel is written in Prolog and

works as a client application, which communicates to the Java front end in Rodin. LTL

execution allows logical predicates on a model state to be sent and executed on the

ProB client side without involving the front end, which substantially reduces memory

footprint and improves performance. A schematic view of the MultiSim dependencies

on ProB and other tools is shown in Figure 4.1.

The initial version of MultiSim operated the model state space at the ProB front end

level, executing and examining each event directly. This approach had performance prob-

lems, identified by one of the ADVANCE project partners, Critical Software, through a

large-scale model of the smart grid voltage control system. The desired simulation dura-

tion (1440 steps, each involving more than 150 events) could not be achieved due to large

memory consumption and poor performance, which resulted in the simulation machine

running out of resources after reaching 46% progress mark in 10 hours. We addressed
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the problem in collaboration with the ProB developers team, who have introduced the

LTL execution feature and considerably reduced memory footprint of the state space

data structure. Moving the implementation to the use of LTL allowed us to delegate

event execution to the ProB client, hence minimising the number of control switches

between the latter and the simulation tool. As a result, simulation time of a control

cycle in MultiSim has decreased on average tenfold compared to the first version of the

tool (see Figure 4.2). To help clarify the significance of the performance improvement:

simulation of 24 hours of the simulated network operation took 10 hours (stopped at

46%) before the fix and 1 hour afterwards.

Another requirement, identified during the evaluation of the tool on the smart grid

case study, was the ability to record a trace of executed events of individual Event-B

components. This feature is implemented in MultiSim by serialising executed events to

a file that can be loaded by the ProB model-checker, which allows an execution of the

Figure 4.1: MultiSim interfaces and dependencies on other tools
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(b) Latest version using ProB 2.0 and LTL execution

Figure 4.2: Memory footprint and performance of the Rodin/ProB client during
multi-simulation of a smart grid voltage control system [23]. With initial imple-
mentation (a) the machine (Intel Core i5@2.6 GHz, 16 GB RAM) runs out of
memory at 46% of simulation progress. Latest version (b) runs to completion.
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simulated Event-B machine to be replayed and analysed without re-running the resource-

intensive simulation. In addition, the results of simulation in the form of output signal

values can be plotted in real-time via the Display component, similar to the Scope block

in MATLAB Simulink, and recorded to a text file. The ability to record the simulation

trace and component outputs has proven to be very useful when analysing unexpected

behaviour, such as system deadlocks, and identifying errors in a model. It can also be

used to visualise the execution of Event-B machines via the B-Motion Studio plug-in for

Rodin [80].

4.4 Implementation

In this section we describe in more detail the architecture and implementation of the

tool, starting from the utilised frameworks and application interfaces, followed by a

simulation meta-model and a master-slave interface.

The FMI for Co-Simulation standard specifies a set of interface routines, or the Ap-

plication Programming Interface (API), for the communication between a master and

individual simulation tools (slaves) in a co-simulation environment [107]. The MultiSim

extension for the Rodin platform is an example of such environment and therefore must

implement a master that uses FMI interface to control the simulation. This interface,

defined as a collection of C functions, must be further implemented by all simulated

Event-B models. As the Rodin platform and the ProB animator is capable of execut-

ing Event-B machines are all Java-based tools, we have made a decision to move away

from using the C-based FMI interface directly and instead have defined a compatible

simulation interface in Java that operates on the abstract level of a generic Component.

This enables easier integration of the master and Event-B simulation into Rodin. The

generic interface also hides component-specific semantics from the master, which makes

it extensible for supporting new types of components. Currently supported types include

Event-B components, which are implemented by interfacing with ProB, and FMU com-

ponents that are interfacing with the underlying FMI slaves via the Java FMI wrapper

library3.

We define our simulation interface on an abstract entity called Component, which en-

capsulates the slave-specific data and simulation semantics, hiding it from the master.

Hence, a co-simulation composition graph required by the latter comprises a set of

components interconnected via inputs and outputs. We combine these entities, their

properties and relevant associations into a single data structure called the meta-model.

In model-driven engineering (MDA) a meta-model is a model of a modelling language,

i.e. a specification of the rules and constructs for creating semantic models [134]. With

respect to simulation our meta-model provides the constructs for creating instances of

3http://ptolemy.eecs.berkeley.edu/java/jfmi/

http://ptolemy.eecs.berkeley.edu/java/jfmi/
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the composition graph that contains a collection of specialised components (concrete

implementations of the abstract component), each of which may have a set of input and

output ports that can be connected to the ports of other components. An instance of

the graph serves as a data and semantic model of the simulation, and is used by the

master to execute and control the simulation process. The complete class diagram of

the meta-model is shown in Figure 4.3. It has been designed using the Eclipse Mod-

elling Framework (EMF), hence class attributes are declared not with the standard Java

datatypes, but with equivalent EMF datatypes. The greyed-out classes are the shortcuts

to the Event-B EMF meta-model, which is part of the Rodin toolset.

Component

stepPeriod : EInt

instantiate

initialise

readInputs

writeOutputs

doStep

terminate

EventBComponent

composed : EBoolean

trace : ProBTrace

recordTrace : EBoolean

traceFileName : EString

FMUComponent

path : EString

fmu : FMU

Port

AbstractVariable

type : VariableType

causality : VariableCausality

value : EJavaObject

description : EString

VariableType

Real

Integer

Boolean

String

VariableCausality

Input

Output

Internal

None

FMUParameter

defaultValue : EJavaObject

startValue : EJavaObject

FMUPort

EventBPort

intToReal : EInt

DisplayComponent

chart : Chart2D

bufferSize : none

DisplayPort

trace : ITrace2D

color : Color

Machine

refinesNames : EString

seesNames : EString

Event

convergence : Convergence

extended : EBoolean

refinesNames : EString

Variable

Parameter

components

0..*

inputs0..*

outputs0..*

parameters

0..*

in
0..1

out
0..*

machine

1..1

endStepstartStep

1..*

variable

0..1

parameter

0..1

1..*

stopTime : EInt 
startTime : EInt
arguments : EString 
recordOutputs : EBoolean

ComponentDiagram

Figure 4.3: Meta-model of the co-simulation framework

The root element of the meta-model is the ComponentDiagram class, which models the

composition graph of the instances of co-simulated models. The components contain-

ment association defines a collection of component instances existing on the diagram.

The diagram, besides serving as a root container, incorporates a set of attributes essen-

tial for the simulation configuration. These include the simulation start time, stop time

and step size. Some attributes are added for specific capabilities of the tool, such as the

arguments attribute for the ProB execution configuration, and the recordOutputs flag

for the optional recording of output signals to a file.

The Component is an abstract class that models a simulation slave. It contains a single

attribute stepPeriod that allows the component to have a custom simulation step size,

different from the diagram (global) step size. The component also defines the master-

slave simulation interface, which is specified as a set of operations on a component:
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• instantiate operation creates an instance of the associated model for the simu-

lation. This may include loading a model file from the filesystem or starting up a

dedicated simulator for that model.

• initialise operation initialises a component instance prior the simulation. This

typically involves setting model parameters to user-defined values as well as setting

initial values of the inputs. A call to the initialise operation requires simulation

start and stop time to be provided as arguments.

• readInputs operation reads the values from connected input ports of a component.

• writeOutputs operation writes the values to output ports of a component, i.e.

makes them available for reading by other (connected) components.

• doStep operation is the key operation of the simulation that simulates a component

for one step of the time period, provided as an argument. The second argument

of the operation is the current simulation time.

• terminate operation releases all the resources from memory at the end of simu-

lation and does other post-simulation processing on a component, such as closing

an open model file or a loaded library.

The component has an optional set of inputs and outputs, defined by the namesake

containment associations to the abstract class Port. Ports can be connected depending

on their type. This is modelled by associations in (incoming connections to an input

port) and out (outgoing connections from an output port). The main purpose of the

port is to store the value of a specific input/output variable of the model instance during

the simulation. These values are used by the master to synchronise the signals between

components.

The attributes of the port are specified by a generalised abstract class AbstractVariable,

which includes a data type (Real, Integer, Boolean or String), value, causality (Input or

Output for ports and Internal for other variables) and description (an optional descrip-

tive comment on the variable).

Three specialisations of the abstract component are implemented in MultiSim: FMU-

Component, EventBComponent and DisplayComponent. The FMUComponent class

models continuous-time FMI units, or FMUs. In order to load an FMU the compo-

nent stores its file location in the path attribute. The fmu attribute holds a reference to

the loaded FMU instance. FMU components have a list of optional parameters, spec-

ified by the FMIParameter class – a specialisation of the AbstractVariable that stores

the values of the associated model parameters. Parameters always have a defaultValue

(defined internally by the FMU), which can be redefined by the user via startValue at-

tribute. Finally, FMU components use ports of the type FMUPort, a specialisation of

the abstract port.
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The EventBComponent class models simulated instances of Event-B machines. It con-

tains a set of Event-B specific attributes that define semantics or store vital data of

the simulation. The semantics is determined by the reference to a simulated Event-B

machine and the links to StartStep events, which are the events that start the simula-

tion step and optionally read the values from input ports, and EndStep events, which

denote the end of the step. The trace attribute is the key attribute of the simulation –

it contains a reference to the current execution trace in ProB, which is used to execute

Event-B events and read the values of state variables. The composed attribute is a flag

to indicate that the associated Event-B machine is a composed machine (a composition

of two or more machines). The recordTrace flag and the traceFileName attribute are

used by the tool for recording the trace to a file.

The semantics of Event-B components is additionally determined by their ports. The

EventBPort is a specialisation of an abstract port that contains a reference to a pa-

rameter of the specified StartStep event or a reference to an internal variable of the

associated Event-B machine. Depending on the port causality the parameter reference

is used in conjunction with the StartStep event to read the input value from an input

port, whereas the variable reference is used to update the output value of an output

port.

Finally, the DisplayComponent class models an auxiliary component, which enables

visual plotting of the output signals from other components during simulation. Signals

are plotted by connecting the associated output ports of components to DisplayPorts of

the display component. A display port stores the plotcolour and the trace of plotted

values, updated throughout the simulation in real time.

Figure 4.4: Simulation interface implementation by Event-B and FMU compo-
nents

The developed meta-model has been used to generate the boilerplate code of the sim-

ulation data structure via EMF framework. The implementation of Event-B and FMI

components maps our simulation interface to manipulations on the underlying model

instances, which is illustrated in Figure 4.4 using pseudocode. Since our interface is



78 Chapter 4 MultiSim Tool

based on the FMI API, the implementation of FMU components is straightforward –

interface routines are mapped directly to the corresponding FMI method calls.

In the case of Event-B components we apply the discrete step semantics, defined in

Chapter 3. Implemented methods of the Component class execute a trace of events of

the associated Event-B machine via ProB. Figure 4.4 shows the key operations from the

actual implementation in a pseudocode form:

• instantiate method loads an Event-B machine and retrieves its trace.

• initialise method executes two operations on the machine. If the machine has a

sees relationship with an Event-B context, setup constants operation initialises its

constants in accordance with the specified axioms. initialise macnine operation

initialises machine variables by executing the INITIALISATION event.

• readInputs method reads the values of input ports of the component and con-

structs a predicate that binds those values to the StartStep event parameters.

• writeOutputs method retrieves the current state and evaluates the values of in-

ternal variables, associated with the output ports of the component.

• doStep method first executes one of the enabled StartStep events with an input

predicate from readInputs. It then constructs an LTL formula of a state where

one of the EndStep events is enabled and subsequently executed. This formula

along with the current state is fed to an executeUntil operation in ProB, which,

given a state and an LTL formula of the new state, tries to find a trace that leads

from former to latter.

• terminate method is used by the EventBComponent for peripheral tasks only and

does not modify the simulation trace, hence it is not shown on the diagram.

4.5 Operation

The prerequisite for each simulation is a component-connection graph that captures the

topology of system components. This graph is used by the simulation master algorithm

to orchestrate the simulation and exchange the data between components. MultiSim

provides a block-based diagram editor (Figure 4.5), which enables easy composition

of components into a graph via input/output port connections. A component can be

added to an empty diagram via drag and drop interface from the file system or the

Rodin project workspace. The imported component can be either an Event-B machine

or an FMU file.
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Figure 4.5: MultiSim component diagram editor

When an Event-B machine is imported to a diagram for the first time, a configuration

wizard helps the user to assign the simulation semantics to the newly created Event-B

component: the user has to specify a step period of the component (data synchronisa-

tion period, in milliseconds), at least one or more StartStep events and EndStep events

(Figure 4.6).

Figure 4.6: Configuring Event-B component parameters and events

The user also has to add required input/output ports by mapping parameters of the

previously specified StartStep events to inputs and the variables of the machine to out-

puts (Figure 4.7). The definition of each port includes an optional name, a required

reference to either a parameter or variable, a signal type (from supported FMI types),

and, in case of the Real type, a conversion precision to/from Integer.

When the component is configured and successfully imported to the diagram, it is au-

tomatically added to the editor’s tool palette, hence enabling multiple instantiation of

the same component from the palette. This applies to both Event-B and FMU compo-

nents. In addition, all semantic information specified for Event-B components during
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Figure 4.7: Configuring Event-B component input/output ports

the import process is persisted in the associated Event-B machines as meta-data, which

is reused for automatic configuration on subsequent imports.

Prior to simulation the diagram is automatically validated for any errors, such as in-

compatible types of connected ports, undefined StartStep/EndStep events of Event-B

components, missing references to an FMU file, etc. If a problem is discovered, sim-

ulation is interrupted and the user gets notified about errors via error markers on the

diagram as well as error messages in the Rodin Problems view (Figure 4.8). Validation

problems can be fixed by modifying the component’s attributes from the Properties

view, which allows the user to add, remove or reconfigure events and ports at any stage

of the modelling process. The diagram can be statically checked for validation errors

after it has been modified.

Figure 4.8: Diagram validation error markers and error messages
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After the connection graph is completed and verified, simulation can be started by pro-

viding simulation start time, stop time and step size. An optional set of ProB attributes

can be added to optimise the simulation of Event-B components, for example, to use

memory compression of the state-space. Output value recording can be also turned

on (Figure 4.9). Simulation process runs in the background, and the output comes in

three forms: an output signal value file in a .csv format (containing time-value rows for

each simulation step), a serialised event trace file for individual Event-B components

and a real-time plotting during simulation, which requires adding a Display component

from the tool palette and connecting it to output signals to be plotted.

Figure 4.9: Simulation start dialog

4.6 Available Documentation

The tool proposal has been presented at the 5th Rodin User and Developer Work-

shop [129], 2014 Summer Simulation Multi-Conference [126] and Doctoral Symposium

at the 4th International Conference on Simulation and Modeling Methodologies, Tech-

nologies and Applications [128]. A validation of the tool on a landing gear case study,

which is set out in the next chapter, has been presented at the 4th International ABZ

2014 Conference [127]. Both the latest source code and the installation/use instructions

of the tool are available online4.

4http://github.com/snursmumrik/multisim

http://github.com/snursmumrik/multisim
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4.7 Summary

The MultiSim tool for Rodin is the key contribution of this work. It addresses the

existing limitation of the Rodin toolset – the lack of continuous-time modelling and

simulation-based validation of hybrid system models with a physical environment, which

is an important requirement for rigorous development of hybrid systems. MultiSim

addresses this limitation by providing a mechanism for mapping Event-B models to

simulation components that can be composed with physical models. The mapping also

caters for refinement, hence the tool supports a systematic modelling and validation

workflow, in which a formal model is refined in small incremental steps and validated at

each step against the physical model of environment. The validation is supported by the

tool via the master algorithm, which simulates the composition of all sub-models. The

implemented master is generic and is capable of co-simulating an arbitrary number of

components. It is built on the established FMI interface for co-simulation that is an open

standard and is supported by many physical modelling tools, including Modelica-based.

In addition to co-simulation the tool provides a graphical environment that allows the

models to be imported as component blocks and connected via input and output ports

into a component graph. Components can be instantiated and their parameters can be

modified for each instance. The component graph is used by the simulation master to

orchestrate co-simulation and perform signal exchange between connected ports. The

values of signals are visualised during the simulation and the state of each component

is saved to an output file.

Our goal was also to reuse as many available technologies and frameworks as possible.

This is addressed in MultiSim by adopting the existing FMI libraries and Rodin/Event-B

frameworks, as well as the tools like ProB for executing and validating simulations.

During the development of MultiSim we have identified performance and scalability

problems. For example, the simulation of a formal model with a large number of events

resulted in performance degradation and exponential memory consumption. These issues

have been resolved by optimising the master algorithm and by minimising interaction

of the tool with the execution engine of Event-B (the ProB kernel).

In the next chapter we validate the tool on the examples of hybrid systems by modelling

each system as a combination of the formal model of the control sub-system and the

physical model of the environment, and by subsequently verifying and validating the

composed model using MultiSim. We then evaluate our approach by comparing it to

the traditional simulation and identifying its benefits and limitations.
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Experiments

To validate the functionality of our tool we have conducted a number of experiments that

applied MultiSim on the discrete models constructed in Rodin and continuous models

created in the Modelica-based environment Dymola, which is a commercial product

by Dassault Systèmes that supports the latest revision of the Modelica language and

the FMI standard. Some of the case studies involve both co-simulation and formal

verification, highlighting the advantages of our integrated approach. The list of case

studies was compiled to be representative of the hybrid systems domain and real life

problems:

• A controlled water tank – the classical example of a hybrid system that is com-

monly used in the literature to demonstrate discrete-continuous behaviour.

• Distribution voltage control – a hybrid system similar to the water tank, but from

the power systems domain. This case study was selected as a benchmark before

the real-scale smart grid case study from the ADVANCE project [23].

• Angle of attack sensor processing – a real life problem that is a good demonstration

of the benefits of rigorous analysis techniques.

• Controlled landing gear – a benchmark case study of the joint formal methods

conference ABZ 2014 [29].

In order to evaluate the tool we first need to determine the criteria for success. A

successful evaluation should demonstrate that:

• The results of the simulation by MultiSim are consistent with the results by other

simulation environments (in our case Dymola).

• The approach supported by the tool is beneficial for development: it addresses

certain limitations and offers advantages over traditional techniques such as sim-

ulation and testing.

83
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• The proposed workflow is feasible: it can be easily adopted by engineers without

the fundamental changes to an established engineering process.

• The approach is economically adequate: it can be adopted without significant cost

increase.

5.1 Water Tank Control

In the first experiment we evaluated the simulation functionality of the tool on a classical

example of a hybrid system – a controlled water tank, briefly described in Chapter 3. In

its simplest form the system consists of a water tank that has a constant water outflow

and a controlled valve (or a pump in other variations of the system) that supplies water

input to the tank and can be actuated by a controller. When the valve is open it

delivers water to the tank at some flowrate v1. Water outflow has a rate v2. The tank

is characterised by a fixed capacity and two water level bounds 0 < L < H . The goal of

the system is to keep the water level within the interval [L,H ] by measuring the current

water level and controlling the state of the valve. This goal can be formalised as a system

invariant:

level ∈ L..H (5.1)

As a hybrid system this example has the following components: the environment that is

represented by the water tank with an open output port and an input port connected to

the valve, the plant comprised of the actuated valve and sensors that monitor the water

level, and the controller that controls the state of the valve, which can be either open or

closed (an ideal discrete valve). The controller follows a simple strategy: when the valve

is closed and the sensed water level drops below the lower threshold LT , where LT > L,

the controller opens the valve; when the valve is open and the water level reaches the

upper threshold HT , where HT < H , the controller closes the valve; in between the

thresholds the same mode (open or closed) is maintained by the controller.

The dynamics of the water level in the tank can be specified by a simple differential

equation:

level ′(t) =

v1 − v2 if valve is open

−v2 if valve is closed
(5.2)

This equation can be easily translated to Modelica to describe the physical model of

the environment. In a more realistic scenario the flowrates v1 and v2 are dynamic and

dependent on the current water level in the tank as well as thermodynamic properties of
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the medium and the environment. The advantage of multi-domain physical modelling

languages such as Modelica is that they provide facilities to model these aspects of the

physical system. Furthermore, it comes with the Modelica Standard Library (MSL)

of already developed components for modelling systems of different domains. We have

utilised components of the Fluid package (1-dimensional thermo-fluid flow in networks of

pipes) of the MSL to model the physical aspect of the water tank system. The resulting

model consists of a water source, modelled by the boundary source component, a discrete

valve with linear pressure drop, an open water tank with inlet/outlet ports and a second

boundary component representing the sink. The control signal to the valve is provided

by the discrete input port valveInput, while the water level reading is connected to the

continuous output port levelOutput. The model of the sensor is idealised, i.e. we can

instantaneously read the current value of the water level at any given time. A similar

idealised property is attributable to the valve, which provides a maximum specified

flowrate immediately when it is open. The complete model of the plant is shown in

Figure 5.1.

Figure 5.1: Controlled water tank plant subsystem in Modelica

For the simulation scenario the model was initialised via parameters of the water tank

and port dimensions, ambient pressure and temperature in the source and sink, and the

valve pressure loss. The medium of all Modelica fluid elements was set to the idealised

model of the liquid water. The resulting model was exported from Dymola as an FMU

for Co-simulation. Note that after the export the mentioned parameters of the model

can be modified from MultiSim via the Parameters view.

The discrete Event-B model of controller, specified in Section 3.5, was imported into

MultiSim and configured as an Event-B component by augmenting it with simulation

semantics, which required: 1) specifying the input reading event readLevel (Figure 5.2)

as the StartStep event and three control order issuing events closeValve, keepValve and

openValve as the EndStep events, 2) adding a Real input port, associated with an input

parameter l of the readLevel event that reads the water level from the plant, 3) adding a

Boolean output port, associated with the machine variable valve that models the control
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order to the valve, and 4) specifying the component’s simulation step size, which denotes

the sensing/actuation period of the controller, and in this case is equal to 100ms.

DecideClose

DecideKeep

DecideOpen

Read Control INITIALISATION

decideClose

decideKeep

decideOpen openValve

keepValve

closeValve

readLevel

Figure 5.2: State machine of the water tank controller in Event-B

The invariant 5.1 should be preserved by the system since the water level is maintained

by the controller roughly within the thresholds LT and HT . However, for the given

model it is not possible to prove formally that level < LT ⇒ level ≥ L (and similarly

that level > HT ⇒ level ≤ H ) since the modelled water reading from the plant is a

physical property and therefore is not constrained by the surrogate properties of the

controller. In order to prove these properties and the goal invariant we must introduce

additional assumptions on the maximum water level change between two subsequent

measurements. At any level reading the following invariant must hold:

valve = open ⇒ H − level ≥ v1 − v2 ∧ valve = closed ⇒ level − L ≥ v2 (5.3)

The control decision should therefore be based on the predicted change for the next

measurement, depending on the state of the valve. We leave out the necessary mod-

ifications to the formal model and its proof, as this approach has been demonstrated

already in multiple works, such as [42] and [140]. Note, however, that the referenced

studies modelled a system with constant flowrates.

For the simulation scenario we have initialised the model with the following parameters.

The water tank height was set to 3m. The lower bound L = 0.5m, and the upper

bound H = 2.5m. The lower threshold LT = 1m, and the upper threshold HT = 2m.

The initial water level was set to 0 and the valve left open. The composed simulation

diagram of the Event-B component, representing the controller, and the FMI component,

representing the water tank plant, is shown in Figure 5.3. A Display component has

been added to visualise the valve and level signals during the simulation.

The diagram was simulated for 30s with a simulation step size equal to the step interval

of the controller (100ms). The simulation results obtained from MultiSim are shown on

a plot in Figure 5.4. From the diagram we can observe non-linear dynamics of the water

level and the discrete change of the valve as a result of control orders. For example, the
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Figure 5.3: Component diagram of the controlled water tank in MultiSim

valve state changes from open (1) to closed (0) after a control order is issued at t = 18s

upon the water level going above the upper threshold of 2m. Similarly, the controller

opens the valve again at t = 26s after the water level reaches the lower threshold of 1m.

0 5 10 15 20 25 30

0

0.5

1

1.5

2
valve

level

Figure 5.4: Simulation results of the controlled water tank model in MultiSim
(simulation time = 30s, step size = 0.1s)

An observable overshoot of the water level above the upper threshold at t = 16s suggests

that given a considerable input flowrate, such that v1− v2 > H −HT , the goal invariant

could have been violated, which directly correlates with inability to prove the invariant

formally. The advantage of the formal proof is that a theorem is proven for any instance

of the model, whereas simulations require to instantiate a particular scenario. Using

MultiSim the two approaches can be combined and the formal proof can be augmented

with the simulation-based validation. The discovered flaw in the formal model also

shows the importance of the validation of Event-B models against a precise model of

environment, and our co-simulation plug-in addresses exactly that. As a future work we

are interested in modelling a more complex version of the water tank system, consisting

of multiple tanks coupled in a loop.
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5.2 Voltage Distribution Control

The next experiment was taken from the Power Systems domain to show how co-

simulation can be used in the modelling and verification of Smart Grid systems. A

standard electric power system consists of the generating stations (power plants, wind

turbines, solar farms), high-voltage transmission lines, distribution networks and resi-

dential/commercial consumption loads [144]. The final distribution segment must step

down the distribution voltage to a residential voltage that is safe for use by general con-

sumers. The task of stepping the voltage up/down is performed by a transformer with

a tap changer that allows to vary the winding ratio between the primary (input) and

secondary (output) voltage. The latest generation of the digitally controlled On-Load

Tap Changers (OLTC) allows automatic voltage regulation by varying the transformer

ratio under load without interruption.

In this experiment we are concerned with modelling the final distribution segment of

an electric power system, in which a distribution voltage of 11kV is converted by an

OLTC transformer to a consumption voltage of 230V. The system goal is to maintain

the reference voltage of 230V within a predefined deadband (safe range) under any load

conditions. One of the means of achieving this is by monitoring the voltage under load

and controlling the OLTC position. The system (excluding controller) has been modelled

in Modelica (Figure 5.5) using the PowerSystems library1.

Figure 5.5: Distribution voltage control system in Modelica

The model consists of a constant voltage source Vgen1 that represents a primary distri-

bution voltage, two power lines split by an OLTC transformer trafo, and a load zLoad

that represents a residential area. For the synthesised simulation scenario the load is set

to increase sinusoidally by five times the nominal over a period of 30 seconds, which leads

to a corresponding voltage decrease. To regulate the voltage an input control signal can

switch the secondary tap of the transformer by providing an index for the tap position.

There are 21 positions defined in the transformer, with a 0.2 ratio step between any two

consecutive positions. A monitored voltage from the voltage sensor Vsensor1 is sent

back to the controller.

1https://github.com/modelica/PowerSystems

https://github.com/modelica/PowerSystems
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The OLTC controller has been modelled in Event-B as a state machine (Figure 5.6)

according to [109]. The state machine consists of three states:

• sIdle, denoting a normal operation mode where a monitored voltage is within the

deadband. The noChange event indicates the end of simulation step in this mode.

• sCount, denoting a state where the voltage is outside of the deadband, but no

tap change action is yet taken. This mode models a detection delay of the OLTC

that monitors the voltage for a certain amount of time in hope it goes back to

normal (transition cancelCount) before taking any action. The delay is modelled

in Event-B by a decreasing counter variable dCounter. The delayAction event is

the EndStep event in this mode.

• sAction, which models a mechanical delay of the tap changer after detection de-

lay expires (transition startAction). After another counter variable mCounter,

involved in this state, reaches zero and depending on the sign of the difference

between the reference and monitored voltage a corresponding tap step up/down

action is performed (transition tapUp or tapDown, respectively). The EndStep

event in this mode is delayChange.

Figure 5.6: Event-B state machine of the OLTC controller

The co-simulation configuration of the OLTC/controller has a detection delay of 10s, a

mechanical delay of 1s and a deadband of 2V. The step period of the controller was set

to 0.1s and the simulation run for 30s to observe the voltage drop and the reaction of

the tap changer, shown in Figure 5.7.

The results show that controller detects a deviation from the deadband (vNorm < 229V)

at t = 22s and switches to the sCount state. As voltage continues to stay outside the

acceptance range for 10s an action is taken at t = 32s and is completed after a mechanical

delay of 1s. The tap position changes from 11 (middle position denoting the nominal

ratio) to 12, i.e. a tap up is performed to step up the secondary voltage. As a result the

voltage jumps to 231.5V at t = 34s and becomes outside of the range, but goes back to

normal as the load continues to increase.

A more interesting scenario is a number of different factors affecting the voltage (line

drop, distribution generation, etc.), as well as a more complex model of the residen-

tial load and an intelligent OLTC control algorithm that optimises the number of tap
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Figure 5.7: Simulation results of the OLTC voltage control
(simulation time = 50s, step size = 1s)

changes to minimise the wear of expensive equipment. In fact, MultiSim extension was

successfully used in a similar case study done by Critical Software for the ADVANCE

project [23]. The case study, provided for the project by Selex ES2, looked into an au-

tomated low voltage control and distribution network of a real residential area, with a

dual goal to explore the application of formal methods on the development of smart grid

systems and investigate the increased level of automation in a network with distributed

micro-generation (photovoltaic cells). The system under study incorporated a voltage

optimisation algorithm for the OLTC transformer control, a number of Sensor Interface

Units (SIU) that monitor the voltage at various network points and send reports to the

control system, and a network communication protocol for transferring the reports. In

addition to the voltage regulating function the control algorithm optimises the number

of tap changes made in order to maximise the lifetime of the tap changer equipment.

A symbolic diagram of the system architecture, borrowed from the ADVANCE deliver-

able [22], is shown in Figure 5.8.

The control system including the algorithm and communication network was modelled

and verified in Event-B, whilst the power network and electrical equipment was designed

in Modelica. The developed framework consisting of the Rodin toolset, ProB, MultiSim

and visualisation has been used to assess the architecture and protocols of the system,

and to identify any counterexamples that violated the key system properties, such as:

• The controller never issues an unsafe command which lowers the voltage when it

is already too low.

• The controller never issues an unsafe command which raises the voltage when it

is already too high.

• The controller avoids unnecessary tap changes.

2http://www.selex-es.com

http://www.selex-es.com
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Figure 2: Selex ES Scenario Architecture 

Critical Software is using the framework developed during ADVANCE to support Selex ES 

in the early validation of the solution, system architecture and assumptions prior to actual 

implementation. This will include an assessment of the architecture and protocols that have 

been proposed, and the identification of any counterexamples where the following system 

properties are violated: 

 the controller never issues an unsafe command which lowers the voltage when it is 

already too low, and 

 the controller never issues an unsafe command which raises the voltage when it is 

already too high, and 

 the controller avoids unnecessary tap changes.   

This early validation is of utmost importance for Selex ES as it will provide the means to 

increase the confidence on the solution before it is fully rolled out on distribution networks 

involving actual customers, reducing engineering costs by identifying issues early in the life 

cycle. This case study supplements other validation activities undertaken by Selex ES, 

which include field trials of the system at two sites. However, Selex ES has a particular 

interest in this methodology as they have not used it before, hence this is seen by Selex ES 

as an innovative approach for the system engineering of smart grids. The advantage of 

there being trial sites is that it provides a mechanism to assess the benefits of the 

ADVANCE methodology in comparison to traditional methods. 
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Figure 5.8: Selex ES Smart Grid Network Architecture

In addition, the Event-B model of the control algorithm was verified by applying the

System-Theoretic Process Analysis (STPA) approach [95], which involves an exhaustive

analysis of all possible actions that a system can emit and potentially cause the violation

of safety properties. For each discovered hazard according to STPA a system level

constraint is identified that prevent the hazard from occurring. These constraints and

violation scenarios are used for identifying test cases. The requirements and constraints

of the case study system were formulated in Event-B and used as verification conditions.

Formal proof activities on the resulting model helped to identify a number of issues, for

example, a significant difference in busbar and target voltages due to the operational

characteristics of the tap changer. The algorithm had to be modified accordingly to

mitigate the issue, which emphasised the necessity of formal verification.

Co-simulation of the composed system with MultiSim was performed on a fixed network

topology model, provided by Selex ES and based on one of their test sites, hence the

results of simulation could be compared to the real test measurement data. The contin-

uous model of environment was extended to include a parameterised stochastic model

of the network failures and a mutable model of the end-user properties, such as the

amount of photovoltaic distribution and the medium voltage input within the network.

Simulation with mutation of these properties has helped to explain how the system

functions with different degrees of communication problems and to find an acceptable

level of packet loss that can still maintain a stable voltage of the network. It has also

helped to investigate the response of the system to different levels of power demand and

micro-generation.
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5.3 Angle of Attack Processing

The next test case is concerned with a common problem of ensuring the fault tolerance

in safety-critical systems. Failures in such systems are extremely undesirable as they

can lead to dangerous or even fatal incidents like plane crashes. Despite the enormous

effort of engineers such systems occasionally do fail due to various internal and external

factors. Hence, critical systems often must be fault tolerant3.

One of the most prevalent techniques for reducing the impact of failures in safety-critical

systems is to introduce the redundancy – either static, in which the computation is dupli-

cated and some sort of a voting mechanism is used to determine the result, or dynamic,

where the backup resources take over only after a failure of the primary system is de-

tected [73]. Unfortunately, the introduction of fault-tolerance mechanisms inevitably

adds complexity to the original design, which can result in a likelihood of failures. In

fact, mechanisms of fault tolerance often become the leading cause of failures [123].

In this experiment we explore the application of formal methods and co-simulation in

the validation of a representative example of a fault tolerant safety-critical system – an

electronic flight control system (EFCS) of the Airbus A330/A340 aircraft. The choice of

the object of this case study was driven by the availability of the official documentation

and system specification, as well as actual existence of identified design issues that have

led to a flight accident on 7 October 2008, when an Airbus A330-303 passenger aircraft

on a scheduled Qantas 72 (VH-QPA) flight from Singapore to Perth suffered two sudden

uncommanded pitch-down manoeuvres that resulted in serious injuries to passengers

and the crew. The following Aviation Occurrence Investigation [40] has revealed that

while the aircraft was cruising at 37,000 ft, one of its three air data inertial reference

units (ADIRUs) started outputting incorrect values on all flight parameters to other

aircraft systems. In response to spikes in the angle of attack (AOA) data the flight

control primary computers (FCPCs) commanded the aircraft to pitch down. Despite

the fact that the FCPC algorithm utilised for processing AOA data was very effective

and included redundancy mechanisms, thorough simulation and analysis revealed that it

could not manage a specific scenario of multiple spikes in AOA signal from one ADIRU

that were 1.2 seconds apart.

This case is interesting as it demonstrates how a redundancy mechanism itself can be

accountable for system failure. We focus on modelling and verifying AOA redundancy

logic as well as on reproducing the above failure scenario according to the publicly

available VH-QPA recorded flight data. Four scenarios, including the accident, are

modelled and simulated in MultiSim by a components diagram in Figure 5.9, which

3The term ‘fault tolerance’ refers to a system’s ability to maintain its functionality in the presence
of faults. Various techniques for fault-tolerance are employed extensively in the design of hardware and
software for safety-critical systems. The fundamental assumption is that faults can never be completely
eliminated, but their probability and consequences can be brought to an acceptable level [40].
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consists of the Event-B model mch2 of the AOA monitoring and control logic and

the Modelica model A330AOA.FMI.ScenarioX of the environment, corresponding to a

particular scenario. A Display component was added for the output signal visualisation.

Figure 5.9: MultiSim co-model of the AOA processing test scenario

First, we give a high-level description of the EFCS architecture and the AOA sensor

processing logic of the A330 aircraft, which is then modelled and simulated using Mul-

tiSim to confirm that its behaviour corresponds to system requirements, followed by

synthesising the pitch-down failure scenario. The aim is to demonstrate the applicabil-

ity of our multi-simulation approach to safety requirements verification and validation

of fault-tolerant designs of heterogeneous systems, which consist of highly integrated

continuous-time and discrete-time components.

EFCS is a ‘fly-by-wire’ system that controls the aircraft flight path and attitude by

sending movement commands from the flight crew’s controls to hydraulic actuators of

control surfaces via electrical signals. It consists of several control computers, one of

which works as a ‘master’ and computes control orders according to either normal,

alternate or direct control law. In the normal law computers override the flight crew’s

input to prevent exceeding a safe flight envelope (this includes high AOA and pitch

attitude protection). If a failure is detected, the system automatically switches to a

different law. The air data inertial reference system (ADIRS) provides vital data about

the outside environment and the state of aircraft relative to the outside air and the

Earth. For redundancy the ADIRS has three ADIRUs that receive AOA4 data directly

from sensors. EFCS uses this data to control the aircraft’s pitch and under normal law,

in which EFCS has full control over flight path, protects against a stall by limiting the

AOA and sending pitch-down movement commands to aircraft’s elevators if a certain

angle threshold is exceeded. It is critical that flight data coming from the ADIRUs is

accurate.

4AOA is the angle between the oncoming air and the wing’s reference line. It should not be confused
with the pitch angle, which is an angle between the airplane’s body and the horizon. A ‘stall angle’ is a
critical AOA angle at which the amount of lift starts to reduce.
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The AOA monitoring and computation logic in its simplified form is shown as a flowchart

in Figure 5.10 from [40]. Parameters from ADIRUs are monitored as follows:

• FCPC monitors three ADIRUs’s output every 40 msec (25 Hz).

• If an ADIRU flags its parameter data as invalid in terms of sign/status matrix

(SSM), FCPC ignores it.

• FCPC compares three ADIRUs’ parameter values for consistency: if any of the

values deviate from the median (of all three) by more than a predefined threshold

for over 1 second, the relevant parameter is rejected for the remainder of the flight.

In addition to sensor monitoring the FCPC computes flight control orders, for which it

uses valid parameter values from ADIRUs. A common technique is to use the median

of all values to ensure that notable deviation in one value would not affect system

performance. However, due to the physical position of the sensors (AOA 1 is located

on the left side of the fuselage, while AOA 2 and AOA 3 are close together on the right

side) the FCPC does not use the median to eliminate the possibility of rejecting a correct

value from AOA 1 when both AOA 2 and AOA 3 deviate in a consistent manner, for

instance, in an aircraft sideslip situation. To minimise this effect the FCPC uses the

average of AOA 1 and AOA 2 and a mechanism to prevent discrepancies in either of

the two from influencing the resulting AOAFCPCinput value. The computation logic is as

follows:

• If both AOA 1 and AOA 2 are valid, their mean value is used for AOAFCPCinput .

• AOAFCPCinput is rate limited to protect from rapid value changes due to short-term

anomalies such as turbulence.

• If either AOA 1 or AOA 2 deviate from the median by a ‘monitoring threshold’,

the most recent valid AOAFCPCinput value is memorised and used for 1.2 seconds.

During this period the current values of AOA 1 and AOA 2 are not used.

• At the end of a memorisation period the FCPC uses the average of current AOA 1

and AOA 2 values for one sample without applying a rate limiter.

• The monitoring process described earlier happens at the same time as the calcula-

tion of AOAFCPCinput ; therefore, if one of two involved ADRs (air data reference)

is rejected as faulty, the average is calculated from AOA 3 and the remaining AOA

for all subsequent computations.

Although this AOA processing algorithm is unique to the A330/A340 aircraft, the prin-

ciple behind it is traditional to aeronautics industry and is known as dissimilarity of

architecture in order to avoid a common point of failure. The command and monitoring
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Figure 5.10: Angle of attack processing algorithm

unit architecture is a widely used example of this technique [135], in which all input and

output data is permanently monitored while the command unit (COM) sends command

data to actuators under control of the monitoring unit (MON). This dual behaviour,

present in the A330 design, is of interest in the application of co-simulation between

Event-B and continuous-time models. For this example the environment and the com-

mand data generation was modelled in Modelica (Figure 5.11) whereas the monitoring

unit and control of the output data was modelled in Event-B.
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Figure 5.11: Angle of attack sensor processing model in Modelica

The Modelica model consists of three AOA sensor data inputs that are sampled at 25

Hz using Sampler blocks, followed by difference blocks that calculate the deviation of

the sampled signal from the median. The logic part of the algorithm is the MON and

COM units that determine sensor failures and the output AOAFCPC value used for

control orders, respectively. To simplify the formal model the arithmetic of calculating

the median and mean values is shifted outside of the logic blocks. The rate limiter is

also omitted (for the following scenarios this omission does not contribute substantial

discrepancy in the output). Finally and importantly, AOA 2 and AOA 3 are assumed

to be valid and constant during all scenarios; therefore only AOA 1 value fluctuations

are considered by the logic.

MON and COM modules that are outlined in Figure 5.11 are modelled in Event-B

using a state machine plug-in for Rodin [131]. A single control state is composed of two

parallel regions (Figure 5.12), one for each mentioned module:

• The top region of the AOA state defines the control logic, with a Normal state

that generates either a nominal (both sensors are valid) or fallback (one sensor is

rejected) output, and a Memorised state that models the memorisation phase.

• The bottom region specifies the monitoring logic and consists of a Valid state

(both sensor values are valid), Invalid state (sensor value exceeds a threshold)

and Rejected state (sensor value exceeded a threshold for 1 second, hence it got

rejected). Multiple events elaborate a number of transitions with distinct guards

and are synchronised across both parallel regions.
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Figure 5.12: State machine of the Event-B AOA controller

Parameter values for the monitoring threshold (THRESHOLD), memorisation period of 1.2

seconds (MEMPERIOD) and validation period of 1 second (VALPERIOD) are specified in

Event-B context. Input data from the plant (Modelica) is modelled in Event-B by three

variables: delta1 (deviation of AOA 1 from the median), mean12 (mean value between

AOA 1 and AOA 2, used if both are valid) and mean23 (mean between AOA 2 and AOA 3,

used if AOA 1 is rejected). Inputs are read by a readInputs event when controller is

in Input state. In Control state the resulting AOA value is produced and stored in

the aoaFCPC variable, and the last valid value is stored in memMean. The memorisation

phase as well as validation phase are modelled using clock variables memClk and valClk,

accordingly, which are set to a period’s value on entering the corresponding phase’s state

and decreased by one of tick events. As you may notice from Figure 5.12 the same events

appear in both state machines because they model a composed state space across both

parallel regions. The event naming convention here is the name of action/state of the

top region + the name of action/state of the bottom region. For example, an event

that models a transition from a normal/valid operation to a memorised validation phase

when AOA 1 exceeds a threshold looks as follows:

event memoriseInvalidate

where Control = TRUE ∧Normal = TRUE ∧Valid = TRUE ∧ delta1 > THRESHOLD

then Control := FALSE ‖ Input := TRUE

Nornal := FALSE ‖ Memorised := TRUE

Valid := FALSE ‖ Invalid := TRUE

memClk := MEMPERIOD − 1 ‖ valClk := VALPERIOD − 1 // set the clocks; do 1 tick

aoaFCPC := memMean // use last valid mean for memorisation

end

Tick events count down both clocks to zero or until the input becomes valid, as in the

following event that models the transition of the monitor back to the valid state while

memorisation is still active:
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event tickMemValidate

where Control = TRUE ∧Memorised = TRUE ∧ Invalid = TRUE

delta1 ≤ THRESHOLD ∧memClk > 0

then Control := FALSE ‖ Input := TRUE

Invalid := FALSE ‖ Valid := TRUE

memClk := memClk − 1 // decrease memorisation clock

end

When one of the clocks reaches zero, the current state is switched. For example, if the

memorisation period expires while the validation is still on (AOA 1 has been exceeding

the threshold for less than 1 second), COM state is switched back to Normal (this case

models the 1-sample rule at the end of memorisation from Figure 5.10):

event endMemInvalid

where Control = TRUE ∧Memorised = TRUE ∧ Invalid = TRUE

delta1 > THRESHOLD ∧memClk = 0 ∧ valClk > 0

then Control := FALSE ‖ Input := TRUE

Memorised := FALSE ‖ Normal := TRUE

valClk := valClk − 1 // decrease validation clock

aoaFCPC := mean12 // use current mean without validation

memMean := mean12 // memorise as the last valid output

end

Before validating the composed model via multi-simulation, the Event-B model can be

validated by ProB and verified using Rodin provers. For the formal analysis we have to

add invariants that we want to prove. One of the properties that is apparent from the

specification is that if a sensor AOA 1 is rejected, the alternative mean value between

AOA 2 and AOA 3 should be used for AOAFCPC , unless the memorisation mode is

active. This predicate is expressed as follows:

Rejected = TRUE ∧ Input = TRUE ⇒ aoaFCPC = mean23 ∨Memorised = TRUE (5.4)

and is automatically proven by Rodin provers. The related property that we might want

to prove is that if controller is in the memorisation mode, AOAFCPC should still be valid

(not exceed a threshold):

Memorised = TRUE ⇒ aoaFCPC ≤ THRESHOLD (5.5)

This invariant, however, cannot be proven automatically since it requires the goal

memMean ≤ THRESHOLD to be proven, which is not possible due to the 1-sample

requirement (see the endMemInvalid event). Failure of formal proof identifies inconsis-

tency in the requirements. This inconsistency can also be identified via model-checking
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in ProB: the invariant preservation check discovers a counterexample that invalidates

invariant 5.5 on the execution of invalidateMemorised when memMean = 11.

With multi-simulation we can also determine the actual chain of events that leads to an

invalid state. The investigation report [40] gives details of four scenarios that demon-

strate how the FCPC algorithm can detect and manage incorrect or inconsistent AOA

data. We successfully simulate all four scenarios on a combined model of the plant in

Modelica and the algorithm in Event-B. Event-B component has a step period set to 40

ms, equal to the sampling rate of FCPC. The controller takes three inputs from environ-

ment: delta1, mean12 and mean23, and produces two outputs: aoaFCPC and Rejected

(failure flag of AOA 1).

Scenario A illustrates how a significant step-change in AOA 1 would have no effect on

AOAFCPCinput , as it would trigger a memorisation period of 1.2 seconds. If the change

lasts for more than 1 second, sensor AOA 1 gets rejected and the mean of AOA 2 and

AOA 3 is used afterwards (Figure 5.13, A).
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Figure 5.13: Co-simulation of the AOA system in MultiSim (simulation time =
3 s, step size = 40 ms)
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Scenario B deals with a runaway (consistently increasing value) of AOA 1 (Figure 5.13,

B), which would trigger a 1.2-seconds memorisation period when the value reached

the monitoring threshold. After the memorisation period the mean of AOA 2 and

AOA 3 is used. Thus, the runaway has only a minor effect on AOAFCPCinput prior the

memorisation period. The rate limiter would further mitigate its effect.

Scenario C deals with short-duration spikes. If a short spike is detected in AOA 1, it

triggers a memorisation period, at the end of which the current mean is used again for

AOAFCPCinput . If another spike occurred during the memorisation period, it would not

trigger additional memorisation. On the other hand, the occurrence of a spike at the

end of the memorisation period would trigger a new memorisation (Figure 5.13, C).

Scenario D was identified by the aircraft manufacturer after the investigation of the

accident. Simulations showed that deviation of a single sensor value by two short spikes

1.2 seconds apart could significantly influence the output AOAFCPCinput and potentially

contribute to uncontrolled pitch-down manoeuvre. The following scenario is synthesised

from the recorder VH-QPA flight data:

• Prior the spikes the value of AOA 1 is 2.1◦, whilst the value of both AOA 2 and

AOA 3 is 2.3◦. AOAFCPCinput is based on the mean between AOA 1 and AOA 2.

• The first spike in AOA 1 has a magnitude of 50.6◦, lasting less than a second. It

triggers a 1.2-second memorisation period.

• At the end of the memorisation period a second spike of 50.6◦ int AOA 1 is present

(1.2 seconds after the first spike). At this point, according to the algorithm, the

values of AOA 1 and AOA 2 are assumed to be valid and a sample of their mean

is used to calculate AOAFCPCinput , causing a step change of 26◦ in the latter.

• After the initial sample the logic goes back to normal operating mode, but the

value of AOAFCPCinput remains affected by the spike.

The last scenario was identified by the manufacturer during the development of FCPC,

but assumed to be highly improbable. The investigation showed that it was one of the

main causes of the accident: the incorrect value of AOAFCPCinput was within the range

of -10◦ to +30◦ and therefore retained the system under normal law, which resulted

in two flight envelope mechanisms being activated. The combined effect of both stall

prevention and recovery was confirmed to correspond to a recorded elevator deflection.

The manufacturer subsequently redesigned the algorithm to prevent this type of faults

from occurring again.

Simulation using MultiSim allowed us to execute all four scenarios and validate our for-

mal model of the algorithm agains its specification. Each scenario was synthesised by

modelling the sample data from three sensors. In our case the data was available from
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the investigation report, although theoretically it could be derived from a model-checking

counterexample. In the case of the accident scenario the application of MultiSim helped

to determine a sequence of events that leads to violation of system safety properties

(invariant 5.5). Such an approach is helpful at pinpointing the exact event/requirement,

which brings the system to invalid state or deadlock. At the same time, the reverse ap-

proach is also beneficial – Rodin tool and ProB model checker can investigate a bounded

state space for invariant violations, thus discovering the preconditions and input values,

which can then be used for synthesising a simulation scenario that demonstrates system

failure.

5.4 Landing Gear System

The MultisSim tool has been also exercised on a landing gear case study proposed as a

benchmark for verification tools and techniques at the case study track of the ABZ 2014

conference [28]. This case study presents an aircraft landing system that is responsible

for manoeuvring the landing gears and associated doors of an aircraft on pilot request.

The system is a representative example of a critical embedded hybrid system in which

the actions of the digital controller are dependent on the state of physical devices and

their temporal behaviour. The task of the case study was firstly to model the software

part that controls extension and retraction sequences of the gears, and secondly to

prove safety properties associated with physical behaviour and system state. As we

demonstrate below, such a system maps well to the co-modelling and co-simulation

framework of the Rodin toolset.

The landing system consists of multiple analog and digital components that are grouped

into three parts:

• A mechanical part comprising all mechanical devices and three landing sets (front,

left and right) that contain a door, a landing gear and hydraulic cylinders for their

movement.

• A digital controller with control software.

• A pilot cockpit interface

The pilot interface is the simplest part of the system, consisting of a two-position input

handle and a set of light indicators of the system status. The handle is used by the

pilot to issue gear extension and retraction orders to the system. The up position of

the handle executes gear retraction, whereas the down position denotes gear extension.

The lights provide the pilot with a visual indicator of the current position of the gears

(locked up/down or manoeuvring) and the current health status of the system and its

equipment.
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The mechanical part consists of three landing sets, each comprising a landing gear up-

lock box and a door with latching boxes in the closed position. The manoeuvring of

gears and doors is executed by a set of actuating hydraulic cylinders: one cylinder for

opening and closing a door and another cylinder for extending and retracting a gear.

The hydraulic power is provided to cylinders via a circuit of connected electro-valves.

One general electro-valve provides pressure to four manoeuvring electro-valves: for door

opening, door closing, gear extension and gear retraction. Each electro-valve is activated

by an electrical control order from the digital part. To protect the system from abnor-

mal activation of electro-valves by the digital controller the control order to the general

electro-valve additionally goes through an analogue switch (explained below). Finally,

a set of discrete sensors indicating each gear’s and door’s state (locked/unlocked), gear

shock absorber state (on ground/in flight), pressure in hydraulic circuit and the ana-

logue switch state (open/closed) feeds the controller with information about the state of

equipment. Each sensor is triplicated for redundancy, with a majority-voting mechanism

employed to calculate the output value. The architecture of the system is illustrated in

Figure 5.14 from [28].

Figure 5.14: Architecture of the landing gear system

As explained earlier, the purpose of the analogue switch is to protect the system from

abnormal orders coming from controller. This is achieved by the design of the switch,

which passes a digital input only in a closed state. The switch is initially open and it can

be closed via an analogue input change. When the switch gets closed, it remains closed
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for 20 seconds, unless a change is detected again. For inertial reasons the transition from

the open to closed state takes 0.8 seconds, and from closed to open – 1.2 seconds. The

design of the switch is represented by a hybrid automaton in Figure 5.15. The digital

input in of the switch is connected to the general electro-valve order of controller, while

the analogue input handle is connected to the cockpit handle. Whenever a handle

movement is detected the analogue switch becomes closed and the general electro-valve

can be stimulated by controller (out := in) for 20 seconds. The switch is an example of

the physical system that can be modelled digitally because it maps well to the discrete

semantics of a hybrid state machine. However, since it is designed as analogue according

to the specification, we model it as part of the physical plant.

Figure 5.15: Hybrid automaton of the analogue switch

An electro-valve is a hydraulic device with an input pressure port Hin , an output pressure

port Hout and a discrete electrical input E . The behaviour of the electro-valve depends

on the electrical order from E : if E = true then Hout = Hin (maintained as long

as E is true), otherwise Hout = 0. Furthermore, due to inertia the output pressure

grows continuously from 0 to Hin when the valve becomes open. Similarly, pressure

declines continuously from Hin to 0 when the valve gets closed. In the given model this

dynamic behaviour is assumed to be linear, taking 1 second for the opening transition

and 3.6 seconds for closing transition. All electro-valves in the system are supposed to

demonstrate the same behaviour.

A cylinder is a pure hydraulic device with a moving piston. An opening pressure port

on one end of the cylinder and a closing port on the other end provide the received

hydraulic pressure into corresponding chamber, thus moving the piston. In addition,

cylinders used in the landing system have a latching box mechanism on one or both

ends that can lock the cylinder in the fully open or closed position. When a cylinder is

locked the pressure does not need to be provided anymore to sustain it in that position.

Consequently, to move the piston of a locked cylinder in the opposite direction the

applied pressure has to unlock the latching mechanism first. Gear cylinders have latches

on both ends (extended and retracted), while door cylinders are only locked in the closed

position, hence maintaining the open door position requires a constant pressure in the

extension circuit of the cylinder. Sensor data for the cylinder position is determined by

the state of corresponding latching boxes, with the exception of the door open position.
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For example, a door closed sensor value is true if the closing latching box is locked.

The behaviour of the cylinders (and attributed latching boxes) is determined by the

current pressure in the hydraulic circuit, the position of the piston and their temporal

parameters that are given in Table 5.1. The exact values of the given durations can vary

up to 20%.

Table 5.1: Duration of cylinder operations

duration (in seconds) front gear front door right gear right door left gear left door

unlock in open position 0.8 - 0.8 - 0.8 -

from open to closed position 1.6 1.2 2 1.6 2 1.6

lock in closed position 0.4 0.3 0.4 0.3 0.4 0.3

unlock in closed position 0.8 0.4 0.8 0.4 0.8 0.4

from closed to open position 1.2 1.2 1.6 1.5 1.6 1.5

unlock in open position 0.4 - 0.4 - 0.4 -

The digital part is composed of two identical computing modules, which execute in par-

allel the same controller software that reads sensor data, computes control orders for

doors and gears, and informs the pilot via cockpit about system status and any detected

anomalies. Both modules receive the same input from sensors (each value is tripli-

cated): handle, analogue switch, gear extended, gear retracted, gear shock absorber,

door closed, door open, circuit pressurised. From these inputs each module computes

a set of control order outputs: general EV (stimulation of the general electro-valve),

close EV (door closure EV), open EV (door opening EV), extend EV (gear extension

EV) and retract EV (gear retraction EV), and a set of status indicators for the cockpit:

gears locked down, gears maneuvering and anomaly. Same outputs from two modules

are composed by a logical OR operation.

Digital control is only used in the nominal operation mode, when no anomalies are

present. In the event of failure the system is automatically switched to emergency mode

and analogue operation. The given specification only covers the nominal mode, though

anomaly detection is part of the control software. Hence, the goal of the controller is

the operation of the landing system according to pilot orders and the health monitoring

of equipment. The first goal is specified by two basic manoeuvring control sequences:

gear extension and gear retraction. The extension sequence starts from the retracted

gear and closed door position when a pilot moves the handle down, and involves the

following control actions:

1. Stimulate the general electro-valve in order to send the pressure to manoeuvring

electro-valves.

2. Stimulate the door opening electro-valve.

3. Once all doors are open stimulate the gear extension electro-valve.

4. Once all gears are locked extended stop stimulating the extension electro-valve.
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5. Stop stimulating the door opening electro-valve.

6. Stimulate the door closing electro-valve.

7. When all doors are locked closed stop stimulating the closing electro-valve.

8. Stop stimulating the general electro-valve.

Correspondingly, the retraction sequence starts from the extended gear and closed door

position when the cockpit handle is pushed up, and involves these steps:

1. Stimulate the general electro-valve.

2. Stimulate the door opening electro-valve.

3. Once all doors are open and if all gear shock absorbers are relaxed stimulate the

gear retraction electro-valve, otherwise go to step 5.

4. Once all gears are locked retracted stop stimulating the retraction electro-valve.

5. Stop stimulating the door opening electro-valve.

6. Stimulate the door closing electro-valve.

7. When all doors are locked closed stop stimulating the closing electro-valve.

8. Stop stimulating the general electro-valve.

Both sequences can be interrupted at any step by an opposing order from the pilot

(handle can be switched at any time), in which case the reverse sequence should proceed

from the point of interruption. In addition, the control software should satisfy the

following timing constrains induced by the inertia of the hydraulic pressure:

• Stimulation orders to the general electro-valve and a manoeuvring electro-valve

must be separated by at least 200ms.

• Orders to stop stimulation of the general electro-valve and a manoeuvring electro-

valve must be separated by at least 1s.

• Two contrary orders (open and close doors, extend and retract gears) must be

separated by at least 100ms.

The second goal of the control software – equipment health monitoring and reporting

– involves generic sensor monitoring with triple modular redundancy, analogue switch

monitoring, pressure sensor monitoring and door/gear motion monitoring. The moni-

toring requirements are defined in terms of timing constraints on the expected response

from sensors. In case a particular constraint is not met, the controller must issue an
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anomaly signal to the cockpit and switch the system to emergency operation mode. As

an example of such a constraint, controller should consider doors as blocked and issue an

anomaly if sensor value door closed = false is not detected for all three doors within 7

seconds of the stimulation of the opening electro-valve. This experiment only considers

generic monitoring and omits the rest of health monitoring constraints. However, we

demonstrate at the end how these constraints could easily be modelled in Event-B.

Our modelling the landing gear system starts with a Modelica model of the plant. We

simplify the original specification by omitting sensor triplication and combining similar

sensor outputs of each landing set (front, left and right) into a single output. Further-

more, the plant incorporates both the mechanical/hydraulic part and the cockpit handle

for simplicity of exporting it into Rodin. Hence, our plant model has 7 outputs: handle,

switch, pressure, closed, open, retracted and extended. The analogue switch automaton

from Figure 5.15 is modelled using the freely available Modelica StateGraph25 library

for modelling hierarchical state machines. An extra state Reclosing is required to delay

the transition back to Closed state when a handle signal change is detected whilst the

switch is opening (Figure 5.16).

Figure 5.16: Modelica model of the analogue switch

Electro-valves are modelled using a parameterised output ratio R that changes linearly

depending on whether the valve is opening or closing. The Modelica model of the valve

is given below. We follow the terminology of the original specification, which interprets

the open/closed valve as a closed/open circuit. Therefore, an open valve (one that passes

the pressure through) is said to be in a closed state.

model ElectroValve

parameter Real closingTime = 1.0 "Closing duration";

parameter Real openingTime = 3.6 "Opening duration";

protected

5https://github.com/modelica/Modelica_StateGraph2

https://github.com/modelica/Modelica_StateGraph2


Chapter 5 Experiments 107

parameter Real Rmax = 1.0 "Max opening";

parameter Real dRcl = Rmax/closingTime "Change rate of R when closing";

parameter Real dRop = -Rmax/openingTime "Change rate of R when opening";

Real R(start = 0.0) "Current opening (0-open, 1-closed)";

discrete Real dR(start = 0.0);

equation

Hout = Hin*R;

der(R) = dR;

algorithm

// closing/opening event

when E then

dR := dRcl;

elsewhen not E then

dR := dRop;

end when;

// limiter of the R value

when R <= 0 or R >= Rmax then

dR := 0;

end when;

end ElectroValve;

Hydraulic cylinders are modelled in a similar fashion via a dynamically changing cylinder

(piston) position Pos, parameterised by the length of cylinder, extension and retraction

time. The cylinder contains two optional latching boxes (modelled by Lock) at each end,

with parameterised locking and unlocking time. The Modelica model of the cylinder with

latching boxes is given below:

model LatchedCylinder

Modelica.Blocks.Interfaces.RealInput Hext "Extension pressure input";

Modelica.Blocks.Interfaces.RealInput Hret "Retraction pressure input";

Modelica.Blocks.Interfaces.RealOutput Pos(start = 0) "Piston position";

parameter Real length = 1.0 "Cylinder length";

parameter Real tExtend = 1.2 "Extension time";

parameter Real tRetract = 1.6 "Retraction time";

parameter Boolean extensionLatch = true

"=true, if cylinder latch in extended position is enabled";

parameter Boolean retractionLatch = true

"=true, if cylinder latch in retracted position is enabled";

parameter Real tLockExtended = 0.4 "Lock time in extended position";

parameter Real tLockRetracted = 0.4 "Lock time in retracted position";

parameter Real tUnlockExtended = 0.8 "Unlock time from extended position";

parameter Real tUnlockRetracted = 0.8 "Unlock time from retracted position";

parameter Real Hmin = 0.001 "Minimal pressure to move the piston";

output Boolean lockedRetracted(start = retractionLatch)

"Status of retraction latch, if enabled";

output Boolean lockedExtended(start = false)
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"Status of extension latch, if enabled";

protected

parameter Real dPosExt = length/tExtend;

parameter Real dPosRet = -length/tRetract;

public

Lock extLock(

initialLock = false,

lockTime = tLockExtended,

unlockTime = tUnlockExtended);

Lock retLock(

initialLock = true,

lockTime = tLockRetracted,

unlockTime = tUnlockRetracted);

... // logical elements for connecting locks

equation

lockedRetracted = retractionLatch and retLock.locked;

lockedExtended = extensionLatch and extLock.locked;

if Hext-Hret >= Hmin and not lockedRetracted then

der(Pos) = if Pos < length then dPosExt else 0;

else if Hret-Hext >= Hmin and not lockedExtended then

der(Pos) = if Pos > 0 then dPosRet else 0;

else

der(Pos) = 0;

end if;

end if;

... // connect equations for logical elements

end LatchedCylinder;

The model of the cockpit handle, which is not shown here due to its simplicity, is a

discrete signal source that synthesises a particular scenario of the pilot behaviour with

respect to handle movement. The complete model of plant comprising the handle,

analogue switch, constant pressure source, general and manoeuvring electro-valves, and

six cylinders is available in the Appendix D.

The control software is modelled in Event-B using the State-Machines plug-in for Rodin,

presented in [131]. The model is developed in a number of refinement steps, which

helps to break down the complexity and verify each iteration with respect to modelled

requirements. We also find that the verification process is greatly facilitated by the

use of ProB animator tool that helps to execute the model and ensure that it behaves

as expected after each refinement step. If modelling with Event-B state machines, one

can also use the interactive state machine animator [130], which allows Event-B models

specified in terms of state diagrams to be executed by manually picking enabled state

transitions and selecting input values; current states and model instances are visually

highlighted during the animation, as it is shown in Figure 5.17.
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Figure 5.17: Interactive animation of the landing gear control state machine

At the very abstract level the model is only concerned with system operation modes

and models the detection of anomalies (states NormalMode and FailureMode in red

in Figure 5.18). It also models the state of the cockpit handle. The boolean input

handle and a corresponding read/StartStep event are introduced at this level, with

handle = true denoting handle down position (gear extension) and handle = false

denoting handle up position (gear retraction). Finally, the abstract level includes a state

of the machine to control the simulation. This state can be either Read (reading inputs),

Control (actual control events) or Failure (blocking state of the failure mode). Adding

simulation semantics to an Event-B machine at this early stage allows us to validate

the model of controller using MultiSim even when the specification is very abstract (of

course that may require adjusting the co-model of the plant accordingly). Refinement

allows us to validate the Event-B model incrementally, so it is useful that co-simulation

works at multiple abstraction levels.

The first level of refinement (in green in Figure 5.18) introduces the notion of the general

electro-valve control order for gear manoeuvring (state generalEV ) and two stable states,

in which the landing equipment is locked, the gears are either retracted (state Retracted)

or extended (state Extended) and the handle is not moving. Transitions can be taken

from a stable state to generalEV if a change in the handle position is detected. When in

the generalEV state, another change of the handle can trigger a cancel action (transitions

cancelExt and cancelRet), modelling the cancellation of initiated extension or retraction

sequence (transitions extend and retract). On successful completion of manoeuvre the

control returns fromgeneralEV to a stable state (transitions setExt and setRet).

In the second refinement we add the first timing constraints – the start and stop de-

lay between the simulation of the general electro-valve and manoeuvring electro-valves,

which is modelled by state PendingStart and PendingStop and the abstract state Ma-

neuvering (in blue in Figure 5.18). Delays are modelled using clock variables tStart and

tStop and associated constants for 200ms start delay and 1s stop delay in the context.

Because the handle can be switched at any time, the stop delay can be intervened to

undo the most recent manoeuvre (transitions undoExt and undoRet).

The third refinement introduces control orders for the door manoeuvring electro-valves

openEV and closeEV, and the PendingContrDoor state to model a contrary order delay

of 100ms between them (in purple in Figure 5.18). No door sensor inputs are added

at this point. Multiple transitions between three new states are the result of possible

interrupt by the opposing order from the pilot.
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Figure 5.18: Event-B state machine of the landing controller
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The fourth refinement adds inputs from the door sensors: doorsOpen and doorsClosed,

which also amends the abstract read event. New states DoorsOpening and GearsMa-

neuvering (in yellow in Figure 5.18) model the door opening manoeuvre and abstract

gear manoeuvre, respectively. Substates , PendingClose and PendingOpen elaborate

the contrary door order delay defending on the current system state and position of the

handle. The door closure manoeuvre is modelled by the closeEV control state from the

previous refinement. Finally, health monitoring of the door sensors is modelled by a set

of failure detection events:

• fDoorsUnlockedRet, if doors are not locked closed (doorsClosed = false) in re-

tracted stable state

• fDoorsUnlockedExt, if doors are not locked closed in extended stable state

• fDoorsUnlockedStart, if doors are not locked closed before the start of the door

opening stimulation

• fDoorsUnlockedStop, if doors are not locked closed after the end of the door closure

stimulation

• fDoorsNotOpen, if doors are not sustained fully open (doorsOpen = false) while

the gears are manoeuvring

The next refinement level introduces the missing control orders to gear manoeuvring

electro-valves: extendEV and retractEV (in brown in Figure 5.18), and associated gear

sensors gearsExtended and gearsRetracted. A contrary order delay between the gear

extension and retraction orders is modelled by a new state PendingContrGear. Health

monitoring is extended by additional events: fGearsUnlocked, if gears are not locked up

or down while the doors are closing (gearsRetracted = false ∧ gearsExtended = false),

and fDoorsNotOpenGearsUnlocked, if gears are not locked up or down while the doors

are opening (doorsOpen = false ∧ gearsRetracted = false ∧ gearsExtended = false). At

this point all functional requirements should be fulfilled.

In the last refinement we do not add any new behaviour or states, but introduce the safety

invariants to be proved. Although this task could have been started (and ideally should

be) at the earlier stages, as soon as necessary information for invariants is available,

shifting it to a separate refinement was done intentionally to reduce the number of

generated proof obligations in earlier refinements (withal most of the safety properties

require gear sensors that were defined last). The first safety property we add states that

in the normal operation mode (no detected failures) if the landing gear command handle

remains in the DOWN position, then retraction sequence is not observed. This property

can be specified as the following invariant, where Read is an auxiliary simulation state

that is active after each control cycle is completed:

Read = TRUE ∧ handle = TRUE ⇒ retractEV = FALSE (5.6)
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A similar property states that in the normal mode if the command handle remains in

the UP position, extension sequence is not observed:

Read = TRUE ∧ handle = FALSE ⇒ extendEV = FALSE (5.7)

Another property states that in the normal mode the stimulation of the gears extension

or retraction electro-valves can only happen when three doors are locked open. Con-

versely, the stimulation of the doors opening or closing electro-valves can only happen

when three gears are locked down or up. These properties can be split into four separate

invariants for each stimulated equipment:

Read = TRUE ∧ extendEV = TRUE ⇒ doorsOpen = TRUE (5.8a)

Read = TRUE ∧ retractEV = TRUE ⇒ doorsOpen = TRUE (5.8b)

Read = TRUE ∧ closeEV = TRUE ⇒

gearsRetracted = TRUE ∨ gearsExtended = TRUE
(5.8c)

Read = TRUE ∧ openEV = TRUE ∧ doorsOpen 6= TRUE ⇒

gearsRetracted = TRUE ∨ gearsExtended = TRUE
(5.8d)

The next property is about with contrary orders. It states that in the normal mode door

opening and door closure electro-valves are not stimulated simultaneously. Conversely,

gear extension and gear retraction electro-valves are not stimulated simultaneously:

¬(openEV = TRUE ∧ closeEV = TRUE) (5.9a)

¬(retractEV = TRUE ∧ extendEV = TRUE) (5.9b)

The final property we add relates manoeuvring electro-valves to the general electro-

valve. It states that in the normal mode it is not possible to stimulate the manoeuvring

electro-valves (opening, closure, extension or retraction) without stimulating the general

electro-valve:

openEV = TRUE ⇒ generalEV = TRUE (5.10a)

closeEV = TRUE ⇒ generalEV = TRUE (5.10b)

extendEV = TRUE ⇒ generalEV = TRUE (5.10c)

retractEV = TRUE ⇒ generalEV = TRUE (5.10d)

All the specified invariants were successfully proven by the Rodin automatic provers,

in part thanks to the properly selected model design. For instance, modelling the con-

trary manoeuvring orders as orthogonal states ensured that they can never be active

at the same time (invariant 5.9). Our modelling process, however, was not completely

top-down, and the final design was the result of rethinking a few unsuccessful designs
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that made the invariants hard to prove. This shows how important it is to make the

right design decisions early when modelling a system in Event-B. From this experience

our recommendation for developers would be to think ahead about the modelled system

from the requirements point of view. A good approach is to start by formulating the re-

quirements and constraints as abstract invariants, e.g. handle = TRUE ⇒ retractEV =

FALSE for no observed retraction in the handle down position, and then to incorporate

those invariants into the model design. The design decisions should take into account

how a corresponding invariant would be proven. The closer the design reflects the invari-

ants, the easier the latter are to prove, as in the case of the invariants in Equation 5.9

on contrary control orders that are trivial to prove when the orders are modelled by

orthogonal states.

The final safety property of the normal mode, given in the original specification, is a

timing constraint: if the landing gear command handle has been pushed DOWN (UP)

and stays DOWN (UP), then the gears will be locked down (up) and the doors will

be seen closed less than 15 seconds after the handle has been pushed. We did not add

this invariant since it required a change in the abstract model – another proof of the

importance of thinking ahead about the design derived from requirements. The invariant

could be incorporated into the model using a clock counter variable on the handle state.

Specifically, in the abstract model a dedicated clock variable tHandle could be reset on

the handle position change events and incremented by position sustaining events. As

those events are refined by all subsequent events in all refinements it would be sufficient

to add a guard on the handle clock to events that establish the postcondition of the

safety property. The corresponding safety invariant would look as follows:

Read = TRUE ∧ handle = TRUE ∧ tHandle ≥ 150⇒

gearsExtended = TRUE ∧ doorsClosed = TRUE
(5.11)

The remaining safety properties are concerned with the failure mode, which we have

omitted in our model. These properties are derived directly from the health monitoring

requirements, like the 7-second deadline for receiving sensor value doorsClosed = false

after stimulation of the opening electro-valve. Such a property is similar to the timing

constraint above, with the only difference being that a failure should be issued and the

operation switched to failure mode, hence it can be modelled akin to invariant 5.11 by

adding a corresponding time counter (here tOpenEV ) to the control order:

openEV = TRUE ∧ tOpenEV > 70 ∧ doorsClosed = TRUE ⇒

FailureMode = TRUE
(5.12)

For the validation of composed plant and controller models in MultiSim we have syn-

thesised a flight scenario that contains an interrupt in multiple manoeuvring phases.

That way we could validate correct handling of interrupting orders from the pilot. The
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minimal defined time delay of 100ms for the contrary control orders was chosen to be

the step period of the controller and the simulation step size. The simulated scenario

has the following parameters:

1. At start time = 0s all gears are retracted and doors are closed; the handle is in

the UP position (handle = false).

2. At time = 1s the handle is pushed DOWN to extend the gears.

3. At time = 11s the handle is pushed UP while the doors are open.

4. At time = 15s the handle is pushed DOWN while the gears are retracting.

5. At time = 24s the handle is pushed UP again while the doors are closing.

The obtained simulation results in terms of the controlled and monitored signal values

are plotted in Figure 5.19, showing the behaviour and state of physical components:

handle state changes, door and gear cylinder position, and sensor values, – as well as the

issued control orders. From the plots we can observe a number of the modelled system

properties, for example, a delay of 1 second between the end of stimulation of the door

closure electro-valve and the general electro-valve. Other properties, such as the varying

lock/unlock duration of hydraulic cylinders, are less apparent, and are shown as a delay

between a control order and a state change of the controlled equipment. An interesting

dynamics can be seen in the gear position plot at t = 15s, when a handle switch to

DOWN position interrupts a gear retraction movement – gears stop in an intermediate

position due to pressure loss in the retraction circuit and subsequently resume extension

when an opposing pressure is restored to a sufficient level.

The landing system is a good example of the advantages of decomposed development

and the use of Rodin for system analysis. Splitting the development into physical and

digital components has facilitated the verification process, as the software part could be

developed formally in Event-B. Furthermore, the abstraction and refinement capabilities

of Rodin have substantially reduced the complexity of the model and allowed us to design

it gradually, starting from a very abstract form. For comparison we have developed a

model of controller in Modelica using the StateGraph2 library. The result however

was complex and difficult to understand due to numerous interleavings between the

states that handled possible interrupts. For example, the time delay of 0.1s between two

contrary orders results in multiple additional transitions to cope with the delay itself and

cancellation/re-activation of the contrary order. Event-B allowed us to introduce such

details in small increments, i.e. in separate refinements, and to make sure that the overall

invariants of the system hold at every step. In Modelica we would just make the same

model more complex and re-run the simulation. There is no clear separation between

the complex and the abstract Modelica model (there is no concept of refinement), hence

it is more difficult to verify the consistency of the concrete model with its abstraction,
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Figure 5.19: Landing system simulation results (simulation time = 40s, step =
0.1s)

as opposed to Event-B, where it is ensured by the gluing invariants. While the problem

of complexity can be alleviated in Modelica by splitting the flat structure of the state

graph into submodels, the refinement in Rodin is a more elegant approach, which enables

not only superposition (horizontal) refinement, but also data (vertical) refinement, in

addition to the automated formal proof of system properties. This highlights the role of

Event-B as an efficient tool not only for the formal verification, but also for the layered

modelling through refinement, which helps to manage the complexity in control system

states.

At the same time, the simplicity of assigning simulation semantics to a developed Event-

B model of controller enables iterative co-simulation and validation of the formal model

and a physical model of the plant. In this respect, the expressiveness of the Modelica

language for describing physical dynamics in a natural way and a host of available
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libraries for multiple domains makes it a compelling technology for modelling the physical

aspect of hybrid systems, which cannot be modelled without abstraction on Event-B

level. Co-simulation in Rodin coupled with Modelica technology supports validation of

formal models against behaviour of the physical components.

5.5 Summary

This chapter illustrated four case studies that we have used to evaluate our approach

to hybrid system development. The approach is based on the co-modelling and co-

simulation between a formal method (Event-B) and a physical modelling technology

(Modelica) that are integrated via the developed MultiSim tool. Our evaluation fo-

cused on the following criteria: tool performance, addressed limitations and provided

advantages over existing technologies, feasibility and economical value. In all four case

studies, as well as in a larger case study on a smart grid system that was implemented for

the ADVANCE project (see Section 5.2), the tool has demonstrated good performance.

During the evaluation process some memory and performance issues were discovered in

the original design of MultiSim that have been successfully resolved by optimising the

co-simulation interface and Event-B execution kernel (see Section 4.3.3 for more details).

When compared to the traditional simulation our approach has shown that a combina-

tion of the formal analysis and simulation facilitates discovery and understanding of the

errors in requirements – according to our workflow the first step of the development is

the formal specification of system requirements and constraints in Event-B. For exam-

ple, formal verification via model-checking and proof allowed us to quickly discover a

design flaw in the angle of attack processing logic model before it was simulated (see

Section 5.3). An additional benefit of applying the formal method prior to simulation

is that formally discovered counterexamples, i.e. invariant violations and system dead-

locks, may be used for generating test scenarios that can be subsequently co-simulated in

MultiSim against the model of environment. A comparable analysis using the simulation

alone may require multiple random sampling executions to detect a failure scenario.

Another advantage of Event-B/Rodin and MultiSim is the step-wise approach to mod-

elling that has shown to be effective when developing a complex system with multiple

interrupts between control signals (landing gear case study in Section 5.4). As opposed

to a simulation model in Modelica, in which the complexity can be broken down via

hierarchy, i.e. by partitioning the model into sub-models, Rodin and MultiSim provide

an iterative development approach that relies on the abstraction and systematic refine-

ment of the model in order to gradually increase its complexity. The refinement process

in Event-B is verified – each refined model is formally proven to be valid against the

requirements and consistent with the abstract model, thus providing a clear link between

the abstract model and its refinement. In the landing gear case study the refinement
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allowed us to model the control system in small steps: each control order was introduced

as a new refinement, which substantially reduced complexity of the validated model and

simplified the proof, allowing Rodin to discharge all proof obligations automatically.

Based on the experience obtained from the described case studies we think that a com-

bined development using Event-B and physical simulation is a feasible technique that can

be adopted in a typical development. Application of the physical simulation is a com-

mon practice in system engineering, hence an existing physical model can be imported

into Rodin via MultiSim and co-simulated with a formal model. The development of

the formal model certainly requires some familiarity with the method and the language.

The advantage of Event-B and similar formalisms is a relatively simple logic, supported

by a powerful toolset. Furthermore, the key notions of abstraction and refinement make

it easier for an engineer to gradually move from the abstract requirements to their for-

mal specification. MultiSim supports this process and enables validation of the formal

development against the existing simulation model.

On the other hand, for a formal method user our approach requires a level of experience

with the physical modelling and simulation. We alleviate this limitation by adopting a

well-established co-simulation standard (FMI), which does not restrict the modeller to a

specific simulation technology. All the described case studies have used Modelica, since

it is supported by many simulation tools and provides a rich library of modelled physical

components. The evaluation showed that the technologies such as Modelica and FMI

minimise the level of required expertise to develop a physical simulation model. This

allows a formal method user to experiment with simulation and, akin to refinement,

iteratively improve the model. Naturally, a domain expert is still required to develop a

precise physical model that the concrete formal model must be validated upon.

With respect to the economical sense of applying a formal method and co-simulation

instead of relying on a single technology we observed that even for the smallest models

a formal specification helps to better understand the requirements, and co-simulation

helps to validate those requirements against the model of environment as well as to

understand the intricate interactions between components of a hybrid system. With the

increased complexity of the system understanding its requirements becomes a challenge.

The initial investment that is required for adopting a formal method typically pays off

at later stages, when the cost of the design error is significantly higher [66].





Chapter 6

Conclusions

6.1 Goals

Given the increasing engineering focus on the CPS and hybrid systems, and a growing

interest in the adoption of formal verification techniques, we believe that a combination

of formal methods with the latest simulation technologies is the right step in technology

evolution. The existing formal modelling technologies, and Event-B/Rodin in particular,

are not fully integrated with the state of the art physical simulation tools. In the context

of cyber-physical systems, where both computational and physical aspects of the system

are closely coupled, studying them in separation does not provide high assurance, or in

some cases gives even false assurance in system correctness, safety and reliability. While

the rigorous analysis techniques such as Event-B method are very effective at under-

standing system requirements and mathematically proving properties of specifications,

they are limited in expressiveness to describe complex physical dynamics, so essential

for CPS. At the same time, high-end physical modelling and simulation environments

do not have formal reasoning, abstraction and refinement capabilities characteristic to

formal methods. Both technologies can benefit from each other.

The goal of this work is to provide a development solution targeted at hybrid systems

that incorporates formal modelling, verification and physical simulation, in order to

ensure safety and reliability of constructed systems. One way to achieve this goal is

to implement and offer modellers a single tool that enables both the rigorous, possibly

automated analysis of hybrid systems and the simulation-based analysis of interaction

with the physical environment. We hope that by integrating these technologies system

engineers will benefit in terms of clearer understanding of the intricate interactions

between discrete and continuous aspects of a hybrid system, be able to formally verify

safety and reliability properties and to analyse system behaviour in a realistic model of

environment. Ultimately it should reduce cost and time of the development and improve

the quality of implemented software.
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The initial idea of an integrated framework was envisaged in two different implementa-

tion approaches, both of which have their advantages and application scenarios:

• The first approach is based on the extension of the current Event-B language

with continuous-time constructs and meta-data to facilitate the modelling and

verification of dynamic systems. Some initial work develops this idea [6, 15]. New

constructs can be translated to a simulation language of choice, such as Simulink

or Modelica. Additionally, a common abstraction layer, based, for instance, on the

hybrid state machines, can be developed on top of both discrete and continuous

domains and subsequently mapped to concrete languages via transformation rules.

The extensibility of the Rodin platform allows such layers to be implemented on

top of the Event-B language, as for instance in a graphical notation of UML-B [137]

and Event-B State-machines [131]. Extension of the language is currently possible

via the Theory plug-in [44], which is demonstrated on a water tank case study in

[43].

• The second approach is based on the co-modelling and co-simulation of discrete and

continuous system aspects via integrated tools. The discrete part may be formally

specified in Event-B, whereas the continuous part can be either independently de-

veloped in a physical modelling environment or generated from augmented Event-

B code. The contract on how two models should communicate during simulation

process has to be established beforehand. Generally, both solutions can be used

in a single process, where the whole system is modelled as discrete in Event-B,

augmented and translated to a physical model, with subsequent co-simulation.

This work puts the emphasis on the co-simulation approach as the most feasible in-

tegration solution at the moment. Our approach is implemented around a workflow

that begins with the requirements specification of a discrete control system using Event-

B and proceeds with the step-wise refinement of that specification from the abstract

model towards its concrete counterpart. This process is verified by the modeller using

the Rodin toolset, which supports formal proof and model-checking. At the same time

the continuous environment of the system is modelled using a physical modelling tech-

nology, such as Modelica. Our designed co-simulation tool MultiSim couples the formal

model of controller with the physical model of environment via the FMI interface for

co-simulation. Two models are combined and validated in MultiSim as a single system.

This capability enables simulation-based validation of the formal development in Event-

B against the wide range of physical models of environment, which was previously not

supported by the Rodin toolset. In the same way, it provides the rigorous verification

aspect of Event-B to the physical modelling technologies.
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6.2 Progress Summary

To accomplish the formulated goal we have completed the following objectives:

• We conducted the analysis of specific features characteristic to CPS and identified

key areas for improvement of the current engineering practices and tools. These

include the limitations of existing development methods at capturing temporal

semantics, high level of design complexity, inadequate models of concurrency and

inability to validate entangled interactions between discrete and continuous system

aspects. From the current research work in this domain we have distinguished for-

mal methods and simulation technologies as a necessary set of tools for attempting

to address some of the stated limitations.

• We reviewed and compared state of the art formal verification methods, simulation

technologies and co-simulation frameworks that can be exploited in an integrated

development approach. In this work we utilise the Event-B formal language and

supporting Rodin platform for their extensibility and step-wise rigorous approach

to complex system modelling, and the Functional Mock-Up Interface for its open-

ness and integration with the state of the art physical modelling languages, such

as Modelica.

• We defined formal semantics of the discrete-continuous co-simulation step in terms

of data exchange and execution progress. The introduced notion of StartStep and

EndStep events for Event-B machines allowed us to define this semantics in the

context of the FMI co-simulation and adapt it to a flexible model of Event-B

refinement. The latter makes it possible to exercise co-simulation starting from

a very abstract model down the refinement chain, thus enabling validation of the

formal model along with its construction.

• We specified a composition language of co-simulated models and a simulation

data structure using the EMF (Eclipse Modelling Framework) technology. This

data structure is implemented as a meta-model that utilises the Event-B EMF

framework for Rodin, which enables seamless integration into Rodin infrastructure

and easier development of integrated tools and future extensions.

• We specified and implemented a generic simulation orchestration algorithm (mas-

ter) that can simulate deterministically an arbitrary number of interconnected

discrete-event and continuous-time components.

• We implemented an open and extensible MultiSim environment that extends the

Rodin toolset with physical co-simulation capability for the simulation-based vali-

dation. The environment is designed using the GMF (Graphical Modelling Frame-

work) technology as a graphical composition editor, which allows modellers to
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import either discrete (Event-B) or continuous (FMI) models, define their inter-

face in terms of the input/output ports and a simulation step size, and execute

co-simulation of composed models with a real-time signal visualisation and model-

checking via ProB tool [94].

• We validated the developed extension on a number of hybrid system models from

several domains, including fluid flows, aircraft equipment control and electric power

systems. In each of the case studies the environment was modelled in Modelica

language using a commercial simulation tool (Dymola), while the control system

was formally specified and verified in Event-B. The composed system was subse-

quently simulated in MultiSim and compared to the traditional simulation. The

experiments have demonstrated that the refinement-based modelling and verifica-

tion approach supported by the Rodin platform and Event-B works well together

with the simulation-based validation. The former yields better understanding of

the complex system requirements and associated weaknesses/faults, whereas the

latter allows for validation of the formal model on a physical model of environment,

which is difficult to verify formally.

6.3 Future Work

As our future work we would like to tackle the existing limitations of the MultiSim tool,

mentioned in Chapter 3. Specifically, the designed co-simulation algorithm has a number

of limitations due to the complexity of developing a fully-fledged solver for the coupling

of continuous components and the limitations of the FMI for Co-simulation standard

itself. In particular, we would like to lift the constraint of the MultiSim diagrammatic

environment on the direct connectivity between continuous (FMI) components and en-

able event-driven co-simulation approach that is not restricted to fixed communication

points. This would allow for more flexibility when composing a co-simulation model that

consists of multiple discrete and continuous components, possibly of different domains

and developed with different tools. The event-driven approach should also improve the

accuracy of simulation results since it introduces discontinuity into continuous signals

only when it is necessary, i.e. at event instants, as opposed to fixed time points.

In order to realise these improvements we need to implement an adaptive step size

integration algorithm that is capable of deterministically coupling multiple FMUs. As

described in [132, 36] the necessary condition for such an algorithm is to be able to do

the multi-step rollback of simulation steps of the co-simulated slaves. A step may get

rejected if the step size is too large and causes a discrete event within the step. In such

scenarios the master need to roll back the slave’s state and states of connected slaves.

The FMI 2.0 standard introduces optional function prototypes fmi2SetFMUstate and

fmi2GetFMUstate that do exactly that. Hence, to support the FMI 2.0 standard is one of
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the key aspect for improving the MultiSim tool. Since the current Java implementation of

FMI only supports version 1.0, we are planning to investigate the possibility of developing

a Java wrapper library, similar to JFMI [38], on top of the available implementations of

the FMI 2.0 in C.

In addition, the support for rollback (backtracking) is required for discrete (Event-B)

components, since a rejected step of an FMI component would require each connected

and evaluating Event-B component to roll back its state. The backtracking mechanism

for Event-B components could be implemented by introducing an internal time in the

Event-B slave and by modifying the discrete step semantics to allow for multiple internal

steps within a single doStep(...) call of the simulation master. The rejection of

multiple internal steps within the Event-B slave can be implemented by traversing the

event trace of the associated Event-B machine. The trace traversal mechanism is already

supported by the execution engine of ProB.

Finally, a discrete component may require to signal the occurrence of an event to the

coupled continuous components. While the backtracking and variable step size can facil-

itate this by rejecting a step and retrying it with a smaller step size to advance the time

towards the event instant, current mechanisms provided by FMI do not fully support

event handling, as discussed by Broman et al. [37], who outline a set of requirements

for developing a hybrid version of the FMI standard that would enable event-driven

simulation or fully reactive systems.

Among other possible improvements to our integrated development approach and the

MultiSim tool we envision the following ideas:

• A closer integration of continuous and physical modelling with Event-B, under

which we imply the extension of the existing Event-B language with continuous

constructs and capabilities to generate dynamic models, e.g. generating Modelica

models from Event-B specifications. Such a capability would enable formal verifi-

cation of discrete-continuous specifications and a streamlined development process

that could capture both formal and simulation-based verification/validation. This

task requires substantial research and implementation resources, although the ini-

tial proposals are presented in [6], [15] and [43].

• An integration with other hybrid system modelling and simulation environments,

for example the Ptolemy toolset. This could extend capabilities of the Rodin

toolset to heterogeneous simulation of highly concurrent systems. As a possible

means of integration we imagine model exchange and co-simulation via dedicated

interfaces, such as FMI. The initial experiments in this direction were made by

utilising the code generation capability of Ptolemy and a manual translation of

the generated models into FMI for Co-Simulation format [48].
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• Broader support of co-simulation interfaces. Extending supported interfaces with

other tools and standards besides the FMI would allow a wider range of modelling

and simulation environments to be integrated with Rodin. A possible candidate

interface is the HLA architecture, popular in aerospace industry.

We hope that the described ideas will be investigated and potentially developed into

improvements of the MultiSim tool and our integrated development approach. Our

work has demonstrated that combining a formal method and physical simulation in

a single workflow is a practical and useful technique for modelling and validation of

multi-domain hybrid systems. One of the difficulties for system engineers who try to

adopt a technology or a method in their work process is the tool support. For this work

we have used only the open-source community-based technologies, such as Event-B,

Modelica and FMI, that are being actively supported by tools and applied on multi-

domain projects. In addition, the developed tool is extensible and can be adapted with

ease to new requirements. The positive results of the carried out evaluation experiments,

the involvement of collaborative parties in the MultiSim development effort and the

interest in this technique that has been generated afterwards give us hope that our

contribution will be useful for software and system engineers in their challenging work.



Appendix A

Models of the Controlled Water

Tank System

A.1 Modelica Model of the Plant

model ControlledWaterTankPlant

"Physical aspect of the controlled water tank"

inner Modelica.Fluid.System system;

Modelica.Fluid.Vessels.OpenTank tank(

nPorts=2,

height=3,

crossArea=1,

redeclare package Medium =

Modelica.Media.Water.ConstantPropertyLiquidWater,

portsData={Modelica.Fluid.Vessels.BaseClasses.VesselPortsData(

diameter=0.1,

height=3),

Modelica.Fluid.Vessels.BaseClasses.VesselPortsData(

diameter=0.2)},

level_start=0);

Modelica.Fluid.Sources.FixedBoundary source(

redeclare package Medium =

Modelica.Media.Water.ConstantPropertyLiquidWater,

T=system.T_ambient,

nPorts=1,

p=2500000);

Modelica.Fluid.Sources.FixedBoundary sink(

redeclare package Medium =

Modelica.Media.Water.ConstantPropertyLiquidWater,

p=system.p_ambient,

T=system.T_ambient,

nPorts=1);
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Modelica.Fluid.Valves.ValveDiscrete valve(

redeclare package Medium =

Modelica.Media.Water.ConstantPropertyLiquidWater,

dp_nominal=100000,

m_flow_nominal=10);

Modelica.Blocks.Interfaces.BooleanInput valveInput

"Control signal of valve state (on/off)";

Modelica.Blocks.Interfaces.RealOutput levelOutput "Water level";

Modelica.Blocks.Sources.RealExpression tankLevel(y=tank.level);

equation

connect(source.ports[1],valve. port_a);

connect(valve.port_b,tank. ports[1]);

connect(sink.ports[1],tank. ports[2]);

connect(valveInput, valve.open);

connect(tankLevel.y, levelOutput);

end ControlledWaterTankPlant;

A.2 Event-B Specification of the Controller

A.2.1 Context ctx

CONTEXT ctx

CONSTANTS

L

H

LT

HT
AXIOMS

axm3 : L > 0

axm4 : H > L

axm5 : LT > L

axm6 : HT < H

axm7 : HT > LT

axm1 : LT = 10

axm2 : HT = 20
END

A.2.2 Abstract Machine wtCtr0

MACHINE wtCtr0

SEES ctx

VARIABLES

valve
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INVARIANTS

inv1 : valve ∈ BOOL
EVENTS

Initialisation

begin

act1 : valve := TRUE
end

Event openValve =̂

any

l
where

grd1 : l < LT
then

act1 : valve := TRUE
end

Event keepValve =̂

any

l
where

grd1 : l ≥ LT ∧ l ≤ HT
then

skip
end

Event closeValve =̂

any

l
where

grd1 : l > HT
then

act1 : valve := FALSE
end

END

A.2.3 Concrete Machine wtCtr1

MACHINE wtCtr1

REFINES wtCtr0

SEES ctx

VARIABLES

Read

Control

DecideClose

DecideKeep
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DecideOpen

valve

level
INVARIANTS

typeof Read : Read ∈ BOOL

typeof Control : Control ∈ BOOL

typeof DecideClose : DecideClose ∈ BOOL

typeof DecideKeep : DecideKeep ∈ BOOL

typeof DecideOpen : DecideOpen ∈ BOOL

distinct states in sm : partition({TRUE}, {Read} ∩ {TRUE}, {Control} ∩ {TRUE},
{DecideClose} ∩ {TRUE}, {DecideKeep} ∩ {TRUE}, {DecideOpen} ∩ {TRUE})
inv1 : level ∈ L . .H

system goal invariant

EVENTS

Initialisation

extended

begin

act1 : valve := TRUE

init Control : Control := TRUE

init Read : Read := FALSE

init DecideClose : DecideClose := FALSE

init DecideKeep : DecideKeep := FALSE

init DecideOpen : DecideOpen := FALSE

act2 : level := 0
end

Event openValve =̂

refines openValve

when

isin DecideOpen : DecideOpen = TRUE
with

l : l = level
then

leave DecideOpen : DecideOpen := FALSE

enter Control : Control := TRUE

act1 : valve := TRUE
end

Event keepValve =̂

refines keepValve

when

isin DecideKeep : DecideKeep = TRUE
with

l : l = level
then

leave DecideKeep : DecideKeep := FALSE
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enter Control : Control := TRUE
end

Event closeValve =̂

refines closeValve

when

isin DecideClose : DecideClose = TRUE
with

l : l = level
then

leave DecideClose : DecideClose := FALSE

enter Control : Control := TRUE

act1 : valve := FALSE
end

Event readLevel =̂

any

l
where

grd1 : l ≥ 0
then

act1 : level := l
end

Event decideOpen =̂

when

isin Read : Read = TRUE

grd1 : level < LT
then

leave Read : Read := FALSE

enter DecideOpen : DecideOpen := TRUE
end

Event decideKeep =̂

when

isin Read : Read = TRUE

grd1 : level ≥ LT ∧ level ≤ HT
then

leave Read : Read := FALSE

enter DecideKeep : DecideKeep := TRUE
end

Event decideClose =̂

when

isin Read : Read = TRUE

grd1 : level > HT
then

leave Read : Read := FALSE

enter DecideClose : DecideClose := TRUE
end

END





Appendix B

Models of the Voltage Control

System

B.1 Modelica Model of the Voltage Distribution Network

model OLTCDistrPlant

inner ElectricPower.System system(ref="inert");

ElectricPower.AC3ph_abc.Sources.Voltage Vgen1(V_nom=11e3, v0=1.006);

ElectricPower.AC3ph_abc.Lines.RXline line1(

steadyIni_en=false,

par(

V_nom=11e3,

r=0.02e-3,

x=0.2e-3),

len=10000);

ElectricPower.AC3ph_abc.Loads.Zload zLoad(

pType=2,

V_nom=230,

S_nom=500e6);

ElectricPower.Blocks.Signals.Transient[2] pq_change(

s_ini={1,0.1},

s_fin={10,0.1},

t_change=25,

each t_duration=50);

ElectricPower.AC3ph_abc.Transformers.TrafoIdeal trafo(

dynTC_2=true, par(V_nom={48,1},

v_tc2={0.8,0.82,0.84,0.86,0.88,0.9,0.92,0.94,0.96,0.98,1.0,

1.02,1.04,1.06,1.08,1.1,1.12,1.14,1.16,1.18,1.2}));

ElectricPower.AC3ph_abc.Lines.RXline line2(

steadyIni_en=false,

len=1000,

par(
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V_nom=230,

r=0.02e-3,

x=0.2e-3));

ElectricPower.AC3ph_abc.Sensors.Psensor Psensor1;

ElectricPower.AC3ph_abc.Sensors.VnormSensor Vsensor1;

ElectricPower.AC3ph_abc.Nodes.BusBar bus1;

Modelica.Blocks.Interfaces.RealOutput vNorm;

Modelica.Blocks.Interfaces.IntegerInput tapIndex;

Modelica.Blocks.Interfaces.RealOutput pActive;

equation

connect(zLoad.p, pq_change.y);

connect(trafo.term_2, line2.term_p);

connect(Vgen1.ACterm, line1.term_p);

connect(line2.term_n, Psensor1.term_p);

connect(zLoad.term, Psensor1.term_n);

connect(line1.term_n, bus1.term);

connect(trafo.term_1, bus1.term);

connect(line2.term_n, Vsensor1.term);

connect(Vsensor1.v_norm,vNorm);

connect(tapIndex, trafo.tap_2);

connect(Psensor1.p[1],pActive);

end OLTCDistrPlant;

B.2 Event-B Specification of the Tap Controller

B.2.1 Context controlCtx

CONTEXT controlCtx

CONSTANTS

DB2 voltage deadband / 2

VREF reference voltage

TAPN total number of taps

TD detection delay

TM mechanical delay

VINIT initialisation value of the voltage

TAPINIT initialisation value of the tap position
AXIOMS

axm1 : DB2 > 0

axm2 : VREF > 0

axm3 : TAPN > 0

axm4 : TD ∈ N
axm5 : TM ∈ N
axm6 : VINIT = VREF
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axm7 : TAPINIT > 0

axm8 : DB2 = 10

axm9 : VREF = 2300

axm10 : TAPN = 21

axm11 : TD = 10

axm12 : TM = 1

axm13 : TAPINIT = 11
END

B.2.2 Machine tapController

MACHINE tapController

SEES controlCtx

VARIABLES

sIdle

sCount

sAction

sRead

sDecide

voltage

tap

dTimer

mTimer

changeDirection
INVARIANTS

typeof sIdle : sIdle ∈ BOOL

typeof sCount : sCount ∈ BOOL

typeof sAction : sAction ∈ BOOL

distinct states in smControl 1 : partition({TRUE}, {sIdle} ∩ {TRUE},
{sCount} ∩ {TRUE}, {sAction} ∩ {TRUE})

txLQwXxIEeOmNfMgYpZZsw : (sCount = TRUE )⇒ (dTimer ≥ 0)

txLQwnxIEeOmNfMgYpZZsw : (sCount = TRUE )⇒ (dTimer ≤ 10)

typeof sRead : sRead ∈ BOOL

typeof sDecide : sDecide ∈ BOOL

distinct states in smFMU 1 : partition({TRUE}, {sRead} ∩ {TRUE},
{sDecide} ∩ {TRUE})
inv1 : voltage ∈ N
inv2 : tap > 0

inv3 : tap ≤ TAPN

inv4 : dTimer ∈ N
inv5 : mTimer ∈ N
inv6 : changeDirection ∈ BOOL
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EVENTS

Initialisation

begin

act1 : voltage := VINIT

act2 : tap := TAPINIT

init sRead : sRead := TRUE

init sDecide : sDecide := FALSE

act4 : mTimer := 0

init sIdle : sIdle := TRUE

act3 : dTimer := 0

init sAction : sAction := FALSE

init sCount : sCount := FALSE

act5 : changeDirection := FALSE
end

Event readInputs =̂

any

v
where

isin sRead : sRead = TRUE

grd1 : v ∈ N
then

leave sRead : sRead := FALSE

enter sDecide : sDecide := TRUE

act1 : voltage := v
end

Event noChange =̂

when

grd1 : VREF − voltage ≤ DB2

isin sDecide : sDecide = TRUE

grd2 : voltage −VREF ≤ DB2

isin sIdle : sIdle = TRUE
then

enter sRead : sRead := TRUE

leave sDecide : sDecide := FALSE
end

Event delayAction =̂

when

grd2 : dTimer > 0

isin sDecide : sDecide = TRUE

isin sCount : sCount = TRUE

grd1 : VREF − voltage > DB2 ∨ voltage −VREF > DB2
then

enter sRead : sRead := TRUE

leave sDecide : sDecide := FALSE

act1 : dTimer := dTimer − 1
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end

Event delayChange =̂

when

isin sDecide : sDecide = TRUE

grd1 : mTimer > 0

isin sAction : sAction = TRUE
then

leave sDecide : sDecide := FALSE

act1 : mTimer := mTimer − 1

enter sRead : sRead := TRUE
end

Event startCount =̂

when

grd2 : VREF − voltage > DB2⇒ tap < TAPN

grd3 : voltage −VREF > DB2⇒ tap > 1

grd1 : VREF − voltage > DB2 ∨ voltage −VREF > DB2

isin sIdle : sIdle = TRUE
then

act1 : dTimer := TD

leave sIdle : sIdle := FALSE

enter sCount : sCount := TRUE
end

Event cancelCount =̂

when

grd2 : voltage −VREF ≤ DB2

grd1 : VREF − voltage ≤ DB2

isin sCount : sCount = TRUE
then

leave sCount : sCount := FALSE

enter sIdle : sIdle := TRUE
end

Event startAction =̂

when

grd1 : dTimer = 0

isin sCount : sCount = TRUE
then

enter sAction : sAction := TRUE

act1 : mTimer := TM

act2 : changeDirection := bool(VREF − voltage > DB2)

leave sCount : sCount := FALSE
end

Event tapUp =̂

when

grd2 : changeDirection = TRUE

isin sAction : sAction = TRUE
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grd1 : mTimer = 0
then

enter sIdle : sIdle := TRUE

act1 : tap := tap + 1

leave sAction : sAction := FALSE
end

Event tapDown =̂

when

isin sAction : sAction = TRUE

grd1 : mTimer = 0

grd2 : changeDirection = FALSE
then

act1 : tap := tap − 1

leave sAction : sAction := FALSE

enter sIdle : sIdle := TRUE
end

END



Appendix C

Models of the Angle of Attack

Processing

C.1 Modelica Models of Test Scenarios and the FCPC En-

vironment

C.1.1 Scenario A

model ScenarioA

FCPC fCPC;

Modelica.Blocks.Sources.Constant aoa2(k=2.3);

Modelica.Blocks.Sources.Constant aoa3(k=2.3);

Modelica.Blocks.Sources.Step aoa1(

startTime=1,

height=50.6,

offset=2.1);

Modelica.Blocks.Interfaces.RealOutput mean23

"Mean value between AOA 2 and AOA 3";

Modelica.Blocks.Interfaces.RealOutput delta1

"Difference between AOA 1 and the median";

Modelica.Blocks.Interfaces.RealOutput mean12

"Mean value between AOA 1 and AOA 2";

equation

connect(aoa1.y, fCPC.aoa1);

connect(aoa2.y, fCPC.aoa2);

connect(aoa3.y, fCPC.aoa3);

connect(fCPC.m23, mean23);

connect(fCPC.d1, delta1);

connect(mean12, fCPC.m12);

end ScenarioA;
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C.1.2 Scenario B

model ScenarioB

FCPC fCPC;

Modelica.Blocks.Sources.Constant aoa2(k=2.3);

Modelica.Blocks.Sources.Constant aoa3(k=2.3);

Modelica.Blocks.Interfaces.RealOutput mean23

"Mean value between AOA 2 and AOA 3";

Modelica.Blocks.Interfaces.RealOutput delta1

"Difference between AOA 1 and the median";

Modelica.Blocks.Interfaces.RealOutput mean12

"Mean value between AOA 1 and AOA 2";

Modelica.Blocks.Sources.Ramp aoa4(

startTime=1,

duration=2,

height=48.5,

offset=2.1);

equation

connect(aoa2.y, fCPC.aoa2);

connect(aoa3.y, fCPC.aoa3);

connect(fCPC.m23, mean23);

connect(fCPC.d1, delta1);

connect(mean12, fCPC.m12);

connect(fCPC.aoa1, aoa4.y);

end ScenarioB;

C.1.3 Scenario C

model ScenarioC

FCPC fCPC;

Modelica.Blocks.Sources.Constant aoa2(k=2.3);

Modelica.Blocks.Sources.Constant aoa3(k=2.3);

Modelica.Blocks.Interfaces.RealOutput mean23

"Mean value between AOA 2 and AOA 3";

Modelica.Blocks.Interfaces.RealOutput delta1

"Difference between AOA 1 and the median";

Modelica.Blocks.Interfaces.RealOutput mean12

"Mean value between AOA 1 and AOA 2";

Modelica.Blocks.Sources.Pulse aoa1(

offset=2.1,

startTime=1,

amplitude=48.5,

width=40,

period=0.5,

nperiod=2);

Modelica.Blocks.Sources.Pulse aoa4(
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amplitude=48.5,

width=40,

period=0.5,

nperiod=1,

startTime=2.5,

offset=0);

Modelica.Blocks.Math.Add add;

equation

connect(aoa2.y, fCPC.aoa2);

connect(aoa3.y, fCPC.aoa3);

connect(fCPC.m23, mean23);

connect(fCPC.d1, delta1);

connect(mean12, fCPC.m12);

connect(aoa4.y, add.u1);

connect(aoa1.y, add.u2);

connect(add.y, fCPC.aoa1);

end ScenarioC;

C.1.4 Scenario D

model ScenarioD

FCPC fCPC;

Modelica.Blocks.Sources.Constant aoa2(k=2.3);

Modelica.Blocks.Sources.Constant aoa3(k=2.3);

Modelica.Blocks.Interfaces.RealOutput mean23

"Mean value between AOA 2 and AOA 3";

Modelica.Blocks.Interfaces.RealOutput delta1

"Difference between AOA 1 and the median";

Modelica.Blocks.Interfaces.RealOutput mean12

"Mean value between AOA 1 and AOA 2";

Modelica.Blocks.Math.Add add;

Modelica.Blocks.Sources.Pulse aoa5(

offset=2.1,

startTime=1,

amplitude=48.5,

width=40,

period=0.5,

nperiod=1);

Modelica.Blocks.Sources.Pulse aoa6(

amplitude=48.5,

nperiod=1,

period=1,

startTime=2);

equation

connect(aoa2.y, fCPC.aoa2);

connect(aoa3.y, fCPC.aoa3);
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connect(fCPC.m23, mean23);

connect(fCPC.d1, delta1);

connect(mean12, fCPC.m12);

connect(add.y, fCPC.aoa1);

connect(add.u1, aoa6.y);

connect(add.u2, aoa5.y);

end ScenarioD;

C.1.5 FCPC

model FCPC

parameter Real threshold=3;

Modelica.Blocks.Interfaces.RealInput aoa1;

Modelica.Blocks.Interfaces.RealInput aoa2;

Modelica.Blocks.Interfaces.RealInput aoa3;

Modelica.Blocks.Discrete.Sampler aoa1_sample

(samplePeriod(displayUnit="s")=0.04);

Modelica.Blocks.Discrete.Sampler aoa3_sample

(samplePeriod(displayUnit="s")=0.04);

Modelica.Blocks.Discrete.Sampler aoa2_sample

(samplePeriod(displayUnit="s")=0.04);

Diff aoa1_diff;

Diff aoa2_diff;

Diff aoa3_diff;

Modelica.Blocks.Interfaces.RealOutput m23;

Modelica.Blocks.Sources.RealExpression mean12

(y=(aoa1_sample.y + aoa2_sample.y)/2);

Modelica.Blocks.Sources.RealExpression median

(y=min({max({aoa1_sample.y,aoa2_sample.y}),

max({aoa2_sample.y,aoa3_sample.y}),

max({aoa1_sample.y,aoa3_sample.y})}));

Modelica.Blocks.Sources.RealExpression mean23

(y=(aoa2_sample.y + aoa3_sample.y)/2);

Modelica.Blocks.Interfaces.RealOutput d1;

Modelica.Blocks.Interfaces.RealOutput m12;

equation

connect(aoa1_sample.u, aoa1);

connect(aoa2, aoa2_sample.u);

connect(aoa3, aoa3_sample.u);

connect(aoa1_sample.y, aoa1_diff.u1);

connect(aoa3_sample.y, aoa3_diff.u1);

connect(aoa2_sample.y, aoa2_diff.u1);

connect(median.y, aoa1_diff.u2);

connect(median.y, aoa2_diff.u2);

connect(median.y, aoa3_diff.u2);

connect(aoa1_diff.y, d1);
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connect(mean23.y, m23);

connect(mean12.y, m12);

end FCPC;

C.1.6 Auxiliary Block Diff

block A330AOA.Diff "Absolute difference between two Real values"

extends Modelica.Blocks.Interfaces.SI2SO;

equation

y = abs(u1 - u2);

end Diff;

C.2 Event-B Specification of the COM/MON Unit

C.2.1 Context ctx

CONTEXT ctx

CONSTANTS

THRESHOLD

MEMPERIOD

VALPERIOD
AXIOMS

axm1 : THRESHOLD ∈ N1

axm2 : MEMPERIOD ∈ N1

axm3 : VALPERIOD ∈ N1

axm4 : MEMPERIOD > VALPERIOD

axm5 : THRESHOLD = 100

axm6 : MEMPERIOD = 30

axm7 : VALPERIOD = 25
END

C.2.2 Machine mch2

MACHINE mch2

SEES ctx

VARIABLES

Control

Input

Rejected

Invalid

Valid
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Memorised

Normal

AOA

mean12

mean23

delta1

aoaFCPC

memClk

memMean

valClk
INVARIANTS

typeof Control : Control ∈ BOOL

typeof Input : Input ∈ BOOL

distinct states in sm2 : partition({TRUE}, {Input} ∩ {TRUE},
{Control} ∩ {TRUE})
typeof Rejected : Rejected ∈ BOOL

typeof Invalid : Invalid ∈ BOOL

typeof Valid : Valid ∈ BOOL

typeof Memorised : Memorised ∈ BOOL

typeof Normal : Normal ∈ BOOL

typeof AOA : AOA ∈ BOOL

distinct states in MON : (AOA = TRUE )⇒ partition({TRUE},
{Valid} ∩ {TRUE}, {Invalid} ∩ {TRUE}, {Rejected} ∩ {TRUE})
distinct states in COM : (AOA = TRUE )⇒ partition({TRUE},
{Normal} ∩ {TRUE}, {Memorised} ∩ {TRUE})
Rejected substateof AOA : (Rejected = TRUE )⇒ (AOA = TRUE )

Invalid substateof AOA : (Invalid = TRUE )⇒ (AOA = TRUE )

Valid substateof AOA : (Valid = TRUE )⇒ (AOA = TRUE )

Memorised substateof AOA : (Memorised = TRUE )⇒ (AOA = TRUE )

Normal substateof AOA : (Normal = TRUE )⇒ (AOA = TRUE )

inv1 : mean12 ∈ Z
inv2 : mean23 ∈ Z
inv3 : delta1 ∈ N
inv5 : aoaFCPC ∈ Z
inv6 : memClk ∈ N
inv7 : memMean ∈ Z
inv8 : valClk ∈ N
inv9 : Rejected = TRUE ∧ Input = TRUE ⇒ aoaFCPC = mean23 ∨

Memorised = TRUE

if AOA is rejected, a fallback mean value shall

be used for output, unless in memorisation mode
inv11 : Memorised = TRUE ⇒ aoaFCPC ≤ THRESHOLD

EVENTS
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Initialisation

begin

init Input : Input := TRUE

init Control : Control := FALSE

init Valid : Valid := TRUE

init AOA : AOA := TRUE

init Normal : Normal := TRUE

init Rejected : Rejected := FALSE

init Invalid : Invalid := FALSE

init Memorised : Memorised := FALSE

act1 : mean12 := 0

act2 : mean23 := 0

act3 : delta1 := 0

act5 : aoaFCPC := 0

act6 : memClk := 0

act7 : memMean := 0

act8 : valClk := 0
end

Event readInputs =̂

any

d1

m12

m23
where

isin Input : Input = TRUE

grd1 : d1 ∈ N
grd3 : m12 ∈ Z
grd4 : m23 ∈ Z

then

leave Input : Input := FALSE

enter Control : Control := TRUE

act1 : delta1 := d1

act3 : mean12 := m12

act4 : mean23 := m23
end

Event outNominal =̂

when

isin Control : Control = TRUE

isin Valid : Valid = TRUE

MON guards1 : delta1 ≤ THRESHOLD

isin Normal : Normal = TRUE
then

leave Control : Control := FALSE

enter Input : Input := TRUE

COM actions2 : aoaFCPC := mean12

COM actions1 : memMean := mean12
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end

Event outNominalValidate =̂

when

isin Control : Control = TRUE

isin Invalid : Invalid = TRUE

MON guards5 : delta1 ≤ THRESHOLD

isin Normal : Normal = TRUE
then

leave Control : Control := FALSE

enter Input : Input := TRUE

leave Invalid : Invalid := FALSE

enter Valid : Valid := TRUE

COM actions2 : aoaFCPC := mean12

COM actions1 : memMean := mean12
end

Event outFallback =̂

when

isin Control : Control = TRUE

isin Rejected : Rejected = TRUE

isin Normal : Normal = TRUE
then

leave Control : Control := FALSE

enter Input : Input := TRUE

COM actions4 : aoaFCPC := mean23

COM actions3 : memMean := mean23
end

Event outFallbackReject =̂

when

isin Control : Control = TRUE

isin Invalid : Invalid = TRUE

MON guards7 : valClk = 0

MON guards6 : delta1 > THRESHOLD

isin Normal : Normal = TRUE
then

leave Control : Control := FALSE

enter Input : Input := TRUE

leave Invalid : Invalid := FALSE

enter Rejected : Rejected := TRUE

COM actions4 : aoaFCPC := mean23

COM actions3 : memMean := mean23
end

Event memoriseInvalidate =̂

when

isin Control : Control = TRUE

isin Valid : Valid = TRUE

isin Normal : Normal = TRUE
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COM guards1 : delta1 > THRESHOLD
then

leave Control : Control := FALSE

enter Input : Input := TRUE

leave Valid : Valid := FALSE

leave Normal : Normal := FALSE

enter Invalid : Invalid := TRUE

MON actions1 : valClk := VALPERIOD − 1

enter Memorised : Memorised := TRUE

COM setOutput : aoaFCPC := memMean

COM setClock : memClk := MEMPERIOD − 1
end

Event memoriseInvalid =̂

when

isin Control : Control = TRUE

isin Invalid : Invalid = TRUE

MON guards3 : valClk > 0

isin Normal : Normal = TRUE

COM guards1 : delta1 > THRESHOLD
then

leave Control : Control := FALSE

enter Input : Input := TRUE

leave Normal : Normal := FALSE

MON tick : valClk := valClk − 1

enter Memorised : Memorised := TRUE

COM setOutput : aoaFCPC := memMean

COM setClock : memClk := MEMPERIOD − 1
end

Event tickMemValidate =̂

when

isin Control : Control = TRUE

isin Invalid : Invalid = TRUE

MON guards5 : delta1 ≤ THRESHOLD

isin Memorised : Memorised = TRUE

COM guards2 : memClk > 0
then

leave Control : Control := FALSE

enter Input : Input := TRUE

leave Invalid : Invalid := FALSE

enter Valid : Valid := TRUE

COM tick : memClk := memClk − 1
end

Event tickMemValid =̂

when

isin Control : Control = TRUE
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isin Valid : Valid = TRUE

MON guards1 : delta1 ≤ THRESHOLD

isin Memorised : Memorised = TRUE

COM guards2 : memClk > 0
then

leave Control : Control := FALSE

enter Input : Input := TRUE

COM tick : memClk := memClk − 1
end

Event tickMemInvalidate =̂

when

isin Control : Control = TRUE

isin Valid : Valid = TRUE

MON guards4 : delta1 > THRESHOLD

isin Memorised : Memorised = TRUE

COM guards2 : memClk > 0
then

leave Control : Control := FALSE

enter Input : Input := TRUE

leave Valid : Valid := FALSE

enter Invalid : Invalid := TRUE

MON actions1 : valClk := VALPERIOD − 1

COM tick : memClk := memClk − 1
end

Event tickMemInvalid =̂

when

isin Control : Control = TRUE

isin Invalid : Invalid = TRUE

MON guards3 : valClk > 0

MON guards2 : delta1 > THRESHOLD

isin Memorised : Memorised = TRUE

COM guards2 : memClk > 0
then

leave Control : Control := FALSE

enter Input : Input := TRUE

MON tick : valClk := valClk − 1

COM tick : memClk := memClk − 1
end

Event tickMemReject =̂

when

isin Control : Control = TRUE

isin Invalid : Invalid = TRUE

MON guards7 : valClk = 0

MON guards6 : delta1 > THRESHOLD

isin Memorised : Memorised = TRUE
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COM guards2 : memClk > 0
then

leave Control : Control := FALSE

enter Input : Input := TRUE

leave Invalid : Invalid := FALSE

enter Rejected : Rejected := TRUE

COM tick : memClk := memClk − 1
end

Event tickMemRejected =̂

when

isin Control : Control = TRUE

isin Rejected : Rejected = TRUE

isin Memorised : Memorised = TRUE

COM guards2 : memClk > 0
then

leave Control : Control := FALSE

enter Input : Input := TRUE

MON actions3 : aoaFCPC := mean23

MON actions2 : memMean := mean23

COM tick : memClk := memClk − 1
end

Event endMemValidate =̂

when

isin Control : Control = TRUE

isin Invalid : Invalid = TRUE

MON guards5 : delta1 ≤ THRESHOLD

isin Memorised : Memorised = TRUE

COM guards3 : memClk = 0
then

leave Control : Control := FALSE

enter Input : Input := TRUE

leave Memorised : Memorised := FALSE

leave Invalid : Invalid := FALSE

enter Valid : Valid := TRUE

enter Normal : Normal := TRUE

COM actions8 : aoaFCPC := mean12

COM actions7 : memMean := mean12
end

Event endMemValid =̂

when

isin Control : Control = TRUE

isin Valid : Valid = TRUE

MON guards1 : delta1 ≤ THRESHOLD

isin Memorised : Memorised = TRUE

COM guards3 : memClk = 0
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then

leave Control : Control := FALSE

enter Input : Input := TRUE

leave Memorised : Memorised := FALSE

enter Normal : Normal := TRUE

COM actions8 : aoaFCPC := mean12

COM actions7 : memMean := mean12
end

Event endMemInvalidate =̂

when

isin Control : Control = TRUE

isin Valid : Valid = TRUE

MON guards4 : delta1 > THRESHOLD

isin Memorised : Memorised = TRUE

COM guards3 : memClk = 0
then

leave Control : Control := FALSE

enter Input : Input := TRUE

leave Memorised : Memorised := FALSE

leave Valid : Valid := FALSE

enter Invalid : Invalid := TRUE

MON actions1 : valClk := VALPERIOD − 1

enter Normal : Normal := TRUE

COM actions8 : aoaFCPC := mean12

COM actions7 : memMean := mean12
end

Event endMemInvalid =̂

when

isin Control : Control = TRUE

isin Invalid : Invalid = TRUE

MON guards3 : valClk > 0

MON guards2 : delta1 > THRESHOLD

isin Memorised : Memorised = TRUE

COM guards3 : memClk = 0
then

leave Control : Control := FALSE

enter Input : Input := TRUE

leave Memorised : Memorised := FALSE

MON tick : valClk := valClk − 1

enter Normal : Normal := TRUE

COM actions8 : aoaFCPC := mean12

COM actions7 : memMean := mean12
end

Event endMemReject =̂

when

isin Control : Control = TRUE
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isin Invalid : Invalid = TRUE

MON guards7 : valClk = 0

MON guards6 : delta1 > THRESHOLD

isin Memorised : Memorised = TRUE
then

leave Control : Control := FALSE

enter Input : Input := TRUE

leave Memorised : Memorised := FALSE

leave Invalid : Invalid := FALSE

enter Rejected : Rejected := TRUE

enter Normal : Normal := TRUE

act1 : memMean := mean23

act2 : aoaFCPC := mean23
end

Event endMemRejected =̂

when

isin Control : Control = TRUE

isin Rejected : Rejected = TRUE

isin Memorised : Memorised = TRUE
then

leave Control : Control := FALSE

enter Input : Input := TRUE

leave Memorised : Memorised := FALSE

enter Normal : Normal := TRUE

COM actions6 : aoaFCPC := mean23

COM actions5 : memMean := mean23
end

END





Appendix D

Models of the Landing Gear

System

D.1 Modelica Models of the Plant, Cockpit and Landing

Equipment

D.1.1 Plant

model Plant

ElectroValve OpenDoorsEV;

ElectroValve CloseDoorsEV;

LatchedCylinder FrontDoor

(extendedLatch=false,

Hmin=HydraulicPressure.k,

tRetract=1.2,

tRetractedLock=0.3,

tRetractedUnlock=0.4);

LatchedCylinder LeftDoor

(extendedLatch=false,

Hmin=HydraulicPressure.k,

tExtend=1.5,

tRetractedLock=0.3,

tRetractedUnlock=0.4);

LatchedCylinder RightDoor

(extendedLatch=false,

Hmin=HydraulicPressure.k,

tRetractedLock=0.3,

tRetractedUnlock=0.4,

tExtend=1.5);

ElectroValve ExtendGearsEV;

ElectroValve RetractGearsEV;
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LatchedCylinder FrontGear(Hmin=HydraulicPressure.k);

LatchedCylinder LeftGear(Hmin=HydraulicPressure.k,

tExtend=1.6,

tRetract=2.0);

LatchedCylinder RightGear(Hmin=HydraulicPressure.k,

tExtend=1.6,

tRetract=2.0);

AnalogicalSwitch analogicalSwitch;

Modelica.Blocks.Sources.Constant HydraulicPressure(k=5);

ElectroValve GeneralEV;

Modelica.Blocks.Sources.BooleanExpression booleanExpression

(y = GeneralEV.Hout >= HydraulicPressure.k);

Modelica.Blocks.Sources.BooleanExpression booleanExpression1

(y = FrontDoor.retractedLocked);

Modelica.Blocks.Sources.BooleanExpression booleanExpression2

(y = LeftDoor.retractedLocked);

Modelica.Blocks.Sources.BooleanExpression booleanExpression3

(y = RightDoor.retractedLocked);

Modelica.Blocks.Sources.BooleanExpression booleanExpression4

(y = FrontDoor.Pos >= FrontDoor.length

and FrontDoor.Hext >= HydraulicPressure.k);

Modelica.Blocks.Sources.BooleanExpression booleanExpression5

(y = RightDoor.Pos >= RightDoor.length

and RightDoor.Hext >= HydraulicPressure.k);

Modelica.Blocks.Sources.BooleanExpression booleanExpression6

(y = LeftDoor.Pos >= LeftDoor.length

and LeftDoor.Hext >= HydraulicPressure.k);

Modelica.Blocks.Sources.BooleanExpression booleanExpression7

(y = FrontGear.retractedLocked);

Modelica.Blocks.Sources.BooleanExpression booleanExpression8

(y = RightGear.retractedLocked);

Modelica.Blocks.Sources.BooleanExpression booleanExpression9

(y = LeftGear.retractedLocked);

Modelica.Blocks.Sources.BooleanExpression booleanExpression10

(y = FrontGear.extendedLocked);

Modelica.Blocks.Sources.BooleanExpression booleanExpression11

(y = RightGear.extendedLocked);

Modelica.Blocks.Sources.BooleanExpression booleanExpression12

(y = LeftGear.extendedLocked);

Modelica.Blocks.Interfaces.BooleanOutput pressure;

Modelica.Blocks.Interfaces.BooleanInput generalEV;

Modelica.Blocks.Interfaces.BooleanInput openEV;

Modelica.Blocks.Interfaces.BooleanInput closeEV;

Modelica.Blocks.Interfaces.BooleanInput extendEV;

Modelica.Blocks.Interfaces.BooleanInput retractEV;

Modelica.Blocks.Interfaces.BooleanOutput retracted;

Modelica.Blocks.Interfaces.BooleanOutput open;
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Modelica.Blocks.Interfaces.BooleanOutput closed;

Modelica.Blocks.Interfaces.BooleanOutput extended;

Modelica.Blocks.Interfaces.BooleanOutput switch;

And3 and3_1;

And3 and3_2;

And3 and3_3;

And3 and3_4;

Cockpit cockpit(switchTable={1,11,15,24});

Modelica.Blocks.Interfaces.BooleanOutput handle;

Modelica.Blocks.Sources.RealExpression realExpression(y=FrontDoor.Pos);

Modelica.Blocks.Sources.RealExpression realExpression1(y=FrontGear.Pos);

Modelica.Blocks.Interfaces.RealOutput doorPosition;

Modelica.Blocks.Interfaces.RealOutput gearPosition;

equation

connect(HydraulicPressure.y, GeneralEV.Hin);

connect(analogicalSwitch.y, GeneralEV.E);

connect(GeneralEV.Hout, OpenDoorsEV.Hin);

connect(GeneralEV.Hout, ExtendGearsEV.Hin);

connect(GeneralEV.Hout, CloseDoorsEV.Hin);

connect(GeneralEV.Hout, RetractGearsEV.Hin);

connect(OpenDoorsEV.Hout, FrontDoor.Hext);

connect(LeftDoor.Hext, OpenDoorsEV.Hout);

connect(RightDoor.Hext, OpenDoorsEV.Hout);

connect(FrontDoor.Hret, CloseDoorsEV.Hout);

connect(LeftDoor.Hret, CloseDoorsEV.Hout);

connect(RightDoor.Hret, CloseDoorsEV.Hout);

connect(ExtendGearsEV.Hout, FrontGear.Hext);

connect(LeftGear.Hext, FrontGear.Hext);

connect(RightGear.Hext, FrontGear.Hext);

connect(FrontGear.Hret, RetractGearsEV.Hout);

connect(LeftGear.Hret, RetractGearsEV.Hout);

connect(RightGear.Hret, RetractGearsEV.Hout);

connect(generalEV, analogicalSwitch.u);

connect(openEV, OpenDoorsEV.E);

connect(closeEV, CloseDoorsEV.E);

connect(extendEV, ExtendGearsEV.E);

connect(retractEV, RetractGearsEV.E);

connect(booleanExpression.y, pressure);

connect(analogicalSwitch.state, switch);

connect(booleanExpression1.y, and3_1.u1);

connect(booleanExpression3.y, and3_1.u2);

connect(booleanExpression2.y, and3_1.u3);

connect(and3_1.y, closed);

connect(and3_2.y, open);

connect(booleanExpression6.y, and3_2.u3);

connect(booleanExpression4.y, and3_2.u1);

connect(booleanExpression5.y, and3_2.u2);
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connect(booleanExpression9.y, and3_4.u3);

connect(booleanExpression7.y, and3_4.u1);

connect(booleanExpression8.y, and3_4.u2);

connect(and3_4.y, retracted);

connect(extended, and3_3.y);

connect(booleanExpression10.y, and3_3.u1);

connect(booleanExpression12.y, and3_3.u3);

connect(booleanExpression11.y, and3_3.u2);

connect(cockpit.handle, analogicalSwitch.handle);

connect(cockpit.handle, handle);

connect(realExpression1.y, gearPosition);

connect(doorPosition, realExpression.y);

end Plant;

D.1.2 Cockpit

model LandingGear.Cockpit

parameter Real switchTable[:] = {0,1} "Table of handle switch events";

Modelica.Blocks.Interfaces.BooleanOutput handle

"Handle position (true=down/extend)";

Modelica.Blocks.Sources.BooleanTable booleanTable(table=switchTable);

equation

connect(handle, booleanTable.y);

end Cockpit;

D.1.3 Electro-Valve

model LandingGear.ElectroValve

"Abstract model of the hydraulic electro-valve with delays based on

the varying valve opening"

Modelica.Blocks.Interfaces.BooleanInput E(start = false)

"Input electrical order";

Modelica.Blocks.Interfaces.RealInput Hin "Hydraulic input pressure";

Modelica.Blocks.Interfaces.RealOutput Hout(start = 0.0)

"Hydraulic output pressure";

parameter Real closingTime = 1.0 "Closing duration";

parameter Real openingTime = 3.6 "Opening duration";

protected

parameter Real Rmax = 1.0;

parameter Real dRcl = Rmax/closingTime

"Rate of change of the ratio R when closing";

parameter Real dRop = -Rmax/openingTime

"Rate of change of the ratio R when opening";

Real R(start = 0.0)

"Closed circuit ratio (0.0 - completely open, 1.0 - fully closed)";
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discrete Real dR(start = 0.0);

equation

Hout = Hin*R;

der(R) = dR;

algorithm

// closing/opening event

when E then

dR := dRcl;

elsewhen

not E then

dR := dRop;

end when;

// limiter of the R value

when R <= 0 or R >= Rmax then

dR := 0;

end when;

end ElectroValve;

D.1.4 Latched Cylinder

model LandingGear.LatchedCylinder

"Hydraulic pressure cylinder with two latches"

parameter Real length = 1.0 "Cylinder length";

parameter Real initPos = 0

"Initial position of the cylinde (from 0 to length)";

parameter Boolean initRetLatch = true "Initial state of retracted latch";

parameter Boolean initExtLatch = false "Initial state of extended latch";

Modelica.Blocks.Interfaces.RealInput Hext

"Hydraulic pressure input to extend the cylinder";

Modelica.Blocks.Interfaces.RealInput Hret

"Hydraulic pressure input to retract the cylinder";

Modelica.Blocks.Interfaces.RealOutput Pos(start = initPos)

"Cylinder position";

parameter Real tExtend = 1.2 "Extension duration";

parameter Real tRetract = 1.6 "Retraction duration";

parameter Boolean extendedLatch = true

"=true, if cylinder latch in extended position is enabled";

parameter Real tExtendedLock = 0.4 "Lock delay in extended position";

parameter Real tExtendedUnlock = 0.8 "Unlock delay from extended position";

parameter Boolean retractedLatch = true

"=true, if cylinder latch in retracted position is enabled";

parameter Real tRetractedLock = 0.4 "Lock delay in retracted position";

parameter Real tRetractedUnlock = 0.8 "Unlock delay from retracted position";

parameter Real Hmin = 0.001 "Minimal pressure to move the cylinder";

output Boolean retractedLocked(start = initRetLatch)

"Status of retracted latch, if enabled";
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output Boolean extendedLocked(start = initExtLatch)

"Status of extended latch, if enabled";

protected

parameter Real dPosExt = length/tExtend;

parameter Real dPosRet = -length/tRetract;

public

Lock retLock(

lockTime=tRetractedLock,

unlockTime=tRetractedUnlock,

initialLock=initRetLatch);

Modelica.Blocks.Logical.GreaterEqual greaterEqual;

Modelica.Blocks.Sources.RealExpression realExpression(y=Hmin);

Lock extLock(

initialLock=initExtLatch,

lockTime=tExtendedLock,

unlockTime=tExtendedUnlock);

Modelica.Blocks.Logical.GreaterEqual greaterEqual1;

Modelica.Blocks.Logical.And and1;

Modelica.Blocks.Sources.BooleanExpression booleanExpression(y=Pos<=0);

Modelica.Blocks.Logical.And and2;

Modelica.Blocks.Logical.And and3;

Modelica.Blocks.Logical.And and4;

Modelica.Blocks.Sources.BooleanExpression booleanExpression1(

y=Pos>=length);

Modelica.Blocks.Math.Add add(k1=-1, k2=+1);

Modelica.Blocks.Math.Add add1(k1=-1, k2=+1);

equation

retractedLocked = retractedLatch and retLock.locked;

extendedLocked = extendedLatch and extLock.locked;

if Hext-Hret >= Hmin and not retractedLocked then

der(Pos) = if Pos < length then dPosExt else 0;

else

if Hret-Hext >= Hmin and not extendedLocked then

der(Pos) = if Pos > 0 then dPosRet else 0;

else

der(Pos) = 0;

end if;

end if;

connect(realExpression.y, greaterEqual.u2);

connect(greaterEqual.y, and1.u1);

connect(and1.y, retLock.uUnlock);

connect(and2.y, retLock.uLock);

connect(realExpression.y, greaterEqual1.u2);

connect(booleanExpression.y, and2.u2);

connect(booleanExpression1.y, and4.u1);
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connect(and4.y, extLock.uLock);

connect(and3.y, extLock.uUnlock);

connect(greaterEqual1.y, and2.u1);

connect(greaterEqual1.y, and3.u2);

connect(greaterEqual.y, and4.u2);

connect(retLock.locked, and1.u2);

connect(extLock.locked, and3.u1);

connect(greaterEqual.u1, add.y);

connect(Hext, add.u2);

connect(Hret, add.u1);

connect(Hret, add1.u2);

connect(Hext, add1.u1);

connect(add1.y, greaterEqual1.u1);

end LatchedCylinder;

D.1.5 Analogical Switch

model LandingGear.AnalogicalSwitch

"Handle-controlled four-state analogical switch that passes input

signal only in the closed state"

Modelica_StateGraph2.Step Open(initialStep=true, nOut=1,

nIn=1);

Modelica_StateGraph2.Transition startClosing(use_conditionPort=true,

loopCheck=false);

Modelica_StateGraph2.Step Closing(

use_activePort=true,

nIn=1,

nOut=1);

Modelica_StateGraph2.Transition finishClosing(use_conditionPort=true);

Modelica.Blocks.Interfaces.BooleanInput handle;

Modelica_StateGraph2.Blocks.MathBoolean.OnDelay onDelay(

delayTime=tClose);

parameter Real tClose = 0.8 "Closing delay";

parameter Real tOpen = 1.2 "Opening delay";

parameter Real tClosed = 20.0 "Duration in the closed state";

Modelica_StateGraph2.Step Closed(

nOut=2,

initialStep=false,

nIn=3,

use_activePort=true);

Modelica_StateGraph2.Transition startOpening(use_conditionPort=true);

Modelica_StateGraph2.Step Opening(

nOut=2,

initialStep=false,

nIn=1,

use_activePort=true);
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Modelica_StateGraph2.Blocks.MathBoolean.OnDelay onDelay1(

delayTime=tClosed);

Modelica.Blocks.Interfaces.BooleanOutput state "=true, if closed";

Modelica_StateGraph2.Transition finishOpening(

use_conditionPort=true);

Modelica_StateGraph2.Blocks.MathBoolean.OnDelay onDelay2(

delayTime=tOpen);

Modelica.Blocks.Logical.Or or1;

Modelica.Blocks.Interfaces.BooleanInput u;

Modelica.Blocks.Interfaces.BooleanOutput y;

Modelica.Blocks.Logical.And and1;

Modelica_StateGraph2.Transition T1(use_conditionPort=true,

delayedTransition=false);

Modelica_StateGraph2.Step Closed2(

nIn=1,

nOut=1,

use_activePort=true);

Modelica_StateGraph2.LoopBreakingTransition T2(use_conditionPort=false);

Modelica.Blocks.Logical.Timer timer;

Modelica.Blocks.Logical.GreaterEqual greater;

Modelica.Blocks.Sources.RealExpression realExpression(

y=0.8 - 2*tClosing.y/3);

Modelica.Blocks.Logical.Timer timer1;

Modelica.Blocks.Discrete.TriggeredSampler tClosing;

Modelica_StateGraph2.Transition T3(use_conditionPort=true,

use_firePort=true);

Modelica_StateGraph2.Step Closing2(

use_activePort=true,

nIn=1,

nOut=1);

Modelica_StateGraph2.LoopBreakingTransition T5(use_conditionPort=true);

Modelica.Blocks.Logical.Change change1;

equation

connect(Open.outPort[1], startClosing.inPort);

connect(startClosing.outPort, Closing.inPort[1]);

connect(Closing.outPort[1], finishClosing.inPort);

connect(Closing.activePort, onDelay.u);

connect(onDelay.y, finishClosing.conditionPort);

connect(finishClosing.outPort, Closed.inPort[1]);

connect(Closed.outPort[1], startOpening.inPort);

connect(Closed.activePort, onDelay1.u);

connect(onDelay1.y, startOpening.conditionPort);

connect(startOpening.outPort, Opening.inPort[1]);

connect(Opening.outPort[1], finishOpening.inPort);

connect(Opening.activePort, onDelay2.u);

connect(onDelay2.y, finishOpening.conditionPort);

connect(finishOpening.outPort, Open.inPort[1]);
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connect(or1.y, state);

connect(y, and1.y);

connect(T1.outPort, Closed2.inPort[1]);

connect(Closed2.outPort[1], T2.inPort);

connect(T2.outPort, Closed.inPort[2]);

connect(T1.inPort, Closed.outPort[2]);

connect(u, and1.u2);

connect(or1.y, and1.u1);

connect(Closed2.activePort, or1.u1);

connect(Closed.activePort, or1.u2);

connect(Opening.activePort, timer1.u);

connect(timer.y, greater.u1);

connect(T3.inPort, Opening.outPort[2]);

connect(T3.outPort, Closing2.inPort[1]);

connect(Closing2.outPort[1], T5.inPort);

connect(T5.outPort, Closed.inPort[3]);

connect(T3.firePort, tClosing.trigger);

connect(timer1.y, tClosing.u);

connect(realExpression.y, greater.u2);

connect(T5.conditionPort, greater.y);

connect(Closing2.activePort, timer.u);

connect(startClosing.conditionPort, change1.y);

connect(T1.conditionPort, change1.y);

connect(T3.conditionPort, change1.y);

connect(handle, change1.u);

end AnalogicalSwitch;

D.1.6 Latching Lock

model LandingGear.Lock

"Analogical two-state lock with a lock/unlock delay"

parameter Boolean initialLock = true "Initially locked";

Modelica_StateGraph2.Step Unlocked(

nOut=1,

nIn=1,

use_activePort=false,

initialStep=not initialLock);

Modelica_StateGraph2.Transition lock(use_conditionPort=true,

delayedTransition=true,

waitTime=lockTime);

Modelica_StateGraph2.Step Locked(

nIn=1,

nOut=1,

use_activePort=true,

initialStep=initialLock);

Modelica_StateGraph2.Transition unlock(



160 Appendix D Models of the Landing Gear System

use_conditionPort=true,

delayedTransition=true,

waitTime=unlockTime);

Modelica.Blocks.Interfaces.BooleanInput uLock;

Modelica.Blocks.Interfaces.BooleanOutput locked;

parameter Real lockTime = 0.4 "Locking duration";

parameter Real unlockTime = 0.8 "Unlocking duration";

Modelica.Blocks.Interfaces.BooleanInput uUnlock;

equation

connect(Unlocked.outPort[1], lock.inPort);

connect(lock.outPort, Locked.inPort[1]);

connect(Locked.outPort[1], unlock.inPort);

connect(unlock.outPort, Unlocked.inPort[1]);

connect(uLock, lock.conditionPort);

connect(Locked.activePort, locked);

connect(uUnlock, unlock.conditionPort);

end Lock;

D.1.7 Auxiliary Model And3

model LandingGear.And3 "Logical ’and’: y = u1 and u2 and u3"

Modelica.Blocks.Interfaces.BooleanInput u1;

Modelica.Blocks.Interfaces.BooleanInput u2;

Modelica.Blocks.Interfaces.BooleanInput u3;

Modelica.Blocks.Interfaces.BooleanOutput y;

equation

y = u1 and u2 and u3;

end And3;

D.2 Event-B Specifications of the Controller

D.2.1 Abstract Context ctx1

CONTEXT ctx1

CONSTANTS

START INTERVAL

STOP INTERVAL
AXIOMS

axm1 : START INTERVAL = 2

axm2 : STOP INTERVAL = 10
END
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D.2.2 Concrete Context ctx2

CONTEXT ctx2

EXTENDS ctx1

CONSTANTS

CONTR INTERVAL
AXIOMS

axm1 : CONTR INTERVAL = 1
END

D.2.3 Abstract Machine mch1

MACHINE mch1

VARIABLES

HandleDown

HandleUp

FailureMode

NormalMode

Block

Control

Read

handle
INVARIANTS

typeof HandleDown : HandleDown ∈ BOOL

typeof HandleUp : HandleUp ∈ BOOL

distinct states in smHandle : partition({TRUE},
{HandleUp} ∩ {TRUE}, {HandleDown} ∩ {TRUE})
typeof FailureMode : FailureMode ∈ BOOL

typeof NormalMode : NormalMode ∈ BOOL

distinct states in smControl : partition({TRUE},
{NormalMode} ∩ {TRUE}, {FailureMode} ∩ {TRUE})
typeof Block : Block ∈ BOOL

typeof Control : Control ∈ BOOL

typeof Read : Read ∈ BOOL

distinct states in smFMU : partition({TRUE},
{Read} ∩ {TRUE}, {Control} ∩ {TRUE}, {Block} ∩ {TRUE})
inv1 : handle ∈ BOOL

EVENTS

Initialisation

begin

init HandleUp : HandleUp := TRUE

init HandleDown : HandleDown := FALSE

init NormalMode : NormalMode := TRUE
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init FailureMode : FailureMode := FALSE

init Read : Read := TRUE

init Block : Block := FALSE

init Control : Control := FALSE

act1 : handle := FALSE
end

Event stayUp =̂

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event switchDown =̂

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event stayDown =̂

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event switchUp =̂

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE
then

leave HandleDown : HandleDown := FALSE
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enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event fail =̂

when

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE
then

leave NormalMode : NormalMode := FALSE

enter FailureMode : FailureMode := TRUE

leave Control : Control := FALSE

enter Block : Block := TRUE
end

Event readInput =̂

any

h handle position (TRUE = down, FALSE = up)
where

isin Read : Read = TRUE

h type : h ∈ BOOL
then

leave Read : Read := FALSE

enter Control : Control := TRUE

smFMU actions1 : handle := h
end

END

D.2.4 First Refinement mch2

MACHINE mch2

REFINES mch1

VARIABLES

FailureMode

generalEV

Extended

Retracted

NormalMode

Block

Control

Read

HandleDown

HandleUp

handle
INVARIANTS
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typeof generalEV : generalEV ∈ BOOL

typeof Extended : Extended ∈ BOOL

typeof Retracted : Retracted ∈ BOOL

distinct states in smNormalMode : (NormalMode = TRUE )⇒
partition({TRUE}, {Retracted} ∩ {TRUE}, {Extended} ∩ {TRUE},
{generalEV } ∩ {TRUE})
generalEV substateof NormalMode : (generalEV = TRUE )⇒

(NormalMode = TRUE )

Extended substateof NormalMode : (Extended = TRUE )⇒
(NormalMode = TRUE )

Retracted substateof NormalMode : (Retracted = TRUE )⇒
(NormalMode = TRUE )

EVENTS

Initialisation

extended

begin

init HandleUp : HandleUp := TRUE

init HandleDown : HandleDown := FALSE

init NormalMode : NormalMode := TRUE

init FailureMode : FailureMode := FALSE

init Read : Read := TRUE

init Block : Block := FALSE

init Control : Control := FALSE

act1 : handle := FALSE

init Retracted : Retracted := TRUE

init generalEV : generalEV := FALSE

init Extended : Extended := FALSE
end

Event stayUp =̂

extends stayUp

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event stayDown =̂

extends stayDown

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE
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isin Control : Control = TRUE

isin generalEV : generalEV = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event switchUp =̂

extends switchUp

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event switchDown =̂

extends switchDown

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event fail =̂

extends fail

when

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE
then

leave NormalMode : NormalMode := FALSE

enter FailureMode : FailureMode := TRUE

leave Control : Control := FALSE

enter Block : Block := TRUE

leave generalEV : generalEV := FALSE

leave Extended : Extended := FALSE
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leave Retracted : Retracted := FALSE
end

Event readInput =̂

extends readInput

any

h handle position (TRUE = down, FALSE = up)
where

isin Read : Read = TRUE

h type : h ∈ BOOL
then

leave Read : Read := FALSE

enter Control : Control := TRUE

smFMU actions1 : handle := h
end

Event extend =̂

extends switchDown

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Retracted : Retracted = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Retracted : Retracted := FALSE

enter generalEV : generalEV := TRUE
end

Event retract =̂

extends switchUp

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Extended : Extended = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Extended : Extended := FALSE

enter generalEV : generalEV := TRUE
end
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Event keepRet =̂

extends stayUp

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Retracted : Retracted = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event keepExt =̂

extends stayDown

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Extended : Extended = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event setRet =̂

extends stayUp

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE

enter Retracted : Retracted := TRUE
end

Event cancelExt =̂

extends switchUp

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE
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then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE

enter Retracted : Retracted := TRUE
end

Event setExt =̂

extends stayDown

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE

enter Extended : Extended := TRUE
end

Event cancelRet =̂

extends switchDown

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE

enter Extended : Extended := TRUE
end

END

D.2.5 Second Refinement mch3

MACHINE mch3

REFINES mch2

SEES ctx1

VARIABLES
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Block

Control

Read

FailureMode

Maneuvering

PendingStart

PendingStop

generalEV

Extended

Retracted

NormalMode

HandleDown

HandleUp

handle

tStart

tStop
INVARIANTS

typeof Maneuvering : Maneuvering ∈ BOOL

typeof PendingStart : PendingStart ∈ BOOL

typeof PendingStop : PendingStop ∈ BOOL

distinct states in smGeneralEV : (generalEV = TRUE )⇒
partition({TRUE}, {PendingStop} ∩ {TRUE},
{PendingStart} ∩ {TRUE}, {Maneuvering} ∩ {TRUE})
Maneuvering substateof generalEV : (Maneuvering = TRUE )⇒

(generalEV = TRUE )

PendingStart substateof generalEV : (PendingStart = TRUE )⇒
(generalEV = TRUE )

PendingStop substateof generalEV : (PendingStop = TRUE )⇒
(generalEV = TRUE )
inv1 : tStart ∈ N
inv2 : tStop ∈ N

EVENTS

Initialisation

extended

begin

init HandleUp : HandleUp := TRUE

init HandleDown : HandleDown := FALSE

init NormalMode : NormalMode := TRUE

init FailureMode : FailureMode := FALSE

init Read : Read := TRUE

init Block : Block := FALSE

init Control : Control := FALSE

act1 : handle := FALSE

init Retracted : Retracted := TRUE
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init generalEV : generalEV := FALSE

init Extended : Extended := FALSE

init Maneuvering : Maneuvering := FALSE

init PendingStart : PendingStart := FALSE

init PendingStop : PendingStop := FALSE

act2 : tStart := 0

act3 : tStop := 0
end

Event stayUp =̂

extends stayUp

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event stayDown =̂

extends stayDown

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event switchUp =̂

extends switchUp

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE
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leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event switchDown =̂

extends switchDown

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event fail =̂

extends fail

when

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE
then

leave NormalMode : NormalMode := FALSE

enter FailureMode : FailureMode := TRUE

leave Control : Control := FALSE

enter Block : Block := TRUE

leave generalEV : generalEV := FALSE

leave Extended : Extended := FALSE

leave Retracted : Retracted := FALSE

leave Maneuvering : Maneuvering := FALSE

leave PendingStart : PendingStart := FALSE

leave PendingStop : PendingStop := FALSE
end

Event readInput =̂

extends readInput

any

h handle position (TRUE = down, FALSE = up)
where

isin Read : Read = TRUE

h type : h ∈ BOOL
then

leave Read : Read := FALSE

enter Control : Control := TRUE

smFMU actions1 : handle := h
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end

Event extend =̂

extends extend

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Retracted : Retracted = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Retracted : Retracted := FALSE

enter generalEV : generalEV := TRUE

enter PendingStart : PendingStart := TRUE

smNormalMode actions1 : tStart := 1
end

Event retract =̂

extends retract

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Extended : Extended = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Extended : Extended := FALSE

enter generalEV : generalEV := TRUE

enter PendingStart : PendingStart := TRUE

smNormalMode actions2 : tStart := 1
end

Event keepRet =̂

extends keepRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Retracted : Retracted = TRUE
then

leave Control : Control := FALSE
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enter Read : Read := TRUE
end

Event keepExt =̂

extends keepExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Extended : Extended = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event setRet =̂

extends setRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE

smNormalMode guards1 : tStop ≥ STOP INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE

enter Retracted : Retracted := TRUE

leave PendingStop : PendingStop := FALSE
end

Event cancelExt =̂

extends cancelExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE
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enter Retracted : Retracted := TRUE

leave PendingStart : PendingStart := FALSE
end

Event setExt =̂

extends setExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE

smNormalMode guards2 : tStop ≥ STOP INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE

enter Extended : Extended := TRUE

leave PendingStop : PendingStop := FALSE
end

Event cancelRet =̂

extends cancelRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE

enter Extended : Extended := TRUE

leave PendingStart : PendingStart := FALSE
end

Event startExt =̂

extends stayDown

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE
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isin PendingStart : PendingStart = TRUE

guards3 : tStart ≥ START INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingStart : PendingStart := FALSE

enter Maneuvering : Maneuvering := TRUE
end

Event startRet =̂

extends stayUp

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

guards3 : tStart ≥ START INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingStart : PendingStart := FALSE

enter Maneuvering : Maneuvering := TRUE
end

Event endExt =̂

extends stayDown

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1
end

Event endRet =̂

extends stayUp

when

isin HandleUp : HandleUp = TRUE
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smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1
end

Event abortExt =̂

extends switchUp

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1
end

Event abortRet =̂

extends switchDown

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE



Appendix D Models of the Landing Gear System 177

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1
end

Event undoExt =̂

extends switchUp

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingStop : PendingStop := FALSE

enter Maneuvering : Maneuvering := TRUE
end

Event undoRet =̂

extends switchDown

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingStop : PendingStop := FALSE

enter Maneuvering : Maneuvering := TRUE
end

Event delayExt =̂

extends stayDown

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE
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isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

guards1 : tStart < START INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

actions1 : tStart := tStart + 1
end

Event delayRet =̂

extends stayUp

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

guards1 : tStart < START INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

actions1 : tStart := tStart + 1
end

Event delaySetExt =̂

extends stayDown

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

actions2 : tStop := tStop + 1
end

Event delaySetRet =̂

extends stayUp

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE
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then

leave Control : Control := FALSE

enter Read : Read := TRUE

actions2 : tStop := tStop + 1
end

END

D.2.6 Third Refinement mch4

MACHINE mch4

REFINES mch3

SEES ctx2

VARIABLES

FailureMode

PendingContrDoor

openEV

closeEV

Maneuvering

PendingStart

PendingStop

generalEV

Extended

Retracted

NormalMode

Block

Control

Read

HandleDown

HandleUp

handle

tStart

tStop

tContrDoor
INVARIANTS

typeof PendingContrDoor : PendingContrDoor ∈ BOOL

typeof openEV : openEV ∈ BOOL

typeof closeEV : closeEV ∈ BOOL

distinct states in smManeuvering : (Maneuvering = TRUE )⇒
partition({TRUE}, {closeEV } ∩ {TRUE},
{openEV } ∩ {TRUE}, {PendingContrDoor} ∩ {TRUE})
PendingContrDoor substateof Maneuvering : (PendingContrDoor = TRUE )⇒

(Maneuvering = TRUE )
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openEV substateof Maneuvering : (openEV = TRUE )⇒
(Maneuvering = TRUE )

closeEV substateof Maneuvering : (closeEV = TRUE )⇒
(Maneuvering = TRUE )
inv1 : tContrDoor ∈ N

EVENTS

Initialisation

extended

begin

init HandleUp : HandleUp := TRUE

init HandleDown : HandleDown := FALSE

init NormalMode : NormalMode := TRUE

init FailureMode : FailureMode := FALSE

init Read : Read := TRUE

init Block : Block := FALSE

init Control : Control := FALSE

act1 : handle := FALSE

init Retracted : Retracted := TRUE

init generalEV : generalEV := FALSE

init Extended : Extended := FALSE

init Maneuvering : Maneuvering := FALSE

init PendingStart : PendingStart := FALSE

init PendingStop : PendingStop := FALSE

act2 : tStart := 0

act3 : tStop := 0

init PendingContrDoor : PendingContrDoor := FALSE

init openEV : openEV := FALSE

init closeEV : closeEV := FALSE

act4 : tContrDoor := 0
end

Event stayUp =̂

extends stayUp

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event stayDown =̂

extends stayDown
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when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event switchUp =̂

extends switchUp

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event switchDown =̂

extends switchDown

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event fail =̂

extends fail
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when

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE
then

leave NormalMode : NormalMode := FALSE

enter FailureMode : FailureMode := TRUE

leave Control : Control := FALSE

enter Block : Block := TRUE

leave generalEV : generalEV := FALSE

leave Extended : Extended := FALSE

leave Retracted : Retracted := FALSE

leave Maneuvering : Maneuvering := FALSE

leave PendingStart : PendingStart := FALSE

leave PendingStop : PendingStop := FALSE

leave PendingContrDoor : PendingContrDoor := FALSE

leave openEV : openEV := FALSE

leave closeEV : closeEV := FALSE
end

Event readInput =̂

extends readInput

any

h handle position (TRUE = down, FALSE = up)
where

isin Read : Read = TRUE

h type : h ∈ BOOL
then

leave Read : Read := FALSE

enter Control : Control := TRUE

smFMU actions1 : handle := h
end

Event extend =̂

extends extend

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Retracted : Retracted = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Retracted : Retracted := FALSE

enter generalEV : generalEV := TRUE

enter PendingStart : PendingStart := TRUE
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smNormalMode actions1 : tStart := 1
end

Event retract =̂

extends retract

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Extended : Extended = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Extended : Extended := FALSE

enter generalEV : generalEV := TRUE

enter PendingStart : PendingStart := TRUE

smNormalMode actions2 : tStart := 1
end

Event keepRet =̂

extends keepRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Retracted : Retracted = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event keepExt =̂

extends keepExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Extended : Extended = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event setRet =̂

extends setRet
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when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE

smNormalMode guards1 : tStop ≥ STOP INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE

enter Retracted : Retracted := TRUE

leave PendingStop : PendingStop := FALSE
end

Event cancelExt =̂

extends cancelExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE

enter Retracted : Retracted := TRUE

leave PendingStart : PendingStart := FALSE
end

Event setExt =̂

extends setExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE

smNormalMode guards2 : tStop ≥ STOP INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE
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leave generalEV : generalEV := FALSE

enter Extended : Extended := TRUE

leave PendingStop : PendingStop := FALSE
end

Event cancelRet =̂

extends cancelRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE

enter Extended : Extended := TRUE

leave PendingStart : PendingStart := FALSE
end

Event startExt =̂

extends startExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

guards3 : tStart ≥ START INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingStart : PendingStart := FALSE

enter Maneuvering : Maneuvering := TRUE

enter openEV : openEV := TRUE
end

Event startRet =̂

extends startRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE
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isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

guards3 : tStart ≥ START INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingStart : PendingStart := FALSE

enter Maneuvering : Maneuvering := TRUE

enter openEV : openEV := TRUE
end

Event endExt =̂

extends endExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin closeEV : closeEV = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave closeEV : closeEV := FALSE
end

Event endRet =̂

extends endRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin closeEV : closeEV = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1
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leave closeEV : closeEV := FALSE
end

Event undoExt =̂

extends undoExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingStop : PendingStop := FALSE

enter Maneuvering : Maneuvering := TRUE

enter PendingContrDoor : PendingContrDoor := TRUE

smGeneralEV actions1 : tContrDoor := tStop
end

Event undoRet =̂

extends undoRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingStop : PendingStop := FALSE

enter Maneuvering : Maneuvering := TRUE

enter PendingContrDoor : PendingContrDoor := TRUE

smGeneralEV actions1 : tContrDoor := tStop
end

Event delayExt =̂

extends delayExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE
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isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

guards1 : tStart < START INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

actions1 : tStart := tStart + 1
end

Event delayRet =̂

extends delayRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

guards1 : tStart < START INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

actions1 : tStart := tStart + 1
end

Event delaySetExt =̂

extends delaySetExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE

smGeneralEV guards1 : tStop < STOP INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

actions2 : tStop := tStop + 1
end

Event delaySetRet =̂

extends delaySetRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE
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isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE

smGeneralEV guards1 : tStop < STOP INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

actions2 : tStop := tStop + 1
end

Event resumeEndExt =̂

extends abortRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin PendingContrDoor : PendingContrDoor = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave PendingContrDoor : PendingContrDoor := FALSE
end

Event resumeEndRet =̂

extends abortExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin PendingContrDoor : PendingContrDoor = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE
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enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave PendingContrDoor : PendingContrDoor := FALSE
end

Event abortOpenExt =̂

extends abortExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin openEV : openEV = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave openEV : openEV := FALSE
end

Event abortOpenRet =̂

extends abortRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin openEV : openEV = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave openEV : openEV := FALSE
end
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Event closeExt =̂

extends stayDown

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards3 : tContrDoor ≥ CONTR INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter closeEV : closeEV := TRUE
end

Event closeRet =̂

extends stayUp

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards3 : tContrDoor ≥ CONTR INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter closeEV : closeEV := TRUE
end

Event cancelCloseExt =̂

extends switchUp

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin closeEV : closeEV = TRUE
then

leave HandleDown : HandleDown := FALSE
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enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave closeEV : closeEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions3 : tContrDoor := 1
end

Event cancelCloseRet =̂

extends switchDown

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin closeEV : closeEV = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave closeEV : closeEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions3 : tContrDoor := 1
end

Event recloseExt =̂

extends switchDown

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter closeEV : closeEV := TRUE
end

Event recloseRet =̂

extends switchUp
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when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter closeEV : closeEV := TRUE
end

Event delayContrDoorExt =̂

extends stayDown

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards2 : tContrDoor < CONTR INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

smManeuvering actions2 : tContrDoor := tContrDoor + 1
end

Event delayContrDoorRet =̂

extends stayUp

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards2 : tContrDoor < CONTR INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE
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smManeuvering actions2 : tContrDoor := tContrDoor + 1
end

Event endOpenExt =̂

extends stayDown

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave openEV : openEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions1 : tContrDoor := 1
end

Event endOpenRet =̂

extends stayUp

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave openEV : openEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions1 : tContrDoor := 1
end

Event cancelOpenExt =̂

extends switchUp

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE
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isin openEV : openEV = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave openEV : openEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions1 : tContrDoor := 1
end

Event cancelOpenRet =̂

extends switchDown

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave openEV : openEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions1 : tContrDoor := 1
end

Event reopenExt =̂

extends switchDown

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter openEV : openEV := TRUE
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end

Event reopenRet =̂

extends switchUp

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter openEV : openEV := TRUE
end

Event openExt =̂

extends stayDown

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards1 : tContrDoor ≥ CONTR INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter openEV : openEV := TRUE
end

Event openRet =̂

extends stayUp

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE
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smManeuvering guards1 : tContrDoor ≥ CONTR INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter openEV : openEV := TRUE
end

Event waitClosedExt =̂

extends stayDown

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin closeEV : closeEV = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event waitClosedRet =̂

extends stayUp

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin closeEV : closeEV = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

END

D.2.7 Fourth Refinement mch5

MACHINE mch5

REFINES mch4

SEES ctx2

VARIABLES

Block

Control
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Read

FailureMode

PendingClose

PendingOpen

PendingContrDoor

GearsManeuvering

DoorsOpening

openEV

closeEV

Maneuvering

PendingStart

PendingStop

generalEV

Extended

Retracted

NormalMode

HandleDown

HandleUp

handle

tStart

tStop

tContrDoor

doorsOpen

doorsClosed
INVARIANTS

typeof PendingClose : PendingClose ∈ BOOL

typeof PendingOpen : PendingOpen ∈ BOOL

typeof GearsManeuvering : GearsManeuvering ∈ BOOL

typeof DoorsOpening : DoorsOpening ∈ BOOL

distinct states in smPendingContrDoor : (PendingContrDoor = TRUE )⇒
partition({TRUE}, {PendingOpen} ∩ {TRUE}, {PendingClose} ∩ {TRUE})
distinct states in smOpenEV : (openEV = TRUE )⇒

partition({TRUE}, {DoorsOpening} ∩ {TRUE}, {GearsManeuvering} ∩ {TRUE})
PendingClose substateof PendingContrDoor : (PendingClose = TRUE )⇒

(PendingContrDoor = TRUE )

PendingOpen substateof PendingContrDoor : (PendingOpen = TRUE )⇒
(PendingContrDoor = TRUE )

GearsManeuvering substateof openEV : (GearsManeuvering = TRUE )⇒
(openEV = TRUE )

DoorsOpening substateof openEV : (DoorsOpening = TRUE )⇒ (openEV = TRUE )

inv1 : doorsOpen ∈ BOOL

inv2 : doorsClosed ∈ BOOL
EVENTS
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Initialisation

extended

begin

init HandleUp : HandleUp := TRUE

init HandleDown : HandleDown := FALSE

init NormalMode : NormalMode := TRUE

init FailureMode : FailureMode := FALSE

init Read : Read := TRUE

init Block : Block := FALSE

init Control : Control := FALSE

act1 : handle := FALSE

init Retracted : Retracted := TRUE

init generalEV : generalEV := FALSE

init Extended : Extended := FALSE

init Maneuvering : Maneuvering := FALSE

init PendingStart : PendingStart := FALSE

init PendingStop : PendingStop := FALSE

act2 : tStart := 0

act3 : tStop := 0

init PendingContrDoor : PendingContrDoor := FALSE

init openEV : openEV := FALSE

init closeEV : closeEV := FALSE

act4 : tContrDoor := 0

init PendingClose : PendingClose := FALSE

init PendingOpen : PendingOpen := FALSE

init GearsManeuvering : GearsManeuvering := FALSE

init DoorsOpening : DoorsOpening := FALSE

act5 : doorsOpen := FALSE

act6 : doorsClosed := TRUE
end

Event stayUp =̂

extends stayUp

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event stayDown =̂



200 Appendix D Models of the Landing Gear System

extends stayDown

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event switchUp =̂

extends switchUp

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event switchDown =̂

extends switchDown

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE
then
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leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event fail =̂

extends fail

when

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE
then

leave NormalMode : NormalMode := FALSE

enter FailureMode : FailureMode := TRUE

leave Control : Control := FALSE

enter Block : Block := TRUE

leave generalEV : generalEV := FALSE

leave Extended : Extended := FALSE

leave Retracted : Retracted := FALSE

leave Maneuvering : Maneuvering := FALSE

leave PendingStart : PendingStart := FALSE

leave PendingStop : PendingStop := FALSE

leave PendingContrDoor : PendingContrDoor := FALSE

leave openEV : openEV := FALSE

leave closeEV : closeEV := FALSE

leave PendingClose : PendingClose := FALSE

leave PendingOpen : PendingOpen := FALSE

leave GearsManeuvering : GearsManeuvering := FALSE

leave DoorsOpening : DoorsOpening := FALSE
end

Event readInput =̂

extends readInput

any

h handle position (TRUE = down, FALSE = up)

dc doors closed

do doors open
where

isin Read : Read = TRUE

h type : h ∈ BOOL

dc type : dc ∈ BOOL

do type : do ∈ BOOL
then

leave Read : Read := FALSE

enter Control : Control := TRUE

smFMU actions1 : handle := h

smFMU actions3 : doorsClosed := dc

smFMU actions2 : doorsOpen := do
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end

Event extend =̂

extends extend

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Retracted : Retracted = TRUE

smNormalMode guards8 : doorsClosed = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Retracted : Retracted := FALSE

enter generalEV : generalEV := TRUE

enter PendingStart : PendingStart := TRUE

smNormalMode actions1 : tStart := 1
end

Event retract =̂

extends retract

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Extended : Extended = TRUE

smNormalMode guards7 : doorsClosed = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Extended : Extended := FALSE

enter generalEV : generalEV := TRUE

enter PendingStart : PendingStart := TRUE

smNormalMode actions2 : tStart := 1
end

Event keepRet =̂

extends keepRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE
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isin Retracted : Retracted = TRUE

smNormalMode guards4 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event keepExt =̂

extends keepExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Extended : Extended = TRUE

smNormalMode guards5 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event setRet =̂

extends setRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE

smNormalMode guards1 : tStop ≥ STOP INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE

enter Retracted : Retracted := TRUE

leave PendingStop : PendingStop := FALSE
end

Event cancelExt =̂

extends cancelExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

smGeneralEV guards6 : doorsClosed = TRUE
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then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE

enter Retracted : Retracted := TRUE

leave PendingStart : PendingStart := FALSE
end

Event setExt =̂

extends setExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE

smNormalMode guards2 : tStop ≥ STOP INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE

enter Extended : Extended := TRUE

leave PendingStop : PendingStop := FALSE
end

Event cancelRet =̂

extends cancelRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

smGeneralEV guards4 : doorsClosed = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE

enter Extended : Extended := TRUE

leave PendingStart : PendingStart := FALSE
end

Event startExt =̂
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extends startExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

guards3 : tStart ≥ START INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingStart : PendingStart := FALSE

enter Maneuvering : Maneuvering := TRUE

enter openEV : openEV := TRUE

enter DoorsOpening : DoorsOpening := TRUE
end

Event startRet =̂

extends startRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

guards3 : tStart ≥ START INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingStart : PendingStart := FALSE

enter Maneuvering : Maneuvering := TRUE

enter openEV : openEV := TRUE

enter DoorsOpening : DoorsOpening := TRUE
end

Event endExt =̂

extends endExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin closeEV : closeEV = TRUE
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smGeneralEV guards2 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave closeEV : closeEV := FALSE
end

Event endRet =̂

extends endRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin closeEV : closeEV = TRUE

smGeneralEV guards2 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave closeEV : closeEV := FALSE
end

Event undoExt =̂

extends undoExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingStop : PendingStop := FALSE

enter Maneuvering : Maneuvering := TRUE

enter PendingContrDoor : PendingContrDoor := TRUE
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smGeneralEV actions1 : tContrDoor := tStop

enter PendingOpen : PendingOpen := TRUE
end

Event undoRet =̂

extends undoRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingStop : PendingStop := FALSE

enter Maneuvering : Maneuvering := TRUE

enter PendingContrDoor : PendingContrDoor := TRUE

smGeneralEV actions1 : tContrDoor := tStop

enter PendingOpen : PendingOpen := TRUE
end

Event delayExt =̂

extends delayExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

guards1 : tStart < START INTERVAL

smGeneralEV guards3 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

actions1 : tStart := tStart + 1
end

Event delayRet =̂

extends delayRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE
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isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

guards1 : tStart < START INTERVAL

smGeneralEV guards3 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

actions1 : tStart := tStart + 1
end

Event delaySetExt =̂

extends delaySetExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE

smGeneralEV guards1 : tStop < STOP INTERVAL

smGeneralEV guards5 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

actions2 : tStop := tStop + 1
end

Event delaySetRet =̂

extends delaySetRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE

smGeneralEV guards1 : tStop < STOP INTERVAL

smGeneralEV guards5 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

actions2 : tStop := tStop + 1
end

Event resumeEndExt =̂

extends resumeEndExt

when

isin HandleUp : HandleUp = TRUE
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smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin PendingContrDoor : PendingContrDoor = TRUE

isin PendingOpen : PendingOpen = TRUE

smManeuvering guards5 : doorsClosed = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave PendingContrDoor : PendingContrDoor := FALSE

leave PendingOpen : PendingOpen := FALSE
end

Event resumeEndRet =̂

extends resumeEndRet

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin PendingContrDoor : PendingContrDoor = TRUE

isin PendingOpen : PendingOpen = TRUE

smManeuvering guards5 : doorsClosed = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave PendingContrDoor : PendingContrDoor := FALSE

leave PendingOpen : PendingOpen := FALSE
end

Event abortOpenExt =̂

extends abortOpenExt
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when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

smManeuvering guards6 : doorsClosed = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave openEV : openEV := FALSE

leave DoorsOpening : DoorsOpening := FALSE
end

Event abortOpenRet =̂

extends abortOpenRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

smManeuvering guards6 : doorsClosed = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave openEV : openEV := FALSE

leave DoorsOpening : DoorsOpening := FALSE
end
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Event closeExt =̂

extends closeExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards3 : tContrDoor ≥ CONTR INTERVAL

isin PendingClose : PendingClose = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter closeEV : closeEV := TRUE

leave PendingClose : PendingClose := FALSE
end

Event closeRet =̂

extends closeRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards3 : tContrDoor ≥ CONTR INTERVAL

isin PendingClose : PendingClose = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter closeEV : closeEV := TRUE

leave PendingClose : PendingClose := FALSE
end

Event cancelCloseExt =̂

extends cancelCloseExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE
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isin Maneuvering : Maneuvering = TRUE

isin closeEV : closeEV = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave closeEV : closeEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions3 : tContrDoor := 1

enter PendingOpen : PendingOpen := TRUE
end

Event cancelCloseRet =̂

extends cancelCloseRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin closeEV : closeEV = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave closeEV : closeEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions3 : tContrDoor := 1

enter PendingOpen : PendingOpen := TRUE
end

Event recloseExt =̂

extends recloseExt

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

isin PendingOpen : PendingOpen = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE
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leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter closeEV : closeEV := TRUE

leave PendingOpen : PendingOpen := FALSE
end

Event recloseRet =̂

extends recloseRet

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

isin PendingOpen : PendingOpen = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter closeEV : closeEV := TRUE

leave PendingOpen : PendingOpen := FALSE
end

Event endOpenExt =̂

extends endOpenExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

guards5 : doorsOpen = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave openEV : openEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions1 : tContrDoor := 1

leave GearsManeuvering : GearsManeuvering := FALSE

enter PendingClose : PendingClose := TRUE
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end

Event endOpenRet =̂

extends endOpenRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

guards5 : doorsOpen = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave openEV : openEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions1 : tContrDoor := 1

leave GearsManeuvering : GearsManeuvering := FALSE

enter PendingClose : PendingClose := TRUE
end

Event cancelOpenExt =̂

extends cancelOpenExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

smManeuvering guards7 : doorsClosed = FALSE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave openEV : openEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions1 : tContrDoor := 1

leave DoorsOpening : DoorsOpening := FALSE

enter PendingClose : PendingClose := TRUE
end

Event cancelOpenRet =̂
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extends cancelOpenRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

smManeuvering guards7 : doorsClosed = FALSE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave openEV : openEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions1 : tContrDoor := 1

leave DoorsOpening : DoorsOpening := FALSE

enter PendingClose : PendingClose := TRUE
end

Event reopenExt =̂

extends reopenExt

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

isin PendingClose : PendingClose = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter openEV : openEV := TRUE

leave PendingClose : PendingClose := FALSE

enter DoorsOpening : DoorsOpening := TRUE
end

Event reopenRet =̂

extends reopenRet

when
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isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

isin PendingClose : PendingClose = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter openEV : openEV := TRUE

leave PendingClose : PendingClose := FALSE

enter DoorsOpening : DoorsOpening := TRUE
end

Event openExt =̂

extends openExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards1 : tContrDoor ≥ CONTR INTERVAL

isin PendingOpen : PendingOpen = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter openEV : openEV := TRUE

leave PendingOpen : PendingOpen := FALSE

enter DoorsOpening : DoorsOpening := TRUE
end

Event openRet =̂

extends openRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE
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isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards1 : tContrDoor ≥ CONTR INTERVAL

isin PendingOpen : PendingOpen = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter openEV : openEV := TRUE

leave PendingOpen : PendingOpen := FALSE

enter DoorsOpening : DoorsOpening := TRUE
end

Event waitClosedExt =̂

extends waitClosedExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin closeEV : closeEV = TRUE

smManeuvering guards4 : doorsClosed = FALSE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event waitClosedRet =̂

extends waitClosedRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin closeEV : closeEV = TRUE

smManeuvering guards4 : doorsClosed = FALSE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event waitOpenExt =̂

extends stayDown

when

isin HandleDown : HandleDown = TRUE
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smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

guards2 : doorsOpen = FALSE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event waitOpenRet =̂

extends stayUp

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

guards2 : doorsOpen = FALSE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event startGearExt =̂

extends stayDown

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

guards4 : doorsOpen = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave DoorsOpening : DoorsOpening := FALSE

enter GearsManeuvering : GearsManeuvering := TRUE
end



Appendix D Models of the Landing Gear System 219

Event startGearRet =̂

extends stayUp

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

guards4 : doorsOpen = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave DoorsOpening : DoorsOpening := FALSE

enter GearsManeuvering : GearsManeuvering := TRUE
end

Event fDoorsNotOpen =̂

refines fail

when

isin Control : Control = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smOpenEV guards1 : doorsOpen = FALSE
then

leave Control : Control := FALSE

enter Block : Block := TRUE

leave NormalMode : NormalMode := FALSE

leave generalEV : generalEV := FALSE

leave Maneuvering : Maneuvering := FALSE

leave openEV : openEV := FALSE

leave GearsManeuvering : GearsManeuvering := FALSE

enter FailureMode : FailureMode := TRUE
end

Event fDoorsUnlockedRet =̂

refines fail

when

isin Control : Control = TRUE

isin Retracted : Retracted = TRUE

smNormalMode guards3 : doorsClosed = FALSE
then

leave Control : Control := FALSE

enter Block : Block := TRUE

leave NormalMode : NormalMode := FALSE

leave Retracted : Retracted := FALSE

enter FailureMode : FailureMode := TRUE
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end

Event fDoorsUnlockedExt =̂

refines fail

when

isin Control : Control = TRUE

isin Extended : Extended = TRUE

smNormalMode guards6 : doorsClosed = FALSE
then

leave Control : Control := FALSE

enter Block : Block := TRUE

leave NormalMode : NormalMode := FALSE

leave Extended : Extended := FALSE

enter FailureMode : FailureMode := TRUE
end

Event fDoorsUnlockedStart =̂

refines fail

when

isin Control : Control = TRUE

isin PendingStart : PendingStart = TRUE

smGeneralEV guards7 : doorsClosed = FALSE
then

leave Control : Control := FALSE

enter Block : Block := TRUE

leave NormalMode : NormalMode := FALSE

leave generalEV : generalEV := FALSE

leave PendingStart : PendingStart := FALSE

enter FailureMode : FailureMode := TRUE
end

Event fDoorsUnlockedStop =̂

refines fail

when

isin Control : Control = TRUE

isin PendingStop : PendingStop = TRUE

smGeneralEV guards8 : doorsClosed = FALSE
then

leave Control : Control := FALSE

enter Block : Block := TRUE

leave NormalMode : NormalMode := FALSE

leave generalEV : generalEV := FALSE

leave PendingStop : PendingStop := FALSE

enter FailureMode : FailureMode := TRUE
end

Event delayOpenExt =̂

extends delayContrDoorExt

when

isin HandleDown : HandleDown = TRUE
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smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards2 : tContrDoor < CONTR INTERVAL

isin PendingOpen : PendingOpen = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

smManeuvering actions2 : tContrDoor := tContrDoor + 1
end

Event delayOpenRet =̂

extends delayContrDoorRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards2 : tContrDoor < CONTR INTERVAL

isin PendingOpen : PendingOpen = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

smManeuvering actions2 : tContrDoor := tContrDoor + 1
end

Event delayCloseExt =̂

extends delayContrDoorExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards2 : tContrDoor < CONTR INTERVAL

isin PendingClose : PendingClose = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

smManeuvering actions2 : tContrDoor := tContrDoor + 1
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end

Event delayCloseRet =̂

extends delayContrDoorRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards2 : tContrDoor < CONTR INTERVAL

isin PendingClose : PendingClose = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

smManeuvering actions2 : tContrDoor := tContrDoor + 1
end

END

D.2.8 Fifth Refinement mch6

MACHINE mch6

REFINES mch5

SEES ctx2

VARIABLES

Block

Control

Read

FailureMode

PendingClose

PendingOpen

PendingContrDoor

retractEV

PendingContrGear

extendEV

GearsManeuvering

DoorsOpening

openEV

closeEV

Maneuvering

PendingStart

PendingStop
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generalEV

Extended

Retracted

NormalMode

HandleDown

HandleUp

handle

tStart

tStop

tContrDoor

doorsOpen

doorsClosed

tContrGear

gearsExtended

gearsRetracted
INVARIANTS

typeof retractEV : retractEV ∈ BOOL

typeof PendingContrGear : PendingContrGear ∈ BOOL

typeof extendEV : extendEV ∈ BOOL

distinct states in smGearManeuvering : (GearsManeuvering = TRUE )⇒
partition({TRUE}, {extendEV } ∩ {TRUE},
{PendingContrGear} ∩ {TRUE}, {retractEV } ∩ {TRUE})
retractEV substateof GearsManeuvering : (retractEV = TRUE )⇒

(GearsManeuvering = TRUE )

PendingContrGear substateof GearsManeuvering : (PendingContrGear = TRUE )⇒
(GearsManeuvering = TRUE )

extendEV substateof GearsManeuvering : (extendEV = TRUE )⇒
(GearsManeuvering = TRUE )
inv1 : tContrGear ∈ N
inv2 : gearsExtended ∈ BOOL

inv3 : gearsRetracted ∈ BOOL
EVENTS

Initialisation

extended

begin

init HandleUp : HandleUp := TRUE

init HandleDown : HandleDown := FALSE

init NormalMode : NormalMode := TRUE

init FailureMode : FailureMode := FALSE

init Read : Read := TRUE

init Block : Block := FALSE

init Control : Control := FALSE

act1 : handle := FALSE

init Retracted : Retracted := TRUE
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init generalEV : generalEV := FALSE

init Extended : Extended := FALSE

init Maneuvering : Maneuvering := FALSE

init PendingStart : PendingStart := FALSE

init PendingStop : PendingStop := FALSE

act2 : tStart := 0

act3 : tStop := 0

init PendingContrDoor : PendingContrDoor := FALSE

init openEV : openEV := FALSE

init closeEV : closeEV := FALSE

act4 : tContrDoor := 0

init PendingClose : PendingClose := FALSE

init PendingOpen : PendingOpen := FALSE

init GearsManeuvering : GearsManeuvering := FALSE

init DoorsOpening : DoorsOpening := FALSE

act5 : doorsOpen := FALSE

act6 : doorsClosed := TRUE

init retractEV : retractEV := FALSE

init PendingContrGear : PendingContrGear := FALSE

init extendEV : extendEV := FALSE

act7 : tContrGear := 0

act8 : gearsExtended := FALSE

act9 : gearsRetracted := TRUE
end

Event readInput =̂

extends readInput

any

h handle position (TRUE = down, FALSE = up)

dc doors closed

do doors open

gr gears retracted

ge gears extended
where

isin Read : Read = TRUE

h type : h ∈ BOOL

dc type : dc ∈ BOOL

do type : do ∈ BOOL

gr type : gr ∈ BOOL

ge type : ge ∈ BOOL
then

leave Read : Read := FALSE

enter Control : Control := TRUE

smFMU actions1 : handle := h

smFMU actions3 : doorsClosed := dc

smFMU actions2 : doorsOpen := do

smFMU actions5 : gearsRetracted := gr
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smFMU actions4 : gearsExtended := ge
end

Event extend =̂

extends extend

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Retracted : Retracted = TRUE

smNormalMode guards8 : doorsClosed = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Retracted : Retracted := FALSE

enter generalEV : generalEV := TRUE

enter PendingStart : PendingStart := TRUE

smNormalMode actions1 : tStart := 1
end

Event retract =̂

extends retract

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Extended : Extended = TRUE

smNormalMode guards7 : doorsClosed = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Extended : Extended := FALSE

enter generalEV : generalEV := TRUE

enter PendingStart : PendingStart := TRUE

smNormalMode actions2 : tStart := 1
end

Event keepRet =̂

extends keepRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE
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isin Control : Control = TRUE

isin Retracted : Retracted = TRUE

smNormalMode guards4 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event keepExt =̂

extends keepExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Extended : Extended = TRUE

smNormalMode guards5 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event setRet =̂

extends setRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE

smNormalMode guards1 : tStop ≥ STOP INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE

enter Retracted : Retracted := TRUE

leave PendingStop : PendingStop := FALSE
end

Event cancelExt =̂

extends cancelExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE
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smGeneralEV guards6 : doorsClosed = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE

enter Retracted : Retracted := TRUE

leave PendingStart : PendingStart := FALSE
end

Event setExt =̂

extends setExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE

smNormalMode guards2 : tStop ≥ STOP INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE

enter Extended : Extended := TRUE

leave PendingStop : PendingStop := FALSE
end

Event cancelRet =̂

extends cancelRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

smGeneralEV guards4 : doorsClosed = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE

enter Extended : Extended := TRUE

leave PendingStart : PendingStart := FALSE
end
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Event startExt =̂

extends startExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

guards3 : tStart ≥ START INTERVAL

smGeneralEV guards9 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingStart : PendingStart := FALSE

enter Maneuvering : Maneuvering := TRUE

enter openEV : openEV := TRUE

enter DoorsOpening : DoorsOpening := TRUE
end

Event startRet =̂

extends startRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

guards3 : tStart ≥ START INTERVAL

smGeneralEV guards9 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingStart : PendingStart := FALSE

enter Maneuvering : Maneuvering := TRUE

enter openEV : openEV := TRUE

enter DoorsOpening : DoorsOpening := TRUE
end

Event endExt =̂

extends endExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE
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isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin closeEV : closeEV = TRUE

smGeneralEV guards2 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave closeEV : closeEV := FALSE
end

Event endRet =̂

extends endRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin closeEV : closeEV = TRUE

smGeneralEV guards2 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave closeEV : closeEV := FALSE
end

Event undoExt =̂

extends undoExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE
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leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingStop : PendingStop := FALSE

enter Maneuvering : Maneuvering := TRUE

enter PendingContrDoor : PendingContrDoor := TRUE

smGeneralEV actions1 : tContrDoor := tStop

enter PendingOpen : PendingOpen := TRUE
end

Event undoRet =̂

extends undoRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingStop : PendingStop := FALSE

enter Maneuvering : Maneuvering := TRUE

enter PendingContrDoor : PendingContrDoor := TRUE

smGeneralEV actions1 : tContrDoor := tStop

enter PendingOpen : PendingOpen := TRUE
end

Event delayExt =̂

extends delayExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

guards1 : tStart < START INTERVAL

smGeneralEV guards3 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

actions1 : tStart := tStart + 1
end

Event delayRet =̂

extends delayRet
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when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

guards1 : tStart < START INTERVAL

smGeneralEV guards3 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

actions1 : tStart := tStart + 1
end

Event delaySetExt =̂

extends delaySetExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE

smGeneralEV guards1 : tStop < STOP INTERVAL

smGeneralEV guards5 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

actions2 : tStop := tStop + 1
end

Event delaySetRet =̂

extends delaySetRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE

smGeneralEV guards1 : tStop < STOP INTERVAL

smGeneralEV guards5 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

actions2 : tStop := tStop + 1
end
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Event resumeEndExt =̂

extends resumeEndExt

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin PendingContrDoor : PendingContrDoor = TRUE

isin PendingOpen : PendingOpen = TRUE

smManeuvering guards5 : doorsClosed = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave PendingContrDoor : PendingContrDoor := FALSE

leave PendingOpen : PendingOpen := FALSE
end

Event resumeEndRet =̂

extends resumeEndRet

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin PendingContrDoor : PendingContrDoor = TRUE

isin PendingOpen : PendingOpen = TRUE

smManeuvering guards5 : doorsClosed = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave PendingContrDoor : PendingContrDoor := FALSE
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leave PendingOpen : PendingOpen := FALSE
end

Event abortOpenExt =̂

extends abortOpenExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

smManeuvering guards6 : doorsClosed = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave openEV : openEV := FALSE

leave DoorsOpening : DoorsOpening := FALSE
end

Event abortOpenRet =̂

extends abortOpenRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

smManeuvering guards6 : doorsClosed = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE
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actions3 : tStop := 1

leave openEV : openEV := FALSE

leave DoorsOpening : DoorsOpening := FALSE
end

Event closeExt =̂

extends closeExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards3 : tContrDoor ≥ CONTR INTERVAL

isin PendingClose : PendingClose = TRUE

smManeuvering guards13 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter closeEV : closeEV := TRUE

leave PendingClose : PendingClose := FALSE
end

Event closeRet =̂

extends closeRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards3 : tContrDoor ≥ CONTR INTERVAL

isin PendingClose : PendingClose = TRUE

smManeuvering guards13 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter closeEV : closeEV := TRUE

leave PendingClose : PendingClose := FALSE
end
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Event cancelCloseExt =̂

extends cancelCloseExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin closeEV : closeEV = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave closeEV : closeEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions3 : tContrDoor := 1

enter PendingOpen : PendingOpen := TRUE
end

Event cancelCloseRet =̂

extends cancelCloseRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin closeEV : closeEV = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave closeEV : closeEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions3 : tContrDoor := 1

enter PendingOpen : PendingOpen := TRUE
end

Event recloseExt =̂

extends recloseExt

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE
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isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

isin PendingOpen : PendingOpen = TRUE

smManeuvering guards14 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter closeEV : closeEV := TRUE

leave PendingOpen : PendingOpen := FALSE
end

Event recloseRet =̂

extends recloseRet

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

isin PendingOpen : PendingOpen = TRUE

smManeuvering guards14 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter closeEV : closeEV := TRUE

leave PendingOpen : PendingOpen := FALSE
end

Event endOpenExt =̂

extends endOpenExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE
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isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

guards5 : doorsOpen = TRUE

isin extendEV : extendEV = TRUE

smOpenEV guards4 : gearsExtended = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave openEV : openEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions1 : tContrDoor := 1

leave GearsManeuvering : GearsManeuvering := FALSE

enter PendingClose : PendingClose := TRUE

leave extendEV : extendEV := FALSE
end

Event endOpenRet =̂

extends endOpenRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

guards5 : doorsOpen = TRUE

isin retractEV : retractEV = TRUE

guards10 : gearsRetracted = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave openEV : openEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions1 : tContrDoor := 1

leave GearsManeuvering : GearsManeuvering := FALSE

enter PendingClose : PendingClose := TRUE

leave retractEV : retractEV := FALSE
end

Event cancelOpenExt =̂

extends cancelOpenExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE
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isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

smManeuvering guards7 : doorsClosed = FALSE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave openEV : openEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions1 : tContrDoor := 1

leave DoorsOpening : DoorsOpening := FALSE

enter PendingClose : PendingClose := TRUE
end

Event cancelOpenRet =̂

extends cancelOpenRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

smManeuvering guards7 : doorsClosed = FALSE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave openEV : openEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions1 : tContrDoor := 1

leave DoorsOpening : DoorsOpening := FALSE

enter PendingClose : PendingClose := TRUE
end

Event reopenExt =̂

extends reopenExt

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE
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isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

isin PendingClose : PendingClose = TRUE

smManeuvering guards9 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter openEV : openEV := TRUE

leave PendingClose : PendingClose := FALSE

enter DoorsOpening : DoorsOpening := TRUE
end

Event reopenRet =̂

extends reopenRet

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

isin PendingClose : PendingClose = TRUE

smManeuvering guards9 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter openEV : openEV := TRUE

leave PendingClose : PendingClose := FALSE

enter DoorsOpening : DoorsOpening := TRUE
end

Event openExt =̂

extends openExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE
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isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards1 : tContrDoor ≥ CONTR INTERVAL

isin PendingOpen : PendingOpen = TRUE

smManeuvering guards10 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter openEV : openEV := TRUE

leave PendingOpen : PendingOpen := FALSE

enter DoorsOpening : DoorsOpening := TRUE
end

Event openRet =̂

extends openRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards1 : tContrDoor ≥ CONTR INTERVAL

isin PendingOpen : PendingOpen = TRUE

smManeuvering guards10 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter openEV : openEV := TRUE

leave PendingOpen : PendingOpen := FALSE

enter DoorsOpening : DoorsOpening := TRUE
end

Event waitClosedExt =̂

extends waitClosedExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE
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isin Maneuvering : Maneuvering = TRUE

isin closeEV : closeEV = TRUE

smManeuvering guards4 : doorsClosed = FALSE

smManeuvering guards12 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event waitClosedRet =̂

extends waitClosedRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin closeEV : closeEV = TRUE

smManeuvering guards4 : doorsClosed = FALSE

smManeuvering guards12 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event waitOpenExt =̂

extends waitOpenExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

guards2 : doorsOpen = FALSE

smOpenEV guards2 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event waitOpenRet =̂

extends waitOpenRet
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when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

guards2 : doorsOpen = FALSE

smOpenEV guards2 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event startGearExt =̂

extends startGearExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

guards4 : doorsOpen = TRUE

smOpenEV guards3 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave DoorsOpening : DoorsOpening := FALSE

enter GearsManeuvering : GearsManeuvering := TRUE

enter extendEV : extendEV := TRUE
end

Event startGearRet =̂

extends startGearRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE
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isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

guards4 : doorsOpen = TRUE

smOpenEV guards5 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave DoorsOpening : DoorsOpening := FALSE

enter GearsManeuvering : GearsManeuvering := TRUE

enter retractEV : retractEV := TRUE
end

Event fDoorsNotOpen =̂

extends fDoorsNotOpen

when

isin Control : Control = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smOpenEV guards1 : doorsOpen = FALSE
then

leave Control : Control := FALSE

enter Block : Block := TRUE

leave NormalMode : NormalMode := FALSE

leave generalEV : generalEV := FALSE

leave Maneuvering : Maneuvering := FALSE

leave openEV : openEV := FALSE

leave GearsManeuvering : GearsManeuvering := FALSE

enter FailureMode : FailureMode := TRUE

leave retractEV : retractEV := FALSE

leave PendingContrGear : PendingContrGear := FALSE

leave extendEV : extendEV := FALSE
end

Event fDoorsUnlockedRet =̂

extends fDoorsUnlockedRet

when

isin Control : Control = TRUE

isin Retracted : Retracted = TRUE

smNormalMode guards3 : doorsClosed = FALSE
then

leave Control : Control := FALSE

enter Block : Block := TRUE

leave NormalMode : NormalMode := FALSE

leave Retracted : Retracted := FALSE

enter FailureMode : FailureMode := TRUE
end

Event fDoorsUnlockedExt =̂

extends fDoorsUnlockedExt
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when

isin Control : Control = TRUE

isin Extended : Extended = TRUE

smNormalMode guards6 : doorsClosed = FALSE
then

leave Control : Control := FALSE

enter Block : Block := TRUE

leave NormalMode : NormalMode := FALSE

leave Extended : Extended := FALSE

enter FailureMode : FailureMode := TRUE
end

Event fDoorsUnlockedStart =̂

extends fDoorsUnlockedStart

when

isin Control : Control = TRUE

isin PendingStart : PendingStart = TRUE

smGeneralEV guards7 : doorsClosed = FALSE
then

leave Control : Control := FALSE

enter Block : Block := TRUE

leave NormalMode : NormalMode := FALSE

leave generalEV : generalEV := FALSE

leave PendingStart : PendingStart := FALSE

enter FailureMode : FailureMode := TRUE
end

Event fDoorsUnlockedStop =̂

extends fDoorsUnlockedStop

when

isin Control : Control = TRUE

isin PendingStop : PendingStop = TRUE

smGeneralEV guards8 : doorsClosed = FALSE
then

leave Control : Control := FALSE

enter Block : Block := TRUE

leave NormalMode : NormalMode := FALSE

leave generalEV : generalEV := FALSE

leave PendingStop : PendingStop := FALSE

enter FailureMode : FailureMode := TRUE
end

Event delayOpenExt =̂

extends delayOpenExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE
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isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards2 : tContrDoor < CONTR INTERVAL

isin PendingOpen : PendingOpen = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

smManeuvering actions2 : tContrDoor := tContrDoor + 1
end

Event delayOpenRet =̂

extends delayOpenRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards2 : tContrDoor < CONTR INTERVAL

isin PendingOpen : PendingOpen = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

smManeuvering actions2 : tContrDoor := tContrDoor + 1
end

Event delayCloseExt =̂

extends delayCloseExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards2 : tContrDoor < CONTR INTERVAL

isin PendingClose : PendingClose = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

smManeuvering actions2 : tContrDoor := tContrDoor + 1
end

Event delayCloseRet =̂

extends delayCloseRet
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when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards2 : tContrDoor < CONTR INTERVAL

isin PendingClose : PendingClose = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

smManeuvering actions2 : tContrDoor := tContrDoor + 1
end

Event waitExtended =̂

extends stayDown

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE

isin extendEV : extendEV = TRUE

guards6 : gearsExtended = FALSE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event waitRetracted =̂

extends stayUp

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE

isin retractEV : retractEV = TRUE
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guards7 : gearsRetracted = FALSE
then

leave Control : Control := FALSE

enter Read : Read := TRUE
end

Event delayExtend =̂

extends stayDown

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE

isin PendingContrGear : PendingContrGear = TRUE

smControl guards2 : tContrGear < CONTR INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

smControl actions1 : tContrGear := tContrGear + 1
end

Event delayRetract =̂

extends stayDown

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE

isin PendingContrGear : PendingContrGear = TRUE

smControl guards2 : tContrGear < CONTR INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

smControl actions1 : tContrGear := tContrGear + 1
end

Event cancelExtend =̂

extends switchUp

when
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isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE

isin extendEV : extendEV = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave extendEV : extendEV := FALSE

enter PendingContrGear : PendingContrGear := TRUE

actions6 : tContrGear := 1
end

Event cancelRetract =̂

extends switchDown

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE

isin retractEV : retractEV = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave retractEV : retractEV := FALSE

enter PendingContrGear : PendingContrGear := TRUE

actions5 : tContrGear := 1
end

Event doExtend =̂

extends stayDown

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE
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isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE

isin PendingContrGear : PendingContrGear = TRUE

guards8 : tContrGear ≥ CONTR INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrGear : PendingContrGear := FALSE

enter extendEV : extendEV := TRUE
end

Event doRetract =̂

extends stayUp

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE

isin PendingContrGear : PendingContrGear = TRUE

guards9 : tContrGear ≥ CONTR INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrGear : PendingContrGear := FALSE

enter retractEV : retractEV := TRUE
end

Event resumeExt =̂

extends switchDown

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE
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isin PendingContrGear : PendingContrGear = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrGear : PendingContrGear := FALSE

enter extendEV : extendEV := TRUE
end

Event resumeRet =̂

extends switchUp

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE

isin PendingContrGear : PendingContrGear = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrGear : PendingContrGear := FALSE

enter retractEV : retractEV := TRUE
end

Event fDoorsNotOpenGearsUnlocked =̂

refines fail

when

isin Control : Control = TRUE

isin openEV : openEV = TRUE

smManeuvering guards8 : doorsOpen = FALSE ∧
gearsRetracted = FALSE ∧ gearsExtended = FALSE

then

leave Control : Control := FALSE

enter Block : Block := TRUE

leave NormalMode : NormalMode := FALSE

leave generalEV : generalEV := FALSE

leave Maneuvering : Maneuvering := FALSE

leave retractEV : retractEV := FALSE

leave PendingContrGear : PendingContrGear := FALSE

leave extendEV : extendEV := FALSE
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leave GearsManeuvering : GearsManeuvering := FALSE

leave DoorsOpening : DoorsOpening := FALSE

leave openEV : openEV := FALSE

enter FailureMode : FailureMode := TRUE
end

Event fGearsUnlocked =̂

refines fail

when

isin Control : Control = TRUE

isin closeEV : closeEV = TRUE

smManeuvering guards11 : gearsRetracted = FALSE ∧
gearsExtended = FALSE

then

leave Control : Control := FALSE

enter Block : Block := TRUE

leave NormalMode : NormalMode := FALSE

leave generalEV : generalEV := FALSE

leave Maneuvering : Maneuvering := FALSE

leave closeEV : closeEV := FALSE

enter FailureMode : FailureMode := TRUE
end

END

D.2.9 Sixth Refinement mch7

MACHINE mch7

REFINES mch6

SEES ctx2

VARIABLES

Read

Read sm1 S1

Read sm1 S2

Control

Block

FailureMode

PendingClose

PendingOpen

PendingContrDoor

retractEV

PendingContrGear

extendEV

GearsManeuvering

DoorsOpening

openEV
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closeEV

Maneuvering

PendingStart

PendingStop

generalEV

Extended

Retracted

NormalMode

HandleDown

HandleUp

handle

tStart

tStop

tContrDoor

doorsOpen

doorsClosed

tContrGear

gearsExtended

gearsRetracted
INVARIANTS

typeof Read sm1 S1 : Read sm1 S1 ∈ BOOL

typeof Read sm1 S2 : Read sm1 S2 ∈ BOOL

distinct states in Read sm1 : (Read = TRUE )⇒
partition({TRUE}, {Read sm1 S1} ∩ {TRUE}, {Read sm1 S2} ∩ {TRUE})
Read sm1 S1 substateof Read : (Read sm1 S1 = TRUE )⇒ (Read = TRUE )

Read sm1 S2 substateof Read : (Read sm1 S2 = TRUE )⇒ (Read = TRUE )

R21 : Read = TRUE ∧ handle = TRUE ⇒ retractEV = FALSE

if the landing gear command handle remains in the DOWN position,

then retraction sequence is not observed
R22 : Read = TRUE ∧ handle = FALSE ⇒ extendEV = FALSE

if the landing gear command handle remains in the UP position,

then outgoing sequence is not observed
R311 : Read = TRUE ∧ extendEV = TRUE ⇒ doorsOpen = TRUE

the stimulation of the gears outgoing electro-valves can only happen

when the three doors are locked open
R312 : Read = TRUE ∧ retractEV = TRUE ⇒ doorsOpen = TRUE

the stimulation of the retraction electro-valves can only happen when

the three doors are locked open
R321 : Read = TRUE ∧ closeEV = TRUE ⇒

gearsRetracted = TRUE ∨ gearsExtended = TRUE

the stimulation of the doors closure electro-valves can only happen

when the three gears are locked down or up
R322 : Read = TRUE ∧ openEV = TRUE ∧ doorsOpen 6= TRUE ⇒

gearsRetracted = TRUE ∨ gearsExtended = TRUE

the stimulation of the doors opening electro-valves can only happen

when the three gears are locked down or up
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R41 : ¬ (openEV = TRUE ∧ closeEV = TRUE )

opening and closure doors electro-valves are not

stimulated simultaneously
R42 : ¬ (retractEV = TRUE ∧ extendEV = TRUE )

outgoing and retraction gears electro-valves are not

stimulated simultaneously
R511 : openEV = TRUE ⇒ generalEV = TRUE

it is not possible to stimulate the opening electro-valve without

stimulating the general electro-valve
R512 : closeEV = TRUE ⇒ generalEV = TRUE

it is not possible to stimulate the closure electro-valve without

stimulating the general electro-valve
R521 : extendEV = TRUE ⇒ generalEV = TRUE

it is not possible to stimulate the outgoing electro-valve without

stimulating the general electro-valve
R522 : retractEV = TRUE ⇒ generalEV = TRUE

it is not possible to stimulate the retraction electro-valve without

stimulating the general electro-valve
EVENTS

Initialisation

extended

begin

init HandleUp : HandleUp := TRUE

init HandleDown : HandleDown := FALSE

init NormalMode : NormalMode := TRUE

init FailureMode : FailureMode := FALSE

init Read : Read := TRUE

init Block : Block := FALSE

init Control : Control := FALSE

act1 : handle := FALSE

init Retracted : Retracted := TRUE

init generalEV : generalEV := FALSE

init Extended : Extended := FALSE

init Maneuvering : Maneuvering := FALSE

init PendingStart : PendingStart := FALSE

init PendingStop : PendingStop := FALSE

act2 : tStart := 0

act3 : tStop := 0

init PendingContrDoor : PendingContrDoor := FALSE

init openEV : openEV := FALSE

init closeEV : closeEV := FALSE

act4 : tContrDoor := 0

init PendingClose : PendingClose := FALSE

init PendingOpen : PendingOpen := FALSE

init GearsManeuvering : GearsManeuvering := FALSE

init DoorsOpening : DoorsOpening := FALSE

act5 : doorsOpen := FALSE
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act6 : doorsClosed := TRUE

init retractEV : retractEV := FALSE

init PendingContrGear : PendingContrGear := FALSE

init extendEV : extendEV := FALSE

act7 : tContrGear := 0

act8 : gearsExtended := FALSE

act9 : gearsRetracted := TRUE

init Read sm1 S1 : Read sm1 S1 := TRUE

init Read sm1 S2 : Read sm1 S2 := FALSE
end

Event readInput =̂

extends readInput

any

h handle position (TRUE = down, FALSE = up)

dc doors closed

do doors open

gr gears retracted

ge gears extended
where

isin Read : Read = TRUE

h type : h ∈ BOOL

dc type : dc ∈ BOOL

do type : do ∈ BOOL

gr type : gr ∈ BOOL

ge type : ge ∈ BOOL

isin Read sm1 S1 : Read sm1 S1 = TRUE
then

leave Read : Read := FALSE

enter Control : Control := TRUE

smFMU actions1 : handle := h

smFMU actions3 : doorsClosed := dc

smFMU actions2 : doorsOpen := do

smFMU actions5 : gearsRetracted := gr

smFMU actions4 : gearsExtended := ge

leave Read sm1 S1 : Read sm1 S1 := FALSE
end

Event extend =̂

extends extend

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Retracted : Retracted = TRUE

smNormalMode guards8 : doorsClosed = TRUE
then
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leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Retracted : Retracted := FALSE

enter generalEV : generalEV := TRUE

enter PendingStart : PendingStart := TRUE

smNormalMode actions1 : tStart := 1

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event retract =̂

extends retract

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Extended : Extended = TRUE

smNormalMode guards7 : doorsClosed = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Extended : Extended := FALSE

enter generalEV : generalEV := TRUE

enter PendingStart : PendingStart := TRUE

smNormalMode actions2 : tStart := 1

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event keepRet =̂

extends keepRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Retracted : Retracted = TRUE

smNormalMode guards4 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event keepExt =̂

extends keepExt
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when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin Extended : Extended = TRUE

smNormalMode guards5 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event setRet =̂

extends setRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE

smNormalMode guards1 : tStop ≥ STOP INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE

enter Retracted : Retracted := TRUE

leave PendingStop : PendingStop := FALSE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event cancelExt =̂

extends cancelExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

smGeneralEV guards6 : doorsClosed = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE
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enter Retracted : Retracted := TRUE

leave PendingStart : PendingStart := FALSE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event setExt =̂

extends setExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE

smNormalMode guards2 : tStop ≥ STOP INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE

enter Extended : Extended := TRUE

leave PendingStop : PendingStop := FALSE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event cancelRet =̂

extends cancelRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

smGeneralEV guards4 : doorsClosed = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave generalEV : generalEV := FALSE

enter Extended : Extended := TRUE

leave PendingStart : PendingStart := FALSE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event startExt =̂

extends startExt

when

isin HandleDown : HandleDown = TRUE
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smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

guards3 : tStart ≥ START INTERVAL

smGeneralEV guards9 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingStart : PendingStart := FALSE

enter Maneuvering : Maneuvering := TRUE

enter openEV : openEV := TRUE

enter DoorsOpening : DoorsOpening := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event startRet =̂

extends startRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

guards3 : tStart ≥ START INTERVAL

smGeneralEV guards9 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingStart : PendingStart := FALSE

enter Maneuvering : Maneuvering := TRUE

enter openEV : openEV := TRUE

enter DoorsOpening : DoorsOpening := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event endExt =̂

extends endExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE
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isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin closeEV : closeEV = TRUE

smGeneralEV guards2 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave closeEV : closeEV := FALSE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event endRet =̂

extends endRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin closeEV : closeEV = TRUE

smGeneralEV guards2 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave closeEV : closeEV := FALSE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event undoExt =̂

extends undoExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE
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leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingStop : PendingStop := FALSE

enter Maneuvering : Maneuvering := TRUE

enter PendingContrDoor : PendingContrDoor := TRUE

smGeneralEV actions1 : tContrDoor := tStop

enter PendingOpen : PendingOpen := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event undoRet =̂

extends undoRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingStop : PendingStop := FALSE

enter Maneuvering : Maneuvering := TRUE

enter PendingContrDoor : PendingContrDoor := TRUE

smGeneralEV actions1 : tContrDoor := tStop

enter PendingOpen : PendingOpen := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event delayExt =̂

extends delayExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

guards1 : tStart < START INTERVAL

smGeneralEV guards3 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

actions1 : tStart := tStart + 1

enter Read sm1 S2 : Read sm1 S2 := TRUE
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end

Event delayRet =̂

extends delayRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStart : PendingStart = TRUE

guards1 : tStart < START INTERVAL

smGeneralEV guards3 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

actions1 : tStart := tStart + 1

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event delaySetExt =̂

extends delaySetExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE

smGeneralEV guards1 : tStop < STOP INTERVAL

smGeneralEV guards5 : doorsClosed = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

actions2 : tStop := tStop + 1

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event delaySetRet =̂

extends delaySetRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin PendingStop : PendingStop = TRUE

smGeneralEV guards1 : tStop < STOP INTERVAL

smGeneralEV guards5 : doorsClosed = TRUE
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then

leave Control : Control := FALSE

enter Read : Read := TRUE

actions2 : tStop := tStop + 1

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event resumeEndExt =̂

extends resumeEndExt

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin PendingContrDoor : PendingContrDoor = TRUE

isin PendingOpen : PendingOpen = TRUE

smManeuvering guards5 : doorsClosed = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave PendingContrDoor : PendingContrDoor := FALSE

leave PendingOpen : PendingOpen := FALSE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event resumeEndRet =̂

extends resumeEndRet

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin PendingContrDoor : PendingContrDoor = TRUE

isin PendingOpen : PendingOpen = TRUE

smManeuvering guards5 : doorsClosed = TRUE
then

leave HandleDown : HandleDown := FALSE
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enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave PendingContrDoor : PendingContrDoor := FALSE

leave PendingOpen : PendingOpen := FALSE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event abortOpenExt =̂

extends abortOpenExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

smManeuvering guards6 : doorsClosed = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave openEV : openEV := FALSE

leave DoorsOpening : DoorsOpening := FALSE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event abortOpenRet =̂

extends abortOpenRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

guards2 : tStop < STOP INTERVAL

isin openEV : openEV = TRUE
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isin DoorsOpening : DoorsOpening = TRUE

smManeuvering guards6 : doorsClosed = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave Maneuvering : Maneuvering := FALSE

enter PendingStop : PendingStop := TRUE

actions3 : tStop := 1

leave openEV : openEV := FALSE

leave DoorsOpening : DoorsOpening := FALSE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event closeExt =̂

extends closeExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards3 : tContrDoor ≥ CONTR INTERVAL

isin PendingClose : PendingClose = TRUE

smManeuvering guards13 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter closeEV : closeEV := TRUE

leave PendingClose : PendingClose := FALSE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event closeRet =̂

extends closeRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE
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smManeuvering guards3 : tContrDoor ≥ CONTR INTERVAL

isin PendingClose : PendingClose = TRUE

smManeuvering guards13 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter closeEV : closeEV := TRUE

leave PendingClose : PendingClose := FALSE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event cancelCloseExt =̂

extends cancelCloseExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin closeEV : closeEV = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave closeEV : closeEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions3 : tContrDoor := 1

enter PendingOpen : PendingOpen := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event cancelCloseRet =̂

extends cancelCloseRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin closeEV : closeEV = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE
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enter Read : Read := TRUE

leave closeEV : closeEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions3 : tContrDoor := 1

enter PendingOpen : PendingOpen := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event recloseExt =̂

extends recloseExt

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

isin PendingOpen : PendingOpen = TRUE

smManeuvering guards14 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter closeEV : closeEV := TRUE

leave PendingOpen : PendingOpen := FALSE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event recloseRet =̂

extends recloseRet

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

isin PendingOpen : PendingOpen = TRUE

smManeuvering guards14 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE
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leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter closeEV : closeEV := TRUE

leave PendingOpen : PendingOpen := FALSE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event endOpenExt =̂

extends endOpenExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

guards5 : doorsOpen = TRUE

isin extendEV : extendEV = TRUE

smOpenEV guards4 : gearsExtended = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave openEV : openEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions1 : tContrDoor := 1

leave GearsManeuvering : GearsManeuvering := FALSE

enter PendingClose : PendingClose := TRUE

leave extendEV : extendEV := FALSE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event endOpenRet =̂

extends endOpenRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

guards5 : doorsOpen = TRUE

isin retractEV : retractEV = TRUE

guards10 : gearsRetracted = TRUE
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then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave openEV : openEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions1 : tContrDoor := 1

leave GearsManeuvering : GearsManeuvering := FALSE

enter PendingClose : PendingClose := TRUE

leave retractEV : retractEV := FALSE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event cancelOpenExt =̂

extends cancelOpenExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

smManeuvering guards7 : doorsClosed = FALSE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave openEV : openEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions1 : tContrDoor := 1

leave DoorsOpening : DoorsOpening := FALSE

enter PendingClose : PendingClose := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event cancelOpenRet =̂

extends cancelOpenRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE
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smManeuvering guards7 : doorsClosed = FALSE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave openEV : openEV := FALSE

enter PendingContrDoor : PendingContrDoor := TRUE

smManeuvering actions1 : tContrDoor := 1

leave DoorsOpening : DoorsOpening := FALSE

enter PendingClose : PendingClose := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event reopenExt =̂

extends reopenExt

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

isin PendingClose : PendingClose = TRUE

smManeuvering guards9 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter openEV : openEV := TRUE

leave PendingClose : PendingClose := FALSE

enter DoorsOpening : DoorsOpening := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event reopenRet =̂

extends reopenRet

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE
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isin PendingContrDoor : PendingContrDoor = TRUE

isin PendingClose : PendingClose = TRUE

smManeuvering guards9 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter openEV : openEV := TRUE

leave PendingClose : PendingClose := FALSE

enter DoorsOpening : DoorsOpening := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event openExt =̂

extends openExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards1 : tContrDoor ≥ CONTR INTERVAL

isin PendingOpen : PendingOpen = TRUE

smManeuvering guards10 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter openEV : openEV := TRUE

leave PendingOpen : PendingOpen := FALSE

enter DoorsOpening : DoorsOpening := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event openRet =̂

extends openRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE
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isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards1 : tContrDoor ≥ CONTR INTERVAL

isin PendingOpen : PendingOpen = TRUE

smManeuvering guards10 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrDoor : PendingContrDoor := FALSE

enter openEV : openEV := TRUE

leave PendingOpen : PendingOpen := FALSE

enter DoorsOpening : DoorsOpening := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event waitClosedExt =̂

extends waitClosedExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin closeEV : closeEV = TRUE

smManeuvering guards4 : doorsClosed = FALSE

smManeuvering guards12 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event waitClosedRet =̂

extends waitClosedRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin closeEV : closeEV = TRUE

smManeuvering guards4 : doorsClosed = FALSE

smManeuvering guards12 : gearsRetracted = TRUE ∨
gearsExtended = TRUE
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then

leave Control : Control := FALSE

enter Read : Read := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event waitOpenExt =̂

extends waitOpenExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

guards2 : doorsOpen = FALSE

smOpenEV guards2 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event waitOpenRet =̂

extends waitOpenRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

guards2 : doorsOpen = FALSE

smOpenEV guards2 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event startGearExt =̂

extends startGearExt

when
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isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

guards4 : doorsOpen = TRUE

smOpenEV guards3 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave DoorsOpening : DoorsOpening := FALSE

enter GearsManeuvering : GearsManeuvering := TRUE

enter extendEV : extendEV := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event startGearRet =̂

extends startGearRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin DoorsOpening : DoorsOpening = TRUE

guards4 : doorsOpen = TRUE

smOpenEV guards5 : gearsRetracted = TRUE ∨
gearsExtended = TRUE

then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave DoorsOpening : DoorsOpening := FALSE

enter GearsManeuvering : GearsManeuvering := TRUE

enter retractEV : retractEV := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event fDoorsNotOpen =̂

extends fDoorsNotOpen

when

isin Control : Control = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE
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smOpenEV guards1 : doorsOpen = FALSE
then

leave Control : Control := FALSE

enter Block : Block := TRUE

leave NormalMode : NormalMode := FALSE

leave generalEV : generalEV := FALSE

leave Maneuvering : Maneuvering := FALSE

leave openEV : openEV := FALSE

leave GearsManeuvering : GearsManeuvering := FALSE

enter FailureMode : FailureMode := TRUE

leave retractEV : retractEV := FALSE

leave PendingContrGear : PendingContrGear := FALSE

leave extendEV : extendEV := FALSE
end

Event fDoorsUnlockedRet =̂

extends fDoorsUnlockedRet

when

isin Control : Control = TRUE

isin Retracted : Retracted = TRUE

smNormalMode guards3 : doorsClosed = FALSE
then

leave Control : Control := FALSE

enter Block : Block := TRUE

leave NormalMode : NormalMode := FALSE

leave Retracted : Retracted := FALSE

enter FailureMode : FailureMode := TRUE
end

Event fDoorsUnlockedExt =̂

extends fDoorsUnlockedExt

when

isin Control : Control = TRUE

isin Extended : Extended = TRUE

smNormalMode guards6 : doorsClosed = FALSE
then

leave Control : Control := FALSE

enter Block : Block := TRUE

leave NormalMode : NormalMode := FALSE

leave Extended : Extended := FALSE

enter FailureMode : FailureMode := TRUE
end

Event fDoorsUnlockedStart =̂

extends fDoorsUnlockedStart

when

isin Control : Control = TRUE

isin PendingStart : PendingStart = TRUE

smGeneralEV guards7 : doorsClosed = FALSE
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then

leave Control : Control := FALSE

enter Block : Block := TRUE

leave NormalMode : NormalMode := FALSE

leave generalEV : generalEV := FALSE

leave PendingStart : PendingStart := FALSE

enter FailureMode : FailureMode := TRUE
end

Event fDoorsUnlockedStop =̂

extends fDoorsUnlockedStop

when

isin Control : Control = TRUE

isin PendingStop : PendingStop = TRUE

smGeneralEV guards8 : doorsClosed = FALSE
then

leave Control : Control := FALSE

enter Block : Block := TRUE

leave NormalMode : NormalMode := FALSE

leave generalEV : generalEV := FALSE

leave PendingStop : PendingStop := FALSE

enter FailureMode : FailureMode := TRUE
end

Event delayOpenExt =̂

extends delayOpenExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards2 : tContrDoor < CONTR INTERVAL

isin PendingOpen : PendingOpen = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

smManeuvering actions2 : tContrDoor := tContrDoor + 1

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event delayOpenRet =̂

extends delayOpenRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE
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isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards2 : tContrDoor < CONTR INTERVAL

isin PendingOpen : PendingOpen = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

smManeuvering actions2 : tContrDoor := tContrDoor + 1

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event delayCloseExt =̂

extends delayCloseExt

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards2 : tContrDoor < CONTR INTERVAL

isin PendingClose : PendingClose = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

smManeuvering actions2 : tContrDoor := tContrDoor + 1

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event delayCloseRet =̂

extends delayCloseRet

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin PendingContrDoor : PendingContrDoor = TRUE

smManeuvering guards2 : tContrDoor < CONTR INTERVAL

isin PendingClose : PendingClose = TRUE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

smManeuvering actions2 : tContrDoor := tContrDoor + 1
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enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event waitExtended =̂

extends waitExtended

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE

isin extendEV : extendEV = TRUE

guards6 : gearsExtended = FALSE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event waitRetracted =̂

extends waitRetracted

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE

isin retractEV : retractEV = TRUE

guards7 : gearsRetracted = FALSE
then

leave Control : Control := FALSE

enter Read : Read := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event delayExtend =̂

extends delayExtend

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE
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isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE

isin PendingContrGear : PendingContrGear = TRUE

smControl guards2 : tContrGear < CONTR INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

smControl actions1 : tContrGear := tContrGear + 1

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event delayRetract =̂

extends delayRetract

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE

isin PendingContrGear : PendingContrGear = TRUE

smControl guards2 : tContrGear < CONTR INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

smControl actions1 : tContrGear := tContrGear + 1

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event cancelExtend =̂

extends cancelExtend

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE
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isin extendEV : extendEV = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave extendEV : extendEV := FALSE

enter PendingContrGear : PendingContrGear := TRUE

actions6 : tContrGear := 1

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event cancelRetract =̂

extends cancelRetract

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE

isin retractEV : retractEV = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave retractEV : retractEV := FALSE

enter PendingContrGear : PendingContrGear := TRUE

actions5 : tContrGear := 1

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event doExtend =̂

extends doExtend

when

isin HandleDown : HandleDown = TRUE

smHandle guards3 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE

isin PendingContrGear : PendingContrGear = TRUE
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guards8 : tContrGear ≥ CONTR INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrGear : PendingContrGear := FALSE

enter extendEV : extendEV := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event doRetract =̂

extends doRetract

when

isin HandleUp : HandleUp = TRUE

smHandle guards1 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE

isin PendingContrGear : PendingContrGear = TRUE

guards9 : tContrGear ≥ CONTR INTERVAL
then

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrGear : PendingContrGear := FALSE

enter retractEV : retractEV := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event resumeExt =̂

extends resumeExt

when

isin HandleUp : HandleUp = TRUE

smHandle guards2 : handle = TRUE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE

isin PendingContrGear : PendingContrGear = TRUE
then

leave HandleUp : HandleUp := FALSE

enter HandleDown : HandleDown := TRUE

leave Control : Control := FALSE
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enter Read : Read := TRUE

leave PendingContrGear : PendingContrGear := FALSE

enter extendEV : extendEV := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event resumeRet =̂

extends resumeRet

when

isin HandleDown : HandleDown = TRUE

smHandle guards4 : handle = FALSE

isin NormalMode : NormalMode = TRUE

isin Control : Control = TRUE

isin generalEV : generalEV = TRUE

isin Maneuvering : Maneuvering = TRUE

isin openEV : openEV = TRUE

isin GearsManeuvering : GearsManeuvering = TRUE

smControl guards1 : doorsOpen = TRUE

isin PendingContrGear : PendingContrGear = TRUE
then

leave HandleDown : HandleDown := FALSE

enter HandleUp : HandleUp := TRUE

leave Control : Control := FALSE

enter Read : Read := TRUE

leave PendingContrGear : PendingContrGear := FALSE

enter retractEV : retractEV := TRUE

enter Read sm1 S2 : Read sm1 S2 := TRUE
end

Event fDoorsNotOpenGearsUnlocked =̂

extends fDoorsNotOpenGearsUnlocked

when

isin Control : Control = TRUE

isin openEV : openEV = TRUE

smManeuvering guards8 : doorsOpen = FALSE ∧
gearsRetracted = FALSE ∧ gearsExtended = FALSE

then

leave Control : Control := FALSE

enter Block : Block := TRUE

leave NormalMode : NormalMode := FALSE

leave generalEV : generalEV := FALSE

leave Maneuvering : Maneuvering := FALSE

leave retractEV : retractEV := FALSE

leave PendingContrGear : PendingContrGear := FALSE

leave extendEV : extendEV := FALSE

leave GearsManeuvering : GearsManeuvering := FALSE

leave DoorsOpening : DoorsOpening := FALSE

leave openEV : openEV := FALSE
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enter FailureMode : FailureMode := TRUE
end

Event fGearsUnlocked =̂

extends fGearsUnlocked

when

isin Control : Control = TRUE

isin closeEV : closeEV = TRUE

smManeuvering guards11 : gearsRetracted = FALSE ∧
gearsExtended = FALSE

then

leave Control : Control := FALSE

enter Block : Block := TRUE

leave NormalMode : NormalMode := FALSE

leave generalEV : generalEV := FALSE

leave Maneuvering : Maneuvering := FALSE

leave closeEV : closeEV := FALSE

enter FailureMode : FailureMode := TRUE
end

Event wait =̂

when

isin Read sm1 S2 : Read sm1 S2 = TRUE
then

leave Read sm1 S2 : Read sm1 S2 := FALSE

enter Read sm1 S1 : Read sm1 S1 := TRUE
end

END
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