

Dataset: 22 nm bulk FinFET Total Ionizing Dose simulation

Eleni Chatzikyriakou*, C.H. de Groot

September 18, 2018

Electronics and Computer Science, University of Southampton SO17 1BJ
UK *e-mail: elchatz@auth.gr

Abstract

Total Ionizing Dose is simulated using the gamma radiation model in a 22 nm FinFET device in Synopsys Sentaurus TCAD. Charge transport and trapping are activated in the field oxides.

Code availability

This work is licensed under version 4.0 of the Creative Commons CC-BY license.

Description

'22nm_FinFET_Id_Vg.gzp' contains Current-Voltage calibration to characteristics of 22nm commercial FinFET node.

'22nm_FinFET_Radiation.gzp' contains 3D gamma radiation simulations of the device under zero bias. Gamma radiation, charge transport and trapping are activated in the bulk oxides.

Usage Notes

All files are workbench projects which were extracted with openssl encryption and no key.

The process simulation runs fine on version H-2013.03 of Sentaurus TCAD.

Citing

Chatzikyriakou, E., Potter, K., Redman-White, W., & De Groot, C. H. (2017). Three-dimensional Finite Elements Method simulation of Total Ionizing Dose in 22 nm bulk nFinFETs. *Nuclear Instruments and Methods in Physics Research*,

Section B: Beam Interactions with Materials and Atoms, 393, 39–43.
<https://doi.org/10.1016/j.nimb.2016.09.007>

Acknowledgements

The authors acknowledge the support of the UK Engineering and Physical Sciences Research Council (EPSRC) award 1304067 as well as the use of the IRIDIS High Performance Computing Facility, and associated support services at the University of Southampton.