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Visible Light Communications
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Abstract—Since the optical wireless channel in visible light
communication (VLC) systems is subject to the nonnegativity of
the signal and the average optical power, the classic Shannon
channel capacity formula is not applicable to VLC systems. To
derive a simple closed-form upper bound on channel capacity,
sphere packing argument method has been applied previously.
However, there is an obvious gap between the existing sphere-
packing upper bounds and the lower bounds at high optical
signal-to-noise-ratios (OSNRs), which is mainly caused by the
inaccurate mathematical approximation of the intrinsic volumes
of the simplex. In this letter, a tight sphere-packing upper bound
is derived with a new approximation method. Numerical results
demonstrate that compared to the existing sphere-packing upper
bounds, our proposed upper bound is tighter at high OSNRs.

Index Terms—Visible light communication, optical wireless
channel, channel capacity, upper bound, sphere packing argu-
ment.

I. INTRODUCTION

Visible light communication (VLC), as a complementary
technology to the conventional radio frequency communica-
tion, has drawn great attention recently due to its distinctive
features such as unregulated spectrum, vast bandwidth, low
electromagnetic interference and so on [1]. In VLC systems,
shot noise and thermal noise at the receiver are often modeled
as the additive white Gaussian noise (AWGN) [2], [3]. How-
ever, the capacity of the optical wireless channel is still an
open issue. Although most literatures relevant to the channel
capacity for VLC systems use the classic Shannon channel
capacity formula [4], [5], it is not suitable for actual optical
wireless channel due to the following reasons:

1) Intensity modulation with direct detection (IM/DD) is
employed in VLC systems [6]. The intensity/amplitude of the
signal would determine the voltage loaded on the light emitting
diodes (LEDs) and the instantaneous radiated optical power.
Thus, the signal is constrained to be nonnegative and real-
valued.

2) Since LEDs are primarily used for illumination, the
signal is subject to the average optical power instead of
the electrical power. Therefore, the input signal distribution
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to approach channel capacity does not necessarily follow
Gaussian distribution.

The capacity of the optical wireless channel with Gaussian
noise has been investigated in recent years. Based on the well-
known sphere packing method [7], tight closed-form upper
bounds are derived in [8], [9]. However, there is an obvious
gap between these upper bounds and the lower bound in
high optical signal-to-noise ratios (OSNRs) region. A recent
independent work [10] produced an even tighter upper bound
that is also based on the sphere-packing bound. In [3], another
tight upper bound is derived using a dual expression for
channel capacity. When only an average power constraint is
imposed, it coincides with the lower bound at high OSNRs.

In this letter, a new mathematical approximation method for
the intrinsic volumes of the simplex is proposed to derive a
tight sphere-packing upper bound on channel capacity. The
derived upper bound is improved over the previous sphere-
packing upper bounds in [8], [9] but not over the upper
bound in [3]. The upper bound in [3] has the advantage
over the sphere-packing upper bounds that no optimization
is required in calculation. However, our upper bound has a
simpler expression.

II. GEOMETRICAL MODEL OF THE UPPER BOUND ON
OPTICAL CHANNEL CAPACITY

The m independent transmitted symbols are denoted as
x = (x1, x2, · · · , xm). Considering the constraints of the
nonnegativity of the signal and the average optical power P
in VLC channel, the admissible set of the transmitted symbols
is defined as

A (P ) =

{
x ∈ Rm+ :

1

m
∥x∥1 ≤ P

}
, (1)

where ∥·∥1 denotes ℓ1 norm. These elements in the admissible
set would form a regualr m-simplex [11], and the received
signal is expressed as

y = hx+ n, (2)

where h is the channel gain between the transmitter and
receiver.n is the noise vector and its elements follow the
Gaussian distribution with zero mean and the variance of σ2.

According to [7], from the geometrical point of view, each
element in the signal vector hx is surrounded by a small
uncertainty religion caused by the noise. When the noise is
white and Gaussian, the perturbations of the received samples
are independent. If m is large enough, the perturbation would
lie within a m-dimensional sphere Bm(ρ) with the radius
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ρ centered at the original signal point. The volume of m-
dimensional sphere Bm(ρ) is expressed as [7]

V (Bm(ρ)) =
πm/2

Γ(m2 + 1)
ρm, (3)

where Γ(·) is Gamma Function and ρ =
√
mσ.

In another word, the received signal would fall into the set
O(P, ρ) defined as the outer parallel body to the admissible
set A (P ) at distance ρ with the probability near to one, which
is expressed as

O(P, ρ) = {y ∈ Rm : y = hx+ n,x ∈ A (P ),n ∈ Bm(ρ)} .
(4)

Then, the number of nonoverlapping spheres packed in the
outer parallel body O(P, ρ) to the admissible set A (P ) is
the maximum number of the different transmitted symbols to
be distinguishable and can be defined as the upper bound on
channel capacity, which is given by [7]

C ≤ lim
m→∞

1

m
log2

V (O(P, ρ))

V (Bm(ρ))
. (5)

III. DERIVATION OF THE UPPER BOUND ON OPTICAL
CHANNEL CAPACITY

In terms of the intrinsic volumes, the volume of the outer
parallel body V (O(P, ρ)) is expressed as [12]

V (O(P, ρ)) =

m∑
k=0

Vk(P )V (Bm−k(ρ)), (6)

where the intrinsic volumes Vk(P ) is given by

Vk(P ) = ηk(mhP )k, k = 0, 1, · · · ,m, (7)

and

ηk =



1
m! , if k = m;

(
m

k

)
1

k!2m−k +

(
m

k + 1

) √
k+1

k!
√
πm−k

×
∫ +∞
0

e−x2

(
∫ x/

√
k+1

−∞ e−y2

dy)m−k−1 dx,

if 0 ≤ k < m.
(8)

Substituting (3), (6) and (7) into (5), the upper bound can
be rewritten as

C ≤ lim
m→∞

1

m
log2

m∑
k=0

Γ(m2 + 1)(mhP )kηk

Γ(m−k
2 + 1)π

k
2 ρk

≤ lim
m→∞

1

m
log2

[
(m+ 1) sup

k∈χ

Γ(m2 + 1)(mhP )kηk

Γ(m−k
2 + 1)π

k
2 ρk

]
= lim

m→∞

1

m
log2 sup

k∈χ

Γ(m2 + 1)(mhP )kηk

Γ(m−k
2 + 1)π

k
2 ρk

, (9)

where χ = {0, 1, · · · ,m}.

To derive a simple closed-form upper bound, the coefficint
ηk is considered.

Lemma 1: For every 0 ≤ k < m, there is an inequality for
ηk, such that

ηk <

(
m+ 1

k + 1

)
k + 1

k!(m− k)( kβ + 1)
α− k

β
2m−k − 1

2m−k
, (10)

where α and β are positive real coefficients of the tight
lower bound (i.e. α exp(−βx2)) on the complementary error
function erfc(x).

Proof: See Appendix A.

C ≤ lim
m→∞

1

m
log2 sup

k∈χ

Γ(m2 + 1)(mhP )kηk

Γ(m−k
2 + 1)π

k
2 ρk

< lim
m→∞

1

m
log2 sup

k∈χ

{
Γ(m2 + 1)Γ(m+ 2)

[Γ(k + 1)]2Γ(m−k
2 + 1)Γ(m− k + 1)

1

(m− k)

m
k
2

k
β + 1

(
hP

σ
)k

2m−k − 1

2m−k
π− k

2 α− k
β

}

≤ lim
m→∞

1

m
log2 sup

c∈ζ

{
Γ(m2 + 1)Γ(m+ 2)

[Γ(cm+ 1)]2Γ(m−cm
2 + 1)Γ(m− cm+ 1)

1

(m− cm)

m
cm
2

cm
β + 1

(
hP

σ
)cm

2m−cm − 1

2m−cm
π− cm

2 α− cm
β

}

= sup
c∈ζ

{
lim

m→∞

1

m
log2

{
Γ(m2 + 1)Γ(m+ 2)

[Γ(cm+ 1)]2Γ(m−cm
2 + 1)Γ(m− cm+ 1)

1

(m− cm)

m
cm
2

cm
β + 1

}
︸ ︷︷ ︸

σcm

lim
m→∞

log2(1−
1

2m−cm
)

1
m︸ ︷︷ ︸

δcm

+ lim
m→∞

1

m
log2 π

− cm
2 α− cm

β (
hP

σ
)cm

}

≤ sup
c∈ζ

log2

[
( e
2π )

c∗
2 α− c∗

β

(c∗)2c∗(1− c∗)
3
2 (1−c∗)

(
hP

σ
)c

∗
]

︸ ︷︷ ︸
w(c)

.

(13)
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Based on Corollary 1 in Appendix B, a useful choice for
α and β are 0.74 and 1.75. Then, according to Lemma 1, the
new upper bound is given in the following theorem.

Theorem 1: The channel capacity is upper-bounded by

C < log2

[
( e
2π )

c∗
2 α− c∗

β

(c∗)2c∗(1− c∗)
3
2 (1−c∗)

(
hP

σ
)c

∗
]
. (11)

where c∗ ∈ [0, 1] is obtained by

2 log2 c
∗ − 3

2
log2(1− c∗)

= − 1

ln 4
+

1

2
log2(

e

2π
)− 1

β
log2 α+ log2(

hP

σ
). (12)

Proof: According to (9) and (10), the upper bound can
be obtained by the inequality (13), where we define ζ = {c ∈
R|0 ≤ c ≤ 1} and the value of σcm and δcm are calculated in
Appendix C and D, respectively.

Furthermore, the existence of the supremum of w(c) in
(13) is investigated. As the second order derivation of w(c)
is non-positive, w(c) is a concave function. Thus, for c ∈ ζ,
a maximum value exists. An optimal c denoted as c∗ is then
obtained by the equation w′(c∗) = 0, which is defined as (12).

It should be pointed out that our upper bound and the pre-
vious sphere-packing upper bounds in [8], [9] are all derived
using the Steiner-Minkowski formula. The difference lies in
the approximation method for the intrinsic volumes of the
simplex, which eventually leads to the different performance
in some OSNR region.

IV. NUMERICAL RESULTS

In this section, the numerical results about the upper bound
on channel capacity under different optical signal-to-noise
ratio (OSNR= P/σ) are discussed. The channel gain h is
set to be 1. The optimal value of c∗ is numerically calculated
based on (12), which is substituted in (11) to achieve the upper
bound on channel capacity.

To verify the tightness of the proposed upper bound derived
in this letter, we compared it with the upper bounds in [3], [8],
[9] and the lower bounds in [3], [9]. As illustrated in Fig. 1,
our proposed upper bound are tighter both at low and high
OSNRs than the upper bound in [8]. Although our bound is
looser at low OSNRs compared to the upper bound in [9],
it is tighter at high OSNRs. Since typical illumination levels
offer high OSNRs in visible light communications [8], this
improvement in high OSNR region is significant. In addition,
the upper bound in [3] is presented in Fig. 1. It can be observed
that the upper bound in [3] is tighter than our upper bound
at overall OSNRs. However, our upper bound has a simpler
expression.

On the other hand, our new upper bound is also compared
with the lower bounds in [3], [9]. It can be seen that there
exists a gap between our bound and the lower bounds in [3],
[9] at low OSNRs. However, the gap is narrowed as 0.25
bits/channel use in high OSNR region.
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Fig. 1. Capacity bound comparison for the optical wireless channel.

APPENDIX A
PROOF OF THEOREM 1

Firstly, we defined an intermediate variable µk as follows

µk =

√
k + 1

√
π
m−k

∫ +∞

0

e−x2

(

∫ x/
√
k+1

−∞
e−y2

dy)m−k−1 dx.

t = x√
k+1

========
k + 1√

π

∫ +∞

0

e−(1+k)t2 [1− 1

2
erfc(t)]m−k−1 dt

≤ k + 1√
π

∫ +∞

0

e−t2 [
1

α
erfc(t)]

k
β [1− 1

2
erfc(t)]m−k−1 dt

τ = 1
2 erfc(t)========= (k + 1)(

2

α
)

k
β

∫ 1
2

0

τ
k
β (1− τ)m−k−1 dτ

=
k + 1

2m−k
α− k

β

[ 1
k
β + 1

+
m− k − 1

( kβ + 1)( kβ + 2)

+ · · ·+ (m− k − 1)!

( kβ + 1)( kβ + 2) · · · ( kβ +m− k)

]
<

k + 1
k
β + 1

1

2m−k
α− k

β

×
[
1 +

m− k − 1

1× 2
+ · · ·+ (m− k − 1)!

(m− k)!

]
=

k + 1
k
β + 1

1

2m−k
α− k

β

m−k−1∑
i=0

Ci
m−k−1

i+ 1

=
k + 1

(m− k)( kβ + 1)
α− k

β
2m−k − 1

2m−k
, (13)

where the first inequality is satisfied if the lower bound on
erfc(x) is applied (See Corollary 1, Appendix B) and we also
have

µk =
k + 1√

π

∫ +∞

0

e−(1+k)t2 [1− 1

2
erfc(t)]m−k−1 dt

>
k + 1√

π

∫ +∞

0

e−(1+k)t2(
1

2
)m−k−1 dt >

1

2m−k
, (14)

where the inequality is satisfied because erfc(x) is not exceed-
ing 1.
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Thus, substituting (13) and (14) into (8), ηk can be rewritten
as

ηk =

(
m

k

)
1

k!2m−k
+

(
m

k + 1

)
1

k!
µk

<

(
m+ 1

k + 1

)
µk

k!

<

(
m+ 1

k + 1

)
k + 1

k!(m− k)( kβ + 1)
α− k

β
2m−k − 1

2m−k
. (15)

APPENDIX B
EXPONENTIAL-TYPE LOWER BOUND ON erfc(x)

The exponential-type bound on the complementary error
function erfc(x) is given by

L(x) = α exp(−βx2), (16)

where α and β are positive and real numbers. To analyze the
lower bound on erfc(x), we define the error function g(x),
which satisfies

g(x) = erfc(x)− α exp(−βx2). (17)

Lemma 2: For x ∈ (0,+∞), g(x) has a minimum point if√
2e

π

√
β − 1

β
< α < 1 and β > 1. (18)

Proof: From (17), we have g′(x) = exp(−x2)(− 2√
π
+

2αβx exp((1−β)x2)). To analyze the characteristics of g(x),
we first consider the function f(x), which is expressed as

f(x) = − 2√
π
+ 2αβx exp((1− β)x2). (19)

Then, we have f ′(x) = 2αβ(2(1 − β)x2 + 1) exp((1 −
β)x2). Thus, if β > 1, f(x) has an extreme point when
x0 = 1√

2(β−1)
. Further, we have f ′′(x0) < 0. Therefore,

f(x0) = − 2√
π
+

√
2αβ√
β−1

exp(−1
2 ) is a maximum value. If α >√

2e
π

√
β−1
β is satisfied, we have f(x0) > 0. Since f(0) < 0

and f(∞) < 0, g(x) is monotonically decreasing at first, then
monotonically increasing and monotonically decreasing in the
end. Thus, g(x) has a minimum point.

Theorem 2: L(x) is a lower bound on erfc(x) if√
2e

π

√
β − 1

β
< α < 1, β > 1 and g(x1) > 0, (20)

where x1 is the smallest root of f(x) defined in (19).

Proof: If
√

2e
π

√
β−1
β < α < 1 and β > 1, we have f(0) <

0, f(x0) > 0, and f(+∞) < 0. Thus, f(x) has no less than
two roots and the smallest root x1 determines that g(x) has a
minimum point. In addition, we have g(0) = 1 − α > 0 and
g(∞) = 0. Considering the monotonicity of g(x), if g(x1) ≥ 0
is satisfied, L(x) is a lower bound on erfc(x).

Corollary 1: An optimal L∗(x) is obtained with the opti-
mization problem to minimize the mean squared error between

erfc(x) and L(x) when x ∈ [a, b], which is formulated as

min
α,β

1

b− a

∫ b

a

g(x)2dx

s.t.

√
2e

π

√
β − 1

β
< α < 1, β > 1, g(x1) > 0, (21)

where x1 is the smallest root of f(x) defined in (19).
Proof: From Theorem 2, with the metric of mean squared

error, a tight lower bound on erfc(x) can be obtained.

APPENDIX C
THE VALUE OF σms

Using the Stirling’s inequality, which is given by [13]
√
2πn(

n

e
)ne

1
12n+1 < Γ(n+ 1) <

√
2πn(

n

e
)ne

1
12n , (22)

and based on the squeeze theorem, we have

σms = log2

[
( e2 )

c
2

c2c(1− c)
3
2 (1−c)

]
. (23)

APPENDIX D
THE VALUE OF δms

For 0 ≤ x ≤ 1, we have

lim
n→+∞

(1− xn)
1
n = 1. (24)

After that, we get

δms = lim
m→∞

log2(1−
1

2m−cm
)

1
m = 0. (25)

REFERENCES

[1] R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible
light communications in heterogeneous networks: paving the way for
user-centric design,” IEEE Wireless Commun., vol. 22, no. 2, pp. 8–16,
Apr. 2015.

[2] Q. Wang, Z. Wang, L. Dai, “Asymmetrical hybrid optical OFDM for
visible light communications with dimming control,” IEEE Photon.
Technol. Lett., vol. 27, no. 9, pp. 974–977, May 2015.

[3] A. Lapidoth, S. M. Moser, M. A. Wigger, “On the capacity of free-space
optical intensity channels,” IEEE Trans. Inf. Theory, vol. 55, no. 10,
pp. 4449–4461, Oct. 2009.

[4] A. Nuwanpriya, S. Ho, and C. S. Chen, “Indoor MIMO visible light
communications: novel angle diversity receivers for mobile users,” IEEE
J. Sel. Areas Commun., vol. 33, no. 9, pp. 1780–1792, Sept. 2015.

[5] S. Dimitrov and H. Hass, “Information rate of OFDM-based optical
wireless communication systems with nonlinear distortion,” J. Lightwave
Technol., vol. 31, no. 6, pp. 918–929, Mar. 2013.

[6] J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc.
IEEE, vol. 85, no. 2, pp. 265–298, Feb. 1997.

[7] C. E. Shannon, “Communication in the presence of noise,” Proc. IRE,
vol. 37, pp. 10–21, Jan. 1949.

[8] J. Wang, Q. Hu, J. Wang, M. Chen, and J. Wang, “Tight bounds
on channel capacity for dimmable visible light communications,” J.
Lightwave Technol., vol. 31, no. 23, pp. 3771–3779, Dec. 2013.

[9] A. Farid and S. Hranilovic, “Capacity bounds for wireless optical inten-
sity channels with Gaussian noise,” IEEE Trans. Inf. Theory, vol. 56,
no. 12, pp. 6066–6077, Dec. 2010.

[10] A. Chaaban, J. Morvan, M. Alouini, “Free-space optical com-
munications: capacity bounds, approximations, and a new sphere-
packing perspective,” Technical Report, May 2015, Available at:
http://repository.kaust.edu.sa/kaust/handle/10754/552096.

[11] W. Rudin, Principle of Mathematical Analysis. New York: McGraw-Hill,
1976.

[12] U. Betke and M. Henk, “Intrinsic volumes and lattice points of
crosspolytope,” Monatsh. Mathematik, vol. 115, no. 1-2, pp. 27–33,
1993.

[13] H. Robbins, “A remark on Stirling’s formula,” Amer. Math. Mon.,
vol. 62, no. 1, pp. 26–29, 1955.


