
  

 
 

Abstract: The developments in positioning and mobile 

communication technology have made the location-based service 

(LBS) applications more and more popular. For privacy reasons 

and due to lack of trust in the LBS providers, k-anonymity and 

l-diversity techniques have been widely used to preserve privacy of 

users in distributed LBS architectures in Internet of Things (IoT). 
However, in reality, there are scenarios where the locations of users 

are identical or similar/near each other in IoT. In such scenarios the 

k locations selected by k-anonymity technique are the same and 

location privacy can be easily compromised or leaked. To address 

the issue of privacy preservation, in this paper, we introduce the 

location labels to distinguish locations of mobile users to sensitive 

and ordinary locations. We design a location-label based (LLB) 

algorithm for protecting location privacy of users while minimizing 

the response time for LBS requests. We also evaluate the 

performance and validate the correctness of the proposed algorithm 

through extensive simulations.  

Key words: Location-based service (LBS); K-anonymity; 

Location privacy; Location-label; Sensitive location 

1.  INTRODUCTION 
   Internet of Things (IoT) has become popular and pervasive 

in our day-to-day life. Since more devices and people can be 

connected to each other, substantial development can lead to 

the emerging smart cities and big data applications. With an 

increasing adoption in IoT, privacy preservation has become 

a major challenge [1, 2], since locations and actions of each 

user in IoT services can be tracked and even monitored. Due 

to the developments of mobile communication and 

positioning technologies, applications of location-based 

services (LBS) [3, 4] have been expanded rapidly and more 

people make use of these services. As we know, LBS 

application system in IoT has been involved in various fields, 

such as transportation, medical treatment, travel, social 

networking, entertainment, etc. Furthermore, the mobile 

communication technology is developing at a very high 

speed. For example, when the 2G era has quietly left us and 

the 3G networks have not yet fully popularized the mass, the 

new and fast 4G network has entered the lives of most 

people. And the life of people totally depends on the rapid 

development of the Internet. In the environment of a 

wireless communication network (e.g. WiFi, 3G, 4G), the 

users can easily request the LBS services with handheld 

terminals (e.g. Tablet or Smart Phone) [5].  

After receiving a LBS request, the LBS provider (LP) 

responds to the request according to the user location 

information and the requested content. For example, a user 

submits the request “where is the nearest supermarket”. 

Then the LP returned the address of the nearest supermarket 

and other relevant information to the user. The typical LBS 

system model [6] is shown in Figure 1. 

   Although users enjoy the conveniences of the services 

provided by the LBS providers in IoT, there is a potential 

security risk of losing their privacy [7, 8]. For example, the 

privacy of location or trajectory may be leaked to other 

parties [9-11]. Then they are vulnerable to be exploited by 

the malicious attacker, so as to damage the vital interests of 

the users. For example, if the malicious attackers have 

known users’ location privacy and other privacies, they can 

easily get to know more comprehensive information with 

some analysis. Then they can defraud the property of the 

users through the Internet or telecom fraud. And furthermore 

people increasingly focuses on their own privacy security 

problems. Therefore, the problem of privacy protection in 

LBS in Internet of things needs to be solved. 
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Fig. 1: The typical LBS system 

  There are many solutions (e.g. encryption [12], Anonymity 

[13]) have been proposed to protect users’ personal privacy. 

In the existing research, the authors studied the problem of 

protecting users’ location privacy under the scenario of 

single LBS query and the users located at different locations. 

The k-anonymity [14] and the pseudo-ID technique [15] are 

effective techniques to protect user location privacy in single 

LBS query. The authors in [16-18] also provided solutions to 

solve the problem of privacy preservation by using 

k-anonymity. In this way, before sending a query to the LP, 

the user merges other k-1 user queries and then submits the 

mixed query to the LP. However, the LP can easily get the 

requested contents of users when the requested contents of 

the k users are similar to each other. Using data analysis and 

data mining, the LP can infer more information about users, 

such as common interests and hobbies. To combat this 

deficiency, researchers introduced the concept of l-diversity 

[19] to protect the requested contents or preference privacy 
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[20]. In these method, all LBS queries can be classified into 

different categories (e.g., medical, traffic, entertainment, etc.) 

according to the requested contents. The privacy preserving 

framework for local-area mobile social networks (PLAM) 

[20] adopts k-anonymity and l-diversity to protect location 

and preference privacy of users. As shown in Figure 2(a), 

there exists 6 users (i.e., k=6) who are distributed in different 

locations requesting 3 services (i.e., l=3). Then the LBS 

provider cannot link a specific service/location to a user. 

Thus, the PLAM method can protect the location and 

preference privacy when the users’ locations are different. 

However, consider the scenario in Figure 2(b) where the k 

users have the same location and send requests together to 

the LP. Although the PLAM can protect the preference 

privacy of users with l-diversity technique, the LP can know 

that the k users are in the same location and the location 

privacy is leaked. Therefore, PLAM cannot protect location 

privacy when the users have the same locations, especially 

in some locations such as supermarket, school and hospital 

where the probability of selecting the same location with 

k-anonymity technology is very high. 

   Furthermore, in real applications, users may send requests 

continuously for a period of time and the users’ locations 

may be nearby with each other or even identical. Because of 

the correlation of various positions in continuous queries, it 

is more difficult to protect users’ privacies, especially the 

trajectory privacy. Thus, protecting the users’ privacies (e.g. 

location privacy, trajectory privacy, preference privacy) 

while the users’ locations are the same both in continuous 

and single request is an important issue left to address.  

k-anonymity l-diversity l-diversity

(a)location privacy protected (b)location privacy inferred 

k-anonymity

users
services servicesusers

Fig. 2:  Same vs. different k locations 

   In this paper, we study the problem of privacy protection 

for users within the same locations both in single request and 

continuous request. We introduce the location label into our 

proposed algorithm for efficiently protecting the location 

privacy, preference privacy and trajectory privacy of users. 

The location label based algorithm is not only suitable for 

single request, but also applicable for continuous request. 

The main contributions of this paper are as follows. 

 We introduce the location label to classify all locations 

into sensitive locations and ordinary locations. Due to 

the dense population at sensitive locations, the locations 

selected by k-anonymity are much more identical than 

that of the scenario of ordinary locations.  

 Considering the locations of k users are nearby with each 

other or identical, we propose a location label based 

(LLB) algorithm for privacy preservation under the 

scenario where the locations of k users are nearby, 

similar or identical. For a single request, our proposed 

algorithm can protect the location privacy and preference 

privacy of users; and for a continuous request, it can be 

used to protect the trajectory privacy of users. 

 We propose three protocols including the request 

aggregation protocol, the pseudo-ID exchange protocol 

and the improved PLAM protocol in our proposed 

algorithm, which help in reducing the response time of 

the LBS system. 

 We evaluate the performance of our proposed LLB 

algorithm by conducting extensive simulations. 

   The remainder of this paper is organized as follows. 

Section 2 discusses the related work about the privacy 

preserving in the LBS system. Section 3 describes the basic 

concepts and definition used in our approach. Section 4 

presents the motivation and system model. Section 5 

introduces our location-label based framework and gives the 

detailed description of the LLB algorithm. The simulation 

results are given in Section 6. Section 7 concludes this paper. 

2. RELATED WORK 
  There are several studies on location privacy preservation, 

which focus on the possibility of losing location privacy 

during the location process.  These location techniques in a 

LBS system are able to derive users’ locations through 

anchor points [21]. Since location algorithm takes anchor 

points as input and outputs users’ location, then the locations 

of anchors and users may be leaked to others. Thus in order 

to efficiently protect user location information during 

location process, the authors in [22] proposed the PriWFL 

algorithm, and the authors in [23] studied the problem of 

multi-lateral privacy preservation.  

  There are other studies that focus on protecting user 

location privacy in LBS applications. In these studies, the 

users’ locations are calculated by local facilities, and two 

kinds of requests are considered: single request and 

continuous requests. For single request, the location privacy 

and preference privacy are two key contents that need to be 

protected. Several strategies such as k-anonymity [31], Mix 

Zones [24], l-diversity [19], m-unobservability [25] etc. 

have been proposed to prevent the LP from inferring the 

users’ locations or preference privacies. Where the 

k-anonymity technology is the most commonly used and 

preferred techniques. It is often applied in the distributed 

structure. From the view of temporal and spatial, there are 

three types of implementations for k-anonymity in single 

request. 

    1) User submits a request which contains k locations: one 

true location and k-1 false locations. It is often applied in the 

centralized architecture via a trusted location anonymizer. 

2) A cloaking region, stands for a vague location, contains 

k users: the real user and k-1 pseudo users. The k users 



  

submit request to the LP together with the same vague 

location. This kind of k-anonymity is restricted by space. 

3) There is a one-to-one mapping between user and his 

location. It is often applied for the distributed structure [26]. 

The k users joint together, and then select a representative 

who sends their request packets to the LP. This kind of 

k-anonymity needs extra time consumption for gathering the 

k appropriate users. 

   However, since the requested contents of the k users are 

similar with each other, the LP can easily infer users’ 

preference privacies, such as common interests and hobbies 

of the users. To remedy this deficiency, the authors 

introduced the l-diversity [19] to protect the requested 

contents. The basic idea of the l-diversity technique is to 

make LBS queries of users different. Therefore, this 

property can ensure that there exist at least l services in the k 

LBS queries, where k ≥ l. The authors in [16] proposed the 

DLS algorithm which takes advantage of k-anonymity and 

l-diversity properties for protecting location privacy and 

preference privacy. 

   When a user sends continuous requests (i.e. send requests 

continuously for a period of time) to the LP, the trajectory 

information of the user needs to be protected.  Feng et al. [27] 

proposed an algorithm called VAvatar to protect users’ 

locations and trajectories. Mohammed et al. [28] proposed a 

Track False Data method for the problem of protecting the 

privacy of continuous requests, in which users send their 

fake locations and track information to the LBS provider, 

rather than their real trajectory data. The authors in [29] 

provided a distributed query privacy preserving solution to 

protect user’s trajectory privacy. 

   The existing studies mentioned above focus on addressing 

the problem of privacy preservation under the assumption 

that users are distributed in different locations. However, in 

real applications, multiple users may have the same location. 

In this work, we investigate the problem of location privacy 

preservation for users in the same location. 

3. PRELIMINARIES  
    In this section, we give the basic concepts and definitions.  

   1) Sensitive and Ordinary locations: All locations can be 

statically classified into two categories: sensitive locations 

and ordinary locations. Sensitive locations (e.g., hospital, 

school or supermarket) have dense population and the 

ordinary locations (such as the locations on general roads) 

have sparse population. 

    Usually, there are some commonalities between sensitive 

locations: i) the sensitive location is usually in a region with 

heavy traffic; ii) they are located in an area with dense 

population; iii) the users gathered at a sensitive location have 

common characteristics. For example, if the users are in a 

hospital (a sensitive location), the possibility of that they are 

patients or doctors is very high. The users at a sensitive 

location have common characteristics (e.g., interests or 

needs), thus the request contents of these users may be 

similar. Thus we need to protect the identities of users in 

these locations, and do not need to pay much attention on 

protecting their requested contents and the preference 

privacy. For example, users who in hospital do not care 

whether the attacker knows the requested information (e.g., 

health information), but they expect that their identities have 

not been inferred by the malicious attackers. For an ordinary 

location, since it is just a location on general road, users 

expect that the location privacies and preference privacies 

have not been leaked. Figure 3 gives an example of location 

partition. The sensitive locations and ordinary locations are 

randomly distributed in the area shown in Figure 3. The 

sensitive locations including supermarket, hospital, bank, 

etc. Furthermore, one kind of label may not indicate only 

one location. For example, there are two locations with 

labels of Hospital A and Hospital B for labeling hospitals. 
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Fig. 3: An example of location partition 

    2) User location: A user location denoted as d (x, y, label), 

where 𝑥  and 𝑦  represent the latitude and longitude of a 

location, and 𝑙𝑎𝑏𝑒𝑙 represents the category of the location. 

According to the characteristics (e.g., population density) of 

actual geographical environment, we divide a large area 𝐴 

into a set of small and irregular cells represented as 

{𝐴1, 𝐴2, … . 𝐴𝑖 … }. The geometric center of each irregular 

cell is regarded as its location information. For example, 

when a user is in the cell 𝐴𝑖, we can calculate the coordinate 

of the geometric center of area 𝐴𝑖. Its latitude and longitude 

are used to represent the user’s location information of x and 

y, respectively. 

  3) Service category: We classify the users’ service requests 

into different service categories, according to the services 

provided by the LBS system. For example, some users query 

for entertainment information, while others may query for 

dining or dating. We use the set Serve = {sc1, sc2,…, sci,…, 

scm} to denote the various service categories.  

   4) Single request packet: a single request packet is denoted 

as Rqi = {Pidi, di, servei, Ri, t}, where Pidi represents the 

user’s identity, di denotes the user’s location information, 

servei represents the service category, and Ri represents 

specific content of the corresponding request. In order to 

implement k-anonymity and protect user’s privacy, the user 

does not directly send a request to the LP. The time t is used 



  

to indicate the upper bound of response time (i.e., maximum 

tolerable response time) for the LBS request of a user. 

5) The aggregated package: Before a user ui submitting a 

request to the LP, the user aggregates requests from other 

users. User ui first broadcasts the aggregating message to 

other users. If there are other k-1 users agreeing to aggregate 

with ui, they send their requests to ui, and then ui becomes 

the representative user for them. The representative user 

gathers k users’ request packets and forms a new packet, 

denoted by Ag={Plist, {d1, serve1, R1}, {d2, serve2, R2},…,{dk, 

servek, Rk}}. Where Plist is a list of identities of the k users 

and Plist={Pid1, Pid2,…, Pidk}. And di, servei and Ri denote 

the location information, service category and requested 

content of user i, respectively.  Due to the randomness and 

uncertainty of users, the k locations and the requested 

services corresponding to the k users may be the same. Thus 

we have: 

1 ≤ |d| ≤ k, and                                      

l ≤ |s| ≤ k . 

   Where d is the set of locations of k users, |d| is the number 

of different locations, s is the set of the requested service 

categories of k users and |s| is the number of different 

requested service categories. 

    6) Bilinear pairings [30]: we use G and GT to denote the 

cyclic additive and multiplicative groups, both generated 

based on the same prime order q. Assume that p is the 

generator of group G, Zq is the residual class ring with 

modulo q, and Zq
* is an invertible element set relative to Zq. 

There exists a mapping e: G×G→GT that satisfies the 

following conditions: 

a) Bilinear: For any two elements g1, g2∈G, where a, b

∈Zq
*, we have e(g1

a, g2
b) = e(g1, g2)ab∈GT. 

b) Non-degenerated: There exists a P∈G such that e(P, P) 

≠ ρ, where ρ is the unit-element of group G. 

c) Computable: For any two elements g1, g2∈G, we can 

compute e(g1, g2) via an efficient computational technique. 

    We call the mapping e that satisfies the three conditions 

mentioned above as bilinear pairings. By applying a bilinear 

mapping on the supersingular elliptic curve, we can obtain a 

Diffie-Hellman group. Assume that the Diffie-Hellman 

group is G. The Computational Diffie Hellman (CDH) 

problem is hard, the Decisional Diffie Hellman problem 

(DDH) can be easily solved. Based on the characteristic of 

the bilinear pairings, we can calculate a user’s PID and 

verify whether the PID is valid [20]. 

4. MOTIVATION AND SYSTEM MODEL 
    In this section, we give the detailed descriptions on the 

motivation, the researched problem and the system model 

designed for the studied problem. 

4.1 Motivation 

   The PLAM framework [20] adopts distributed structure 

combined with the k-anonymity and l-diversity to protect 

users’ location privacy and preference privacy. However, in 

this work, we consider another scenario for this kind of 

k-anonymity in which the k users send requests together to 

LP in the single query application, where the locations of 

users are very close or even identical. Obviously, it can’t 

protect users’ location privacy even if l-diversity makes the k 

users’ requested content various and protects users’ 

preference privacy. Especially in some places with dense 

population (e.g., supermarket, school or hospital), the 

probability of selecting the same location with k-anonymity 

technology is very high. As far as we know, all of the 

existing research with k-anonymity have not considered 

about this scenario. 

Furthermore, users more than just send single request to 

the LP and may send requests continuously for a period of 

time. Because of the correlation of various positions in the 

continuous requests, only k-anonymity technique for privacy 

preserving is insufficient. It cannot guarantee that the users’ 

trajectories are not exposed, thus leaking users’ trajectory 

privacies. Therefore, malicious attacker can easily know the 

paths or places the users traversed, and deduce their earnings, 

social class, and preferences and so on. Thus, we should take 

into trajectory privacy consideration in the scene of 

continuous queries. 

4.2 System Model 

    Given the location labels, a single request packet and 

bilinear pairings, the problem is that how to protect users’ 

location privacies and reduce the gathering time for k users 

in a distributed structured LBS system. 

For preserving users’ privacies, we design a LBS system, 

whose framework is shown in Figure 4. The LBS system 

consists of three key components: User Requests (USER), 

Pseudonym Identity Server (PIDS), LBS Provider (LP). In 

this work, we adopt a distributed structure without involving 

a trusted anonymizer. The LP operates in accordance with 

relevant regulations and agreements in LBS system. But it 

does not rule out that the LP has curious and hope to deduce 

the users’ location, preference and trajectory privacies. Thus, 

the LP is honest-but-curious in our system model. Within the 

scope of communication, the users can communicate with 

each other. But they must follow the rules of corresponding 

agreements. So they neither collude with each other to infer 

other users’ privacy information, nor collude with the LP.  

PIDS

LP
ID

PID

Request

USER Response

 
Fig. 4: System model for privacy preserving 

From the Figure 4, we can see that the running of 

location-label framework can be divided into three main 



  

stages: PIDS server initialization, USER registration and 

Request submission. 

1) PIDS server initialization: For a given parameter k, the 

PIDS server generates a 5-tuple (q, g, G, GT, e) about 

bilinear pairings, where q is a k-bit prime number. Then the 

PIDS server initializes the LBS system with a suitable 

symmetric encryption algorithm enc(), pseudo-random 

function f:{0,1}*→Zq
* and two hash functions H1: 

{0,1}*→{0,1}k and H2: {0,1}*→G. In this work, we assume 

that the PIDS server has held a public key and a private key 

(i.e., Pkpids and Skpids). Finally, the PIDS server generates and 

publishes the system parameters (q, g, G, GT, e, Pkpids, f, H1, 

H2, enc()). 

2) USER registration: User ui registers with the PIDS 

server by sending registration messages. After receiving the 

registration message, the PIDS server computes s=f(PKpids) 

and user’s pseudo-ID by using the value s and the symmetric 

encryption algorithm enc(). The pseudo-ID is represented as 

Pidi: Pidi=encs(ui ||ri), where ri∈Zq. Then the PIDS server 

calculates the corresponding private key for user ui: 

Ski=H1(Pidi). Finally, the PIDS server returns the Pidi and 

Ski to the user ui. After receiving Pidi and Ski, the user ui can 

verify whether they are correct by checking e(H1(Pidi), Pkpids) 

=? e(Ski, g). If they are equal, the Pidi and Ski are valid. 

Otherwise, they are invalid and the user will register with the 

PIDS server again. Since the identity information of a user 

may change, we need to check the validity of the information 

after receiving identity information (e.g., Pid) every time, 

including in the initial registration process. 

3) Request submission: If a user ui submits a request to the 

LBS provider, the LBS system has to employ the LLB for 

protecting the user’s privacy. After gathering the requests of 

users with k-anonymity and l-diversity properties, the user ui 

becomes the representative user, and he/she repackages the 

k users’ request packets and gets an aggregated packet Ag. 

Then the representative user sends the aggregated packet to 

the LBS provider. After receiving the aggregated packet, the 

LP processes it and returns a list of results to the k users. 

Each user filters the results and selects the one that is 

consistent with his/her own request from the list. 

5. ALGORITHM DESIGN  
   In this section, we first propose three protocols including 

request aggregation protocol, pseudo-ID exchange protocol 

and the improved Privacy-preserving framework for 

Local-Area Mobile social networks (PLAM) protocol. We 

then design the location label based (LLB) algorithm. 

5.1 The algorithm framework 
   According to the given security parameter k and l, the 

PIDS (pseudonym identity server) bootstraps the LBS 

system and initializes it. If user ui wants to be served by the 

LBS system, he need to register himself to the LBS system. 

For sending request to the LP, he will firstly unite with other 

k-1 users by using the request aggregation protocol. If the k 

users have the same location labels, the user ui need to make 

decision on whether they are sensitive locations. If they are 

sensitive locations, the LLB algorithm calls the pseudo-ID 

exchanging protocol; if they are ordinary locations, the LLB 

calls the improved PLAM protocol. Whereas the k users have 

different location labels, it directly calls the improved PLAM 

protocol. The framework of our proposed LLB algorithm is 

shown in Figure 5. 
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Fig. 5: The framework of LLB algorithm 

5.2 Request aggregation protocol 

Without loss of generality, we assume that there is a user 

ua who has not received any other queries from other users 

and wants to launch a request to the LP. Then the user ua will 

initiate request aggregating message to gather other k-1 

users’ requests. The Algorithm 1 describes the pseudo  code 

of the request aggregation protocol. The detailed requests 

gathering process is as follows. 

User ua first broadcasts the request aggregating message. 

We assume that user ub has received the broadcast message. 

There are three scenarios where user ub will ignore the 

broadcast message sent by user ua: (i) user ub has agreed to 

aggregate with other user, (ii) the time t is zero in the request 

packet of user ub, (iii) the user ub has sent aggregate request 

to other users and there are more than k/2 users who agree to 

join with user ub. 

   If user ub has neither sent aggregate request to other users, 

nor has agreed to aggregate with other users, and the time t is 

not zero, the user ub is an ideal candidate for user ua. If less 



  

than k/2 users agree to join with user ub (assume m (m ≤ k/2) 

users have joined with user ub, and then the user ub is agent 

user for the m users), the agent user ub will respond to user ua 

that “m+1 users (including user ub and other m users who 

have joined with user ub) agree to join”. 
 

Algorithm 1:  Requests aggregation 

Input: Request aggregating message, all users, k 

Output: Ag, representative user 

1:  Broadcast the request aggregating message (the sender); 

2:  Receive the broadcast message (the receiver); 

3:  if (The receiver has aggregated with others || t=0 || number 

(has   joined with the receiver) > k/2) 

4:       Ignore the broadcast message;  

5:   else 

6:       Agree to aggregate with the sender; 

7:  end if 

8:  if (number (users aggregate with the sender) = k) 

9:       Generate the aggregated package Ag; 

10:     if (the package Ag meets the requirements)  

11:          The sender becomes the representative user; 

12:     end if 

13: else 

14:     The aggregation is unsuccessful; 

15: end if 

When user ua has gathered k-1 users, ua informs the 

corresponding k-1 users and collects their request packets. 

Then user ua repackages the packets from k users and get an 

aggregated package Ag. If the aggregated package Ag meets 

the requirements (e.g. the l-diversity requirement), user ua 

becomes the representative user who sends the aggregated 

packet Ag to LP. Otherwise, the aggregated package Ag will 

be discarded and user ua informs the other k-1 users that their 

aggregation is failed. Then all the k users reset the time t and 

resubmit their requests.  

Then we assume that user ua has been the representative 

user for other k-1 users. Firstly, user ua checks the location 

labels of the k users. When the k labels are different, there 

are three possible cases: i) part of the k locations are 

common locations, the other part are sensitive locations; ii) 

all of the k locations are sensitive locations, but the types of 

the k sensitive locations are different; iii) the k locations are 

sensitive locations, and their types are all the same. However, 

the contents of labels are different, i.e., the latitude and 

longitude may be different. When the k labels are the same, 

there are only two possible cases: i) the content of each 

𝑙𝑎𝑏𝑒𝑙 is none, so they are all ordinary locations; ii) they are 

all sensitive locations. 

   Theorem 1: Appropriate value for parameter k can reduce 

the time complexity of request aggregation protocol. 

   Proof: As shown in the request aggregation protocol, we 

can see that the agent user can agree to joint for m+1 users 

(including himself). Assume that the average time for one 

user takes to respond the request user ua is τ. Therefore, the 

time user ua consumed to gather other k-1 users is τ × (k-1). 

When there is an agent user, the time only need to be 

consumed by user ua is τ × (k-m-1). Therefore, lowering the 

value of parameter k can reduce the time complexity. 

5.3 Pseudo-ID exchanging protocol 

We propose the pseudo-ID exchanging protocol which 

can efficiently protect users’ location privacies in single 

query when the labels of users are the same and all of the 

users locate at sensitive locations. This proposed protocol 

can also be used to protect users’ trajectory privacies in 

continuous queries. Since the users are at sensitive location, 

and they do care that their identities have not been leaked 

rather than their request contents. Thus, the l-diversity 

technique is no longer need to be adopted. At this moment, 

the requested contents preservation has been unnecessary. 

We just need to protect the identities of users from the 

attacker’s recognition through exchanging their PIDs. 

Figure 6 shows an example in which three users ua, ub and uc 

come from different roads and gather at a sensitive location.  

Sensitive 

location

Ua

Ub

Uc Uc ?

Ub ?

Ua ?

  
Fig. 6:  An example for exchanging PIDs 

   Next we introduce the process of exchanging identity 

information between two users. Assume that two users ua 

and ub have the same sensitive location, and then they 

exchange PIDs with the probability of ρ. Due to the 

symmetry, here we only describe how user ua changes his 

identity information. After receiving the Pidb and private 

key Skb from the user ub, user ua re-verifies their identity by 

checking e(H2(Pidb), PKpids) =? e(Skb, g). If they are equal, 

user ua will modify his/her identity as follows: Firstly, ua 

abandons his/her own identity information (i.e., Pida and 

Ska); Then the ua regards Pidb as his/her own identity (ub 

does the same as ua); Finally, ua and ub successfully 

exchanging identities. Algorithm 2 describes the pseudo 

code of the pseudo-ID exchanging protocol. 
 

Algorithm 2:  Pseudo-ID exchanging 

Input: Ag, ρ, system parameters (q, g, G, GT, e, Pkpids,  

f, H1, H2, enc()) 

Output: “new” identity for each user 

1: if (the locations in Ag are identical && sensitive locations) 

2:      Exchange identities with probability ρ; 

3:       Receive Pidi and Ski for each user 

4:       if (e(H2(Pidi), PKpids) = e(Ski, g));  

5:            Replace user’s original identity by Pidi; 

6:       else 

7:            The pseudo-ID exchanging is unsuccessful; 

8:       end if 

9:   Modify the Ag and send it to the LP; 

10: end if 



  

   Theorem 2: For the users have same location, the 

pseudo-ID exchanging protocol can be used to protect users’ 

location privacies, as well protect users’ trajectory privacy. 

   Proof: When a representative user sends a LBS request at 

sensitive location, all of the gathered k users must at the 

same location (form the view of the characteristics of 

sensitive location). After exchanging the PIDs of the users in 

the same location, the attacker cannot link an identity to a 

specific user, and thus unable to distinguish the users. 

Therefore, it can indirectly protect users’ trajectory privacy 

through protecting users’ identities. As shown in Figure 6, 

we can see that PID exchanging can confuse the attacker 

who cannot infer which trajectory belongs to a specific user. 

Therefore, it can be used to protect the users’ trajectory 

privacies. 

5.4 The improved-PLAM protocol 

   The authors in [16] proposed the PLAM for preserving 

location and preference privacy in a distributed LBS system. 

With k-anonymity and l-diversity techniques, the PLAM 

protocol employed Privacy-preserving Request Aggregation 

to unite k users only considering the case where the users are 

in different locations. However, in real applications, their 

locations may be the same, especially when they are in a 

sensitive location may cause a location privacy leaking. In 

this work, we propose the improved PLAM protocol, for the 

scenario that the users are in same location. Algorithm 3 

describes the pseudo code of the improved PLAM protocol. 
 

Algorithm 3:  The improved PLAM 

Input: Ag, k, l, representative user 

Output: “new” identity for each user 

1: if (the locations in Ag are (identical && ordinary locations) 

|| different); 

2:      Check the services in Ag; 

3:      if (the number of service categories ≥ l) 

4:            Compare the location information (x, y) of k users; 

5:            if (the number of users have same location > k/2) 

6:                 Call the pseudo-ID exchanging protocol; 

7:            else 

8:                 Send the Ag to LP; 

9:            end if 

10:     else 

11:          Discard the Ag and the request is unsuccessful; 

12:     end if 

13: end if 

   Firstly, the representative user compares the information 

serve in the single packet request of all the k users. If there 

are at least l services of the k users, it means the aggregated 

packet Ag meets the requirements of l-diversity. Otherwise 

the aggregated packet Ag is discarded and the representative 

user informs the other k-1 users that the aggregation is 

unsuccessful. 

   After ensuring that there are at least l services using the 

LBS system, the representative user will compare the 

location information (x, y) of all k users. If more than k/2 

location information (x, y) are the same, we exchange the 

identities of users who have the same location by using the 

pseudo-ID exchanging protocol. At this time, we no longer 

care if the location is ordinary or sensitive. Finally, the 

representative user modifies the aggregated packet Ag and 

sends it to LP. 

   Theorem 3: When more than half of the users have the 

same location, the proposed improved-PLAM protocol can 

protect users’ location privacies. 

Proof: Firstly, the improved PLAM protocol ensures the 

l-diversity, thus the preference privacy must be protected. 

Next, when most of users have the same location, the PLAM 

algorithm cannot prevent the attacker from inferring users’ 

location privacy. For example, we consider 6 users with 3 

locations: la, lb, lc. Assume that 3 users are in location la, and 

the rest users are in location lb and location lc, respectively. 

Then an attacker may guess that a user in location la with the 

probability of 1/3 in the PLAM protocol. However, since the 

proposed improved-PLAM protocol allows users to 

exchange their PIDs, the attacker only can guesses it with the 

much lower probability of 1/(3×6). Therefore, the location 

privacy can be well protected by using the improved-PLAM 

protocol. 

5.5 The location-label based algorithm 

   Algorithm 4 shows the pseudo code of location-label 

based algorithm (LLB) proposed in this work. User ui first 

gathers other k-1 users by using the request aggregation 

protocol. If there are k-1 users who agree to send request to 

the LP together with the user ui, the user ui becomes the 

representative user for the k users. Then the representative 

user compares the k users’ location labels. There are three 

kinds of situations based on the results of the comparison: i) 

the k users location labels are the same and their locations 

are sensitive locations, then we use pseudo-ID exchanging 

protocol for the subsequent processing; ii) the k users’ 

location labels are the same and their locations are ordinary 

location, then we use the improved-PLAM protocol for the 

subsequent processing; iii) the location labels are different, 

we use the improved PLAM protocol for the subsequent 

processing. 
  

Algorithm 4:  Location-Label Based (LLB) algorithm 

1: Broadcast the aggregation message; 

2: Aggregate users’ requests by using request aggregation 

protocol; 

3: if (k users aggregate together) 

4:      compare the k users’ location labels;  

5:      if (the locations are identical and sensitive locations) 

6:            Call the pseudo-ID exchanging protocol; 

7:      else if (the locations are identical and ordinary locations) 

8:           Call the improved-PLAM protocol; 

9:      else if (the locations are different)  

10:         Call the improved-PLAM protocol; 

11:    end if 

12: end if 



  

6. SIMULATION AND RESULTS 
    For evaluating the effectiveness of our proposed location 

label based algorithm, we have conducted extensive 

simulations. In this section, we first describe the simulation 

environment, and then give the simulation results and 

analysis. 

6.1 Simulation Environment 

    We use OPNET [32] to conduct our simulations, since it 

can be used to construct complex network topologies and 

simulate the message sending/receiving. Assume that there 

is a region A of size {1.5km× 1.5km} with 10× 100 

locations. For simulating the locations, we construct a 

full-mesh network consisting of 10 × 100 nodes and 

randomly assign these nodes as sensitive or ordinary 

locations. 

Scenario-1:  There are 100 users uniformly distributed in 

region A. We assume that user ua in an ordinary location 

sends single request to the LP. The rest of users randomly 

send their messages about aggregation. The PID exchange 

probability 𝜌 is fixed at 0.5. To ensure the l-diversity, we set 

l = k/2. 

Scenario-2:  There are 100 users in region A, and most of 

them are distributed in sensitive locations, and only a few of 

them are distributed in ordinary locations. We assume that 

user ua in a sensitive location sends their request to the LP. 

The rest of the conditions are the same as Scenario-1. 

Scenario-3: There are 100 users in region A. They are 

randomly distributed in the region A and independently 

moves with the same velocity v = 1 m/s in the region A. We 

assume that user 𝑢𝑎 sends continuous requests to the LP in a 

period of time (e.g., 120seconds). The rest conditions are 

similar to Scenario-1. 

6.2 Simulation Experiment Results 

   Figure 7 shows the simulation results for two compared 

algorithms (i.e., PLAM algorithm and LLB algorithm) under 

Scenario-1. From Figure 7(a) we can see that the time for 

responding request of our proposed LLB algorithm is shorter 

than that of the PLAM proposed in [20]. Furthermore, for 

our LLB algorithm, the response time increases with the 

growth of the value of parameter r (i.e., the number of users) 

when r < 20 and reduces a little when 20 ≤ r ≤ 30, and the 

response time goes up again when r > 35. This is because 

that it needs to consume more time for gathering more users. 

Since is an agent user who agrees to aggregate with the user 

ua (i.e., the aggregation initiator) when r ≥ 20, the response 

time slowly increases with the growth of the value of r in 

LLB algorithm whereas quickly increases with the growth of 

the value of r in the PLAM algorithm. 

Figure 7(b) presents the relationship between the number 

of users (i.e., r) and the probability of distinguishing a user. 

From Figure 7(b), we can see that both LLB algorithm and 

PLAM algorithm have the same probability when r ≤ 15; 

and the LLB algorithm can guarantees a lower probability of 

distinguishing a user by attacker than PLAM algorithm does 

when r ≥ 20. Since some of the r users have the same 

location (larger r means more users have same location), and 

thus our LLB algorithm can better protect location privacy 

of user compared to the PLAM algorithm. 
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(b)  The probability of distinguishing a user 

Fig. 7: The simulation results for Scenario-1 

Figure 8 compares the performance of LLB algorithm and 

PLAM algorithm under Scenario-2. Figure 8(a) shows the 

similar simulation results with Figure 7(a). The response 

time of our proposed algorithm is significantly shorter than 

that of the PLAM algorithm when r >15. However, as user 

ua (i.e., the aggregation initiator) is in a sensitive location in 

Scenario-2, the locations of k users gathered by user ua may 

be identical. Then the proposed LLB algorithm will 

exchange the users’ IDs through pseudo-ID exchanging 

protocol and the process of exchanging IDs is time 

consuming. Notice that when the number of users is small, 

e.g. r ≤ 10, the PLAM algorithm has lower time 

consumption. 

  Figure 8(b) shows that the LLB algorithm has much lower 

probability for distinguishing a user compared to the PLAM 

algorithm. Hence, the LLB algorithm can more efficiently 

protect user’s privacy. Compared to the Figure 7(b), the 

probability of distinguishing a user with LLB algorithm is 

lower in Scenario-2 than that in Scenario-1. This is because 



  

when users have same location, the LLB algorithm employs 

pseudo-ID exchanging protocol to reduce the probability of 

for distinguishing a user. Therefore, we can see from Figure 

8(b) that there are more users have same location in sensitive 

locations than in ordinary locations. 
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(b)  The probability of distinguishing a user 

Fig. 8: The simulation results for Scenario-2 

   Figure 9 shows the performance of the LLB algorithm 

when user ua (i.e., the aggregation initiator) is in ordinary 

location (Scenario-1) and sensitive location (Scenario-2). 

For a user in sensitive location, before sending a request, the 

user gathers/aggregates with other k-1 users. The k locations 

of users are very likely identical and the LLB algorithm uses 

the pseudo-ID exchanging protocol for exchanging users’ 

identities. As the process of exchanging identities is time 

consuming, the request gets a longer delay (i.e., response 

time) in Scenario-2 than that in Scenario-1. 

Figure 10 shows the probabilities of distinguishing a user in 

Scenario-1 and Scenario-2. Form the Figure 10(a), we can 

see that PLAM algorithm almost has the same performance 

in Scenario-1 and Scenario-2. Figure 10(b) shows that LLB 

algorithm can better protect location privacy in sensitive 

location than ordinary location, this is benefit from the PID 

exchanging protocol. 
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Fig. 9: The response time of LLB algorithm under different 

scenarios 
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(b) Simulation results for LLB algorithm 

Fig. 10: The simulation results for Scenario-1 versus Scenario-2 

   Figure 11 shows the simulation results for continuous 

requests for two compared algorithms under Scenario-3. 

From Figure 11(a) (where k = 20), we can see that user ua 

(i.e., the aggregation initiator) sends 4 requests in 120 

seconds by using the LLB algorithm. However, in the 

PLAM algorithm user 𝑢𝑎 only sends 3 requests in the same 

time. Thus, for aggregating 20 users in each request, the 

PLAM algorithm consumes more time than LLB algorithm. 



  

Figure 11(b) (where k = 25) shows that user  𝑢𝑎  sends 3 

requests by using LLB algorithm in the same time (i.e., 120 

seconds) whereas only 2 requests can be sent by using 

PLAM algorithm. Furthermore, the time for gathering users 

increases with the growth of the value of k, and LLB 

algorithm has better performance in term of response time 

for continuous request. 

 
(a) k = 20 

 
(b) k = 25 

Fig. 11: The simulation results for Scenario-3 

6.3 Limitations of current research 

   Our current focus is to ensure that location privacy 

simulations can be performed successfully shown in Section 

6 and results match to theoretical development presented 

between Section 3 and 5. Current limitation is the testing of 

our PLAM algorithms on the road, since there are more 

uncontrolled factors to investigate, such as the strength of 

4G network, number of sky scrapers in the tested city, 

interference from other services or applications and the user 

behaviors in different countries. Once we begin to formulate 

the recommended approaches to eliminate the negative 

impacts caused by those uncontrolled factors, the next stage 

is to test our PLAM algorithm on the road in Chengdu and 

Suzhou in China, and London and Southampton in England. 

6.4 Summary of our contributions 

Our work has demonstrated the contributions as follows. 

Firstly, LLB algorithm has been proposed, which aims to 

protect the location privacies and preference privacies of 

users; and it can also be used to protect the trajectory 

privacies of users for continuous request. Secondly, three 

protocols include request aggregation protocol, pseudo-ID 

exchanging protocol and improved PLAM protocol in our 

LLB algorithm, can efficiently reduce the response time of 

the LBS system in IoT, as well lower the possibility for 

hackers hijacking data in IoT, and thus allows smooth LBS 

privacy services for users. Finally, performance of our LLB 

algorithm has been evaluated by extensive simulations, and 

the simulation results support the validity and effectiveness 

of our LLB algorithm. 

7. CONCLUSION AND FUTURE WORK 
In this paper we study the problem of privacy preservation 

for LBS users have same location in IoT. To protect the 

location privacy, preference privacy and trajectory privacy 

of users in a distributed structure of IoT LBS system, we 

proposed a location label based algorithm that includes three 

key protocols: the user requests aggregation protocol, the 

pseudo-ID exchange protocol and the improved PLAM 

protocol. We conduct extensive simulation experiments to 

evaluate the performance of our proposed algorithm. The 

simulation results show that the proposed algorithm 

outperforms the existing approach. Therefore, our work for 

LBS privacy preservation can be used to ensure the locations 

of IoT users remain private.  

   In the future work, we plan to test our proposed approach 

with real volunteers with real locations in selected cities to 

further consolidate our contributions. We will integrate 

other security services such as [33] to ensure that our LBS 

privacy service can be protected from threats by worms in 

IoT. We will test our PLAM algorithm on the road in China 

and England. 
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