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INTRODUCTION

The chapter provides a comprehensive review of recent research in geometry 
education, covering geometric and spatial thinking, geometric measurement, and 
visualization related to geometry, as well as encompassing theoretical developments 
and research into teaching and teacher development. Without doubt, the research 
of the International Group for the Psychology of Mathematics Education (PME) 
community in the field of geometry education has advanced since the first PME 
research handbook reviewed PME research over the 30 years from the inception 
of PME to 2005 (see Gutiérrez & Boero, 2006). In general, the emphasis of 
subsequent geometry education research has increasingly been on the use of 
technology (especially forms of dynamic geometry software) and how this impacts 
on geometry teaching and learners’ geometrical thinking (especially on the teaching 
and learning of geometrical reasoning and proving), on teachers’ geometric content 
knowledge, and on teacher development for geometry education. As such, studies 
examining the uses of forms of digital technology are addressed in every section 
of this chapter.

At same time, there has been continuing work related to spatial reasoning, geometric 
measurement, and visualization related to geometry. There has also been a continuing 
focus on the development of students’ knowledge regarding understanding of 
geometric figures, definitions and inclusion relations, identification of shapes and 
language issues. In these studies, there are fewer examples of a furtherance of the 
Piagetian legacy, while use of the van Hiele model has continued alongside more 
recent developments in theory and methodology such as discursive, embodied, and 
eco-cultural perspectives (e.g. Ng, 2014; Owens, 2015). Thus, many research studies 
have focused on modes of understanding (visual, figural, conceptual), as well as on 
mental images and their manipulation, while employing new theoretical notions and 
methodologies.

The content of this chapter reflects the main emphases of research in geometry 
education as presented at PME conferences over the period 2005–2015. The 
synthesis is presented in the form of the following sections: spatial reasoning, 
geometric visualization, geometric measurement, geometric reasoning and proving, 
students’ knowledge, teachers’ knowledge and development, and teaching geometry 
and the design and use of geometric tasks.
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A NOTE ON REVIEW METHODOLOGY

There are a number of well-established methods for conducting a research review 
(Cooper, Hedges, & Valentine, 2009). While a literature review is a vital part of 
every research report, the purpose of this research synthesis is to make explicit 
some of the connections and relations between individual studies that otherwise 
may not be so visible. As such, constructing this review involved the purposeful 
selection, review, analysis and synthesis of research on geometry education that was 
presented at annual PME conferences over the period 2005–2015, inclusive. Where 
appropriate, connection is made to work presented at PME conferences prior to 
2005, as is connection to work published in relevant journals and books. The content 
of each set of PME proceedings from 2005 to 2015 was digitally – searched, and 
also hand-searched, to create a database of research reports. Each research report 
was reviewed and analysed, and this set of analyses used to develop the synthesis 
presented in this chapter.

SPATIAL REASONING

Spatial reasoning has always been a vital capacity for human action and 
thought, but has not always been identified or supported in schooling. 
(Whiteley, Sinclair, & Davis, 2015, p. 3)

Previously in the field of spatial reasoning, spatial capability was examined essentially 
for its relation to mathematical learning, connected to cultural and teaching factors 
as well as to imagery and strategies for geometric measurement of area and volume 
(Owens & Outhred, 2006). There were also some studies about spatial problem-
solving strategies in relevant tasks (e.g. Oikonomou & Tzekaki, 2005). However, 
there was limited specific interest in this capability per se, its meaning and definition, 
its role in curricula, its development in school.

A link between spatial capability and geometric thinking was made during 
earlier PME research on the use of technology in approaching geometry, such as 
the use of Logo (e.g. Edwards, 1994). More systematic research increased when the 
learning of space acquired a particular value. As Sack, Vazquez and Moral (2010, 
p. 113) have argued, spatial reasoning is now seen as a vital component of learners’ 
successful mathematical thinking and problem solving. More recently, Sinclair and
Bruce (2014) led a compendium of reports on projects that have focussed on spatial
reasoning for young learners. This mapped out “the terrain of established research on
spatial reasoning” by examining “the actualities and possibilities of spatial reasoning
in contemporary school mathematics” through offering “examples of classroom
emphases and speculations on research needs that might help to bring a stronger
spatial reasoning emphasis into school mathematics” (p. 173). Much of this work is
expanded upon by Davis and the Spatial Reasoning Study Group (2015).
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Studies of Students’ Knowledge Related to Spatial Capabilities

Earlier studies investigated connections between spatial capability and geometric 
thinking. In their research, Xistouri and Pitta-Pantazi (2006) examined connections 
between spatial capabilities (mental rotation and perspective-taking) and geometrical 
thinking related to symmetry, while Kalogirou, Elia and Gagatsis (2013) investigated 
how visualization and mental rotation might be related to geometrical figure 
apprehension (perceptual and operative) as proposed by Duval (1999). Using data 
from relatively large-scale samples of primary and secondary school students, these 
studies showed significant relations between spatial capabilities and performance in 
symmetry, perspective-taking capability as well as geometrical figure apprehension. 
More specifically, the results of the first study indicated that perspective-taking 
capability is more related to symmetry performance than spatial rotation, being thus 
a predictor of students’ performance in reflective symmetry, while data from the 
second showed that spatial capability is “positively related to geometry achievement 
and problem solving” (Kalogirou et al., 2013, p. 134). By examining the data from 
the sample of secondary school students, the authors suggested that it is likely that, 
as students get older and receive more advanced teaching in geometry, they tend 
to use figures not just as spatial representations but as “semiotic representations of 
geometric objects” (p. 135).

In a study of primary students on spatial visualization and spatial orientation 
with net tasks (matching net cubes to cubes) and model tasks (finding top views of 
models), Diezmann and Lowrie (2009) found that students mainly used matching or 
matching-and-eliminating strategies. The researchers’ concluded that the students’ 
difficulties in visualizing and explaining their thinking might be due to the lack of 
prior experience and under-developed mental imagery.

In investigating the development of spatial reasoning in pre-school children, 
Tzekaki and Ikonomou (2009) invited 30 children, aged 4.5 to 6.5 years old, to 
observe, one by one, two-dimensional Lego configurations and retain their 
characteristics in order to reconstruct them, either by watching or from memory. The 
analyses of the children’s reconstructions demonstrated a continuous improvement 
of their spatial thinking and provided interesting information about the spatial 
characteristics that children at this age retain mentally when they attempt to copy 
a spatial situation. More specifically, such children easily retain information related 
to the number and shape of bricks, or to their left-right placement (corresponding 
to their own orientation), but they encounter difficulties in finding relative positions 
that demand combining spatial information.

In order to investigate young children’s spatial strategies from kindergarten to 
primary age, Reinhold, Beutler and Merschmeyer-Brüwer (2014) video-recorded 
task-based one-to-one clinical interviews with 22 pre-schoolers (aged 5 to 7) as 
each child was presented with a series of four tasks that involved ‘buildings’ made 
of glued cubes and drawings of ‘buildings’ (shown in a ‘cavalier’ perspective). 
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Using Thurstone’s (e.g. 1950) framework of distinguishing three major spatial 
capability factors (spatial relations, visualization, and spatial orientation) and using 
previous research on cube building (e.g. Battista & Clements, 1996), they reported 
on the nature of pre-schoolers’ building strategies in relation to their capabilities 
of enumerating the number of cubes in a three-dimensional cube building. While 
Reinhold et al. found that while students’ paying attention to intended structural 
elements (counting in rows or columns) does not guarantee an awareness of the 
structure of the ‘building’, they could gain insight into structural elements and 
could change “trial and error building strategies into orientation in structural 
elements” (p. 87).

More specific research by Panorkou and Pratt (2009, 2011) explored how 
individuals experience and think about dimension. In their first study, in which a 
phenomenographic approach was implemented, two pairs of 10 years old students 
and 10 teachers were interviewed with questions related to their dimensional 
thinking. The findings formed a characterization of this thinking in a variety 
of ways: dimension as action; as state (involving location); material dimension 
(involving measuring or conceptions based on vision or touch); abstract dimension; 
and dimension as prototype or hierarchy (with relationships between dimensions). 
Continuing their study Panorkou and Pratt (2011) designed tasks using Google 
Sketchup and conducted a number of extended task-based interviews with 10 year-
old students. They observed the students expressing various “situated abstractions” 
such as “polygons can be ‘flat’ (in a 2-D space) or ‘coming out’ (in a 3D space)” 
and “polygons that look flat in 3D can be disconnected” or “twisted” (pp. 342–343). 
They concluded that “a key idea about dimension seems to be that it in some sense 
depicts the level of capacity of the space” (p. 343).

Studies by Diezmann and Lowrie (2008), and by Lowrie, Diezmann and Logan 
(2011), focused on primary students’ knowledge of maps of localities. In the first 
study a GLIM (Graphical Languages in Mathematics) test was administrated to 
a sample of 378 4th grade students, plus 98 students were interviewed using 12 
items from the test. The results revealed key difficulties including interpreting 
vocabulary incorrectly, attending to incorrect foci on maps, and overlooking critical 
information. In the later study, information is encoded in the form of fixed attributes 
(marks and symbols) in a particular spatial orientation. Lowrie et al. (2011) 
examined the performance on six map items of 583 students of 2nd and 3rd grades, 
from metropolitan and non-metropolitan locations. The results showed significant 
performance differences in favour of metropolitan students on two of six map tasks. 
In trying to explain the differences, they speculated that metropolitan students 
might be more likely to be exposed to coordinate map systems than students in 
non-metropolitan areas and that “the additional requirement for students to locate 
information besides what was provided in the direct instructions proved challenging 
for non-metropolitan students” (p. 149).

Summarizing, research in the field of spatial capabilities indicates a low 
development of skills related to spatial orientation, spatial relations and 
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transformations, as well as understanding of dimensions and localities. However, 
spatial experiences such as reconstruction of spatial configurations or cube building 
are likely to support progress of spatial abilities. This kind of research is significant 
because, as noted above, spatial reasoning, more than being an important component 
of human action and thought, is known to be closely connected to geometric thinking 
and development of geometric knowledge.

Teaching Proposals Improving Spatial Reasoning

A range of studies has aimed at improving spatial reasoning for different ages. 
In earlier research, Owens (2005) examined how pre-service teachers were using 
substantive communication about space mathematics in primary schools. A 
qualitative analysis of observations in their classroom showed that, teachers, after 
taking a large number of example lessons, worked systematically with their students’ 
knowledge attempting to extend it, by providing effective challenges and questions. 
In general, working with spatial tasks in the classroom, games, toys or relevant 
software improve significantly different aspects of spatial capabilities and spatial 
thinking.

More recently, Highfield, Mulligan and Hedberg (2008) studied the case of two 
children exploring a Bee-bot programmable toy, a tool that enabled them to engage 
in transformational geometry. These two children demonstrated relational thinking 
to plan, program and manipulate the toy through a complex pathway and developed 
interesting problem-solving strategies.

Experimenting with teaching approaches, Chino, Morozumi, Arai, Ogihara, Oguchi 
and Miyazaki (2007) proposed a spatial geometry curriculum utilizing 3-D dynamic 
geometry software in lower secondary grades. The results, coming after comparing 
experimental with control groups as well as results of the national survey of Japan, 
identified positive effects regarding the construction of spatial figures by moving a 
plane figure and the explanation the students gave for a 3-D figure represented in 2-D. 
Hegedus (2013) reported on a multi-modal interactive environment where young 
learners were able not only to “click-drag-deform mathematic objects on a screen 
as in traditional dynamic geometry” but also experience “force feedback related to 
mathematical properties through the same device” (p. 33). Psycharis (2006) reported 
on how 13 year-olds dynamically manipulated geometrical figures involving ratio 
and proportion tasks, while Samper, Camargo, Perry and Molina (2012) reported a 
case study of implication and abduction in dynamic geometry.

Both Moustaki and Kynigos (2011) and Ferrara and Mammana (2014) have 
researched the spatial capability of much older students. In their research, Moustaki 
and Kynigos (2011) looked for instances in which students’ visualization, construction 
and mathematical reasoning processes might contribute to the enhancement of those 
capabilities. They developed a ‘3-D Modelling & Cutting’ microworld and used it 
with some 12th grade engineering students specializing in Programming Computer 
Numerical Control (CNC) Machines. The analysis showed that the students initially 
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perceived the figures and shapes represented in the 2-D drawing in a “purely iconic 
way instead of a mathematical one” (p. 262). With greater experience, the students 
came to realise that they had been ‘misled’ by the static 2-D drawing and needed to 
use 3-D geometrical objects to specify spatial relationships among the component’s 
parts that would not differentiate as they changed viewpoints.

For Ferrara and Mammana (2014), the visual challenge involved in the approach 
of spatial geometry was the use of ‘flat’ diagrams for geometrical figures. Using 
the dynamic geometry software Cabri 3D, they introduced a definitional ‘analogy’ 
between quadrilaterals and tetrahedra for ‘edges’ and ‘faces’. Undergraduate 
mathematics students tackled two main tasks; introducing the medians for 
quadrilaterals and tetrahedra, and conjecturing about the properties that hold in both 
cases. These tasks, say the researchers, pushed the students towards a search for 
similarities and differences, invariants and changes, between the two figures. In this 
way the learners managed to “see in space” (p. 59) through the affordances offered 
by the dynamic geometry software.

With elementary-age children (in Grade 3), Sack, Vazquez and Moral (2010) 
and Sack and Vazquez (2011) reported on using 3-D models, 2-D conventional 
and semiotic (abstract) representations, verbal descriptions of figures, and tasks 
using Geocadabra (Lecluse, 2005) software by which a multi-cube structure can 
be viewed as 2-D conventional representations or as top, side and front views or 
numeric top-view grid coding. Working with different representations, the children 
had to calculate in multiple ways how many unit cubes were in relevant structures 
and connect the result to the sum of the numbers in the figures’ top-view coding grid.

Summarizing the results of these studies, spatial tasks combining 2-D and 3-D 
geometric figures supported by relevant technological tools are likely to foster 
spatial-knowledge development and improve students’ spatial reasoning, confirming, 
thus, the important role of technological environments in the development of spatial 
thinking.

GEOMETRICAL VISUALIZATION AND VISUAL THINKING

Geometry comprises those branches of mathematics that exploit visual intuition 
(the most dominant of our senses) to remember theorems, understand proof, 
inspire conjecture, perceive reality, and give global insight. (Zeeman, quoted 
in Royal Society, 2001, p. 12)

In this section visualisation is taken to be the capacity to “represent, transform, 
generate, communicate, document, and reflect on visual information” (Hershkowitz, 
1990, p. 75) and attention is paid to visual intuition. For both, there is some inevitable 
overlap with spatial reasoning. As such, some research reported in the section on 
spatial reasoning may also appear in this section, and vice versa.

In the first PME handbook, Owens and Outhred (2006) covered a good deal 
of research on visualization alongside findings concerning the use of imagery in 
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mathematics in general, and also in spatial processing and geometric thinking. In 
relation to this, Presmeg (2006) summarised issues in visualization by first clarifying 
terms relating to semiotics (such as signifier, registers, iconic, indexical, or symbolic 
signs) and then explicitly examining imagery (mental images) and externally-
presented inscriptions involving visualization. Presmeg explained that “both visual 
imagery and inscriptions are sign vehicles that are instantiations of visualization in 
mathematics, insofar as they depict the spatial structure of a mathematical object” 
(p. 22).

Visual Cognition of Geometrical Objects

A number of research studies have focused on ‘visual cognition’, defining it as a 
mental process (perceiving, recognizing, retaining in memory, etc.) that refers to the 
way an individual acquires and processes visual information. Usefully, Kalogirou, 
Elia and Gagatsis (2013) pointed to differences between terms such as visual 
perception and visualization. They suggested that visual perception, while one of 
the most important factors affecting the capability to recognize plane shapes, only 
provides a “direct access to the shape and never gives a complete apprehension 
of it” (pp. 129–130). On the contrary, they argued, visualization is “based on the 
production of a semiotic representation of the concept and gives at once a complete 
apprehension of any organization of relations”; as such, visualization in mathematics 
“requires specific training in order to grasp directly the whole configuration of 
relations and to handle the figure as a geometrical object” (p. 130).

Widder, Berman and Koichu (2014) have been searching for “a better 
understanding of the visual obstacles’ constituents, and the interaction between 
them” as that might be “the key to improve spatial geometry instruction” (p. 370). 
With data from testing high-attaining grade 12 students, their study confirmed “the 
existence of a prototype representing a cube” in that the overwhelming majority 
of the participants “drew the same normatively-positioned cube frequently used 
during spatial geometry instruction” (p. 375). While the prototypical use of 
normative drawings of cubes in spatial geometry instruction “may form a mental 
image meant to assist visualization”, at the same time Widder et al. argued that 
this “may not allow enough flexibility, and therefore hinder identification and 
manipulation of a 3-D geometrical situation in un-normative sketches” (Widder 
et al., 2014, p. 375).

Relevant to students’ visual cognition appears to be teachers’ capability in 
visualization in geometry. For example, Markovits, Rosenfeld and Eylon (2006) 
investigated 25 teachers’ performance in visual tasks along with their prior content 
knowledge and beliefs in the area of visual cognition. The results showed that 
the visual cognition of these teachers was limited, and their capabilities in visual 
estimation, free recall and graphical reproductions were close to those of 3rd grade 
students. Cohen (2008) examined pre-service and in-service teacher’s knowledge of 
mental images and their beliefs about geometrical straight lines and planes. Their 
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findings revealed conflicting teacher beliefs between formal knowledge and mental 
images as well as typical misconceptions about lines and planes.

Sack and Vazquez (2008), based on a spatial operation capacity model (SOC) 
conducted an after-school teaching experiment with two groups of 3rd and 4th grade 
students. The authors found that the student’s performance on standardized test 
items that use verbal visualization terms (for example, top, side and front views) 
“may be compromised by unconventional language use rather than lack of visual 
cognition” (p. 224).

Haj-Yahya and Hershkowitz (2013) aimed at “linking visualization, students’ 
construction of geometrical concepts and their definitions, and students’ ability to 
prove” (p. 409). With data from testing grade 10 students, they found that many 
of them knew the formal definitions of the various quadrilaterals but did not make 
use of the definitions when faced with tasks using forms of visual representation of 
shapes. In many cases, say Haj-Yahya and Hershkowitz, “students know the formal 
definition but do not make use of it when faced with a visual task representation|” 
(p. 415).

Chumachemko, Shvarts and Budanov (2014) were also interested in the 
development of visual perception. Focusing on the Cartesian coordinate system 
and, in particular, the “transformations of perception that are needed to approach 
this mathematical visual model” (pp. 313–314), they compared the eye movements 
of participants at three levels of mathematics competence and they confirm their 
hypothesis: when detecting a point on the Cartesian plane “the better participants are 
educated, the shorter are their gaze paths, and the more the number of their fixations 
is reduced, and the durations of their tasks solving become shorter” (p. 316).

Overall, research agrees in the existence of limits to visual cognition and how 
there are visual obstacles in different recognition processes both for students 
and for teachers. In some cases, the visual aspect might even distract students 
from their mental or relevant theoretical knowledge, a finding that needs further 
investigation.

Visualization in Reasoning and Problem Solving

Introducing notions of ‘linking visual active representations’ (LVAR) and ‘reflective 
visual reaction’ (RVR), the aim of a teaching experiment by Patsiomitou and Koleza 
(2008) was to explore the role of these notions in a dynamic geometry software 
environment. With data from 14 secondary school students, the results showed that 
prior knowledge played a significant role in parallel with LVAR and RVR as a shift 
from visual to formal proof led students to formulate “if …then” propositions and 
to move “between two successive ‘Linking Visual Active Representations’ only by 
means of mental consideration, without returning to previous representations to 
reorganize his/her thoughts” (p. 94).

When undergraduate students are reading a ‘worked proof’, research by Lin, 
Wu and Sommers (2012) found that visualization corresponds to “needing to 
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keep spatial representations in their working memory and to look between proof 
and figures” (p. 151). By studying the eye-tracking movements of undergraduate 
students as they read geometry proofs of different difficulty levels, the researchers 
found evidence that “visual reception and visualization occur simultaneously” 
(p. 152).

In their studies with pre-service teachers, Torregrosa and Quesada (2008, 2009) 
focused on what they call configural reasoning in which discursive and operative 
apprehensions (Duval, 1999) are coordinated in order to solve a problem or generate 
a proof. They found that visual predominance tends to inhibit the visualisation of 
the configuration sucg that configurative reasoning and the proving process are not 
always interrelated.

In the same context of solving geometrical problems, Pitta-Pantazi and Christou 
(2009) investigated whether individuals’ cognitive styles, measured in terms of object 
imagery, spatial imagery and verbal capability, were related to their mathematical 
creativity. Some 96 pre-service teachers answered the Object-Spatial Imagery and 
Verbal Questionnaire (OSIVQ) and were examined in a mathematical creativity test 
for their capabilities in area, shape, pattern, problem solving and number. The results 
showed significant connections between spatial imagery and cognitive style, on the 
one hand, and mathematical fluency, flexibility and originality (as components of 
creativity) on the other, but no connections of object imagery and verbal cognitive 
capability to any dimension of creativity.

In their study Ramfull and Lowrie (2015) examined the connections between 
students’ cognitive style, visualization and mathematics performance. They 
examined 807 6th graders from Singapore schools with three instruments: the 
C-OSIVQ questionnaire for measures of cognitive styles, the Paper Folding Test 
for spatial visualization and the Mathematics Processing Instrument for problem 
solving performance. The results align with previous studies by indicating 
significant correlations between cognitive styles (mainly spatial imagery information 
processing) and spatial visualization and problem solving abilities.

It is apparent from all aforementioned studies that visualization is indispensable 
in proving and problem solving. Visual aids support students’ and teachers’ thinking 
and both appear to improve their visual imagery for the needs of a solution or a 
proof. However, the visual representations or process they develop are not always 
effective in solving or proving relevant tasks, but there is still limited research related 
to the connection of visuality (as defined at the beginning of this section) to creative 
developments. Studies with digital technologies, such as DGEs, are providing more 
evidence and are offering new possibilities in the visualization of geometric objects.

Visualizing in Geometry and Use of Gestures

Humans make use not just of one communicative medium, language, but also 
of three mediums concurrently: language, gesture, and the semiotic resources 
in the perceptual environment (Roth, 2001, p. 9)
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Research in geometry education has special interest in the role of gestures in 
mathematical communicating and thinking as an aspect of geometric visualization. 
In their Research Forum, Arzarello and Edwards (2005) examined gestures as a 
way of processing and communicating geometric ideas based on psychological, 
semiotic and psycholinguistics theoretical frameworks (Alibali, Kita, & Young, 
2000; Bara & Tirassa, 1999; Peirce, 1955; Radford, 2003). Thus, they recorded the 
dynamic evolution in the use of gestures as pointed out by the social activity of 
the students in a geometric context and their discussion about solid shapes. They 
first analysed gestures and speech alongside written words and mathematical signs 
(c.f. Edwards, 2005). Later in the forum, Arzarello, Ferrara, Robutti and Paola 
(2005) extended this by examining relations between the use of gestures and the 
development of new ‘perceivable signs’. They recorded the progression of students’ 
solution during the construction of solids and examined the introduction of signs 
with gestures. At first, the students’ gestures had an iconic function presenting the 
solid they were describing. Gradually they became ‘indexes’ (in the sense of Pierce) 
in the communicative attempt of transferring knowledge to others and finally they 
acquired a symbolic function; thus their relation developed in a piece of theoretical 
knowledge.

Maschietto and Bartolini Bussi (2005) approached the study of the construction 
of mathematical meanings in terms of development of semiotic systems (gestures, 
speech in oral and written form, drawings) in a Vygotskian framework with 
reference to cultural artefacts. In their paper they presented a teaching experiment 
related to perspective drawing with 4th-5th grade students. The authors described 
how they analysed “the appropriation of an element of the mathematical model 
of perspective drawing (visual pyramid) through the development of gestures, 
speech and drawings, starting from a concrete experience with a Dürer’s glass 
to the interpretation of a new artefact as a concrete model of that mathematical 
object…” (p. 315). Analysis of the students’ protocols highlighted the parallel 
development of different semiotic systems (gestures, speech in oral and written 
form, drawings) and their mutual complementary enrichment. Research by Sack, 
Vazquez and Moral (2010), mentioned earlier, also reveals the use of gestures by 
young students.

In their research, Ng and Sinclair (2013) studied children’s use of gestures 
on spatial transformation tasks. They found that children used gestures “as 
multi-modal resources to communicate temporal relationships about spatial 
transformations” (p.  361). Subsequently, Ng (2014) reported on the interplay 
between language, gestures, dragging and diagrams in bilingual learners’ 
mathematical communications, when students rely on “gestures and dragging 
as multimodal resources to communicate about dynamic aspects of calculus” 
(p. 289). For more on high school students engaged in perceptual, bodily, and 
imaginary experiences while discussing about calculus concepts in a dynamic 
geometry environment, see Ferrara and Ng (2014).
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GEOMETRIC MEASUREMENT

Measurement plays a central role in reasoning about all aspects of our spatial 
environment. (Battista, 2007, p. 891)

In their review of earlier PME research, Owens and Outhred (2006) depicted the 
complexities of measurement principles and their teaching. Here, subsequent 
research is reviewed – first on length, then on area, volume, and angle.

Length

An understanding of linear measure is imperative, as it provides the basis for 
length, area, and volume. (Cullen & Barrett, 2010, p. 281)

As Watson, Jones and Pratt (2013, p. 76) confirm, research has shown that when 
children measure lengths they can end up “applying a poorly-understood procedure 
rather than focusing on the correspondence between the units on the ruler (which 
may be seen erroneously as a counting device) and the length being measured”. 
What is more, research by McDonough (2010, p. 294) reports “confusion regarding 
unit name, length, and relationships” when the object being measured is longer than 
the ruler.

Given the different ways that measurement tasks can be presented, Cullen and 
Barrett (2010) compared the strategies used by young children (aged 4–5 years, 
and 7–8 years) when engaged in measurement tasks that were presented either 
using Geometer’s Sketchpad (GSP) software or as paper-and-pencil. Noting that 
measurement strategies include the endpoint strategy (where the child refers either 
to the right or left endpoint as the length of the object) and the point-to-the-middle-
of-an-interval strategy, the researchers found that “linking the intervals on a ruler 
to iterable discrete objects, or to virtual representations of those objects, were both 
successful ways to motivate students to use the effective ‘point to midpoint’ strategy” 
(p. 287). They concluded that interval-identifying strategies should be beneficial 
when teaching students to measure the length of an object with a ruler.

Beck, Eames, Cullen, Barrett, Clements and Sarama (2014) investigated whether 
grade 6 children’s knowledge of measurement related to their capability to use 
double number lines when solving problems involving proportional reasoning. 
Using ideas of hierarchic interactionalism, Beck et al. defined a series of ‘levels’ – 
the first two of which are Length-Unit-Relater-and-Repeater (LURR) level, where 
children “measure by repeating, or iterating, a unit, and understand the relationship 
between the size and number of units”, and the Consistent-Length-Measurer (CLM) 
level, whereby children “see length as a ratio comparison between a unit and an 
object” and “use equal-length units, understand the zero point on the ruler, and can 
partition units to make use of units and subunits” (p. 106). They found that children 
at the LURR level relied on iterative strategies, while children at the CLM level 
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could “partition and correctly attend to units along one scale but not yet coordinate 
units along two scales simultaneously” (pp. 111–112).

Future research could build on what is already known about the foundational 
ideas of measurement such as identical units, iteration and zero-point.

Area

Given that area measurement is known to pose further challenges for learners 
(see Watson, Jones, & Pratt, 2013, p. 76), Gonulates and Males (2011) analysed 
US primary school mathematics textbooks and found little variety in the ways in 
which knowledge was expressed. The researchers concluded that the textbooks 
did not provide opportunities for students to engage with conceptual knowledge 
of area.

Whether primary-age children might benefit from being taught a curriculum 
that integrates 2-D geometry with area measurement, compared with a curriculum 
that stressed numerical calculation of area, was studied by Huang (2011). Huang’s 
conclusion was that integrating area measurement instruction with numerical 
strategies and geometric materials seemed to be “a promising approach to 
promoting children’s conceptual understanding of area measurement” as well as 
their capacity to “explain geometric reasoning with measurement when solving 
problems” (pp. 47–48).

The development of different components of students’ knowledge about area 
measurement was investigated by Frade (2005). Frade found that students aged 11 
to 12 showed a concept of area as a physical geographic space while by age 12–13 
this had evolved to them being able to use “the rectangle area formula adequately” 
and having “the ‘know how’ to solve a number of problems” (p. 327).

Area concepts continue to appear in the mathematics curriculum through to 
university. Cabañas-Sánchez and Cantoral-Uriza (2010) focused on how first-year 
university mathematics students could transform convex and non-convex polygons 
so that area was conserved. In analysing the arguments presented by the students, 
the researchers found that the students used both ‘parallelism’ (area between parallel 
lines is conserved) and relevant formulae to calculate areas.

Future research might develop further promising ways of promoting children’s 
conceptual understanding of area.

Volume

Turning to 3-D measures, Watson, Jones and Pratt (2013, p. 76) note that these 
introduce “even more complexity, not only by adding a third dimension and thus 
presenting a significant challenge for students’ spatial sense, but also in the very 
nature of the entity being measured”. As noted above in the section on spatial 
reasoning, in research on how 8–9 year-old children solve 3-D tasks using the 
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software Geocadabra (Lecluse, 2005), Sack and Vazquez (2011) concluded that 
“coding of rectangular array structures fosters children’s understanding of the 
volume formula in concert with their emerging multiplication skills” (p. 95). Huang 
(2012) was similarly interested in how children would benefit from a curriculum 
that integrates geometry with volume measurement, as compared to teaching that 
stresses numerical calculations and application of the formula. By designing different 
week-long teaching sequences for two 5th grade classes (pupils aged 10–11), Huang 
found that each approach “facilitated the children’s acquisition of the idea of volume 
measurement” and their capability to “solve different types of problems embedded 
with volume measurement concepts” (p. 361).

While focusing on mass rather than volume, McDonough, Cheeseman and 
Ferguson (2012) developed a one-week teaching unit for 6–8 year olds. Through 
this they found that the children were capable of thinking constructively about the 
intricacies of mass measurement. In terms of comparing and ordering masses, they 
found that the children appeared to “draw on prior experiences and sometimes on 
visual cues, but with appearance-based comparison for mass not as likely a reliable 
strategy as it might be, say, for length” (p. 207).

These studies illustrate the continuing need for active research on the topic of 
volume, and for research on the related topics of mass and capacity.

Combinations of Measures

As well as studying individual measures, researchers have also conducted studies 
involving more than one measure. For example, Stephanou and Pitta-Pantazi (2006) 
analysed the answers that upper primary school students gave to area and perimeter 
tasks. They found that more than half of the students’ answers were influenced “not 
so much by the specific context of a task (area or perimeter) or the presence of 
a diagram” but rather they were influenced “by the external features (change of 
one/both dimensions) of the task that trigger the intuitive rule ‘if A then B, if not 
A then not B’” (p. 183). Huang (2010) also examined children’s understanding of 
perimeter and area. The findings indicated that even where children (aged 8–9) had 
the computational capability to calculate perimeters, this did not necessary mean 
that they had complete comprehension of the meanings of multiplication and of the 
formula for area calculation.

Cullen, Miller, Barrett, Clements and Sarama (2011) compared three different 
unit-eliciting task structures for measurement comparison tasks. With a sample of 
children from grades 2–4, the researchers found that students were most successful 
with a task structure that asked “how much longer/bigger?” and were least successful 
with a task structure that asked “how many times longer/bigger?” (p. 249). What 
is more, in response to “how much longer/bigger?” the children tended to use an 
additive comparison while they tended to produce multiplicative comparisons in 
response to “how many times longer/bigger?” (ibid).
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Research by Fernández and De Bock (2013, p. 297) focused on a frequently-
investigated case of students’ misuse of linearity; that of effect of an enlargement 
or reduction of a geometrical figure on its area or volume. Here, learners have the 
tendency to treat relations between length and area, or between length and volume, 
as linear instead of, respectively, quadratic and cubic – perhaps, the researchers 
suggest, because secondary school students struggle with the distinction between 
dimensionality and ‘directionality’ (an example of that latter being that while the 
perimeter of a square is one-dimensional, it has two ‘directions’ in the form of length 
and breadth). Analysis of the responses to a set of tasks by 13–14 year olds confirmed 
the preponderance of “linear” answers and also indicated that more than 20% of the 
students’ answers were “directional” (ibid). The distinction between dimensionality 
and directionality was more a struggle for figures where the number of directions 
and dimensions coincided, such as when a square has two dimensions and also two 
directions.

Curry, Mitchelmore and Outhred (2006) surveyed 96 students of Grades 1–4 
using tasks assessing understanding of the five measurement principles: the need 
for congruent units; the importance of using an appropriate unit; the need to use 
the same unit when comparing objects; the relationship between the unit and the 
measure; and the structure of the unit iteration. Their results showed that while some 
of these principles were found to be clearer to older children, a precise order of 
development was not evident. The researchers concluded that appropriate learning 
tasks could be ones that help focus students on “the reasons for using a fixed unit 
size, for not leaving gaps, for using multiplication in some contexts, for rejecting 
certain units and accepting others, and for the inverse principle” (p. 383).

Such suggestions can be compared to those of Owens and Kaleva (2008), who 
have studied the many differing indigenous communities of Papua New Guinea 
(PNG). In setting out to collect and analyse approaches to measurement for as 
many PNG language groups as possible, Owens and Kaleva generalise to say that 
PNG people “have a sense of area (tacit knowledge) developed through sleeping, 
gardening and house building in particular” and “are able to use this idea of area to 
make judgements such as the estimated amount of material needed for a house of a 
particular floor size”; likewise, PNG people “would visualise a garden by knowing 
its length” (p. 79). The researchers concluded “by making these points explicit, 
teachers can reduce the discontinuities in knowledge and hence build a firm basis 
for school mathematics” (ibid).

The issue of primary students’ measurement estimates has been studied by 
Huang (2015) and by Ruwisch, Heid and Weiher (2015). Huang reported that good 
estimators tended to adopt multiple strategies and mental rulers more frequently 
than poor estimators, while Ruwisch and colleagues found that the children (and 
educators) that they studied gave better estimations for lengths than for capacities.
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Angle

The measuring of angle is, according to Bryant (2009, p. 4), “another serious 
stumbling block for pupils”. One problem, according to Bryant, is that turning 90 
degrees (a ‘dynamic’ angle) appears very different to the corner of a book being 
90 degrees (a ‘static’ angle). The study by Masuda (2009) confirms that learner 
difficulties range from grade 5 students having difficulty paying attention to an angle 
as one of the attributes of the shape (and distinguishing it from measuring a side of a 
shape) to grade 11 students being unclear about radians and degrees.

Kaur (2013) researched the ideas of elementary school children (aged 5–6) 
working on angle comparison using dynamic geometry software (DGS). Here, the 
children’s gestures and motion played an important role in their decision-making on 
angle comparison tasks. In particular, the use of gestures, such as hands as the ‘arms’ 
of an angle, enabled the children to see the process of turning even in case of ‘static’ 
shapes. In this way, “embodied routines could be helpful in looking at dynamic 
thinking, especially in case of young children” (p. 151).

Dohrmann and Kuzle (2014) focused on the development from grade 5 to 10 of 
pupils’ understanding of an angle of 1 degree. The results showed that many of the 
children’s misconceptions were directly connected to the measuring tool, namely 
the set square, and to the way they tried to draw an angle of 1°. In the case of the set 
square, this tool was found to privilege a ‘static’, rather than ‘dynamic’, perspective 
on angle.

In shedding light on the meanings of angle in 3-D space held by 12-year-old 
students, Latsi and Kynigos (2011) used a specially-designed “Turtle Geometry 
with dynamic manipulation microworld” within a teaching experiment in which 
the children “addressed angle as a directed turn … in the context of noticing and 
understanding 3-D objects’ spatial and geometrical properties” (p. 127). The 
researchers found that the students benefitted from experiencing “a vehicle of 
motion metaphor (e.g. flying the turtle)” (ibid). In this way the students came to use 
angle as “a spatial visualisation concept” (ibid).

In research by Tomaz and David (2011), the focus was on the definition of the 
bisector of an angle and measuring the angles formed by it. In the study, students 
aged 13–14 tackled the problem of finding the measure of an angle formed by the 
bisectors of two given adjacent angles. This “opened the possibilities to deepen their 
[the students’] understanding about the measure of angles” (p. 264). This illustrates, 
say the researchers, the “power of the visual representations for structuring and 
modifying the mathematical activity in the classroom” (p. 259).

While the difficulties that students encounter with the notion of angle are well 
known in the literature, these studies show how research is needed on fusing, rather 
than confusing, for learners the ‘static’ and ‘dynamic’ perspectives on angle.
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GEOMETRICAL REASONING AND PROVING

An important aspect of geometry is concerned with the development of 
deductive reasoning and proof. (Royal Society, 2001, p. 9)

Students’ Developing Capabilities with Geometric Reasoning and Proving

Research continues to focus on the capabilities of students at different grade 
levels with geometric reasoning and proving. Investigating cognitive predictors of 
geometrical proof competence, Ufer, Heinze and Reiss (2008) proposed a model 
comprising three levels: basic calculations; one-step proofs; and multi-step proofs. 
With data from testing 341 students in grade 9, the research confirmed that while 
knowledge was an important predictor of geometric proof competence, other 
predictors were also significant. The authors concluded that “if a student does not 
understand the nature of mathematical proofs, or has no problem-solving strategies 
at  hand, he or she will hardly be able to construct a proof in spite of the best 
geometric content knowledge” (p. 367). Such a conclusion was echoed by Yang, Lin 
and Wang (2007) in a study of students’ capabilities when reading geometry proofs.

The issue of how geometrical proof competence is connected to the capability to 
define geometric concepts was studied by Silfverberg and Matsuo (2008). In data 
from testing 152 Japanese and 162 Finnish students at 6th and 8th grade on the 
definitions of quadrilaterals, the researchers found that in both countries the students’ 
understanding of defining geometric concepts related to their “understanding of the 
class inclusion relations” (p. 263). In examining students’ capabilities in making 
geometric generalizations, Yevdokimov (2008) found that the higher-attaining 
students could formulate generalized arguments. Antonini (2008) showed how 
students treated contradictions in geometric argumentations and proofs, indicating 
how proof by contradiction is not straightforward for learners. Ginat and Spiegel 
(2015) found an absence of the ‘fluency’ and ‘flexibility’ aspects of creativity in 
novices’ geometry proofs.

Bieda (2011) reported on the aspects of proofs and non-proofs that were convincing 
to middle grade students. The analysis found that the students “valued the explanatory 
power of an argument when evaluating a proof for a true geometry statement that 
provided a diagram” (p. 153). In a study of the assumptions made by 10th grade 
students when proving geometric statements, Dvora and Dreyfus (2011) found 
that unjustified assumptions arose when students “misused theorems or assigned 
extraneous properties to geometric objects”, and that unjustified assumptions were 
“made with the purpose of reaching a critical step in the proof” (p. 289).

Matos and Rodrigues (2011) investigated how the construction of geometric 
proof related to the social practice developed in the classroom, and, in particular, 
the role of geometric diagrams. The researchers concluded that diagrams played “an 
important role in the process of sharing and increasing the ownership of meaning of 
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proof by highlighting the relevant properties” (p. 183). For an interesting analysis of 
geometric pictures, see Stenkvist (2012).

In proof problems involving 2-D representations of 3-D shapes, the diagram may 
not always help. For example, Jones, Fujita and Kunimune (2012) reported a study 
of lower secondary school pupils (aged 12–15) who tackled a 3-D geometry problem 
that used a particular diagram as a representation of the cube. The analysis showed 
how some of the students could “take the cube as an abstract geometrical object 
and reason about it beyond reference to the representation”, while others needed to 
be offered “alternative representations to help them ‘see’ the proof” (p. 339). The 
influence of 3-D representations on students’ level of 3-D geometrical thinking is 
reported by Kondo, Fujita, Kunimune and Jones (2013) and the follow-up paper by 
Kondo, Fujita, Kunimune, Jones and Kumakura (2014).

Attempting to deepen the ways in which visually-based geometric materials 
support students’ generating of conjectures, Lin and Wu (2007) examined how 6th 
graders, still in the process of intuitive geometry, generated geometrical conjectures 
when geometrical conditions in diagrams were given. The analysis showed that 
students generated more related conjectures if they looked at one example, instead of 
two or three at the same time, and they generated more conjectures if the examples 
were conjunctive (that is, the example was the conjunction of the conditions given 
in the question with other conditions). Komatsu (2011) studied how grade 9 students 
generalized their conjecture through proving. After the students proved their 
conjecture and faced its counterexample, applying their proof to a boundary case 
between example and counterexample of their conjecture was found to be crucial.

Given that there can be a tension between the practical aspect of physically 
carrying out a geometrical construction and the theoretical aspect of constructing 
the related proof, Fujita, Jones and Kunimune (2010) studied the extent to which 
there might be ‘cognitive unity’ between students’ geometrical constructions and 
their proving activities. The results suggested that while grade 9 students gained 
a much greater appreciation of how to use already-known facts to proceed with 
further investigations in geometry, the uniting of student conjecture production and 
proof construction was not automatic. As the authors concluded “further research is 
necessary to give a fuller answer to the matter of how, and to what extent, geometrical 
constructions encourage the uniting of student conjecture production and proof 
construction” (p. 15). In a follow-up report, the same authors reported two cases 
from grade 7 where the use of geometrical constructions enabled the students to shift 
“from relying on visual appearances or measurement to reasoning with properties of 
shapes” (Fujita, Kunimune, & Jones, 2014, p. 65).

A range of studies has examined students’ proof and proving when using dynamic 
geometry software (DGS). Patsiomitou and Emvalotis (2010), for example, 
concluded from their study that “the dynamic manipulation of objects in the software 
led the students to construct the properties of figures” and this, in turn, helped 
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the students classify the figures (see also, Patsiomitou, 2011). Baccaglini-Frank, 
Mariotti and Antonini, (2009) reported on different perceptions of invariants and 
generality of proof in dynamic geometry, while Baccaglini-Frank, Antonini, Leung 
and Mariotti (2011) reported on a study with upper secondary-age students (aged 
16–18) that focused on constructing a proof by contradiction. The latter showed that 
“there can be a strong subjective element in the process of producing a geometrical 
proof (or a convincing argument) via the solver’s conscious choices of construction 
and dragging in a DGS” (pp. 87–88). Olivero (2006) investigated the role of the 
DGS hide/show tool in the conjecturing and proving processes. While this facility 
offers students the possibility to focus on different elements during a geometric 
construction, the analysis confirmed that the visible elements on the screen guided 
the focus of the students and it was this that effected the construction of conjectures 
and the development of proofs. In a different approach, Leung and Or (2007) studied 
oral explanations and written proofs provided by secondary students working on 
construction tasks with DGS. The researchers concluded that writing up DGS proofs 
“may involve using mathematical symbols or expressions that transcend the usual 
semantic of a traditional mathematical symbolic representation (p. 183).

Fujita, Jones and Miyazaki (2011) and Miyazaki, Fujita and Jones (2014) 
reported on studies of a “web-based proof learning support environment” (p. 353) 
in which learners tackled geometrical congruency-based proof tasks by dragging 
sides, angles and triangles to cells of a flowchart-style proof while the web-based 
system automatically transfered figural to symbolic elements so that learners could 
concentrate on the logical and structural aspects of their proofs. From their research, 
the researchers argued that with this approach, alongside suitable guidance from the 
teacher on the structural aspects of a proof, students could “start bridging the gap 
in their logic and thereby begin to overcome circular arguments in mathematical 
proofs” (2011, p. 353).

Textbooks may, or may not, provide support for students’ developing capabilities 
with geometric proving. Dolev and Even (2012) compared six 7th grade Israeli 
mathematics textbooks, examining the opportunities provided by the textbooks 
to justify and explain mathematical work about triangle properties. They found, 
compared with algebra, that all six textbooks included “considerably larger 
percentages of geometric tasks that required students to justify or explain their 
solutions” (p. 203). Miyakawa (2012) compared textbooks from France and Japan 
and found differences such as what gets called proof in the textbook, the form of 
proof used, and the functions of proof employed.

Given that definitions are integral to geometric proof, Okazaki (2013) found that 
for 5th grade pupils five situations should help: “(1) understanding the meaning 
of identifying geometric figures, (2) constructing examples from non-examples 
and justifying the constructions via comparisons, (3) recognizing equivalent 
combinations, (4) examining undetermined cases via counterexamples, and (5) 
conceiving figures as relations beyond the given actualities” (p. 409). Haj-Yahya, 
Hershkowitz and Dreyfus (2014) investigated 11th grade students’ geometrical 
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proofs through the lens of the students’ definitions and found that the difficulties 
students had in understanding geometric definitions affected their understanding of 
the proving process and hence the capability to prove.

Several studies have examined the ways in which high-attaining students compose 
or construct a proof, or create a definition, and how this might help in understanding 
the proving approach of the students in general because the characteristics of their 
approaches are very close to the mathematical proving or defining processes. 
Examples include Lee (2005) and Song, Chong, Yim and Chang (2006) who 
examined the constituents of proving that high-attaining students produce, Ryu, 
Chong and Song (2007) who researched their spatial visualization of solid figures, 
Lee, Kim, Na, Han and Song (2007) who researched their use of utilize induction, 
analogy, and imagery, and Lee, Ko and Song (2007) who studied the ways they 
define geometric objects. These researchers concluded that teachers need to draw 
explicit attention to the value of informal proofs and that for students to develop 
their sense of geometrical reasoning there needs to be extensive experience of 
conjecturing and then verifying. Kim, Lee, Ko, Park and Park (2009) built on this 
work in a study of how high-attaining students can become aware of unjustified 
assumptions in geometric constructions.

Teaching Proposals Improving Students’ Performance in Geometric Proving

In looking to help students, Cheng and colleagues examined strategies such as 
reading-and-colouring (Cheng & Lin, 2006), the use of coloured flashcards to 
support geometric argumentation (Cheng & Lin, 2007), and step-by-step reasoning 
in two-step geometry proofs (Cheng & Lin, 2008). With the reading-and-colouring 
teaching approach entailing students using colours to show known and unknown 
information in proving tasks, teaching experiments with 9th grade students found 
that the approach helped students to see the necessary information for proving a 
statement. As a way of supporting geometry proof reasoning in slower students, 
Cheng and Lin (2008) developed a step-by-step reasoning strategy and found that 
this teaching strategy improved the students’ proving process. Research by Kuntze 
(2008) confirmed that writing about geometrical proving can foster “the competency 
of solving geometrical proof tasks” (p. 295).

Huang (2005) investigated how a sample of teachers in Hong Kong and Shanghai 
taught Pythagoras’ theorem. The findings showed both similarities and differences 
in terms of the approach to the justification of the theorem. Although teachers in 
both places emphasized the justification of the theorem by various activities, the 
following differences were noticeable: Hong Kong teachers were what they called 
“visual verification-orientated” while Shanghai teachers were “mathematical-proof-
orientated” (p. 166). Moreover, compared with Hong Kong teachers, Shanghai 
teachers made more effort to encourage students to speak about and construct their 
own proofs. Zaslavsky, Harel and Manaster (2006) also investigated the teaching of 
the Pythagoras theorem, in particular how examples were used and how this enabled 
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analysis of teacher mathematical and pedagogical knowledge that may support or 
inhibit student learning.

The role of the teacher is known to be crucial to students’ developing capabilities 
with geometric proving. Dimmel and Herbst (2014) found that teachers had different 
views of the appropriate level of detail in a student’s geometrical proof. Focused on 
classroom interaction, Miyakawa and Herbst’s (2007) study of classroom geometrical 
proving found differences between what they called “installing theorems” and 
“doing proofs”: in the former, “details may be excluded, and a theorem may be 
established without proof” while when ‘doing proofs’ the conclusion “cannot be 
used until proved” (p. 288).

In the same direction, Fuglestad and Goodchild (2009) examined teachers’ 
knowledge about proof and its necessity, concluding that some teachers do not 
appear certain about the nature and the necessity of a proof. Attempting to support 
teachers’ understanding of geometric reasoning and proof, Bayazit and Jakubowski 
(2008) proposed constructions with compass and straightedge, while De Bock 
and Greer (2008) proposed to pre-service teachers a challenging task (in this case, 
finding and proving which rectangles with sides of integral length have equal area 
and perimeter). Lei, Tso and Lu (2012) examined how reading comprehension of 
geometry proof might be influenced by worked-out examples. With data from 85 
grade 8 students who were novices at deductive proof in geometry, they found that 
lower-attaining students tended to overlook the overall logical structure of proof by 
only repeating the steps from worked-out examples and that these students failed to 
apply related knowledge in proving.

Brockmann-Behnsen and Rott (2014) reported on a long-term study conducted 
in four 8th grade classes. Two of these classes served as control groups, with the 
mathematics lessons of the other two classes frequently enriched by structured 
argumentation and the training in the use of heuristics. In the post-test, the treatment 
groups obtained significantly better results than the control groups (who had no 
special training in heuristics and argumentation strategies). While not a controlled 
trial, Fielding-Wells and Makar (2015) describe a teaching unit with a class of 10–11 
year-olds which included the task “Can a pyramid have a scalene face?” (p. 297). 
Through their analysis the researchers identified several benefits of argumentation 
for the learners.

STUDENTS’ GEOMETRIC KNOWLEDGE

Owens and Outhred (2006, p. 85) pointed to the impact of Piaget on earlier 
research on student’s knowledge about geometric figures. In subsequent research, 
evidence of the legacy has been much less. In contrast, the van Hiele model (ibid, 
pp. 86–89) continues to feature. More recent studies have employed various 
frameworks, including figure apprehension according to Duval (1999), and the 
notion of figural concept by Fischbein (1993). In addition, use of more general 
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frameworks includes Sfard’s (2008) commognition approach, as well as notions of 
embodiment (Gibbs, 2006).

The Piagetian Legacy and Use of the van Hiele Model

Examples of continuation of the Piagetian legacy in PME research include the study 
by Cullen et al. (2011) who used the Piagetian idea of the importance of comparison 
in measurement and Maier and Benz (2014) who used Piagetian notions of drawing 
skills in investigating how children aged between 4 and 6 drew different kinds 
of triangles. Examples of the use of the van Hiele model include research by, for 
example, Wu and Ma (2005), Wu and Ma (2006), Wu, Ma, Hsieh and Li (2007). 
Such studies of elementary school students confirm the outcomes of previous 
research that students tend to judge geometric figures by their appearance, with the 
circle the easiest and quadrilaterals the more difficult.

More recently, Guven and Okumus (2011) tested the van Hiele levels of 8th 
grade Turkish students together with their classification preferences (hierarchical or 
partitional) about relationships between some quadrilateral pairs. They found that 
“most of the students were at van Hiele level 2 before starting their high school 
education and the students generally chose partitional classification” (p. 473). For 
Kospentaris and Spyrou (2009), after examining data on the van Hiele levels of 
secondary school students, it was because of geometry teaching methods that such 
students barely surpass level 1. Patsiomitou and Emvalotis (2010) used the van Hiele 
levels in a study of the development of students’ geometrical thinking through a 
guided-reinvention process with DGS. They found that students “developed their 
geometrical thinking processes and applied skills, reaching a higher level of 
abstraction” (p. 39)

Apprehension of Geometric Figures

According to Duval’s (1999) theoretical framework, there are four different ways to 
organize and process visual aspects in geometric figures: perceptual apprehension 
(recognizing figures); sequential apprehension (perceiving their different parts); 
discursive apprehension (on the basis of statements, definitions, descriptions); 
and operative apprehension (modifying a figure or some of its element). A study 
by Elia, Gagatsis, Deliyianni, Monoyiou and Michael (2009) of various aspects of 
figure modification confirmed students’ tendency to apply part-whole modifications 
rather than modifications referring to the position or orientation of a figure. In later 
research (Deliyianni, Michael, Monoyiou, Gagatsis, & Elia, 2011), the researchers 
aimed at confirming a composite theoretical model concerning middle and high 
school students’ geometrical figure understanding. More recently, Kalogirou, Elia 
and Gagatsis (2013) investigated how two major components of spatial capability, 
that of visualization and mental rotation, might be related to geometrical figure 
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apprehension (perceptual and operative) as proposed by Duval (1999). Statistical 
analysis indicated a moderate though significant correlation between spatial 
capability and geometrical figure apprehension.

Sinclair and Kaur (2011) found that kindergarten children were able to 
“develop an understanding of symmetry that showed awareness of the properties 
of reflectional symmetry through the behaviour of dynamic images” (p. 193). For 
Sinclair, Moss and Jones (2010) the focus was children aged 5 to 7 trying to decide 
whether two lines on a DGS screen that they know continue (but cannot see all of 
the continuation) would intersect, or not. They report that, in tackling this question, 
the children engaged in “aspects of deductive argumentation” (p. 191). Kaur and 
Sinclair (2014) reported part of a longitudinal study of the development of young 
children’s geometric thinking (aged 7–8). They found that “during the teacher-led 
explorations and discussions with dynamic sketches, children’s routines moved from 
description of tool-based informal properties to formal properties” (p. 415), as well 
as from particular to more general discourse about what is a triangle.

Knowledge of Definitions and Inclusion Relations

A study by Ubuz (2006) of secondary school students’ definitions of polygons and 
quadrilaterals, and the ways these figures are presented in the textbooks, found that 
“figures (in textbooks) often provide an instantiation of a definition, not a general 
and rigorous proof” so that the students “focus on figural understanding to produce 
conceptual understanding” (p. 347).

The understanding of the inclusion relations between quadrilaterals has been the 
focus of a number of studies (Guven & Okumus 2011; Okazaki, 2009; Okazaki & 
Fujita, 2007; Silfverberg & Matsuo, 2008). Such studies confirmed that students’ 
difficulties in understanding the inclusion relations differ from grade to grade and 
can be related to tacit properties and significant prototype phenomena. In their 
study of how Japanese and Finnish students were able to apply class inclusion 
and disjunctive classification, Silfverberg and Matsuo (2008) found that about 
half of the students could identify the inclusion of squares into rectangles, and of 
rectangles into parallelograms. Okazaki and Fujita (2007), grounding their research 
on Hershkowitz’s (1990) theoretical frame of prototype phenomenon, obtained data 
from Japanese 9th graders and from Scottish pre-service primary teachers. They 
found that for Japanese students the prototype phenomenon appeared “strongly 
in squares and rectangles” and that such prototype images and implicit properties 
were “obstacles for the correct understanding of the rectangle/parallelogram and 
square/rectangle relations” (p. 47), while even though the pre-service teachers had a 
“relatively flexible images of parallelograms” the strongest prototype phenomenon 
appeared with squares.

The image of angles in a parallelogram or a rectangle appears to be an obstacle 
in understanding inclusion properties, as shown in the study by Ozakaki (2009). 
The simple identification of geometric figures does not necessarily allow students to 
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approach inclusion relations as they remain with the tacit properties that they have 
in mind.

Matsuo (2007) recorded the differences in students’ understanding of geometric 
quadrilaterals. The results revealed four ordered states in understanding relations: not 
distinguishing between two geometric figures; identifying both figures respectively; 
distinguishing or identifying figures based on their differences or similarities; and 
understanding the inclusion relation. Serow (2006) examined the development of 
triangle property relationships using the SOLO taxonomy (Biggs & Collis, 1982). 
The analysis revealed differences in the ways students understood the relationships 
among properties. As notted earlier, Haj-Yahya and Hershkowitz (2013) found 
that, when definitional statements about quadrilaterals were given verbally to 10th 
graders without any visual support, more students were able to identify and explain 
the inclusion relationships.

Identification of 2-D and 3-D Shapes

A number of studies have investigated the identification of shapes such as triangles 
through different grades (e.g. Horne & Watson, 2008), as well as the type of criteria 
that students use to identify geometric figures more generally (e.g. Sophocleous, 
Kalogirou, & Gagatsis, 2009). Such studies have confirmed that students develop 
the concept of shapes through experiences both inside and outside school and from 
holistic visual approaches to properties recognition. Horne and Watson (2008) 
tested students across seven consecutive grades on a task related to identification 
of triangles. While they found an improvement across grades 1 to 4, most students’ 
errors concerned the inclusion, rather than the exclusion, of triangles. Maier and 
Benz (2014) studied young children’s ideas of triangles by analysing their drawings. 
They found that children aged 3–11 mainly drew isosceles triangles (although the 
researchers were not sure whether the children were attempting to draw equilateral 
triangles with limited drawing skills). Moreover, they found that prototypical 
presentations were dominant not only for the first drawn triangle but also as varying 
triangles because “most children varied their triangles through area size” (p. 160).

The study by Sophocleous, Kalogirou and Gagatsis (2009) compared the criteria 
of figure recognition with solutions that 5th and 6th grade students proposed in 
creativity tasks with overlapping figures. Their results indicated that the more 
critical attributes of shapes the students could recognize, the better they performed 
in creativity tasks.

More recently, Arai (2015) investigated how instructional tasks change the ways 
first graders identify geometric figures. A questionnaire with instructional tasks was 
administrated to three groups of 69 students. In the first group the students have to 
find the number of sides and vertices of triangles, to draw figures and read definition 
of triangles, while in the second group they have only to find the number of sides and 
vertices of triangles and draw figures, and in the third group students read definition 
of triangles. While most of the students “used visual reasoning to identify triangles, 



K. JONES & M. TZEKAKI

132

and were noticeable influenced by prototype examples”, there were signs that they 
could change their reasoning “after engaging in instructional tasks” (p. 55).

A number of studies have investigated students’ knowledge of 3-D shapes. Wu, 
Ma and Chen (2006) investigated students of different grades and found that higher 
grade students had more sophisticated representations of 3-D shapes. In a later study, 
Ma, Wu, Chen and Hsieh (2009) examined students’ drawings of solid cuboids and 
compared their results to those given by Mitchelmore (1978) two decades earlier. 
This indicated an improved distribution of the stages compared with that presented 
by Mitchelmore.

Nevertheless, research by Pittalis, Mousoulides and Christou (2009) has 
underlined  that students have many difficulties in representing, identifying, or 
interpreting. With data from 40 students from 5th to 9th grade, the researchers 
identified four levels of sophistication in the representations: no proper drawings; 
coordination of front and side views; proper conventions of 3-D drawings with 
some errors; proper drawings.

Hatterman (2008) observed 15 university students, trained in 2-D DGEs (Euklid-
DynaGeo and Cabri 3D), while they worked in groups on Archimedes Geo3D 
and Cabri 3D. The results showed that experiences in 2D-environments appeared 
insufficient when students work in 3-D space. The students had problems in justifying 
simple facts in 3D-environments and benefitted from access to 3-D models to solve 
given tasks. In their study, Leung and Or (2009) investigated perspective dragging in 
Cabri 3D and found that this helped students to identify and reason about geometric 
properties of 3D objects.

Language Issues in the Development of Geometrical Thinking

In research on language issues in the development of geometrical thinking, Leung 
and Park (2009) found that common names in geometric and in everyday language 
both support and prevent students’ understanding of figures and their properties 
because the terms direct students to fix their attention on some special characteristics 
that are not always consistent with the definition of the figures. More recently, 
Ng (2014), as noted above, studied the “interplay between language, gestures, 
dragging and diagrams” (p. 290) in 12th grade bilingual learners’ mathematical 
communications about various aspects of Calculus through geometrical dynamic 
sketches using DGS. The findings suggested that “bilingual learners utilised a 
variety of resources, including language, gestures and visual mediators in their 
mathematical communication – with gestures taking on a prevalent role” (p. 295).

Summarizing, studies related to students’ geometric knowledge keep attracting 
the interest of research on the teaching and learning of geometry, with older or 
newer approaches related to identification of 2-D or 3-D geometric figures. As a 
significant number of relevant studies have been accumulated in this field, a careful 
and systematic record of the findings and subsequent conclusions related to students’ 
geometric knowledge might be imperative.
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TEACHERS’ GEOMETRIC KNOWLEDGE AND DEVELOPMENT

Teaching geometry well involves [the teacher] knowing how to recognise 
interesting geometrical problems and theorems, appreciating the history and 
cultural context of geometry, and understanding the many and varied uses to 
which geometry is put. (Jones, 2002, p. 122)

Given that the nature and extent of teachers’ knowledge affects the quality of their 
teaching (e.g. Ball & Bass, 2003), a number of studies have focused on examining 
pre-service and in-service teachers’ knowledge of geometry – and on ways of 
developing this knowledge.

Geometric Knowledge of Teachers

Fujita and Jones (2006) reported on the geometric knowledge of Scottish pre-service 
primary teachers and the ways that these pre-service teachers defined and classified 
quadrilaterals. Based on the ideas of concept definition and concept image introduced 
by Tall and Vinner (1981), and of figural concept initiated by Fischbein (1993), Fujita 
and Jones (p. 130) distinguished what they called the individuals’ “personal figural 
concept” (coming from personal experiences) from the “formal figural concept” 
(as defined in geometry). Almost 160 pre-service primary teachers in the first year 
of their studies were examined in questions related to quadrilateral properties, and 
124 pre-service teachers in the third year of their studies were examined about 
quadrilateral relationships. Analysis of the first group’s answers showed that there 
was a gap between figural concepts and definitions provided. Similarly, the analysis 
of the answers of the second group indicated a weak understanding of the hierarchical 
relationship of quadrilaterals.

For Tatsis and Moutsios-Rentzos (2013), their focus was the capability of pre-
service primary school teachers to interpret and evaluate verbal information related 
to 2-D geometrical objects. The researchers found, in contrast with their conjecture, 
that the pre-service teachers mostly showed a stronger positive evaluation of the 
geometrical descriptions, followed by weaker positive evaluations of the topological 
descriptions. These, say the researchers, were accompanied by “relatively negative 
evaluations for everyday descriptions” (p. 270).

While the above studies focus on pre-service elementary teachers, Silfverberg and 
Joutsenlahti (2014) studied pre-service elementary and secondary teachers’ notions 
of angles in a plane. They found that some of their respondents “interpreted an angle 
as a line consisting of two line segments, some consisting of two rays, and some as a 
region defined by these elements” (p. 190). What is more, interpretations differed as 
to “whether an angle continues outside the part shown in the drawing in the direction 
determined by the angle, or not” (ibid). Moore-Russo and Mudaly (2011) reported 
on a study of South African secondary school teachers’ knowledge of gradient 
(or slope). Based on data from nine free-response test items completed by 251 
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practicing teachers pursing qualifications to teach grades 10–12 mathematics, their 
findings suggested that understanding of gradient of these teachers varied greatly, 
with many of the teachers lacking “even a basic understanding of this important 
concept” (p. 241).

In a similar vein, research by Son (2006) investigated pre-service primary and 
secondary teachers’ conceptions of reflective symmetry and compared these with 
their teaching strategies. Based on the van Hiele model, the results showed that 
the pre-service teachers had a limited understanding of reflective symmetry and 
confused symmetry with rotation. Their deficiencies directed them to use procedural 
teaching approaches in their attempt to help students’ understanding of symmetry 
and symmetrical constructions. Comparable results in the study of Van der Sandt 
(2005) showed that when secondary pre-service teachers did not adequately control 
the geometric subject matter, their deficiencies had implications in their classroom 
teaching. Paksu (2009) found that pre-service elementary teachers’ self-efficacy in 
geometry was related to many factors such as their van Hiele geometric thinking 
level, their attitude towards geometry, and their attainment in geometry. Chiang 
and Stacey (2015) focused on in-service primary school teachers in Taiwan. In line 
with much existing research, they found the teachers lacked some basic geometric 
knowledge.

In a diagnostic test of the knowledge of both pre-service and in-service teachers 
about triangles, Alatorre and Saiz (2009) found both figural and conceptual 
misconceptions. These included the idea that the base of a triangle is necessarily 
horizontal (with the rest of the figure above it) and the height necessarily vertical 
and/or drawn from the highest point, the idea that triangles must necessarily be 
isosceles, that altitudes need to be internal, the idea that each triangle has only one 
base and one height, confusing the height with the median, the use of right-angled 
triangles terminology with non-right-angled ones, various misconceptions about the 
Pythagorean Theorem and its applications, and errors with the formula for the area 
of a triangle. Subsequently, Alatorre, Flores and Mendiola (2012) studied in-service 
primary teachers’ reasoning and argumentation about triangle inequality. Their 
findings suggested that reasoning and argumentation “are not part of many [primary] 
teachers’ professional practice” (p. 9).

Given the consistent findings of problems with teacher knowledge, more research 
could focus on how the geometrical knowledge of pre-service, and in-service, 
teachers could be improved. Existing PME research on this topic is addressed in the 
next section.

Teacher Development for Geometry Education

Various research studies have shown that the geometrical knowledge of pre-service, 
and in-service, teachers can be improved not only by the appropriate education (for 
instance, González & Guillén, 2008, proposed an Initial Competence Model for 
teachers for the teaching of geometric solids), but also by the use of technologies 
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such as dynamic geometry environments (e.g. Haja, 2005). In the study by Haja, 
pre-service secondary teachers were studied for their problem-solving capabilities 
while they were undertaking geometrical constructions using DGS. The researcher 
applied a “knowledge-in-action design that expected them to “…apply their content 
knowledge to understand the given problem, construct the dynamic figures, make 
conjectures, verify the conjectures, and solve similar problems” (p. 82). Using open-
ended tasks for which the pre-service teachers had to find a solution with the dynamic 
software, the evidence showed that they met the expectations of the knowledge in 
action design.

In a similar vein, Presmeg, Barrett and McCrone (2007) designed a course that 
included geometric constructions that the pre-service teachers could tackle both by 
using DGS and by traditional tools. These two different modes of representation 
of geometric concepts could, according to Duval’s (1999) framework, support the 
pre-service teachers’ constructions of generalized geometric knowledge. According 
to researchers’ approach, the property of DGS sketches to stay together when the 
mouse moves points or lines, and the distinction between variant and invariant 
properties, were the two concepts that were more related to the development by 
the pre-service teachers of geometric generalizations. Moreover, collaborative 
discussions and sharing meanings were amongst the main factors for participants’ 
accomplishments. Similarly, in a study conducted by Olvera, Guillén and Figueras 
(2008), the fostering of communities of practice of in-service primary teachers was 
found to improve their approaches in the teaching of solid geometry. Alqahtani and 
Powell (2015) studied teams of middle and high school in-service teachers during a 
semester-long professional development course in which the teachers participated in 
a collaborative online dynamic geometry environment. The researchers found that 
through this online dynamic geometry environment the teachers interacted to notice 
variances and invariances of objects and relations in geometrical figures and to solve 
open-ended geometry problems. For Morgan and Sack (2011) in their research with 
pre-service teachers, the van Hiele model remained “a useful framework to describe 
the evolving shape-building activities” (pp. 249–250).

Martignone’s (2011) research provides examples of tasks for teachers involving 
artefacts (such as ruler and compasses) and how teachers can succeed in implementing 
such tasks in their classrooms. Lavy and Shriki (2012) studied how the skills of 
pre-service secondary school mathematics teachers in evaluating geometrical proofs 
could be improved through peer assessment of each other’s proofs. The outcome 
was that the engagement of the pre-service teachers in peer assessment, both as 
assessors and as those being assessed, “contributed to the development of [their] 
assessment skills” (p. 41). By comparing the first and the second assessment tasks 
conducted by the pre-service teachers, the researchers found that the pre-service 
teachers developed their capabilities “to select a proper criteria list and assign a 
reasonable numerical weight to each criterion” (ibid).

Cirillo (2011) provides a case study of a beginning secondary school teacher 
working to improve the way of teaching geometrical proof and proving during 
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their first three years of teaching. Given that the beginning teacher had a strong 
mathematics background, the study illustrated how content knowledge “is not 
necessarily sufficient preparation to teach proof” (p. 247). The study by Hähkiöniemi 
(2011) provides an account of how an experienced teacher was given the opportunity 
to try a pre-planned unit for high school students on approximating the area under 
a curve that was enriched with DGS-based tasks and how this raised the teachers’ 
awareness of different teaching methods as well as the benefits and challenges of 
using such methods.

In general, the studies on teachers’ geometric knowledge, and their pre-service and 
in-service education, indicate that attention needs to be given to how to build teachers’ 
understanding of common 2-D and 3-D objects (e.g. triangles, quadrilaterals, or 
angles) with consequent implications for their teaching. In investigating approaches 
that improve teachers’ geometrical education, relevant research confirms the 
effectiveness of general approaches (e.g. community in practice or peer assessment) 
but also the use of technological tools in geometric problem solving or proving.

TEACHING GEOMETRY AND GEOMETRIC TASKS

Tasks shape the learners’ experience of the subject and their understanding of 
the nature of mathematical activity. (Watson & Ohtani, 2015, p. 3)

Teaching Interventions

Of the various studies of geometry teaching, some entail genetic approaches 
involving historical, logical and epistemological, psychological and socio-cultural 
aspects (e.g. Safuanov, 2007) and some feature ethno-mathematical and humanist 
approaches valuing cultural and scientific heritage (e.g. Chorney, 2013; Gooya & 
Karamian, 2005), as well as the use of art work as a creative tool to approach 
geometric figures (Pakang & Kongtaln, 2007). On top of this, there have been 
studies related to the teachers’ choices regarding the use of diagrams and examples 
(Zodik & Zaslavsky, 2007) and studies emphasizing algebraic approaches to solving 
geometrical problems (Dindyal, 2007). How students make sense of the ‘figured 
world’ of the geometry classroom was explored by Aaron (2008), while Ding and 
Jones (2006) investigated geometry teaching at the lower secondary school level in 
Shanghai, China.

Gal, Lin and Ying (2006) observed five different 9th grade classes aiming at 
investigating the factors and class characteristics that influenced students’ low 
achievement. The findings suggested that the low achievers were provided with less 
learning opportunities. Similarly, Soares (2010) studied a 4th grade geometry class 
that was co-taught by two teachers with “different and complementary perspectives” 
(p. 201), one trying to encourage the students to solve challenging problems, and the 
other managing situations in which novel tasks are introduced. This combination of 
skills made for successful teaching. Both Hähkiöniemi (2011), as noted above, and 
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Hollebrands, Cayton and Boehm (2013) reported on the types of pivotal teaching 
moments, and related teacher actions, which can arise in a technology-intensive 
geometry classroom.

Geometric Tasks

For some studies, the design of geometric tasks was integral to the research. The 
research reported by Fujita, Jones and Kunimune (2010), Fujita, Jones and Miyazaki 
(2011), and Komatsu (2011), all relied on well-designed tasks. In Fujita, Jones and 
Kunimune (2010), the task was “how to construct the largest square within a given 
triangle ABC” (p. 12). The conclusion of the teaching experiment was that this task 
could be used to “encourage students’ mathematical arguments, reasoning and proof” 
(p. 15). In Fujita, Jones and Miyazaki (2011), the tasks were integral to the design 
of a “web-based proof learning support environment” (p. 353). In the tasks, learners 
tackled proof problems by dragging sides, angles and triangles to cells of the flow-
chart proof and the web-based system automatically transferred figural to symbolic 
elements so that the learners could concentrate on logical and structural aspects 
of proofs. The task included both ordinary proof problems such as prove the base 
angles of an isosceles triangles are equal (the researchers call these closed problems) 
and problems by which students construct different proofs by changing premises 
under certain given limitations (which the researchers called open problems). Each 
time the learners selected a next step in their flow-chart proof, the web-based system 
checked for any error via a database of possible next steps. If there was an error, the 
learners received feedback in accordance with the type of error.

The study by Komatsu (2011) utilised a task concerning a small triangle placed 
on top of a larger one and the change in length of two segments after rotation of 
one triangle around a common point. For the students, the task was deliberately 
ambiguous as they were unclear what the ‘two segments’ meant, but it was this 
ambiguity that made the task interesting as it resulted in the students. It was also 
the boundary case between example and counterexample that played a crucial role.

Aspinwall and Unal (2005) conducted a teaching experiment called geo-
arithmetic with pre-service secondary mathematics teachers. Their results confirmed 
that implementing a variety of different representational systems helped the pre-
service teachers to translate from one to another. Other studies have examined 
geometrical tasks involving toys, machines or other tools, the use of which appear 
to support problem-solving processes and advancements in understanding (e.g. the 
use of Bee-bots by Highfield, Mulligan, & Hedberg, 2008, mentioned above).

Using DGS, the dynamic manipulation of geometric objects by ‘dragging’ is 
commonly referred to as the ‘drag mode’ (Hölzl, 1996; Jones, 1996). This is when 
an object in an on-screen diagram is ‘dragged’, the diagram is modified yet all the 
geometric relations used in its construction are preserved. This function supports 
teaching tasks that provide different apprehensions to the viewing of geometric 
objects and support of dynamic representations that enrich internal thought of 
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students (Xu & Tso, 2009). A range of studies continues to explore the affordances 
of dynamic geometry ‘dragging’ environments. For example, Chan (2012) studied 
a university mathematics teacher who, while an accomplished mathematician, was 
unfamiliar with DGS. Chan found that initially the mathematician considered the 
software “a computational tool for the system of Euclid’s Elements” but while 
working on explorative tasks, the mathematician experienced “the powerfulness 
of dragging and developed a new understanding towards DGS” (p. 297). The 
affordance of dragging for geometrical problem solving was a feature of the 
research of Jacinto and Carreira (2013). Here, 14 year-olds tackling a problem 
involving a rectangular lawn and a triangular flowerbed used ‘dragging’ to check 
or verify their solution. Similarly, Leung and Or (2009), investigating perspective 
dragging in Cabri 3D, showed that this function helps students’ identification and 
reasoning about geometric properties of 3D objects.

Certainly, dragging in 3D software presents some differences compared to the 
manipulation of 3D physical models. Hattermann (2008, 2010) focused on the drag-
mode of the 3D digital environment and underlined its importance in explaining that 
it transforms the static figures of geometry to dynamic objects. However, the use of 
this function is not so apparent to students who need encouragement to implement it 
and appreciate its advantages. In their study with 13–14 year old students, Lee and 
Leung (2012) confirm that, while generating more examples is the central affordance 
of dragging, generating such examples becomes possible for the student “only when 
prompted” (p. 66). Building on this and related studies, Leung (2014) proposes four 
principles for task design in dynamic geometry, while Sollervall (2012) reports on 
the design of spatial coordination tasks that make use of mobile technologies.

In a different vein, Martignone and Antonini (2009) introduced pantographs 
for geometrical transformations. They presented a classification scheme efficient 
to analyse the interaction between a subject and the machine, and the processes 
involved. Subsequently, Martignone (2011) presented and discussed some examples 
of tasks for teachers that involved geometrical ‘machines’; that is “reconstructions 
of tools belonging to the historical phenomenology of mathematics from ancient 
Greece to 20th century” (p. 193) such as curve drawers and pantographs. The 
teachers tackled tasks such as constructing an isosceles triangle and then later they 
adapted the tasks for their classroom.

Wu, Wong, Cheng and Lien (2006) designed a learning environment named 
InduLab that gave 4th grade students the possibility to discover the rules of triangle 
construction and thus approach the angle sum property. Lew and Yoon (2013) 
used a developing affordance of certain software to link geometry and algebra and 
reported how “constructing the solutions of quadratic equation offers an alternative 
approach that gives students an opportunity to connect algebra (quadratic equation) 
and geometry (construction)” (p. 255). Their study showed how understanding of 
the mathematics of geometric similarity connects quadratic equation with geometric 
construction.
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Finally, Choy, Lee and Mizzi (2015) studied how textbooks support the teaching 
of the topic of gradient in Germany, Singapore, and South Korea. By examining 
textbooks in terms of “contextual (educational factors), content, and instructional 
variables” (p. 169), they concluded that the textbook ‘signature’ of each country is 
‘unique’.

Summarizing, several studies have, to date, focused explicitly on geometric 
task design and entailed the use of technology. As the teaching of geometry is a 
multidimensional challenge, there is scope for more research on geometry teaching 
and tasks.

CLOSING REMARKS

Research on spatial reasoning has analysed different components, including 
perspective taking, rotation and mental transformation. Findings emerging from 
these investigations, mainly from tests or task-based interviews, both on younger 
and older ages, have concerned students’ and teachers’ capabilities in spatial 
understanding and processing. These capabilities improve over the age-range, but 
some individuals still retain vague conceptions of dimensions or space, and thus face 
spatial situations (even maps) with strategies that tend to be rather non-elaborated. 
These shortcomings are attributed to the lack of appropriate education and are 
generally improved by teaching proposals, especially when appropriate tasks and 
technological tools are implemented.

In terms of geometrical visualisation and visual thinking, there is evidence that, 
even though the role of visual process is particularly important in the learning 
and teaching of space and geometry, the number of investigations related to the 
visualizing capabilities of either students or teachers, or proposals for teaching 
interventions, has been somewhat limited. One reason for this could be the 
greater range of studies conducted in earlier years. Nevertheless, there remains a 
considerable interest in investigating visual processes in geometrical proving and 
problem solving, as well as a special concern about the use of gesture as an aspect 
of visualization.

In contrast to the somewhat limited development of research on geometrical 
visualisation and visual thinking, research continues to search for ways to improve 
the learning and teaching of geometric measurement. Using tests and interviews to 
examine conceptions about measurement of length, area or volume both on young 
and older students, research indicates low achievement and confusions regarding 
different aspects such as units, partition or iteration. Appropriate teaching proposals 
and relevant activities appear to improve measurement understanding.

Research into the teaching and learning of geometrical reasoning and proving 
continues apace, spurred by the increasing availability and sophistication of computer 
software. Studies with tests or interviews, mainly on secondary students, are 
attempting to connect proving processes to other capabilities or social practices and 
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to identify predictors of proving skill. There is a special research interest in teaching 
proposals or use of relevant software with encouraging results regarding students’ 
development in argumentation, generalization and proving. However, these results 
are only parts of a wide field of investigation. Constituting an important component 
of mathematical activity, geometric reasoning and proving requires further research 
in several under-researched issues.

Studies of students’ geometric knowledge continue to form a main thrust in 
research on the teaching and learning of geometry, mainly based on the van Hiele 
model, Duval’s figure apprehension framework, or other approaches related to 
identification of 2-D or 3-D geometric figures. Such research focuses on many of 
the key geometric ideas in the curriculum, and attempt to find connections with 
other mathematical issues (like spatial reasoning, visualization, proving or use of 
language). A systemization of the results in this field might be needed.

Paralleling the studies of students’ geometric knowledge are studies of teachers’ 
geometric knowledge and studies of teacher development for geometry education, 
indicating important figural and conceptual misunderstandings. Based on the same 
frameworks as with students, researching teachers’ knowledge across different 
geometric ideas mainly indicates low understanding of geometry subject matter. 
This fact raises the need for an improvement of teachers’ education and attracts 
the interest of several studies with proposals including relevant tasks, geometric 
software or teaching approaches.

Another rich vein of research in geometry education is that focusing on the 
teaching of geometry and the design and use of classroom tasks, especially the use of 
technology. Even so, research with proposals for appropriate teaching tasks remains 
somewhat limited and would benefit from further systematic investigation.

Some topics of research are under-represented. For example, there seems 
limited research explicitly on the topics of congruency and similarity, and little on 
transformation geometry. Research on analytic/coordinate geometry is also limited, 
as is research on vector geometry. On the positive side, research in geometry 
education is embracing the use of more recent discursive, embodied and eco-cultural 
perspectives, and is also employing new methods such as eye-tracking.

As research develops further, the affordance of digital technologies is enriching 
approaches to geometric and spatial teaching and learning by providing new ways of 
apprehension and representation, new manipulation and processes, wider and deeper 
conceptual understanding and linking of different meanings and treatments.

In general, results concerning the better understanding of how space and geometry 
are comprehended by students but also related to the development of effective 
teaching approaches, give opportunities for an enhanced access to relevant concepts 
and procedures. Moreover, the improvement of teachers’ geometrical knowledge as 
well as their awareness of appropriate teaching methods, including the use of digital 
technology, develops the overall image. As mentioned previously, throughout the 
research effort, the systematization of findings and methods continues to be of great 
importance.
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