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Abstract: This paper proposes a dimmable scheme for a visible light communication
(VLC) system based on multilayer asymmetrically clipped optical orthogonal frequency-
division multiplexing (ACO-OFDM), which is able to support a wide dimming range for
different illumination requirements. In the proposed scheme, multiple layers of ACO-
OFDM occupying different subcarriers are combined so that almost all of the subcarriers
can be used for data transmission. The polarities of different layers of ACO-OFDM are
varied to obtain flexible time-domain waveform, which can fully exploit the dynamic
range of light-emitting diodes (LEDs) and achieve better performance. The scaling factor
and modulation order for each layer, as well as the dc bias, are optimized for different
dimming requirements to achieve improved spectral efficiency. Simulation results dem-
onstrate that the proposed scheme can support communication over a wide dimming
range and achieve higher spectral efficiency, compared with existing methods under
different dimming requirements.

Index Terms: Orthogonal frequency-division multiplexing (OFDM), visible light communi-
cation (VLC), dimming control, light-emitting diode (LED).

1. Introduction

Visible light communications (VLCs) have attracted increasing attention as a promising tech-
nique to provide secure and high-speed data transmission, especially in indoor scenarios. For
low-cost implementation, the information is modulated onto the intensity of light-emitting diode
(LED) lamps in VLC systems, while the light is directly detected by photodiodes (PDs) at the re-
ceiver and converted to electrical signal that is proportional to its optical power, which is referred
to as intensity modulation with direct detection (IM/DD) [1], [2].

In indoor VLC systems, communication and illumination should be maintained simultaneously,
where the light can be dimmed to satisfy different illumination and power requirements [3]-[5].
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However, the dimming operation will interfere with the communication function of VLC systems
since it will alter the received optical power and signal-to-noise ratio (SNR). For the IEEE
802.15.7 Standard, single carrier pulsed modulations such as on-off keying (OOK), pulse-
position modulation (PPM) and color shift keying (CSK) are utilized, whereas dimming control is
usually realized by combining the existing modulation schemes with pulse amplitude modulation
(PAM) or pulse width modulation (PWM) [3]. Besides, several compensation schemes have
been proposed combined with various forward error correction (FEC) codes [6]-[8].

As a spectrally efficient modulation scheme, orthogonal frequency division multiplexing
(OFDM) has been extensively employed in VLC systems to achieve ultra-high speed data trans-
mission, and multi-gigabit/s experiments have been demonstrated [9]-[12]. In order to comply
with intensity modulation, optical OFDM requires real and nonnegative output and various modi-
fications to conventional OFDM have been proposed, among which DC biased optical OFDM
(DCO-OFDM) and asymmetrically clipped optical OFDM (ACO-OFDM) are mostly used [13],
[14]. The dimming control techniques used for single-carrier modulations can be extended to
OFDM-based VLC systems. In [15], each time-domain OFDM signal is multiplied by a PWM sig-
nal to satisfy different dimming requirements. However, the required frequency of PWM signals
should be at least twice the OFDM signals, which is infeasible for high-speed VLC systems.
Alternatively, a much wider PWM signal is used in [16], where the time-domain OFDM signals
are only modulated during the on-state of PWM, which is easy to implement but sacrifices the
data rate since the time of off-state is wasted. The idea is further extended in [17] to utilize
multi-PPM (MPPM) for dimming control and carrying information simultaneously, where more
information bits can be transmitted but the disadvantage of wasting time is still unsolved. Re-
verse polarity optical-OFDM is proposed in [18], which combines the fast ACO-OFDM signal
with the relatively slow PWM dimming signal to fully utilize the duty cycle and LED dynamic
range. However, this scheme is not spectrally efficient since only the odd subcarriers are used
for data transmission. In [19], a hybrid optical OFDM scheme combining ACO-OFDM signals
occupying odd subcarriers and pulse-amplitude-modulated discrete multitone (PAM-DMT) sig-
nals modulating even subcarriers is proposed, which supports dimming control by a DC bias
without PWM signals. However, its spectral efficiency is limited since the real part of the even
subcarriers are not modulated in PAM-DMT.

Recently, several multi-layer unipolar OFDM schemes have been proposed [20]-[28]. In [21]
and [22], an enhanced unipolar OFDM (eU-OFDM) is proposed which simultaneously transmits
multiple unipolar data streams and achieves higher spectral efficiency compared to conventional
U-OFDM. Besides, several schemes are proposed to improve the spectral efficiency of
ACO-OFDM, which combine multiple layers of ACO-OFDM with different subcarriers modulated
for simultaneous transmission [23]-[27]. Moreover, it has been verified by Lowery that layered
ACO-OFDM offers the highest receiver sensitivity for a given optical power at spectral efficien-
cies above 3 bit/s/Hz [28].

Against this background, in this paper, a dimmable optical OFDM (DO-OFDM) is proposed to
support dimming control for different illumination requirements in VLC. In the proposed scheme,
multiple layers of ACO-OFDM occupying different subcarriers are combined for simultaneously
transmission, which is able to utilize almost all the subcarriers to improve the spectral efficiency.
The polarities of different layers of ACO-OFDM are varied and combined to obtain flexible
time-domain waveform. Besides, the scaling factor and modulation order for each layer as well
as the DC bias are optimized for different dimming requirements, so that the dynamic range of
LEDs can be fully exploited to achieve improved spectral efficiency. Simulation results show
that the proposed scheme can support communication over a wider dimming range and
achieve higher spectral efficiency compared with existing methods under different illumination
requirements.

The rest of this paper is organized as follows. In Section 2, the system model of OFDM-based
VLC and illumination requirement is described, while in Section 3, our proposed DO-OFDM
scheme is presented. In Section 4, the performance of the proposed scheme is presented and
compared with existing methods, and our conclusions are drawn in Section 5.
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Fig. 1. OFDM-based VLC system.
2. System Model

2.1. VLC System With Optical OFDM

A typical VLC system with optical OFDM is illustrated in Fig. 1. The transmitted bit stream is
mapped onto the complex-valued symbols, which are grouped as {Xp, X1, ..., Xn_1} for N sub-
carriers. Since intensity modulation is utilized in VLC system, the subcarriers should satisfy
Hermitian symmetry to make sure that the time-domain signals after inverse fast Fourier trans-
form (IFFT) are real-valued, where we have Xx = Xy_,, k=1,2,...,N/2 — 1. Besides, X, and
Xn/2 corresponding to the DC component are set to zero. The time-domain OFDM signal can be
generated by IFFT as [14]

1 & 27
Xp=—= Xexp(jnk),n0,1,...,N1. (1)
n \/N; k N

In order to obtain nonnegative signal for intensity modulation, a DC bias can be added to x, and
this scheme is called DCO-OFDM. Alternatively, in ACO-OFDM, only the odd subcarriers are
modulated so that the time-domain signals follow anti-symmetry and can be directly clipped at
zero without information loss [13]. This way, DC bias is not required, which is more energy effi-
cient compared with DCO-OFDM. lt is interesting to note that the clipping distortion only falls on
the even subcarriers after FFT, which is orthogonal to the useful information on the odd subcar-
riers. Therefore, the ACO-OFDM signals can be simply recovered at the receiver [13]. In order
to eliminate the inter-symbol interference, the cyclic prefix (CP) is inserted at the beginning of
each OFDM symbol. After that, the signal is parallel to serial (P/S) converted into a single
stream for emission.

At the receiver, the light is filtered and focused by lens, which is then detected by PDs and
converted to the electronic signal that is proportional to the received optical power. Meanwhile,
the signal is disturbed by shot noise and thermal noise at the receiver, which is usually modeled
as additive white Gaussian noise (AWGN) [2]. After CP removal and serial-to-parallel (S/P) con-
version, the received signals are grouped as {rn, r,...,n—1} and then transformed to the
frequency domain by fast Fourier transform (FFT) as follows:

_J2mkn

1 Nt
R« =— rexp< >,k0,1,...,N1. (2)
\/N;"
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Fig. 2. Dimmable VLC transmitter based on multilayer ACO-OFDM.

2.2. Dimming Control for lllumination Requirement

In VLC systems, the inherent nonlinearity of LEDs is a challenge for OFDM implementation
since OFDM has high peak-to-average power ratio (PAPR). The input of LEDs has a minimum
threshold value that can generate current, which is referred to as turn-on voltage (TOV). When
the input voltage is above the TOV, however, the voltage-current and current-power characteris-
tics are still nonlinear [29]. Several algorithms have been proposed to mitigate the effect of LED
nonlinearity, where the transfer characteristics of LED can be quasi-linear in a limited range
after predistortion [30], [31]. Therefore, we denote Viin and Viax as the minimum and maximum
allowed signals according to the voltage levels permitted by LEDs, and the transfer characteris-
tics of LEDs between [vmin, Vmax] is @assumed to be linear. Specifically, the relationship between
the emitted optical power and the input voltage is given by

0, V(1) < Viin
Popt(t) = {U(V(t) - Vmin)7 Vimin < V(t) < Vimax (3)
77(Vmax — Vmin); V(t) > Vmax

where 1 and v(t) denote the voltage-power transfer coefficient and instantaneous input voltage,
respectively.

Since the illumination level is proportional to the average optical power, dimming control can
be achieved by adjusting the average optical power of LEDs. Thus, we can define the dimming
level d as

E (Popi(t))

9= (77(Vmax - Vmin))

(4)

which obviously falls in the interval [0, 1]. When the required dimming level is adjusted, the re-
ceived optical power and effective SNR are changed, which will vary the achievable data rate
for a given bit error rate (BER) requirement. Therefore, we aim to design an efficient modulation
scheme which can support high data rate under different dimming targets.

3. Proposed Dimmable VLC System Based on Multi-Layer ACO-OFDM

The block diagram of proposed transmitter is depicted in Fig. 2, where L layers of ACO-OFDM oc-
cupying different subcarriers are combined for transmission. The transmitted bit stream is firstly
mapped onto the complex-valued symbols, which are then divided into different groups for layered
modulation. In Layer / (/=1,2,...,L) ACO-OFDM, an OFDM symbol which only modulates the
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2/-'k-th subcarriers are considered and is denoted as Xa4o  for k =0,1,...,N/2/~" — 1. After
N-point IFFT, the time-domain signals are given by [25]
N 27 S
XACOn kz:: ACOkeXp< W”'Q k)
= ! N/i 1 exp (/ T nk)
\/F\/W COk 2/ 1
L0

n=01,...,N—1 (5)

V2I-1 Xmod (ngl’1 ) ’

where x. denotes the N/2/~1-point IFFT result of X,i’éo_k It can be seen that xf\lco,, is periodic
and can be obtained with the N/2'-'-length signal x,(,'). In order to obtain real signals after IFFT

ACO.N/2’*‘—k) for
k=0,1,...,N/2/=" — 1. Furthermore, similar to conventional ACO-OFDM, only the subcarriers
with odd indices of X/(\It):o,k are modulated, while the subcarriers with even indices of X(co « remain
empty.

After IFFT, the time-domain signals of Layer /| ACO-OFDM follows anti-symmetry that
x,(,'> xr(,lN/z,, which can be directly clipped at zero without any information loss [25]. The
clipped Layer | ACO-OFDM signals are denoted as

operation, the subcarriers should satisfy Hermitian symmetry, i.e., X/(xgo,k = (X(’)

() ()
| — () _ ) Xaconm *acon=0
{XACO nJ = Xaco,n + aco,n { 0. ! X0 : <0 (6)

forn=0,1,...,N -1, where i/(xlc):o.n denotes the negative clipping distortion of Layer / ACO-OFDM,
which is orthogonal to the useful information when transformed to the frequency domain.

Therefore, in Layer | ACO-OFDM, N/2"*' useful symbols are actually transmitted, and dif-
ferent layers of ACO-OFDM occupy different subcarriers. Inspired by the multi-layer structure
proposed in [20]-[28], a dimmable optical OFDM (DO-OFDM) scheme based on multi-layer
ACO-OFDM is proposed in this paper, which transmits multiple layers of ACO-OFDM simulta-
neously and supports different dimming levels.

In DO-OFDM scheme, multiple layers of ACO-OFDM with different polarities are combined in
the time domain for simultaneous transmission, whose time-domain signals are written as

L
X”:Zﬁ’{X;&%O,nJcﬁ‘VbiaSan:071,~--,N—1 (7)
1=1

where L is the number of layers. 5, denotes the scaling factor for the Layer /| ACO-OFDM, which
can be either negative or positive, while w,s represents the DC bias to satisfy the dimming
target. In this way, almost all the subcarriers can be used for carrying information since dif-
ferent layers occupy different subcarriers, which improve its spectral efficiency. The spectral
efficiency of DO-OFDM is calculated as

L
SE = 2 ""Viog,(M)) (8)

=1

where M, denotes the modulation order of Layer / for | =1,2,...,L. Moreover, the waveform
of DO-OFDM can be very flexible to fit in the dynamic range of LEDs by adjusting the scaling
factors of different layers when different DC bias is utilized.
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At the receiver, the symbols on different layers are detected successively. Symbols on the
lower layers are firstly detected by simple FFT. After that, the corresponding clipping distortion
is reconstructed and eliminated from the received signals so that symbols on the higher layers
can be detected.

In order to fully exploit the dynamic range of LEDs and improve the effective SNR at the re-
ceiver, the coefficients 5, and w,as should be carefully selected for different dimming levels. Be-
sides, it can be seen in (3) that the signals outside the interval [vmin, Vmax] Need to be clipped,
which results in undesired clipping distortion and degrades the performance. Therefore, we
need to make sure most of the signals are within the interval [Vimin, Vinax]- In the following, the
derivation for 5, and wyas is given for different dimming levels.

We assume the variance of modulated symbol X,igo_k to be uniform as o2 for all the L layers of
ACO-OFDM. After IFFT, the time-domain OFDM signal in (5) approximates a Gaussian distribu-
tion when N > 64 according to the central limit theorem [14]. Since N/2"*' symbols are modu-
lated in Layer | ACO-OFDM and another N/2"*' subcarriers are occupied for Hermitian

symmetry, the variance of the unclipped signal xf\'g:ovn is equal to 02/2' according to the
Parseval’s theorem, while the expectation of Xé\goﬂ is zero. Therefore, the probability den-
sity function of Layer / (/=1,2,...,L) ACO-OFDM signals Lx,i’éoﬂjc is given by

N[

/ {XXC)IO,nJ c: 0
P({X;(\éoﬁnJ c) il R (_ VL’&SJZ) { 0 J -0 9)
o< _ o]

= Xaco,n

=
V=1

21

and the expectation of Lx}\’gjo_’njc is then calculated by [32]

E{|Xon| } =2 01/2x 20, (10)

Therefore, the expectation of x, can be calculated as

L L
E{xa} = ; @E{ {X/(\%O,nJ c} + Vbias = ; 24/2771/2@0' + Vbias- (11)

For a given dimming level d;, the required average optical power can be calculated according to
(4) as

E(Popt(t)) = 0(Vmax — Vimin) (12)

which is nonlinear in terms of instantaneous input voltage according to (3). It is worth noting that
most of the modulated signals are within the linear range of LEDs in practical implementation to
avoid clipping distortion, so that we can only consider the signals within the dynamic range and
neglect the clipping distortion in the calculation of average optical power. Therefore, the expec-
tation of x, should be approximate to

E{Xn} ~ dtVimax + (1 - dt) Vimin (13)
and the coefficients 5, (I =1,2,...,L) and wss for dimming control can be solved by (11) and
(13), where we have

L
Z 27I/27771/2ﬂlo' + Vbias = dthax + (1 - dt) Vimin- (14)

1=1

However, (14) is underdetermined since it includes L + 1 variables. Besides, the chosen coeffi-
cients should satisfy the following three requirements. First, the combined signals should use
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as much the dynamic range of LEDs as possible, which can achieve higher effective SNR at the
receiver. Secondly, the clipped distortion of the signals should be small. At last, the BER perfor-
mance of the DO-OFDM containing all different layers of ACO-OFDM signals should stratify the
BER target, which is related to both the modulation order and the optical power of each layer.
Therefore, some constraints are added to simplify this problem:

1_25§P(Vmingxngvmax)§1_5

> Py(1)2-0Vlog, (M)

<7 1=12,...,L (15)

L
> 2-(+1log, (M)
=

1B1] = B2 = -+~ = |BL]

where 2¢ denotes maximum probability that x, is clipped, and 7 is the BER target. P(:) is the
probability mass function, which can be calculated by the probability density functions of
L layers of ACO-OFDM signals in (9). It should be noted that the second inequality in the first line
of (15) is used to satisfy the first requirement. However, it cannot always hold when the dimming
level is too low or too high. The higher layers suffer from interference from lower layers due to
successive demodulation, which require higher power to achieve the same BER performance.
However, it has been shown in [25] that the BER performances of different layers converge
when the BER decreases since the estimation accuracy of interference from lower layers im-
proves. Therefore, we simply assume all the layers have the same absolute beta values as in
(15). Py(/) is the BER of the Layer / ACO-OFDM signals in the DO-OFDM, which can be approxi-

mated by [33]
_A(/M 1) 3 02
P ittog, (14 Q(\/ W1 4R 1)

for Mj-ary quadrature amplitude modulation (QAM), where Ny denotes the power spectral density
of the noise, and the interference from lower layers is neglected in (16) since its influence would
be very small at high SNRs as shown in [25].

The optimal coefficients to maximize the spectral efficiency in (8) can be obtained by travers-
ing different values of §; to satisfy (15), while the DC bias w,ss can be calculated by (14) when
G (I=1,2,...,L) are given. In practical implementation, these parameters for various dimming
levels and channel conditions can be stored in advance.

4. Numerical Results

Numerical simulations were conducted to evaluate the performance of the proposed DO-OFDM
scheme. The minimum and maximum allowed voltages of LEDs within linear range were set as
Vmin = 1 V and vinax = 5 V, respectively, and the voltage-power transfer coefficient was assumed
to be n=0.25 W/V. The clipping probability was set to £ = 0.003 to avoid clipping distortion
[34]. The BER target was set to 7 =2 x 1073, which is within the FEC limit. Four layers of
ACO-OFDM signals are combined to generate the DO-OFDM signals for transmission, and the
coefficients for dimming control are acquired by (14)—(16). Fig. 3 depicts the achievable spectral
efficiency of each layer of ACO-OFDM signals in DO-OFDM under different dimming require-
ments, where the noise power at the receiver is —10 dBm. Different orders of QAM are utilized
for different layers of ACO-OFDM and dimming requirements. It can seen that different layers of
ACO-OFDM can provide data transmission at the same time and contribute to the overall spec-
tral efficiency. Therefore, better performance can be achieved. When the required dimming level
is too low or too high, the achievable spectral efficiency decreases since the effective range of
signals is limited to satisfy the extreme average optical power requirement.

The performance of DO-OFDM is also compared with DCO-OFDM and AHO-OFDM with the
same simulation parameters. In DCO-OFDM scheme, dimming control is realized by adaptively
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Fig. 3. Achievable spectral efficiency of each layer of ACO-OFDM in DO-OFDM under different
dimming requirements, where the noise power at the receiver is —10 dBm.
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Fig. 4. Achievable spectral efficiency comparison of DCO-OFDM, AHO-OFDM, and DO-OFDM
under different dimming requirements, where the noise power at the receiver is —15 dBm.

adjusting the DC bias and scaling factors, which does not require PWM signals for fair compari-
son. In AHO-OFDM, ACO-OFDM signals modulating odd subcarriers and PAM-DMT signals oc-
cupying even subcarriers are combined and one of them is inverted to generate asymmetrical
waveform [19]. The achievable spectral efficiency comparisons of DCO-OFDM, AHO-OFDM
and the proposed DO-OFDM under different dimming requirements are shown in Figs. 4—6,
where the noise power at the receiver is assumed be —15 dBm, —-10 dBm, and -5 dBm for low,
medium, and high noise environments, respectively. It can be seen that the proposed DO-OFDM
can support a much wider dimming range compared with DCO-OFDM in all the three noise envi-
ronments, and its achievable spectral efficiency is relatively stable when the dimming level varies
since its waveform is flexible to fully utilize the dynamic range of LEDs. Besides, it achieves high-
er spectral efficiency for most of the dimming requirements. Moreover, DO-OFDM is always
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under different dimming requirements, where the noise power at the receiver is —10 dBm.
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Fig. 6. Achievable spectral efficiency comparison of DCO-OFDM, AHO-OFDM, and DO-OFDM
under different dimming requirements, where the noise power at the receiver is -5 dBm.

superior to AHO-OFDM under all dimming requirements. Even though AHO-OFDM has utilized
all the subcarriers for carrying information, the real part of even subcarriers are still empty, while
the proposed DO-OFDM is able to exploit more frequency resources for transmission by multi-
layer ACO-OFDM. Therefore, the proposed scheme is proved to be a better candidate for dim-
mable VLC systems.

5. Conclusion

DO-OFDM is proposed in this paper for illumination and communication at the same time,
whereby the polarities of multiple layers of ACO-OFDM are varied to obtain flexible time-domain
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waveform so that both the subcarriers and the dynamic range of LEDs can be fully exploited to
achieve better performance. The scaling factor and modulation order for each layer as well as
the DC bias are optimized for different dimming requirements to achieve maximum spectral effi-
ciency. Simulation results have verified that the proposed scheme can support a wide dimming
range for illumination and achieves higher spectral efficiency, compared with existing methods
under different illumination requirements.
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