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Abstract

In this paper we present well-posedness results for H1 solutions of
the wave equation for spacetimes that contain string-like singularities.
These results extend a framework in which one characterises gravita-
tional singularities as obstruction to the dynamics of test fields rather
than point particles. In particular, we discuss spacetimes with cosmic
strings.

1 Introduction
The identification of the gravitational field with the spacetime background
in General Relativity makes the domain of the solution of Einstein’s equa-
tions not known a priori. This requires that one considers local solutions
and then looks for suitable extensions. One of the issues that needs to be
considered when extending the metric is the regularity of the metric. Since
the Penrose and Hawking singularity theorems [1] the standard definition of
a singularity has been in terms of geodesic incompleteness which intuitively
can be thought of as an obstruction to the continuation of the world line of
a free-falling observer. Such a definition requires the metric to be at least
C1,1 (i.e. the first derivatives of the metric are locally Lipschitz, denoted
C2− in [1]for example) in order to guarantee the existence and uniqueness of
geodesics. Furthermore, this regularity is the threshold where rough metrics
and smooth metrics share the same causal structure [2, 3].
∗E-mail:Y.SanchezSanchez@soton.ac.uk
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However, if we consider Einstein’s field equations simply as a hyperbolic evo-
lution system, solutions can be obtained with the metric in Sobolev spaces
which are compatible with regularity below C1,1 [4]. Moreover, it has re-
cently been shown that local well-posedness follows from having enough
control over the L2 norm of the curvature on the spatial foliation and the
radius of injectivity [5]. From this point of view, the relevant condition to
ensure the well-posedness of the evolution equations is not a pointwise con-
dition on the curvature, but rather an L2 type condition on the metric and
its derivatives. In this context, an alternative is to consider a singularity as
an obstruction to the evolution of a test-field rather than as an obstruction
to the evolution of a particle, along a causal geodesic. This point of view
was called generalised hyperbolicity by Clarke [6], and involves regarding
certain traditional singularities as interior points in a spacetime with low
regularity and then proving local well-posedness of the wave equation in the
rough extension. The closely related concept of wave-regularity was intro-
duced by Ishibashi and Hosoya [7] in their study of the wave equation in
static singular spacetimes with timelike singularities. They used this term
to define the well-posedness of the wave equation in the sense that unique
solutions exist and there is no freedom in the boundary conditions one im-
poses on the singularity. A full discussion on this and related concepts can
be found in [8, 9].
In previous work we looked at the concept of wave-regularity for curve-
integrable spacetimes [8] and spacetimes with singular hypersurfaces [9]. In
this paper we extend these results to spacetimes with string like singularities.
These are timelike singularities of co-dimension 2. As explained below, a
natural condition is to require the solutions to lie in the Sobolev space
H1 (which requires the solutions and their first derivatives to be square
integrable) and for clarity we now state precisely what we mean by H1-wave
regularity:

Definition 1 A point p in (M, gab) is H1 wave regular if there is a region,
Σ(0,T ] = Σ× (0, T ], where Σ is an open bounded region of an n-dimensional
manifold containing p, such that the initial value problem on the initial hy-
persurface Σ0 = Σ× {0} for the wave equation �gu = f on Σ(0,T ] is locally
well posed in the following sense:

• There exists a solution in the function space H1(Σ(0,T ])

• The solution is unique in the function space H1(Σ(0,T ])

• The solutions in the space H1(Σ(0,T ]) are stable with respect to initial
data.

A point p is weakly wave regular if it only satisfies the first two conditions.
A strongly wave regular spacetime is defined to be one such that every point
p in (M, gab) is strongly wave regular.
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Notice that, if a solution u is in H1 and the components of the met-
ric are bounded, then the energy momentum is integrable and satisfies
T ab[u] ∈ L1(Σ(0,T ]) and can be defined as a distribution. Therefore, for
locally bounded metrics, H1-wave regularity implies the integrability of the
energy momentum tensor of the solutions. Moreover, canonical quantisa-
tion schemes of free scalar fields require the existence of symplectic struc-
tures formed by products of the solution and its derivatives [10]. In general,
these structures will be ill-defined for solutions with less regularity. This
is particularly problematic if one expects to be able to take into account
the quantum behaviour of the field. Additionally, if there do not exist H1

solutions to the scalar wave equation there will not exist H1 solutions to the
linearised Einstein equations.
In this paper, we provide tools to establish the existence and uniqueness of
solutions of the wave equation with H1-regularity in singular spacetimes.
We also give examples of how H1-wave regularity can be applied to a num-
ber of physically important scenarios. In §2 we prove a general theorem
for wave equations in rough backgrounds with metrics that satisfy certain
conditions (see geometric conditions 1 in §2.1) which are satisfied by cosmic
string type singularities for example. The basic proof of the theorem follows
the method of Evans [11, §7.2] and uses Galerkin approximation methods
together with energy estimates for the wave operator. The method of proof
is different from that used in [9] and reflects real differences in the type of
singularity under consideration. For hypersurface singularities we were able
to obtain energy estimates for the first order system and its adjoint, and use
these to obtain existence using the Hahn-Banach theorem. For the string
type singularities under consideration here, the special form of the metric
means that we have good energy estimates for the wave operator but not
for its adjoint in H1. On the other hand, the time derivatives of the metric
coefficients are well-behaved which is crucial to the use of a Galerkin ap-
proximation. This allows us to prove existence, uniqueness and stability of
weak solutions with the required regularity. However the results differ from
those in [11] in that we explicitly lower the differentiability (although see
[12]), generalise the results to curved spacetimes with a special emphasis on
the n+ 1 decomposition of spacetime and use a different method of proof to
establish uniqueness and stability which allows the result to be generalised if
one works with more general gauges. Furthermore, we show that under the
geometric conditions 1 and the hypothesis of lemma 2 the energy momentum
is not only integrable in spacetime, but can also be defined distributionally
on any constant time hypersurface. In §3 we discuss how our theorems ap-
ply to a large class of spacetimes with cosmic string type singularities and
show that, from this perspective, cosmic string singularities should not be
regarded as strong gravitational singularities, even though the curvature is
not locally bounded, nor even in some cases even locally integrable. Finally
at the end of the section, we discuss the relationship of our approach to
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other work and the importance of low regularity solutions for any discussion
of the Strong Cosmic Censorship Conjecture.
Notation. When considering the details of the function spaces L2, H1 etc.
we first write the domain and then the measure considered, e.g., L2(Σ, νh).
When the measure is the one associated to the volume form dxn, (or dxn+1

when the domain is the whole spacetime) we will omit the measure and just
write L2(Σ). The time dependence of functions will be explicitly stated at
the beginning of the theorems. However, where there is no risk of confusion,
the time dependence will not be made explicit in calculations and estimates.
We also denote the derivative of a function u with respect t by ut and by ui if
it is with respect to the other xi-coordinates. When a function d(t) depends
only on time we denote the derivative by ḋ(t). Additionally to avoid cum-
bersome notation we will not always explicitly use

∑
to denote a sum and

we use instead Einstein’s summation notation, with roman letters a, b . . .
etc used for summations over 0 · · ·n and i, j . . . etc used for summations
over 1 · · ·n. We take the signature of the metric to be (+,−,−, ...,−).

2 The main theorem

2.1 The general setting

Let Σ(0,T ] = Σ × (0, T ] be a (n + 1)-dimensional domain equipped with a
Lorentzian metric gab, where Σ is an open bounded region of a n-dimensional
manifold. Now using a n + 1 decomposition of spacetime the line element
of the metric may be written in the form:

ds2 = +N2dt2 − γij(dxi + βidt)(dxj + βjdt) (1)

where N is the lapse function, βi is the shift and γij is the induced metric
on Σ.
The class of metrics we are going to consider requires that there is a foliation
of the domain Σ(0,T ] and suitable coordinates (t, xi) such that the following
conditions hold.

Geometric Conditions 1 .

1. γij ∈ C1([0, T ], L∞(Σ)) i.e. t 7→ γij(t) is a differentiable map into the
space of locally bounded 3-metrics.

2. The volume form given by √γ, for the induced metric γij is bounded
from below by a positive real number, i.e., |√γ| > η for η ∈ R+

3. The lapse function N can be chosen as N = √γ

4. The shift can be chosen in such a way that βi = 0
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5. There exist a constant θ > 0 such that
n∑

i,j=0
γijγξiξj > θ|ξ|2

for all (t, x) ∈ Σ(0,T ], ξ ∈ Rn

Condition 3. on the lapse function can be weakened to require only that it
is a bounded function with a positive lower bound i.e.,

3′. The lapse function N is C1((0, T ], L∞(Σ)) and |N | > ω for ω ∈ R+

However this is at the expense of adding linear terms in time and to avoid
undue complications in the formulae we do not pursue this here. Note
however the method of proof in §2.3.2 has been modified from that in Evans
[11] to allow for this possibility.
We want to obtain weak solutions to the following initial/boundary problem
for the wave equation:

�gu = f in Σ(0,T ] (2)
u = 0 on ∂Σ× [0, T ] (3)

u(0, x) = u0 on Σ0 = Σ× {t = 0} (4)
ut(0, x) = h on Σ0 = Σ× {t = 0} (5)

where f : Σ(0,T ] → R is a given source and u0 : Σ→ R, h : Σ→ R are given
initial conditions.
For a metric with a general n + 1 splitting given by (1) the wave operator
is given by:

�gu = 1
N
√
γ

(
∂t

(
N
√
γ

1
N2∂tu

))

+ 1
N
√
γ

(
∂t

(
N
√
γ
βi

N2∂iu

)
+ ∂j

(
N
√
γ
βj

N2∂tu

))

− 1
N
√
γ
∂i

(
N
√
γ(γij − βiβj

N2 )∂ju
) (6)

Taking into account the geometric conditions 1 we obtain

�gu = utt
γ
− Lu

γ
(7)

where −L is an elliptic operator in divergence form given by:

− Lu = −(γijγuj)i (8)
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Notice that the geometric conditions imply that L is a uniformly elliptic
operator.
We can associate to the operator −L the bilinear form given by:

B[u, v; t] :=
∫

Σ
γij(t, x)γ(t, x)uivjdxn (9)

Definition 2 We say a function:

u ∈ L2(0, T ;H1
0 (Σ)), with ut ∈ L2(0, T ;L2(Σ)), utt ∈ L2(0, T ;H−1(Σ))

is a local weak solution of the hyperbolic initial/boundary problem (2) pro-
vided that locally:

1. For each v ∈ L2(0, T ;H1
0 (Σ)),∫ T

0
< utt, v > dt+

∫ T

0
B[u, v; t]dt = (f, v)L2(Σ(0,T ],µg) (10)

where µg =
√
−gdn+1x = γdn+1x and < ·, · > denotes the dual pairing

between the H−1(Σ) and H1
0 (Σ) Sobolev spaces.

2. u(0, x) = u0(x), ut(0, x) = h(x) where u0 ∈ H1
0 (Σ0) and h ∈ L2(Σ0)

We motivate definition 2 by the following calculation. For the moment as-
sume the metric and the solution are smooth and that �gu = f . Multiplying
by an element v ∈ L2(0, T ;H1

0 (Σ)) and integrating we obtain:

∫
Σ(0,T ]

fvµg =
∫

Σ(0,T ]

(�gu)vµg

=
∫

Σ(0,T ]

(1
γ
utt −

1
γ
Lu

)
vγdn+1x

=
∫ T

0

∫
Σ

(utt − Lu) vdnxdt

=
∫ T

0

∫
Σ

(uttv) dnxdt−
∫ T

0

∫
Σ

(γijγuj)ivdnxdt

=
∫ T

0

∫
Σ

(uttv) dnxdt+
∫ T

0

∫
Σ
γijγujvid

nxdt

=
∫ T

0
< utt, v > dt+

∫ T

0
B[u, v; t]dt

The final equation is the definition of a weak solution provided the regular-
ity of the solution and the metric allows the integral to be well defined.
This is indeed the case given the geometric conditions 1. The Sobolev
embedding theorem in one dimension implies that u ∈ C([0, T ], L2(Σ)) ∩
C1([0, T ], H−1(Σ)) and therefore condition 2 makes sense.
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2.2 Main result

The main result we prove can be formally stated as follows:

Theorem 1 (Well-posedness in H1) Let (Σ(0,T ], gab) be a region of a
spacetime satisfying the geometric conditions 1. Then the region Σ(0,T ] is
wave-regular. That is the wave equation is well-posed in the following sense:
Given (u0, h) ∈ H1

0 (Σ0) × L2(Σ0) there exists a unique weak solution u in
H1(Σ(0,T ]) of �gu = f in the sense of definition 2 with initial conditions

1. u(0, ·) = u|Σ0 = u0

2. ut(0, ·) = ∂u
∂t |Σ0 = h

that is stable with respect to initial data in H1
0 (Σ0) × L2(Σ0). Moreover,

under the hypothesis of Lemma 2 the components of the energy momentum
tensor associated with the solution satisfy T ab[u] ∈ C0([0, T ], L1(Σ)).

2.3 Existence of solutions

To prove existence of solutions we employ Galerkin’s method. This requires
several steps. We begin by showing uniqueness and existence of approximate
solutions, then we establish a uniform estimate for the solutions and finally
we take a limit in a proper weak topology which converges to the required
weak solution.
We start by choosing smooth functions wk(x) such that:

{wk}∞k=1 is an orthogonal basis of H1
0 (Σ)

{wk}∞k=1 is an orthonormal basis of L2(Σ)

We can form the desired basis by choosing the eigenvectors of the Laplace
operator ∆ in the given local coordinates [11].
Now fix a positive integer m, write

um(t, x) :=
m∑
k=1

dkm(t)wk(x) (11)

and consider for each k = 1, ...,m the equation:

(umtt , wk)L2(Σ) +B[um, wk; t] = (f, wk)L2(Σ,Nνγ) (12)

where νγ is the volume form associated to the induced metric γij on Σ.
The system of equations (12) can be arranged as a system of linear ODE’s
given by

d̈km(t) +
m∑
l=1

ekl(t)dlm(t) = fk(t) (13)
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where ekl(t) := B[wl, wk; t] =
∫

Σ γ
ij(t, x)γ(t, x)wliwkjdxn and fk(t) :=

(f, wk)L2(Σ,Nνγ) for each k = 1, ...,m .
We also require that the system satisfies the initial conditions

dkm(0) = (u0, wk)L2(Σ0), ḋkm(0) = (h,wk)L2(Σ0) (14)

for k = 1, ...,m.
The functions ekl(t) are continuous in t as γij(t, x)γ(t, x) ∈ C1([0, T ], L∞(Σ)).
Then by standard local existence and uniqueness theorems for linear ordi-
nary differential equations we obtain a unique dkm(t) ∈ C2([0, T ]) for every
k = 1, ...,m.
Therefore we have shown that for each m there is a unique solution, um,
satisfying (12) and (14) which we call the m-approximate solution.

2.3.1 Energy estimates

In this section we establish the following energy estimate.

Theorem 2 There exists a constant C, depending only on Σ, T and the
coefficients of L such that

max
t∈(0,T ]

(
||um(t, ·)||H1

0 (Σ) + ||umt (t, ·)||L2(Σ) + ||umtt ||L2([0,T ];H−1(Σ))
)

6 C
(
||f ||L2([0,T ];L2(Σ,Nνγ)) + ||u0||H1

0 (Σ) + ||h||L2(Σ)
) (15)

We start by multiplying equality (12) by ḋkm(t), sum from k = 1, ...,m and
use (11) to obtain

(umtt , umt )L2(Σ) +B[um, umt ; t] = (f, umt )L2(Σ,Nνγ) (16)

Using the fact that that

(umtt , umt )L2(Σ) = 1
2
d

dt
||umt ||2L2(Σ) (17)

and that

B[um, umt ; t] = d

dt

(1
2B[um, um; t]

)
− 1

2

∫
Σ

(
γij(t, x)γ(t, x)

)
t
umi u

m
j (18)

we have

B[um, umt ; t] > d

dt

(1
2B[um, um; t]

)
− C1||um||2H1

0 (Σ) (19)

Combining equations (16), (17), (18) and (19) we obtain
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d

dt

(
||umt ||2L2(Σ) +B[um, um; t]

)
(20)

6 C2
(
||umt ||2L2(Σ) + ||um||2H1

0 (Σ) + ||f ||2L2(Σ,Nνγ)

)
(21)

6 C3
(
||umt ||2L2(Σ) +B[um, um; t] + ||f ||2L2(Σ,Nνγ)

)
(22)

Where we have applied the uniform ellipticity condition in order to use the
inequality

θ

∫
Σ
|δijumi umj | 6 B[um, um; t] (23)

If we now define the "energy" E(t) of a solution by:

E(t) = ||umt (t, ·)||2L2(Σ) +B[um, um; t] (24)

Then inequality (22) reads

d

dt
E(t) 6 C3E(t) + C3||f(t, ·)||2L2(Σ,Nνγ) (25)

and an application of Gronwall’s inequality gives the estimate

E(t) 6 eC4t
(
E(0) + C3

∫ t

0
||f(t, ·)||2L2(Σ,Nνγ)

)
(26)

However, we also have

E(0) 6 C5
(
||u0||2H1

0 (Σ) + ||h||2L2(Σ)

)
(27)

which follows from the initial conditions for the approximate solutions to-
gether with ||um(0)||2

H1
0 (Σ) 6 ||u0||2H1

0 (Σ), ||u
m
t (0)||2L2(Σ) 6 ||h||

2
L2(Σ).

Thus we obtain

max
t∈(0,T ]

(
||umt ||2L2(Σ) +B[um, um; t]

)
6 C6

(
||f ||2L2([0,T ];L2(Σ,Nνγ)) + ||u0||2H1

0 (Σ) + ||h||2L2(Σ)

) (28)

Now we have from equation (12) that

(umtt , wk)L2(Σ) = −B[um, wk; t] + (f, wk)L2(Σ,Nνγ)

6 C7
(
||um||H1

0 (Σ) + ||f ||2L2(Σ)

)
||wk||H1

0 (Σ)
(29)

where we have used the bounds on N,√γ given by the geometric condition
1 and the Cauchy-Schwartz inequality.
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Since (umtt , wk) = 0 for k > m by construction, we have proved that

||umtt ||H−1(Σ) = sup
v∈span{wk}

(umtt , v)L2(Σ)
||v||H1

0 (Σ)
(30)

6 C8 sup
v∈span{wk}

|(f, v)L2(Σ)|+ |B(um, v; t)|
||v||H1

0 (Σ)
(31)

6 C9
(
||f ||L2(Σ)) + ||um||H1

0 (Σ)

)
(32)

Squaring the above inequality, integrating in time and using equation (28)
we obtain

∫ T

0
||utt||2H−1(Σ)dt 6 C12

(
||f ||2L2([0,T ];L2(Σ,Nνγ)) + ||u0||2H1

0 (Σ) + ||h||2L2(Σ)

)
(33)

which concludes the proof. �

2.3.2 Convergence to solutions

We have shown that {um}∞m=1 is bounded in L2(0, T ;H1
0 (Σ)), {umt }∞m=1 is

bounded in L2(0, T ;L2(Σ)) and {umtt }∞m=1 is bounded in L2(0, T ;H−1(Σ))
We now make use of the following Theorem [11]

Theorem 3 Let X be a reflexive Banach space and suppose the sequence
{uk}∞k=1 ⊂ X is bounded. Then there exist a sub-sequence {ukj}∞j=1 ⊂
{uk}∞k=1 and u ∈ X such that ukj ⇀ u, i.e., {ukj} converges weakly to
u.

Using the theorem there exists a sub-sequence of approximate functions
{uml}∞l=1 such that

• uml ⇀ L2(0, T ;H1
0 (Σ))

• umlt ⇀ L2(0, T ;L2(Σ))

• umltt ⇀ L2(0, T ;H−1(Σ))

In order to show this is a weak solution we must now verify that the limit
of the sequence satisfies conditions 1 and 2 of definition 2.
To verify condition 1 we multiply (12) by a function φ(t) ∈ C∞([0, T ]) and
integrate with respect to time to give

∫ T

0

(
(umltt , φ(t)wk)L2(Σ) +B[uml , φ(t)wk; t]

)
dt =

∫ T

0
(f, φ(t)wk)L2(Σ,Nνγ) dt

(34)
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Then taking the limit as ml →∞ we obtain

∫ T

0
(< utt, φ(t)wk > +B[u, φ(t)wk; t]) dt =

∫ T

0
(f, φ(t)wk)L2(Σ,Nνγ) dt (35)

Thus for any test function of the form v =
∑N
k=1 φ

k(t)wk(x) we have that
equality (35) is satisfied. Moreover, test functions of that form are dense in
L2(0, T ;H1

0 (Σ)). Therefore, we have shown that

∫ T

0
(< utt, v > +B[u, v; t]) dt =

∫ T

0
(f, v)L2(Σ,Nνγ) dt =

∫
Σ(0,T ]

fvµg (36)

for any v ∈ L2(0, T ;H1
0 (Σ)). �

Finally we need to verify that the solution also satisfies the initial conditions.
Using the initial condition (14) and the fact that {wk} is a basis of L2(Σ0)
we obtain

uml(0, ·) → u0 in L2(Σ0) (37)
umlt (0, ·) → h in L2(Σ0) (38)

Then using the fact that L2 convergence of a sequence of functions to a func-
tion in L2 implies there is a sub-sequence that converges a.e. pointwise we
can find a sub-sequence {umlr (0, ·)}∞r=1 such that it converges a.e. pointwise
to u0. Notice that then we can take a sub-sequence {umlrs (0, ·)}∞s=1 of the
sub-sequence {umlr (0, ·)}∞r=1 to add the a.e. pointwise convergence of the
sequence {umlrst (0, ·)}∞s=1 to the function h. �
Therefore, the limit umlrs ⇀ u gives the desired weak solution.

2.4 Uniqueness and stability with respect to the initial data

The proof of uniqueness and stability relies on the energy estimate (15).
By letting m tend to infinity and using the fact that the norm is sequen-
tially weakly lower-semicontinuous [11], we obtain the bound that the weak
solution satisfies

max
t∈(0,T ]

(
||u(t, ·)||H1

0 (Σ) + ||ut(t, ·)||L2(Σ)
)

6 C
(
||f ||L2([0,T ];L2(Σ,Nνγ)) + ||u0||H1

0 (Σ) + ||h||L2(Σ)
) (39)

Therefore, if u = u1 − u2 is the difference between two weak solutions sat-
isfying the same initial conditions u0, h with the same source function f ,
then u is a weak solution with vanishing initial data u0 = h = 0 and source
function f = 0.
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Hence (
||u(t, ·)||H1

0 (Σ) + ||ut(t, ·)||L2(Σ)
)
6 0 (40)

for all 0 6 t 6 T which implies u = 0 and therefore u1 = u2.
We now prove the stability of the solution with respect to initial data. To
make the concept precise we say that the solution u is continuously stable
in H1(Σ(0,T ]) with respect to initial data in H1

0 (Σ0)×L2(Σ0), if given ε > 0
there is a δ depending on u0, h, f such that if:

‖u0 − ũ0‖H1
0 (Σ0) 6 δ, and ‖h− h̃‖L2(Σ0) 6 δ (41)

for (u0, h) ∈ H1
0 (Σ0)× L2(Σ0) and

‖f − f̃‖L2([0,T ];L2(Σ,Nνγ)) 6 δ (42)

for f ∈L2([0,T ];L2(Σ,Nνγ)) then

‖u− ũ‖H1
0 (Σ(0,T ]) 6 ε (43)

where ũ is a solution with initial data given by ũ|Σ0 = ũ0 and ũt|Σ0 = h̃
with source function f̃ .
Now squaring (39) and integrating in time from 0 to τ 6 T we have:(
‖u− ũ‖Σ(0,T ]

)2
6

∫ τ

0

(
||u(t, ·)||2H1

0 (Σ) + ||ut(t, ·)||2L2(Σ)

)
dt (44)

6 K

∫ τ

0

(
||u0 − ũ0||2H1

0 (Σ) + ||h− h̃||2L2(Σ)

)
+ ‖f − f̃‖L2([0,T ];L2(Σ,Nνγ))dt

for τ 6 T and with K a suitable constant.
Now choosing δ = ε√

3τC we obtain the inequality:

(
‖u− ũ‖Σ(0,T ]

)2
6 K

∫ τ

0

2ε2

3τK + ε2

3τK dt 6 ε2 (45)

which establishes stability with respect to the initial data.

2.5 Integrability of the energy momentum tensor

The regularity of the solutions allows us to make sense of the energy mo-
mentum tensor of the scalar field u as a tensor with L1(Σ(0,T ]) components
given by

T ab[u] =
(
gacgbd − 1

2g
abgcd

)
ucud −

1
2g

abu2 (46)

We now show that T ab[u](t, ·) is in L1(Σt) for all 0 6 t 6 T . To prove this,
notice that it is enough to show that u ∈ C([0, T ];H1

0 (Σ))∩C1(0, T ;L2(Σ)).
This result also allows us to establish the existence and uniqueness of solu-
tions in Σ(0,T ] given initial data on any hypersurface Σt with 0 6 t 6 T . In
this section we closely follow the exposition given in [12].
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Proposition 1 Let u be a weak solution as defined in Definition 2 with
f ∈ L2(Σ(0,T ]) and initial data (u0, h) ∈ H1

0 (Σ0)× L2(Σ0). Additionally let
the metric satisfies the geometric condition 1 and the hypothesis of Lemma
2. Then u ∈ C([0, T ];H1

0 (Σ)) ∩ C1(0, T ;L2(Σ))

To prove this proposition, we use the following Lemmas

Lemma 1 Suppose that V,H are Hilbert spaces and V ↪→ H is densely and
continuously embedded in H. If

u ∈ L∞(0, T ;V ), ut ∈ L2(0, T ;H), (47)

then u ∈ Cw([0, T ];V ) is weakly continuous.

Then from the fact that H1
0 ↪→ L2 ↪→ H−1 and the energy estimate we have

that u ∈ Cw([0, T ];H1
0 (Σ)) and ut ∈ Cw([0, T ];L2(Σ))

Lemma 2 Let u be a weak solution that satisfies utt+Lu ∈ L2(0, T ;L2(Σ))
and assume there is a mollified sequence of functions given by

{uε(t, x) = ηε(t) ∗ (ξu(t, x))}

where {ηε(t)}ε is a strict delta net and ξ is a smooth cut-off function van-
ishing outside the interval (0, T ) and equal to one in some sub-interval
I ⊂ (0, T ) such that uεtt + Luε ∈ L2(0, T ;L2(Σ)) and in the limit ε → 0
we have uεtt + Luε → utt + Lu in L2(0, T ;L2(Σ))
Then

1
2
d

dt

(
||ut||2L2(Σ) +B[u, u; t]

)
= (utt + Lu, ut)2

L2(Σ) + 1
2Bt[u, u; t] (48)

where

Bt[u, v; t] :=
∫

Σ

n∑
i,j=1

(
γij(t, x)N(t, x)

√
γ(t, x)

)
t
uxivxjdx

n (49)

and
E(t) =

(
||ut(t, ·)||2L2(Σ) +B[u, u; t]

)
: (0, T ]→ R (50)

is an absolutely continuous function.

Proof.
We have that

1
2
d
dt

(
||uεt||L2(Σ) +B[uε, uε; t]

)
= (uεtt, uεt)2

L2(Σ) +B[uε, uεt; t] + 1
2Bt[u

ε, uε; t]

= (uεtt + Luε, uεt)L2(Σ) + 1
2Bt[u

ε, uε; t] (51)

13



Taking the limit as ε→ 0 give us the same result for the unmollified function
ξu and hence equation (48) holds on every compact sub-interval of (0, T ).
Now the derivative of the RHS of equation (50) is in L1(0, T ) since using
equation (51) and taking the limit ε→ 0 we have

∫ T

0
(utt + Lu, ut)L2(Σ) dt 6 ||utt + Lu||L2([0,T ];L2(Σ))||ut||L2([0,T ];L2(Σ))

6 ||f ||L2([0,T ];L2(Σ))||u||L2([0,T ];L2(Σ))

∫ T

0
Bt[u, u; t] 6 C||u||2L2([0,T ];H1

0 (Σ)) (52)

Thus E(t) is the integral of a L1 function, so is absolutely continuous. �
We can now prove Proposition 1.

Proof of Proposition 1.
Using the weak continuity of ut, the continuity of E and the continuity of
at in H1

0 we find that

||ut(t, ·)− ut(t0, ·)||2L2(Σ) +B[u(t, ·)− u(t0, ·), u(t, ·)− u(t0, ·); t0]

= ||ut(t, ·)||2L2(Σ) + ||ut(t0, ·)||2L2(Σ)

+B[u(t, ·), u(t, ·); t0] +B[u(t0, ·), u(t0, ·); t0]
−2(ut(t, ·), ut(t0, ·))L2(Σ) − 2B[u(t, ·), u(t0, ·); t0]

= ||ut(t, ·)||2L2(Σ) +B[u(t, ·), u(t, ·); t]

+||ut(t0, ·)||2L2(Σ) +B[u(t0, ·), u(t0, ·); t0]
−2B[u(t, ·), u(t0, ·); t0]− 2(ut(t, ·), ut(t0, ·))L2(Σ)

+B[u(t, ·), u(t, ·); t0]−B[u(t, ·), u(t, ·); t]
= E(t) + E(t0) +B[u(t, ·), u(t, ·); t0]−B[u(t, ·), u(t, ·); t]

−2
(
(ut(t, ·), ut(t0, ·))L2(Σ) +B[u(t, ·), u(t0, ·); t0])

)
Therefore taking the limit t→ t0 we obtain

lim
t→t0

(
||ut(t, ·)− ut(t0, ·)||2L2(Σ) +B[u(t, ·)− u(t0, ·), u(t, ·)− u(t0, ·); t0]

)
= lim

t→t0
E(t) + E(t0) +B[u(t, ·), u(t, ·); t0]−B[u(t, ·), u(t, ·); t]

− 2
(
(ut(t, ·), ut(t0, ·))L2(Σ) +B[u(t, ·), u(t0, ·); t0])

)
= E(t0) + E(t0)− 2 ((ut(t0, ·), ut(t0, ·) +B[u(t0, ·), u(t0, ·); t0]))

= E(t0) + E(t0)− 2
(
||ut(t0, ·)||2L2(Σ) +B[u(t0, ·), u(t0, ·); t0])

)
= 0

(53)
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Then using equation (23) we have

lim
t→t0

(
||ut(t, ·)− ut(t0, ·)||2L2(Σ) + θ||u(t, ·)− u(t0, ·)||2H1

0 (Σ)

)
(54)

6 lim
t→t0

(
||ut(t, ·)− ut(t0, ·)||2L2(Σ) +B[u(t, ·)− u(t0, ·), u(t, ·)− u(t0, ·); t0]

)
Hence using (53) we conclude

lim
t→t0
||ut(t, ·)− ut(t0, ·)||L2(Σ) = 0

lim
t→t0
||u(t, ·)− u(t0, ·)||H1

0 (Σ) = 0
(55)

So that u is an element of C([0, T ];H1
0 (Σ))∩C1(0, T ;L2(Σ)) as required. �

3 Discussion
In this section we relate our work to previous work in the area and discuss
how Theorem 1 applies to several physical scenarios. We treat the case
of spacetimes with cosmic strings and show that these spacetimes, despite
having regions where the curvature behaves as a distribution, or in the case
of dynamic cosmic strings can even develop curvature singularities, are H1-
wave regular. We end by discussing how the concept of H1-wave regularity
is related to the Strong Cosmic Censorship Conjecture.
The work in this paper extends that of Kay and Studer [15] who studied
L2 solutions of the wave equation in spacetimes with conical singularities.
Our work generalises this in two ways, firstly we look at H1 solutions and
secondly we do not require the static or symmetry assumptions used in [15].
A class of H1 solutions were also considered by Ishibashi and Hasoya [7] who
looked at finite energy solutions of the wave equation in a particular class
of singular static spacetimes. Our work generalises this by removing the
static assumption and allowing a wider class of spacetimes. An alternative
approach to the study of conical singularities was initiated by Vickers and
Wilson [16] using an approach based on generalised functions [17]. This
was then extended to a wider class of singular spacetimes by Grant et al
[18] who showed the existence of generalised solutions to the wave equation.
The approach adopted in [16] and [18] involves regularising the equation by
replacing the singular metric by a 1-parameter family of smooth metrics.
The 1-parameter family of solutions of the corresponding wave equations
then describes a generalised solution. The problem is then to show that
such a solution is associated to a distributional solution of the wave equation.
This is possible for the case of a cone but not for more general geometries.
In our approach rather than regularising the equation we have looked at
approximate solutions using the Galerkin method. The advantage of this is
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that rather than looking at a family of hyperbolic equations we are looking
at a system of ODEs. By using the geometric conditions on the metric
we have good analytic control over the solutions which enable us to show
that these approximate solutions converge to a weak solution of the wave
equation. The method we use follows that of Evans [11] but our results differ
from his since we assume less regularity and as a result we are only able to
show the existence of weak solutions.

3.1 Spacetimes with Cosmic Strings

Cosmic strings are topological defects that potentially formed during a phase
transition in the early universe. Current observations put tight constrains
on the dimensionless string tension Gµ 6 10−8 in Planck units where c = 1,
G = m−2

pl and µ is the mass per length [14]. Additionally, the effective
thickness of a cosmic string is of the order 10−29 cm. [19]. This extremely
small width justifies what is called "the thin string limit". This is the metric
around a static infinitely straight Nambu-Goto string lying along the z-axis
satisfying Einstein’s equations, which is "conical" in the plane transverse to
the string with the line element given by

ds2 = dt2 − dz2 − dρ2 − (1− 4Gµ)2ρ2dθ2 (56)

where 0 6 θ < 2π.
By introducing a new angular coordinate θ̃ = (1−4Gµ)θ, the spacetime can
be seen to be flat everywhere except at ρ = 0 where there is an angular deficit
of 2π(1−A) with A = (1−4Gµ). We want to consider the region containing
ρ = 0 so we transform to Cartesian coordinates (x, y) = (ρ cos θ, ρ sin θ)
which are regular at ρ = 0 and rewrite the line element as

ds2 = dt2 − x2 +A2y2

x2 + y2 dx2 − 2xy(1−A2)
x2 + y2 dxdy − y2 +A2x2

x2 + y2 dy2 − dz2 (57)

Notice that the metric has a direction dependant limit on the z-axis so fails
to be C0 at the axis although it remains bounded.
By direct inspection one can see that the metric is bounded everywhere,
N = 1, √γ = A and given that 0 < A 6 1 the uniform ellipticity condition
is satisfied. These conditions imply that under a rescaling of the time coor-
dinate the hypothesis of Theorem 1 is satisfied. Therefore, this spacetime is
H1-wave regular.
In fact, we can consider a time dependent generalisation of this metric given

ds2 = dt2 − x2 +A2(t)y2

x2 + y2 dx2 − 2xy(1−A2(t))
x2 + y2 dxdy

−y
2 +A2(t)x2

x2 + y2 dy2 − dz2
(58)
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This spacetime represents a dynamical cosmic string with a time dependent
deficit angle. The metric satisfies the conditions of the Theorem 1 as long as
the angle deficit satisfies 0 < A(t) 6 1 and the functionA(t) is C1. Moreover,
the dynamical cone can develop curvature singularities in contrast with the
static cone [20].
Vickers [21, 22] showed that under certain conditions two-dimensional quasi-
regular singularities can be seen as generalised strings. Moreover, the strings
are totally geodesic and only the normal directions to the string are degen-
erate. For timelike generalised cosmic strings this guarantees that the time
derivatives are not problematic.
Finally, assuming that that the generalised cosmic string admits a 3 + 1
splitting given by a family of L∞ Riemaniann metrics with suitable lapse and
shift (see geometric conditions 1) and the angle deficit is chosen such that
the uniform ellipticity condition is satisfied, we can conclude that generalised
cosmic strings are H1-wave regular.
Notice however that the spinning cosmic string metric given by

ds2 = (dt2 + 4Jdθ)2 − dr2 −A2r2dθ − dz2 (59)

does not satisfy the hypothesis of the theorem since βi 6= 0 and there are no
local coordinates containing a neighbourhood of the z-axis which make βi
vanish.
It is also worth noting that the ability to look at solutions to the wave
equation in spacetimes containing cosmic strings introduces the possibility
of considering solutions to the wave equation on the Gott 2-string spacetime
[23]. This is an example of a spacetime which contains closed timelike curves
and the Cauchy problem has been studied previously for a certain class of
spacetimes with closed timelike curves [24]. A subsequent paper [25] includes
a discussion of solutions to the wave equation in a 4-dimensional version of
Misner space which has global properties similar to that of Gott space.
However unlike the H1 solutions we consider here the solutions considered
in [25] are in L2

loc which does not guarantee the local integrability of the
energy-momentum tensor.
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3.2 The Strong Cosmic Censorship Conjecture

As mentioned in the introduction, the singularity theorems only establish
geodesic incompleteness and not the reason for the incompleteness. In exam-
ples such as the Kerr and Reissner–Nordström spacetimes there is a loss of
global hyperbolicity instead of a loss of regularity. Mathematically a space-
time region N is said to globally hyperbolic if the causality condition is
satisfied and for any two points p, q ∈ N the causal diamond J+(p)∩ J−(q)
is compact and contained in N [26]. One demands this condition because
it is sufficient to guarantee the global well-posedness of the wave equation
and other physical fields [27]. Therefore, a spacetime that fails to be glob-
ally hyperbolic signals the possibility of a loss of predictability of the initial
value problem of any field on it including the metric. While the maximal
globally hyperbolic development is unique [1] one may extend the spacetime
(even in a C∞ manner) in non-unique ways if one does not demand global
hyperbolicity. The boundary of the original manifold in the extension is
known as the Cauchy horizon. It is expected that under small perturbations
the extensions are unstable and some loss of regularity will occur preventing
the extension. This is part of the content of The Strong Cosmic Censorship
Conjecture. In fact, Dafermos has shown that the outcome of the conjec-
ture depends critically on the differentiability of the metric allowed in the
extensions of the maximal Cauchy development [28].
As we noted in the introduction and showed in our results, a necessary con-
dition for a singularity to be regarded as a strong gravitational singularity is
that in any neighbourhood of it the evolution of the wave equation is not well
posed. In this spirit, a well-motivated physical formulation of predictability
may include the criteria of locally well-posedness of test field as a necessary
condition. We therefore propose the following definition of “predictability”.

Definition 3 An initial value set for Einstein’s equations is said to be pre-
dictable if there is no nontrivial future extension of its maximal development
such that the extension is H1-wave regular.

Under this criteria the Kerr and Reissner-Nordström fail to be predictable
as there exist (different) extensions of these spacetimes for which local well-
posedness of the wave equation does not posses any difficulties. Nevertheless,
as mention above, a loss of regularity is expected under small perturba-
tions and a obstruction to H1-wave regularity then must take place. This
“generic” initial data then would be predictable.
Notice that one could also formulate a condition of predictability in terms of
global-well posedness of the wave equation in H1 rather than just local well-
posedness. Under this criteria the Kerr and Reissner-Nordströmar space-
times are predictable under certain conditions of the decay rates of the field
at the event horizon which are crucial to the existence of an H1

loc solution at
the interior up to the Cauchy Horizon [29, 30]. More strikingly, is the fact
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that in the case of extremal Reissner-Nordström or Reissner-Nordström-De-
Sitter (RN-DS) one can prove that such finite energy solutions exist [31, 32].
In fact, these works support recent evidence that the Strong Cosmic Cen-
sorship may not hold in these scenarios under the criteria of the regularity
of C0 metrics and L2-Christoffel symbols.
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