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1 Introduction

In recent years there has been considerable interest in entanglement entropy and its holo-

graphic implementation, following the proposal of [1] that entanglement entropy can be

computed from the area of a bulk minimal surface homologous to a boundary entangling

region. This proposal was proved for spherical entangling regions in conformal field theories

in [2] and arguments supporting the Ryu-Takayanagi prescription based on generalized en-

tropy were given in [3]. Entanglement entropy has by now been computed in a wide range

of holographic systems, see the review [4]. General properties of holographic entanglement

entropy are reviewed in [5].

Entanglement entropy is a UV divergent quantity, with the leading UV divergences

scaling with the area of the boundary of the entangling region. For a quantum field theory

in D spatial dimensions, the boundary of the entangling region is (D− 1)-dimensional and

thus S ≈ ΛD−1AD−1 where Λ is the UV cutoff and AD−1 is the area of the boundary of

the entangling region.

If one is interested in the entanglement entropy of a discrete system, in which there

is a natural UV cutoff set by, for example, the lattice scale, then it may be natural to

work with this “bare” entanglement entropy. If however one is interested in entanglement
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entropy in a quantum field theory context, then it natural to explore whether and how

entanglement entropy can be renormalized.

Finite terms in the entanglement entropy are used in a number of contexts. Firstly,

they arise as order parameters for phase transitions, see the pioneering works [6, 7]. Finite

terms in the entanglement entropy for disk regions in three dimensional conformal field

theories are also related by conformal transformations [2] to the free energy on a three

sphere, which is the quantity appearing in the proposed F theorem [8].

As we will review in section 2, in previous works the finite terms in the entanglement

entropy have been isolated using differentiation of the entanglement entropy with respect

to geometric parameters characterizing the entangling region. Such procedures can be

implemented in a simple way, both holographically and in field theory calculations, but

they have several disadvantages. The differentiation prescriptions depend on the specific

geometry of the entangling region, and thus it is hard to implement such renormalization in

situations where the shape of the entangling region is itself being varied. Renormalization

by differentiation is furthermore not directly related to the renormalization procedures used

for other quantum field theory quantities. Thus, in particular, it is hard to understand

issues such as the scheme dependence of the finite answer.

In this paper we will develop a systematic renormalization procedure for entanglement

entropy. We begin by setting up holographic renormalization for the Ryu-Takayanagi

entanglement entropy functional. Since the entanglement entropy is described by the area

of a minimal surface homologous to the boundary entangling region, the UV divergences

of the entanglement entropy are in direct correspondence with the area divergences of this

minimal surface. Following the holographic renormalization methods of [9–11] one can

identify covariant counterterms on the conformal boundary of the minimal surface which

renormalize the area of the minimal surface.

In section 3 we derive the renormalized Ryu-Takayanagi functional for static entangling

surfaces in AdS spacetimes. Assuming flat spatial slices of the background for the dual

quantum field theory (i.e. a Poincaré representation of AdSD+2) the renormalized functional

takes the form

Sren =
1

4GD+2

∫
Σ

dDσα
√
γ (1.1)

− 1

4GD+2

∫
∂Σ

dD−1x
√
γ̃

(
1

D − 1
+

1

2(D − 1)2(D − 3)
K2 · · ·

)
,

Here Σ is the entangling surface,with induced metric γ, and ∂Σ is its boundary, with in-

duced metric γ̃. The extrinsic curvature K refers to the extrinsic curvature of ∂Σ embedded

into a spatial slice of the boundary of the bulk manifold. The first counterterm becomes

logarithmic for D = 1. Only the first counterterm given above is needed for gravity in four

bulk dimensions (D = 2). The second counterterm becomes logarithmic at D = 3 and is

needed in the form given above for D > 3. Additional counterterms involving higher order

curvature invariants are needed for D ≥ 5. The counterterms for entangling surfaces in

general asymptotically locally AdS spacetimes can be found in section 5.

We then show that the renormalized entanglement entropy for a disk region in a three

dimensional conformal field theory dual to AdS4 is in precise agreement with the holo-
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graphically renormalized Euclidean action for AdS4 with spherical slicing, i.e. the CHM

map [2] holds at the level of renormalized quantities.

In section 4 we consider holographic RG flows in four bulk dimensions which respect

Poincaré invariance of the dual theory. For flows driven by a single scalar we compute

the renormalized Ryu-Tayakanagi functional, expressing the counterterms in terms of the

superpotential associated with the flow.

We then use the renormalized entanglement entropy to explore the change in the F

quantity along RG flows. In particular, we consider a disk entangling region and calculate

the change the renormalized entanglement entropy (and hence F quantity) perturbatively

in the source of the relevant deformation, φ(0). For operators of dimension 3/2 < ∆+ < 3

we find that

δSren =
π

16(2∆+ − 5)G4
φ2

(0)R
2(3−∆+) +O

(
φ3

(0)

)
, (1.2)

where R is the radius of the disk entangling region while δSren = 0 for exactly marginal

operators. This quantity is clearly negative for ∆+ < 5/2 which, since δSren = −δF , cor-

responds to an increase in the F quantity. We should note however that the corresponding

deformations on the three sphere are inhomogeneous and do not therefore correspond to

RG flows which respect the SO(4) invariance. Direct calculation of the F quantity for SO(4)

invariant RG flows on S3 driven by such operators also gives an increase in the F quantity

to quadratic order in the source, see the companion paper [12]. It would be interesting to

understand whether such flows are unphysical or if the strong version of the proposed F

theorem is indeed violated.

In section 5 we show that the holographically renormalized entanglement entropy can

be obtained from the holographically renormalized action. Using the replica trick, the

entropy associated with a density matrix ρ is expressed as

S = −n∂n [logZ(n)− n logZ(1)]n=1 (1.3)

where Z(n) = Tr(ρn) and Z(1) = Tr(ρ) is the usual partition function. If we are interested

in the entropy of a thermal state, then Z(n) is constructed by extending the period of the

thermal circle by a factor of n. In the case of entanglement entropy, Z(n) is constructed by

extending the period of the circle around the boundary of the entangling region by a factor

of n, where implicitly n is an integer. Assuming that the resulting expression is analytic

in n, one can obtain the entropy by analytically continuing to n = 1.

Holographically Z(n) can be computed in terms of the onshell Euclidean action [3] as

S = n∂n [I(n)− nI(1)]n=1 . (1.4)

Here I(1) represents the onshell Euclidean action for the bulk geometry while I(n) rep-

resents the onshell Euclidean action for the replica bulk geometry. For a thermal state,

the bulk geometry associated with Z(1) is a black hole and the replica is constructed by

extending the period of the thermal circle by a factor of n. For the entanglement entropy,

the bulk geometry associated with Z(1) corresponds to the usual bulk dual of the given

state in the field theory and the replica is constructed by extending the period of the cir-

cle around the entangling region boundary by a factor of n. Following the same logic as
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in Lewkowycz-Maldacena [3], the expression (1.4) localises on the minimal surface corre-

sponding to the extension of the boundary of the entangling region into the bulk. However,

the entangling surface itself has area divergences, unlike the black hole setup analysed in

detail in [3].

In section 5 we show that the renormalized entanglement entropy can be expressed in

terms of the renormalized onshell action i.e.

Sren = n∂n [Iren(n)− nIren(1)]n=1 . (1.5)

In particular, using the standard counterterms for asymptotically locally AdS space-

times [11], together with results on the curvature invariants of the replica space [13, 14],

one obtains exactly the same Sren as computed directly via area renormalization. Thus,

the renormalization scheme for the entanglement entropy is inherited directly from the

renormalization scheme used for the partition function.

This result provides evidence for the applicability of the replica trick in the holo-

graphic context. Note that the derivation of the entanglement entropy functional from the

Euclidean action functional requires only the local geometry of the replica; any potential

anomalies in the replica symmetry do not affect the derivation. The holographic renor-

malization counterterms for higher derivative gravity theories such as Gauss-Bonnet also

imply counterterms for the entanglement entropy, as we discuss at the end of section 5.

The plan of this paper is as follows. In section 2 we review the renormalization of

entanglement entropy by differentiation. In section 3 we setup area renormalization for

entangling surfaces in AdS spacetimes, and show that the renormalized entanglement en-

tropy for disk regions in AdS4 indeed agrees with the F quantity. In section 4 we consider

entanglement entropy for RG flows while in section 5 we show how the renormalized en-

tanglement entropy can be obtained from the renormalized action via the replica trick. We

conclude in section 6.

2 Renormalization by differentiation

In previous works, the finite terms in the entanglement entropy have been isolated by

differentiation of the entanglement entropy. In the case of a strip of width R, UV divergent

contributions to the entanglement entropy in a local quantum field theory are necessarily

independent of R and therefore

SR = R
∂S

∂R
(2.1)

is finite. This expression has been used in a number of earlier works, including [15–17].

For a spherical entangling region, the radius of the sphere controls the local curvature

of the boundary of the entangling region and therefore it is no longer true that UV diver-

gences are independent of the scale of the entangling region. In [18] it was noted that the

following quantity

F (R) = −S(R) +R
∂S

∂R
(2.2)
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is manifestly finite in any 3d field theory which has a UV fixed point. (Analogous expres-

sions for general dimensions were given in [18].) In particular, for a three-dimensional CFT

the regulated entanglement entropy for a disc entangling region is

Sreg =
a−1R

δ
+ a0 (2.3)

where δ � 1 is the UV cutoff and (a0, a−1) are constants. Then by construction

F (R) = −a0. (2.4)

For theories with a holographic dual one can show (see section 3) that

Sreg =
π

2G4

(
R

δ
− 1

)
(2.5)

and therefore

F (R) =
π

2G4
. (2.6)

The normalization of (2.2) is chosen so that the latter indeed agrees with the F quantity.

The renormalized entanglement entropy defined by (2.2) has both positive and negative

features. On the positive side, there is evidence that F (R) behaves monotonically as a

function of R in free field theory and holographic examples [19, 20]. Also by construction

∂F

∂R
= R

∂2S

∂R2
(2.7)

and strong subadditivity of the entanglement entropy implies that in any Poincaré invariant

field theory ∂2S/∂R2 ≤ 0 [21], so F (R) is a non-increasing function of the radius R.

Let us suppose we deform a conformal field theory by an operator O∆ of dimen-

sion ∆ < 3:

ICFT → ICFT +

∫
d3x
√
hλO∆. (2.8)

The dimension of λ is then (3−∆); the coupling provides another dimensionful scale and

it is no longer the case that (2.3) are the only divergences. There are in general additional

divergences which are analytic in the deformation parameter λ and hence for a disk region

the change in the entanglement entropy under the relevant deformation is

δSreg = a5−2∆
λ2R

δ∆−5/2
+ a8−3∆

λ3R

δ∆−8/3
+ · · · (2.9)

where the coefficients am are dimensionless. Hence for ∆ > 5/2 the relevant deformation

generates additional UV divergences in the entanglement entropy; additional divergences

arise for ∆ > 3 − 1/n. The form of this expression follows from conformal perturbation

theory; in particular the term linear in λ vanishes, while all divergences scale extensively

with the length of the boundary of the entangling region. By construction F (R) is finite for

all such deformations although it is not a priori clear that F (R) agrees with the F quantity.
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On the negative side, there is evidence that F (R) is not stationary at a UV fixed

point [22]. Consider perturbations of a two-dimensional CFT by a slightly relevant operator

of dimension 2− δ∆. Then Zamoldchikov’s c-function behaves as

c(g) = cUV − g2δ∆ +O(g3) (2.10)

where g is the renormalised coupling. For a theory with several coupling constants

∂c

∂gi
= Gijβ

j (2.11)

where Gij is the Zamalodchikov metric and βj = µ∂g
j

∂µ are the beta functions. Then non-

singularity of the Zamalodchikov metric guarantees the stationarity of the c function in

two dimensions. In [22] it was shown that the proposed F (R) is not stationary in this sense

at the UV fixed point in free massive scalar field theory examples.

Another drawback of the definition of the renormalized entanglement entropy (2.2) is

that the definition is only applicable to disk entangling regions, or to regions which are

characterized by one overall scale. This drawback is not an issue for applications to the F

theorem, for which only disk regions are needed, but prevents using (2.2) to explore the

general shape dependence of entanglement entropy.

The renormalization that we propose in this paper by contrast is inherited directly from

the renormalization of the partition function, making scheme dependence and the relation

to the F quantity manifest, and is applicable to any shape entangling region. Moreover,

our renormalization is applicable in theories which are not conformal in the UV.

3 Renormalized entanglement entropy in anti-de Sitter

In this section we will define the renormalized area of (static) entangling surfaces in anti-de

Sitter. We parameterise the AdSd+1 metric as

ds2 =
dρ2

4ρ2
+

1

ρ
ηµνdxµdxν (3.1)

where ρ→ 0 corresponds to the conformal boundary and ηµν is the Minkowski metric.

The Ryu-Takayanagi function for the entanglement entropy is the area functional for

a codimension two surface:

S =
1

4Gd+1

∫
Σ

dDσα
√
γ (3.2)

where Gd+1 denotes the Newton constant (with the number of spatial dimensions in the

field theory being D = (d − 1)) and γ is the determinant of the induced metric on the

surface. Throughout this section we work in a static setup, in which the entangling surface

is independent of time. To find the bulk minimal surface Σ, we solve the equations of

motion following from (3.2), subject to boundary conditions which define the entangling

region in the dual field theory. In particular, as shown in figure 1, the minimal surface

Σ has a conformal boundary ∂Σ as ρ → 0 which is conformal to the boundary ∂A of the

entangling region A in the dual field theory.
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Bρ = 0

A∂Σ ∼ ∂A

Σ

t = const.

QFTd

ρ

(Al)AdSd+1

Figure 1. The entangling surface embedded into the bulk manifold.

ρ = ε

Bρ = 0

A
∂Σε

Σε

t = const.

QFTd

ρ

(Al)AdSd+1

Figure 2. The cutoff entangling surface.

When one evaluates the onshell value of the functional (3.2), it has area divergences

which may conveniently be regulated by setting ρ = ε, see figure 2. Let us denote the

bulk manifold as M and the regulated conformal boundary at ρ = ε as ∂Mε. Since the

entangling surface itself is asymptotically locally hyperbolic, the regulated functional (3.2)

diverges as

Sreg ∼
A∂A
ε
d
2
−1

+ · · · (3.3)

where A∂A is the area of the (d− 2)-dimensional boundary of the entangling region ∂A.

Following the principles of [9–11] we can now define a renormalized functional Sren as

Sren = Lε→0 (Sreg + Sct) (3.4)

where the counterterm action Sct is defined in terms of covariant properties of the boundary

of the minimal surface and of the cutoff surface. Let the induced metric on the cutoff

surface be hµν and the metric on the boundary of the minimal surface be γ̃ab. Let us

further denote the Ricci scalar of the boundary of the minimal surface as R, with the

corresponding Ricci tensor being Rab. Similarly we denote the extrinsic curvature of the

minimal surface embedded into the cutoff surface as Kab with trace K . Then counterterms
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must be expressible as

Sct =

∫
∂Σ

dD−1x
√
γ̃L
(
K,R,RabRab,KabKab, · · ·

)
, (3.5)

i.e. as a functional of extrinsic and intrinsic curvature invariants. In our setup there are

three extrinsic curvatures arising from the following three different embeddings: the em-

bedding of Σε in Mε, the embedding of ∂Σε in Σε, and the embedding of ∂Σε in ∂Mε.

We should emphasise that it is the final one which is relevant for the counterterms, as the

first two are not intrinsic to the regulated boundary.

There is a further restriction on the allowed counterterms. The entanglement entropy

of region A is the same as the entanglement entropy of the complementary region B. If we

require that the renormalized entanglement entropy satisfies the same property, then the

counterterms should only depend on even powers of the extrinsic curvature K, since the

extrinsic curvature of A is minus the extrinsic curvature of the complementary region B.

Finally, we should note that the intrinsic and extrinsic curvature are related by Gauss-

Codazzi relations. Throughout this section we will be interested in the case in which the

background for the dual field theory is flat, in which case

R = K2 −KabKab, (3.6)

with analogous Gauss-Codazzi relations holding between higher order scalar invariants of

the intrinsic and extrinsic curvature.

3.1 Explicit computation of counterterms

Let us now express the area functional as

S =
1

4Gd+1

∫
dρ

∫
dD−1σa

√
γ (3.7)

where γαβ = gmn∂αx
m∂βx

n, gmn is the metric on the AdS target space and xm(xα) defines

the embedding in terms of the worldvolume coordinates σα. We have implicitly fixed a

static gauge, in which the time coordinate t is constant and ρ is one of the worldvolume

coordinates, i.e. σα = {ρ, σa}. The spatial coordinates xi are then functions of ρ and σa

and D represents the number of spatial directions in the boundary theory.

In such a gauge the induced metric on the minimal surface is

γρρ =
1

4ρ2
+

1

ρ
xi,ρx

i
,ρ (3.8)

γρa =
1

ρ
xi,ρx

i
,a γab =

1

ρ
xi,ax

i
,b

where we denote xi,ρ = ∂ρx
i and xi,a = ∂σax

i. One can often (but not always) further gauge

fix, setting xa = σa and xD ≡ y(ρ, xa), so that

γρρ =
1

4ρ2
+

1

ρ
y,ρy,ρ (3.9)

γρa =
1

ρ
y,ρy,a γab =

1

ρ
(δab + y,ay,b),
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reflecting the fact that a codimension one spatial minimal surface has only one transverse

direction. Note however that such gauge fixing cannot be used to describe minimal surfaces

with cusps, but in this paper we restrict to the case of surfaces without cusps.

The gauge fixed minimal surface action is given by

S =
1

4Gd+1

∫
dρ

∫
dD−1x

(
1

4ρD+1

(
1 + y,ay,a + 4ρy2

,ρ

))1/2

=
1

4Gd+1

∫
dρ

∫
dD−1x

1

2ρ(D+1)/2
m(ρ, xa) (3.10)

where we have introduced the shorthand m(ρ, xa) =
√

1 + y,ay,a + 4ρy2
,ρ.

The regulated action is then of the form

Sreg =
1

4Gd+1

∫
ε
dρ

∫
dD−1x

(
1

4ρD+1

(
1 + y,ay,a + 4ρy2

,ρ

))1/2

(3.11)

=
1

4Gd+1

∫
∂Σ

dD−1x
∑

ε−k(ak(x) + log εbk(x)) + · · ·

where the explicit powers arising in the divergences and their coefficients (ak(x), bk(x))

are determined by analysing solutions to the minimal surface equations with the required

boundary conditions asymptotically near the conformal boundary.

Note that the action does not depend explicitly on y and the minimal surface equa-

tion is:

0 = ∂a

(
y,a

mρ3/2

)
+ ∂ρ

(
y,ρ

mρ1/2

)
, (3.12)

which should be solved near ρ = 0 subject to the boundary condition

Lρ→0 (y(ρ, xa)) = y(0)(x
a), (3.13)

where y(0)(x
a) specifies the entangling region in the dual geometry.

We wish to solve this equation iteratively for y(ρ, xa) as a series expansion in ρ. We

consider the following Taylor series expansions for y(ρ, xa):

y(ρ, xa) = y(0)(x) + y(β1)(x)ρβ1 + y(β2)(x)ρβ2 + . . . (3.14)

where we assume that 0 < β1 < β2 < . . .. To solve the PDE we insert these expansions into

the minimal surface equation and set ρ = 0. We then fix β1 and y(β1) to solve the resulting

equation such that y(0) remains unconstrained. We then differentiate the minimal surface

equation with respect to ρ and repeat to find β2.

After substituting the expansions into the minimal surface equation, one finds that the

leading order terms are ρ0 and ρβ1−1. To leave y(0) unconstrained we must therefore set

β1 = 1 and deduce that:

y(1)(x) = 2
√

1 + y(0),ay(0),a∂a

(
∂ay(0)√

1 + y(0),ay(0),a

)
. (3.15)
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To find higher terms in the asymptotic expansion we can use radial derivatives of the

minimal surface equations. Before carrying out this procedure, let us consider the regulated

onshell action (3.11) and determine the leading divergences, which are

Sreg =
1

4(D − 1)Gd+1ε
1
2

(D−1)

∫
∂Σ

dD−1x
√

1 + y(0),ay(0),a +O
(
ε

3−D
2

)
(3.16)

for D > 1. As anticipated above, this divergence scales with the area A∂A of the boundary

of the entangling region

A∂A =

∫
∂Σ

dD−1x
√

1 + y(0),ay(0),a. (3.17)

The case of D = 1, corresponding to a dual two-dimensional conformal field theory, is

degenerate. The divergence is logarithmic:

Sreg =
1

8G3
Σkyk log ε (3.18)

with yk being the endpoints of the intervals defining the entangling region. The required

counterterm action is therefore

Sct = − 1

8G3
Σkyk log

(
ε

µ

)
, (3.19)

where µ is an arbitrary renormalization scale.

3.2 Entangling surfaces in AdS4

For minimal surfaces in AdS4 the only divergence in the onshell functional is

Sreg =
1

4G4

∫
∂Σ

dx

(
1

ε
1
2

√
1 + y(0),xy(0),x

)
, (3.20)

where the entangling region in the boundary is defined by a curve y(0)(x) in two dimensional

space. Noting that the induced line element on the boundary of the entangling surface is

γhxx =
1

ε
(1 + y,xy,x) (3.21)

the divergence is manifestly removed by the covariant counterterm

Sct = − 1

4G4

∫
∂Σ

dx
√
γ̃, (3.22)

where γ̃ is the determinant of the induced metric on ∂Σ. This is the only possible divergent

counterterm but the following counterterm is finite:

Sct =
as
4

∫
∂Σ

dx
√
γ̃K (3.23)

where K denotes the trace of the extrinsic curvature of the boundary of the minimal

surface embedded into the regulated cutoff surface. For a curve y(x, ε) embedded into the

cutoff surface

ds2 =
1

ε

(
−dt2 + dx2 + dy2

)
(3.24)
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the trace of the extrinsic curvature is

K = ε
1
2

y,xx

(1 + y2
,x)

3
2

(3.25)

and thus √
γhK =

y,xx(
1 + y2

,x

) =
y(0),xx(

1 + y2
(0),x

) +O(ε), (3.26)

which is indeed finite.

Thus the complete renormalized action for the minimal surface is

Sren =
1

4G4

∫
Σ
d2σ
√
γ +

1

4G4

∫
∂Σ
dx
√
γ̃ (asK − 1) . (3.27)

Note that terms depending on higher powers of the extrinsic curvature cannot contribute

in the limit ε→ 0. The finite counterterm is however not consistent with the requirement

that the renormalized entropy for any region is equal to that of its complement, and we

must therefore set as = 0.

As an example, let us evaluate the renormalized action for a disk entangling region, of

radius R. The exact solution for the minimal surface is conveniently expressed in terms of

the following coordinates

ds2 =
dρ2

4ρ2
+

1

ρ

(
−dt2 + dr2 + r2dφ2

)
(3.28)

as the circularly symmetric surface at constant time:

r2 + ρ = R2. (3.29)

The renormalized action for this surface is then

Sren = − π

2G4
. (3.30)

Note that this is independent of the choice of the radius R. Implicitly our Newton constant

has been fixed to be dimensionless, as we chose the anti-de Sitter metric to have unit radius,

absorbing the curvature radius into the overall prefactor of the bulk action. To reinsert the

AdS radius we need only rescale the bulk metric by ` and the covariant counterterm by a

further `. The result of these insertions is to simply rescale the results for the entanglement

entropy by `2:

Sren = − π`2

2GN
, (3.31)

where the Newton constant GN now has the standard dimensions. Since the dual field

theory is conformal there is no other scale apart from R and therefore Sren, which is

dimensionless, cannot depend explicitly on R.

Next we consider an entangling surface of two infinitely long parallel lines with separa-

tion R. We will regulate the lines to have length L and by symmetry we may choose these
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lines to lie in the x direction and to be located at y = ±R
2 . The minimal surface can be

characterized by worldsheet coordinates (ρ, x) and by symmetry the transverse coordinate

y depends only on ρ. The surface equations can be solved to obtain

y(ρ) = ±

(
−R

2
+
ρ3/2

3ρ0
2F1

(
1

2
,

3

4
;

7

4
,
ρ2

ρ2
0

))
. (3.32)

We can also rewrite this hypergeometric function in terms of the incomplete beta function

Bz(a, b) using the identity

2F1(a, b; 1 + b; z) = bz−bBz(b, 1− a). (3.33)

The surface has a turning point at ρ0, where by symmetry y(ρ0) = 0, and hence

y(ρ0) = 0 =⇒ ρ0 =
9Γ(5/4)2

4πΓ(7/4)2
R2. (3.34)

The regularised holographic entanglement entropy is then given by

Sreg =
L

8G4

∫ ρ0

ε
dρ

ρ0√
ρ3(ρ2

0 − ρ2)
, (3.35)

This integral is elliptic and can be calculated analytically using∫
1√

w3(a2 − w2)
dw = 2

2

a2
√
w

√
a2 − w2 (3.36)

+
2√
a3

(
F

(
sin−1

(√
w

a

)∣∣∣∣− 1

)
− E

(
sin−1

(√
w

a

)∣∣∣∣− 1

))
where F (φ|k2) and E(φ|k2) are the incomplete elliptic integrals of the first and second

kind respectively.

The renormalized holographic entanglement entropy is:

Sren = −
√

2π2Γ(7/4)

3G4Γ(1/4)2Γ(5/4)

L

R
(3.37)

Note that in the above calculation we have implicitly assumed that L� R and that there

are no contributions from the lines x = ±L/2, −R/2 ≤ y ≤ R/2. To take the limit of

L→∞ we can calculate the renormalized entropy density

sren = LL→∞
(
Sren

L

)
= −

√
2π2Γ(7/4)

3RG4Γ(1/4)2Γ(5/4)
. (3.38)

Finally let us consider the half plane entangling region with a boundary at y = 0; again

we regulate the x direction to have length L. The bulk minimal surface has worldsheet

coordinates (ρ, x) and by symmetry y = 0 over the surface. The regularised holographic

entanglement entropy is

Sreg =
L

8G4

∫ ∞
ε

dρ

ρ
3
2

=
L

4G4ε
1
2

(3.39)
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and this term exactly cancels the counterterm giving

Sren = 0 (3.40)

which was to be expected since there is no other scale in the problem but L and the dual

theory is conformal.

The calculation of the renormalized area of a two-dimensional minimal surface in

four bulk dimensions has arisen in other contexts, including Wilson loops. In particu-

lar, anomalies were discussed in [10] while the counterterm involving the regulated length

of the boundary of the surface was discussed in the context of Wilson loops in [23]; the

counterterm was derived by requiring a well-defined variational principle. The relation of

holographic renormalization to variational principles for minimal surfaces was discussed in

detail in [24].

Minimal surfaces in hyperbolic spaces were also analysed in [25]: generalizing [10], it

was noted that submanifold observables have conformal anomalies for specific codimensions.

In particular, the results of [25] imply that codimension two minimal surfaces in odd bulk

dimensions have logarithmic divergences in their regulated volumes. This is consistent with

our D = 1 result above, and the D = 3 result we will give below.

According to the results of [25] the renormalized area of a codimension two minimal

surface in an even dimensional hyperbolic space should be a conformal invariant. This is

not however immediately apparent from the above results: the renormalized entropy of the

half plane was found to be zero (3.40), while the renormalized entropy of the disk is finite

and negative. We believe that the explanation for this is as follows. It is well-known that

there exists a conformal bijective map between the open disk and the open half plane and

therefore these regions are conformally equivalent. However, the boundary of the disk (the

circle) is not conformally equivalent to the boundary of the half plane: the conformal map

acts on the latter to produce a circle minus one point. Therefore we should not expect the

renormalized areas to match. (By contrast, the disk is (completely) conformally equivalent

to the sphere partition function under the CHM map discussed below.)

The renormalized entropy for the strip entangling region is negative. This is unsur-

prising: in [15, 16] the entanglement entropy for free scalars and fermions was calculated

for strip entangling regions and it was found that the entanglement entropy contains finite

terms of the form

Sfinite = −k L
R

(3.41)

where again L is the regulated length of the strip, R is its width (with L/R� 1) and k is

a positive constant, which takes the value of k = 0.039 for a real scalar and k = 0.072 for

a Dirac fermion.

3.2.1 Relation to F theorem

More generally, we should be unsurprised about finding negative values for the renormalized

entanglement entropy. The conjectured F-theorem in three dimensions is the following. For

a three-dimensional CFT we define the F quantity in terms of the (renormalized) partition
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function of the theory on a three sphere [8], i.e.

F = − lnZS3 (3.42)

and then the F theorem states that FUV ≥ FIR. More precisely, in [8] it was conjectured

that F is positive in a unitary CFT, that it decreases along any RG flow and that it is

stationary at fixed points. Support for the conjecture can be found in [8, 26, 27] and many

subsequent works.

In odd spacetime dimensions the finite terms in the entanglement entropy of a spheri-

cal region

Sfinite = (−)
1
2

(d−1)2πad (3.43)

are conjectured to satisfy the relation (ad)UV ≥ (ad)IR for any RG flows between fixed

points [28]. Indeed it has been shown that the sphere partition function and the sphere

entanglement entropy are proportional using the CHM map [2], thus establishing a con-

nection between the F theorem and monotonous running of the finite part of the disk

entanglement entropy. In three dimensions

F = −2πa3 (3.44)

and hence positivity of F is equivalent to negativity of the finite parts of the entangle-

ment entropy.

To understand the relation between (3.42) and (3.43) it is useful to recall the arguments

of CHM [2] in more detail. Let us parameterise the flat three-dimensional metric in as

ds2 = −dt2 + dr2 + r2dφ2 (3.45)

Now consider the following change of coordinates

t = R
cos θ sinh τ/R

(1 + cos θ cosh τ/R)
; (3.46)

r = R
sin θ

(1 + cos θ cosh τ/R)
;

so that the metric becomes

ds2 = Ω2
(
− cos2 θdτ2 +R2(dθ2 + sin2 θdφ2)

)
(3.47)

with conformal factor

Ω = (1 + cos θ cosh τ/R)−1. (3.48)

One can clearly absorb the R dependence as an overall factor by introducing τ̃ = τ/R, so

that the metric is conformal to the static patch of de Sitter space. Since 0 ≤ θ < π/2 the

new coordinates cover 0 < r < R, i.e. the disk of radius R in the original flat coordinates,

with θ → π/2 (the cosmological horizon) corresponding to r = R. The limits τ → ±∞
correspond to t→ ±R and therefore the new coordinates cover the causal development of

the disk r ≤ R from t = 0.

– 14 –



J
H
E
P
0
8
(
2
0
1
6
)
1
6
5

Modular transformations inside the causal development act as time translations in de

Sitter space, and therefore the state in the de Sitter geometry is thermal with β = 2πR.

One can then identify the entanglement entropy for the disc of radius R in flat space with

the thermodynamic entropy of the thermal state in de Sitter space, which in turn is given by

SdeSitter = −W (3.49)

whereW = − lnZ is the free energy of the partition function Z. This relation is the origin of

the above statement that the disc entanglement entropy is related to the partition function

on the sphere, since the analytic continuation of de Sitter is the three-dimensional sphere.

The corresponding Euclidean transformations begin from the metric

ds2 = dt2E + dr2 + r2dφ2 (3.50)

with the transformations being

tE = R
cos θ sin τE/R

(1 + cos θ cos τE/R)
; (3.51)

r = R
sin θ

(1 + cos θ cos τE/R)
;

so that the metric becomes

ds2 = Ω2
(
cos2 θdτ2

E +R2(dθ2 + sin2 θdφ2)
)

(3.52)

with conformal factor

Ω = (1 + cos θ cos τE/R)−1. (3.53)

In the transformed coordinates the Euclidean time τE is periodic with period 2πR for the

sphere to be regular and 0 ≤ θ < π/2.

Implicitly the finite parts of the partition function on the S3 are computed by renormal-

ization; the CHM map thus relates the (renormalized) F quantity to the the corresponding

renormalized entanglement entropy i.e.

F = −Sren (3.54)

with F being positive and decreasing along an RG flow. For the disk entangling region we

thus find holographically that

F =
π

2G4
(3.55)

which is indeed positive.

Let us now review the evaluation of the partition function on S3 for a conformal field

theory with a holographic dual described by Einstein gravity. The renormalized partition

function is then calculated by evaluating the renormalized Euclidean action [11]:

I = − 1

16πG4

∫
d4x
√
g(Rg + 6) +

1

8πG4

∫
d3x
√
h

(
1− R

4

)
, (3.56)
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where Rg is the bulk Ricci scalar and R is the Ricci scalar for the boundary metric h. For

the AdS4 geometry with spherical slicing

ds2 = dρ2 + sinh2 ρdΩ2
3 (3.57)

the renormalized onshell action is then

I =
π

2G4
. (3.58)

Comparing (3.58) with (3.55), the values indeed agree. Note that there is no ambiguity

in the holographically renormalized action (3.56): there are no candidate covariant finite

counterterms. We will explain further in section 5 how the renormalization schemes for the

bulk action and for the entanglement entropy are related.

3.3 Renormalization for AdS in general dimensions

In this section we describe the holographic renormalization of the entanglement entropy for

AdS in general dimensions, noting the generic forms of possible counterterms, anomalies,

and finding the first two counterterms.

We begin by establishing the notational conventions we will use in this section. We

will take our bulk manifold M to be AdSD+2 and will work exclusively in coordinates in

which the metric takes the form

ds2
M = gmndxmdxn =

dρ2

4ρ2
− 1

ρ
dt2 +

1

ρ
δijdx

idxj (3.59)

where i, j = 1, . . . , D are the boundary spatial directions. The entangling surface Σ is a

codimension 2 surface of M satisfying the appropriate boundary conditions. We choose

the coordinates on Σ to be (ρ, xa) where a = 1, . . . , D − 1. The embedding of Σ in M is

then given by:

Xm = (ρ, t, x1, . . . , xD−1, y(ρ, xa)) (3.60)

where t is a constant. This is an appropriate gauge whenever the boundary entangling

region specified by y(0, xa) is smooth.

We regulate the bulk as Mε by restricting ρ ≥ ε > 0, and similarly define the reg-

ulated entangling surface Σε by the same restriction. The surface Σε is a constant time

hypersurface of Mε. The metric γαβ on Σε is given by

ds2
Σε =

(
1

4ρ2
+

1

ρ
y2
,ρ

)
dρ2 +

2

ρ
y,ρy,adx

a +
1

ρ
(δab + y,ay,b)dx

adxb. (3.61)

In this gauge the regulated bare entanglement entropy is given by

Sreg =
1

4GD+2

∫
∂Σε

dD−1

∫ ρ0

ε
dρ

1

2ρ(D+1)/2

√
1 + 4ρy2

,ρ + y2
,a (3.62)

where summation is implicit for the a, b, . . . indices.
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From the action one can find the equation of motion for y(ρ, xa), as in the previous

section. Expanding the solution near the conformal boundary one finds:

y(ρ, xa) = y(0) + y(1)ρ+O(ρ2); y(1) =
1

2(D − 1)

y(0)
,aa −

y
(0)
,a y

(0)
,aby

(0)
,b

1 + y
(0)
,c

2

 . (3.63)

Note that this result agrees with the D = 2 case we considered above.

Inserting the asymptotic expansion into the regulated functional yields for AdS5

(D = 3)

Sreg =
1

4G5

∫
∂Σε

d2x(1 + y(0)
,c

2
)1/2

 1

2ε
− y

(0)
,a y

(1)
,a + 2y(1)2

2(1 + y
(0)
,b

2
)

ln ε+ . . .

 (3.64)

where the ellipses denote finite terms. Similarly for D > 3

Sreg =
1

4GD+2

∫
∂Σε

dD−1x(1 + y(0)
,c

2
)1/2

ε− (D−1)
2

D − 1
+
ε−

(D−3)
2

D − 3

y
(0)
,a y

(1)
,a + 2y(1)2

1 + y
(0)
,b

2 + . . .


(3.65)

where the ellipses denote subleading divergences and terms that are finite as ε→ 0.

Our task is now to find counterterms which are integrals of covariant quantities defined

on ∂Σε, i.e. scalars constructed from the intrinsic and extrinsic curvature tensors. The

induced metric on ∂Σε, γ̃ab is given by

ds2
γ̃ =

1

ε
(δab + y,ay,b)dx

adxb (3.66)

which has determinant

γ̃ = det(γ̃ab) = ε−
D−1

2 (1 + y2
,a) (3.67)

by Sylvester’s determinant theorem.

Using the asymptotic expansion we can expand the volume form to first subleading

order in ε as: √
γ̃ = ε−

D−1
2 (1 + y(0)

,c

2
)1/2

1 + ε
y

(0)
,b y

(0)
,b

1 + y
(0)
,c

2 + . . .

 . (3.68)

On dimensional grounds we can show that all curvature scalars will be at least O(ε1/2)

and so we can uniquely identify the leading divergence in Sren as coming from the area

divergence, as expected. Our first counterterm is therefore

Sct,1 = − 1

4GD+2

1

D − 1

∫
∂Σε

dD−1x
√
γ̃ (3.69)

which is again consistent with our previously found AdS4 (D = 2) result.

We now need to find the counterterms for the subleading divergences. Let us consider

first the case of D = 3. Using integration by parts we can rewrite:∫
∂Σε

dD−1x
y

(0)
,A y

(1)
,A

(1 + y
(0)
,C

2
)1/2

= −
∫
∂Σε

dD−1x
y(1)2

(1 + y
(0)
,C

2
)1/2

(3.70)
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and hence for D = 3

Sreg + Sct,1 = − 1

8G5

∫
∂Σε

d2x
√
γ̃

y(1)2

1 + y
(0)
,C

2 ln ε+ . . . (3.71)

To rewrite this term covariantly we note that the metric on a constant time hypersurface

of the regulated boundary is given by

ds2
D = g̃ijdx

idxj =
1

ε
δijdx

idxj (3.72)

and the embedding of ∂Σε is given by xD ≡ y(ε, xa). The unit normal covector is then

given by

n[ = ε−
1
2
(
1 + y2

,c

)− 1
2
(
y,adx

a − dxD
)

(3.73)

From this we define the induced metric γ̃ij , and the extrinsic curvature Kij by

γ̃ij = g̃ij − ninj Kij = γ̃ki ∇knj (3.74)

where∇k is the covariant derivative with respect to g̃ij . The trace of the extrinsic curvature

is then given by

K =
ε

1
2

(1 + y2
,c)

1
2

(
y,aa −

y,ay,aby,b
1 + y2

,e

)
= 2(D − 1)

ε
1
2 y(1)

(1 + y
(0)
,c

2
)

1
2

+ . . . (3.75)

By contrast, the Ricci scalar has a qualitatively different structure:

R =
2ε

(1 + y2
,e)

(
y2
,aa − y,aby,ab − y,ay,b

y,aby,cc − y,acy,bc
1 + y2

,d

)
(3.76)

Comparing with (3.71) we can see that the required logarithmic counterterm is hence

written in terms of the extrinsic curvature as

Sct,2 =
1

64G5

∫
∂Σε

d2x
√
γ̃K2 ln

ε

µ
, (3.77)

with µ a cutoff scale.

Similarly for D > 3 we can show that

SEE + Sct,1 =
1

4GD+2

2

(D − 3)

∫
∂Σε

dD−1x
√
γ̃

εy(1)2

1 + y
(0)
,C

2 + . . . (3.78)

At this order the only possible intrinsic curvature term would be R, the Ricci scalar on

∂Σε but from (3.76) this does not have the right structure to be the correct counterterm.

Using (3.75) we can show that the required counterterm is

Sct,2 = − 1

8GD+2

1

(D − 1)2(D − 3)

∫
∂Σε

dD−1x
√
γ̃K2. (3.79)

Note that other extrinsic curvature invariants again either do not have the correct ε struc-

ture or the correct y(1)2
behaviour to arise as possible counterterms.
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In the D = 2 analysis we found that K would be a finite counterterm, but it is excluded

by the requirement that the renormalised entanglement entropy of the complementary

region is equal to that of the original region. For D > 2 we can further note that∫
∂Σε

dD−1x
√
γ̃KD−1 (3.80)

are finite counterterms. The complementarity requirement rules out such counterterms

for even D (corresponding to field theories in odd spacetime dimensions). For odd D

(corresponding to field theories in even spacetime dimensions), these counterterms are

consistent with the requirement that the entropy of the complement is the same as that

of the original region. Indeed we already saw that such a term arises in D = 3: it is

automatically included in (3.77) in the µ dependent part.

In addition, higher dimensions allows the possibility of other finite counterterms con-

structed from curvature invariants such as∫
∂Σε

dD−1x
√
γ̃(KabKab)(D−1)/2;

∫
∂Σε

dD−1x
√
γ̃R̃(D−1)/2 (3.81)

which are both valid for odd D, so that they are analytic. These counterterms are however

not linearly independent of each other, due to the Gauss-Codazzi relations. In general

there will always be finite counterterms possible in even spacetime dimensions and the

number of such terms will increase with D implying there are an increasing number of

scheme dependent terms. We will understand in section 5 how these finite counterterms

relate to the scheme dependence of the partition function.

Thus, to summarise the results in this section, the renormalized entanglement entropy

for static surfaces in AdSD+2 is

Sren =
1

4GD+2

∫
Σ

dDσα
√
γ (3.82)

− 1

4GD+2

∫
∂Σ

dD−1x
√
γ̃

(
1

D − 1
+

1

2(D − 1)2(D − 3)
K2 · · ·

)
,

where D represents the number of spatial dimensions in the dual field theory. The first

counterterm is logarithmic for D = 1. Only the first counterterm given above is needed

for gravity in four bulk dimensions (D = 2). The second counterterm is logarithmic at

D = 3 and is needed in the form given above for D > 3. Additional counterterms involving

higher order curvature invariants are needed for D ≥ 5; the additional counterterms are

associated with logarithmic divergences (i.e. conformal anomalies) in odd dimensions.

The analysis in this section assumed a Poincaré parameterisation of AdSD+2, i.e. we

assumed a flat background metric for the dual field theory. We will generalize these results

in section 5. Note that although the renormalized entanglement entropy can be covari-

antized as shown in section 5 the complete holographic dictionary would also need to take

into account real time issues [29] for non-static setups.
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4 Entanglement entropy for holographic RG flows

A holographic RG flow (for a field theory in a flat background) can be described by a

domain wall geometry

ds2 = dw2 + e2A(w)dxµdxµ (4.1)

where the warp factor A(w) is linear in w at a fixed point. The geometry satisfies the

equations of motion derived from Einstein gravity coupled to scalar fields φA, and the

scalar fields have corresponding radial profiles φA(w). In what follows we will consider the

case of a single scalar field with the bulk action being

I =
1

16πG4

∫
d4x
√
−g
(
Rg −

1

2
(∂φ)2 + V (φ)

)
, (4.2)

with V (φ) being the scalar potential. The generalisation to multiple scalar fields would be

straightforward.

We restrict to UV conformal theories, so that the scalar potential V (φ) can be expanded

as a power series in φ near the boundary:

V (φ) = 6−
∞∑
n=1

λ(2n)

(2n)!
φ2n. (4.3)

The mass M of the scalar is then given by M2 = λ(2), so the scalar field is dual to a

dimension ∆ operator in the boundary CFT where M2 = ∆(∆ − 3). In what follows we

will denote

∆+ =
3

2
+

1

2

√
9 + 4M2. (4.4)

For −9/4 < M2 < −5/4, two quantizations are possible with the operator dimension

corresponding to the second quantization being

∆− =
3

2
− 1

2

√
9 + 4M2. (4.5)

The equations of motion are

Ä = −1

4
(φ̇)2 (4.6)

φ̈+ 3Ȧφ̇ = −dV
dφ

where a dot denotes a derivative with respect to w. It is well-known, see [30], that these

equations are always equivalent to first order equations

Ȧ = W φ̇ = −4
dW

dφ
(4.7)

where the superpotential W (φ) is given by

V = −2

(
4

(
dW

dφ

)2

− 3W 2

)
, (4.8)
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with

W = 1 +
1

8
(3−∆+)φ2 + · · · (4.9)

Note that the superpotential is not unique at higher orders in the scalar field: different

choices are associated with different RG flows and in a supersymmetric theory only one

choice will be supersymmetric. For flat sliced domain walls corresponding to holographic

RG flows, the appropriate counterterm for the bulk action can be expressed in terms of

the superpotential as

Ict = − 1

4πG4

∫
Mε

d3x
√
−hW. (4.10)

To match with conventions in earlier sections, it is convenient to express the asymptotically

AdS4 domain wall spacetime in the coordinates

ds2 =
dρ2

4ρ2
+

1

ρ
eA(ρ)ηµνdxµdxν (4.11)

where ρ→ 0 corresponds to the conformal boundary, ηµν is the flat metric, with coordinates

(t, x, y). Near the conformal boundary

eA(ρ) = 1 + . . . , (4.12)

where the subleading terms depend on the form of the scalar potential. In these coordinates

the Einstein and scalar equations become

A′′ +
1

ρ
A′ = −1

4
(φ′)2; (4.13)

4ρ2φ′′ + 2(3ρA′ − 1)ρφ′ = −dV
dφ

.

These equations can also be rewritten in terms of the superpotential as

− ρA′ = W̃ ρφ′ = 2
dW̃

dφ
(4.14)

where W̃ = W − 1.

4.1 Renormalization of entanglement entropy

Consider a codimension two minimal spacelike surface probing the domain wall spacetime.

The entanglement entropy functional is

S =
1

4G4

∫
dρ dx

√
γ (4.15)

where γµν = gmn∂µX
m(ρ, x)∂νX

n(ρ, x), gmn is the metric on the full target space, and

Xm(ρ, x) is the embedding. We will again work in static gauge where the embedding is

given by Xm(ρ, x) = (ρ, t, x, y(ρ, x)) and t is a constant. Therefore

γρρ =
1

4ρ2
+
eA(ρ)

ρ
y2
ρ (4.16)

γρx = yρyx
eA(ρ)

ρ

γxx =
1

ρ
eA(ρ) +

eA(ρ)

ρ
y2
x
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where we denote yρ = ∂ρy and yx = ∂xy. The entanglement entropy is thus given by

S =
1

4G4

∫
dρ dx

eA(ρ)/2

2ρ3/2

√
1 + y2

x + 4ρeAy2
ρ (4.17)

=
1

4G4

∫
dρ dx

eA/2

2ρ3/2
m(ρ, x)

where we have introduced the shorthand m(ρ, x) =
√

1 + y2
x + 4ρeAy2

ρ.

The minimal surface equation is:

0 =
(
1 + 4ρeAy2

ρ

)
yxx + ρeA

(
1 + y2

x

)
yρρ − 5ρeAyρyxyρx (4.18)

+
1

2
eAyρ

(
ρA′

(
3 + 3y2

x + 8ρeAy2
ρ

)
− 1− y2

x − 8ρeAy2
ρ

)
.

We now solve this equation iteratively for y(ρ, x) as a series expansion in ρ. We assume

the following Taylor series expansions for A(ρ) and y(ρ, x):

eA(ρ) = 1 +A(α)ρ
α + . . . (4.19)

y(ρ, x) = y(0)(x) + y(β1)(x)ρβ1 + y(β2)(x)ρβ2 + . . .

where we assume that α > 0 and 0 < β1 < β2 < . . .. To solve the PDE we insert these

expansions into equation (4.19) and set ρ = 0. We then fix β1 and y(β1) to solve the resulting

equation to leave y(0) unconstrained and differentiate equation (4.19) with respect to ρ and

repeat to find β2.

After substituting the expansions into the minimal surface equation, one finds that the

leading order behaviour is a term constant in ρ and a term scaling as ρβ1−1. To leave y(0)

unconstrained we must set β1 = 1 (as before) and deduce that:

y(1)(x) =
2y(0)xx

1 + (y(0)x)2
. (4.20)

Next we substitute the expansions into the ρ derivative of equation (4.19). In all cases

the lowest power involving β2 is ρβ2−2 and we choose β2 so as to cancel the leading order

divergence involving α.

In the case that α < 1 the leading order divergence involving α goes as ρα−1 which

requires β2 = 1 + α and the following value of y(1+α) to cancel the divergence:

y(1+α) = −
A(α)(3α− 1)y(1)

2α2 + α− 1
(4.21)

Note that the denominator here vanishes when α = 1
2 (and when α = −1 which is excluded

by the boundary conditions) and this case needs to be treated separately.

In the case α > 1 the leading order term involving α is not divergent and we can set

β2 = 2 with

y(2) =
4y3

(1) + 6y(1)y(0)xy(1)x − 4y2
(1)y(0)xx − y(1)xx

1 + (y(0)x)2
(4.22)
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In the case where α = 1 these two results overlap to give β2 = 2 and

y(2) =
4y3

(1) + 6y(1)y(0)x − 4y2
(1)y(0)xx − y(1)xx

1 + (y(0)x)2
−A(1)y(1). (4.23)

One can similarly analyse the asymptotic expansions to higher order but this will not be

needed in calculating the regularised entanglement entropy.

Let us now turn to the regularisation of the entanglement entropy functional. Using

the series expansion for y(ρ, x) the small ρ behaviour of the action is

S =
1

4G4

∫
dx dρ

eA/2

2ρ3/2

√
1 + (y(0)x)2

(
1 +

1

2
ρB(ρ, x) + . . .

)
. (4.24)

where B(ρ, x) is a function which is constant in ρ to leading order. The full expression for

B(ρ, x) is given by

ρB(ρ, x) =
y2
x + 4ρeAy2

ρ − (y(0)x)2

1 + (y(0)x)2
(4.25)

where it is understood that the series expansions for eA and y are inserted above. It is

clear that ∫
dx

∫
ε

dρ
eA/2

4

√
1 + (y(0)x)2ρ−1/2B ∼ ε1/2 + . . . (4.26)

which vanishes as the cutoff is removed.

Hence to find the regularised action we only need to expand the function eA(ρ)/2 and

keep terms which are powers of ρ1/2 or lower:

Sreg =
1

4G4

∫
dx
√

1 + (y(0)x)2

∫
dρ

eA/2

2ρ3/2
(4.27)

The latter radial integral depends only on the background and not on the specific embed-

ding.

The first counterterm we require is needed in all cases independently of α: this is the

volume divergence associated with the asymptotically AdS background. The necessary

counterterm here is as before

Sct = − 1

4G4

∫
∂Σ

dx
√
γ̃. (4.28)

The remaining divergent terms depend explicitly on A(α) and α. These terms can only

be non-trivial if there is a non-trivial matter content in the bulk and consequentially the

counterterms must be functions of the scalar fields on the ρ = ε slice pulled back on to the

minimal surface.

Solving the field equations (4.13) to leading orders in ρ implies that

φ = φ(0)ρ
1
2

(3−∆+) + · · · (4.29)

and for the warp factor:

α = 3−∆+; A(α) = −1

8
φ2

(0). (4.30)
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Subleading divergences in the entanglement entropy are only present when ∆+ > 5/2. The

regulated onshell action up to the first subleading divergence is:

Sreg =
1

4G4

∫
∂Σε

dx
√
γ̃

(
1 +

3−∆+

8(5− 2∆+)
φ2

(0)ε
3−∆+ + . . .

)
(4.31)

and to leading order we also know that on the ρ = ε hypersurface φ = φ(0)ε
(3−∆+)/2 so

it is simple to write the n = 1 divergence in a covariant form so that the corresponding

counterterm can then be read off:

Sct = − 1

4G4

∫
∂Σ

dx
√
γ̃

3−∆+

8(5− 2∆+)
φ2. (4.32)

At ∆+ = 5/2 the divergence becomes logarithmic and is associated with a conformal

anomaly; we will discuss such anomalies further below.

Given a superpotential for the RG flow one can find an exact expression for the coun-

terterms to all orders as follows. We have argued that the counterterms can be written

covariantly as

Sct = − 1

4G4

∫
∂Σ

dx
√
γ̃Y (φ) (4.33)

where Y (φ) is analytic in the scalar field. (Here we exclude conformal anomalies, which

we will discuss below.) By construction the counterterm is chosen to cancel divergences

and hence ∫
ε
dρ

e
A
2

2ρ
3
2

=
e
A
2

ε
1
2

Y (φ), (4.34)

where implicitly the latter is evaluated at ρ = ε. Differentiating this expression with respect

to the radius we then obtain

A′Y + 2
dY

dφ
φ′ − Y

ρ
= −1

ρ
. (4.35)

One can then substitute in the superpotential to get

(1 + W̃ )Y − 4
dY

dφ

dW̃

dφ
= 1, (4.36)

i.e. an expression for Y (φ) in terms of the superpotential W̃ (φ) with no explicit radial

dependence. The superpotential W̃ (φ) can be expressed as

W̃ (φ) =
∑
n≥2

wnφ
n w2 =

1

8
(3−∆+) (4.37)

and correspondingly

Y (φ) = 1 +
∑
n≥2

ynφ
n (4.38)

with

y2 =
(3−∆+)

8(5− 2∆+)
; y3 =

1 + 24y2

(8− 3∆+)
w3, (4.39)

and so on. Here the cubic counterterm is required for ∆+ > 8/3, and there is a corre-

sponding logarithmic divergence at ∆+ = 8/3 which is cubic in the scalar field.
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For a free scalar in the bulk wn = 0 for n > 2, but the expansion of Y (φ) does not

terminate at n = 2:

Y (φ) = e
1
4
φ2
∑
m≥0

(−1)m

4mm!

φ2m

(2m∆+ − 2m+ 1)
. (4.40)

However, one should implicitly only retain terms from this series which contribute to di-

vergences. The order m term is required for

∆+ > 3− 1

2m
. (4.41)

The associated divergence becomes logarithmic at ∆+ = 3− 1/2m: the coefficient at order

m in (4.40) becomes ill-defined, corresponding to the breakdown of the assumed form of

the counterterms. Note that logarithmic terms appear in the asymptotic expansion of the

scalar field φ for half integer conformal dimensions but these are not related to conformal

anomalies in the entanglement entropy.

In the m = 1 case the regulated onshell action has a logarithmic divergence when

∆+ = 5/2

Sreg =
1

4G4

∫
dx
√
γ̃

(
1− 1

4
A3−∆+ε

1/2 log ε

)
+ . . . (4.42)

Here A1/2 = −1
8φ

2
(0) and φ = φ(0)ε

1/4 + . . ., so we can write this divergence as

Sreg =
1

4G4

∫
dx
√
γ̃

(
1 +

1

32
φ2 log ε

)
+ . . . . (4.43)

The corresponding logarithmic counterterm is then simply

Sct = − 1

4G4

∫
dx
√
γ̃

1

32
φ2 log ε. (4.44)

This result is consistent with that of [31] who found a logarithmic divergence, in their

notation, given by

δS =
A

8GN
(d− 2)λ2h0 log(ε/εIR) (4.45)

which matches our expression under the substitutions 4GN = 1, A =
∫

dx
√
γ̃, d = 3,

h0 = 1
8 , λ = φ and the relabelling of the cut-off ε→ ε1/2. This relabelling of the cut off is

necessary as theirs is imposed on a z = ε surface where ρ = z2.

Thus, to summarise the results of this section, the required counterterms are

S = − 1

4G4

∫
∂Σ

dx
√
γ̃

(
1 +

3−∆+

8(5− 2∆+)
φ2 + · · ·

)
, (4.46)

where the ellipses denote terms involving higher powers of the scalar field. The counterterm

quadratic in scalar fields is necessary for ∆+ > 5/2 and is logarithmic at ∆+ = 5/2. More

generally, new logarithmic divergences involving n powers of the scalar field arise at

∆+ = 3− 1

n
(4.47)

– 25 –



J
H
E
P
0
8
(
2
0
1
6
)
1
6
5

and an additional counterterm involving n powers of the scalar field is switched on for

∆+ > 3 − 1/n. The counterterms can be expressed compactly in terms of an analytic

function of the scalar field Y (φ)

S = − 1

4G4

∫
∂Σ

dx
√
γ̃Y (φ), (4.48)

where Y (φ) is defined in terms of the superpotential for the flow by (4.36). We should

emphasise that both expressions (4.46) and (4.48) are applicable to entangling surfaces

in holographic RG flows with flat slicings. For entangling surfaces in generic Einstein-

scalar backgrounds there could be additional counterterms dependent on gradients of the

scalar field.

4.2 Entanglement entropy change under relevant perturbation

In this section we will calculate the change in the renormalized entanglement entropy of

a disk entangling region under a small relevant perturbation of the CFT, i.e. we work

perturbatively in φ(0), the source of the relevant operator. As in [32, 33] it is convenient

to express the change in the bare entanglement entropy as

δS =
1

8G4

∫
d2x
√
γTmnminδgmn (4.49)

where γ is the metric on the unperturbed minimal surface, Tmnmin is the energy momentum

tensor for the minimal surface

Tmnmin = γαβ∂αX
m∂βX

n (4.50)

and δgmn is the change in the (Einstein) metric induced by the relevant deformation. The

latter can always be parameterised as

ds2 =
dρ2

4ρ2
(1 + δf(ρ)) +

1

ρ
(1 + δh(ρ))dxµdxµ, (4.51)

and we can furthermore use the gauge freedom to fix δf(ρ) = 0. The latter gauge choice

was implicit in our earlier parameterisation of domain wall geometries.

One can then show that the change in the regulated (bare) entanglement entropy for

a disk is

δSreg =
πR

4G4

∫ R2

ε

dρ

ρ
3
2

(1 +
ρ

R2
)δh(ρ). (4.52)

Note that this expression holds for any small perturbation of the metric which preserves

Poincaré invariance of the dual field theory.

Working perturbatively in the scalar field amplitude, and taking into account Poincaré

invariance, the most general solution possible for the scalar field is

φ = φ(0)ρ
1
2

(3−∆+) + φ(∆+)ρ
1
2

∆+ (4.53)
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(where we assume that ∆+ 6= 3/2) and φ(∆+) is the normalizable mode of the scalar field.

Correspondingly the warp factor is given by

δh = −1

8

(
φ2

(0)ρ
(3−∆+) +

8∆+

9
(3−∆+)φ(0)φ(∆+)ρ

3
2 + φ2

(∆+)ρ
∆+

)
(4.54)

Since we are working perturbatively in the scalar field, we need only retain counterterms

which are quadratic in the scalars. In the case of a single scalar field this implies that

the only contributing counterterms are those given in (4.46). At ∆+ = 5/2, the change

in the entanglement entropy involves a logarithmic divergence, and thus the renormalized

entanglement entropy will be renormalization scheme dependent.

The change in the renormalized entanglement entropy is hence (for ∆+ 6= 5/2)

δSren =
π

16(2∆+ − 5)G4
φ2

(0)R
2(3−∆+) (4.55)

+
π

36G4
∆+(∆+ − 3)φ(0)φ(∆+)R

3 +
π

16(2∆+ − 1)G4
φ2

(∆+)R
2∆+ .

Working to quadratic order in the scalar field one cannot impose regularity in the bulk as

ρ→∞ as both modes are unbounded. On dimensional grounds, however,

φ(∆) ∝ φ
∆+

(3−∆+)

(0) (4.56)

for 3
2 < ∆+ < 3. Hence φ(∆+) ∼ φδ(0) with δ > 1, and the normalizable mode is subleading

in powers of the non-normalizable mode, as we will see in the full solution given in the

next section.

Therefore

δSren =
π

16(2∆+ − 5)G4
φ2

(0)R
2(3−∆+) + · · · (4.57)

where ellipses denote terms which are of higher order in the source. This quantity is positive

for ∆+ > 5/2 but negative for relevant deformations with 3/2 < ∆+ < 5/2. Recalling that

the F quantity is proportional to minus the renormalized entanglement entropy the change

in the F quantity is positive for relevant deformations with 3/2 < ∆+ < 5/2. A related

result was obtained in [34], although the sign of the quantity was not explicitly identified

in that work.

For operators of dimension ∆− < 3/2, the non-normalizable mode φ(0) is not the op-

erator source: the correct source is obtained from a Legendre transformation of the onshell

action [35]. Such a Legendre transformation cannot be carried out without working to

higher orders in the non-normalizable mode φ(0) and thus we cannot obtain the entangle-

ment entropy for this case without knowledge of the higher order solution.

Now let us consider the special case of ∆ = 3, i.e. marginal operators. In this case

the warp factor is unchanged by the non-normalizable mode of the scalar field φ(0), i.e.

integrating the equations of motion we obtain

δh = −1

8
φ3

(3)ρ
3. (4.58)
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Since the non-normalizable mode does not affect the metric, there are no new divergences

and no counterterms depending on the scalar field. At ∆ = 3 there are also no possible

finite counterterms since the finite counterterm

Sct = − 1

4G4

∫
dx
√
γh
(
Kφ2

)
(4.59)

does not respect the complementarity requirement. The renormalized entanglement en-

tropy for a marginal deformation is thus

δSren =
π

80G4
φ2

(3)R
6.

In the vacuum of the marginally deformed conformal field theory φ(3) = 0 and the change

in the renormalised entanglement entropy is therefore zero for the vacuum of the deformed

conformal field theory. Note that the change in the renormalized entanglement entropy

is hence implicitly not analytic in the operator dimension as ∆ → 3; this is however

permissible, since the spectrum of operators is discrete.

We can also compute the change in the quantity F (R) defined in section 2:

δF (R) = −δSreg(R) +R
∂Sreg(R)

∂R
(4.60)

For ∆ < 3

δF (R) = −
πφ2

(0)

16G4
R6−2∆ (4.61)

which is negative for all relevant deformations. This does not agree numerically with δSren,

but it is the latter which is by construction related to the renormalized F quantity by the

CHM map.

For ∆ = 3, the change in the regulated entanglement entropy is zero, as the metric is

unchanged, and therefore

δF (R) = 0. (4.62)

Note that implicitly the change in δF (R) is therefore also non-analytic at ∆→ 3.

It may seem surprising that the F quantity decreases along RG flows generated by

operators of dimensions 3/2 < ∆+ < 5/2. The results discussed above actually follow

directly from the subadditivity property of the (regularised) entanglement entropy: recall

that the latter implies that ∂2Sreg/∂R
2 ≤ 0. Our analysis implies that the counterterms

scale with the size of the entangling region, i.e. Sct ∝ R. Therefore subadditivity implies

∂2Sren

∂R2
=
∂2Sreg

∂R2
≤ 0. (4.63)

However, on dimensional grounds, when we work to quadratic order in the source Sren must

take the form

Sren = − π

2G4
+ a2(3−∆+)φ

2
(0)R

2(3−∆+) + · · · (4.64)

for ∆+ > 3/2 where a2(3−∆+) is a dimensionless constant. Here we use the explicit form

for the leading term, which is independent of R. Differentiating twice with respect to R

then gives
∂2Sren

∂R2
= 2(3−∆+)(5− 2∆+)a2(3−∆+)φ

2
(0)R

2(2−∆+) + · · · (4.65)
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This is negative semi-definite (as required by strong subadditivity) provided that

(3−∆+)(5− 2∆+)a2(3−∆+) ≤ 0, (4.66)

i.e. provided that a2(3−∆+) ≥ 0 for ∆+ ≥ 5/2 and a2(3−∆+) ≤ 0 for ∆+ ≤ 5/2, as we

found above.

A related result is found by directly computing the change in the free energy to

quadratic order in the source for holographic RG flows on a sphere driven by the same

operators. Deformations of the theory on the sphere

ICFT → ICFT +

∫
S3

d3Ω ψ(0)O∆+ , (4.67)

where the source ψ(0) is independent of the spherical coordinates and dΩ is the measure on

the S3, may be described holographically by spherical sliced domain walls. Again working

to quadratic order in the source, the change in the free energy is positive for operators of

dimensions 3/2 < ∆+ < 5/2 [12].

Note that such deformations are not equivalent to conformal transformations of the

holographic RG flows considered here, which are dual to deformations of the theory on

flat space:

ICFT → ICFT +

∫
R3

d3xφ(0)O∆+ . (4.68)

To understand this point further, it is useful to recall the relationship between spherical

and Poincaré coordinates for anti-de Sitter. The former can be described in terms of the

following embedding into R1,4:

X0 = coshw X1 + iX2 = sinhw cos θeiτE X3 + iX4 = sinhw sin θeiφ (4.69)

so that

ds2 = dw2 + sinh2w
(
dθ2 + cos2 θdτ2

E + sin2 θdφ2
)
. (4.70)

Poincaré coordinates can be obtained by setting

X0 +X1 =
1

ρ1/2
X0 −X1 =

(
ρ1/2 +

1

ρ1/2
(t2E + x2 + y2)

)
(4.71)

X2 =
t

ρ1/2
X3 =

x

ρ1/2
X4 =

y

ρ1/2
,

resulting in

ds2 =
dρ2

4ρ2
+

1

ρ

(
dt2E + dx2 + dy2

)
. (4.72)

From these relations it is clear that the radial coordinate in spherical slicings, w, depends

on both ρ and |x| ≡ (t2E + x2 + y2)
1
2 . Conversely the Poincaré radial coordinate ρ depends

on (w, θ, τE). Therefore flows which depend only on w or ρ, respectively, are not equivalent

to each other: a flow which depends only on w will depend on the Poincaré norm |x| as

well as ρ.

From the field theory perspective, the theories on the S3 and on R3 are related by

the conformal transformation described earlier, with the relevant conformal factor being
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given by (3.53). While the original conformal field theory is of course unaffected by this

conformal factor, mapping (4.68) to the sphere results in

φ(0) → Ω∆+−3(θ, τE)φ(0), (4.73)

i.e. the transformed source is not homogeneous over the S3, and therefore the deformations

on S3 and R3 by homogeneous sources are not conformally equivalent. Thus, while the

change in the renormalized entanglement entropy is indeed related to a change in the

free energy on the S3, the latter is the change under a deformation which breaks the

SO(4) invariance.

4.3 Top down RG flow

Let us now consider entanglement entropy in holographic RG flows which have top down

embeddings. We will discuss the following single scalar example, taken from [36]. Let the

potential be

V (φ) = 6 cosh

(
φ√
3

)
(4.74)

which arises in a consistent truncation of N = 8 gauged supergravity, which in turn is a

consistent truncation of M theory compactified on S7. The RG flow equations can be used

to construct analytic domain wall solutions in which the metric is conveniently expressed as

ds2 =
(1 + νr +

√
1 + 2νr + r2)

2r2
√

1− r2(1 + 2νr + r2)
dr2 +

√
1− r2

2r2
(1 + νr +

√
1 + 2νr + r2)dxµdxµ (4.75)

and the scalar field profile is

φ =
√

3 tanh−1(r). (4.76)

The parameter ν ≥ −1 is arbitrary with ν = −1 corresponding to a supersymmetric domain

wall of the supergravity theory. Here r → 0 corresponds to the conformal boundary. Note

that in all cases the metric has a singularity at r = 1; this singularity is null in the

supersymmetric case and timelike in all other cases but the singularity is good according

to the standard criteria. The scalar mass associated with the potential is M2 = −2,

which corresponds to the cases of ∆− = 1 and ∆+ = 2, i.e. the mass is such that both

quantisations are possible and mixed boundary conditions can be considered.

We can reintroduce the scalar field amplitude as a parameter by letting

r = cr̃; xµ = cx̃µ (4.77)

so that

ds2 =
(1+νcr̃+

√
1+2νcr̃+c2r̃2)

2r̃2
√

1−c2r̃2(1+2νcr̃+c2r̃2)
dr̃2+

√
1−c2r̃2

2r̃2
(1+νcr̃+

√
1+2νcr̃+c2r̃2)dx̃µdx̃µ

φ =
√

3 tanh−1(cr̃). (4.78)

We can then change coordinates for cr̃ � 1 as

r̃2 = ρ+ νcρ
3
2 + · · · (4.79)
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to obtain

ds2 =
dρ2

4ρ2
+

1

ρ
(1− 3

8
c2ρ+ · · · )dx̃µdx̃µ; (4.80)

φ =
√

3c

(
ρ

1
2 +

1

2
νcρ+ · · ·

)
from which we can read off that

φ(0) =
√

3c; φ(∆+) ≡ φ(1) =
1

2

√
3νc2, (4.81)

i.e. the normalizable mode is of order the non-normalizable mode squared. (This had to

be true on dimensional grounds in a solution which depends on only one dimensionful

parameter, c.) Thus substituting into (4.55) we obtain

δSren = − π

48G4
φ2

(0)R
4 +O

(
φ3

(0)

)
, (4.82)

in agreement with (4.57) in the case of ∆+ = 2.

The result (4.82) can be interpreted as follows. There are only two physical scales in

the field theory: the source for the operator deformation c and the size of the entangling

region R. When cR � 1, the entangling surface is small and does not penetrate far into

the bulk. The region probed by the entangling surface is well-described by the asymptotic

Fefferman-Graham expansion (4.80), and therefore one can use the results of the previous

section to compute the entanglement entropy. Note that the result does not depend on the

parameter ν, i.e. it is same for supersymmetric and non-supersymmetric RG flows.

Now consider increasing the radius of the entangling surface at fixed source. On

dimensional grounds δSren is a function of φ(0)R. Since ∂2Sren/∂R
2 ≤ 0, ∂δSren/∂R must

decrease monotonically with the radius R and δSren must be negative for all R.

5 Renormalization via the replica trick

In the previous sections we have described a renormalization procedure for entanglement

entropy which is based on the holographic realisation of entanglement entropy in terms of

minimal surfaces. It is difficult to translate this procedure directly into a field theoretic

definition of renormalization, since the Ryu-Takayanagi functional itself does not follow

directly from field theory.

A conceptual derivation of the Ryu-Takayanagi functional has been obtained by

Lewkowycz-Maldacena [3] via the replica trick. The entropy associated with a density

matrix ρ is expressed as

S = −n∂n [logZ(n)− n logZ(1)]n=1 (5.1)

where Z(n) = Tr(ρn) and Z(1) = Tr(ρ) is the usual partition function. If we are interested

in the entropy of a thermal state, then Z(n) is constructed by extending the period of the

thermal circle by a factor of n. In the case of entanglement entropy, Z(n) is constructed by

extending the period of the circle around the boundary of the entangling region by a factor
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of n, where implicitly n is an integer. Assuming that the resulting expression is analytic

in n, one can obtain the entropy by analytically continuing to n = 1.

Holographically Z(n) can be computed in terms of the Euclidean actions:

S = n∂n [I(n)− nI(1)]n=1 . (5.2)

Here I(1) represents the onshell Euclidean action for the bulk geometry while I(n) rep-

resents the onshell Euclidean action for the replica bulk geometry. For a thermal state,

the bulk geometry associated with Z(1) is a black hole and the replica is constructed by

extending the period of the thermal circle by a factor of n. It was shown by Lewkowycz-

Maldacena [3] that for a bulk theory described by Einstein gravity (5.1) then localises on

the horizon of the black hole, i.e.

S =
A

4Gd+1
. (5.3)

In particular, the volume divergences of the onshell actions (associated with UV diver-

gences in the field theory) by construction cancel, since the replica geometry asymptotically

matches n copies of the original geometry.

For the entanglement entropy, the bulk geometry associated with Z(1) corresponds to

the usual bulk dual of the given state in the field theory. The replica is constructed by

extending the period of the circle around the entangling region boundary by a factor of n.

Following the same logic as in Lewkowycz-Maldacena, the expression (5.2) localises on the

minimal surface corresponding to the extension of the boundary of the entangling region

into the bulk (see the discussions in [37]). However, unlike the black hole case, the volume

divergences of the bulk actions in (5.2) do not cancel, as the entangling surface itself has

area divergences.

We can formally write down a renormalized entanglement entropy as

Sren = n∂n [Iren(n)− nIren(1)]n=1 (5.4)

where the quantities appearing on the right hand side are the renormalized bulk actions.

Equivalently,

Sct = n∂n [Ict(n)− nIct(1)]n=1 (5.5)

Let us first focus on the specific case of entangling surfaces in AdS4, for which the usual

counterterms for the onshell action are [11]

Ict(1) =
1

4πG4

∫
∂M

d3x
√
h

(
−1

2
K + 1 +

1

4
R

)
. (5.6)

Here we define the bulk geometry to be M and its boundary to be ∂M, and K denotes

the trace of the extrinsic curvature of ∂M embedded into M. (The first term is the usual

Gibbons-Hawking term.)

Since the replica geometry is also asymptotically locally AdS4, the counterterms are

Ict(n) =
1

4πG4

∫
∂Mn

d3x
√
hn

(
−1

2
Kn + 1 +

1

4
Rn

)
. (5.7)
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where hn is the boundary metric for the replica geometry and Kn and Rn are the associated

extrinsic curvature and Ricci scalar, respectively. Now the replica geometry by construction

matches the original geometry except at the fixed point set of ∂τ , where τ is the circle

around the boundary of the entangling region and its extension into the bulk. At this

fixed point set the metric and the extrinsic curvature of the replica match the original

metric, but the intrinsic curvature invariants of the replica receive contributions from the

conical singularity. In the case of interest R = 0 but in the replica geometry due to the

conical singularity ∫
d3x
√
hnRn = 4π(1− n)

∫
∂Σ
dx
√
γ̃ (5.8)

and hence we find that

Sct = − 1

4G4

∫
∂Σ
dx
√
γ̃, (5.9)

which matches the counterterm obtained by our explicit calculations in section 3.

For the case of entangling surfaces in holographic RG flows the counterterms to

quadratic order in the scalar field are [11]

Ict(1) =
1

4πG4

∫
∂M

d3x
√
h

(
1 +

1

16
(3−∆+)φ2 +

1

4
R+

∆+ − 3

32(2∆+ − 5)
Rφ2

)
, (5.10)

where we drop the Gibbons-Hawking term as it does not contribute to the entanglement

entropy counterterms, and we also neglect terms involving derivatives of the scalar field,

i.e. we restrict to homogeneous scalar field configurations. Following the same steps as

above, we can then show that

Sct = − 1

4G4

∫
∂Σ
dx
√
γ̃

(
1 +

∆+ − 3

8(2∆+ − 5)
φ2

)
(5.11)

which is again in agreement with our explicit results of section 4.

Let us now move to general dimensions. For an asymptotically locally AdSD+2 space-

time the counterterms are [11]

Ict(1) =
1

16πGD+2

∫
∂M

dD+1x
√
h

(
2D +

1

(D − 1)
R (5.12)

+
1

(D − 3)(D − 1)2

(
RabR

ab − D + 1

4D
R2

)
+ · · ·

)
.

This expression should be understood as containing only the appropriate divergent terms

in any given dimension; moreover, for odd D there are logarithmic counterterms. In par-

ticular, for D = 3 the third counterterm is replaced by the logarithmic counterterm

1

16πG5

∫
∂Mε

d4x
√
h

1

8

(
RabR

ab − 1

3
R2

)
ln ε. (5.13)

In the replica geometry, the contributions to the curvature from the conical singularity

are given by [13]

Rn = R+ 4π(1− n)δ∂Σ +O(1− n)2; (5.14)

Rnab = Rab + 2π(1− n)nanbδ∂Σ +O(1− n)2,
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where δ∂Σ is a delta function localised on the entangling surface. Here nka with k = 1, 2

represent orthonormal vectors to the entangling surface and

nanb =
∑
k

nkan
k
b . (5.15)

Following the same steps as above, we can immediately read off the leading counterterm

for the entanglement entropy as

Sct,1 = − 1

4(D − 1)GD+2

∫
∂Σ
dD−1x

√
γ̃, (5.16)

in agreement with our earlier result.

For the higher order counterterms, one can use the following expressions [14]∫
∂Mn

dD+1x
√
hnR

2
n=n

∫
∂M

dD+1x
√
hR2+8π(1−n)

∫
∂Σ
dD−1x

√
γ̃R (5.17)∫

∂Mn

dD+1x
√
hnRnabR

ab
n =n

∫
∂M

dD+1x
√
hRabR

ab+4π(1−n)

∫
∂Σ
dD−1x

√
γ̃

(
Rii−

1

2
k2

)
,

where implicitly we work to leading order in (1 − n) and we define

k2 =
∑
k

(Kk)2 (5.18)

with Rii corresponding to invariant projections of the Ricci tensor onto the subspace or-

thogonal to ∂Σ, see [13].

In section 3, we analysed the entanglement entropy counterterms assuming that the

entangling surface is static and that the curvature of the boundary metric is zero. In such

a case Rii = R = 0 and the extrinsic curvature in the time direction is zero. Thus the

second counterterm becomes

Sct,2 = − 1

8(D − 1)2(D − 3)GD+2

∫
∂Σ
dD−1x

√
γ̃K2, (5.19)

where K refers to the trace of the extrinsic curvature of the surface embedded into a

constant time hypersurface. Similarly in D = 3 the logarithmic counterterm is

Sct,2 =
1

64G5

∫
∂Σ
d3x
√
γ̃K2 ln ε, (5.20)

which is in agreement with the expression obtained in [13] for the anomaly in the entangle-

ment entropy for 4d CFTs with a holographic dual. (See [13] for the conformal anomaly

in a general 4d conformal field theory in which a 6= c.)

One can now immediately generalize the entanglement entropy counterterms to the

case of a general embedding into a curved boundary metric obtaining

Sct = − 1

4(D − 1)GD+2

∫
∂Σ
dD−1x

√
γ̃ (5.21)

− 1

4(D − 1)2(D − 3)GD+2

∫
∂Σ
dD−1x

√
γ̃

(
Rii −

1

2
k2 − D + 1

2D
R

)
,

where one can use the Gauss-Codazzi relations to write Rii and R in terms of intrinsic and

extrinsic curvatures of ∂Σ.
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5.1 Higher derivative generalizations

Using the replica trick, we can derive the renormalized entanglement entropy functional

from any higher derivative gravity for which the renormalized bulk action is known. Let

us consider the particular example of Gauss-Bonnet gravity, with bulk action

I = − 1

16πGD+2

∫
M
dD+2x

√
g
[
Rg +D(D + 1) + λ

(
RmnpqR

mnpq − 4RmnR
mn +R2

g

)]
(5.22)

where λ is the Gauss-Bonnet coupling.

One can derive the entanglement entropy functional by the replica trick used above,

see [14, 38], using the bulk versions of (5.17) together with the additional relation∫
Mn

dD+2x
√
gRmnpqR

mnpq = n

∫
Mn

dD+2x
√
gRmnpqR

mnpq (5.23)

+ 8π(1− n)

∫
Σ
dDy
√
γ
(
Rijij − Tr(k2)

)
,

where we neglect terms of higher order in (n − 1) and Rijij denotes the projection of the

Riemann tensor in the directions orthogonal to the entangling surface. Also

Tr(k2) =
2∑

k=1

KkabKkab. (5.24)

Thus the entanglement entropy functional consists of the usual Ryu-Takayanagi term plus

additional terms

S =
1

4GD+2

∫
Σ
dDy
√
γ +

λ

GD+2

∫
Σ
dDy
√
γ
(
Rijij − Tr(k2)− 2Rii + k2 +R

)
, (5.25)

where implicitly all terms can be written in terms of extrinsic and intrinsic curvatures on

the entangling surface. As shown in [14], in five bulk dimensions the latter term can be

simplified using the Gauss-Codazzi relations to give

S =
1

4G5

∫
Σ
d3y
√
γ
(

1 + 2λR̂
)
, (5.26)

with R̂ the intrinsic curvature of the entangling surface.

Now the bulk equations of motion admit as AdS5 as a solution, but the radius of the

AdS5 depends on the Gauss-Bonnet coupling, i.e. the AdS5 metric is

ds2 = l2(λ)

(
dρ2

4ρ2
+

1

ρ
dx · dx

)
(5.27)

where the radius is given by

l4(λ)− l2(λ) + 2λ = 0. (5.28)

One can then straightforwardly show that the leading order counterterm for the entangle-

ment entropy is given by

Sct = − 1

8G5

∫
∂Σ
d2x
√
γ̃

(
l(λ)− 12

λ

l(λ)

)
, (5.29)
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where we use the fact that the entangling surface is asymptotically locally hyperbolic and

thus R̂ = −6//l(λ)2 + · · · . There is also a subleading logarithmic divergence associated

with the conformal anomaly; this is known from the work of [13].

Now the leading order counterterm for the entanglement entropy is inherited from the

subleading counterterm for the bulk action, i.e. the counterterm

Ict = a2

∫
d4x
√
hR. (5.30)

This counterterm is not known to all orders in λ, although it was derived perturbatively

in λ in [39–41]. The relation with entanglement entropy immediately gives the coefficient

of this counterterm to be

a2 =
1

32G5

(
l(λ)− 12

λ

l(λ)

)
, (5.31)

i.e. the entanglement entropy counterterms provide a quick method of deriving or checking

counterterms in the bulk action involving the curvature.

5.2 Domain walls

In this section we show how the counterterms for asymptotically locally AdS solutions of

a theory with a single scalar imply the entanglement entropy counterterms discussed in

section 4. The bulk Euclidean action is

I = − 1

16πG4

∫
M
d4x
√
g

(
Rg −

1

2
(∂φ)2 + V (φ)

)
. (5.32)

In general the counterterms for asymptotically locally AdS solutions of this action can be

expressed in the form

Ict =
1

16πG4

∫
∂M

d3x
√
h (W(φ) + Y(φ)R+ · · · ) , (5.33)

where W(φ) and Y(φ) are analytic functions of the scalar field φ. Here the ellipses denote

terms which depend on gradients of the scalar field; as in the discussions above, such

terms are not relevant when using the replica trick to derive the entanglement entropy

counterterms. In the above expression we assume generic values of the dual operator

dimension such that there are no conformal anomalies; for specific values of the operator

dimension there will however be conformal anomalies.

For a flat domain wall solution, characterized by a given superpotential W (φ), the only

contributing counterterm is W(φ) = 4W (φ), since in this case R = 0. To use the replica

trick we need to know how the counterterms for the bulk action depend on the curvature

of the boundary metric i.e. we cannot restrict to flat sliced domain walls: the counterterm

for the entanglement entropy follows from the term involving the Ricci scalar above, i.e.

Sct = − 1

4G4

∫
∂Σ
dx
√
γ̃Y(φ). (5.34)

We can understand the specific form of Y(φ) for entanglement entropy in a flat sliced

domain wall as follows. We begin with solutions of the equation of motion correspondins
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to domain walls with homogeneous slicing, i.e. the metric is

ds2 = dw2 + e2A(w)dΩ2
3 (5.35)

and the scalar field profile is φ(w). We let the Ricci scalar of the slicing be r̂ where, for

example, r̂ = 6 for unit radius spherical slices. The equations of motion are then

φ̈+ 3φ̇Ȧ = −V ′(φ); (5.36)

− r̂
6
e−2A − 1

4
φ̇2 = Ä.

These equations are identical to those discussed in section 4, apart from the curvature

contribution to the second equation.

Now let us work in the limit that r̂ � 1. For r̂ = 0, the equations admit the first order

form discussed in section 4, in terms of the superpotential W (φ). For r̂ � 1, the equations

of motion are solved to order r̂2 by

Ȧ = W φ̇ = −4
dW

dφ
+ r̂f(φ) (5.37)

provided that

3Wf(φ)− 4
d

dφ

(
f(φ)

dW

dφ

)
= 0; (5.38)

f(φ)
dW

dφ
=

1

6
e−2A.

The regulated onshell action (including the Gibbons-Hawking term) thus becomes

Ireg = −
∫ R

dw

∫
dΩ3

(
eAr̂ +O(r̂2)

)
− 1

4πG4

∫
dΩ3

[
e3AW

]
R
, (5.39)

= − 1

16πG4

∫ R

dw

∫
dΩ3

(
eAr̂ +O(r̂2)

)
− 1

4πG4

∫
∂M

d3x
√
hW,

where we have used the field equations to linear order in r̂ and in the second line we write

the boundary term in covariant form. The bulk term can be expressed as a covariant

boundary term

− 1

16πG4

∫
∂M

d3x
√
hRY (φ) (5.40)

provided that
d

dw

(√
hRY (φ)

)
= eAr̂. (5.41)

However,
d

dw

(√
hRY

)
= r̂

d

dw

(
eAY

)
= eAr̂

(
WY − 4

dW

dφ

dY

dφ

)
, (5.42)

where we drop terms of higher order in r̂ and use the field equations. Therefore the required

counterterms are

Ict =
1

16πG4

∫
∂M

d3x
√
h (4W +RY ) , (5.43)
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with (
WY − 4

dW

dφ

dY

dφ

)
= 1, (5.44)

as we found in section 4. Note that terms of higher order in r̂ would not contribute to the

counterterms, as they do not give rise to divergent terms.

We calculated the curvature term in (5.43) by working with a homogeneous domain

wall. To use the replica trick, we need to consider a replica space in which the curvature

of the boundary is given by (5.14), in the limit that n → 1, i.e. it is not homogeneous,

but (5.43) is covariant and still applies. Note that the slices of the domain wall are flat,

up to conical singularity terms which are proportional to (n− 1), and hence R is small as

n → 1. It is therefore indeed true to leading order in (n− 1) that the replica geometry is

still governed by the superpotential W . Following the same steps as earlier in this section,

we can then immediately read off the counterterm action for the entanglement entropy as

Sct = − 1

4G4

∫
∂Σ
dx
√
γ̃Y (φ), (5.45)

as we found in section 4.

It is important to note that this expression holds specifically for flat domain wall

geometries associated with a superpotential W . A generic curved domain wall geometry

is not governed by a single real superpotential (see [42, 43]) and the analysis above would

need to be generalized for such cases.

6 Conclusions

In this paper we have shown how the holographic entanglement entropy may be renor-

malized using appropriately covariant boundary counterterms. This renormalization pro-

cedure is inherited directly from the renormalization of the partition function, using the

replica trick.

We analysed renormalization for entangling surfaces in asymptotically locally AdS

spacetimes in any dimension and in flat sliced holographic RG flows in four bulk dimensions.

We also showed that the renormalization procedure can be extended to higher derivative

theories such as Gauss-Bonnet. It would be straightforward to generalize our results to

include entangling surfaces with cusps and to non-conformal holographic setups using [44].

It would be interesting to explore real-time holography in the context of entanglement

entropy, using the techniques of [29] for the HRT functional [45].

While it is difficult to relate the area renormalization of the holographic entanglement

entropy functional directly to field theory renormalization, the replica trick expresses our

renormalised entanglement entropy in terms of renormalized partition functions, i.e.

Sren = −n∂n [logZren(n)− n logZren(1)]n=1 . (6.1)

This expression can be directly implemented in a field theoretical calculation: having fixed

a renormalization scheme for the partition function, the partition function on the replica

space (which has the same UV divergence structure) will inherit a renormalization scheme
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and thus Sren will be determined. This assumes that the replica trick is applicable but in

practice most explicit calculations of entanglement entropy in field theory do in any case

make use of the replica trick. Computations of the renormalized entanglement entropy in

free field theory examples will be presented elsewhere.

There has been considerable interest recently in supersymmetric renormalization

schemes for field theories on curved spaces and, in particular, in analysing how much

supersymmetry is required for the partition function to be uniquely defined [46]. It would

be interesting to understand the role of supersymmetry in our analysis.

In section 4 we showed that the renormalized entanglement entropy of a disk decreases

under deformations of a conformal field theory by operators of dimension 3/2 < ∆ <

5/2. Under the CHM map, this corresponds to an increase in the F quantity when one

makes corresponding deformations of the theory on a three sphere; note however that these

deformations do not preserve the symmetry of the S3. In the companion paper [12] we

find analogous results for flows which are homogeneous on the three sphere. It would be

interesting to understand whether these examples indeed disprove the strong version of the

F theorem, or whether the flows under consideration are unphysical.
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