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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Institute of Sound and Vibration Research

Doctor of Philosophy

A HIGH-ORDER FINITE ELEMENT MODEL

FOR ACOUSTIC PROPAGATION

by Karim Hamiche

Sound propagation in complex non-uniform mean flows is an important research area for
transport, building and power generation industries. Unsteady flows are responsible for
noise generation in rotating and pulsating machines. Sound propagates in ducts and radi-
ates through their openings. Duct discontinuities and complex flow effects on acoustic prop-
agation need to be investigated. Although it provides accurate results, the most commonly
used Computational AeroAcoustics propagation method, the full potential theory, does not
describe the whole physics. Turbofan exhaust noise radiation involves strong refraction of
the sound field occurring through jet shear layer, as well as interaction between the acoustic
field and the vorticity/entropy waves. The Linearised Euler Equations are able to represent
these effects. Solving these equations with time-domain solvers presents shortcomings such
as linear instabilities and impedance modelling, which can be avoided by solving in the
frequency domain. Nevertheless the classical Finite Element Method in frequency domain
suffers from dispersion error and high memory requirements. These drawbacks are partic-
ularly critical at high frequencies and with the Linearised Euler Equations, which involve
up to five unknowns. To circumvent these obstacles a novel approach is developed in this
thesis, using a high-order Finite Element Method to solve the Linearised Euler Equations in
the frequency domain. The model involves high-order polynomial shape functions with un-
structured triangular meshes, numerical stabilisation and Perfectly Matched Layers. The
computational effort is further optimised by coupling the Linearised Euler Equations in
the regions of complex sheared mean flow with the Linearised Potential Equation in the
regions of irrotational mean flow. The numerical model is applied to aeroengine acoustic
propagation either by an intake or by an exhaust. Comparisons with analytic solutions
demonstrate the method accuracy which properly represents the acoustic and vorticity
waves, as well as the refraction of the sound field across the jet shear layer. The benefits
in terms of memory requirements and computation time are significant in comparison to
the standard low-order Finite Element Method, even more so with the coupling technique.
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Chapter 1

Introduction

The generation, propagation and absorption of sound in flow ducts are critical issues for

many industries. The European Marie-Curie project FlowAirS (Silent Air Flows) focuses

on these problems for transport, building and power generation. The general purpose of

this project is to investigate new, efficient methodologies to circumvent current limitations

of Computational AeroAcoustics (CAA).

Many processes involve air flows for heat transfer and mechanical work: cooling and ventila-

tion systems, internal combustion engines (ICEs), gas turbines, power plants, aeroengines,

etc. The unsteady flow and complex geometries constituting these systems lead to pressure

perturbations and sound generation. Flow induced noise can be divided into three topics:

noise sources, noise reduction and noise propagation. Noise sources are mainly rotating

and pulsating machines, whereas secondary sources occur by flow instabilities like turbu-

lence noise. Sound can be emitted directly by radiation through duct openings, but also

through wall vibrations. Noise reduction mostly relies on reactive and dissipative silencers.

Noise propagation is rather well understood in straight ducts, but duct discontinuities and

complex flow effects on near- and far-field propagation are still to be investigated.

In air transport, noise pollution has a significant environmental impact on living beings in

the surrounding areas of airports. Aircraft take-off and landing are responsible for com-

munity noise whose high levels may cause negative effects on health [6]. The International

Civil Aviation Organisation (ICAO) recommendations for the noise produced by aircraft

on the ground are becoming more restrictive. For example, at aircraft service locations, the

overall Sound Pressure Level (SPL) must not exceed 85 dBA, and a maximum of 90 dBA

must be respected along a perimeter of 20 meters around the airplane (recommendations
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from the ICAO, Annex 16, Attachment C [7]). Optimised acoustic treatments are thus

necessary for auxiliary power units, for air conditioning systems and for turbofan engines,

which mainly contribute to sound generation. Also, aircraft interior noise is a challenging

key point for passenger comfort. Still in the transport industry, the noise emitted by the

cooling systems in trains and cars also creates serious nuisance both for passenger com-

fort and for exterior environment. In new electric cars, ICE-generated noise reduction is

such that its masking effect on other sound sources is less important. As a consequence,

these sources become more significant, in particular the noise induced by HVAC (Heating,

Ventilation and Air Conditioning) flow and by battery cooling systems.

In buildings, HVAC systems produce excessive noise and vibration that have significant

impact on people, making work environment uncomfortable and leading to concentration

loss. Loud low-frequency noise can also affect health. For power generation systems, flow

noise induces reliability and safety problems. High-vibration levels linked to flow acoustic

feedback mechanisms induce fatigue of high-pressure ducts and can lead to mechanical

failure.

1.1 Context

The issues associated with noisy air flows are complex and combine different disciplines such

as fluid dynamics, structural dynamics and acoustics. Existing techniques for understand-

ing flow induced noise problems are based on experiments, for instance in wind tunnels or

anechoic chambers. Because of the complexity for setting up reliable real-scale experiments,

these methods can often be expensive both in terms of cost and time. Therefore, using

computational methods to model acoustic problems is becoming more attractive, especially

on a financial level. However, computer-aided techniques also suffer from drawbacks and

computational costs can become prohibitive in some cases. This thesis focuses on the study

of efficient approaches to address the existing limitations of CAA methods in the presence

of flow due to high computational effort. The continuous increase in computing power

makes these methods even more interesting.

Several numerical methods are presently used in industry for modelling acoustic propa-

gation. Accurate results are obtained for low-frequency problems, but these are limited

in mid- and high- frequency range. For acoustic simulations, the Finite Element Method

(FEM) is one of the most established computational tools for industrial applications in flow

duct systems. However, this method faces some issues and improvements are necessary in
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order to eliminate existing numerical problems such as dispersion error, pollution effect

and convection-dominated instabilities. In addition, there is a need for more general mod-

els which take into account, for instance, the mean flow heterogeneities (temperature and

density gradients, velocity profile) and the use of porous materials. The improvement of

FEM accuracy at high frequencies can rely on stabilised methods, domain decomposition

methods, multi-scale or multi-grid methods. The main motivation of this work is therefore

to develop a general numerical method that goes beyond the current limitations of the

commercial aeroacoustic prediction codes.

The few obstacles to efficient acoustic numerical models are key points in CAA. The numer-

ical methods for complex physical models deal with multiple wavelengths or length scales,

and they should be able to solve both short and large wavelengths with appropriate effi-

ciency, i.e. acoustic, vorticity and entropy waves. The wide range of frequencies involved in

aeroacoustics is challenging: accurate numerical simulations for the extremely short wave-

lengths associated with high frequencies are laborious to obtain. Furthermore, aeroacoustic

problems generally involve propagation over long distances and interest is given to sound

waves radiation in far field. The numerical solution should thus be valid from the source

region to the measurement point, located at many acoustic wavelengths away. Therefore,

numerical dispersion and dissipation have to be minimal. In addition, the numerical model

must cope with spurious oscillations in convection-dominated problems: dedicated formu-

lations should help in addressing these issues. Finally, a general requirement for efficient

numerical methods is to provide accurate results with reduced computational time and

memory requirements.

This work aims at confronting FEM current limitations for acoustic propagation in the

presence of complex flow and geometry. The investigation leads to a new efficient method-

ology to deal with large-scale problems. The standard FEM is limited by pollution error

problems which render that approach very expensive for high frequencies. A technique

based on high-order polynomial finite elements (p-FEM, where p is the polynomial or-

der) will reduce these pollution effects and improve the computational costs for a given

accuracy. Here, the p-FEM is applied to the Linearised Euler Equations (LEE) operator

in order to account for the flow and geometry complexity, and for the acoustic, vorticity

and entropy waves. This work is performed in collaboration with the industrial sponsor

Siemens Industry Software located in Leuven (Belgium), specialised in developing software

and programming model-based system engineering.
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1.2 Original Contributions

The final contribution of this thesis is the implementation of a novel accurate efficient

prediction tool for acoustic propagation with non-uniform flows. First, a high-order finite

element method is developed to solving the Linearised Euler Equations in the frequency

domain for multi-dimensional applications. The code is verified with plane wave propa-

gation in free field and duct mode propagation, for acoustic, vorticity and entropy waves,

with mean flow.

Second, an analytic study of the Perfectly Matched Layer is performed both in one and

two dimensions. A modified stretching function is proposed with an imaginary part to

improve wave damping in the PML. This results in the exact absorption of the waves in one

dimension and better performance in two dimensions, with respect to classical logarithmic

stretching functions.

Third, a detailed analysis of the dispersion problem and of the convection-related spurious

oscillations is carried out and numerical stabilisation is investigated. Optimal stabilisation

parameters are found analytically for low polynomial orders, which are able to cancel out

the dispersion error. The effects of high orders show that even orders introduce artificial

diffusion in the numerical model which is responsible for a lower convergence rate of the

dispersion error. Stabilisation corrects the asymptotic convergence for these orders.

Fourth, a novel coupling technique is developed in order to optimise the numerical model

by accounting for the heterogeneous character of the mean flow for aeroengine exhaust ap-

plications. In the computational domain, the Linearised Euler Equations, which are solved

in the rotational flow regions, are coupled with the Linearised Potential Equation, which is

solved in the potential flow regions. The procedure is based on characteristic transmission

conditions at the coupling interfaces. This coupling technique produces accurate results

similar to the full Linearised Euler Equations solution, with lower memory requirements

and computational time.

Fifth, the numerical model is applied to several test cases such as an aeroengine intake

with potential mean flow, a straight duct with several mean flow configurations, and a

realistic aeroengine exhaust with complex heterogeneous mean flow. The mean flow effects

are assessed, as well as the impact of the mean flow interpolation on the sound field. These

effects are significant in strong shear layer regions, but are limited outside these regions.
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1.3 Thesis Outline

In the scope of numerical methods for acoustic propagation, the aim of this thesis is to

develop a novel computational model accounting for the effects of complex mean flow and

geometry on the sound field. The objectives are to develop a novel approach solving the

Linearised Euler Equations in the frequency domain with a high-order finite element code.

The procedure used in this thesis is based on the following structure. In Chapter 2, the

literature review provides a general overview on existing numerical methods for aeroacous-

tics. The physical model described in Chapter 3 introduces the governing equations for

wave propagation in non-uniform media and provides reference solutions for further ver-

ification of the numerical method. In Chapter 4, the high-order finite element model is

detailed as well as the boundary conditions. Several verification results for the numerical

model are thus developed in Chapter 5, which validate the main features of the code for

further application to realistic test cases. Some model improvements are developed in the

following two chapters. In Chapter 6, the numerical stabilisation problem is discussed in

terms of dispersion error and convection-related instabilities. A coupling method between

two mathematical models is then proposed in Chapter 7. The application cases are detailed

in Chapter 8 with engine intake, simplified exhaust and realistic exhaust problems. The

conclusions of this work are enumerated in Chapter 9, and directions for future work are

suggested.





Chapter 2

Literature Review

This work aims at developing a high-order finite element model to compute acoustic prop-

agation in a heterogeneous mean flow, by solving the Linearised Euler Equations. To that

purpose, the following literature review analyses several aspects which are relevant for this

study. In this chapter, the targeted applications for this project are first introduced, as well

as the noise problem in transport industry. A discussion of Computational AeroAcoustics

is then presented in the second section. The third section focuses on existing mathematical

models and their description. Next, aeroacoustic models are described, including comments

on time/frequency domain, grids and computational schemes. The subsequent section is

dedicated to boundary conditions, and the final part explains features related to numerical

accuracy.

2.1 Targeted Applications

In the transport industry, commercial aviation experiences a continuous growth. Reducing

travel times over large distances and providing numerous employment opportunities, avi-

ation presents several benefits. Nonetheless, various effects of this industry have negative

impact on the environment, particularly on climate change, air quality and noise. Besides

climate pollution through heat, particulates and gases emissions from fossil energy fuels,

aviation noise is a major concern for civilian populations. Effects on health can be caused

by aircraft noise at take-off and landing stages, creating high levels of stress and annoyance

[6, 8, 9]. In addition, aircraft noise can also have aesthetic and affective impact on natu-

ral landscape assessment [10]. Negative effects are not only limited to humans but more

generally extend to wildlife in terrestrial environments [11].
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Worldwide, aircraft-traffic control organisations have imposed more and more restrictive

conditions in order to reduce aircraft noise impact. Although present-days aircraft are 75 %

quieter than those manufactured in the 1960’s [12], achieved principally via an increase in

bypass ratio, reducing the environmental footprint of aircraft noise is a key goal for the

ICAO. The organisation defined noise reduction technology goals, whose long-term objec-

tives expect a diminution of about 20 EPNdB in 2028 with respect to the effective perceived

noise levels EPNdB (in decibels) in 2010. Similarly, the European Commission have indi-

cated their objectives for aircraft perceived noise emissions: these should be reduced by

65 % in 2050 with respect to typical new aircraft capabilities in 2000 [13].

Modern turbofan-powered aircraft generate sound through the engine and the airframe.

The aeroengine noise is produced by different mechanisms [14]. The fan and compressor

are responsible for noise propagating through the intake duct and radiating to the far field

in the forward arc region. The fan also contributes to noise propagation through the bypass

duct, which radiates through the bypass shear layer. The turbine and combustor generate

core noise which propagate through the exhaust streams and radiate to the far field in the

rear arc region. Finally, the so-called jet noise is produced by the unsteady mixing exhaust

shear layers. The reduction of aircraft engine noise over the years has made airframe noise

comparable with engine noise during the approach to landing [15]. The airframe major

noise sources are caused by flow interacting with the landing gear, the slats and the flaps

[16].

In the framework of duct systems which are present in turbofans, silencers or liners are

used to reduce the sound during propagation. These silencers can use different types of

dissipative materials such as porous materials. Several research projects are ongoing to

better understand the benefits of such materials for sound absorption, using heterogeneous

materials with for instance two different microscales [17] or investigating complex porous

structures [18]. Some studies also assess the mean flow effects on sound propagation [19].

Within turbofan aircraft, this work focuses on the sound propagating by the aeroengine.

In particular, the application test cases developed in Chapter 8 concentrate on the sound

propagation from the aeroengine intake and from the aeroengine exhaust. The mechanisms

of sound generation and absorption are not studied here, and the numerical model described

in this work focuses on sound propagation aspects. However, the model is also suitable for

applications such as installation effects of fan/OGV (Outlet Guide Vane) interaction noise.
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2.2 Computational AeroAcoustics

Computational AeroAcoustics (CAA) develops numerical methods to predict aerodynamic

noise generation and propagation. Since the mid 1980’s, CAA has been identified as a

discipline different from Computational Fluid Dynamics (CFD). Hardin and Lamkin first

introduced computational aeroacoustics for sound calculations with low Mach number and

low Reynolds number [20]. The traditional approaches used by the CFD community were

not suitable for modelling noise propagation. A major reason for this rests on the difference

in length scales and amplitudes between the flow and acoustic fields. Although they provide

insight into fundamental mechanisms in fluid mechanisms, high-resolution schemes such as

Direct Numerical Simulation (DNS) require enormous computational resources for solving

simultaneously both length scales [21]. Those are therefore not adequate for full-scale

industrial design. In practice, hybrid approaches combining CFD and acoustic propagation

models are largely used: the CFD results provide the mean flow field and characterise the

noise sources, which are generally located in small regions where non-linear effects prevail;

the aeroacoustic model computes the far-field radiated noise, whilst taking into account

the background flow [22]. Hardin and Lamkin were at the origin of this hybrid technique

with the aeroacoustic computation of cylinder wake flow in 1984 [23].

In 1993, Tam and Webb listed CAA special requirements for finite difference schemes [24].

These particular challenges were also highlighted in a more recent review on advances in

computational aeroacoustics by Tam in 2006 [25]. For instance aerodynamics implicates

low-frequency unsteadiness, whereas aeroacoustic problems are time dependent and involve

large frequency ranges. High-frequency waves with very short wavelengths also restrain

numerical simulation accuracy since they require finer discretisation [26]. In the framework

of aeroengine noise, the sound radiated to the far field is of interest and the solution needs to

be valid from the source region all the way to the microphone at many acoustic wavelengths

away. Because waves are very sensitive to numerical dissipation and dispersion which

accumulate along the way, these must therefore be reduced to the minimum [27]. Another

critical aspect of CAA lies in the fact that the waves reaching the computational domain

boundaries may be reflected back into the domain and pollute the solution. Designing

proper boundary conditions which help the waves in exiting the computational domain

without spurious reflections is therefore crucial [28].

Aeroacoustic models face several problems which ongoing research tends to circumvent

[29]. Amongst these issues, the multiple length scales involved in aeroacoustic problems
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are such that the acoustic source is usually very different from the acoustic wavelength. This

dependency naturally follows on from the underlying physics. As a consequence, necessary

long time integration to capture the full problem physics leads to expensive computational

costs for high accuracy requirements. The computational accuracy and efficiency of the

numerical method are therefore of primary importance. In addition, high-frequency waves

can have spatial scales which are many orders of magnitude smaller than the far-field

propagation distance. Fine spatial domain discretisation is thus required for these small

scales. Another concern with aeroacoustic simulations is the presence of vorticity and

entropy perturbations in the model, which length scales may be very different from the

acoustic wavelengths. The numerical models should be highly accurate to describe the

coupling between the different physical phenomena which may combine these different types

of waves. Furthermore, complex geometries in aeroacoustic problems require sufficiently

detailed representation of the boundaries to maintain high accuracy levels [30]. These

features in CAA are further discussed in the following paragraphs.

2.3 Physical Models

The mathematical models used to model aeroacoustic problems must represent the physics

carried by the background mean flow under specific approximation levels, amongst which:

the convection effects on the acoustics, vorticity and entropy waves, the refraction of the

sound field through shear layers, the interaction between the acoustic waves and the hydro-

dynamic/entropy waves, the non-linear or viscous effects. In CAA, two different approaches

can be used: the direct and hybrid techniques. The full compressible Navier-Stokes equa-

tions solution contains both the base flow and the perturbations, whose orders of magnitude

differ significantly [31]. Direct methods such as DNS consider the totality of the problem

scales, which vary from the smallest turbulent fluctuations to the largest convective fea-

tures [21]. DNS is therefore a high computational cost method which is mainly used to help

in flow dynamics understanding [32]. To avoid computing all length scales, Large Eddy

Simulation (LES) offers an alternative approach by applying a filtering operator which sep-

arates the smallest scales via a subgrid-scale model [33]. Kolmogorov formulated relevant

assumptions to remove the high-frequency structures [34]: the large scales characterise the

flow, are sensitive to boundary conditions, are anisotropic, and contain the main part of

the total fluctuating kinetic energy; the small scales are isotropic, are responsible for the

viscous dissipation, and contain only a few percent of the total fluctuating kinetic energy.
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Though, applying LES to solve aeroacoustic problems still remains prohibitive for far-field

propagation and large Reynolds numbers.

To reduce the computational cost, hybrid methods decouple the sound propagation from

the sound generation. In a first stage, the sound sources can be computed in a small region

using DNS or LES [35]. Then, the sound propagation to the far-field can be performed

with an acoustic analogy such as Lighthill’s [36]. Alternately since DNS and LES are still

expensive for practical engineering applications, Reynolds Averaged Navier-Stokes (RANS)

solution can be used to compute the mean flow field and to construct the acoustic sources

through analytic means or stochastic methods [37]. To compute the sound propagation,

different aeroacoustic models can be used. These are discussed in the following paragraphs.

In linear acoustic problems the fluid density, pressure and velocity fluctuations are in

general very small with respect to the respective mean flow quantities. This observa-

tion justifies the fluid motion to be described by linear approximations of the governing

equations, neglecting non-linear effects [31]. First, problems where viscosity effects on the

perturbations may be significant could be solved using the Linearised Navier-Stokes Equa-

tions (LNSE) [38]. These equations are suitable to solve sound propagation near solid-wall

geometries where viscosity gives rise to boundary layer effects. Since acoustic boundary

layers may play a major role in sound wave damping for duct propagation, viscosity should

not be neglected for applications such as in-duct orifice propagation [39, 40].

A second physical model is derived from the LNSE: by neglecting viscosity and heat trans-

fer, the Linearised Euler Equations (LEE) are obtained [41, 42]. They represent the lin-

earised form of the compressible Euler equations, which constitute a simplification of the

Navier-Stokes equations. The LEE solutions are composed of acoustic, vorticity and en-

tropy waves [24, 30]. In addition, the LEE support Kelvin-Helmholtz instabilities which

may develop in non-uniform mean flows. In real flow, these unstable spatial effects are

attenuated by viscous and non-linear effects. Since the LEE do not conserve the non-linear

terms, instabilities may not be damped by non-linearities, resulting in the growth of these

instabilities in the numerical model which would pollute the numerical solution. Some

techniques have been developed to limit these instabilities. For instance, the Acoustic Per-

turbation Equations (APE) have been proposed as a variant of the LEE but their accuracy

at low frequency is limited [43]. Also, rewriting and solving the LEE in the frequency

domain is considered a way to avoid the frequency range in which these instabilities grow

[44, 45]. Other ways for removing instabilities have been developed such as a saturation

method [41] and the suppression of the mean flow derivatives in the formulation [42]. In
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this work, the LEE are solved and more details on these equations are given in Chapter 3.

Other physical models have been used in the literature to solve aeroacoustic problems.

The most common assumption is that the temperature gradients are null in the flow re-

gion, meaning that the flow is homentropic [31]. In the linearised potential theory, the

mean flow is irrotational and the velocity is expressed in terms of a potential [46]. The

subsequent Linearised Potential Equation (LPE) presents the advantage of involving only

a scalar variable, the velocity potential, while up to five unknowns are solved for the LEE.

Although the assumption limits this model to irrotational flows, Pierce has shown that this

formulation also holds for arbitrary unsteady flows, but for sufficiently small wavelengths

[47]. Prinn et al. have applied the LPE to noise radiation by an aeroengine exhaust: in

this model a shear layer makes the transition between the jet mean flow velocity and the

exterior mean flow velocity, and vorticity waves develop from the duct outlet lip. The pres-

sure and displacement continuity is ensured across the vortex sheet and by implementing

the Kutta condition at the nozzle lip, resulting in the noise refraction through the shear

layer [48].

In the case of parallel sheared flows, acoustic propagation has been described by Pridmore-

Brown for constant flow properties in the streamwise direction [49]. This equation supports

both acoustic and hydrodynamic waves, but is limited to very specific flows. Another math-

ematical model is the convected Helmholtz equation which considers uniform mean flows

[50, 51]. This equation relates the Laplacian operator and the second material derivative

in the mean flow of the pressure field perturbations. Although it describes the acoustic

field, the main drawback of this model, which is also the one of the LPE, is that it does not

support the hydrodynamic and entropy perturbations. Finally, the standard Helmholtz

equation can be used if the flow is at rest or can be neglected, which is often possible for

low Mach number M applications (M < 0.1) [52].

2.4 Aeroacoustic Models

Solving the physical models described in the previous section may be achieved through a

number of computational methods. Such numerical methods predict sound propagation

in mean flows, based on frequency- or time-domain models, using structured or unstruc-

tured grids. These aspects are discussed in the following paragraphs, as well as existing

computational schemes.
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2.4.1 Frequency and Time Domain

Solving aeroacoustic problems can be performed either in the frequency domain or in the

time domain, and both approaches have advantages and drawbacks [45]. By definition, a

frequency-domain approach is particularly suitable for tonal noise aeroacoustic problems,

since only a few frequencies have to be solved for. In addition, frequency-based compu-

tations are often considered a way to avoid linear instabilities [44]. However, frequency-

domain solutions require solving global system matrices which can involve large memory

requirements. This issue increases rapidly with the problem size, the frequency and the

number of variables to solve for instance with the LEE. In order to minimise these memory

requirements and decrease the computational time, coupling methods can be considered.

The basic idea is to optimise the simulation by using appropriate mathematical models in

different regions of the computational domain where the LEE may not be needed. A similar

approach has been applied to a CFD/CAA coupling method for jet noise prediction [53].

In this work a novel technique coupling the LEE and the LPE is developed and discussed

in Chapter 7.

In the time domain a single computation can provide a solution over a wide frequency

range. Time-domain solutions may therefore be more convenient for broadband noise in-

vestigation. One main advantage over frequency-domain methods is the relative low mem-

ory requirements resulting from explicit time-stepping schemes. Nonetheless, impedance

boundary conditions modelling is not straightforward and its accurate description is an

issue in the presence of mean flow [54]. The numerical instability associated with the

Myers condition, which describes the impedance condition and the flow effects over an

acoustic liner, is likely to appear with fine grids and to deteriorate the numerical solution

[55]. Furthermore, time-domain solutions are also known to suffer from linear instabilities

which would deteriorate the numerical solution [44]. In the presence of thin mean flow

shear layers, the Kelvin-Helmholtz instabilities develop below a critical frequency. While

in the frequency domain the frequency is well defined, time-domain solutions support the

complete frequency range and the frequencies responsible for the Kelvin-Helmholtz insta-

bilities may indeed be triggered, resulting in inaccurate solutions [30, 56]. In the following,

existing LEE models are reviewed both in frequency and time domain.

LEE Models in Frequency Domain

Several numerical methods have been applied to solving the LEE in the frequency domain,

ranging from the high-order finite difference [57, 58] to the finite element [59] schemes or
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the discontinuous Galerkin method [60]. In the early 1980’s, Astley and Eversman have

first solved sound propagation using the two-dimensional LEE with weighted residual or

finite element methods [61, 62]. For sound transmission through non-uniform ducts car-

rying high speed subsonic compressible flows, the authors have observed that the finite

element approach compares favorably with the weighted residual method. Iob et al. have

solved these equations through two-dimensional and axisymmetric formulations on an un-

structured mesh using triangular and quadrangular elements, with a linear finite element

method based on a continuous Galerkin discretisation [59]. In a complementary study by

Iob et al. [60], a high-order discontinuous Galerkin method has been applied instead of

using a continuous Galerkin approach. Both models have been validated for the Munt

problem [63]. To reduce the memory requirements, a parallel distribution has been applied

with the finite element model while static condensation has been used with the discontinu-

ous Galerkin method. The latter allows to express the interior degrees of freedom in terms

of the boundary ones before assembling the system matrix (see Section 4.3.5). Also to

reduce computational time and memory requirements, the authors neglected the pressure

gradients in the momentum equations which allowed to decouple the continuity equation

and to solve only the momentum and energy equations. With such an approach the number

of total unknowns is therefore reduced by a factor of 5/4.

Studies solving the LEE in the frequency domain may be motivated to avoid instability

waves to deteriorate the numerical solution. In 2004, Agarwal et al. have suggested that

the instabilities may be avoided for a time-harmonic response if the governing equations

are solved with a direct method in the frequency domain [44]. Several authors have solved

the LEE in the frequency domain to cancel these instabilities [58, 60, 64]. In particular,

Özyörük and Tester show that the instabilities completely disappear from the solution

when the gradient terms are excluded from the LEE [58].

Solving in frequency domain may also generate spurious oscillations in convection-dominated

problems, which would compromise the numerical solution. Specific details on this issue

are given in Chapter 6, as well as ways to avoid these oscillations such as the Streamline-

Upwind Petrov-Galerkin (SUPG) method. In 2006, Rao and Morris have compared this

method with the Discontinuous Galerkin Method (DGM) to solve the two-dimensional LEE

in the frequency domain for a general mean flow configuration with unstructured grid [64].

A crucial point in the SUPG method is the stabilisation parameter which is decisive for

the suppression of the aforementioned spurious oscillations which may occur in convection-

dominated problems. The authors conclude that, in terms of computational cost, the

SUPG method is less expensive than the DGM for practical aeroacoustics applications in
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the frequency domain.

LEE Models in Time Domain

An important issue with time-domain LEE models is the suppression of the linear insta-

bilities which may grow in the numerical solution. Different techniques have been applied

in that purpose. In 2000 Bailly and Juvé have developed a two-dimensional LEE solution

by using a Dispersion-Relation-Preserving (DRP) finite difference scheme in space, com-

bined with a fourth-order Runge-Kutta algorithm in time [41]. In order to suppress the

instabilities, the authors have proposed a modified formulation of the time-domain LEE.

A non-linear formulation has been developed to saturate the instability waves growth, by

adding the flux vectors containing the non-linear terms. As suggested by the authors, the

time-domain LEE model provides accurate solutions for sound propagation and good per-

formance is achieved in terms of stability, storage and computational time. The artificial

non-linear terms limit the growth of the instability waves supported by the LEE, without

significantly altering the computation of the acoustic waves. Another way of preventing

the growth of instability waves has been proposed by Bogey et al. in 2002 [42]. The sound

field generated by a subsonic mixing layer has been investigated by solving the LEE. In

this purpose, the terms responsible for linear instabilities have been removed in the formu-

lation. These terms contain the mean flow derivatives. The results indicate that such a

modification of the LEE gives a good approximation for high-frequency sound propagation.

For low-frequency cases the numerical solution is slightly inaccurate.

The LEE have been studied in the time domain for the formulation of acoustic source

terms. Billson et al. have computed jet noise acoustic solutions using the Stochastic Noise

Generation and Radiation (SNGR) method [65]. In this method, the LEE written in con-

servative form have been derived to build an acoustic analogy together with source terms.

The simulations have been performed using a fourth-order DRP scheme in space and a

fourth-step fourth-order Runge-Kutta time marching technique. This acoustic analogy

based on the conservative form of the LEE provides results in good agreement with direct

simulation solutions.

Other authors have solved the Linearised Euler Equations in time domain for acoustic

propagation. For instance, Richards et al. [66] have developed a computational model of

fan noise radiation through an engine exhaust geometry with flow. Acoustic wave propaga-

tion is calculated for the axisymmetric LEE. The LEE model uses a sixth-order prefactored

compact scheme to calculate spatial derivatives and a fourth-order Runge-Kutta scheme for

time integration. The computed solution has been compared to a semi-analytic multiple-
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scale solution, and the agreement is good until near the by-pass duct exit, where the duct

geometry changes. Besides, some solutions are present in industry to solve the LEE in

time domain. The commercial software Actran DGM based on the discontinuous Galerkin

method has been used to solve large three-dimensional problems with arbitrary mean flows

[67]. In terms of computational cost this time-domain model developed in Actran signif-

icantly reduces the memory requirements in comparison with a similar approach in the

frequency domain, whereas it increases the computational time [45].

2.4.2 Structured and Unstructured Grids

In computational methods, domain discretisation is crucial to properly describe the ge-

ometry and to solve accurately the problem [68]. Structured grids are generally more

convenient to achieve high accuracy, since they limit dispersion and dissipation phenom-

ena. They also generate simpler data structures which lead to better optimisation and

usage of computational resources. However, designing structured meshes may be time con-

suming for complex geometries and requires special care to preserve grid quality. On the

other hand, less time is usually required for users to generate unstructured meshes. An-

other benefit of unstructured grids is their high potential for automated mesh generation,

which is important for design optimisation. Nonetheless, unstructured grids involve more

complex data structures which makes it more difficult to optimise the usage of computa-

tional resources. Several methods for mesh generation exist and differ in terms of speed,

robustness and quality [69]. Conformal meshes are such that nodes, edges and faces are

perfectly matched between two neighbouring elements. On the contrary, non-conformal

meshes have interfaces between cell zones in which the mesh node locations are not iden-

tical. Furthermore, curved elements may be used: such high-order approximations allow

to use larger elements by guaranteeing an accurate geometry representation [70]. In this

work, conformal unstructured meshes are used.

2.4.3 Computational Schemes

In the following, an overview of several methods is proposed, amongst which the Finite

Difference (FD) method, the Discontinuous Galerkin Method (DGM), the Boundary El-

ement Method (BEM), the Statistical Energy Analysis (SEA) method, ray acoustics and

the Finite Element Method (FEM).
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Finite Difference Method

CAA problems have been solved with the Finite Difference method. Commonly, this

method has been used to solve the LEE and the Navier-Stokes equations in the time domain

because of the high accuracy level required to solve the acoustic and vorticity perturba-

tions. The development of high-order low-dispersion schemes have made this method more

efficient [24, 57, 58]. The major issue with the FD method is that it relies on structured

grids which restrain its use to problems with limited geometrical complexity [71].

Discontinuous Galerkin Method

The Discontinuous Galerkin Method uses an approximation which is continuous only inside

each element, while the continuity between elements is ensured through the definition of

numerical fluxes. Unstructured grids can be used with this method. The DGM is often

considered a spectral method since the solution is generally interpolated with high-order

polynomials. Non-polynomial bases have also been considered for time-dependent problems

[72]. Over the past fifteen years, the DGM scheme has been used for solving aeroacoustic

problems in the time domain [67, 73–75] and in the frequency domain [64]. Though, some

issues for practical engineering applications are still to be investigated: for instance, the

usual quadrature-free formulation is efficient but suffers to represent accurately curved

boundaries [38, 67, 76]. Another disadvantage of the DGM is its computational cost due to

the discontinuous character of the method: the extra degrees of freedom at cell boundaries

demand more computational resources.

Boundary Element Method

Unlike the previous methods, the Boundary Element Method solves the acoustic problem

on the domain boundary [77, 78]. The solution inside the acoustic domain is determined

based on the boundary solution, such that the variables inside the domain are expressed as

a surface integral over the domain boundary. The BEM can be computationally expensive

in models with a large number of degrees of freedom [79, 80]. The model construction itself

is quite demanding, since the matrices are fully populated, frequency dependent, complex

and non-symmetric. To overcome the high memory requirements,the Fast Multipole BEM

(FMBEM) [81] and the hierarchical matrix approach (data-sparse approximation of non-

sparse matrices) [82, 83] have been developed. In the FMBEM, the traditional BEM is

solved using high-speed iterative techniques where the model is split up into several domains

which are then split up again and again. This results in a gain in memory. The BEM is

usually limited to homogeneous propagation media. Some extensions to slowly varying
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mean flows [84] and weakly non-uniform potential flows [85] have been proposed.

Statistical Energy Analysis and Ray Acoustics

High-frequency modelling can be supported by two alternative prediction techniques, Sta-

tistical Energy Analysis (SEA) and ray acoustics. As a probabilistic technique, the SEA

provides averaged approximations of a dynamic system global response, which is subdi-

vided into subsystems [86]. The frequency range is also split into frequency bands. For

each subsystem, an energy balance is written and the resulting equations are solved for

the averaged subsystem energy levels. The SEA is mainly interesting because of its low

computational efforts, since only average energy levels have to be determined. Also for

high-frequency problems, ray acoustics is based on the ray tracing technique [87]. The

acoustic domain and the scattering object dimensions are large compared to the acoustic

wavelength. The hypotheses of this technique permit however to obtain good indicative

prediction results, notably for the acoustic modelling in large spaces, both indoor (factory

floors, churches, concert halls) and outdoor (urban areas, airports).

Finite Element Method

For solving engineering problems in acoustics, the Finite Element Method is currently one

of the most frequently used computation techniques in industry. The governing equations

are associated with appropriate boundary conditions to predict acoustic propagation in a

continuum domain [88–90]. Details on the method are given in Chapter 4. Finite elements

for acoustics has first been introduced introduced by Gladwell in 1965 [91]. From an en-

gineering viewpoint, Donea and Huerta have detailed the fundamentals of stabilised finite

element methods for the analysis of steady and time dependent fluid dynamics problems

[92]. Harari provides a survey on finite element methods for time harmonic acoustics, and

reviews the current related issues and methodologies [93]. In 2006 Thompson has focused

on time-harmonic acoustics governed by the Helmholtz equation [94]. He reviewed the

state of the art and the challenges of the finite element methods, the main issues being the

memory requirements, the treatment of acoustic scattering in unbounded domains and the

numerical dispersion error at high frequencies.

The FEM has been extensively used to solve the convected wave equation in the frequency

domain [93, 95–97]. However, this method suffers from dispersion error: the wavenumber

obtained for the numerical solution differs from the exact wavenumber. The subsequent

pollution effect, which corresponds to the accumulation of the dispersion error over the

domain, is significant for low-resolution problems [27, 98], which renders this technique
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particularly expensive for high frequencies or large problems. The classical FEM, when

applied to wave propagation, suffers from the accumulation of dispersion error and the

pollution effect. Babuska and Sauter have discussed it for the Helmholtz equation at high

wavenumber [99]. Finer mesh grids are therefore required in order to limit this error and

obtain an acceptable accuracy. Consequently, the classical first-order FEM is usually lim-

ited to low frequency applications.

A few alternative methods have been proposed to bypass this drawback: the Partition of

Unity Finite Element Method (PUFEM) [100], the Ultra-Weak Variational Formulation

(UWVF) method [101, 102] and the Discontinuous Enrichment Method (DEM) [103]. The

latter suffers from prohibitive computational assembly procedures and the difficulty to ap-

ply them to problems with inhomogeneous media. A suitable and efficient alternative for

most wave propagation problems is the adaptive finite element method. Three different

types of that technique are present in the literature: the h- (spatial refinement), p- (poly-

nomial order) and hp-versions of the finite element methods. In the h-FEM, the mesh

is generally constructed by an adaptive procedure with local refinement based on error

estimators. In the p-FEM, the convergence is ensured by the polynomial order p of the

shape functions while the mesh is already defined. These two techniques are associated in

the hp-FEM. In 1992 Babuska and Guo have produced a comparative study of these three

adaptive strategies for finite elements [104]. The p-FEM is one of the best approaches for

practical engineering computations of problems in structural mechanics. In 1997 the h-

and hp-versions of the FEM have been treated by Ihlenburg and Babuska for the Helmholtz

equation with high wavenumber [98, 105]. More recently in 2006, Rachowicz et al. have

presented a three dimensional implementation of the fully automatic hp-adaptive mesh

refinement with positive results, especially in terms of convergence both with respect to

problem size and computational time [106].

For practical problems, enriching the polynomial basis with high-order shape functions in

the p-FEM leads to improved accuracy and lower memory requirements, including in the

presence of mean flow [51, 52]. High-order approximations allow to solve high-frequency

problems [107]. The nodal shape functions have the advantage of the δ-property: their

value is one at a certain node and zero at the others. Therefore, the corresponding un-

known degree of freedom directly relates to the solution at a specific point of the element.

The other family of polynomials refers to the modal shape functions, which do not have

the δ-property. In some cases, these polynomials have the hierarchic property, such that

the basis of the polynomial space for order p is included in the basis for order p+ 1. This

characteristic is an advantage for p- and hp-adaptivity, since the shape functions do not



Chapter 2. Literature Review 20

have to be changed when increasing the polynomial order of the approximation. In this

work, the Lobatto hierarchic shape functions are used for their good conditioning proper-

ties [108].

One of the concerns when it comes to the p-FEM is the choice of the polynomial basis

for high-order approximation [108]. Petersen et al. have compared some polynomial bases

commonly used in finite element methods [109]: Lagrange polynomials, Legendre polyno-

mials and Bernstein polynomials. They found that high-order polynomial bases increase

the efficiency of direct solvers, whereas high-order polynomial bases generally decrease the

stability and the efficiency when using iterative solvers . However, Biermann et al. have

shown the improved performance and robustness of a Bernstein polynomial base finite

element formulation with iterative solver for solving Helmholtz problems [110]. Bériot

et al. have discussed the performance of a high order finite element method for solving

Helmholtz problems at high frequencies, for practical engineering applications [107]. They

have assessed the performance of a three dimensional p-FEM model for solving a Helmholtz

problem for intermediate wavenumbers. Prinn has also used the p-FEM for aircraft engine

noise prediction [46]. Very high orders may become inefficient for more complex geometry

problems which would require a thinner refinement to properly describe the geometry. This

calls for adaptive techniques with specific orders with respect to each element size.

2.5 Non-Reflecting Boundary Conditions

Boundary conditions are very important in CAA in order to make the acoustic problem

well posed, stable and accurate. The physical domain is often truncated because of the

limitation of the finite computational domain. Thus, non-reflecting boundary conditions

(NRBCs) must be applied so that outgoing waves are not reflected back inside the domain

and do not pollute the solution. Such techniques include Infinite Element Method (IFEM)

[111], Absorbing Boundary Condition (ABC) [112] and Perfectly Matched Layer (PML)

[113]. In addition, far-field reconstruction methods are necessary to predict the sound dis-

tribution outside the computational domain [114]. Kreiss has examined the mathematical

theory for boundary value problems in order for hyperbolic systems to be well posed [115].

A few years later, Engquist and Majda have first specified the theoretical basis for non-

reflecting boundary conditions [112]. Higdon [116] has then given a physical interpretation

of this theory by discussing boundary conditions for linear hyperbolic partial differential

equations in one or more spatial dimensions. These theoretical studies form the basis for
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the definition of suitable non-reflecting boundary conditions for numerical simulations. The

most commonly used non-reflecting boundary conditions for the Euler equations are the

method of characteristics, the far field asymptotic boundary conditions and the buffer zone

techniques.

The method of characteristics applied to the Euler equations has been presented by several

authors for formulating non-reflecting boundary conditions. Thompson has developed a

general formalism for all types of boundary conditions involving hyperbolic systems, in-

cluding non-reflecting boundaries [28, 117]. Giles [118] has also contributed to this work

and formulated the mathematical theory in a simpler form for engineering applications. In

this method, the value of the characteristics associated to waves entering the domain at

the boundary is directly assigned. This technique applies the splitting of one-dimensional

characteristics variables in the normal direction to the boundary. This approach is practi-

cal but one limitation is that the reflections are theoretically prevented only in the normal

direction to the boundary, and some non-negligible reflections may occur for waves hitting

the boundary with non-normal incidence. This method has been used for the prediction of

supersonic jet noise using the LEE [119]. Further details on the method implementation

are given in Section 4.2.

Another class of non-reflecting boundary conditions are the radiation boundary conditions

[120]. They are based on asymptotic solutions of the governing equations. The wave

equations in the far field are replaced by analytic solutions which are obtained by imposing

an asymptotic behaviour to the system [24, 121]. These boundary conditions have been

shown to be accurate in some specific cases. However, obtaining asymptotic solutions can

be complex in many problems and the applicability of this technique may be limited.

The buffer zone technique is another family of non-reflecting boundary conditions,[122,

123]. The computational domain is extended in order to create an additional zone in

which the solution is damped by application of low-pass filters, grid stretching or numeri-

cal damping. A first absorbing zone is based on the modification of the governing equations

in order to mimic physical dissipation mechanisms through artificial dissipation and damp-

ing coefficients [124]. The reflection coefficient at the outlet boundary depends on these

additional parameters. Ta’asan and Nark have also proposed another method consisting

in accelerating the mean flow to supersonic speed at the end of the buffer zone [125]. The

main advantage of these buffer zone techniques is the simplicity of implementation. Nev-

ertheless, adjoining buffer zones generates additional degrees of freedom and increases the

computational cost. Richards et al. have studied the performances of buffer techniques
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based on numerical damping [126]. They concluded that a buffer zone boundary condition

that uses explicit damping provides the best performance. Nonetheless, it is also observed

that higher outgoing wave angles deteriorate the efficiency.

As an alternative to the previous damping techniques, the Perfectly Matched Layer (PML)

is also gaining popularity in the CAA community. First introduced by Bérenger in 1994

, the PML was developed for electromagnetic waves absorption [113]. In practice, the

outgoing waves are damped in an extra zone created around the computational domain.

The PML is based on the modification of the coordinates system in the additional layer,

transforming the coordinate in the direction of absorption into the complex plane. In

practice, this transformation turns propagative waves into evanescent waves with artificial

damping. The main advantage of the PML as an absorbing boundary condition over

classical buffer zones stands in the equations formulation, which is theoretically able to

damp any kind of waves, regardless of the direction or the frequency. In 1996 Hu has

first proposed a PML formulation for absorbing waves from the LEE [127]: the outgoing

acoustic, vorticity and entropy waves are damped without reflection. Nevertheless, Tam

et al. have stressed that, for open domains, the PML equations support instabilities with

the LEE and subsonic mean flow normal to the layer [128]. Abarbanel has applied the

PML to the Euler equations and noticed exponentially growing solutions at the interface

between the computational domain and the PML under specific flow conditions [129]. Hu

has further developed a stable time-domain PML formulation for the LEE in the presence

of mean flow in order to cancel the exponentially growing instabilities that appear for

inverse upstream waves [130]. These waves have a positive group velocity but a negative

phase velocity in the direction of the mean flow, which become amplified in a classical

PML formulation. Bécache et al. have also developed an approach to damp these inverse

upstream waves in the frequency domain [50]. This work has been extended to a parallel

non-uniform mean flow [131]. The PML is studied in this work and more details on the

technique and its implementation are provided in Section 4.4.

2.6 Numerical Accuracy

Computational methods provide approximated solutions of real problems under specific as-

sumptions. Their accuracy is therefore subject to several parameters which are discussed

in this section. Amongst these parameters governing the accuracy of a numerical model,

the geometric description must necessarily be accurate in order to represent the relevant
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geometrical features without introducing spurious scattering. Curved and complex bound-

aries are badly represented by coarse linear interpolation, and mesh refinement helps in

improving the geometric representation for finite elements. However, such a solution in-

creases the computational cost. As an alternative, the geometric interpolation order could

be incremented, resulting in a more accurate description of the problem boundaries: for

instance a classical triangular element with three nodes can be improved to a six-node

triangular element. This geometric enhancement improves the geometric description but

the geometry may still not be exactly described, and some geometric error still exists. This

translates into a difference between the numerical solution solved for the approximated

geometry and the analytic solution of the original problem [132]. The difference between

these two solutions is the Geometry Induced Error. High-order curvilinear mesh [133] and

NURBS-enhanced method [134, 135] are examples of ongoing research to improve geometry

representation for finite elements.

Another relevant aspect in numerical accuracy is given by the mean flow interpolation.

For practical applications, CFD simulations generally provide the mean flow, typically us-

ing RANS solvers. The resulting CFD data on the CFD mesh are then mapped onto the

acoustic mesh used for solving the acoustic problem. The mesh resolution requirements

are generally very different for CAA and CFD simulations, since the acoustic and hydrody-

namic length scales are usually significantly disparate. Using coarse mesh with high-order

models for acoustic propagation makes this difference notably more relevant. The mean

flow interpolation onto the acoustic grid is responsible for significant errors, in particular

in regions with high gradients such as shear layers or boundary layers. A poorly accu-

rate description of strong mean flow gradients in the acoustic computation may lead to

inaccurate solutions and spurious reflections for small acoustic wavelengths. To overcome

these interpolation errors, locally refining the acoustic mesh is one possibility. For high-

order methods, a mean flow interpolation directly at the Gauss points of the numerical

quadrature also lead to a more accurate representation of the CFD data. The mean flow

representation effects are discussed in Chapter 8 for the application test cases. Introducing

smarter mapping methods is also an approach to improve the mean flow interpolation. For

instance, Gracia et al. have developed a least-squares mapping procedure combined with

an anti-aliasing filter [136, 137].

The FEM has been widely studied in the literature for wave propagation problems [98,

105, 138, 139]. Ihlenburg and Babuška have shown that upper bounds for the global er-

ror in the H1-norm can be found for the Helmholtz equation solved with the hp-version
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of finite elements [105]. While an algebraic convergence is observed when increasing the

mesh resolution (h-refinement), an exponential convergence is obtained when increasing

the interpolation order (p-refinement). This shows how advantageous can the p-FEM be

with respect to the linear FEM. Though, this is only valid for smooth solutions. The

p-refinement also converges algebraically for problems involving weakly singular solutions.

Such results have motivated the development of the hp-automatic adaptivity to automati-

cally define the optimal h- and p-refinement at a given location in a computational domain

[52]. The FEM evaluation has shown that the numerical error can be decomposed into

two contributions, the interpolation error and the dispersion error. The interpolation error

depends on the Helmholtz number kh (where k is the wavenumber) with an order p. It

can be controlled by the number of elements per wavelength λ = 2π/(kh). This error

tends to zero with mesh refinement or polynomial order increase. On the other hand,

the dispersion error dominates in the low-resolution regime. It expresses the difference

between the numerical wavenumber and the actual wavenumber. Approximations of the

dispersion error have been found for well-resolved models (kh� 1) [140], showing that the

dispersion error increases with a faster rate than the interpolation error. The accumula-

tion of dispersion error over many wavelengths represents the so-called pollution effect. In

practice the dispersion error dominates the overall error for poorly resolved models, while

the interpolation error is relatively more significant for over-resolved problems or small

domain size models where the phase error does not build-up. Dispersion analyses have

provided supplementary information to understand the dispersion properties of numerical

models. Studies have been made to evaluate the stability and accuracy of finite elements

based on the convected Helmholtz equation and on the Galbrun equation [51, 141, 142].

Some stabilisation techniques have been developed to treat the dispersion problem [143].

In Chapter 6, further details are given on numerical accuracy and sources of error, as well

as on stabilisation procedures.

2.7 Summary

The main issues in CAA have been discussed in this literature review. On that basis, a

strategy has been elaborated in this work to develop a novel numerical model for acoustic

propagation. In the framework of aeroengine exhaust noise, complex shear layers may

be present and have a strong effect on the sound field. This impact is supported by the

Linearised Euler Equations, which are, for this reason, chosen to be solved in this work.
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Moreover, not only the acoustic waves are supported by the LEE, but also the vorticity

and entropy waves. The latter develop from the aeroengine exit plane and are carried along

the shear layer. To limit the issues arising from linear instabilities, the LEE are solved in

the frequency domain. The high-order Finite Element Method is applied to compute the

solution in order to reduce the computational cost with respect to the classical linear FEM.

To further reduce the final global matrix size, an innovative coupling procedure between the

Linearised Euler Equations and the Linearised Potential Equation is developed, considering

the fact that, in most practical problems, the LEE is only required in a small portion of

the computational domain. This technique will allow to optimise the numerical cost by

solving the vector-based LEE in strong gradient regions and the scalar LPE in irrotational

flow regions.





Chapter 3

Wave Propagation in Non-Uniform

Media

In this chapter, the problem of wave propagation in non-uniform media is introduced. The

first section focuses on the physical model description through the governing equations.

The derivation of the Linearised Euler Equations leads to the definition of acoustic, vor-

ticity and entropy waves, which are presented in the second section. This physical model

is solved through the numerical method described in Chapter 4. In the third section an-

alytic solutions for wave propagation in infinite straight ducts with uniform mean flow

are provided. Modal solutions of similar problems with non-uniform mean flow are then

considered in the fourth section: these solutions are valid for two-dimensional and axisym-

metric problems. They constitute reference results for the numerical model verification in

Chapter 5.

3.1 Physical Model

The physical model is described in this section. The conservation equations for mass,

momentum and energy are first introduced. Additional equations such as thermodynamics

equations, the constitutive equation and the equation of state, are also presented. They

provide extra information in order to close the system of equations. The combination of

these sets of equations, together with specific assumptions, thus provides the Linearised

Euler Equations.
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3.1.1 Conservation Equations

The conservation equations are specific expressions of the balance of volumetric quantities

in a continuum medium. This balance indicates that the time variations of a volumetric

quantity are equal to the sum of the relative production (or destruction) of this quantity

and of its convective flux through the boundary surface. Three equations of that type,

written for quantities such as mass density, momentum and energy, govern fluid motion in

a continuum medium [144]. The following equations are local partial differential equations,

in opposition to volumetric macroscopic equations, less suitable for solving fluid mechanics

problems.

Mass Conservation

The mass conservation stipulates that a fixed fluid volume in space can accumulate matter

or exchange it with the outside, but neither create nor destroy matter [145, 146]. The mass

flux through the boundary surface exactly compensates the mass variation in the volume.

Equation 3.1 shows the mass conservation without mass source term:

∂ρ

∂t
+ ∇ · (ρu) = 0, (3.1)

where ρ is the fluid mass density, u is the flow velocity vector and t is the time variable.

The momentum vector ρu represents the mass flux.

Momentum Conservation

The momentum conservation indicates the effects of forces on a fluid: a force applied

on a fluid corresponds to a fluid momentum increase, whereas a force exerted by a fluid

corresponds to a fluid momentum decrease [147]. Put differently, the sum of the momentum

flux through the boundary surface and of the stresses on this same boundary surface

counterbalances the momentum variation in the fluid volume. This translates into the

momentum conservation, as seen in Equation 3.2:

∂ (ρu)

∂t
+ ∇ · (ρu⊗ u)−∇ · σ = f , (3.2)

where σ is the stress tensor and f is an external force density (for instance, the gravitational

force). The convective momentum flux tensor product ρu ⊗ u = ρuut of the momentum

vector by the flow velocity vector is an outer product (the superscript t denotes the vector

transpose) [148]. The momentum conservation equation is vectorial and involves the flow
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velocity vector components. This equation is also known as the Navier-Stokes equation

[144].

Energy Conservation

The energy conservation is an application of the first law of thermodynamics for fluid

particles. The considered total energy is the sum of the specific internal energy e and of

the specific kinetic energy u · u/2 = u2/2 [149]. The law states that the sum of the power

generated by external forces and of the heat power exchanged by conduction evens out the

variation of total energy in the fluid volume. Equation 3.3 illustrates that principle:

∂ρ
(
e+ u2/2

)
∂t

+ ∇ ·
(
ρ
(
e+ u2/2

)
u
)
−∇ · (σu) = f · u−∇ ·Q, (3.3)

where Q is the outgoing heat flux, which refers to the energy transfer across the boundary

caused by temperature gradients at the boundary [150].

3.1.2 Additional Equations

At this stage, the conservation equations include one scalar equation for the mass density,

three scalar equations for the momentum (in three dimensions), and one scalar equation

for the energy. But, these five equations involve six unknowns: the mass density, the three

components of the flow velocity vector, the pressure (through the stress tensor) and the in-

ternal energy. Additional equations must complete the system as closure conditions for the

problem [31]. In the following, four extra equations are introduced: two thermodynamics

equations, the constitutive equation and the equation of state for an ideal gas.

First Thermodynamics Equation

During a reversible process, the first law of thermodynamics relates the total differentials

of the specific internal energy, of the specific entropy and of the mass density, so that [150]:

de = Tds− p

ρ2
dρ, (3.4)

where T is the thermodynamic temperature, s is the specific entropy and p is the pressure.

Second Thermodynamics Equation

The fundamental thermodynamic equation associates the total differentials of the pressure,
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of the mass density and of the entropy [151]:

dp = c2dρ+

(
∂p

∂s

)
ρ

ds, (3.5)

where c2 = (∂p/∂ρ)s is the isentropic sound speed.

Constitutive Equation

The stress tensor σ is the sum of a normal component (pressure), and of a tangential

component (shear stress τ ), proportionally to the element surface [144]:

σ = τ − pI, (3.6)

where I is the unit tensor. For a Newtonian fluid the shear stress depends linearly on the

rate-of-strain tensor, and the proportionality constant is the fluid shear viscosity µ.

The combination of these equations with the conservation laws (Equations 3.1, 3.2, 3.3)

gives the entropy equation:

ρT
ds

dt
− τ : ∇u = −∇ ·Q, (3.7)

where d/dt = ∂/∂t+ u ·∇ is the material derivative, which represents the rate of change

of the quantity along with the moving fluid element. The double dot product ‘:’ represents

the tensor inner product. Appendix A gives details on the mathematical procedure to

obtain the entropy equation.

Equation of State

Assuming an isentropic process (inviscid and adiabatic), the equation of state defines the

properties of a perfect gas with constant specific heats. The relation between pressure and

density is [148]:

p = ζργ , (3.8)

where ζ is a constant and γ is the specific heats ratio at constant pressure and volume

respectively. Under the isentropy assumption, the entropy equation 3.7 reduces to: ds/dt =

0. This perfect fluid model is suitable for high Reynolds numbers but does not describe

dissipation phenomena in the flow. From Equation 3.5, the pressure material derivative
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for an isentropic process reduces to:

dp

dt
= c2 dρ

dt
. (3.9)

The combination of Equation 3.8 with Equation 3.9 then gives the expression of the sound

speed:

c2 =
γp

ρ
. (3.10)

3.1.3 Linearised Euler Equations

The Linearised Euler Equations result from a three-step procedure. First, the flow decom-

position expresses each variable as the sum of mean flow components and of perturbations.

Second, the assumptions on the perturbations define the nature of the mathematical model

as explained in Section 2.3. Finally, the linearisation stage provides the governing equations

for the perturbations. The phases are described in the following paragraphs.

Flow Decomposition

The first step consists in expressing the flow into the sum of time-invariant mean flow com-

ponents and of small perturbations [31]. This decomposition translates into the following

equations: 
ρ(x, t) = ρ0(x) + ρ′(x, t)

u(x, t) = u0(x) + u′(x, t)

p(x, t) = p0(x) + p′(x, t)

, (3.11)

where x is the position in space, the subscript 0 denotes the mean flow components and

the superscript ′ refers to the perturbations. The mean flow has arbitrary amplitude, is

viscous and transfers heat. It satisfies the general steady conservation equations and does

not account for any potential feedback effects from the perturbations. The perturbations

are unsteady and have small amplitude (|ρ′| � |ρ0|, ‖u′‖ � ‖u0‖, |p′| � |p0|).

Assumptions on Perturbations

As discussed in Section 2.3, each aeroacoustic propagation model corresponds to some

hypotheses. Regarding the Linearised Euler Equations, the assumptions on the unsteady

perturbations are the following:

• The fluid is inviscid: there is no viscous dissipation τ : ∇u since the viscosity is zero.
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• The process is adiabatic: there is no heat conduction ∇ ·Q.

• There is no external force: f = 0.

These assumptions leave us with three simplified equations, namely the Euler equation (i.e.

the Navier-Stokes equation, simplified with the aforementioned hypotheses) combined with

the mass conservation and pressure equations. By extension, the Euler equations refer to

the whole system 3.12 where the third equation, combination of the mass conservation 3.1

with Equation 3.9, expresses the pressure instead of the energy:

∂ρ

∂t
+ ∇ · (ρu) = 0

∂ (ρu)

∂t
+ ∇ · (ρu⊗ u) + ∇p = 0

∂p

∂t
+ u ·∇p+ ρc2∇ · u = 0

. (3.12)

Linearisation

Considering the flow decomposition and the assumptions, the Euler equations 3.12 simplify.

Three types of terms appear in the equations: the leading-order terms which only contain

mean flow properties (such as ρ0u0), the linear terms which are the products of perturba-

tions with mean flow components (such as ρ0u
′ + ρ′u0), and the non-linear terms which

involve products of perturbations components (such as ρ′u′). Retaining only the leading

order terms provides the steady Euler equations which govern the mean flow properties.

These equations are non-linear and do not account for any feedback from the perturbations

on the mean flow. Then neglecting the non-linear terms, the unsteady Linearised Euler

Equations are obtained, where the mean flow has an influence but is assumed to be known:

∂ρ′

∂t
+ ∇ · (ρ0u

′ + ρ′u0) = 0

ρ0
∂u′

∂t
+
∂ρ′

∂t
u0 + ∇ · (ρ0u0 ⊗ u′ + ρ0u

′ ⊗ u0 + ρ′u0 ⊗ u0) + ∇p′ = 0

∂p′

∂t
+ u0 ·∇p′ + u′ ·∇p0 + ρ0c

2
0∇ · u′ +

ρ0c
2
0

p0
p′∇ · u0 = 0

. (3.13)

The assumptions indicate that, for this physical model, the perturbations are inviscid, isen-

tropic and linear. Therefore, the Linearised Euler Equations do not account for viscosity,

heat transfer, non-linearities and possible effects of the perturbations on the mean flow.

In particular, the omission of the non-linear terms and of the viscosity implies that the

physical Kelvin-Helmholtz instabilities which are encountered in the presence of thin flow
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shear layers are not saturated [30, 45]. This is a clear limitation of the Linearised Euler

Equations model, although non-linear effects are negligible for sound propagation.

Conservative Form of the Linearised Euler Equations

It is useful to introduce the conservative form of the Linearised Euler Equations. Written in

matrix form for the Cartesian coordinates, the two-dimensional Linearised Euler Equations

can be written:
∂q

∂t
+
∂Axq

∂x
+
∂Ayq

∂y
= 0, (3.14)

where the flux matrices Ax and Ay contain the mean flow properties. In two dimensions,

the perturbations variable vector q reads:

q =



ρ′

(ρux)′

(ρuy)
′

p′c


, (3.15)

where the momentum perturbations are used instead of the velocity. The momentum vector

perturbations read: (ρu)′ = ρ0u
′ + ρ′u0.

In addition, p′c is the perturbation of the modified pressure defined by Goldstein [152].

This pressure reads:

pc = (p/p∞)1/γ , (3.16)

where p∞ is a reference pressure. The corresponding mean flow component pc0 and per-

turbations p′c relate to the pressure by:

pc0 = (p0/p∞)1/γ and p′c = pc0/(ρ0c
2
0)p′. (3.17)

The conservative form of the Linearised Euler Equations given in Equation 3.14 for the

density, the momentum and the modified pressure is attractive since it does not directly

depend on any matrix of the mean flow properties derivatives. Such matrix would be

present in a formulation with the classical variables (density, velocity, pressure). Assuming

time-harmonic solutions, a Fourier decomposition of any field variable χ′ of the acoustic

perturbations gives:

χ′(x, t) = χ′(x, ω)ejωt, (3.18)

where the angular frequency ω relates to the frequency f by ω = 2πf .
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By inserting this decomposition into Equation 3.14 and factoring out the term ejωt, the

two-dimensional Linearised Euler Equations are obtained in the frequency domain without

external source:

jωq +
∂Axq

∂x
+
∂Ayq

∂y
= 0, (3.19)

where the left-hand side differential operator is noted L(q). From this point onwards, the

superscript notation is dropped, unless otherwise stated: unscripted variables represent

small amplitude perturbations of the mean flow.

The flux matrices read:

Ax =



0 1 0 0

−u2
0x 2u0x 0

ρ0c
2
0

pc0

−u0xu0y u0y u0x 0

−pc0

ρ0
u0x

pc0

ρ0
0 u0x


and Ay =



0 0 1 0

−u0xu0y u0y u0x 0

−u2
0y 0 2u0y

ρ0c
2
0

pc0

−pc0

ρ0
u0y 0

pc0

ρ0
u0y


. (3.20)

For the sake of completeness, Appendix B contains additional forms of the Linearised

Euler Equations, in three dimensions and in cylindrical coordinates with the corresponding

expressions of the flux matrices.

3.2 Acoustic, Vorticity and Entropy Waves

Within this mathematical model, the time-harmonic perturbations described by the Lin-

earised Euler Equations do not only contain acoustic waves but also include vorticity and

entropy waves. In this section, these different types of waves are described through a two-

dimensional test case study. Acoustic plane wave propagation is considered in free field, in

the presence of a uniform mean flow. First, the Linearised Euler Equations are simplified

with the aforementioned assumptions. Then, the test case is described. Finally, an analytic

solution provides details on the acoustic, vorticity and entropy waves.

Equations

Written for the classical variables ρ, u and p, in a uniform mean flow, the Linearised Euler
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Equations given in Equation 3.19 simplify to:

d0ρ

dt
+ ρ0∇ · u = 0

d0u

dt
+

1

ρ0
∇p = 0

d0p

dt
+ ρ0c

2
0∇ · u = 0

, (3.21)

where d0/dt = jω + u0 · ∇ denotes the mean flow material derivative. By taking the

divergence of the velocity equation and the mean flow material derivative of the pressure

equation, the velocity field cancels out and the classical wave equation is obtained for the

pressure:
d0

dt

(
d0p

dt

)
− c2

0∆p = 0. (3.22)

The velocity is then obtained from the second equation:

d0u

dt
= − 1

ρ0
∇p. (3.23)

Multiplying the first equation by c2
0 and subtracting the third equation, the density can be

obtained by solving the following equation:

d0

(
p− c2

0ρ
)

dt
= 0. (3.24)

Test Case

At large distance from a sound source such as aeroengines, plane waves can be seen as

approximations for spherical waves. Waves propagating at low frequencies may also behave

like plane waves [31]. The field of plane waves only depends on the propagation direction

and on its spatial coordinate. Moreover, plane waves form a basis of the total field. A

plane wave decomposition can be used to describe any admissible field of perturbations.

Let us consider a plane wave of direction α propagating in free field with a uniform mean

flow velocity of direction α0. In two dimensions, the wavenumber k, which characterises

the wave propagation direction, and the mean flow velocity vector u0 read:

k = k

 cosα

sinα

 and u0 = u0

 cosα0

sinα0

 , (3.25)
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Figure 3.1: Two-dimensional free field sound propagation problem with k0 = 10 m−1,
α = −40◦, α0 = 20◦, ‖u0‖ = 0.5c0.

where k = ‖k‖ and u0 = ‖u0‖ are the norms of the wavenumber and mean flow velocity

vectors, respectively. The standard wavenumber is defined by k0 = ω/c0. Figure 3.1 shows

the two-dimensional configuration of the test case on the left-hand side. On the right-hand

side, an example of acoustic plane wave propagation in free field represents the real part

of the non-dimensional acoustic pressure field.

Analytic Solutions

Exact solutions of acoustic plane wave type are sought, i.e. pa = Apae−jka·x where Apa is

the constant amplitude of the pressure field. By introducing this expression into Equation

3.22, the dispersion relation for the acoustic wavenumber ka is obtained:

(
c2

0 − u2
0 cos2(α− α0)

)
k2

a + 2ωu0 cos(α− α0)ka − ω2 = 0. (3.26)

Solving the dispersion relation gives two possible values of the acoustic wavenumber:

k±a =
ω

±c0 + u0 cos(α− α0)
. (3.27)

The only admissible value is ka = k+
a > 0. By introducing the pressure expression into

Equation 3.23 and 3.24, the velocity and the density are obtained. Those are first-order

linear differential equations whose particular solutions provide the acoustic components.

The homogeneous equations give the vorticity/entropy solutions. Table 3.1 summarises

these contributions. The amplitudes A•a, A•v and A•e are constant. kv and ke are the

vorticity/entropy wavenumbers, respectively. The acoustic amplitudes Auxa , Auya and Aρa
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Acoustic Vorticity Entropy

p Apae−jka·x 0 0

ux Auxa e−jka·x Auxv e−jkv·x 0

uy A
uy
a e−jka·x Auxv e−jkv·x 0

ρ Aρae−jka·x 0 Aρee−jke·x

Table 3.1: Acoustic, vorticity and entropy contributions in the two-dimensional analytic
expressions of p, ux, uy and ρ, for plane wave propagation in free field.

relate to Apa like:

Auxa =
Apa
ρ0

ka cos(αa)

ω − ka · u0
, Auya =

Apa
ρ0

ka sin(αa)

ω − ka · u0
and Aρa =

Apa

c2
0

, (3.28)

where αa is the acoustic wave angle. All variables contribute to the acoustic field with the

wavenumber ka. The rotational of the acoustic velocity vector ua = {uxa , uya}t is zero:

∇ × ua = 0. Therefore, the acoustic field is purely divergent. Table 3.1 shows that only

the velocity field supports vorticity waves. The vorticity wavenumber norm reads:

kv =
ω

u0 cos(αv − α0)
, (3.29)

where αv is the vorticity wave angle. Seeing that kv, u0 and ω are positive, cos(αv − α0)

is also positive and |αv − α0| < π/2: this means that vorticity waves propagate with the

mean flow. The divergence of the vorticity components velocity vector uv = {uxv , uyv}t is

zero: ∇ ·uv = 0. Thus, unlike the acoustic field, the vorticity field is purely rotational. A

relation between the vorticity velocity components is found:

cos(αv)Auxv + sin(αv)A
uy
v = 0. (3.30)

Finally, only the density field contains entropy waves. The entropy wavenumber norm

ke is identical to the vorticity wavenumber kv (see Equation 3.29). Like vorticity waves,

entropy waves propagate with the mean flow. The density expression holds for isentropic

disturbances. In the case of homentropic perturbations, the entropy field is zero (Aρe = 0)

and it is found that p = c2
0ρ.

This example of wave propagation in free field, in the presence of uniform mean flow,

shows the particularity of the Linearised Euler Equations. They carry acoustic waves, as

well as vorticity and entropy waves. These waves propagate at different speeds and the

vorticity/entropy waves only exist in a mean flow in motion.



Chapter 3. Wave Propagation in Non-Uniform Media 38

x
y

z
u0

Figure 3.2: Rectangular cross-section straight duct with uniform axial mean flow.

3.3 Analytic Solutions for Uniform Mean Flow Velocity

Analytic solutions, which will serve for numerical results verification, especially in Chapter

5, are now presented. This work focuses on noise propagation in ducts, with some appli-

cation in turbomachinery and aeroengine noise. The sound generated within aeroengines

propagates through the inlet and exhaust ducts of turbofans, and radiates to the far field

in the surrounding mean flow. Two typical problems arise: plane wave propagation in

free field and ducted wave propagation. Analytic solutions in free field have already been

obtained in Section 3.2.

In this section, analytic solutions for wave propagation in straight infinite ducts with hard

walls are provided. The mean flow properties are uniform and the constant subsonic mean

flow velocity vector follows the duct axis ex: u0 = u0xex. The choice of the coordinates

system should align with the duct cross-section: Cartesian coordinates (x, y, z) for rectan-

gular ducts and cylindrical coordinates (r, θ, x) for annular/circular ducts. Equations 3.21

and 3.22 hold for this test case, and further simplify with the assumption that u0 = u0xex.

Depending on the coordinates system, they develop in different ways.

Rectangular Cross-Section Duct

Let us consider an infinite straight duct with rectangular cross-section, as depicted in

Figure 3.2. Waves propagate inside the duct in the x-direction, and hard-wall boundary

conditions are applied on the lateral faces at y = ±Ly/2 and z = ±Lz/2 such that:

∂p

∂y
= 0 ∀y ∈

{
−Ly

2
,
Ly
2

}
and

∂p

∂z
= 0 ∀z ∈

{
−Lz

2
,
Lz
2

}
, (3.31)

where Ly and Lz are the dimensions of the duct in the y- and z-direction, respectively.
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In Cartesian coordinates, Equation 3.22 reduces to:

(
c2

0 − u2
0x

) ∂2p

∂x2
+ c2

0

∂2p

∂y2
+ c2

0

∂2p

∂z2
− 2jωu0x

∂p

∂x
+ ω2p = 0. (3.32)

By means of separation of variable, solutions of modal type which are linear combinations

of left- and right-propagating waves are found:

p±m,n(x, y, z) = A±pm,n cos(kymy) cos(kznz)e
−jk±xm,nx, (3.33)

where A±pm,n and (k±xm,n , kym , kzn) are respectively the amplitudes and the wavenumbers

of the modes. The mode numbers (m,n) ∈ N2 characterise the propagating wave, whose

general solution is:

p(x, y, z) =

∞∑
m=0

∞∑
n=0

(
p−m,n(x, y, z) + p+

m,n(x, y, z)
)
. (3.34)

The transverse wavenumbers are kym = mπ/Ly and kzn = nπ/Lz. The longitudinal

wavenumber reads:

k±xm,n =
−k0Mx ±

√
k2

0 − (1−M2
x)
(
kym,n

2 + kzm,n
2
)

1−M2
x

, (3.35)

where Mx = u0x/c0 is the Mach number. From the simplified Linearised Euler Equations

3.21 and the modal pressure found in Equation 3.33, the expressions of the velocity vector

and of the density are obtained for each mode couple (m,n) (see Appendix C). These

solutions contain acoustic and vorticity/entropy contributions, as seen in Section 3.2. The

analytic solution presented here is three-dimensional: the two-dimensional solution follows

on from setting the z-coordinate to 0.

Circular and Annular Cross-Section Ducts

For cylindrical ducts, the solutions are different since they are expressed in cylindrical

coordinates. Figure 3.3 shows the geometries for circular and annular cross-sections. In

this system of coordinates, the convected Helmholtz equation 3.22 reads:

c2
0

∂2p

∂r2
+
c2

0

r2

∂2p

∂θ2
+
(
c2

0 − u2
0x

) ∂2p

∂x2
+
c2

0

r

∂p

∂r
− 2jωu0x

∂p

∂x
+ ω2p = 0. (3.36)
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Figure 3.3: Cylindrical straight ducts with uniform axial mean flow.

Hard wall boundary conditions are set at the outer wall of the duct, and at the inner wall

for annular ducts:
∂p

∂r
= 0,∀r ∈ {ro, ri}, (3.37)

where ro and ri are the outer and inner radii of the ducts. Separation of variable provides

three equations, one for each coordinate. The left- and right-propagating modal solutions

read:

p±m,n(r, θ, x) = A±pm,nUm,n(r)e−jk±x xe−jmθ, (3.38)

where m ∈ Z is the azimuthal mode number, n ∈ N∗ is the radial mode number, k±x is

the axial wavenumber and Um,n(r) is the mode amplitude function in the radial direction.

Since they do not depend on θ, modes with m = 0 are called axisymmetric, whereas those

with m 6= 0 are spinning modes. The expression of the axial wavenumber is:

k±x =
−k0Mx ±

√
k2

0 − (1−M2
x) k2

rm,n

1−M2
x

, (3.39)

where krm,n = αm,n/c0 is the radial wavenumber. In practice, αm,n is the nth non-trivial

zero of the characteristic equation of the duct to satisfy the hard-wall boundary condition

given in Equation 3.37. Admissible values of αm,n can be found numerically. Note that

this expression of k±x is analogous to the one found in Equation 3.35 for a rectangular

cross-section duct, with k2
rm,n ≡ k2

ym,n + k2
zm,n . The amplitude in the radial direction is

solution of the Bessel equation [153, 154]:

d2Um,n
dr̂2

+
1

r̂

dUm,n
dr̂

+

(
1− m2

r̂2

)
Um,n = 0, (3.40)
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where r̂ = krm,nr is a modified coordinate. It yields:

Um,n(r) =

 Jm(krm,nr) for circular ducts

Y ′m(krm,nri)Jm(krm,nr)− J ′m(krm,nri)Ym(krm,nr) for annular ducts
,

(3.41)

where Jm and Ym are the mth-order Bessel functions of the 1st and 2nd kind respectively,

and the prime denotes the derivative with respect to the argument. The characteristic

equations satisfied by αm,n are therefore:

 J ′m(krm,nro) = 0 for circular ducts

Y ′m(krm,nri)J
′
m(krm,nro)− J ′m(krm,nri)Y

′
m(krm,nro) = 0 for annular ducts

. (3.42)

Finally, the general solution is:

p(r, θ, x) =

∞∑
m=0

∞∑
n=0

(
p−m,n(r, θ, x) + p+

m,n(r, θ, x)
)
. (3.43)

The solutions for the density and the velocity vector follow on from the simplified Linearised

Euler Equations and from the expression of the pressure. Appendix C contains details on

these solutions, which support acoustic, vorticity and entropy contributions.

Duct Modes

The duct modes longitudinal wavenumbers contain a fundamental property which char-

acterises wave propagation: duct modes may be either propagating or evanescent. A

perturbation of angular frequency ω and radial wavenumber krm,n propagates if krm,n ∈ R,

i.e. if:

k0 ≥
√

1−M2
xkrm,n , (3.44)

which simply expresses that the term in the square root in the expression of the axial

wavenumber is positive (see Equations 3.35 and 3.39). Outside this regime, the longitu-

dinal wavenumber is complex with a non-zero imaginary part which is responsible for an

exponentially decaying behaviour: such modes are evanescent. The cut-off frequency fc

defines the limit between the two regimes:

fc =
c0

2π

√
1−M2

xkrm,n . (3.45)

The dependency of the cut-off frequency in the mean flow velocity shows that high-velocity

mean flows create more propagating modes, since fc is reduced. Propagating (or cut-on)
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modes carry acoustic energy all along the duct, whereas evanescent (or cut-off) modes do

not contribute to the sound field far from the source.

The phase and group velocities also give some insight on duct wave propagation. The phase

velocity k0/k
±
x defines the rate at which the wave phase propagates in space, whereas the

group velocity ∂k0/∂k
±
x refers to the velocity with which the wave packets (characterised

by the modulation or envelope) travel through space [155]. They read:

k0

k±x
=

(
1−M2

x

)
k0

−Mxk0 ±
√
k2

0 − (1−M2
x) k2

rm,n

and
∂k0

∂k±x
=
±
(
1−M2

x

)√
k2

0 − (1−M2
x)k2

rm,n

k0

±

Mx

√
k2

0 − (1−M2
x)k2

rm,n

.

(3.46)

Since the mean flow is subsonic, the group velocity is negative for left-propagating modes

and positive for right-propagating modes. There exist right-propagating modes with posi-

tive group velocity and negative phase velocity [50]. Such modes are referred to as inverse

upstream modes and verify the following condition:

√
1−M2

xkrm,n < k0 < krm,n . (3.47)

3.4 Modal Solutions for Non-Uniform Mean Flow Velocity

In this section, a modal analysis of the Linearised Euler Equations is performed in order

to provide a reference solution for the numerical model verification in the presence of non-

uniform mean flow. Infinite straight ducts are considered in the x-direction. The mean flow

velocity is axial and may vary along the direction transverse to the propagation direction

(i.e. the y-direction in Cartesian coordinates and the r-direction in cylindrical coordinates):

u0 = u0xfy(y)ex or u0 = u0xfr(r)ex, with f• functions describing the velocity profile in the

transverse direction. Assuming time-harmonic waves in the axial x-direction, the solution

vector behaves like: q ≡ e−jkxx. This condition implies that any derivative of the solution

vector with respect to x is such that: ∂/∂x ≡ −jkx. The system of equations is discretised

in the transverse direction by means of a finite difference method [156]. The discrete form

of the equations translates into a generalised eigenvalue problem of the form [157]:

kxAqd = Bqd, (3.48)

where A and B are matrices containing the mean flow properties, and qd is the discretised

vector of variables. Imposing proper boundary conditions closes the problem.
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The solution of the generalised eigenvalue problem provides eigenvectors (or modes) and

their corresponding eigenvalues kx. A total of 4n modes are found in two dimensions, where

n is the number of discretisation nodes: n acoustic right-propagating modes, n acoustic

left-propagating modes, n vorticity modes and n entropy modes. The total solution is a

linear combination of these modes. In the next two paragraphs, modal solutions are derived

for two-dimensional and axisymmetric ducts.

3.4.1 Wave Propagation in Two-Dimensional Duct

Let us consider a two-dimensional infinite straight duct in the x-direction, of height H

in the y-direction. For a time-harmonic solution and a mean flow velocity varying in the

y-direction, Equation 3.19 simplifies to:

jωqd − jkxAxqd +
∂Ay

∂y
qd +Ay

∂qd

∂y
= 0, (3.49)

with q(x, y) = qd(y)e−jkxx. The derivative of Ax with respect to x is zero since the mean

flow is uniform in the axial direction.

Generalised Eigenvalue Problem

The system is discretised in the y-direction by taking n equally spaced points. The first

point y1 is taken at the lower wall of the duct (y1 = 0) and the last point yn at the

upper wall (yn = H). The spacing between two consecutive points is hy = H/(n − 1).

The generalised eigenvalue problem 3.48 is obtained, with: qd =
{
qρ; qρux ; qρuy ; qpc

}
,

where qρ, qρux , qρuy and qpc are column vectors of size n, respectively discretisations of

the density, x-momentum, y-momentum and modified pressure perturbations. The system

matrices A and B from Equation 3.48 have the following expressions:

A = j



0 I 0 0

−u2
0xF

2 2u0xF 0
ρ0c

2
0

pc0

I

0 0 u0xF 0

−pc0

ρ0
u0xF

pc0

ρ0
I 0 u0xF


, B =



jωI 0 D1 0

0 jωI u0x (F ′ + FD1) 0

0 0 jωI
ρ0c

2
0

pc0

D1

0 0
pc0

ρ0
D1 jωI


,

(3.50)

where I is the identity matrix. F is the diagonal matrix of the mean flow profile at

the discretisation points. F ′ is the diagonal matrix of the first derivative of the mean
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Figure 3.4: Non-uniform mean flow profiles in two-dimensional duct.

flow profile at the discretisation points. D1 is the differential matrix for the first-order

derivative with respect to y. The hard wall boundary condition (ρu) ·n = 0 is enforced at

y = 0 and at y = H: V1 = Vn = 0. In practice, the rows and columns corresponding to the

positions of V1 and Vn in A and B are set to zero. Only the diagonal terms corresponding

to the positions of V1 and Vn in B are set to 1.

Mean Flow Profiles

Two non-uniform mean flow profiles are investigated, as shown in Figure 3.4. The first

profile is linear: the mean flow velocity is zero along the lower duct wall and has a constant

value u0x 6= 0 along the upper duct wall. The second profile is parabolic: the mean flow

velocity is zero along both duct walls and has a maximum value along the duct axis. These

profiles are such that the mean flow velocity field u0 = u0xf•(y)ex verify the steady Euler

equations, with ρ0 and p0 constant: ∇ ·u0 = 0. The analytic expressions of the mean flow

velocity profiles are:


fl(y) =

y

H
for the linear mean flow profile

fp(y) = 4
y

H

(
1− y

H

)
for the parabolic mean flow profile

. (3.51)

In the following, some results of the modal analysis are shown for both mean flow profiles:

Figures 3.5 and 3.6 represent the real parts of the modified pressure field in the two-

dimensional duct for k0 = 10 m−1, for the linear and parabolic profiles respectively. The

first five right-propagating acoustic duct modes are plotted, for downstream (u0x = 0.5c0)

and upstream (u0x = −0.5c0) propagation. The duct extends for x from 0 to 2.5 m, and
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Figure 3.5: Real part of the modified pressure for the first five right-propagating
acoustic modes, in a two-dimensional duct with a linear velocity profile. Left:

u0x = 0.5c0. Right: u0x = −0.5c0.

H = 1 m. The discretisation uses n = 5000 points. A first general observation is that

the downstream propagating waves have increased wavelengths, in opposition to the waves

propagating upstream which have shorter wavelengths. Moreover, the wavelength increases

with the mode number, as long as the cut-off frequency is not reached. From the mode

m = 5, evanescent waves are obtained which amplitudes decrease exponentially inside the

duct. The mean flow profile has an effect on the axial wavenumber and on the modes

amplitude: with the linear profile, the plane wave amplitude is the highest where the

mean flow Mach number is the smallest. With the parabolic profile, the profile symmetry

is conserved in the acoustic solution and the same conclusions as those observed for the

linear profile can be drawn.
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Figure 3.6: Real part of the modified pressure for the first five right-propagating
acoustic modes, in a two-dimensional duct with a parabolic velocity profile. Left:

u0x = 0.5c0. Right: u0x = −0.5c0.

3.4.2 Wave Propagation in Axisymmetric Duct

Let us now consider a cylindrical infinite straight duct in the x-direction, with outer radius

ro. The mean flow velocity varies in the radial direction r. The mean flow and the geometry

are axisymmetric, and the fluid properties do not depend on θ. A Fourier decomposition

of the fields yields azimuthal contributions of the form:

q(r, θ, x) = qr(r)e
−jmθe−jkxx. (3.52)
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For a time-harmonic solution, Equation B.3 simplifies to:

jωqr +
1

r
(Ar − jmAθ +Ac) qr +

∂Ar

∂r
qr +Ar

∂qr
∂r
− jkxAxqr = 0, (3.53)

where the derivatives of Ax with respect to x and of Aθ with respect to θ are zero since

the mean flow is longitudinally uniform and axisymmetric. Since the problem is axisym-

metric, it is solved in the two-dimensional plane (x, r) where θ is fixed. Only half of the

corresponding section of the duct is considered, and appropriate boundary conditions are

applied. The hard wall is enforced at r = ro. Along the axis, the fields must be continu-

ous. Depending on the azimuthal mode m, the boundary conditions at r = 0 impose the

perturbations values along the axis such that [158]:


ur = uθ = 0 , if m = 0,

ρ = 0; ur = ±juθ; uz = 0; p = 0 , if m = ±1,

ρ = 0; ur = uθ = uz = 0; p = 0 , if |m| > 1.

(3.54)

The system is discretised in the r-coordinate with n equally spaced points, between r1 = 0

and rn = ro. The spacing between the points is hr = ro/(n−1). The generalised eigenvalue

problem 3.48 is such that: qd =
{
qρ; qρur ; qρuθ ; qρux ; qpc

}
, where qρ, qρur , qρuθ , qρux and

qpc are column vectors of size n, respectively discretisations of the density, r-momentum,

θ-momentum, x-momentum and modified pressure perturbations. The matrices A and B

are obtained like in Section 3.4.1, and the generalised eigenvalue problem is solved similarly.

Moreover, the colormaps of the pressure field are of the same type as those found in Figures

3.5 and 3.6, and are not shown here.





Chapter 4

High-Order Finite Element Model

In this chapter, we present the numerical method used for solving the problem of wave prop-

agation in non-uniform media. The chosen physical model is the Linearised Euler Equations

described in Chapter 3. For turbomachinery applications, the numerical method solving

the Linearised Euler Equations must account for complex geometries and inhomogeneous

media. As explained in Chapter 2, the high-order Finite Element Method is used. The first

section introduces the formulation. The boundary conditions are explained in the second

section. The finite element model features are described in the third section. The final

section introduces the Perfectly Matched Layers.

4.1 Weighted Residual Formulation

The Finite Element Method rests on the transformation of the physical problem into an

equivalent integral formulation [90]. In the absence of external source, the differential

operator L(q) given by the numerical model (see Equation 3.19) gives the so-called residual

R: L(q) = R. Requiring that the residual is orthogonal to all test functions w, it yields

[159]: ∫
Ω
wTRdΩ = 0, (4.1)

where Ω is the domain and the superscript T denotes the Hermitian transpose. The test

functions w are bounded, and uniquely defined within the domain Ω and its boundary

surface Γ. This orthogonality condition states that the residual weighted average over the

problem has to be zero in order to find the best approximate solution.
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4.1.1 Formulation in Cartesian Coordinates

An integration by parts provides the weak variational formulation for the Linearised Euler

Equations in Cartesian coordinates:

∫
Ω

(
jωwTq − ∂wT

∂x
Axq −

∂wT

∂y
Ayq

)
dΩ = −

∫
Γ
wT (nxAx + nyAy) qdΓ. (4.2)

The flux matrix F = nxAx + nyAy along the unit normal direction n to the boundary Γ

is crucial for the definition of boundary conditions, as it is seen in Section 4.2. Note that

the vector n points toward the domain exterior.

4.1.2 Formulation for an Axisymmetric Problem

For axisymmetric mean flows and geometries, a Fourier decomposition of the solution yields

azimuthal contributions such that: q(r, θ, x) = q(r, x)e−jmθ, where m ∈ Z is the azimuthal

order. The weak variational formulation for the axisymmetric Linearised Euler Equations

given in Equation B.5 reads:

∫
Ω

(
jωrwTq − jmwTAθq +wTAcq − r

∂wT

∂x
Axq − r

∂wT

∂r
Arq

)
dxdr

= −
∫

Γ
rwT (nxAx + nrAr) qdΓ. (4.3)

In cylindrical coordinates, the differential dΩ has been replaced by rdrdθdx. The multi-

plication of the Linearised Euler Equations by r cancels out any existing singularity (the

factors 1/r which appear in front of the terms in Ar, Aθ and Ac, in Equation B.5). The

integral over θ is constant and factors out, which leaves us with the differentials dxdr.

This problem is then equivalent to a two-dimensional problem in the plane (x, r), where

F = nxAx + nrAr is the flux matrix along the normal direction n = {nx, nr}t.

4.2 Boundary Conditions

Within numerical simulations, the computational domain Ω is truncated. Proper non-

reflecting boundary conditions must be applied at the domain boundary Γ. The method of

characteristics gives a framework to apply the boundary conditions for hyperbolic problems

[116, 160].
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4.2.1 Characteristic Waves

The Linearised Euler Equations define a hyperbolic system, where each flux matrixAxi has

real eigenvalues and real eigenvectors [161]. In terms of those eigenvalues and eigenvectors,

each flux matrix reads: Axi = W xiΛxiW
−1
xi , where Λxi is the eigenvalues diagonal matrix

and W xi is the non-singular eigenvectors matrix. For a uniform mean flow, the original

system Equation 3.14 is left-multiplied by W−1
x . It yields:

∂q̂x
∂t

+ Λx
∂q̂x
∂x

+W−1
x AyW x

∂q̂x
∂y

= 0, (4.4)

where q̂x = W−1
x q is the amplitude vector of the characteristic wave travelling along the

x-axis [28, 117]. Its equation is: dx/dt = λ
(i)
x , where λ(i)

x are the flux matrixAx eigenvalues

[116]. The components of q̂x can be seen as travelling waves moving at the phase velocities

λ
(i)
x , which define whether a characteristic is incoming or outgoing. It can be shown that

these considerations hold with non-uniform mean flows [116].

This approach can be generalised to the flux matrix F = nxiAxi , which represents the

characteristic waves travelling along the direction n. The eigenvalues diagonal matrix Λ

and the eigenvectors matrix W are such that: F = WΛW−1. The amplitude vector of

the characteristic waves travelling along the direction n is: q̂ = W−1q. The travelling

velocities are: u0 ·n, u0 ·n− c0 and u0 ·n+ c0. In two-dimensional Cartesian coordinates,

the vector of amplitudes reads:

q̂ =



ρ0

(
nxu

′
y − nyu′x

)
ρ′ − p′

c2
0

ρ0

2c0

(
−u′ · n+

1

ρ0c0
p′
)

ρ0

2c0

(
u′ · n+

1

ρ0c0
p′
)


. (4.5)

This vector exhibits the particularity of the Linearised Euler Equations, in such that they

support acoustic, vorticity and entropy waves [160]. The first component corresponds

to the hydrodynamic characteristic, which travels along the normal vector n with phase

velocity λv = u0 · n. The second component is the entropy characteristic. It also travels

with phase velocity λe = u0 · n. That characteristic only depends on the density and

pressure perturbations. The entropy characteristic amplitude vanishes for homentropic

perturbations, but it may not be zero for isentropic perturbations. The last two components

refer to the acoustic characteristics. These characteristics travel along the normal vector n,
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with phase velocities λa− = u0·n−c0 for the incoming characteristic and λa+ = u0·n+c0 for

the outgoing characteristic. That is true for subsonic mean flows since ‖u0·n‖ ≤ ‖u0‖ < c0.

4.2.2 Implementation

In practice, the boundary conditions implementation through the method of characteristics

relies on the knowledge of the incoming and outgoing characteristics. For subsonic mean

flows, the acoustic characteristics are already identified with λa− < 0 and λa+ > 0. The

sign of λv = λe indicates whether the hydrodynamic and entropy characteristic waves enter

or leave the domain. Three cases arise:

• Without mean flow, the hydrodynamic and entropy waves do not exist.

• If u0 · n > 0, the hydrodynamic and entropy waves leave the domain. Only the

incoming acoustic characteristic enters the domain.

• If u0 · n < 0, the hydrodynamic and entropy waves enter the domain together with

the incoming acoustic characteristic.

For a well-posed problem, the number l of imposed boundary conditions is equal to the

number of incoming characteristics: l = 1 for u0 ·n ≥ 0 and l = 3 for u0 ·n < 0. In matrix

form, the boundary conditions read: Mq = s, where M is a (l × 4) coefficient matrix

and s is a source vector. Written for the vector of characteristic amplitudes q̂, it yields:

M̂q̂ = s, where M̂ = MW . By separating the characteristics leaving the domain from

the characteristics entering the domain, the equation becomes:

[
M̂

+
M̂
−
] q̂+

q̂−

 = s, (4.6)

where M̂
−

and q̂− (respectively M̂
+

and q̂+) are the restrictions of M̂ and q̂ associ-

ated with the outgoing characteristics (respectively incoming characteristics). That de-

composition allows to express the incoming characteristics with respect to the outgoing

characteristics in terms of the amplitudes:

q̂− =
(
M̂
−)−1 (

s− M̂+
q̂+
)
. (4.7)
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The boundary integral transforms into:

∫
Γ
wTFqdΓ =

∫
Γ
wTWΛRW−1qdΓ +

∫
Γ
wTŝdΓ, (4.8)

where the matrix R represents the reflection between the characteristics and the vector ŝ

is the incoming source term. Their generic expressions are:

R =

 I 0

−
(
M̂
−)−1

M̂
+

0

 and ŝ = WΛ

 0(
M̂
−)−1

s

 . (4.9)

In practice, the first integral is computed within the numerical model, whereas the second

integral is defined as boundary condition in the right-hand side of the linear system. The

full expressions of the different matrices are written in Appendix D.

4.2.3 Imposed Conditions

In this work, sound propagation with rigid-wall ducts is mainly investigated. Duct modes

may be injected through the method of characteristics by means of the normal velocity at

the boundary. The condition is: u · n = uni , where uni is the imposed incident normal

velocity. Written for the conservative variables, the condition reads:

− u0 · nρ+ (ρu) · n = ρ0uni . (4.10)

For the case u0 ·n < 0, three characteristics enter the domain: the hydrodynamic, entropy

and acoustic characteristics. Each characteristic is specified. The matrixM and the source

vector s read:

M =


nyu0x − nxu0y −ny nx 0

1 0 0 − ρ0

pc0

−u0 · n nx ny 0

 and s =


q̂v

q̂e

ρ0uni

 , (4.11)

where the first row corresponds to the expression of the hydrodynamic characteristic found

in Equation 4.5 (q̂v is the vorticity characteristic) and the second row defines the entropy

characteristic q̂e. The third row is the condition on the acoustic characteristic, imposed

through the normal velocity (see Equation 4.10). The matrices M̂ , M̂
−

and M̂
+

are
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obtained:

M̂ =


1 0 0 0

0 1 0 0

0 0 −c0 c0

 , M̂
−

=


1 0 0

0 1 0

0 0 −c0

 and M̂
+

=


0

0

c0

 . (4.12)

The reflection matrix R and the source vector ŝ yield:

R =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 1

 and ŝ = WΛ



q̂v

q̂e

−ρ0

c0
uni

0


. (4.13)

For the case u0 · n ≥ 0, only the incoming acoustic characteristic enters the domain. It is

imposed through the normal velocity uni . The corresponding reflection matrix and source

vector are:

R =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 1

 and ŝ = WΛ



0

0

−ρ0

c0
uni

0


. (4.14)

A particular case of the imposed normal velocity boundary condition is the hard wall, which

can be encountered on aeroengine ducts. For rigid walls, the mean flow and perturbations

normal velocities are equal to zero. As a consequence, the corresponding source vector ŝ

is equal to zero.

For duct walls treated with liners, an impedance boundary condition may be imposed.

Without mean flow, that soft-wall condition is [162, 163]: p = Zu · n, where Z is the

boundary acoustic impedance. In terms of conservative parameters, this condition can be

written:
Z

ρ0
(ρu) · n− ρ0c

2
0

pc0

pc = 0. (4.15)

Like the hard-wall boundary condition, the soft-wall source vector is equal to zero. The

reflection matrix involves the impedance reflection coefficient: (Z − ρ0c0)/(Z + ρ0c0). The

particular value Z = ρ0c0 is such that the reflection coefficient is equal to zero: the acoustic

wave is fully transmitted. The particular value Z =∞, which corresponds to the hard wall,

is such that the reflection coefficient is equal to one: the acoustic wave is fully reflected.

With mean flow, the impedance boundary condition includes the mean flow gradient, which
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Figure 4.1: Two-dimensional problem domain Ω, boundary Γ, normal vector n and
triangular mesh element Ωi.

makes its definition through the method of characteristics complex [162, 163]. This is not

investigated in this work.

4.2.4 Axisymmetric Conditions

For axisymmetric problems, proper conditions verifying the variables continuity are applied

along the axis at r = 0. For a cylindrical problem, the conditions are described in Equation

3.54 depending on the values of the mode number m. In practice, within the numerical

model, these conditions are directly applied through linear relations on the degrees of

freedom.

4.3 Finite Element Model

4.3.1 Field Variable Approximation

The next step consists in discretising the continuous domain Ω. Since complex geometries

are considered in the application test cases (see Chapter 8), unstructured conformal meshes

are preferred. In the following, linear elements are mainly used (unless otherwise stated)

and the meshes are generated with Gmsh mesh generator [164]. Figure 4.1 shows an

example of a two-dimensional domain Ω, its boundary Γ, the normal vector n to the

boundary and a triangular mesh element Ωi from the discretisation.

The discretisation permits to approximate the integrals element by element, since
∫

Ω =
ne∑
i=1

∫
Ωi

and
∫

Γ =
ne∑
i=1

∫
Γi
, with ne the number of elements in the discretisation. The solution

vector qi on each element expands in terms of high-order polynomial shape functions S(j)
i
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and of degrees of freedom q
(j)
i such that:

qi(x) =

ndof∑
j=1

q
(j)
i S

(j)
i (x) ∀x ∈ Ω,∀i ∈ {1, . . . , ne}, (4.16)

where ndof is the number of degrees of freedom. The same shape functions are used for

each variable. The weighting functions in w have the same approximation basis. Written

in the matrix form, the vectors expansions read: q = Sd

w = So
, (4.17)

where S is the shape functions matrix, d is the vector of degrees of freedom and o is an

ndof -length vector.

4.3.2 Linear System

Each element integral is then evaluated by means of numerical quadrature, with accuracy

order corresponding to the highest polynomial order in the integrand. The standard Gauss-

Legendre quadrature is used for two-dimensional elements and the Dunavant quadrature

for triangular elements [165]. As an example, the first integral in the formulation 4.2

transforms into: ∫
Ω

jωwTqdΩ = oT

(
ne∑
i=1

∫
Ωi

jωSTSdΩi

)
d. (4.18)

For a single frequency ω, the elementary integrals are computed within each element and

then assembled to form the following discrete global system:

Kd = f , (4.19)

where K is a square, sparse, complex matrix of size n2
dof . f is the complex right-hand side

vector. Solving that linear system provides the unknown degrees of freedom contained in

the vector d, by means of the direct LU factorisation method [166]. The finite element

model must comply with consistency, such that the numerical solution converges to the

correct solution with mesh refinement and/or increase of shape functions polynomial order

[167].
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Figure 4.2: Mapping of triangular element from physical domain to reference domain.

4.3.3 Reference Elements

High-order finite elements use large amounts of information, requiring efficient management

[108]. Numerical quadrature necessitates many integration points inside each element.

The use of reference elements makes the numerical quadrature more convenient. On each

element, the coordinates (x, y) in the physical domain transform into the coordinates (η, ξ)

in the reference domain by means of a bijective reference map (see Figure 4.2). In practice,

this mapping is a change of variable inside the integrals of the formulation. On each two-

dimensional element, the integral over Ωi with differential dxdy transforms into an integral

over Ωref
i with differential dηdξ which is the triangular element in the reference domain,

such that:

dxdy = det(J)dηdξ, with J =


∂x

∂η

∂y

∂η

∂x

∂ξ

∂y

∂ξ

 . (4.20)

The first-order derivatives of the physical coordinates (x, y) with respect to the reference

coordinates (η, ξ) are contained in the Jacobian matrix J . For linear triangular elements,

a Lagrange interpolation expands the physical coordinates in terms of the vertex shape

functions S(j)
v such that: 

x(η, ξ) =
3∑
j=1

S
(j)
v (η, ξ)xj

y(η, ξ) =
3∑
j=1

S
(j)
v (η, ξ)yj

, (4.21)
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where (xj , yj) are the three vertices coordinates of the triangular elements. These shape

functions read:

S(1)
v (η, ξ) = −η + ξ

2
, S(2)

v (η, ξ) =
1 + η

2
and S(3)

v (η, ξ) =
1 + ξ

2
. (4.22)

Any variable χ in the formulation is given by: χ(x, y) = χref(η, ξ). Its gradient in the

physical domain reads: ∇χ(x, y) = J−1∇refχref(η, ξ), where ∇ref is the gradient in the

reference domain and χref is the variable in the reference domain. On each physical element,

the quadrature evaluates the integral over the reference element for any function f such

that:

∫
Ωi

f(x, y)dxdy =

∫
Ωref
i

det(J)f(η, ξ)dηdξ =

nq∑
k=1

wkdet(J)f(ηk, ξk), (4.23)

where the finite sum approximates the integral. The number nq of weighting coefficients

wk and quadrature points (ηk, ξk) depends on the quadrature order. For curved elements,

the quadrature order increases since the Jacobian may not be constant over the element.

4.3.4 Shape Functions

The standard finite element method uses linear shape functions. As discussed in Section

2.6, that method is known to suffer from dispersion error and high memory requirements

limit its applicability to low frequencies. In this work, the polynomial basis is enriched with

high-order polynomial shape functions. This leads to lower resolution requirements, smaller

number of degrees of freedom and possibility to solve high-frequency problems [107]. Two

polynomial shape functions families exist: the nodal shape functions and the modal shape

functions. The nodal shape functions have the advantage of the δ-property: their value is

one at a given node and zero at the others. Therefore, the corresponding unknown degree

of freedom directly relates to the solution at a specific point of the element. The modal

shape functions may benefit from the hierarchic property: the polynomial space basis for

order p is included in the basis for order p + 1. This characteristic is an advantage for p-

and hp-adaptivity, since the shape functions do not have to be changed when increasing

the polynomial order of the approximation. In this work, the Lobatto hierarchic shape

functions are used because of their good conditioning properties [108]. On each element,

the approximation basis contains not only vertex functions, but also edge and bubble shape

functions. The vertex functions are non-zero at a given node and vanish at the others. The

edge functions are non-zero along a given edge and vanish along the others. The bubble
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Figure 4.3: Hierarchic Lobatto shape functions on the reference triangular element
(absolute values), for p from 1 to 3.

functions are internal and vanish along the edges of the element.

Figure 4.3 shows the Lobatto shape functions on the reference triangular element for p

varying from 1 to 3. Their hierarchic property is noticeable. The linear shape functions

involve only the vertex functions, as seen in Figure 4.3(a). The quadratic shape functions

involve the linear vertex functions plus the first edge functions, as shown in Figure 4.3(b).

As depicted in Figure 4.3(c), the cubic shape functions consist of the linear vertex functions

and of the quadratic edge functions, plus the cubic edge functions and the first internal

bubble function. For a triangular element, the number of vertex shape functions is constant

and equal to 3. The number of edge functions linearly depends on the polynomial order

p, for p ≥ 2. The number of bubble functions is a quadratic function of the polynomial

order, for p ≥ 3. That shows the significant impact of high orders on the polynomial basis

enrichment through bubble shape functions.

4.3.5 Static Condensation

Since they vanish along the reference element edges, the bubble shape functions are only

local and have no connectivity with their neighbouring elements. Static condensation con-

sists in expressing their corresponding degrees of freedom in terms of the remaining ones

(vertex and edge degrees of freedom) and to eliminate them from the global system 4.19

[108, 168]. Post-processing permits to recover the internal degrees of freedom of the solu-

tion. Static condensation allows to reduce the global system size and the computational

cost. In addition, it improves the system conditioning and substantially decreases the mem-
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ory requirements [169]. Those effects become more important for higher polynomial orders,

since the number of bubble functions increases in p2. Note that the static condensation

technique does not affect the final solution.

4.4 Perfectly Matched Layer

In this part, the Perfectly Matched Layer (PML) properties are discussed. The chapter

begins with an introduction on the PML technique. Then, the corresponding variational

formulation is described. Finally, an analytic study of the properties of the continuous and

the discrete PML is performed.

4.4.1 PML Technique

The PML approach consists in surrounding the computational domain with some artificial

domain in which a complex coordinate transformation is applied to absorb the outgoing

waves. A propagation domain [0, xint] is considered. It is terminated by a PML domain

[xint, xint + d] of length d. xint is the coordinate of the interface between the physical

domain and the PML. The complex coordinate x̃ in the PML can be written like:

x̃(x) = x+
fx(x)

jk0
, (4.24)

where fx is a function of the real physical coordinate x. The designation ‘perfectly matched’

indicates that the transmission at xint is perfect: no reflection is generated at the interface,

for any frequency, and for any incidence angle in multi-dimensional problems [113]. The

stretching function fx is often written as an integral:

fx(x) =

∫ x

xint

σx(s)ds, (4.25)

where σx is the absorption function. In order to ensure absorption in the PML, the stretch-

ing function fx needs to verify a few properties:

• The continuity of both the x-coordinate and the solution at the interface requires that

the stretching function vanishes at x = xint. Thus, fx(xint) = 0, which guarantees

that x̃(xint) = xint.

• To assure the absorption of the outgoing waves, the stretching function is positive
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and increases monotonically in the PML (for the time-harmonic ejωt dependence).

• The value fx(xint + d) of the stretching function at the PML outlet is large enough

to have insignificant reflections in the physical domain.

When dealing with wave propagation in duct with mean flow, inverse upstream modes may

propagate (see Section 3.3 and Equation 3.47). A simple classical PML would be inefficient

in that case and would make the numerical solution blow up. That issue is addressed for

uniform mean flows by applying a translation to wavenumbers into the lower half of the

complex plane [50]. In practice, this modification corresponds to a Lorentz transformation

by modifying the time coordinate t̃ in the PML:

t̃(x, t) = t− µx
ω

(x̃(x)− xint) , (4.26)

where µx is a constant correction coefficient. Since x̃(xint) = xint, the continuity of the

time coordinate is verified at the interface: t̃(xint, t) = t. This transformation has been

generalised for non-uniform mean flows [131]. A detailed analytic study of the PML is

performed in Section 4.4.3.

4.4.2 Weighted Residual Formulation

In the PML, the change of coordinates leads to a modification of the Linearised Euler

Equations. However, the procedure to obtain the weighted residual formulation is identical

to the one described in Section 4.1. The formulations in Cartesian coordinates and for an

axisymmetric problem are presented hereafter.

PML Formulation in Cartesian Coordinates

In two dimensions, the space-time transformation in the PML converts the real coordinates

(x, y, t) in the physical domain into the complex coordinates (x̃, ỹ, t̃). The two-dimensional

Linearised Euler Equations in the PML read:

jωq + jµxAxq +
1

γx

∂Axq

∂x
+

1

γy

∂Ayq

∂y
= 0. (4.27)

The complex coordinates derivatives γxi are defined by:

γxi =
dx̃i(xi)

dxi
= 1 +

f ′xi(xi)

jk0
, (4.28)
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where f ′xi is the derivative of fxi with respect to xi (xi ≡ x or y). The weighted residual

formulation follows:

∫
Ω̃

(
jωγxγyw

Tq + jγxγyµxw
TAxq − γy

∂wT

∂x
Axq − γx

∂wT

∂y
Ayq

)
dxdy

= −
∫

Γ̃
wT (γynxAx + γxnyAy) qdΓ̃, (4.29)

where Ω̃ is the PML domain and Γ̃ its boundary. An infinitesimal element in the PML

is such that: dx̃dỹ = γxγydxdy, which justifies the integration with respect to the real

coordinates. That formulation is actually a generalisation of Equation 4.2, since in the

physical domain: γxi = 1 and µx = 0.

PML Formulation for an Axisymmetric Problem

For an axisymmetric problem, the space-time transformation in the PML converts the real

coordinates (r, θ, x, t) in the physical domain into the complex coordinates (r̃, θ, x̃, t̃). Note

that the transformation does not apply to θ. Similarly, the axisymmetric Linearised Euler

Equations in the PML read:

jωq + jµxAxq +
1

r̃
Acq +

1

r̃

1

γr

∂r̃Arq

∂r
− j

m

r̃
Aθq +

1

γx

∂Axq

∂x
= 0. (4.30)

The weighted residual formulation follows:

∫
Ω̃

(
jωr̃γrγxw

Tq + jr̃γrγxµxw
TAxq + γrγxw

TAcq − jmγrγxw
TAθq

−r̃γx
∂wT

∂r
Arq − r̃γr

∂wT

∂x
Axq

)
drdx = −

∫
Γ̃
r̃wT (γxnrAr + γrnxAx) qdΓ̃. (4.31)

Generalisation of the PML for Mode Injection

The original purpose of the PML is to absorb outgoing waves. The PML is also suitable for

injecting incident modes or analytic solutions into the computational domain. The advan-

tage over the method of characteristics is that the reflected waves are absorbed regardless

of the incidence angle. The principle lies in applying the PML equations to the reflected

field only [57, 59]. Writing the total solution q as the sum of an incident field qi and of a

reflected field qr. The reflected field yields:

qr = q − qi. (4.32)
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Figure 4.4: One-dimensional PML.

For example, the two-dimensional Linearised Euler Equations written in that ‘active’ PML

read:

jωq + jµxAxq +
1

γx

∂Axq

∂x
+

1

γy

∂Ayq

∂y
= jωqi + jµxAxqi +

1

γx

∂Axqi

∂x
+

1

γy

∂Ayqi

∂y
. (4.33)

The weighted residual formulation follows Equation 4.29. In that case, the right-hand side

in the formulation contains a source term which is characterised by the incident field qi.

4.4.3 Analytic Study

In this section, some insight is given on the PML behaviour. A simple one-dimensional

analysis is first performed to better understand the absorption mechanisms. Then, a two-

dimensional study is proposed.

One-Dimensional Perfectly Matched Layer

Let us consider a one-dimensional unbounded domain in the x-direction in which propagates

an acoustic wave. The domain is truncated at xint and a PML is applied between xint and

xint + d (see Figure 4.4). The one-dimensional Helmholtz equation for acoustic waves is

obtained for the pressure field as the simplification of Equation 3.32 with u0x = 0:

c2
0

d2p

dx2
+ ω2p = 0 ∀x ∈ [0, xint]. (4.34)

Given the changes of variables in the PML (see Equation 4.24), this equation is similar in

the PML:

c2
0

d2p̃

dx̃2
+ ω2p̃ = 0 ∀x ∈ [xint, xint + d]. (4.35)

Considering waves propagating in the positive x-direction in the physical domain, the

analytic solutions simplify to: p(x) = Ae−jk0x +Bejk0x ∀x ∈ [0, xint]

p̃(x) = Ae−jk0x̃(x) +Bejk0x̃(x) ∀x ∈ [xint, xint + d]
, (4.36)
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where A is the pressure field amplitude at x = 0 and B is the reflected wave amplitude.

Since x̃(xint) = xint, the continuity of the solution holds at the interface. In practice,

numerical solutions are not perfect and residual reflections are present at the PML outlet

in x = xint + d. At the PML outlet, we want the total pressure field to vanish, which

provides B. It yields:

p̃(x) = A
(

e−jk0x−fx(x) −Rejk0x+fx(x)
)
, (4.37)

where R = e−2jk0(xint+d)e−2fx(xint+d) is the reflection coefficient at the PML outlet. These

expressions highlight the first important feature of an efficient PML: a low-value reflection

coefficient for minimising reflected waves amplitudes. The second significant aspect in

designing the PML is related to its discretisation in the numerical model: an adequate

stretching function is necessary for the numerical model to better approximate the solution

in the PML. The first requirement indicates that fx(xint + d) has to be very large in order

to have |R| small enough. Regarding the discrete PML, the second requirement calls for

an optimal stretching function such that the profile of the solution in the PML is smooth

enough to facilitate its approximation. Bermúdez et al. propose a logarithm function [170]:

fx(x) = − ln

(
1− x− xint

d

)
. (4.38)

This function verifies the different requirements previously set:


fx(xint) = 0

fx(xint + d) = +∞

f ′x(x) > 0 ∀x ∈ [xint, xint + d]

, (4.39)

such that it leads to R = 0. The pressure field in the PML is:

p̃(x) = Ae−jk0x

(
1− x− xint

d

)
, (4.40)

which induces a linear decay in the PML [171]. The complex exponential is responsible

for additional oscillations in the PML, with the same wavelength characteristics as those

encountered in the physical domain. These oscillations induce an additional source of error

for the approximation of the solution in the PML. Therefore, we propose to cancel these

oscillations by adding an imaginary part to the stretching function:

fopt
x = − ln

(
1− x− xint

d

)
− jk0 (x− xint) . (4.41)
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Figure 4.5: Absorption of a one-dimensional acoustic wave through a Perfectly
Matched Layer. Black solid line: analytic solution. Red dots: numerical solution.

This new stretching function fopt
x verifies the requirements 4.39 and is such that the pressure

in the PML becomes:

p̃opt(x) = Ae−jk0xint

(
1− x− xint

d

)
. (4.42)

The natural oscillations in the PML vanish thanks to the imaginary part in the stretching

function, while the linear decay behaviour is ensured by the real part. Figure 4.5 illustrates

these results with a wave propagating in the physical domain and being damped in the

PML for: xint = 1, d = 0.25 and k0 = 25. The analytic solution is compared to the

numerical solution, for 200 discretisation elements in the physical domain and 25 in the

PML (linear shape functions are used). In the left figure, the classical stretching function

introduced in Equation 4.38 is used, while in the right figure, the optimal function defined

in Equation 4.41 is used. Both stretching functions provide the expected results: they

absorb the oscillating wave but, while fx keeps the natural oscillations in the PML, fopt
x

cancels them out. In terms of accuracy, the Euclidean errors in the physical domain and

in the PML are:

Ephys
L2 =

 0.23% with fx

0.096% with fopt
x

and EPML
L2 =

 0.28% with fx

0.0036% with fopt
x

.

The two-dimensional Euclidean error is defined as:

EL2 =
‖pn − pa‖L2

‖pa‖L2

(4.43)

where pn is the numerical solution, pa is the analytic solution and ‖p‖L2 =
√∫

Ω |p|2dΩ.

These results show the improvement brought by the new stretching function. The pro-

posed discrete PML becomes exact for plane waves of normal incidence. The state of the

art function as proposed by Bermúdez et al., is not, since it induces some reflections due
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Figure 4.6: Absorption of a one-dimensional acoustic wave through a Perfectly
Matched Layer, with one element in the damping region. Black solid line: analytic

solution. Red dots: numerical solution.

Figure 4.7: Two-dimensional PML.

to the additional oscillations in the layer.

Figure 4.6 shows the results with only one element in the PML. The numerical solution

with the classical stretching function does not match the analytic solution. The PML is

not able to absorb the outgoing wave which is reflected at the PML outlet and propagates

back in the physical domain. By contrast, the proposed stretching function has the exact

same accuracy as in the case with 25 elements in the PML. Note that for the classical

stretching function, the numerical results become more and more accurate as the PML

length is reduced. For d� 1, the pressure profile tends to a straight line [171].

An optimal stretching function which exactly absorbs propagating waves with normal inci-

dence has been derived. This approach theoretically cancels interpolation errors in discrete

PML. Let us now extend the one-dimensional investigation to a two-dimensional case.

Two-Dimensional Perfectly Matched Layer

We consider an infinite straight duct of height H in which waves propagate in the x-

direction, carrying a uniform mean flow. After truncation, the physical domain extends

for x from 0 to xint and the Perfectly Matched Layer spreads over the length d. Figure

4.7 shows the problem configuration, which is a simplification in two dimensions of the

rectangular cross-section duct studied in Section 3.3. In two dimensions, the convected
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Helmholtz equation 3.32 holds considering that there is no z-coordinate. The coordinates

(x̃, t̃) in the PML are defined in Equations 4.24 and 4.26. The domain truncation introduces

spurious reflections at the PML outlet. For y ∈ [0, H], the corresponding bounded solutions

are: p(x, y) = A cos(kyy)
(

e−jk+x x −Re−jk−x x
)

∀x ∈ [0, xint]

p̃(x, y) = Ã cos(kyy)e−jµxx̃(x)
(

e−jk+x x̃(x) −Re−jk−x x̃(x)
)
∀x ∈ [xint, xint + d]

,

(4.44)

where the continuity of the solutions at the interface is such that Ã = Aejµxxint . We recall

the parameters introduced in previous sections: ky = mπ/H for m ∈ N is the transverse

wavenumber, µx is the correction coefficient introduced in the expression of t̃, and R is the

reflection coefficient at the PML outlet.

The objective pursued here is to examine the behavior of the PML for guided propagation,

more precisely, to examine the ability of the PML to absorb modes close to cut-on and

evanescent waves.

Reflection Coefficient

Let us first focus on the reflection coefficient R = e−2jKx̃(xint+d). It depends on the cut-off

ratio K:

K =



√
k2

0 − (1−M2
x) k2

y

1−M2
x

for cut-on modes

−j

√
(1−M2

x) k2
y − k2

0

1−M2
x

for cut-off modes

. (4.45)

K is a positive real number for propagating modes and purely complex imaginary for

evenescent modes. This affects the reflection coefficient:

R =

 e−2jK(xint+d) e
−2j K

k0
fxi (xint+d)

e
−2 K

k0
fxr (xint+d) for cut-on modes

e−2K̂(xint+d) e
−2 K̂

k0
fxi (xint+d)

e
2j K̂
k0
fxr (xint+d) for cut-off modes

, (4.46)

where K̂ = −=(K) ∈ R+. General stretching functions fx, with real part fxr and imaginary

part fxi , are considered. From these expressions, we can build conditions on the stretching

function and on the domain size in order to limit reflections:

• For cut-on modes, |R| = e
−2 K

k0
fxr (xint+d) and reflections are insignificant if fxr(xint +

d)� 1.

• For cut-off modes, |R| = e−2K̂(xint+d)e
−2 K̂

k0
fxi (xint+d) and reflections are limited if
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fxi(xint + d)� 1, or if the domain and/or the PML are large enough.

Error Sources

Let us now consider the origins of error introduced through the PML. The relative difference

between unbounded and bounded solution can be measured. The subsequent error ERL2 is

called reflection or truncation error. We find:

ERL2 =

 |R|

eK̂xint |R|
=

 e
−2 K

k0
fxr (xint+d) for cut-on modes

e−K̂(xint+2d)e
−2 K̂

k0
fxi (xint+d) for cut-off modes

. (4.47)

This measure indicates the limit accuracy due to the domain truncation: the real part of the

stretching function controls the error for cut-on modes, whereas the imaginary part of the

stretching function as well as the domain dimensions (xint and d) command the accuracy

for cut-off modes. The conditions for minimising the truncation error are identical to those

explained for reflections limitation in the previous paragraph. The second source of error

is a discretisation error. The stretching functions should be designed in order to create

smooth decays, which are easier to approximate and thereby lead to lower discretisation

error. The combination of the truncation error with the discretisation error gives the total

error introduced by the PML.

Solution Profile

Let us now have a closer look at the solution in the continuous PML, assuming that reflec-

tions are nonexistent. The pressure field expanded expression in the PML is of the form

p̃(x, y) = A cos(kyy)ejhosc(x)ehenv(x), where hosc(x) and henv(x) are functions representing

the oscillatory behaviour and the envelope profile in the PML, respectively. They read:


hosc(x) = −=(kx)

fxr(x)

k0
− (µx + <(kx))

(
x− xint +

fxi(x)

k0

)
−<(kx)xint

henv(x) = − (µx + <(kx))
fxr(x)

k0
+ =(kx)

(
x− xint +

fxi(x)

k0

)
+ =(kx)xint

.

(4.48)

It is clear from these expressions that the propagative and evanescent waves behave very

differently in the PML. We recall the wavenumber for right-propagating acoustic modes:

kx = − k0Mx

1−M2
x

+K. (4.49)
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Since µx +<(kx) ≥ 0 in order to guarantee the absorption of the propagative modes in the

PML, it yields:

µx =
k0Mx

1−M2
x

, (4.50)

which leads to µx +<(kx) = <(K). This expression of µx is identical to the one proposed

by Bécache et al. for treating inverse upstream modes [50].

We now propose expressions of fxr and fxi which provide an optimal solution in the PML,

i.e. with no oscillations and with linear envelope. For cut-on modes, we choose:
fxr(x) = −k0ar ln

(
1− x− xint

d

)
fxi(x) = −k0(x− xint)

, (4.51)

where ar is a constant coefficient. By setting ar = 1/K, fxr is optimal and the pressure

profile is exactly linear in the PML. But this choice depends on the mode order: there

exists an optimal stretching function for each cut-on mode. The choice of fxi cancels out

oscillations in the direction of propagation.

For cut-off modes, an optimal choice would be:
fxr(x) = 0

fxi(x) = −k0(x− xint)− k0ai ln

(
1− x− xint

d

) , (4.52)

where ai is a constant coefficient. Choosing ai = 1/K̂ theoretically gives the optimal choice

for the absorption of evanescent waves, with linear profile and no oscillations in the PML.

However, such choice is in contradiction with the stretching functions expressed for cut-on

modes in Equation 4.51.

These two examples demonstrate that it is analytically possible to find optimal stretch-

ing functions that provide a linear decay and that cancel out axial oscillations in the

PML. However, this choice is mode-order dependent and besides, the choice of the optimal

stretching function for the evanescent and propagating case is rather contradictory. An

intermediate choice should therefore be found. In the rest of our study, unless otherwise

stated, the classical Perfectly Matched Layer will be used, i.e. applying the stretching

function introduced by Bermúdez et al. [170] and the correction coefficient of Bécache et

al. [50] for inverse upstream modes absorption:
fx(x) = − ln

(
1− x− xint

d

)
µx =

k0Mx

1−M2
x

. (4.53)





Chapter 5

Verification Results

In this chapter, numerical results are presented for two-dimensional simple test cases in

order to verify the high-order finite element model solving the Linearised Euler Equations.

The computed solutions are compared with the reference solutions described in Chapter

3. The model performance is studied through solution convergence by means of mesh

refinement, increase of shape functions polynomial order and frequency change. The mean

flow velocity effects are also considered. A discussion on performance assessment quantities

is first performed. The results for plane wave propagation in free field are then presented.

Acoustic, vorticity and entropy waves propagation in duct is assessed for high-order modes.

The implementation of the Perfectly Matched Layer is also verified.

5.1 Performance Assessment Quantities

As discussed in Section 2.6 of the literature review, numerical accuracy is a global notion

that encompasses many different error sources: geometry description, mean flow interpola-

tion, non-reflecting boundary conditions, dispersion and interpolation errors, and acoustic

sources description. In addition, several parameters can assess the cost of a numerical

model: computational time, memory usage, condition number and number of degrees of

freedom per wavelength, among others. These aspects are described in the following sec-

tions and the parameters used to evaluate them are introduced.
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5.1.1 Numerical Error

In this chapter, the test cases involve simple squared geometries. This allows the geometry

to be exactly represented by standard linear triangular or quadrangular elements. In terms

of medium properties, the mean flow is uniform in the first two test cases and the mean

flow interpolation is exact. On the contrary, a non-uniform mean flow velocity is considered

in Section 5.3.2: the mean flow interpolation accuracy is shown to have an impact on the

numerical solution.

The physical domain truncation is also a potential source of error for unbounded prob-

lems, since it may create spurious reflections inside the computational domain. For this

verification, characteristic boundary conditions (see Section 4.2) are used to ensure that

outgoing waves leave the computational domain without generating significant reflections.

The validation of Perfectly Matched Layer absorbing boundary conditions is also examined

in Section 5.4.

The discretisation itself introduces additional numerical errors, as explained in Section 2.6.

The numerical wavenumber differs from the exact wavenumber. The difference between

these wavenumbers results in the global dispersion error, which accumulates along the com-

putational domain contributing to the so-called pollution effect. Mesh refinement and/or

polynomial order increase may reduce this effect (h- and p-refinements). The dispersion

error increases with the frequency. The second numerical error is the interpolation error,

which represents the asymptotic behaviour of the numerical error.

In practice, for each variable χ of the solution vector q, several error measures E between

the numerical solution χn and the reference solution χa are used:

E =
‖χn − χa‖
‖χa‖

. (5.1)

• The Euclidean error EL2 is based on the L2-norm over the computational domain,

such that:

‖χ‖L2 =

√∫
Ω
|χ|2 dΩ. (5.2)

• The Sobolev-like error EH1 is based on the H1-norm over the computational domain

and involves the solution gradient. It reads:

‖χ‖H1 =

√∫
Ω
k2

0 |χ|
2 + |∇χ|2 dΩ. (5.3)
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5.1.2 Performance Measures

Some more parameters are introduced to evaluate the numerical method efficiency. The

condition number κ gives some indication on the stability of the final linear system given in

Equation 4.19: Kd = f . It indicates how much a small change of the input f in the system

will affect the numerical solution d. Low condition numbers characterise well-conditioned

problems, whereas ill-conditioned problems have high condition numbers. The condition

number is measured on the sparse system matrix K:

κ = ‖K‖L1‖K−1‖L1 , (5.4)

where the L1-norm is such that ‖K‖L1 = maxj (
∑

i |Ki,j |), i and j being the rows and

columns of the matrix K respectively [172].

The sparsity of K is another indicator of the computational performance. The number of

non-zero entries (noted nnzK) quantifies the matrix sparsity, which is directly correlated

with the memory usage to store the matrix. The linear system is solved with the mul-

tifrontal massively parallel sparse direct solver MUMPS [173], which provides indicative

factorisation and total computational times.

The numerical resolution is characterised by the number of degrees of freedom per wave-

length dλ. That parameter indicates the density of information used to describe one wave-

length [174]. It accounts for both the characteristic mesh size and the polynomial order:

dλ = λ

√
ndof − 1√
SΩ

, (5.5)

where λ = 2π/kx is the wavelength, ndof is the total number of degrees of freedom and SΩ

is the area of the computational domain Ω. Another definition of that number explicitly

expresses dλa as a function of h and p, and considers the shortest acoustic wavelength

induced by the mean flow [107]:

dλa = 2π
c0 − u0

ω

p

h
. (5.6)

That definition is convenient since, in practical problems, upstream and downstream waves

may propagate, and a proper mesh grid should be able to resolve both waves. In this way,

aliasing issues are also avoided [51].

A few input parameters are varied in order to evaluate their effects on the aforementioned
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Figure 5.1: Unstructured triangular meshes.

output performance quantities. The characteristic mesh size h and the angular frequency

ω define the number of elements per wavelength. The polynomial order p increases the

model accuracy. The mean flow velocity u0 also affects the numerical results. Depending

on the test case, the effects of the wave direction with respect to the mean flow velocity

direction (expressed through the angle α− α0) and of the duct mode m are also studied.

5.2 Plane Wave in Free Field

This section focuses on plane wave propagation in free field. The test case is described in

Section 3.2: a plane wave of wavenumber k propagates in free field with a direction α. The

background flow is characterised by its velocity vector u0 and its direction α0. Figure 3.1

summarises this configuration. The fluid properties are non-dimensional and equal to one.

5.2.1 Numerical Setup

The numerical simulations use a two-dimensional computational domain Ω of length L and

height H. In this study, a unit squared domain is considered: L = H = 1. The domain

is discretised with unstructured triangular elements. Figure 5.1 shows two examples of

coarse mesh and fine mesh, which respective characteristic mesh sizes h are 0.5 and 0.05.

Characteristic boundary conditions enforce the plane wave analytic solution along the

domain outer limits, as described in Section 4.2. Note that although only acoustic plane
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waves are considered in this section, similar results and conclusions could be drawn for

vorticity and entropy waves.

5.2.2 Numerical Results

Several inputs may affect the numerical results: the wave angular frequency ω, the mesh

size h, the polynomial order p, the mean flow velocity u0 and the relative wave direction

with respect to the mean flow direction α − α0. These parameters are varied in order to

produce performance plots.

No Mean Flow Case

At a first stage, acoustic plane waves propagate in a medium at rest (u0 = 0). Some figures

compare the error measures EL2 and EH1 on the four variables (ρ, ρux, ρuy, pc). The wave

angle effects are discussed, as well as the resolution parameters impact (h, p, dλa) on these

errors and on the performance quantities (κ, nnzK).

Comparison of Error Measures

A first comparison of the errors introduced in Section 5.1.1 is performed. An acoustic plane

wave propagates with an angle α = 60◦ in a medium at rest. The errors on each variable are

measured for h = 0.5. The number of degrees of freedom per shortest acoustic wavelength

dλa is varied from 2 to 100. Figure 5.2 represents the L2- and H1-norm errors against dλa

for each variable. The curves are shown for p = 1 and 2. Three different regimes are

identified: a very-low resolution regime where the problem is numerically under-resolved

(dλa < 5), an intermediate regime where the dispersion error dominates (5 < dλa < 10),

and an asymptotic high-resolution regime where the interpolation error prevails (dλa > 10).

The L2-norm error is lower than the H1-norm error, which converges with one order less

than the L2-norm error. The Linearised Euler Equations indicate that the velocity field

depends on the pressure gradient. For instance, without mean flow the velocity relates to

the pressure by:

jωu =
1

ρ0
∇p. (5.7)

In the following, the L2-norm is considered, unless otherwise stated.

Wave Angle Effects

The wave direction effects are now checked. Figure 5.3 represents the L2-norm error against
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Figure 5.2: Error measures against the number of degrees of freedom per shortest
acoustic wavelength, for an acoustic plane wave in free field. h = 0.5, α = 60◦, u0 = 0.
Black: p = 1. Red: p = 2. Solid line: EL2 . Dashed line: EH1 . Top left: ρ. Top right:

ρux. Bottom left: ρuy. Bottom right: pc.
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Figure 5.3: L2-norm error against the wave direction, for an acoustic plane wave in
free field. h = 0.5, dλa

= 50, u0 = 0, p ∈ {1, · · · , 9}. Top left: ρ. Top right: ρux. Bottom
left: ρuy. Bottom right: pc.

the wave direction α for each variable. Because of the problem symmetry, the study

is limited to values of α between 0◦ and 90◦. The number of degrees of freedom per

shortest acoustic wavelength is chosen large enough to be in the asymptotic high-resolution

regime: dλa = 50. The curves are shown for p from 1 to 9. The anisotropic behaviour of

the density/pressure differs from the one of the momentum. For the density/pressure, a

symmetric behaviour is observed: the lowest error is reached for α = 45◦, and the error

increases to attain its maximum value at α = 0◦ and 90◦. Incrementing p lowers the error
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Figure 5.4: L2-norm error against the number of degrees of freedom per shortest
acoustic wavelength, for an acoustic plane wave in free field. h = 0.5, α = 60◦, u0 = 0,

p ∈ {1, · · · , 9}. Top left: ρ. Top right: ρux. Bottom left: ρuy. Bottom right: pc.

level and maintains the same wave direction effects. For the momentum, the smallest error

is also reached for α = 45◦. In the x-direction, the error increases faster for α > 45◦ than

for α < 45◦. In the y-direction, the situation is reversed. That can be explained by the

wave direction which favours one momentum component, depending on the values of cosα

and sinα. Another observation relates to the polynomial order: close to normal directions

to the domain (α = 0◦ and 90◦), incrementing p to p + 1 (with p even number) does not

significantly improve the numerical accuracy.

Polynomial Order Effects

The L2-norm error is plotted against dλa , for each variable, and for polynomial orders

from 1 to 9. The results are shown in Figure 5.4. The asymptotic performance gives

details on the numerical model convergence: for the density/pressure, the errors behave like

O
(
d
−(p+1)
λa

)
as expected from the finite element theory described in Section 2.6 [89, 105].

Note that here these two variables relate like p = c2
0ρ and the errors on those variables

are identical. For the momentum, the situation is more complex. Linear shape functions

provide an identical behaviour to the density/pressure one. For high-order polynomials,

the performance depends on the polynomial order parity. Even orders (p ≥ 2) follow the

same O
(
d
−(p+1)
λa

)
rule, with an error level sightly higher than the density/pressure error.

However, odd orders (p ≥ 3) converge in O
(
d−pλa

)
: the high-order finite element looses one

accuracy order on the momentum interpolation for odd orders. In terms of performance
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Figure 5.5: L2-norm error against the mean flow Mach number, for an acoustic plane
wave in free field. h = 0.5, dλa

= 30, α0 = 0◦ or 180◦, p ∈ {1, · · · , 9}. Solid line: α = 0◦.
Dashed line: α = 90◦. Top left: ρ. Top right: ρux. Bottom left: ρuy. Bottom right: pc.

of the high-order model, let us compare the resolution needed to obtain a 0.1% L2-norm

error on the density. For linear shape functions, about 55 degrees of freedom per shortest

acoustic wavelength are necessary to reach that accuracy, whereas only 10 are sufficient for

p = 9.

Mean Flow Case

In this paragraph, mean flow effects are considered. At first, the mean flow velocity is

varied for a fixed flow direction. Then, the mean flow velocity is fixed and the impact of

the flow orientation is assessed.

Mean Flow Velocity Effects

The number of degrees of freedom per shortest acoustic wavelength is fixed to dλa = 30,

which is large enough to guarantee errors lower than 10%. Plane waves of directions

α = 0◦ and 90◦ are studied. The flow direction is either α0 = 0◦ or 180◦, which gives

u0 = u0{±1, 0}t. This means that the wave propagation is downstream/upstream for

α = 0◦, and orthogonal to the mean flow direction for α = 90◦. Figure 5.5 represents the

L2-norm error against the mean flow Mach number Mx = u0x/c0 for each variable. For the

density/pressure, the mean flow velocity effects on the error are stronger downstream than

upstream for a propagation in the flow direction (see solid lines): the longer wavelength

makes the error decrease significantly, whereas the shorter wavelength slightly affects the

error. For an orthogonal propagation (see dashed lines), the results are symmetric since the
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Figure 5.6: L2-norm error against the mean flow direction, for an acoustic plane wave
in free field. h = 0.5, dλa

= 30, u0 = 0.6c0, p ∈ {1, · · · , 9}. Solid line: α = 0◦. Dashed
line: α = 90◦. Top left: ρ. Top right: ρux. Bottom left: ρuy. Bottom right: pc.

wavenumber ka is identical for α0 = 0◦ and 180◦: ka = ω/(c0+u0 cos(α−α0)) = ω/(c0+u0)

with α = 90◦. The error decreases when the mean flow velocity increases. Regarding the

momentum, the mean flow velocity effects are more complex. For α = 0◦, the momentum y-

component is zero and the influence is seen on the x-momentum which error decreases when

the Mach number Mx increases from −1 to 1. The error declines faster for downstream

propagation. For an orthogonal propagation (α = 90◦), the symmetry observed on the

density/pressure is also verified on the momentum and the error decreases with a mean

flow velocity rise. However, the polynomial order impact is not as obvious: an increment

of p to p + 1 (p even) does not improve the error for mean flow velocities in a range of

values around zero. That range increases with the order. This behaviour is not observed

on the density/pressure. The spurious oscillations observed for orders 8 and 9 at very low

error indicate that the machine precision has been reached.

Mean Flow Direction Effects

Let us now observe the mean flow direction effects. The mean flow velocity is fixed to

u0 = 0.6c0. The flow angle varies from 0 to 180◦. Plane waves of directions α = 0◦ and

90◦ are considered. Figure 5.6 shows the L2-norm error against the flow direction α0 for

each variable. For the right-propagating wave (α = 0◦), an increase of the mean flow angle

amplifies the errors, especially for α0 > 90◦ which corresponds to upstream propagation.

For the y-propagating wave (α = 90◦), the error levels are symmetric around α0 = 90◦.
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The error increases as the flow tends to be orthogonal to the wave propagation (α0 = 0◦

or 180◦).

5.3 Duct Problem

In this section, the second verification test case is introduced. It considers the wave prop-

agation in infinite two-dimensional straight ducts in the presence of axial mean flow. The

computational domain is identical to the one described in Section 5.2.1 for plane wave

propagation in free field (length L = 1, height H = 1, unstructured triangular mesh).

Hard wall boundary conditions are enforced to characterise duct walls, at y = 0 and H.

Characteristics boundary conditions enforce duct modes at x = 0, and close the problem

at x = L. Numerical results are presented first for uniform mean flows, and then for

non-uniform mean flows. The comparison is performed with the reference results given in

Sections 3.3 and 3.4.

5.3.1 Uniform Mean Flow

The characteristic mesh size h is varied between 0.01 and 0.5. Acoustic and vorticity modes

are propagated (results for entropy modes are not shown since they are similar to vorticity

modes). The uniform mean flow Mach number is fixed to Mx = u0x/c0 = 0.6. The mode

order effects are assessed.

Acoustic Modes

The first five acoustic duct modes (m from 0 to 4) are propagated at a frequency such that

k0 = 10. The modes 0 to 3 are cut-on, whereas the mode 4 is cut-off. A characteristic mesh

size Helmholtz number is defined by k0h. Figure 5.7 shows the L2-norm error against the

Helmholtz number for each variable, with p = 3. For each mode, numerical convergence is

observed by mesh refinement. Increasing the mode order makes the error rise: although the

axial wavenumber kx decreases, the transverse wavenumber ky grows with m. That causes

a loss of accuracy in the transverse direction. The y-momentum is zero for the acoustic

plane wave, since the mean flow velocity is only in the x-direction.

Vorticity Modes

Vorticity modes are now investigated. The characteristic mesh size is fixed to h = 0.25
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Figure 5.7: L2-norm error against the characteristic mesh size Helmholtz number, for
acoustic duct modes with uniform mean flow. k0 = 10, Mx = 0.6, m ∈ {0, · · · , 4}, p = 3.

Top left: ρ. Top right: ρux. Bottom left: ρuy. Bottom right: pc.
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Figure 5.8: L2-norm error against the number of degrees of freedom per hydrodynamic
wavelength, for vorticity duct modes with uniform mean flow. h = 0.25, Mx = 0.6,

m = 1. Left: ρux. Right: ρuy.

and the polynomial order varies from 1 to 9. Only the velocity carries information from

hydrodynamic modes. Results are shown for the first two modes: Figure 5.8 shows the L2-

norm error on the momentum against the number of degrees of freedom per hydrodynamic

wavelength dλv . This number is an adaptation of dλa to vorticity waves. Let us define:

dλv = 2π
|u0x |
ω

p

h
. (5.8)

On the error plots, the three regimes previously introduced are still visible: the under-

resolved region in low-resolution regime (dλv < 5), the intermediate zone where the dis-

persion error dominates (5 < dλv < 10) and the high-resolution regime governed by the

interpolation error (dλv > 10). An error level stagnation is observed after the asymptotic

range for high values of dλv . The convergence rate in the asymptotic regime is of order

p. The condition number κ (see Equation 5.4) and the number of non-zeros nnzK intro-
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Figure 5.9: Condition number and number of non-zeros against the polynomial order,
for vorticity duct modes with uniform mean flow. h = 0.25, Mx = 0.6, m = 1. Black:

dλv
= 2. Red: dλv

= 100. Solid line: with condensation. Dashed line: without
condensation. Left: κ. Right: nnzK .

duced in Section 5.1.2 are displayed in Figure 5.9. Regarding the system conditioning, it

increases with p. Without condensation (dashed curves), the condition number behaves

like κ ≈ 10p. Numerical condensation effects (solid curves) are visible for p ≥ 3, since

bubble functions are present only for these polynomial orders: the condition number is

decreased, up to a factor 1.5× 104 for p = 9. The number of degrees of freedom does not

have much influence on κ: its values are very similar for dλv = 2 and 100. Concerning the

number of non-zeros in the system matrix, a quadratic dependency is found with p in the

presence of condensation in the model: nnzK ≈ p2. Without condensation, the number of

non-zeros is higher considering that the numerical model accounts for the internal degrees

of freedom. nnzK does not depend on dλv .

5.3.2 Non-Uniform Mean Flow

Non-uniform mean flow effects are now investigated for the two-dimensional infinite straight

duct. Linear and parabolic variations of the mean flow velocity are considered in the

transverse direction, as introduced in Section 3.4. The velocity is uniform in the x-direction.

Only the first acoustic mode is studied. The standard wavenumber is k0 = 10 and the mean

flow Mach number maximum value is 0.5.

Figure 5.10 shows the L2-norm error against the shape functions polynomial order, for

each variable. The mesh size is h = 0.25. The black and red curves show the results

with exact mean flow values in the numerical model for the linear and parabolic flow

profiles, respectively. The convergence is nearly of order p: EL2 ≈ 10−p. One critical

point when dealing with non-uniform mean flows is the mean flow interpolation strategy.

For realistic applications, the mean flow data used for acoustic simulations are obtained

from separate procedures, by means of measurements, steady Euler computations or RANS
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Figure 5.10: L2-norm error against the polynomial order, for acoustic duct modes with
non-uniform mean flow. h = 0.25, Mx = 0.5, m = 0. Black: linear profile. Red:

parabolic profile. Solid line: exact mean flow. Dotted blue line: error on mean flow
interpolation, for parabolic profile. Top left: ρ. Top right: ρux. Bottom left: ρuy.

Bottom right: pc.

(Reynolds-Averaged Navier-Stokes) simulations for instance. The mean flow values are then

interpolated on the acoustic mesh for the acoustic simulation, which may introduce some

error. Regarding the linear flow profile, no additional error is introduced since the numerical

model is able to exactly interpolate the mean flow. For the parabolic flow profile, the mean

flow interpolation effect is evaluated by considering an inaccurate mean flow velocity value

at each integration point of the numerical procedure. The corresponding numerical results

are shown for relative errors with the exact mean flow velocity of 1, 0.1, 0.01 and 0.001%,

on the dotted blue curves. Each numerical error on the mean flow interpolation introduces

a stagnation in the error convergence of about one order of magnitude higher than the

mean flow velocity error. This result highlights the importance of an accurate mean flow

description in order to obtain valid numerical results [175].

5.4 Perfectly Matched Layer

The numerical model has been validated for wave propagation in free field and in ducts,

with characteristic boundary conditions. The Perfectly Matched Layer (PML) for outgoing

waves absorption is now verified. Results are shown for the two-dimensional problem of

wave propagation in duct with axial uniform mean flow. The computational domain is

composed of two subdomains, as introduced in Figure 4.7 in Section 4.4.3. The physical
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Figure 5.11: Unstructured and structured triangular meshes, in physical domain and
in Perfectly Matched Layer.

waves propagate in the so-called physical domain (for x from 0 to xint = 1) and the PML,

where the waves leaving the physical domain are damped, extends over the length d = 0.5.

The duct height is H = 1. Non-dimensional values are used. An unstructured triangular

mesh is used in the physical domain, whereas a structured mesh constitutes the PML

discretisation, as seen in Figure 5.11. Examples of wave absorption in the PML are studied

in the first section, for acoustic, vorticity and entropy modes. Then, the PML performance

is discussed.

5.4.1 Wave Absorption in Perfectly Matched Layer

In the following, waves propagate with a frequency such that k0 = 20. The mean flow

Mach number is Mx = 0.6. The first non-plane acoustic mode (cut-on) and the first

vorticity/entropy modes are considered (m = 1). The characteristic mesh size is h = 0.1

and the PML length is d = 0.5. Figure 5.12 shows the real parts of the different variables

in the computational domain for those modes. The difference in wavelength scales is

visible: the acoustic mode wavenumber is kxa ≈ 12.25, which corresponds to an acoustic

wavelength of λa ≈ 0.51; the vorticity/entropy modes wavenumber is kxv = kxe ≈ 33.33,

coinciding with a wavelength of λv = λe ≈ 0.19. The duct modes propagate in the physical

domain and are absorbed in the PML. Note that in these results, the PML definition

given in Equation 4.53, involving Bermúdez’s logarithm stretching function and Bécache’s

correction coefficient for inverse upstream modes, is used. It is worth noticing that the

PML performs well for acoustic modes, but also for vorticity/entropy modes.

For the acoustic mode, the polynomial order is fixed to p = 6. The numerical error on the

variables is obtained in the L2-norm, both in the physical domain and in the PML, as seen
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Figure 5.12: Real parts of the variables for the first non-plane acoustic mode and the
first vorticity/entropy modes, in a two-dimensional duct with axial uniform mean flow.
k0 = 20, m = 1, Mx = 0.6. Top left: acoustic mode, pc. Top right: acoustic mode, ρuy.

Bottom left: vorticity mode, ρux. Bottom right: entropy mode, ρ.

in Table 5.1. The numerical error in the PML is measured with respect to the analytic

Eρ
L2 Eρux

L2 E
ρuy
L2 Epc

L2

physical domain 0.014% 0.026% 0.088% 0.014%

PML 0.070% 0.046% 0.32% 0.070%

Table 5.1: L2-norm errors in the physical domain and in the PML, for the first non-plane
acoustic mode in a two-dimensional duct with uniform axial mean flow velocity. k0 = 20,

m = 1, Mx = 0.6, h = 0.1, d = 0.5, p = 6.

solution described in Section 4.4.3. For the vorticity mode, the polynomial order is fixed

to p = 8. In the physical domain, the errors on the momentum are: Eρux
L2 ≈ 0.18% and

E
ρuy
L2 ≈ 0.010%. In the PML, they are: Eρux

L2 ≈ 0.27% and Eρuy
L2 ≈ 0.028%. It can be seen

that the errors in the PML are slightly higher than the errors in the physical domain.

5.4.2 Perfectly Matched Layer Performance

The performance of the Perfectly Matched Layer is investigated in this section. The L2-

norm errors are plotted against the number of degrees of freedom per wavelength for each
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Figure 5.13: L2-norm error in the physical domain against the number of degrees of
freedom per shortest acoustic wavelength, for the duct acoustic plane wave. h = 0.1,
d = 0.5, Mx = 0.6. Solid line: Bermúdez. Dashed line: Modave. Dotted line: proposed

stretching function. Black: p = 1. Red: p = 5. Left: ρ. Right: ρux.

variable. Three types of PML are compared, depending on the stretching function.

• The logarithm function introduced by Bermúdez at al. is recalled [170]:

fx(x) = − ln

(
1− x− xint

d

)
. (5.9)

• The modified logarithm function established by Modave et al., such that its derivative

is also continuous at the interface between the physical domain and the PML, reads

[176]:

fx(x) = − ln

(
1− x− xint

d

)
− x− xint

d
. (5.10)

• The third stretching function is the one proposed in Equation 4.51, which accounts

for the mean flow effects and cancels out the oscillations in the propagation direction

in the PML (with ar =
(
1−M2

x

)
/k0):

fx(x) = −
(
1−M2

x

)
ln

(
1− x− xint

d

)
− jk0(x− xint). (5.11)

Acoustic Duct Modes

Figure 5.13 and 5.14 represent the errors in the physical domain against the number of

degrees of freedom per shortest acoustic wavelength dλa , for the first two acoustic duct

modes respectively. Since the y-momentum is zero and the pressure is proportional to

the density, only the errors on the density and on the x-momentum are displayed for the

acoustic plane wave. The three stretching functions provide convergence of the error but

present different features. The convergence in the asymptotic region ceases with Modave’s

PML and some stagnation is observed: this plateau corresponds to the same stagnation in

the error in the PML. This seems to indicate that Modave’s PML is less adapted to low
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Figure 5.14: L2-norm error in the physical domain against the number of degrees of
freedom per shortest acoustic wavelength, for the first non-plane acoustic duct mode.
h = 0.1, d = 0.5, Mx = 0.6, m = 1. Solid line: Bermúdez. Dashed line: Modave. Dotted
line: proposed stretching function. Black: p = 1. Red: p = 5. Top left: ρ. Top right:

ρux. Bottom left: ρuy. Bottom right: pc.

frequencies. The proposed stretching function shows promising results: the overall level of

error is lower than for the other two PMLs. The accuracy benefit is up to a factor 100 with

respect to the error obtained with Bermúdez’s PML, even for the first cut-on non-plane

acoustic mode. Moreover, the convergence is about one order higher for the proposed PML

with respect to Bermúdez’s PML, in the low-frequency range.

For cut-off modes (visible on Figure 5.14 for high values of dλa), all PML models present

a monotonous increase of the error as the frequency decreases (or as dλa increases). The

error in the physical domain is bounded by the reflection error (see Equation 4.47), which

depends on the length of the domain and of the PML: a longer domain or PML would

provide a larger convergence range. A major drawback of the proposed PML for cut-off

modes is that the imaginary part of the stretching function cancels out the evanescent

part of the wave in the PML, where the evanescent waves are therefore not absorbed. The

waves damping must be efficient enough in the physical domain to avoid reflections in the

PML. Large domains may overcome that issue, since cut-off modes amplitudes would be

insignificant when entering the PML. However, in comparison with the other two PMLs, it

seems that there is no major difference in the error in the physical domain, and the main

issue seems to be the domain length.
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Figure 5.15: L2-norm error in the physical domain against the number of degrees of
freedom per hydrodynamic wavelength, for the first vorticity duct mode. h = 0.1,

d = 0.5, Mx = 0.6. Solid line: Bermúdez. Dashed line: Modave. Dotted line: proposed
stretching function. Black: p = 1. Red: p = 5. Left: ρux. Right: ρuy.
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Figure 5.16: L2-norm error in the physical domain against the number of degrees of
freedom per hydrodynamic wavelength, for the first entropy duct mode. h = 0.1,

d = 0.5, Mx = 0.6. Solid line: Bermúdez. Dashed line: Modave. Dotted line: proposed
stretching function. Black: p = 1. Red: p = 5. Left: ρ. Right: ρux.

Vorticity and Entropy Duct Modes

Figures 5.15 and 5.16 represent the errors of the variables for the first vorticity and entropy

duct modes. Different regimes are observed: an under-resolved region for dλv = dλe < 6, an

intermediate regime for 6 < dλv < 30 where the numerical model converges, and a plateau

in the very low-frequency range. The three PMLs present similar results. However, the

proposed stretching function lowers the error level in the intermediate region, and reaches

the plateau for a lower resolution than Bermúdez’s PML, especially for the entropy mode.

Modave’s PML plateau level is higher than for the other PMLs. In practice, aeracoustic

models solve problems where the acoustic waves dominate the vorticity/entropy waves.

The PMLs are preferably designed to absorb acoustic waves.

5.5 Summary

In this chapter, the implementation and the performance of the proposed high-order finite

element model for the LEE have been verified. The propagation of uncoupled acoustic,

vorticity and entropy waves has been checked through two test cases: wave propagation
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in free field and duct modes propagation. The mean flow effects, with either uniform

or non-uniform velocity, have been assessed. The numerical model convergence has been

verified, for both mesh refinement and polynomial order increase. The performance of the

model has been assessed in terms of different performance metrics (numerical errors with

respect to analytic solutions, system matrix condition number and number of non-zeros,

and number of degrees of freedom per wavelength.). Finally, the efficiency of the Perfectly

Matched Layer has been confirmed for the different types of waves. A comparison of

stretching functions has shown that the proposed PML yields more accurate results than

PMLs already existing in the literature for propagating acoustic, entropy and vorticity

waves. The proposed formulation is however less efficient for evanescent waves, to which

no extra absorption can be provided.





Chapter 6

Numerical Stabilisation

The classical Galerkin finite element formulation is known to suffer from stability issues for

convection-dominated problems. In this chapter, some alternative variational formulations

are investigated for the Linearised Euler Equations. In a first section, the different sources

of numerical errors are presented. In the second section, a one-dimensional dispersion

analysis is performed in order to evaluate the dispersion properties of the high-order Finite

Element Method. A stabilisation method is then introduced in the third section. Finally,

in the fourth section, the stabilised formulation is assessed, with a particular emphasis on

the choice of the stabilisation parameters.

6.1 Sources of Numerical Error

6.1.1 Pollution Effect

The following error bound has been derived in the H1-norm for the hp-FEM and the

Helmholtz equation in one dimension [98, 105]:

EH1 ≤ C1

(
kh

2p

)p
+ C2k

(
kh

2p

)2p

, (6.1)

where C1 and C2 are weak functions of p, independent of ω and h. This expression high-

lights the different sources of error: the first term is linked with the interpolation error

which dominates in the high-resolution regime, whereas the second term represents the

dispersion error and the pollution effect which prevail in the low-resolution regime. From

this expression, it is also clear that the error decreases exponentially when the polynomial
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order p is increased, while it converges only algebraically when the mesh resolution h is de-

creased. This highlights the superiority of p-refinement over classical h-refinement. Beriot

et al. have demonstrated that this expression is also valid in the context of the convected

Helmholtz equation [51].

The dispersion error is defined as the relative difference between the exact and numerical

wavenumbers, for a given frequency. For the high-order Finite Element Method and the

Helmholtz equation, the following error estimator has been derived [140]:

Ed =
1

2

(
p!

(2p)!

)2 (kh)2p

2p+ 1
+O

(
(kh)2p+2

)
, (6.2)

where Ed is the dispersion error. This estimator is derived for kh � 1, but it also tends

to apply for low resolutions. In the presence of mean flow, this estimator is corrected by

a factor 1 −M , with the wavenumber also taking the Mach number M into considera-

tion through: k = k0/(1 + M) [51]. The dispersion error is a local phenomenon which

accumulates as the wave propagates through the computational domain, turning into the

pollution effect. This numerical behaviour scales with kL which is proportional to the

number of wavelengths in the domain, where the domain length L is contained in the weak

function C2 in the second term in Equation 6.1. This effect is illustrated in Figure 6.1

which shows a one-dimension wave propagation over a domain such that the phase error

due to dispersion has accumulated in the finite elements over the computational domain.

This results in a significant difference in phase between the numerical and exact solutions.

The pollution effect reduces the performance of the conventional low order Finite Element

Method at high frequencies. For large values of p, the phase errors become negligible. The

high-order Finite Element Method is therefore seen as an efficient approach to circumvent

the pollution effect [51]. As a consequence, the p-FEM allows to reduce the memory and

time requirements by several orders of magnitude compared to the linear or quadratic FEM

for a fixed accuracy in large-scale problems [52].

6.1.2 Convection-Related Instabilities

The standard Galerkin formulation suffers from unstable spurious oscillations in convection-

dominated problems [92]. For the convective-diffusive transport equation, the Péclet num-

ber expresses the convective to diffusive transport ratio and is defined as: Pe = uh/(2ν),

where h is the mesh size, u is the convection velocity and ν is a diffusivity coefficient.

It indicates that non-physical oscillations are present in the numerical solution for Pé-
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Figure 6.1: Dispersion error in one dimension. Black solid line: analytic solution. Red
solid line: numerical solution.

clet numbers higher than 1, for which convection dominates over diffusion. For linear

shape functions, the spurious node-to-node oscillations are due to a lack of diffusion in

the Galerkin scheme with respect to the exact solution scheme. As an illustration, Fig-

ure 6.2 shows the acoustic propagation in a simplified aeroengine exhaust with uniform

mean flow. This test case will be investigated in detail in Section 8.2. The left-hand

side picture represents a typical Linearised Euler Equations solution as obtained with the

classical linear finite element formulation. On the right hand side, the analytic solution

is presented. The overall pressure distribution obtained with the linear FEM is correct,

however some spurious oscillations deteriorate the solution accuracy. This lack of stability,

also referred to as the locking phenomenon, has been first reported for the LEE in 1980

by Astley and Eversman in [177]. Cai et al. have demonstrated that these effects also

hold for higher orders, still for the convection–diffusion transport problem [178]. They

have observed that depending on the polynomial order parity, the difference between the

exact and numerical diffusivity coefficients changes sign: this indicates that the high-order

Galerkin formulation adds or subtracts diffusion to the numerical model, according to the

parity of p. However, they have shown that incrementing the polynomial order helps to

limit the spurious oscillations. In addition, exponential convergence is still found when p is

increased. The polynomial order required for a given Péclet number is analytically derived

to achieve nodally stable solutions.

In order to counterbalance the negative diffusion introduced by the Galerkin approach with

linear elements, a solution consists in adding a diffusion term. This amounts to introducing

a decentered upwind approximation of the convective term, where the classical Galerkin

formulation is equivalent to a centered scheme. Petrov-Galerkin-type generalised methods

use weighting functions which do not coincide with the interpolation functions space. In

upwind approximations for finite element methods the element upstream of a node is

heavily weighted with respect to the element downstream. The first upwind finite element
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(b) Exact solution.

Figure 6.2: Convection-related spurious oscillations in two dimensions. Real part of
the modified pressure.

formulations used modified weighting functions which weighted upstream elements more

heavily than downstream elements, with respect to a given node [92]. Despite its stability,

this method has been observed to introduce excessive numerical dissipation [179, 180]. The

main stabilisation techniques rely on the addition of a stabilisation term in the formulation

of the form [92]: ∫
Ω
wTL(q)dΩ +

∫
Ω
D(w)τL(q)dΩ = 0, (6.3)

where D is the stabilisation operator and τ is a stabilisation parameter. Note that in

this equation the residual R is equal to the differential operator L(q) in the absence

of external source. The stabilisation operator defines the stabilisation technique: the

Streamline-Upwind Petrov-Galerkin (SUPG), Galerkin/Least-Squares (GLS) and SubGrid-

Scale (SGS) methods are the main ones. These methods and others have been compared

for the diffusion-convection-reaction equation with a finite element approach [181]. Re-

views on classical approaches can be found in [182], and in [183] for high-order methods.

An overview of stabilised finite element methods is also available for the advective-diffusive

equation in [184].

Several authors have studied the SUPG method. A finite element SUPG-based approach

has been used to solve multidimensional advective-diffusive systems [88, 185]. Carette et al.

have applied a linear finite element SUPG formulation to solve the multi-dimensional com-

pressible Euler equations. They have provided a definition of the stabilisation parameter

matrix, as well as a shock-capturing term [186]. The stabilisation parameter computation

has been investigated by Tezduyar and Osawa for the unsteady incompressible Navier-

Stokes equations [187]. These parameters are based on the local length-scales. For high-

order finite elements, Bause and Schwegler have recently studied the SUPG stabilisation

together with anisotropic shock capturing in order to treat the crosswind direction, per-
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pendicular to the propagation direction [188]. Applied to unsteady non-linear convection-

diffusion-reaction models with small diffusion, the method reduces spurious oscillations in

crosswind direction and improves the simulations accuracy.

The Algebraic Subgrid Scale (ASGS) method has been applied by Codina to stabilise the

Finite Element Method for the diffusion-convection-reaction equation [189]. A stabilisation

matrix has been proposed as an extension of a one-dimensional study. Guasch and Codina

have used this approach to solve the two-dimensional convected Helmholtz equation, using

a stabilisation parameter which has been derived from a dispersion analysis [143]. They

indicate that the formulation is equivalent to the GLS method and demonstrate the bene-

fits of the approach. Conceptually simpler and more general than the SUPG method, the

GLS technique has been introduced by Hughes et al. and is applicable to a wide range of

problem classes [190].

In the framework of the Linearised Euler Equations, Rao and Morris have used the SUPG

stabilisation method in the frequency domain using nodal polynomials and unstructured

triangular meshes [64]. They use a simple stabilisation parameter matrix, similar to the

one used by Beau et al. for the compressible Euler equations and which depends on the

coefficient matrices spectral radii [191]. Similarly, Iob et al. have used the ASGS ap-

proach together with the stabilisation parameter introduced by Guasch and Codina for the

two-dimensional convected Helmholtz equation [59].

In this work, the dispersion properties of the Linearised Euler Equations are investigated

with high-order finite elements and dedicated stabilisation techniques are studied. Un-

like most of the aforementioned studies which considered time-domain approaches, here

the formulation in frequency domain gives an additional parameter to account for the

unsteadiness of the equations and which is the angular frequency of the time-harmonic so-

lutions. Thus, the dispersion/stabilisation analysis developed in this chapter involves the

following specific parameters: the angular frequency, the convection velocity, the element

size and the polynomial order.

6.2 One-Dimensional Analysis

In this section, the one-dimensional Linearised Euler Equations are studied through a dis-

persion analysis. An equivalent problem is defined, involving a one-dimensional advection

equation. A dispersion relation is derived to provide the numerical wavenumber. The dis-

persion and amplitude errors are evaluated, and the effects of the high orders are assessed.
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6.2.1 Advection Equation

The one-dimensional Linearised Euler Equations with uniform mean flow can be written:

jωq +Ax
∂q

∂x
= 0. (6.4)

The perturbations variables vector q and the flux matrix Ax read:

q =


ρ

ρux

pc

 and Ax =


0 1 0

−u2
0x 2u0x

ρ0c
2
0

pc0

−pc0

ρ0
u0x

pc0

ρ0
u0x

 . (6.5)

The flux matrix can be diagonalised as: Ax = W xΛxW
−1
x , with Λx the eigenvalues

diagonal matrix and W x the eigenvectors matrix as in Section 4.2. The amplitude vector

q̂ = W−1
x q = {q̂e, q̂a− , q̂a+}t contains the entropy (q̂e), the incoming acoustic (q̂a−) and

the outgoing acoustic (q̂a+) characteristic waves. After diagonalisation of the flux terms,

the one-dimensional Linearised Euler Equations read:

jωq̂ + Λx
∂q̂

∂x
= 0. (6.6)

Since the matrix Λx is diagonal, the system can be broken down into three independent

one-dimensional scalar equations. These are time-harmonic advection equations with the

phase velocities λix :

jωq̂i + λix
∂q̂i
∂x

= 0 ∀i ∈ {1, 2, 3}. (6.7)

Investigating the dispersion problem for the one-dimensional Linearised Euler Equations

with uniform mean flow is therefore equivalent to studying the scalar advection equation

6.7. This particular equation will be examined in the following sections.

6.2.2 Dispersion Analysis

Considering Equation 6.7, the following scalar one-dimensional advection problem is ex-

amined:

jωq(x) + u
∂q(x)

∂x
= 0 ∀x ∈ [0, L], (6.8)
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Figure 6.3: One-dimensional domain periodic discretisation for the dispersion analysis.

where q(x) is a scalar quantity and u 6= 0 is a uniform convection velocity. Applying the

standard Galerkin formulation to Equation 6.8 leads to:

∫ L

0

(
jωwq − u∂w

∂x
q

)
dx = − [uwq]L0 , (6.9)

where w is the scalar test function and the overline denotes the complex conjugate. The

domain [0, L] is subdivided into ne elements Ωi = [xi, xi+1], with i ∈ {0, 1, ..., ne − 1}

and xi = ih the nodes locations. The element size h is considered uniform. The periodic

structure of the mesh in shown in Figure 6.3. Within each interior element, the discrete

model can be written as follows:

(
jω

∫ xi+1

xi

NTNdx− u
∫ xi+1

xi

dNT

dx
Ndx

)


αv
i

αb
2,i

...

αb
P,i

αv
i+1


=


0
...

0

 , (6.10)

where N is the vector of shape functions and {αv
i , α

b
2,i, · · · , αb

p,i;α
v
i+1}t are the degrees of

freedom associated with the element Ωi. The superscript v denotes the degrees of freedom

of the exterior nodes, i.e. associated with the nodal vertex shape functions. The superscript
b denotes the degrees of freedom of the interior nodes associated with the bubble shape

functions. In this dispersion analysis, the classical Lagrange shape functions are used

because of their nodal property which gives an easy access to the values of the degrees

of freedom, as explained in Section 2.4.3. Since all the elements of the discretisation are

identical, the mesh is periodic and the equations satisfied by the degrees of freedom of

element i are the same as those satisfied by the degrees of freedom of element i+ 1.

Harmonic solutions of the form e−jkx are sought, where k is the wavenumber. The exterior

nodal degrees of freedom are defined by qi(xi) = αv
i and qi(xi+1) = αv

i+1. It follows that:

αv
i = e−jkih = Qi, (6.11)
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where Q = e−jkh is the Floquet multiplier [192]. This definition is also valid for the

interior nodal degrees of freedom inside the element. Considering the complex ampli-

tude vector Φ0 = {Φ(1)
0 , Φ

(2)
0 , · · · , Φ

(p)
0 }t, any degree of freedom of the vector Φi =

{αv
i , α

b
2,i, · · · , αb

p,i, α
v
i+1}t satisfies:

Φ
(l)
i = Φ

(l)
0 Qi ∀l ∈ {1, ..., p}. (6.12)

After assembly, the discrete system written in matrix form yields:

RΦ0 = 0, (6.13)

where R is a coefficient matrix. This system contains the numerical model dispersion

relation for the following fixed parameters: the angular frequency ω, the convection velocity

u and the mesh size h. In practice, the numerical Floquet multiplier Qn = e−jknh is

obtained by solving Equation 6.13 relating the contributions at the nodes (after expressing

the contributions of the interior nodes in terms of the contributions of the exterior nodes).

The numerical discrete wavenumber kn is then obtained from the expression of Qn by:

kn = − 1

jh
lnQn +

2nπ

h
, (6.14)

where the second term accounts for the infinite number of possible solutions and n ∈ Z.

The wavenumber which best approximates the exact solution is considered.

6.2.3 Dispersion and Amplitude Errors

For a fixed value of ω, the exact wavenumber for the one-dimensional time-harmonic ad-

vection equation is: ke = ω/u. This corresponds to a wave propagating with the flow at

the velocity u. The relative difference between the exact and discrete wavenumbers defines

the dispersion error Ed:

Ed =

∣∣∣∣kn − ke

ke

∣∣∣∣ . (6.15)

In addition, the numerical eigenvector Φ0 provides some information about the numerical

model local error. The solution approximation is evaluated within an element, by com-

bination of the nodally exact vertex values and of the numerical eigenvector Φ0n for the
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interior nodal functions:

qn(x) = Φ
(1)
0e
N0(x) + Φ

(1)
0e

e−jkehN1(x) +

p∑
i=2

Φ
(i)
0n
Ni(x), (6.16)

where N0 and N1 are the vertex linear shape functions, and Ni are the interior nodal

shape functions for i ∈ {2, · · · , p}. The L2-norm amplitude error Ea measures the relative

difference between the numerical approximation qn and the exact solution qe:

Ea =
‖qn − qe‖L2

‖qe‖L2

, with ‖χ‖L2 =

√∫ xi+1

xi

|χ|2 dx. (6.17)

This error is evaluated in an element Ωi. The convection velocity and the mesh size are

fixed to u0 = 1 and h = 1. The shape functions polynomial order p varies from 1 to 6. The

dispersion relation (6.13) is solved for several values of the number of degrees of freedom

per wavelength d(p)
λ . In this section, the following definition is used:

d
(p)
λ =

2πpu

ωh
. (6.18)

The dispersion and amplitude errors are plotted against the number of degrees of free-

dom per wavelength, in Figure 6.4. Three regions emerge: a pre-convergence regime, a

low-resolution regime where the dispersion error dominates and a high-resolution regime

where the interpolation error prevails. The relative difference between the exact and dis-

crete wavenumbers increases for low numbers of degrees of freedom per wavelength, which

corresponds to large wavenumbers. The effects of the high orders are also visible: for a

fixed value of d(1)
λ , increasing the polynomial order improves the model accuracy and the

dispersion error. For a fixed value of d(p)
λ = pd

(1)
λ , the p-FEM improves significantly the

performance in the high-resolution regime and decreases the interpolation error. However,

the p-convergence is not regular. The convergence rate in d(p)
λ for the dispersion error is 2p

for even orders and 2(p+ 1) for odd orders.

Regarding the amplitude error, the convergence rate in d(p)
λ is p for even orders and p+1 for

odd orders. Even orders have the same convergence rate as the immediately preceding odd

orders, which means that for a given problem the convergence is faster when increasing

the order from an even value to the immediately following odd order. The dispersion

and amplitude errors exhibit some peaks in the low-resolution regime, corresponding to

the so-called aliasing effect [193]. In practice, they represent the poor conditioning of the

condensed system matrix due to the bubble functions [51]. This is observed for p ≥ 2.
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Figure 6.4: Dispersion and amplitude errors against d(1)λ for the one-dimensional
advection problem 6.8.

6.3 Stabilisation

In order to limit the dispersion effects with flow, stabilisation techniques may be applied.

A stabilisation term is added to the classical Galerkin formulation. This term depends

on a stabilisation operator and on a stabilisation parameter. In the following, alterna-

tive formulations are examined. An investigation of the stabilisation parameters is also

performed.

6.3.1 Stabilised Formulation

A hyperbolic problem L(q) = 0 is considered, where L is the differential operator applied

to the unknown variable q. The general form of the stabilised formulation is given in

Equation 6.3, where the stabilisation operator D is applied to the test function w and the

stabilisation parameter τ is a matrix. These two terms define the type of stabilisation

assigned to the system and the amount of artificial diffusion. They are computed within

each element. For the one-dimensional advection problem, the formulation 6.9 transforms

into the following stabilised formulation after integration by parts:

∫ L

0

(
jωwTq − u∂w

T

∂x
q

)
dx+

ne∑
i=1

∫ xi+1

xi

D(w)Tτ

(
jωq + u

∂q

∂x

)
dx = −

[
uwTq

]L
0
, (6.19)

with D(w) = L(w), within the Galerkin/Least-Squares (GLS) stabilisation scheme [190].

In one dimension, the stabilisation matrix τ reduces to a scalar parameter τ . For the
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two-dimensional Linearised Euler Equations, the formulation 4.2 becomes:

∫
Ω

jωwTq − ∂wT

∂x
Axq −

∂wT

∂y
AyqdΩ

+

ne∑
i=1

∫
Ωi

D(w)Tτ

(
jωq +wT∂Axq

∂x
+wT∂Ayq

∂y

)
dΩi

= −
∫

Γ
wT (nxAx + nyAy) qdΓ. (6.20)

The GLS stabilisation operator reads:

D(w) = jωq +wT∂A
T
x q

∂x
+wT

∂AT
y q

∂y
, (6.21)

where the matrices Hermitian transposes are used, providing better results, as observed

for solving the Euler equations [191]. Here the GLS stabilisation scheme is used since

it considers the whole components of the differential operator. The SUPG stabilisation

method, which involves only the convective parts of the differential operator, has also been

tested and has provided results with similar conclusions to those observed with the GLS

operator.

6.3.2 Stabilisation Parameter

The performance of the stabilisation scheme depends on the choice of the stabilisation

parameter τ . The objective of this section is to find optimal values for the stabilisation

parameter, so as to cancel out the nodal error for the following given parameters: the

polynomial order p, the angular frequency ω,the convection velocity u and the characteristic

mesh size h. This novel approach should provide values of τ which improve the numerical

model in the low-resolution regime.

One-Dimensional Study

As in Section 6.2.2, the dispersion relation is written for the stabilised formulation 6.19

which includes the stabilisation parameter τ . After assembly, the discrete system within

an element reads: RτΦ0 = 0, where Rτ is a coefficient matrix which depends on τ . Unlike

in the dispersion analysis, the objective is not to determine the numerical wavenumber kn.

On the contrary, the exact solution wavenumber ke is enforced in the system through the

exact Floquet multiplier Qe = e−jkeh. This procedure is equivalent to suppressing the nodal

error in the system, by taking advantage of the additional degree of freedom τ introduced
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in the system. The stabilisation parameter optimal value is then obtained, as a function

of d(p)
λ and ω. For the linear shape functions, its analytic expression reads:

τ
(1)
opt,1D =

ν

jω

ν (2 + cos ν)− 3 sin ν

ν2 (2 + cos ν) + 6 (1− cos ν)− 6ν sin ν
, (6.22)

where ν = 2π/d
(1)
λ = kh is the Helmholtz number associated with the wavenumber k =

ω/u0 and the characteristic mesh size h. Equation 6.22 shows the dependency in ω: it

indicates that τ can be understood as a time parameter [92]. The optimal stabilisation

parameters τ (2)
opt,1D and τ (3)

opt,1D, respectively for the quadratic and cubic shape functions are

also obtained. The expression for p = 2 reads:

τ
(2)
opt,1D =

ν

jω

[
− 60 sin ν + 12ν (1 + 4 cos ν) + 12ν2 sin ν + ν3 (3− cos ν)

+ 2j

(
− 2250 + 2400 cos ν − 150 cos 2ν + 120ν (17 sin ν − sin 2ν)

− ν2 (54− 888 cos ν + 42 cos 2ν) + ν3 (194 sin ν + 7 sin 2ν)

+ ν4

(
39

2
+ 20 cos ν − cos 2ν

2

))1/2
]

/[
240 (1− cos ν)− 240ν sin ν + 24ν2 (1 + 4 cos ν) + 16ν3 sin ν + ν4 (3− cos ν)

]
. (6.23)

For p = 3, the expression is particularly lenghty and is not written here. It can be noted

that the three stabilisation parameters are purely imaginary. For the odd orders 1 and 3,

the imaginary part of τ (•)
opt,1D is strictly negative. On the contrary, the imaginary part of

τ
(2)
opt,1D is negative for low numbers of degrees of freedom per wavelength and positive for

d
(1)
λ > 1.7. It shows that depending on the order parity, the artificial numerical diffusion

created by the stabilisation term is either added or subtracted. This is consistent with

the results observed by Cai et al. on the stabilisation effects on the high-order Finite

Element Method for convection-dominated problems [178], where the dependency on the

parity of the polynomial degree is also noticed. One specificity of our study is to consider

the transport equation in the frequency domain. This allows to find relations between the

stabilisation properties and the additional parameter that is the frequency.

The optimal stabilisation parameters are plotted in Figure 6.5, against the number of

degrees of freedom per wavelength d(1)
λ . The odd orders behave in a similar way, with a

monotonous decrease with d(1)
λ . This indicates that odd orders are well behaved, because

the stabilisation is not required anymore when the mesh is sufficiently refined. Surprisingly,

the evolution of the optimal parameter is very different for the second order: in the low-
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resolution regime τ (2)
opt,1D increases notably and tends to reach a non-zero asymptotic value

in the high-resolution regime. This indicates that, unlike the odd orders, the numerical

scheme based on quadratic shape functions does not converge to the exact solution and

still requires a stabilisation as the mesh is refined. A similar tendency has been found

numerically for p = 4. This particular behaviour of the even orders has also been observed

by Cai et al. [178].

The following relation can be found between τ
(1)
opt,1D and τ

(3)
opt,1D, in the high-resolution

regime: τ (3)
opt,1D ≈ τ

(1)
opt,1D/3. This approximation is valid for d(1)

λ > 10 with an absolute

error lower than 1% which decreases when d
(1)
λ increases. It can be found numerically

that the relation τ (p)
opt,1D ≈ τ

(1)
opt,1D/p can be generalised for higher odd orders, in the high-

resolution regime. This result is consistent with the stabilisation parameter value classically

used in the literature for steady problems [92], which reads:

τ
(p)
s,1D = α

h

2u0p
= α

π

ωd
(1)
λ p

=
α

2

ν

ωp
, (6.24)

where α > 0 is a coefficient to adapt to the problem to be solved. This expression is

derived from the analysis of the one-dimensional steady convective-diffusive equation, in

which α = 1 [92]. It shows the analogy with the time-harmonic advection equation, by

expressing the steady parameter in terms of ω and d
(1)
λ . Since d(p)

λ = pd
(1)
λ , it is quite

remarkable to notice that this expression can be written as:

τ
(p)
s,1D = α

π

ωd
(p)
λ

. (6.25)

This stabilisation parameter is significantly different from the optimal stabilisation param-
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eters, as it is a strictly positive real number. This difference comes from the time-derivative

in the equation of the time-harmonic problem, that translates into the factor jω in the fre-

quency domain. At a given frequency, this steady parameter tends to zero when the number

of degrees of freedom per wavelength increases, which corresponds to a mesh refinement

and/or an increase of the interpolation order p. This indicates that no stabilisation is nec-

essary for a fine mesh and/or for high-orders [92, 178]. Our study shows a slightly different

result: overall, p-refinement does bring the stabilisation parameters values down closer to

zero, as seen in Figure 6.5, but h-refinement shows that stabilisation is still needed for even

orders, which optimal stabilisation parameter tends to a non-zero asymptotic value.

Two-Dimensional Study

In two dimensions, the Linearised Euler Equations are coupled and the decomposition

leading to the advection equations 6.7 is not possible. Considering the flux matrices diag-

onalisations (Axi = W xiΛxiW
−1
xi ), the two-dimensional Linearised Euler Equations with

uniform mean flow can be written for the characteristics vector q̂:

jωq̂ + Λx
∂q̂

∂x
+W−1

x W yΛyW
−1
y W x

∂q̂

∂y
= 0. (6.26)

The coupling is observed through the third term. In this case, the study performed in the

previous paragraph cannot be reduced to a scalar equation. However, it can be replicated

by considering the two-dimensional Linearised Euler Equations written for the variables

vector q. The optimal stabilisation matrix which cancels out the dispersion error is sought

for a given wavenumber and a fixed mesh. Harmonic plane wave solutions of the form

qe ≡ ej(kxx+kyy) are sought, with a uniform mean flow u0x in the x-direction. The mesh

is quadrangular with dimension hx × hy. This study is similar to the one performed by

Guasch and Codina for the convected Helmholtz equation in two dimensions [143]. For

bilinear shape functions, the following optimal stabilisation matrix is found for a wave

propagating in the x-direction:

τ
(1)
opt,2D =

µ

jω

µ (2 + cosµ)− 3 sinµ

µ2 (2 + cosµ) + 6 (1− cosµ)− 6µ sinµ
I, (6.27)

where µ = kxhx is the Helmholtz number associated with the wavenumber kx = ω/(u0x +

c0), the characteristic length hx in the propagation direction and the phase velocity u0x+c0

of the right-propagating acoustic wave. This stabilisation parameter is a 4 × 4 diagonal

matrix, whose coefficients are identical. Their expression is the same as the one obtained

for the scalar one-dimensional time-harmonic advection problem in Equation 6.22, with
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the difference that µ is used instead of ν.

This example confirms the possibility to find optimal stabilisation parameters, even for the

two-dimensional Linearised Euler Equations. However, obtaining this parameter becomes

costly on more complicated problems and may quickly become prohibitive especially for

high polynomial orders. Also, this parameter is derived out for a structured mesh and

depends on the type of elements and their topology. Contrarily to what is observed by

Guasch and Codina for the convected Helmholtz equation [143], this parameter does not

seem to lead to significant improvements for unstructured meshes.

In the following, the steady parameter used in the literature for solving hyperbolic problems

is assessed [64, 191]. It is defined as:

τ
(p)
s,2D =

α

p
max

(
hx
2µx

,
hy
2µy

)
I. (6.28)

The spectral radii (µx, µy) of the flux matrices (Ax,Ay) respectively correspond to the

phase velocities associated with these matrices. α is the coefficient controlling the stability

and accuracy of the scheme. This expression is similar to the one-dimensional steady

stabilisation parameter τ (p)
s,1D = αh/(2u0p) introduced in Equation 6.24. Note that Hughes

and Mallet found another definition of the parameter for multi-dimensional cases [88].

The results obtained with this parameter are quite similar to those with τ (p)
s,2D, for our

application cases, therefore it is not considered in the following.

6.4 Numerical Results

In this section, several numerical examples are presented in order to examine the per-

formance of the stabilisation parameters. First, numerical results for the scalar one-

dimensional time-harmonic advection problem are presented. Then, the numerical sta-

bilisation is investigated for acoustic wave propagation in a two-dimensional straight duct.

6.4.1 One-Dimensional Test Case

The scalar one-dimensional time-harmonic advection equation is implemented and solved

through the p-FEM model presented in Chapter 4. A wave propagates in the domain with

unit amplitude. The system is non-dimensionalised. The convection velocity is u = 1. The

mesh size is constant over the domain and set to h = 1. The simulations are performed
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Figure 6.6: L2-norm error against d(p)λ , for the one-dimensional time-harmonic
advection problem. ne = 1000. Left: p = 1. Middle: p = 2. Right: p = 3. Solid line:

τ = 0. Dashed line: τ = τ
(p)
s,1D, with α = 1. Dotted line: τ = τ

(p)
opt,1D.

with ne = 1000 elements in the domain, in order to observe some significant dispersion

error. The numerical simulation output is the L2-norm relative error EL2 between the

numerical solution and the analytic solution. The numerical results compare different

methods: the standard Galerkin formulation with no stabilisation, the Galerkin/Least-

Squares method with the standard stabilisation parameter τ (p)
s,1D defined in Equation 6.25

and the Galerkin/Least-Squares method with the optimal parameters τ (1)
opt,1D, τ

(2)
opt,1D and

τ
(3)
opt,1D.

Figure 6.6 shows the L2-norm error against the number of degrees of freedom per wave-

length for the linear, quadratic and cubic shape functions. Without stabilisation, two

regions are observed: in the low-resolution regime (d(p)
λ < 30), the dispersion error is sig-

nificant and dominates over the interpolation error which is prevailing in the high-resolution

regime (d(p)
λ > 30). Stabilisation with the steady parameter τ (P )

s,1D does not improve the

model accuracy in the dispersion region. Note that these curves are obtained with α = 1.

For p = 2, the convergence rate in the high-resolution regime is increased, which verifies

the correction brought by the stabilisation parameter as discussed in Figure 6.5. As ex-

pected, the dispersion error is cancelled out by the optimal stabilisation parameters τ (p)
opt,1D

which are built to suppress the nodal error. The dispersion error is also cancelled out for

the high-order shape functions, although the stabilisation parameters do not enforce the

exact wavenumber at the internal nodes of the elements. The convergence rates observed

in the high-resolution regime are extended to the low-resolution regime: they are of order

2 for p = 1 and 2, and of order 4 for p = 3, which are the same as those observed in the

dispersion analysis. Like the steady stabilisation parameter, the convergence rate in the

asymptotic regime is increased by 1 for the quadratic shape functions. This confirms the
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correction needed by the standard Galerkin formulation for even orders and observed in

Figure 6.5.

Although the optimal stabilisation parameters perform as expected, obtaining their ana-

lytic expressions soon becomes prohibitive for high orders. Nevertheless, some additional

investigation may help in finding more convenient ways for determining the optimal values

of τ . Using the steady stabilisation parameter accounting for high orders should provide a

reliable alternative, at least for a sufficient number of degrees of freedom per wavelength.

6.4.2 Two-Dimensional Test Case

To examine the impact of the stabilisation in two dimensions, the following test case is

introduced: an acoustic plane wave propagates inside an infinite straight duct with a

uniform mean flow u0 = (u0x , 0). Hard-wall and characteristic boundary conditions are

applied. The L2-norm error is measured with respect to the analytic solution, for the mass

density and the x-momentum: in this case the flow is homentropic, and the pressure and

the mass density are linked by a constant factor. The errors are plotted against the number

of degrees of freedom per hydrodynamic wavelength, which is analogous to the one defined

in Equation 6.18:

d
(p)
λv

=
2πp|u0x |
ωh

, (6.29)

where h is the typical mesh size. The computational domain extends from x = 0 to

L = 1.5 m and from y = 0 toH = 1 m. The standard wavenumber is given by: k0 = 10 m−1,

with ω = 3402.7 rad s−1 and c0 = 340.27 m s−1. The mean flow density is ρ0 = 1.225 kg m−3

and the specific heats ratio is γ = 1.4. In order to better observe the stabilisation effects,

two mean flow configurations are investigated: an upstream propagation with Mach number

M = u0x/c0 = −0.6 and a downstream propagation withM = 0.6. The respective acoustic

wavelengths are: λu ≈ 0.25 m and λd ≈ 1 m, which correspond respectively to 6 and 1.5

wavelengths in the domain. The study is performed for d(p)
λv

varying from 2 to 30, with

p = 1. The polynomial order, the angular frequency and the flow velocity being fixed, the

mesh size is varied. An unstructured triangular mesh is used.

Figures 6.7 and 6.8 represent the L2-norm errors with p = 1, for the downstream and

upstream cases. The stabilisation scheme improves the model accuracy with respect to the

case without stabilisation, in most of the cases. The dispersion region is more visible on

the plot related to the upstream propagation, whereas the interpolation error is evidenced

in the plot linked with the downstream propagation. In fact, for a given value of d(p)
λv

, the
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Figure 6.7: L2-norm error against d(1)λv
, for an acoustic plane wave in a

two-dimensional infinite straight duct. p = 1, k0 = 10 m−1, M = 0.6. Solid line: τ = 0.
Dashed line: τ = τ

(1)
s,2D. No marker: α = 1. ◦ marker: α = 0.1.
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Figure 6.8: L2-norm error against d(1)λv
, for an acoustic plane wave in a

two-dimensional infinite straight duct. p = 1, k0 = 10 m−1, M = −0.6. Solid line:
τ = 0. Dashed line: τ = τ

(1)
s,2D. No marker: α = 1. ◦ marker: α = 0.1.

corresponding number of degrees of freedom per acoustic wavelength is:

d
(p)
λa

=
2πp(1 +M)

k0h
=

1 +M

|M |
d

(p)
λv

, (6.30)

and therefore d(p)
λa

(−|M |) < d
(p)
λa

(|M |), for a given value of the Mach number. This indicates

that for a fixed value of d(p)
λv

, there are less degrees of freedom for solving the case with

M = −0.6 than forM = 0.6. In the downstream case, the lowest error is achieved with the

steady parameter for α = 0.1. It is observed that with p = 2 and 3, the steady parameter

with α = 1 is the most efficient. In the upstream case, the steady parameter gives the best

performance at higher numbers of degrees of freedom per wavelength (d(p)
λv

> 10). For fixed

mesh and polynomial order, the angular frequency is low in the high-resolution regime.

Asymptotically, this tends to solving a quasi-steady case for which the steady stabilisation

parameter is optimal.
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Figure 6.9: Acoustic plane wave and first hydrodynamic mode in a two-dimensional
infinite straight duct. k0 = 10, M = −0.6. Solid line: acoustic plane wave. Dashed line:

first hydrodynamic mode. No marker: τ = 0. ◦ marker: τ = τ
(p)
s,2D, with α = 1.

6.4.3 Discussion

From these one- and two-dimensional studies, a few conclusions are drawn. The disper-

sion error is dominant for low orders and the optimal parameter τ x performs well. For

high orders, the interpolation error is dominant and the time-harmonic case is close to a

steady case: the steady parameter is more efficient. The indication on which parameter to

use should be given by the problem to solve: within each element, a test on the number

of degrees of freedom per wavelength should indicate whether using the optimal stabili-

sation parameter or the steady one. The proposed optimal stabilisation parameter may

be useful for solving problems using the linear Finite Element Method. But the classical

steady parameter should be more efficient when resorting to the high-order Finite Element

Method. As an illustration of this last statement, Figure 6.9 shows the L2-norm error on

the x-momentum for the acoustic plane wave and for the first hydrodynamic mode with

M = −0.6 and h = 0.1 m, against the polynomial order p. The plots are obtained with-

out stabilisation and with the classical steady parameter. For both modes, the error is

decreased by about an order of magnitude with the steady stabilisation parameter. The

plot on the right-hand side shows the corresponding values of the numbers of degrees of

freedom per acoustic wavelength and per hydrodynamic wavelength.

In the application test cases presented in Chapter 8, the classical Galerkin/Least-Squares

stabilisation operator is used, with the two-dimensional stabilisation parameter introduced

in Equation 6.28. The coefficient controlling the stability is set to α = 1.





Chapter 7

Coupling Two Propagation Models

In this chapter, a novel method is introduced to couple the Linearised Euler Equations

(LEE) with the Linearised Potential Equation (LPE) in order to reduce the final global

matrix size. The motivations for this improvement and the coupling method basic ideas are

discussed in the first section. The Linearised Potential Equation is presented in the second

section, along with its variational formulation. In the third section, the coupling procedure

is described. The method is verified in the fourth section through acoustic propagation in

duct. Finally, the coupling method performances are assessed.

7.1 Motivations

Realistic aeroengine exhaust noise problems involve different physical area in the compu-

tational domain. The jet region presents strong shear layers, whereas the mean flow is

generally uniform or potential outside the shear layer and in the far field. Subdividing the

computational domain into smaller subdomains is therefore useful in order to optimise the

computational costs, for instance in terms of memory requirements and of computational

time. In this context, the Linearised Euler Equations may be solved in the strong mean

flow gradient regions such as the shear layer. In the remaining domain where the mean flow

can be approximated as potential, the Linearised Potential Equation may be used to solve

the acoustic propagation. Solving this scalar equation is beneficial since it has only one

unknown. The Linearised Euler Equations involve up to five unknowns for axisymmetric or

three-dimensional problems, which means that solving the Linearised Potential Equation

in adequate regions of the computational domain would scale by a factor 1/5 the number

of unknowns.
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Figure 7.1: Modified pressure real part contour for an acoustic plane wave propagating
in a three-dimensional unit duct. k0 = 5 m−1, M = 0, m = 0, h = 0.25 m, p = 5.

To illustrate the relative costs of both formulations, a three-dimensional problem is solved

on the one hand with the Linearised Euler Equations and on the other hand with the

Linearised Potential Equation. An acoustic plane wave propagates in a unit cube, in a

medium at rest. The acoustic wavenumber is k0 = 5 m−1 and the characteristic mesh size

is 0.25 m. Figure 7.1 displays the contours of the modified pressure real part, together with

the mesh on the faces of the cube. The numerical model performances are studied in Figure

7.2, where the factorisation time and memory usage of the two mathematical models are

plotted against the L2-norm error on the pressure field. These plots have been obtained by

varying the polynomial order of the shape functions from 1 to 6. The numerical solutions

produced by the two models are similar. For instance at order 6, the accuracy reached on

the pressure is similar for both schemes with Epc
L2 ≈ 1.2 × 10−5%. However, the cost for

solving the LEE is about 46 times higher. In terms of memory usage, the LEE requires

25 times more memory, which is considerable. These numbers emphasize the difficulty

of applying LEE solvers to large scale three-dimensional problems, and this justifies the

investigation of a hybrid LEE/LPE approach.

In this approach, the LEE would be applied in regions of strongly sheared flows and

the LPE elsewhere. The challenge lies in the coupling of the two different mathematical

models. Continuity conditions are applied at the interface in order to transmit the correct

fluxes from a subdomain to the other. One additional difficulty lies in the fact that the

Linearised Euler Equations convey vorticity and entropy waves which are not supported by

the Linearised Potential Equation. Therefore, the coupling interface should be located in a

region where only acoustic waves propagate so that no spurious reflections are generated.
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Figure 7.2: Factorisation time and memory usage against the L2-norm error on the
modified pressure, for the three-dimensional test case. k0 = 5 m−1, M = 0, m = 0,
h = 0.25 m, p ∈ {1, · · · , 6}. Solid line: LPE solution. Dashed line: LEE solution.

7.2 Linearised Potential Formulation

7.2.1 Linearised Potential Equation

The basic steps to obtain the Linearised Potential Equation are presented here. In this

theory, the base flow velocity component and the perturbation velocity component are both

irrotational. This condition means that they can be written as: u0 = ∇φ0 and u′ = ∇φ′,

where φ is the velocity potential of a fluid element travelling along a streamline. As an

alternative to the momentum conservation equation, Bernoulli’s equation indicates that

the sum of the kinetic and potential energies remains constant along a streamline. For an

unsteady, compressible, homentropic, inviscid, irrotational flow that is steady at infinity,

Bernoulli’s equation evaluated along any streamline reads [144]:

H =
∂φ

∂t
+

1

2
u · u+

c2

γ − 1
, (7.1)

whereH is a constant. After decomposition between the base flow and perturbation compo-

nents, and linearisation, the linearised Bernoulli equation provides the density fluctuations:

ρ′ = −ρ0

c2
0

d0φ
′

dt
. (7.2)

The fluctuations of the squared sound speed have been used for homentropic flow and

perturbations with p′ = c2
0ρ
′, such that:

(
c2
)′

= (γ − 1)
ρ′

ρ0
c2

0. (7.3)
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Figure 7.3: Coupling configuration between two subdomains.

Substituting the density and velocity expressions in the mass conservation equation in the

Linearised Euler Equations 3.13, the Linearised Potential Equation is obtained:

ρ0
d0

dt

(
1

c2
0

d0φ
′

dt

)
−∇ ·

(
ρ0∇φ′

)
= 0. (7.4)

7.2.2 Weighted Residual Formulation

The variational formulation of the Linearised Potential Equation 7.4 written for the velocity

potential is derived on the same model as the one used to obtain the weak formulation of

the Linearised Euler Equations in Section 4.1. The two-dimensional formulation reads:

∫
Ω

[
−ρ0

c2
0

d0w

dt

d0φ

dt
+ ρ0∇w ·∇φ

]
dxdy

= −
∫

Γ

ρ0

c2
0

w

[
jωu0 · nφ+

(
(u0 · n)2 − c2

0

) ∂φ
∂n

+ (u0 · n) (u0 · τ )
∂φ

∂τ

]
dΓ, (7.5)

where w is the weighting function and τ is the unit tangential vector to the boundary

Γ. The velocity potential gradients along the normal and tangential directions are noted:

∂φ/∂n = ∇φ ·n and ∂φ/∂τ = ∇φ ·τ . The superscript notation has been dropped from the

velocity potential, and from here onwards φ represents the velocity potential perturbations.

7.3 Coupling Procedure

A computational domain composed of two non-overlapping subdomains Ω1 and Ω2, respec-

tively for solving the Linearised Euler Equations and the Linearised Potential Equation,

is considered. Figure 7.3 shows the two subdomains as well as the interface where the

boundaries Γi
1 and Γi

2 are geometrically identical, although they respectively belong to

each subdomain. The superscript i denotes the interface. The normal vectors ni
1 and

ni
2 to the interface boundaries point toward their respective domain exterior. Along the
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interface, the transmission conditions must provide the correct source term within each

boundary integral of the variational formulations. These coupling conditions are discussed

in the following paragraphs.

7.3.1 Robin Boundary Conditions

Choosing the boundary conditions at the interface is crucial for the transmission condition.

The characteristic boundary conditions are used here, which are equivalent to Robin bound-

ary conditions. Considering a given subdomain, the incoming waves imposed through the

characteristics are given by the solution from the other domain. As explained in Section

4.2, the numerical solution is split between incoming and outgoing waves. Imposing the

incoming waves while letting the outgoing waves free inside the domain properly sets the

system. The acoustic characteristics propagate along the normal vector n to the boundary

with velocities: λ± = ±c0 + u0 · n. This one-dimensional approximation with a uniform

mean flow leads to the generalised Robin boundary condition which reads:

∂φ

∂n
+ jkc

+φ = gn, (7.6)

where gn is the source term denoting the characteristic travelling along n, and kc
+ =

ω/(c0+u0·n) is the outgoing acoustic wavenumber. The final formulation for the Linearised

Potential Equation reads:

∫
Ω

[
−ρ0

c2
0

d0w

dt

d0φ

dt
+ ρ0∇w ·∇φ

]
dxdy

+

∫
Γ

ρ0

c2
0

w

[
jωu0 · nφ− jkc

+

(
(u0 · n)2 − c2

0

)
φ+ (u0 · n) (u0 · τ )

∂φ

∂τ

]
dΓ

= −
∫

Γ

ρ0

c2
0

(
(u0 · n)2 − c2

0

)
wgndΓ, (7.7)

where only the right-hand side boundary integral contributes as a source term through the

characteristic gn. Within the coupling technique, this term needs to be specified at the

interface in terms of the variables in the interfacing subdomain.

7.3.2 Coupling Terms

First, subdomain 2 is considered. In that domain, the Linearised Potential Equation is

solved. Along the interface, the boundary integral which contributes to the application of
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the incoming waves can be written:

Bi
LPE = −

∫
Γi
2

ρ0

c2
0

((
u0 · ni

2

)2 − c2
0

)
w2gn1→2dΓi

2, (7.8)

where gn1→2 is the source term imposed from the solution in the Linearised Euler Equations

domain. From Equation 7.6, the source term along Γi
2 is written:

gn1→2 =
∂φ1

∂ni
2

+ jkc
+φ1, (7.9)

where the velocity potential φ1 is the contribution from domain 1 (Linearised Euler Equa-

tions), which must be expressed in terms of the variables available in domain 1. From the

velocity potential definition and the density expression in Equation 7.2, an expression of

the velocity potential in terms of the velocity and the density can be derived:

φ = − 1

jω

(
c2

0

ρ0
ρ+ u0 · u

)
. (7.10)

In this work, the Linearised Euler Equations are solved for the conservative variables. In

terms of these variables, the velocity potential reads:

φ =
1

jωρ0

((
u2

0 − c2
0

)
ρ− u0 · (ρu)

)
, (7.11)

where u0 = ‖u0‖ is the mean flow velocity vector norm.

From the perspective of domain 1, the interface boundary integral is split between the

contributions from the incoming and outgoing waves. This is performed by decomposing

the flux matrix like: F 1 = F+
1 + F−1 , where the flux matrices F±1 depend on the diago-

nal eigenvalues matrix Λ±1 and on the eigenvectors matrix W 1 (see Section 4.2.1). The

boundary integral involving the incoming characteristics is then:

Bi
LEE = −

∫
Γi
1

wT
1 F
−
1 q2→1dΓi

1, (7.12)

where the flux matrix F−1 = W 1Λ
−
1 W

−1
1 depends on the negative eigenvalues and is such

that only the incoming characteristics are selected. The variable vector q2→1 is built from

the numerical solution in domain 2 (Linearised Potential Equation). From the expressions

of the velocity, density and pressure fields in terms of the velocity potential given in Section
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7.2.1, the variable vector reads:

q2→1 =



− ρ0

c2
0

d0φ2

dt

ρ0
∂φ2

∂x
− ρ0

c2
0

d0φ2

dt
u0x

ρ0
∂φ2

∂y
− ρ0

c2
0

d0φ2

dt
u0y

− pc0

c2
0

d0φ2

dt


. (7.13)

This coupling method combines two mathematical models which do not support the exact

same waves: while the Linearised Potential Equation only supports the right- and left-

propagating acoustic waves, the Linearised Euler Equations also contain the vorticity and

entropy waves. For that reason and in order to avoid spurious reflections, the interface

boundary should be placed in a region where the vorticity and entropy waves amplitude is

not significant with respect to the acoustic waves. In the framework of aeroengine noise,

the vorticity waves develop along the jet shear layer as a vortex shedding: the interface

boundary should therefore not be placed in that region.

7.3.3 Requirements

The proposed coupling technique is quite general and may be applied to several mathe-

matical models. However, a few requirements need to be considered. First, the coupling

procedure relies on the ability to directly express the variables in each subdomain in terms

of the variables in the interfacing subdomain. In other words, there should exist oper-

ator matrices U1→2 and U2→1 such that: q1 = U2→1q2 and q2 = U1→2q1, where q1

and q2 are the variable vectors in each domain. In the framework of the Linearised Po-

tential Equation coupled with the Linearised Euler Equations, the variable vectors are:

q1 = {ρ, ρux, ρuy, pc}t and q2 = φ. From Equations 7.11 and 7.13, the transformation

operator matrices read:

U2→1 = ρ0



0

∂

∂x
∂

∂y

0


− ρ0

c2
0



1

u0x

u0y

pc


d0

dt
, (7.14)
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and U1→2 =
1

jωρ0

[(
u2

0 − c2
0

)
−u0x −u0y 0

]
.

Regarding the numerical method, the static condensation introduced in Section 4.3.5 can-

not be applied on the elements along the interface. Since the degrees of freedom, including

the interior degrees of freedom, are coupled along the interface, between both domains, no

direct expression of the bubble degrees of freedom can be found in terms of the remaining

degrees of freedom. Static condensation remains applicable on the rest of the domain.

7.4 Verification

In order to verify the coupling method, several test cases are considered. First, the code

implementation is verified for the Linearised Potential Equation, as well as the coupling

conditions between two subdomains solving that equation. Then, the coupling technique

is verified between two subdomains solving the Linearised Euler Equations. Finally, the

coupling technique between the Linearised Potential Equation and the Linearised Euler

Equations is validated.

7.4.1 Linearised Potential Equation

A two-dimensional infinite straight duct is considered with characteristic boundary condi-

tions, where the Linearised Potential Equation is solved. An acoustic plane wave propagates

in the duct in the positive x-direction, with an axial uniform mean flow. In the following,

the mean flow Mach number is: M = 0.6. The duct is 1 m large and high, and the typical

mesh size is 0.5 m such that 4 triangular elements compose the mesh, as seen in Figure 7.4.

Hard-wall boundary conditions are applied at y = 0 and y = 1 m. The coupling interface

is placed vertically in the middle of the duct at x = 0.5 m, in such a way that the plane

wave is orthogonal to the interface. A single domain with no interface is also considered for

comparison with the coupled subdomains. The same mesh is used for that single domain.

The relative error between the numerical and analytic solutions is measured on the velocity

potential. The L2- and H1-norm errors are plotted against the Helmholtz number k0h in

Figure 7.5, where h is fixed and k0 is varied from 0.01 m−1 to 100 m−1. The polynomial

order varies from 1 to 9. It is observed that the L2-norm convergence in the high-resolution

regime is of order p for the coupling technique, whereas it is of order p + 1 for the single

domain. On the other hand, the H1-norm convergence is of order p for both cases. This is

explained by the gradient component present in the source term gn1→2 (see Equation 7.9)
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Figure 7.4: Mesh for coupling verification with the Linearised Potential Equation

(interface at x = 0.5 m).
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Figure 7.5: Error against the Helmholtz number, for an acoustic plane wave in a
two-dimensional duct, solving the Linearised Potential Equation. h = 0.5 m, M = 0.6.
Solid line: no coupling, one single domain. Dashed line: coupling, with pint = p. Dotted

line: coupling, with pint = p+ 1.

introduced along the interface (as shown by Equation 7.8) and which must be evaluated

within the coupling scheme, unlike the no-coupling case. This term is such that the nu-

merical scheme looses one accuracy order along the interface. For the H1-norm error, the

gradient term is integrated in the norm computation which makes the errors without and

with coupling similar.

In order to circumvent this loss of accuracy, the polynomial order pint in the elements along

the interface is incremented by 1. This is applied both to the triangular elements along the

interface and to each of their three edges. The dotted curves show the errors obtained with

this procedure: with coupling, the accuracy becomes similar to the one obtained without

coupling. If the plane wave propagation direction is parallel to the interface, it is observed

that no additional error is introduced by the coupling: in that case, the solution gradient

in the propagation direction is zero. Increasing the polynomial order along the interface

translates into a slight increase of the number of degrees of freedom, which should not be
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Figure 7.6: Condition number against the Helmholtz number, for an acoustic plane
wave in a two-dimensional duct, solving the Linearised Potential Equation. h = 0.5 m,
M = 0.6. Solid line: no coupling, one single domain. Dashed line: coupling, with

pint = p. Dotted line: coupling, with pint = p+ 1.

significant when solving real test cases. The H1-norm error oscillations observed for the

high orders are due to the low error and high condition number which are such that the

machine precision is reached.

Figure 7.6 shows the condition number κ measured in the L1-norm (see Equation 5.4)

against the Helmholtz number, with and without condensation. The coupling technique

with pint = p is such that the condition number is similar to the case with a single domain

and no condensation, except in the very high-resolution regime where the condition number

increases more with coupling. Using pint = p+ 1 along the interface significantly increases

the condition number, up to a factor 20 for p = 9. In the lower resolution regime, this

factor is of order 7, still for p = 9. This difference increases with p. With condensation,

the condition number improvement is significant with the single domain solution where

its value is drastically reduced with respect to the case without condensation. Since no

condensation is applied in the elements along the interface, the coupled solution is less

efficient in terms of condition number which remains similar to the case without conden-

sation and increases in the very-high resolution regime. However, in practical applications

the mid-resolution regime is more of interest and the condition number increase due to the

absence of condensation in the elements along the interface should not be an issue.

7.4.2 Linearised Euler Equations

The test case is now applied with the Linearised Euler Equations. The stabilised formu-

lation is used to solve the acoustic plane wave propagation in the two-dimensional infinite

straight duct. The L2- and H1-norm errors are plotted against the Helmholtz number

in Figures 7.7 and 7.8 respectively, both for the density and the x-momentum. For the
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Figure 7.7: L2-norm error against the Helmholtz number, for an acoustic plane wave
in a two-dimensional duct, solving the Linearised Euler Equations. h = 0.5 m, M = 0.6.

Solid line: no coupling, one single domain. Dashed line: coupling, with pint = p.
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Figure 7.8: H1-norm error against the Helmholtz number, for an acoustic plane wave
in a two-dimensional duct, solving the Linearised Euler Equations. h = 0.5 m, M = 0.6.

Solid line: no coupling, one single domain. Dashed line: coupling, with pint = p.

acoustic plane wave with uniform mean flow, the density and pressure are proportional

and the y-momentum equals zero. For both variables and for both error measures, the

numerical model accuracy is similar between the single domain solution and the coupled

solution. This is explained by the form of the boundary integral along the interface for the

Linearised Euler Equations. Unlike the Linearised Potential Equation, it does not involve

any variable derivative and the gradient terms are not explicitly present in the integral.

Therefore, no additional error is made through the transmission conditions across the inter-

face. The propagation of vorticity and entropy waves inside the duct gives similar results,

and the same accuracy between the single domain solution and the coupled solution is

observed. For the sake of completeness, the same conclusions also apply to higher mode

numbers (m ≥ 1) for all types of waves (acoustic, vorticity and entropy).

Figure 7.9 shows that the coupling interface does not increase the global matrix system

condition number in the case without condensation. On the contrary, in comparison to the

single domain solution with condensation, the condensed coupled solution presents higher
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Figure 7.9: Condition number against the Helmholtz number, for an acoustic plane
wave in a two-dimensional duct, solving the Linearised Euler Equations. h = 0.5 m,
M = 0.6. Solid line: no coupling, one single domain. Dashed line: coupling, with

pint = p.
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Figure 7.10: Error against the Helmholtz number, for an acoustic plane wave in a
two-dimensional duct, solving the Linearised Euler Equations coupled with the

Linearised Potential Equation. h = 0.5 m, M = 0.6. Solid line: no coupling, one single
domain. Dashed line: coupling, with pint = p. Dotted line: coupling, with pint = p+ 1.

levels of condition number. This indicates that the absence of condensation along the

interface has some dominant effect on the global system matrix condition number.

7.4.3 Coupling Between the Linearised Euler Equations and the Lin-

earised Potential Equation

The coupling between the Linearised Euler Equations and the Linearised Potential Equa-

tion is now verified. The acoustic plane wave propagates in the same two-dimensional

infinite straight duct, where the Linearised Euler Equations are solved in the left-hand side

subdomain and the Linearised Potential Equation is solved in the right-hand side subdo-

main. The mesh is the same as the one used for the previous cases (see Figure 7.4), and

the coupling transmission conditions are applied along the interface at x = 0.5 m. The

L2- and H1-norm errors on the velocity potential are plotted in Figure 7.10 The L2-norm

error on the coupled solution with pint = p converges in the asymptotic regime with one
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Figure 7.11: Condition number against the Helmholtz number, for an acoustic plane
wave in a two-dimensional duct, solving the Linearised Euler Equations coupled with the
Linearised Potential Equation. h = 0.5 m, M = 0.6. Solid line: no coupling, one single
domain. Dashed line: coupling, with pint = p. Dotted line: coupling, with pint = p+ 1.

order less than the single domain solution. On the contrary, the coupled solution with

pint = p+ 1 retrieves the convergence rate of the single domain solution and is as accurate.

Regarding the H1-norm error, the convergence rates are equal for all solutions and the error

levels are similar. These observations are consistent with the conclusions from the previous

sections. Moreover, some peaks are visible in the error curves and are emphasized with the

coupling. These peaks may be due to some aliasing effects: the bubble functions are the

cause for possible singular or poorly conditioned global system matrices [51]. In terms of

condition number, the same conclusions as those described in the previous sections can be

drawn. Figure 7.11 shows that the coupling procedure increases the condition number, and

this increase grows in the high-resolution regime. The use of static condensation does not

improve the condition number for the coupled solution, unlike the single domain solution.

Coupling with Non-Uniform Mean Flow

In order to further assess the accuracy of the coupling method, another test case is con-

sidered. An acoustic duct mode propagates in a straight duct where the mean flow has

boundary layers along the duct hard-walls and is constant in the center part of the duct.

Like in Section 3.4.1, the mean flow velocity field is expressed as: u0 = u0xfbl(y)ex. The

analytic expression of the boundary layer mean flow velocity profile fbl is:

fbl(y) =


−
(y
δ

)2
+ 2

y

δ
, if 0 ≤ y ≤ δ

1 , if δ < y < H − δ

−
(y
δ

)2
+ 2

H − δ
δ

y

δ
− H − 2δ

δ

H

δ
, if H − δ ≤ y ≤ H

, (7.15)

where H is the duct height and δ is the boundary layer thickness. In the following the

duct height is H = 1 m and its length is L = 0.5 m, while the characteristic mesh size
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Figure 7.12: Unstructured triangular mesh for coupling and non-uniform flow profile.

is h = 0.02 m in the whole computational domain. The boundary layer thickness is δ =

H/20 = 0.05 m, i.e. two to three elements discretise the boundary layer in the transverse

direction. Figure 7.12 shows the computational domain with the unstructured triangular

mesh and the mean flow velocity profile. The red lines indicate the position of the coupling

interfaces, along the x-axis at y = H/15 = 0.067 m and at y = 14H/15 = 0.933 m. They

are deliberately placed one mesh element outside the boundary layers in order to allow a

proper coupling. The Linearised Euler Equations are solved in the boundary layer regions

(0 ≤ y ≤ δ and H − δ ≤ y ≤ H) while the Linearised Potential Equation is solved

between these two non-uniform regions (δ < y < H − δ). 388 triangular elements compose

the subdomains where the LEE are solved, and 2410 elements compose the subdomain

where the LPE is solved. The mean flow Mach number at the center of the duct is M =

0.5, and the second non-plane acoustic mode propagates in the duct (m = 2) with the

standard wavenumber k0 = 100 m−1. Figure 7.13 shows the contours of the real parts of

the momentum components for this configuration. The L2-norm errors measured against

the semi-analytic solutions obtained like in Section 3.4 are shown in Figure 7.14 against

the polynomial order which varies from 1 to 10. Two types of curves are plotted: the solid

lines correspond to the full LEE solution while the dashed lines correspond to the coupled

solution. The convergence is observed and no major difference in the error is found between

the two configurations. This confirms the ability of the proposed coupling technique to

handle propagation in non-uniform mean flows. The plateau in the convergence for p ≥ 8

is due to the error introduced by the mean flow interpolation in the boundary layer, as

discussed in Section 5.3.2. The benefits introduced by the coupling procedure are illustrated

in Figure 7.15 where the computational times and the memory usage are plotted against

the polynomial order. For the range of orders where the problem is accurately solved
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Figure 7.13: Momentum real part contours for the coupling test case with non-uniform
mean flow. k0 = 100 m−1, M = 0.5, m = 2, h = 0.02 m, p = 5.
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Figure 7.14: L2-norm error against the polynomial order, for the coupling test case
with non-uniform mean flow. k0 = 100 m−1, M = 0.5, m = 2, h = 0.02 m,

p ∈ {1, · · · , 10}. Solid line: full LEE solution. Dashed line: coupled solution. Top left:
ρ. Top right: ρux. Bottom left: ρuy. Bottom right: pc.

(EL2 < 1 % for p ≥ 4), the factorisation time with coupling is about 10 times lower than

for the full LEE. This factor is around 7 for the total time. In terms of memory usage, the

requirements for the coupled solution are about 6 times lower than for the full LEE solution.

These results show the profit that can be earned from the coupling technique. Some more

comments on the coupling performance and benefits are discussed in the following section.
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Figure 7.15: Computational time and memory usage against the polynomial order, for
the coupling test case with non-uniform mean flow. k0 = 100 m−1, M = 0.5, m = 2,

h = 0.02 m, p ∈ {1, · · · , 10}. Solid line: full LEE solution. Dashed line: coupled solution.

7.5 Performance of the Coupling Method

The main objective of the coupling method is to further reduce the computational costs in

terms of computational time and memory requirements. These performances are assessed in

this section. As an example, the coupling method performance is shown on the following

test case, with a high wavenumber. The acoustic mode m = 1 propagates in a two-

dimensional squared infinite straight duct of length 1 m. The wave propagates upstream

with the standard wavenumber k0 = 50 m−1, in a mean flow with Mach numberM = −0.6.

The wavenumber in the propagation direction is: kx = 124.9 m−1. This configuration is

such that about 20 waves are present in the domain. The typical mesh size is: h = 0.05 m,

which is the same dimension as one acoustic wavelength. The coupling interface is placed

at x = h, and the hard-wall boundary conditions are imposed at y = 0 and 1 m. The

computational domain is composed of 722 structured triangular elements, of which 38

elements are in the subdomain where the Linearised Euler Equations are solved and 684

elements where the Linearised Potential Equation is solved. With these parameters, about

5.3 % of the domain is solved with the Linearised Euler Equations, while 94.3 % is solved

with the Linearised Potential Equation. Figure 7.16 shows the mesh and the modified

pressure field in the duct.

Solving this problem with p = 7 and with condensation gives the following results. The full

Linearised Euler Equations solution involves 28504 degrees of freedom and requires 376 Mb

to store the system matrix. The L2-norm error on the velocity potential is: Eφ
L2 = 0.49 %.

The coupled solution with pint = p involves 10191 degrees of freedom, i.e. almost 3 times

less than the full Linearised Euler Equations. The memory usage is 47 Mb and the L2-norm

error is Eφ
L2 = 0.92 %, which is not as accurate as the single domain solution. Considering
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Figure 7.16: Mesh and real part of the modified pressure, for the first non-plane
acoustic mode in a two-dimensional duct with axial uniform mean flow, solving the

Linearised Euler Equations coupled with the Linearised Potential Equation.
k0 = 50 m−1, h = 0.05 m, M = 0.6.

the coupled solution with pint = p+ 1, 11046 degrees of freedom compose the system. The

memory usage is 55 Mb, which is slightly more than the coupled solution with pint = p but

still about 7 times lower than the full Linearised Euler Equations. In terms of accuracy,

the L2-norm error is: Eφ
L2 = 0.35 %.

In order to better assess the benefit of the coupling procedure in terms of memory usage,

the test case is ran for several values of the ratio τne

LEE/LPE. This ratio is defined like:

τne

LEE/LPE =
nLEE

e

nLEE
e + nLPE

e

, (7.16)

where nLEE
e is the number of triangular elements in the subdomain where the Linearised

Euler Equations are solved, and nLPE
e is the number of triangular elements in the subdomain

where the Linearised Potential Equation is solved. This ratio is varied from 5.26 % to

94.74 %. As an output, the ratio τmem
LEE/LPE between the benefit in memory usage with the

coupled solution and the memory usage with the full Linearised Euler Equations solution is

calculated. Figure 7.17 shows the L2-norm error on the velocity potential on the left-hand

side and the memory usage ratio on the right-hand side, both against the ratio of elements

in the Linearised Euler Equations domain for p = 3 and 6. The parameters for these

simulations are: k0 = 10 m−1, h = 0.05 m and M = 0.6. For p = 3, the error obtained

with the coupled solution with pint = p + 1 is of the same order as the error obtained

with the full Linearised Euler Equations solution, all over the range of values of τne

LEE/LPE.

With pint = p, the coupled solution is one order less accurate. For p = 6, both coupled

solutions are about two orders less accurate than the non-coupled solution. This may be
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Figure 7.17: Comparison of the full Linearised Euler Equations solution and the
coupled solution, against the ratio of elements in the Linearised Euler Equations

domain. k0 = 10 m−1, h = 0.05 m, M = 0.6. Solid line: no coupling, one single domain.
Dashed line: coupling, with pint = p. Dotted line: coupling, with pint = p+ 1. Blue line:

p = 3. Red line: p = 6. Black line: τmem
LEE/LPE = τne

LEE/LPE.

due to the condition number which is much higher with the coupled solution in the very-

high resolution regime. In terms of memory, the benefit of the coupled solution follows the

rule: τmem
LEE/LPE = ετne

LEE/LPE, especially for τne

LEE/LPE > 30 % with ε ≈ 1.1. The advantage

is less in terms of memory percentage for low ratios of elements in the Linearised Euler

Equations, especially for p = 6 which means in the high-resolution regime.

The proposed coupled solution offers the possibility to drastically reduce the number of

degrees of freedom for solving a given problem. This technique is based on the ability

to reciprocally relate the variables of each mathematical model, the proper definition of

subdomains with respect to the physical phenomena, and the application of proper cou-

pling boundary conditions along the subdomains interfaces. Here, characteristic boundary

conditions are applied. They are able to transmit the fluxes between two subdomains, but

the absence of condensation in the interface elements makes the system condition number

larger. The use of Lagrange multipliers may be a suitable alternative to improve the trans-

mission conditions with the gradient evaluation at the interface, and to improve the overall

condition number. It would also help avoid the loss of accuracy along the interface due

to the gradient interpolation. This technique consists in hiding the gradient terms inside

additional degrees of freedom, the Lagrange multipliers, and solves an additional system

[194, 195]. The additional equations are built such that the local solution continuity is

satisfied across the subdomains interface. This technique is not investigated in this work,

but may be a way to further improve the proposed coupling technique.



Chapter 8

Applications

In this chapter, the high-order finite element model is used to solve various aeroengine

noise radiation applications. An engine air intake is first investigated in the presence of

potential mean flow, and the solution is verified against a generic commercial software

solution. An ideal exhaust problem is then studied, and the solution is compared against

an analytic solution available in the literature. In the last section, the sound field produced

by a small-scale realistic aeroengine exhaust is computed. The numerical model accuracy

is assessed, and its performance is compared against a standard finite element approach.

8.1 Intake

In this section, the numerical model is applied to an aeroengine intake. The test case is

first presented: the complex nacelle geometry is described, as well as the non-uniform mean

flow. The reference solution computed with a commercial software is introduced. Finally,

the results obtained with the high-order finite element model are analysed and further

discussed.

8.1.1 Test Case

As a first application test case, the Pratt & Whitney JT15D is considered in a static

configuration with hard walls. This test case is useful to verify the applicability of the

model to a non-straight geometry and in the presence of mean flow. NASA conducted

experiments in the late 1970’s and early 1980’s to understand static and flight condition

effects on fan noise. The experimental results provided a database for CAA prediction
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tools validation. In particular, this problem has been used to solve the Linearised Euler

Equations in the frequency domain on a curvilinear mesh by means of the optimised 4th-

order dispersion-relation-preserving (DRP) scheme [196].

The JT15D fan rig is composed of 28 fan blades and 41 fan bypass stator vanes. Its bypass

ratio is of 3.3. A strong acoustic mode with azimuthal order m = −13 and radial order

n = 1 is generated by rods in front of the fan blades. The mode propagates inside the

duct and radiates to the far field. The annular duct inner radius is ri = 9.98 cm and its

outer radius is ro = 26.7 cm. The exterior radius is re = 53.4 cm. The sketch is shown

in Figure 8.1. The mean flow is characterised by a velocity inside the annular duct with

Mach number Md. The medium outside the fan rig is at rest (Me = 0).

8.1.1.1 Geometry

Since the intake has an axial symmetry along x the computational domain is an axisym-

metric section of the intake, extending from x = 0 to 1.5 m and from r = 0 to 1 m, as

seen in Figure 8.2. The acoustic duct mode is injected through a PML of width dd. The

outgoing waves are absorbed by a PML surrounding the computational domain and of

width de. The duct walls are completely reflective and no impedance condition is applied.

Axisymmetric boundary conditions are applied along the symmetry axis. The domain is

discretised with unstructured triangular elements, refined along the duct walls to represent

accurately the geometry. In the PMLs, quadrangle elements are used. Field points are

located on the circle centred at (0.6, 0) and of radius 0.6 m.
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Figure 8.2: Intake computational domain and mean flow Mach number contours.

8.1.1.2 Mean Flow Properties

For this test case, the mean flow is incompressible and irrotational, as introduced in Section

7.2. The mean flow density, sound speed and specific heats ratio are uniform over the

domain: ρ0 = 1.225 kg/m3, c0 = 340.27 m/s and γ = 1.4. Under these assumptions, the

conservation equations simplify and the Laplace equation is obtained for the mean flow

velocity potential φ0:

∆φ0 = 0. (8.1)

In this work, the Laplace equation is solved numerically using the high-order finite element

model together with the following axisymmetric variational formulation:

∫
Ω
rw · φ0dΩ =

∫
Γ
rwu0 · ndΓ, (8.2)

where the mean flow normal velocity is specified along the boundary in the duct and the

mean flow velocity potential is set to zero along the outlet boundary. The resulting mean

flow velocity potential solution φ0 is then used to obtain the mean flow velocity u0 and

pressure p0 through the following relationships: u0 = ∇φ0 and p0 = p∞ + ρ0

(
u2
∞ − u2

0

)
,

where p∞ = ρ0c
2
0/γ and u∞ = 0 are the reference pressure and velocity. The mean flow

is then interpolated linearly at each node of the acoustic mesh shown in Figure 8.2(a) for

the noise propagation computation. The mean flow nodal values surrounding each acoustic

node are used for this estimation.

In the original work, five fan tip speeds were tested, between low subsonic and supersonic

conditions [196]. In this work, two conditions are tested for different values of the fan axial

Mach number Md and of the blade pass frequency BPF. In the first condition, the fan

axial Mach number isMd = 0.175, for a blade pass frequency of 3150 Hz and the Helmholtz
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Figure 8.3: Intake reference solution with control plane in the nacelle.

number based on the intake exterior radius is k0re = 31. In the second condition, the fan

axial Mach number is Md = 0.275 and BPF = 4480 Hz. The corresponding Helmholtz

number based on the intake exterior radius is k0re = 44. The Mach number contours are

plotted in Figure 8.2(b) for condition 1.

8.1.2 Reference Solution

In the literature, several solutions have been developed for this test case, including both

experimental and computational results [196, 197]. In this work, the numerical results are

compared with the solution obtained from the commercial software Virtual.Lab Acoustics.

This reference solution solves the three-dimensional Linearised Potential Equation using an

adaptive high-order finite element approach [52]. This mathematical model is described in

the coupling procedure, in Section 7.2. The reference and numerical solutions are compared

by calculating the Sound Pressure Level (SPL) at the field points introduced above. The

reference pressure for the SPL is: pref = 20 µPa. Figure 8.3 shows an example of the three

dimensional reference solution with a control plane.

8.1.3 Numerical Results

For this problem, the full Linearised Euler Equations are solved with the high-order finite

element model. The computational domain is discretised with linear elements of charac-

teristic size hw = 0.01 m along the duct walls and h = 0.1 m elsewhere. The mesh is shown

in Figure 8.2(a). The outer PML is one-element wide, while 5 elements are used in the
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(b) Condition 2: f = 4480 Hz, Md = 0.275.

Figure 8.4: Intake modified pressure real part contours. p = 6.

0 15 30 45 60 75 90 105

0

20

40

60

Φ (◦)

SP
L
(d
B
)

(a) Condition 1: f = 3150 Hz, Md = 0.175.

0 15 30 45 60 75 90 105

0

20

40

60

Φ (◦)

SP
L
(d
B
)

(b) Condition 2: f = 4480 Hz, Md = 0.275.

Figure 8.5: Intake Sound Pressure Level along the control circle. Black line: reference
solution. Dots: numerical solution. Green: p = 4. Blue: p = 5. Red: p = 6.

in-duct PML: de = 0.1 m and dd = 0.05 m. For the first condition, the mean flow Mach

number varies between 0 in the exterior region and a maximum value of 0.189. The short-

est acoustic wavelength is 0.0876 m for waves propagating upstream, whereas the longest

one is 0.128 m for waves propagating downstream. For the second condition, the mean

flow Mach number varies between 0 in the exterior region and a maximum value of 0.296.

The shortest acoustic wavelength is 0.0534 m, whereas the longest acoustic wavelength is

0.0984 m.

Figure 8.4 shows the contours of the modified pressure real part for both conditions. The

results are obtained with a polynomial order p = 6. The acoustic duct mode propagates

and radiates to the far field in front of the aeroengine intake. The directivity pattern

is further observed in Figure 8.5 where the Sound Pressure Level is plotted against the

position along the near-field control circle. The position angle Φ is measured from the

positive x-direction. The numerical solution is compared with the reference solution, for p

ranging from 4 to 6. The agreement between the solutions is verified for Φ > 30◦, in the



Chapter 8. Applications 134

region where the Sound Pressure Level is the highest. With this mesh, the convergence

is already observed with p = 4. The discrepancy in the range Φ < 30◦ is not relevant

here since the maximum Sound Pressure Level in this region is about 40 dB lower than

the overall maximum SPL. The convergence of the numerical model is observed in that

region and the acoustic pressure tends to zero nearby the symmetry axis. The main sound

directivity is observed at Φ = 67◦ for condition 1 and at Φ = 54◦ for condition 2.

8.1.4 Discussion

This test case shows that the high-order finite element code is able to handle non-straight

geometries for acoustic propagation with potential mean flow. A good compromise must

be found for the mesh size definition. On the one hand, the geometry complexity requires

a fine mesh in order to accurately describe the duct boundaries. Without this proper geo-

metrical representation, the numerical solution would converge to a solution different from

the reference solution. On the other hand, the high-order elements approach is optimum

with coarse elements since it relies on high-order polynomials. In order to optimise the

computational costs, particular care should be taken to the mesh construction. In addition,

improvements may be obtained by using coarse curved elements and/or an adaptive order

scheme where lower polynomial orders would be used in the small elements. The efficiency

of the high-order polynomials is also seen with the convergence of the numerical solution

in the low-angle range along the axis (Φ < 30◦), where the acoustic pressure tends to zero.

8.2 Straight Duct Radiation

8.2.1 Test Case

Let us now examine the noise propagating by a straight semi-infinite circular duct [63]. The

duct radius is rd = 1 m. The duct wall is infinitely thin and hard-wall boundary conditions

are applied on both sides. The mean flow velocity is axial, with Mach number Md in the

duct and Me in the exterior region. These velocities may be different, and a shear layer

transitions continuously from one velocity to the other. The mean flow density, sound speed

and specific heats ratio have the same values as those defined in Section 8.1.1.2. Figure

8.6 shows the test case configuration. Acoustic duct modes are generated and propagate

inside the duct. From the duct exit plane, the acoustic modes radiate to the far field.

The geometrical singularity at the duct trailing edge is responsible for the generation of
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Figure 8.6: Straight duct geometry.

vorticity waves which are convected by the mean flow. In addition, shear layers may trigger

Kelvin-Helmholtz instabilities. Below a critical Strouhal number St, these instabilities will

grow exponentially [30, 56]: St = fθ/(c0(Md−Me)), where f is the frequency and θ is the

shear layer momentum thickness. After a certain distance from the duct trailing edge, the

shear layer thickness is large enough for the Strouhal number to exceed this critical value:

the exponential growth stops and the instability decays. Furthermore, the presence of a

shear layer is responsible for the acoustic field refraction. These physical phenomena are

further discussed in the following sections.

The computational domain extends from x = 0 to 5 m and from r = 0 to 2.5 m. The duct

exit plane is located at xd = 2.5 m (see Figure 8.7). Acoustic modes are injected inside

the duct through a PML of length dd. In the outer region, the computational domain is

surrounded by a PML of width de. Axisymmetric boundary conditions are applied along

the axis at r = 0. The discretisation uses triangular elements, with a structured mesh

inside the PMLs and an unstructured mesh elsewhere. The mesh is refined at the duct

trailing edge in order to take the geometric singularity into account. Furthermore, in order

to take the vorticity shedding into account with mean flow, the refinement is extended

along the duct wake. Three configurations are investigated: the no-flow condition, the

uniform flow condition and the non-uniform flow condition. These effects are shown in the

numerical results in Section 8.2.3.

8.2.2 Reference Solution

The numerical solution is compared to the solution by Gabard and Astley [198]. In this

analytic model the mean flow is discontinuous across the vortex sheet, with different jet

and ambient velocities. Since the streamline at the trailing edge is continuous, the vortex

sheet displacement is zero at the trailing edge and the Kutta condition states that the

normal velocity at the trailing edge also vanishes. Within the analytic reference model,
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Figure 8.7: Straight duct computational domain, mesh and control field points (red
dots). No-flow condition.

this condition is enforced at the duct trailing edge through a complex parameter which can

control the amount of vorticity shedding added to the system [199]. This analytic model

reproduces the mean flow effects on the sound field, as seen and discussed in Sections

8.2.3.2 and 8.2.3.3: the refraction through the shear layer, the vortex sheet instability wave

and its interaction with the acoustic field. The solutions are compared on a 2 m-radius

circle centred on the point (xd, 0), along which the angle Φ is measured from the positive

x-direction.

8.2.3 Numerical Results

8.2.3.1 No-Flow

An acoustic wave propagates in the straight infinite duct and radiates to the far field,

with no flow: Md = Me = 0. The incoming acoustic wave is the time-harmonic duct

mode (m,n) = (10, 1) with the angular frequency ω = 5785 rad/s, corresponding to the

Helmholtz number k0rd = 17. The acoustic wavelength is: λa = 0.37 m. The duct mode

amplitude is Ap0,1 = 1, as defined in Section 3.3. The characteristic mesh size is 0.4 m inside

the duct and in the outer region, which corresponds to less than 1 element per wavelength.

At the duct trailing edge, the mesh is refined in order to account for the geometrical

singularity: the element size there is 0.1 mm. The PMLs are one-element wide, both in the

outer region and inside the duct (dd = de = 0.4 m). Figure 8.7 shows the computational

domain, the mesh and the control circle where the numerical solution is compared with the

reference solution.

Figure 8.8 displays some numerical results with the variables fluctuations contours: the

real parts of the modified pressure, the axial momentum, the radial momentum and the

azimuthal momentum. These results are obtained with the maximum polynomial order
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Figure 8.8: Straight duct variables perturbations real part contours, for the no-flow
condition. (m,n) = (10, 1), k0rd = 17, Md = Me = 0, p = 10.

available in the implementation, namely p = 10. The solution shows the acoustic wave

propagating inside the duct and radiating to the far field. The main direction of propagation

from the duct trailing edge is observed. The outgoing waves are properly absorbed inside

the PML, with no noticeable reflections.

The numerical and reference analytic solutions are compared at the control field points.

Figure 8.9 shows the Sound Pressure Level against the position angle along the control

circle. The agreement is excellent. The maximum SPL is reached inside the duct with about

120 dB, while outside the duct the maximum is about 110 dB in the direction Φ ≈ 50◦. To

further verify the numerical solution, the nodal error between the numerical and analytic

solutions is integrated over the control circle and measured in the L2-norm. For p = 10, the

numerical errors are: Epc
L2 = 1.5 %, Eρux

L2 = 0.63 % and Eρur
L2 = 2.4 %, which confirms the

accuracy of the model. For SPL > 20 dB, the maximum difference between the numerical

and analytic SPL at each angle along the control circle is 0.56 dB.

Since the numerical model uses high-order polynomials, their impact is assessed in Figure
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Figure 8.9: Straight duct Sound Pressure Level along the control circle, for the no-flow
condition. (m,n) = (10, 1), k0rd = 17, Md = Me = 0, p = 10. Black solid line: reference

solution. Red dots: numerical solution.
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Figure 8.10: Straight duct relative error along the control circle against the
polynomial order, for the no-flow condition. (m,n) = (10, 1), k0rd = 17, Md = Me = 0.
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L2 . Dotted line: Eρur
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8.10. The errors along the control circle are plotted against the polynomial order. The low

orders p = 1 and 2 are unable to solve the problem because the mesh is too coarse. The

numerical accuracy increases with the polynomial order, from p = 2 to 9. Two stages are

observed in that convergence: from p = 2 to 4, the convergence rate is about 0.6 whereas

it is only of order 0.1 for p from 4 to 10. The difference in the convergence rate can be ex-

plained by the accuracy in the PML which controls the error in the computational domain,

and by the mesh refinement at the duct wall singularity which controls the geometrical

accuracy. Moreover, the accuracy levels differ from one variable to the other. The error on

the x-momentum is about 4 times lower than the error on the r-momentum.

Concerning the numerical model performance, the run times and memory usage are plotted

in Figure 8.11 against the polynomial order. The model is implemented in Matlab [200],

on a Windows laptop with 4 cores and 16 Gb of RAM, and MUMPS is used to solve the

matrix system [173]. The total solving time is about 1.5 times larger than the factorisation

time needed for the LU decomposition of the system matrix. The factorisation time,

the total solving time, and the memory usage are quadratic functions of the polynomial

order, for a given mesh. The results with p = 8 are now considered. The corresponding

numerical solution gives the following errors: Epc
L2 = 2.4 %, Eρux

L2 = 0.9 % and Eρur
L2 = 3.7 %.
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Figure 8.11: Straight duct computational performance, for the no-flow condition.
(m,n) = (10, 1), k0rd = 17, Md = Me = 0.

Similar errors are obtained with quadratic polynomials and a refined mesh: Epc
L2 = 2.2 %,

Eρux
L2 = 0.87 % and Eρur

L2 = 3.4 %. For this simulation with p = 2, the characteristic

mesh size is 0.05 m inside the duct and in the outer region, and the PMLs are five-element

wide in order to account for the low polynomial order. This mesh corresponds to 61285

triangular elements and 1025 quadrangle elements in the PMLs, which translates into

632815 degrees of freedom. The memory usage is 6.5 Gb and the total solving time is

20.9 s. In comparison, the high-order solution with p = 8 is obtained with 800 triangular

elements and 24 quadrangle elements: 48445 degrees of freedom compose the final system,

which represents a reduction of a factor 13 as compared to the standard quadratic solution.

In terms of memory usage, this high-order solution uses 773 Mb which is only 1/8th of the

memory required by the solution with p = 2. The total solving time is almost divided by

a factor 10, with 2.23 s.

8.2.3.2 Uniform Flow

In the second mean flow configuration, the incoming duct mode (10, 1) still propagates at

the angular frequency ω = 5785 rad/s and the Helmholtz number is k0rd = 17. Unlike

the previous case, a uniform mean flow is now present in the whole domain and its Mach

number is: Md = Me = 0.5. The mean flow is responsible for the generation of a vorticity

shed from the duct trailing edge. The shortest acoustic wavelength is 0.18 m and the

largest acoustic wavelength is 0.55 m. The vorticity wave and the shortest acoustic wave

have the same length. As seen in Figure 8.12, the mesh is refined in order to capture both

effects: the characteristic mesh size is 0.4 m inside the duct and in the outer region, and

the element size along the duct wake is 0.01 m. This refinement is necessary to capture

the small oscillations of the vorticity wave along the duct wake. Again, the PMLs are
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Figure 8.12: Straight duct computational domain, mesh and control points (red dots).
Uniform flow condition.

one-element wide with quadrangle elements, both in the outer region and inside the duct

(dd = de = 0.4 m). In addition to those located along the 2 m-radius circle, control points

are placed along the duct wall and its wake.

The variables perturbations contours are shown in Figure 8.13, for p = 9. The momentum

fluctuations contours reveal the vortex sheet which develops from the duct trailing edge.

The vortices are generated at the duct lip and are convected by the mean flow. The

axial and azimuthal momentum present a very steep gradient across the vortex sheet,

which requires a significant mesh refinement along the duct wake. The pressure and radial

momentum perturbations are plotted along the control line located at r = 1 m. Figure 8.14

represents the real parts of these perturbations with p = 9. Along the duct wall (x < 2.5 m),

the normal velocity is proportional to the vanishing momentum radial component. Along

the duct wake (x > 2.5 m), the vorticity waves are observed and the envelope of the

acoustic field is also visible. The continuity of both variables is verified at the duct trailing

edge, indicating that the Kutta condition is well represented by the numerical model,

without specific treatment. The numerical solution is in excellent agreement with the

reference solution, which incorporates the Kutta condition: the normal acoustic velocity

vanishes at the duct trailing edge and the solution is continuous at the trailing edge.

This condition indicates that the acoustic pressure vanishes like
√
x at the trailing edge,

where x is the distance from the trailing edge. If the Kutta condition was not satisfied,

a singularity at the trailing edge would be observed in the acoustic pressure which would

behave like p ≡ 1/
√
x. Here the numerical solution naturally verifies the Kutta condition,

which is implicitly imposed inside the numerical model. The Linearised Euler Equations

support the acoustic, vorticity and entropy waves which compose the density, velocity and

pressure fields, and the shape functions continuity is ensured in the discretisation over the

computational domain.
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Figure 8.13: Straight duct variables perturbations real part contours, for the uniform
flow condition. (m,n) = (10, 1), k0rd = 17, Md = Me = 0.5, p = 9.
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Figure 8.14: Straight duct variables perturbations along the duct wall and its wake,
for the uniform flow condition. (m,n) = (10, 1), k0rd = 17, Md = Me = 0.5, p = 9.

Black dots: analytic solution. Red line: numerical solution.

The Sound Pressure Level along the control circle also shows the comparison between the

numerical and analytic solutions. The sound directivity is seen in Figure 8.15 and the

agreement between the solutions is very good. The nodal errors with p = 9 confirm the

numerical accuracy: Epc
L2 = 0.26 %, Eρux

L2 = 1.6 % and Eρur
L2 = 0.77 %. The difference

between the numerical and analytic SPL does not exceed 0.27 dB, for SPL ≥ 60 dB.
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Figure 8.15: Straight duct Sound Pressure Level along the control circle, for the
uniform flow condition. (m,n) = (10, 1), k0rd = 17, Md = Me = 0.5, p = 9. Black solid

line: analytic solution. Red dots: numerical solution.
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Figure 8.16: Straight duct mean flow Mach number contours, for the non-uniform flow
condition. Md = 0.5, Me = 0.

8.2.3.3 Non-Uniform Flow

The final configuration focuses on the non-uniform flow condition, characterised by mean

flow shear layers with strong gradients. In order to reproduce these features, an analytic

mean flow shear layer is considered. The Mach number flow profile outside the duct is

taken to be:

M(r, x) = M

(
1 + tanh

(
rd − |r|
ζδ(x)

))
, (8.3)

where M = (Md + Me)/2, ζ = 2/5 cos2(β/2) is a parameter that controls the shear layer

profile, β is the spreading angle and δ is the shear layer thickness. The latter reads:

δ(x) = 2 (x− xd) tan(β/2). (8.4)

The medium outside the duct is at rest (Me = 0) and the following parameters are chosen:

Md = 0.5 and β = 20◦. Within each finite element, the mean flow velocity is imposed

directly at each Gauss point of the quadrature. Figure 8.16 shows the mean flow Mach

number contours. The duct mode (10, 1) is injected at the fan plane and the angular fre-
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Figure 8.17: Straight duct variables perturbations real part contours, for the
non-uniform flow condition. (m,n) = (10, 1), k0rd = 17, Md = 0.5, Me = 0, p = 10.

quency is set to ω = 5785 rad/s. The Helmholtz number is k0rd = 17. The computational

domain is discretised with the same mesh as the one depicted in Figure 8.12 for the uniform

mean flow condition.

The solutions are shown in Figure 8.17 for the modified pressure, the axial momentum,

the radial momentum and the azimuthal momentum with p = 10. In comparison to the

uniform flow solution, the refraction of the sound field through the shear layer is visible, and

the main directivity is around Φ = 64◦ instead of 46◦. Spurious reflections are observed on

the momentum contour plots, from the PML along the duct wake. They may be explained

by the fact that the PML is tuned to absorb acoustic waves, and not vorticity waves

which wavenumber is of the form k0/M and may not be consistent with the chosen PML

stretching function (see Section 5.4). This should be further investigated in order for the

PML to better damp both acoustic and vorticity waves. Though, these reflections do not

impact the numerical solution in the range of interest, i.e. for x < 4.5 m, where the mesh

is refined. The Sound Pressure Level along the control circle is shown in Figure 8.18. The
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Figure 8.18: Straight duct Sound Pressure Level along the control circle, for the
non-uniform flow condition. (m,n) = (10, 1), k0rd = 17, Md = 0.5, Me = 0, p = 10.

Black solid line: reference solution. Red dots: numerical solution.

analytic solution available without vorticity shedding is also represented, as an element of

reference. It shows that the numerical solution is very similar. Around the angle Φ = 30◦,

a peak corresponding to the vortex sheet is observed which is not included in the reference

solution. The non-uniform mean flow is responsible for the wave refraction outside the

duct.

The solution convergence is assessed in Figure 8.19 which displays the variables real parts

along the duct wall and its wake, for p = 4, 9 and 10. Along the duct wall, the solution

has already converged with p = 4: the oscillations are visible on the pressure and axial

momentum plots, while the normal velocity along the hard wall is verified to be zero on the

radial momentum plot. There, the analytic solution obtained with no vorticity shedding is

identical to the numerical solution. At the duct trailing edge, a Kelvin-Helmholtz instability

wave is generated: it grows exponentially and then decreases since the shear layer thickness

keeps increasing [56, 201]. This instability is not included in the analytic solution. A

vorticity wave with constant amplitude is visible in the momentum plots, but its effect on

the pressure field is less significant. These small oscillations are not well represented by the

orders p < 8. Since the mean flow is non-uniform, the contributions of the acoustic and

vorticity waves supported by the Linearised Euler Equations are visible on the pressure

plot.

Numerical Solution with Coupling

The numerical solutions presented in the previous sections were obtained using a full Lin-

earised Euler Equations model, i.e. the LEE were solved in the whole computational

domain. Five variables are solved for in large regions of the computational domain where

the mean flow is potential: the Linearised Potential Equation could be successfully applied

in these regions. Therefore, this test case is appropriate for applying the coupling method



Chapter 8. Applications 145

0.5 1 1.5 2 2.5 3 3.5 4 4.5
−8

−4

0

4

8

x (m)

<
(p

c
)

(a) <(pc).

0.5 1 1.5 2 2.5 3 3.5 4 4.5

−2

0

2

x (m)

<
(ρ
u
z
)

(b) <(ρux).

0.5 1 1.5 2 2.5 3 3.5 4 4.5

−5

0

5

x (m)

<
(ρ
u
r
)

(c) <(ρur).

Figure 8.19: Straight duct variables perturbations along the duct wall and its wake,
for the non-uniform flow condition. (m,n) = (10, 1), k0rd = 17, Md = 0.5, Me = 0,
p = 10. Black dots: reference solution (no vorticity shedding). Solid line: numerical

solution. Blue: p = 4. Green: p = 9. Red: p = 10.

introduced in Chapter 7. A new computational domain which contains several subdomains

is used. Figure 8.20 shows the new configuration with the computational domain and the

mean flow Mach number: the subdomains are marked out by the interfaces which surround

the mean flow shear layer. The subdomain containing the shear layer is solved using the

Linearised Euler Equations. Outside this region for r < 1 m, the mean flow is uniform

withM = 0.5 and the Linearised Potential Equation is used. The LPE is also used outside

the shear layer where the medium is at rest (r > 1 m). The transmission conditions devel-

oped in Section 7.3 are applied along the interface boundaries. Around the trailing edge,

the interface is deliberately placed at a distance 0.2 m from the geometrical singularity in

order to avoid spurious reflections due to the vortex sheet generated there. In fact, the

Linearised Potential Equation only supports acoustic waves and is not able to propagate

vorticity waves. Vorticity waves of significant amplitude which would reach the interface

boundaries would be reflected back into the LEE domain and pollute the solution. The

typical mesh size is h = 0.2 m in the computational domain, with the following refinements:

0.1 m along the interface boundaries and 0.01 m along the duct wake.

The coupling method produces results similar to the full Linearised Euler Equations so-

lution, as seen in Figure 8.21 where the pressure field contours are plotted. The solution
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Figure 8.20: Straight duct computational domain and mean flow Mach number
contours. Non-uniform flow condition with coupling.
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Figure 8.21: Straight duct coupled solution, for the non-uniform flow condition.
(m,n) = (10, 1), k0rd = 17, Md = 0.5, Me = 0, p = 9.

continuity along the coupling interfaces is verified and the pressure field is similar to the

one obtained in Figure 8.17 with the full Linearised Euler Equations. The Sound Pressure

Level along the control circle depicted in Figure 8.22 also shows the good behaviour of the

coupled model, which corresponds to the reference Linearised Euler Equations solution.

Some discrepancies are observed near the symmetry axis for Φ < 20◦ where the SPL is

lower than 80 dB, i.e. about 60 dB below the maximum SPL. They may be explained by

some spurious reflections from the PML or along the coupling interface. This needs to be

further investigated.

The grid contains nLEE
e = 3381 elements in the Linearised Euler Equations subdomain and

nLPE
e = 942 elements in the Linearised Potential Equation subdomain. This configuration

corresponds to the following ratio: τne

LEE/LPE = 78.2 %, i.e. 78.2 % of the elements in the

domain are solved with the Linearised Euler Equations and 21.8 % of the elements are
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Figure 8.22: Straight duct Sound Pressure Level along the control circle, for the
non-uniform flow condition, with coupling. (m,n) = (10, 1), k0rd = 17, Md = 0.5,
Me = 0, p = 9. Black solid line: reference solution. Red dots: full Linearised Euler

Equations numerical solution. Blue + marker: coupling numerical solution.

solved with the Linearised Potential Equation. The memory usage for the full Linearised

Euler Equations is 7.39 Gb with p = 9, while it is 5.93 Gb for the coupled solution with the

same polynomial order. The corresponding memory usage ratio is: τmem
LEE/LPE = 80.2 %, i.e.

the coupled solution uses 80.2 % of the memory used for solving the full Linearised Euler

Equations solution. This confirms the observations in Section 7.5: the benefit in memory

usage with respect to the full Linearised Euler Equations solution corresponds to the ratio

of elements in the Linearised Potential Equation subdomains.

8.3 Aeroengine Exhaust

The study of noise propagation by a straight duct has shown that the high-order numerical

model performs well with a simple geometry and is able to represent the physical features in

the presence of a non-uniform mean flow. These aspects are now considered on a turbofan

exhaust involving a realistic sheared mean flow together with a complex geometry.

8.3.1 Test Case

This turbofan exhaust test case has been developed within the European Union project

TURNEX [202] in 2008, and used by several authors to benchmark Computational AeroA-

coustics methods [58, 59]. The aeroengine exhaust is composed of a bypass duct and a

core duct. Figure 8.23 shows the exhaust geometry. The bypass duct exterior radius at

the exit plane is rbpde = 0.126 m. Within the TURNEX project, the results obtained by

Iob and Arina with conventional linear finite elements are considered [59]. Since the ref-

erence values are not available, a qualitative comparison of the acoustic field contours is

performed.
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Figure 8.24: Aeroengine exhaust computational domain and mean flow Mach number
contours.

8.3.1.1 Geometry

An axisymmetric section of the turbofan exhaust forms the computational domain, which

extends from x = −0.36 m to 0.54 m and from r = 0 to 0.36 m. In order to properly

represent the geometry, a fine mesh size hw is applied along the duct walls with hw =

6.5 mm. The mesh size at the ducts trailing edges is 0.5 mm. In the rest of the domain, the

typical mesh size is h = 0.04 m. Figure 8.24 shows the computational domain, as well as the

control field points where the numerical solution is assessed. These field points are located

on the circle centred on the point (0, 0) and of radius 0.3 m. A Perfectly Matched Layer is

used to impose the incoming acoustic mode in the bypass duct, with a unit intensity. The

computational domain is surrounded by a PML, and axisymmetric boundary conditions

are applied along the axis at r = 0. The grid is composed of unstructured triangular

elements, and structured quadrangle elements in the PMLs. Acoustic modes are generated

in the bypass duct, propagate along the duct and radiate to the far field.
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8.3.1.2 Fluid Properties

In this study, the medium is at rest at infinity. The mean flow Mach number in the bypass

duct is Mbpd = 0.447, while it is Mbpd = 0.223 in the core duct. Figure 8.24 shows the

mean flow Mach number contours. For the static-approach condition, the fluid density is:

ρ0bpd = 1.177 kg/m3 in the bypass duct and ρ0cd = 0.509 kg/m3 in the core duct. The

sound speed is: c0bpd = 347.19 m/s in the bypass duct and c0cd = 527.62 m/s in the core

duct. The mean flow description has been obtained within the TURNEX project solving

the Reynolds-Averaged Navier-Stokes equations with a k-ε turbulence model on a very

fine mesh. These nodal values are interpolated on the acoustic mesh. Two approaches

are investigated: in the first one, the mean flow data are interpolated on the nodes of the

acoustic mesh, whereas in the second one, they are interpolated at the Gauss points of the

numerical quadrature. The mean flow interpolation effects are discussed in Section 8.3.3.

8.3.2 Numerical Results

The numerical results are presented for the static-approach condition. First, the full Lin-

earised Euler Equations solution is investigated. Then, the coupled solution results are

shown. Finally, the mean flow interpolation effects are considered.

8.3.2.1 Full Linearised Euler Equations Solution

An acoustic duct mode is injected in the bypass duct with the Helmholtz number k0rbpde =

17.5. Two modes are considered: the plane wave (0, 1), and the mode (9, 1). Figure 8.25

shows the modified pressure real part for both modes, with p = 9. These colormaps il-

lustrate the complexity of the physics with the presence of multiple-scale wavelengths.

Vorticity sheddings develop along the shear layer from the ducts trailing edges. A quali-

tative comparison with the reference solution from Iob and Arina [59] indicates that the

solutions are similar.

The acoustic waves pressure fields along the control circle are plotted in Figure 8.26 for

polynomial orders ranging from 2 to 9. The position angle Φ is measured from the positive

x-direction. The numerical model convergence is observed. With p = 5 the solution has

already converged in most of the domain, with the exception of the region close to the

symmetry axis where the shear layer is located.
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Figure 8.25: Aeroengine exhaust contours of the modified pressure perturbations real
part. k0rbpde = 17.5, p = 9.
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Figure 8.26: Aeroengine exhaust modified pressure field along the control circle.

8.3.2.2 Coupled Solution

The coupled solution is now studied. The computational domain is the same as for the full

Linearised Euler Equations solution, except that the domain is now split between LEE and

LPE regions and coupling interfaces are introduced. Figure 8.27 shows the mesh and the

mean flow Mach number with the coupling interfaces. In the shear layer region, delimited

by the magenta dotted lines, the Linearised Euler Equations are solved. Outside that

region, the Linearised Potential Equation is solved, i.e. inside the bypass and core ducts

and above the aeroengine. In each of these regions, the mean flow is relatively uniform

and the velocity potential assumption is valid. The numerical results obtained with the

coupled solution are in good agreement with the ones obtained from the Linearised Euler

Equations. The comparison of the solutions along the control circle is plotted in Figure 8.28

for the two acoustic modes. The black dashed line placed at Φ = 37◦ indicates the position

of the coupling interface: values of Φ lower than 37◦ correspond to the Linearised Euler

Equations subdomain, while values of Φ higher than 37◦ correspond to the Linearised

Potential Equation subdomain. The coupled solution reproduces the same features as
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Figure 8.27: Aeroengine exhaust computational domain and mean flow Mach number
contours, with coupling.
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Figure 8.28: Aeroengine exhaust Sound Pressure Level along the control circle. p = 9.
Red line: full Linearised Euler Equations solution. Blue line: coupled solution.

the full Linearised Euler Equations, especially with the acoustic plane wave. The mode

(9, 1) shows a larger difference between the two solutions. However, the difference of the

corresponding Sound Pressure Levels does not exceed 1.45 dB. For the acoustic plane

wave, that difference is lower than 0.46 dB all along the control circle. Note that for this

coupled solution the polynomial order has not been increased along the interface, which

could explain the slight difference with the full LEE solution. Further investigations should

be performed to better understand these changes.

The computational domain is composed of nLEE
e = 2452 elements in the Linearised Euler

Equations subdomain, and nLPE
e = 1272 elements in the Linearised Potential Equation

subdomain. 65.8 % of the elements in the computational domain are solved with the

Linearised Euler Equations, and 34.2 % are solved with the Linearised Potential Equation.

With p = 9, the memory usage for the full Linearised Euler Equations solution is 5.14 Mb,

while it is 3.67 Mb for the coupled solution. This means that the coupled solution uses

71.4 % of the memory used for the full Linearised Euler Equations solution.
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Figure 8.29: Aeroengine exhaust contours of the modified pressure perturbations real
part, with Gauss points CFD interpolation. (m,n) = (0, 1), k0rbpde = 17.5, p = 9.
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Figure 8.30: Aeroengine exhaust Sound Pressure Level along the control circle, with
Gauss points CFD interpolation. (m,n) = (0, 1), p = 9. Solid lines: full Linearised Euler
Equations solutions. Dots: coupled solutions. Red, blue: nodal mean flow interpolation.

Green, black: Gauss points mean flow interpolation.

Mean Flow Interpolation

In this test case, the numerical solutions have been obtained with a linear interpolation

of the mean flow data at each node of the acoustic mesh. Each acoustic node is localised

in the CFD mesh. Then the nodal mean flow values of the corresponding CFD element

surrounding the acoustic node are linearly interpolated to provide the mean flow values

at the acoustic node. The interpolated values at the acoustic nodes of each element are

then used to interpolate the mean flow values at each Gauss point of the element. In that

case, some additional error may be introduced on the mean flow values used inside each

element. As an alternative, the mean flow data are now directly interpolated at the Gauss

points of the numerical quadrature within each element in the acoustic simulation. Figure

8.29 displays the contours of the modified pressure real part for that configuration, for the

incoming acoustic plane wave. The impact of the mean flow interpolation at the Gauss

points is clearly visible: the amplitude of the vorticity shedding is much higher than in

the configuration with nodal interpolation. However, outside the shear layer, the acoustic

field is in good agreement with the one obtained with a nodal interpolation of the mean
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flow data. The plot given in Figure 8.30 gives a more precise insight into those effects, and

shows how the mean flow interpolation affects the pressure field along the control circle.

As discussed in the previous section, the full LEE solution and the coupled solution match

well. The impact of the mean flow interpolation is significant in the shear layer region

(Φ < 30◦), where the amplitude of the acoustic field is amplified because of the interaction

with the vorticity and entropy waves. By contrast, the impact outside the shear layer

region is very limited and the lobes of main acoustic amplitude remain unaffected by the

mean flow interpolation method.

8.3.3 Discussion

With the aeroengine exhaust test case, the applicability of the high-order finite element

model has been investigated. It has been shown that the model converges to a given so-

lution, which is qualitatively in excellent agreement with the reference solution available

in the literature. The LEE/LPE coupling approach also proved successful by providing

accurate results while allowing a significant reduction of the computational cost. Enhance-

ments may be considered: the use of Lagrange multipliers at the interface may improve

the coupling conditions by hiding the derivative terms which introduce some error. The

transmission conditions at the coupling interface depend on the derivatives of the velocity

potential, on the LEE side, and on the derivatives of the density and velocity, on the LPE

side. These derivatives could be hidden inside additional degrees of freedom, the so-called

Lagrange multipliers, to solve additionally in the global system, which would avoid to ex-

plicitly approximate the derivatives in the model. This would cancel the additional error

created at the coupling interface.

Regarding the mean flow interpolation, its effects have been discussed and showed that

a Gauss point interpolation modifies the solution in the shear layer region with respect

to a nodal interpolation. In that region, the amplitude of the field is much higher using

the interpolation at the Gauss points. This modification may be seen as an improvement,

in the sense that it implicates a more accurate interpolation of the mean flow values at

each Gauss point. Outside the shear layer, the impact of the mean flow interpolation does

not seem to be very significant. The acoustic field does not seem to be largely influenced,

whereas the hydrodynamic field is. Interpolating at the Gauss points also directly links

the numerical solution to the CFD interpolation. These effects would require some more

dedicated studies [175].
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In addition, the exhaust complex geometry requires a specific mesh refinement along the

aeroengine ducts in order to properly represent the geometry. This constraint translates

into a large increase in the number of degrees of freedom when using high orders. Using

adaptive order rules should also drastically improve the computational performance of the

model. Adaptive order schemes can be based on a-priori or a-posteriori estimators [52, 203]

which help in improving the computational efficiency of the model by setting some criteria

to choose the polynomial order within each element. Lower polynomial orders may be used

in the refined region, allowing a significant reduction of the computational effort. Such

schemes should be able to take into account not only the effects of the acoustic waves, but

also the vorticity and entropy waves supported by the Linearised Euler Equations.



Chapter 9

Conclusion

In this work, a novel high-order finite element model has been developed to solve the Lin-

earised Euler Equations in the frequency domain for aeroengine exhaust noise applications.

This numerical method combines a high-order Finite Element Method associated with a

Galerkin/Least-Squares stabilisation technique. The boundary conditions have been im-

posed through the method of characteristics, while Perfectly Matched Layers have been

applied around the computational domain to inject duct modes and absorb outgoing waves.

A coupling procedure with the Linearised Potential Equation has been developed to fur-

ther reduce the computational costs. The key contributions of this work, which have been

introduced in Section 1.2 are first summarised, and some insight on future work is given

in a second section.

9.1 Key Contributions

The main contribution of this work is the application of a high-order finite element method

to solve the Linearised Euler Equations in the frequency domain. The problem formulation

has been developed in two dimensions, in three dimensions and for axisymmetric problems,

with the use of the method of characteristics to define the boundary conditions. This

method presents several advantages with respect to existing techniques which solve the

LEE in the frequency domain, and in particular compared to the classical FEM: since

the dispersion error and the pollution effect can be treated by increasing the polynomial

order instead of refining the mesh, this results in improved accuracy and lower memory

requirements for a given problem. For acoustic, vorticity, and entropy waves, the p-FEM

code has been verified on simple test cases such as plane wave propagation in free field, and
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duct mode propagation with uniform and non-uniform flow. The numerical results have

been compared with reference analytic solutions, showing the convergence of the numerical

scheme by h- and p-refinement. The L2-norm error has been found to converge with an

order p+1 with respect to the Helmholtz number kh. The effects of mean flow interpolation

have also been assessed: the mean flow interpolation error is responsible for a stagnation

in the error convergence which level is equal to about one order of magnitude higher than

the mean flow interpolation error.

As absorbing boundary conditions for outgoing waves, the Perfectly Matched Layer has

been applied around the computational domain. It has been found that the PML efficiency

highly depends on the stretching function, which is responsible for the wave envelope inside

the layer where two sources of error have been identified: the truncation or reflection error,

and the discretisation or interpolation error. An existing logarithmic stretching function

has been modified with an imaginary part in order to improve the PML damping properties.

This new PML has been built to generate linear absorption profiles inside the layer for one-

dimensional acoustic waves, and to cancel out the natural oscillations in the PML in the

direction of propagation. The proposed stretching function has been shown to provide

improved convergence results for two-dimensional duct mode propagation with respect to

two existing stretching functions in the literature: lower levels of error have been reached

over a large range of degrees of freedom per wavelength, not only for acoustic waves but

also for vorticity and entropy waves.

In order to treat the dispersion problem and the convection-related spurious oscillations,

numerical stabilisation has been investigated. Unlike steady analyses for time-domain

problems which have been studied in the literature, the high-order finite element formula-

tion for the LEE involves two additional variables which are the angular frequency ω and

the polynomial order p. Novel optimal stabilisation parameters which are able to cancel

the dispersion error have been derived analytically, for the first three polynomial orders.

These unsteady parameters are purely imaginary numbers which vary with the frequency,

the convection velocity and the characteristic mesh size, unlike the steady stabilisation pa-

rameter found in the literature which is real and only depends on the convection velocity

and the characteristic mesh size. Although the optimal parameters are very efficient in

cancelling out the dispersion error, obtaining them for high orders appears to be expen-

sive. The effects of high orders have also been assessed. It has been observed that even

orders introduce an artificial diffusion in the model which is responsible for lowering the

convergence rate of the dispersion error for these orders. Stabilisation has been shown to
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correct the asymptotic convergence of these orders.

In the framework of aeroengine exhaust noise, the mean flow distribution is highly het-

erogeneous with regions of complex rotational mean flows and regions of quasi-uniform

mean flows. Therefore, a novel technique has been developed to couple the Linearised

Euler Equations with the Linearised Potential Equation in order to optimise the acoustic

simulation while taking into account the mean flow configuration: in this model the LEE

are solved in the rotational flow regions while the LPE are solved in the potential flow re-

gions. Characteristic transmission conditions have been used along the interfaces between

the mathematical models. The coupling procedure has been tested for several test cases.

It has been found that the coupling procedure provides accurate results, with one accuracy

order lower than the full Linearised Euler Equations solution. The approximation of the

solution gradients at the coupling interface explains this difference, which may be treated

by increasing the polynomial order in the interface elements. A performance study has

shown that the memory requirements can be improved by a factor of the same order as the

ratio of elements solved with the Linearised Euler Equations.

The numerical model has been applied to several test cases in Chapter 8. First, noise

propagation has been solved for the JT15D aeroengine intake to verify the method with

a non-straight geometry and a potential flow: the results match the reference solution

obtained with the company software Virtual.Lab which solves the Linearised Potential

Equation. Second, a simplified aeroengine exhaust with straight duct has been investi-

gated with different mean flow configurations: the high-order finite element model is in

good agreement with the available analytic solution, and is able to capture the vorticity

shedding that develops from the duct trailing edge singularity. It has been observed that

the Kutta condition at the duct trailing edge is supported by the numerical model with-

out additional treatment, which may be explained by the continuous discretisation of the

pressure and velocity fields inherent to the finite element method. Third, a realistic aero-

engine exhaust combining a complex geometry and a complex sheared mean flow has been

studied: the solution convergence has been observed by increasing the polynomial order,

and the coupling solution has been shown to provide results similar to the full Linearised

Euler Equations solution with lower memory requirements. It has been seen that the mean

flow interpolation has significant impact on the acoustic field in the shear layer region, but

very low effects outside that region. The physical phenomena linked with acoustic prop-

agation in non-uniform media have been observed: propagation in duct, wave reflection,

wave refraction through shear layer, vorticity/entropy waves interaction with acoustic field



Chapter 9. Conclusion 158

and vorticity shedding from duct trailing edge.

9.2 Future Work

In this three-year-and-a-half work, the capability of the proposed high-order finite element

model has been demonstrated to solve the Linearised Euler Equations with reduced com-

putational costs with respect to classical finite elements. However, much further research

remains to be conducted on this subject. Here are a few aspects that are considered of

interest for additional investigation. Since the coupling technique introduces an additional

error along the subdomains interface, the use of Lagrange multipliers instead of charac-

teristic transmission conditions should be a valid improvement. In practice, the gradient

terms at the interface would be hidden in supplementary variables, the Lagrange multi-

pliers, which would be added to the global system. This would therefore cancel out the

additional error and provide a solution with the same accuracy as the full Linearised Euler

Equations solution. The benefits of the coupling technique should be even more noticeable

on large scale problems involving installation effects for instance, where the LEE region

could be reduced to the relevant area.

Another amelioration regards the geometry representation. It has been seen that complex

geometries require local mesh refinement to properly represent their profile. This may

translate into an excessive number of degrees of freedom when dealing with high-order

polynomials. Two solutions could be applied. The first one would consist in using curved

elements along the boundaries, which would allow the use of large elements and high-order

polynomial interpolation shape functions. Some initial tests have been carried out and

have provided promising results, showing that quadratic and cubic elements could be used

together with high-order shape functions for the applications studied in this work. The

second one relies on hp-adaptivity rules: depending on the local element size, a suitable

polynomial order may be used. Typically, for a given wavelength, small elements would

require low orders while large elements would require high orders.

This adaptivity scheme would also help for treating the multiple wavelengths present when

solving the Linearised Euler Equations: the polynomial order in an element should be

selected with respect to the local mesh size and the local dominant wavelength. Existing

a-priori and a-posteriori adaptivity rules may be applied to the scheme, but they should

account for the vorticity and entropy waves. For instance, Prinn developed an a-priori

estimator for solving the Linearised Potential Equation based on one-dimensional acoustic
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waves [46]. This estimator has been applied to the Linearised Euler Equations in this work,

and it has been observed that it is not able to take into account the interaction with the

vorticity and entropy waves. Some research on a-posteriori adaptivity schemes may be of

interest. A combination of all the aforementioned features with automatically processed

decision within the model would provide a more complete, computationally efficient, solver

for complex acoustic problems.

In addition, to further assess the numerical model developed in this work, it should be

applied to solving complete large scale industrial problems involving aeroengine exhaust

noise for several frequencies. Tests should also determine the maximum frequency resolv-

able with this high-order finite element method, considering the computational resources

currently available. The method could also be used for other applications involving for

instance swirling mean flows with azimuthal components. Finally, the method has been

shown to provide efficient and accurate results with less computational cost than classical

finite element methods; it would be appropriate to compare this approach with other tech-

niques such as domain decomposition methods or Discontinuous Galerkin Methods. Lieu

et al. have for instance compared the p-FEM to the wave-based DGM for the Helmholtz

equation, showing that both methods present some advantages and inconvenients. Such

comparisons should be interesting to look at in order to keep developing efficient CAA

solvers.





Appendix A

Entropy Equation

In this appendix, the mathematical procedure to obtain the entropy equation is detailed.

The first law of thermodynamics in Equation 3.4 expresses the energy total differential in

terms of the entropy and mass density total differentials. Substituting its expression into

the energy conservation equation 3.3, it yields:

ρT
ds

dt
+ u ·

(
ρ
∂u

∂t
+

1

2
ρ∇u2

)
+

(
e+

1

2
u2 +

p

ρ

)(
∂ρ

∂t
+ ∇ · (ρu)

)
−∇ · (σu)− p∇ · u = f · u−∇ ·Q. (A.1)

Since the term ∇u2 expands into: 2 ((u ·∇)u+ u× (∇× u)), Equation A.1 becomes:

ρT
ds

dt
+ u ·

(
ρ
∂u

∂t
+ ρ(u ·∇)u

)
+

(
e+

1

2
u2 +

p

ρ

)(
∂ρ

∂t
+ ∇ · (ρu)

)
+ u · (ρu× (∇× u))−∇ · (σu)− p∇ · u = f · u−∇ ·Q. (A.2)

On the left-hand side of Equation A.2, the first term is proportional to the entropy material

derivative. The second term is part of the momentum conservation equation 3.2 since that

equation can be written like:

ρ
∂u

∂t
+ ρ(u ·∇)u−∇ · σ = f . (A.3)

In the second parenthesis of the third term, the mass conservation equation 3.1 is found

and that term is exactly equal to zero. In the fourth term, u ·(ρu× (∇× u)) also happens

to be zero. The fifth term expands like: ∇ · (σu) = σ : ∇u+u · (∇ ·σ). Thus, Equation
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A.2 simplifies to:

ρT
ds

dt
− σ : ∇u− p∇ · u = −∇ ·Q, (A.4)

Using the constitutive equation 3.6, the entropy equation is finally obtained:

ρT
ds

dt
− τ : ∇u = −∇ ·Q. (A.5)



Appendix B

Linearised Euler Equations

B.1 Three Dimensions

In conservative form, the three-dimensional Linearised Euler Equations read:

jωq +
∂Axq

∂x
+
∂Ayq

∂y
+
∂Azq

∂z
= 0, (B.1)

where q = {ρ′, (ρux)′, (ρuy)
′, (ρuz)

′, p′c}t. The flux matrices are:
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B.2 Cylindrical Coordinates

In cylindrical coordinates (r, θ, x), the Linearised Euler Equations read:
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with q = {ρ′, (ρur)′, (ρuθ)′, (ρux)′, p′c}t. The flux matrices Ar, Aθ, Ax and the matrix Ac

read:
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(B.4)

For axisymmetric problems, q ≡ e−jmθ where m is the azimuthal order. Equation B.3

simplifies to:
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r
Aθq +

∂Axq

∂x
= 0. (B.5)
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Analytic Solutions

Rectangular Cross-Section Duct

For a rectangular cross-section duct in Cartesian coordinates with axial uniform mean flow,

the variables analytic expressions are:
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, (C.1)

where Ap and B• are constant amplitudes. Note that the subscript m,n and the superscript
± are dropped to facilitate the reading. These expressions are modal and for waves prop-

agating in one direction. Contributions to the acoustic field are found in all the variables,

whereas the vorticity contributions appear only in the velocity field through the constant

amplitudes Bx, By and Bz. The entropy wave is supported by the density component

through the constant amplitude Bρ.

Circular Cross-Section Duct

For circular and annular cross-section ducts in cylindrical coordinates with axial uniform

mean flow, each variable depends on the azimuthal and radial orders (m,n) and on the

amplitude U(r) in the radial direction. The subscript m,n and the superscript ± are also
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dropped here. The variables analytic expressions are:



ρ =
Ap
c2

0

U(r)e−jmθe−jkxx + Bρe
−j

k0
Mx

x

ur =
Ap
ρ0c0

j

k0 −Mxkx
U ′(r)e−jmθe−jkxx + Bre

−j
k0
Mx

x

uθ =
Ap
ρ0c0

1

k0 −Mxkx

m

r
U(r)e−jmθe−jkxx + Bθe

−j
k0
Mx

x

ux =
Ap
ρ0c0

kx
k0 −Mxkx

U(r)e−jmθe−jkxx + Bxe−j
k0
Mx

x

p = Ap U(r)e−jmθe−jkxx

, (C.2)

where Ap and B• are constant amplitudes.
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Flux Matrices and Characteristics

The matrices of change of basis for the flux matrix F = nxAx + nyAy + nzAz (valid for
nx 6= 0) are given in three dimensions for the Cartesian coordinate systems. The matrix
of eigenvalues Λ is:

Λ =
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, (D.1)

The matrices of change of basis W and W−1 read:
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These expressions are valid for nx 6= 0. For nx = 0, they read:
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−u0x 1 0 0 0

nzu0y − nyu0z 0 −nz ny 0

1 0 0 0 −
ρ0

pc0
u0 · n

2c0
0 −

ny

2c0
−
nz

2c0

ρ0

2pc0

−
u0 · n

2c0
0

ny

2c0

nz

2c0

ρ0

2pc0



. (D.3)
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