Denial of long-term issues with agriculture on tropical peatlands will have devastating #### consequences Lahiru S. Wijedasa^{1,2,3*}, Jyrki Jauhiainen⁴, Mari Könönen⁴, Maija Lampela⁴, Harri Vasander⁴, Marie-Claire LeBlanc⁵, Stephanie Evers^{6,7,8}, Thomas E.L. Smith⁹, Catherine M. Yule^{7,10}, Helena Varkkey^{7,11}, Massimo Lupascu¹², Faizal Parish¹³, Ian Singleton¹⁴, Gopalasamy R. Clements^{3,6,10,15,16}, Sheema Abdul Aziz^{3,6,16}, Mark E. Harrison^{17,18}, Susan Cheyne¹⁷, Gusti Z. Anshari¹⁹, Erik Meijaard^{20,21}, Jenny E. Goldstein²², Susan Waldron²³, Kristell Hergoualc'h²⁴, René Dommain²⁵, Steve Frolking²⁶, Christopher D. Evans²⁷, Mary Rose C. Posa¹, Paul H. Glaser²⁸, Nyoman Suryadiputra²⁹, Reza Lubis²⁹, Truly Santika²¹, Rory Padfield^{7,30,31}, Sofyan Kurnianto^{24,33}, Panut Hadisiswoyo³⁴, Teck Wyn Lim³⁵, Susan E. Page¹⁸, Vincent Gauci³⁶, Peter J. van der Meer³⁷, Helen Buckland³⁸, Fabien Garnier³⁸, Marshall K. Samuel^{6,7,39,40}, Liza Nuriati Lim Kim Choo³⁹, Patrick O'Reilly^{7,41,42}, Matthew Warren⁴³, Surin Suksuwan⁴⁴, Elham Sumarga⁴⁵, Anuj Jain^{2,46}, William F. Laurance⁴⁷, John Couwenberg⁴⁸, Hans Joosten⁴⁸, Ronald Vernimmen⁴⁹, Aljosja Hooijer⁴⁹, Chris Malins⁵⁰, Mark A. Cochrane⁵¹, Balu Perumal⁵², Florian Siegert^{53,54}, Kelvin S.-H. Peh^{55,56}, Louis-Pierre Comeau⁵⁷, Louis Verchot⁵⁸, Charles F. Harvey^{59,60}, Alex Cobb⁵⁹, Zeehan Jaafar^{1,60}, Henk Wösten⁶¹, Solichin Manuri⁶², Moritz Müller⁶³, Wim Giesen⁶⁴, Jacob Phelps⁶⁵, Ding Li Yong^{62,66}, Marcel Silvius⁶⁷, Béatrice M. M. Wedeux⁶⁸, Alison Hoyt^{59,60}, Mitsuru Osaki⁶⁹, Hirano Takashi⁶⁹, Hidenori Takahashi⁷⁰, Takashi S. Kohyama⁶⁹, Akira Haraguchi⁷¹, Nunung P. Nugroho⁷², David A. Coomes⁶⁸, Le Phat Quoi⁷³, Alue Dohong⁷⁴, Haris Gunawan⁷⁴, David L.A. Gaveau²⁴, Andreas Langner⁷⁵, Felix K. S. Lim⁷⁶, David P. Edwards⁷⁶, Xingli Giam⁷⁷, Guido van der Werf ⁷⁸, Rachel Carmenta²⁴, Caspar C. Verwer⁷⁹, Luke Gibson⁸⁰, Laure Grandois⁸¹, Laura Linda Bozena Graham⁸², Jhanson Regalino⁸², Serge A. Wich^{8,83}, Jack Rieley⁸⁴, Nicholas Kettridge⁸⁵, Chloe Brown⁸³, Romain Pirard²⁴, Sam Moore⁸⁶, B. Ripoll Capilla¹⁷, Uwe Ballhorn⁵⁴, Hua Chew Ho⁸⁷, Agata Hoscilo⁸⁸, Sandra Lohberger⁵⁴, Theodore A. Evans⁸⁹, Nina Yulianti⁹⁰, Grace Blackham⁹¹, Onrizal⁹², Simon Husson¹⁷, Daniel Murdiyarso^{24,93}, Sunita Pangala³⁵, Lydia E.S. Cole⁹⁴, Luca Tacconi⁹⁵, Hendrik Segah⁹⁶, Prayoto Tonoto⁹⁷, Janice S.H. Lee⁹⁸, Gerald Schmilewski⁹⁹, Stephan Wulffraat¹⁰⁰, Erianto Indra Putra^{50,101}, Megan E. Cattau¹⁰², R.S. Clymo¹⁰³, Ross Morrison¹⁰⁴, Aazani Mujahid¹⁰⁵, Jukka Miettinen¹⁰⁶, Soo Chin Liew¹⁰⁶, Samu Valpola¹⁰⁷, David Wilson¹⁰⁸, Laura D'Arcy¹⁷, Michiel Gerding⁹⁹, Siti Sundari¹⁰⁹, Sarah A. Thornton^{17,18}, Barbara Kalisz¹¹⁰, Stephen J. Chapman¹¹¹, Ahmad Suhaizi Mat Su¹¹², Imam Basuki^{24,33}, Masayuki Itoh¹¹³, Carl Traeholt¹¹⁴ & Roxane Andersen^{115*}. ¹Department of Biological Sciences, National University of Singapore, Singapore. ²ConservationLinks, Singapore. ³Rimba, Malaysia. ⁴University of Helsinki, Finland. ⁵Université Laval, Québec, Canada. ⁶University of Nottingham – Malaysia Campus, Malaysia. ⁷Tropical Catchment Research Initiative (TROCARI), Kuala Lumpur, Malaysia. - ⁸School of Natural Sciences & Psychology, Liverpool John Moores University, United Kingdom. - ⁹Department of Geography, King's College London, United Kingdom. - ¹⁰Monash University Malaysia, Malaysia. - ¹¹Department of International & Strategic Studies and Asia-Europe Institute, University of - Malaya, Malaysia. - ¹²Department of Geography, National University of Singapore, Singapore. - ¹³Global Environment Centre, Malaysia. - ¹⁴Sumatran Orangutan Conservation Programme, Indonesia. - ¹⁵Kenyir Research Institute, Universiti Malaysia Terengganu, Malaysia. - ¹⁶Département Écologie et Gestion de la Biodiversité, Muséum National d'Histoire Naturelle, France. - ¹⁷Borneo Nature Foundation, Kalimantan, Indonesia. - ¹⁸University of Leicester, United Kingdom. - ¹⁹Centre for Wetlands, People and Biodiverstiy, Tanjungpura University, Western Kalimantan, Indonesia. - ²⁰Borneo Futures, Jakarta, Indonesia. - ²¹School of Biological Sciences, University of Queensland, Brisbane, Australia. - ²²Cornell University, USA. - ²³University of Glasgow, United Kingdom. - ²⁴Center for International Forestry Research (CIFOR), Indonesia & Peru. - ²⁵Smithsonian Institution, National Museum of Natural History, Washington, DC, USA. - ²⁶Institude for the Study of Earth, Oceans and Space, University of New Hampshire, USA. - ²⁷Centre for Ecology and Hydrology, Bangor, United Kingdom. - ²⁸Department of Earth Sciences, University of Minnesota, Minneapolis, USA. - ²⁹Wetlands International –Indonesia Programme, Bogor, Indonesia. - ³⁰Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Malaysia. - ³²Department of Social Sciences, Oxford Brookes University, United Kingdom. - ³³Departement of Fisheries and Wildlife, Oregon State University, USA. - ³⁴Orangutan Information Centre, Sumatra, Indonesia. - ³⁵Resource Stewardship Consultants Sdn Bhd, Malaysia. - ³⁶School of Environment, Earth and Ecosystem Sciences, The Open University, United Kingdom. - ³⁷Van Hall Larenstein University of Applied Sciences, The Netherlands. - ³⁸Sumatran Orangutan Society, London, United Kingdom. - ³⁹Climate Change Programme, Malaysian Agricultural Research and Development Institute (MARDI), Malaysia. - ⁴⁰Global Research Alliance (GRA), USDA-FAS, Washington State University, Pullman, USA. - ⁴¹Crops for the Future, Semenyih, Malaysia. - ⁴²School of Politics, History and International Relations, University of Nottingham Malaysia Campus, Semenyih, Malaysia. - ⁴³USDA Forest Service, Northern Research Station, USA. - ⁴⁴Proforest, Kuala Lumpur, Malaysia. - ⁴⁵School of Life Sciences and Technology, Institut Teknologi Bandung, Indonesia. - ⁴⁶BirdLife International, Cambridge, United Kingdom. - ⁴⁷Centre for Tropical Environmental and Sustainability Science (TESS) & College of Science and Engineering, James Cook University, Cairns, Queensland, Australia. - ⁴⁸Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany. - ⁴⁹Deltares, Boussinesqweg 1, 2629 HV, Delft, Netherlands. - ⁵⁰Cerulogy, London, United Kingdom. - ⁵¹Geospatial Sciences Center of Excellence, South Dakota State University, USA. - ⁵²Malaysian Nature Society, Kuala Lumpur, Malaysia. - ⁵³GeoBio Center, Ludwig-Maximilians-University, Germany. - ⁵⁴RSS Remote Sensing Solutions GmbH, Baierbrunn, Germany. - ⁵⁵Centre for Biological Sciences, University of Southampton, United Kingdom. - ⁵⁶Conservation Science Group, Department of Zoology, University of Cambridge, United Kingdom. - ⁵⁷Department of Geography and Resource Management, Chinese University of Hong Kong, Hong Kong, China. - ⁵⁸International Centre for Tropical Agriculture (CIAT), Cali, Colombia. - ⁵⁹Singapore-MIT Alliance for Research and Technology, Singapore, Singapore. - ⁶⁰Massachusetts Institute of Technology, Parsons Laboratory, Cambridge, Massachusetts, USA. - ⁶⁰Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA. - ⁶¹Wageningen University and Research, Wageningen, The Netherlands. - ⁶²Fenner School of Environment and Society, Australian National University, Australia. - ⁶³Swinburne University of Technology Sarawak Campus, Kuching, Sarawak, Malaysia. - ⁶⁴Euroconsult Mott MacDonald, Arnhem, The Netherlands. - ⁶⁵Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom. - ⁶⁶Southeast Asian Biodiversity Society, Singapore. - ⁶⁷Wetlands International, Wageningen, The Netherlands. - ⁶⁸Department of Plant Sciences, University of Cambridge, United-Kingdom. - ⁶⁹Hokkaido University, Japan. - ⁷⁰NPO Hokkaido Institute of Hydro-climate, Japan. - ⁷¹Kyushu Institute of Technology, Japan. - ⁷²Research and Development Institute on Watershed Management Technology, Research, Development and Innovation Agency, Ministry of Environment and Forestry; Indonesia. ⁷³Institute for Environment and Natural Resources, National University at HCM City, Vietnam. ⁷⁴Peatland Restoration Agency (BRG), Indonesia. ⁷⁵Joint Research Centre of the European Commission, Directorate D – Sustainable Resources - Bio-Economy Unit, Italy. ⁷⁶Department of Animal and Plant Sciences, University of Sheffield, United Kingdom. ⁷⁷School of Aquatic and Fishery Sciences, University of Washington, Seattle, USA. ⁷⁸Faculty of Earth and Life Sciences, University Amsterdam, The Netherlands. ⁷⁹International Union for Conservation of Nature (IUCN), National Committee of The Netherlands. ⁸⁰School of Biological Sciences, University of Hong Kong, Hong Kong, China. ⁸¹Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, France. 82Borneo Orangutan Survival Foundation (BOSF), Indonesia. ⁸³Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands. ${}^{84}\mathrm{School}$ of Geography, The University of Nottingham, United Kingdom. ⁸⁵School of Geography, Earth and Environmental Science, University of Birmingham, United Kingdom. ⁸⁶University of Oxford, Environmental Change Institute, School of Geography and the Environment, Oxford, United Kingdom. ⁸⁷Nature Society (Singapore), Singapore. - ⁸⁸Remote Sensing Centre, Institute of Geodesy and Cartography, Modzelewskiego 27, Warsaw, Poland. - ⁸⁹School of Animal Biology, University of Western Australia, Perth, WA, 6009, Australia. - ⁹⁰University of Palangka Raya, Central Kalimantan, Indonesia. - ⁹¹Wildfowl and Wetlands Trust, United Kingdom. - ⁹²Tropical Forest Ecology and Conservation Division, Faculty of Forestry, Universitas Sumatera Utara, Sumatra, Indonesia. - ⁹³Department of Geophysics and Meteorology, Bogor Agricultural University, Bogor 16680, Indonesia. - ⁹⁴Oxford Long-term Ecology Laboratory, Department of Zoology, University of Oxford, Oxford, United Kingdom. - ⁹⁵Crawford School of Public Policy, The Australian National University, Australia. - ⁹⁶University of Palangka Raya (UPR), Central Kalimantan, Indonesia. - ⁹⁷Graduate School for International Development and Cooperation, Hiroshima University, Hiroshima, Japan. - ⁹⁸Asian School of the Environment, Nanyang Technological University, Singapore. - ⁹⁹International Peatland Society, Jyväskylä, Finland. - $^{100}\mbox{World}$ Wide Fund for Nature, Jakarta, Indonesia. - $^{101}\mbox{Faculty}$ of Forestry, Bogor Agricultural University, Bogor, Indonesia. - ¹⁰²University of Colorado, Boulder, USA. - $^{103}\mbox{Queen}$ Mary University of London, London, United Kingdom. - ¹⁰⁴Land Surface Flux Measurements Group, Centre for Ecology and Hydrology, Wallingford, United Kingdom. - ¹⁰⁵University of Malaysia Sarawak, Sarawak, Malaysia. ¹⁰⁶Centre for Remote Imaging, Sensing and Processing, National University of Singapore, Singapore. ¹⁰⁷Geological Survey of Finland, Kokkola, Finland. ¹⁰⁸Earthy Matters Environmental Consultants, Glenvar, Letterkenny, Donegal, Ireland. ¹⁰⁹Research Center for Biology, Indonesian Institute of Sciences (LIPI), Bogor, Indonesia. ¹¹⁰Department of Soil Science and Land Reclamation, Faculty of Environment and Agriculture, University of Warmia and Mazury in Olsztyn, Poland. ¹¹¹Ecological Sciences Group, The James Hutton Institude, Craigiebuckler, Aberdeen, Scotland, United Kingdom. ¹¹²Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Malaysia. ¹¹³Centre for Southeast Asian Studies, Kyoto University, Kyoto, Japan. ¹¹⁴Southeast Asia Program, Research and Conservation Division, Copenhagen Zoo, Denmark. ¹¹⁵Environmental Research Institute, University of Highlands and Islands, United Kingdom. ## *Corresponding authors: lahirux@gmail.com & Roxane.Andersen@uhi.ac.uk ## Keywords Tropical peatlands, agriculture, sustainability, emissions, subsidence The first International Peat Congress (IPC) held in the tropics - in Kuching (Malaysia) - brought together over 1000 international peatland scientists and industrial partners from across the world ("International Peat Congress with over 1000 participants!," 2016). The congress covered all aspects of peatland ecosystems and their management, with a strong focus on the environmental, societal and economic challenges associated with contemporary large-scale agricultural conversion of tropical peat However, recent encouraging developments towards better management of tropical peatlands have been undermined by misleading newspaper headlines and statements first published during the conference. Articles in leading regional newspapers ("Oil palm planting on peat soil handled well, says Uggah," 2016; Cheng & Sibon, 2016; Nurbianto, 2016a, 2016b; Wong, 2016) widely read across the region, portrayed a general consensus, in summary of the conference, that current agricultural practices in peatland areas, such as oil palm plantations, do not have a negative impact on the environment. This view is not shared by many scientists, or supported by the weight of evidence that business-as-usual management is not sustainable for tropical peatland agriculture. Peer-reviewed scientific studies published over the last 19 years, as reflected in the Intergovernmental Panel on Climate Change (IPCC) Wetland Supplement on greenhouse gas inventories, affirms that drained tropical peatlands lose considerable amounts of carbon at high rates (Drösler et al., 2014). Tropical peat swamp forests have sequestered carbon for millennia, storing a globally significant reservoir below ground in the peat (Page et al., 2011; Dommain et al., 2014). However, contemporary agriculture techniques on peatlands heavily impact this system through land clearance, drainage and fertilization, a process that too often involves fire. Along with biodiversity losses driven by deforestation (Koh et al., 2011; Posa et al., 2011; Giam et al., 2012), the carbon stored in drained peatlands is rapidly lost through oxidation, dissolution and fire (Couwenberg et al., 2009; Hirano et al., 2012; Ramdani & Hino, 2013; Schrier-Uijl et al., 2013; Carlson et al., 2015; Warren et al., 2016). Tropical peat fires are a major contributor to global greenhouse gas emissions and produce transboundary haze causing significant impacts on human health, regional economies and ecosystems (Page et al., 2002; Marlier et al., 2012; Jaafar & Loh, 2014; Chisholm et al., 2016; Huijnen et al., 2016; Stockwell et al., 2016). With future El-Niño events predicted to increase in frequency and severity (Cai et al., 2014) and with fire prevalence now decoupled from drought years (Gaveau et al., 2014), future large scale fire and haze events are imminent given the extensive areas of now drained fire prone drained peatlands (Kettridge *et al.*, 2015; Turetsky *et al.*, 2015; Page & Hooijer, 2016). In reality, just how much of the estimated 69 gigatonnes of carbon (Page *et al.*, 2011) stored in Southeast Asian tropical peatlands is being lost due to agricultural operations under the current management regime is still uncertain. Of great concern is that none of the agricultural management methods applied to date have been shown to prevent the loss of peat and the associated subsidence of the peatland surface following drainage (Wösten *et al.*, 1997; Melling *et al.*, 2008; Hooijer *et al.*, 2012; Evers *et al.*, 2016). Recent projections suggest that large areas of currently drained coastal peatlands will become un-drainable, and progressively be subjected to longer periods of inundation by river and ultimately sea water (Hooijer *et al.*, 2015a, 2015b; Sumarga *et al.*, 2016). With growing risk of saltwater intrusion, agriculture in these coastal lands will become increasingly untenable, calling into question the very notion of "long-term sustainability of tropical peatland agriculture". A more accurate view of drained peatland agriculture is that of an extractive industry, in which a finite resource (the peat) is 'mined' to produce food, fibre and fuel, driven by global demand. In developing countries with growing populations, there are strong socio-economic arguments for exploiting this resource to support local livelihoods and broader economic development (Mizuno et al., 2016). However, an acceptance that on-going peat loss is inevitable under this scenario. Science-based measures towards improved management, including limitations on the extent of plantation development, can be used to minimise the rate of this peat loss (President of Indonesia, 2011). Such an evidence-based position, supported with data and necessary legal instruments are needed for sustainable futures. The scientifically unfounded belief that drained peatland agriculture can be made 'sustainable', and peat loss can be halted, via unproven methods such as peat compaction debilitates the effort to find sustainable possibilities. To a large extent, the issues surrounding unsustainable peatland management have now been recognized by sections of industry (Wilmar, 2013; APP, 2014; Cargill Inc., 2014; Mondelēz International, 2014; Sime Darby Plantation, 2014; APRIL, 2015; Olam International, 2015), government (President of Indonesia, 2014, 2016; Mongabay, 2015; Mongabay Haze Beat, 2015; Hermansyah, 2016) and consumers (Wijedasa et al., 2015). In recognition of the constraints and risks of peatland development, many large and experienced oil palm and pulpwood companies have halted further development on peat and introduced rigorous management requirements for existing peatland plantations(Lim *et al.*, 2012). However, the denial of the empirical basis calling for improved peatland management remains persistent in influential policy spaces, as illustrated by the articles reporting on the conference ("Oil palm planting on peat soil handled well, says Uggah," 2016; Cheng & Sibon, 2016; Nurbianto, 2016a, 2016b). The search for more responsible tropical peatland agriculture techniques includes promising recent initiatives to develop methods to cultivate crops on peat under wet conditions (Giesen, 2015; Dommain *et al.*, 2016; Mizuno *et al.*, 2016). While a truly sustainable peatland agriculture method does not yet exist, the scientific community and industry are collaborating in the search for solutions(International Peat Society, 2016), and for interim measures to mitigate ongoing rates of peat loss under existing plantations. Failing to recognize the devastating consequences of the current land use practices on peat soils and failing to work together to address them could mean that the next generation will have to deal with an irreversibly altered, dysfunctional landscape where neither environment nor society, globally or locally, will be winners. #### **References:** APP (2014) APP Forest Conservation Policy Update 2014. APRIL (2015) APRIL Group's Sustainable Forest Management Policy 2.0. 1-4. Cai W, Borlace S, Lengaigne M et al. (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. *Nature Climate Change*, **5**, 1–6. Cargill Inc. (2014) Cargill Policy on Sustainable Palm Oil. - Carlson KM, Goodman LK, May-Tobin CC (2015) Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations. *Environmental Research Letters*, **10**, 74006. - Cheng L, Sibon P (2016) Sarawak opening up coastal lowland areas for agriculture, plantation devt Adenan. *BorneoPost*. - Chisholm RA, Wijedasa LS, Swinfield T (2016) The need for long-term remedies for Indonesia's forest fires. *Conservation Biology*, **30**, 5–6. - Couwenberg J, Dommain R, Joosten H (2009) Greenhouse gas fluxes from tropical peatlands in south-east Asia. *Global Change Biology*, **16**, 1715–1732. - Dommain R, Couwenberg J, Glaser PH, Joosten H, Suryadiputra I, Nyoman N (2014) Carbon storage and release in Indonesian peatlands since the last deglaciation. *Quaternary Science Reviews*, **97**, 1–32. - Dommain R, Dittrich I, Giesen W, Joosten H, Rais DS, Silvius M, Wibisono ITC (2016) - Ecosystem services, degradation and restoration of peat swamps in the Southeast Asian tropics. In: *Peatland Restoration and Ecosystem Services: Science, Policy and Practice* (eds Bonn A, Allott T, Evans M, Stoneman R, Joosten H). Cambridge. - Drösler M, Verchot L V., Freibauer A et al. (2014) Chapter 2: Drained inland organic soils. In: 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (eds Hiraishi T, Krug T, Tanabe K, Srivastava N, Jamsranjav B, Fukuda M, Troxler T), pp. 1–79. IPCC, Switzerland. - Evers S, Yule C, Padfield R, O'Reilly P, Varkkey H (2016) Keep Wetlands Wet: The Myth of Sustainable Development of Tropical Peatlands Implications for Policies and Management. *Global Change Biology*, 1–16. - Gaveau DLA, Salim M, Hergoualc'h K et al. (2014) Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires. *Scientific reports*, **4**, 1–7. - Giam X, Koh LP, Tan HH, Miettinen J, Tan HTW, Ng PKL (2012) Global extinctions of freshwater fishes follow peatland conversion in Sundaland. *Frontiers in Ecology and the Environment*, **10**, 465–470. - Giesen W (2015) Utilising non-timber forest products to conserve Indonesia's peat swamp forests and reduce carbon emissions. *Journal of Indonesian Natural History*, **3**, 10–19. - Hermansyah A (2016) Soil compaction puts peatland at risk, agency says. The Jakarta Post, 1–6. - Hirano T, Segah H, Kusin K, Limin S, Takahashi H, Osaki M (2012) Effects of disturbances on the carbon balance of tropical peat swamp forests. *Global Change Biology*, **18**, 3410–3422. - Hooijer A, Page S, Jauhiainen J, Lee WA, Lu XX, Idris A, Anshari G (2012) Subsidence and carbon loss in drained tropical peatlands. *Biogeosciences*, **9**, 1053–1071. - Hooijer A, Vernimmen R, Visser M, Mawdsley N (2015a) Flooding projections from elevation and subsidence models for oil palm plantations in the Rajang Delta peatlands, Sarawak, Malaysia. Deltares report 1207384, 76 pp. - Hooijer A, Vernimmen R, Mawdsley N, Page S, Mulyadi D, Visser M (2015b) Assessment of impacts of plantation drainage on the Kampar Peninsula peatland, Riau. Deltares Report 1207384. - Huijnen V, Wooster MJ, Kaiser JW et al. (2016) Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. *Scientific Reports*, **6**, 26886. - International Peat Congress with over 1000 participants! (2016) PeatNews. - International Peat Society (2016) Statement regarding the Jakarta Post article of 18th August. - Jaafar Z, Loh TL (2014) Linking land, air and sea: Potential impacts of biomass burning and the resultant haze on marine ecosystems of Southeast Asia. *Global Change Biology*, **20**, 2701–2707. - Kettridge N, Turetsky MR, Sherwood JH et al. (2015) Moderate drop in water table increases peatland vulnerability to post-fire regime shift. *Scientific Reports*, **5**, 8063. - Koh LP, Miettinen J, Liew SC, Ghazoul J (2011) Remotely sensed evidence of tropical peatland conversion to oil palm. *Proceedings of the National Academy of Sciences of the United States of America*, **108**, 5127–5132. - Lim KH, Lim SS, Parish F, Suharto R (2012) RSPO Manual on Best Management Practices (BMPs) for Existing Oil Palm Cultivation on Peat. RSPO, Kuala Lumpur, Malaysia, 214 pp. - Marlier ME, DeFries RS, Voulgarakis A et al. (2012) El Niño and health risks from landscape fire emissions in southeast Asia. *Nature Climate Change*, **3**, 131–136. - Melling L, Goh KJ, Beauvais C, Hatano R (2008) Carbon Flow and Budget in Young Mature Oil Palm Agroecosystem on Deep Tropical Peat. *Planter*, **84**, 21. - Mizuno K, Fujita MS, Kawai S (2016) Catastrophe & Regeneration in Indonesia's Peatlands: Ecology, Economy & Society (eds Mizuno K, Fujita MS, Kawai S). NUS Press, Singapore, 466 pp. - Mondelēz International (2014) Mondelēz International Palm Oil Action Plan. - Mongabay (2015) Jokowi to oversee Indonesia peat restoration agency but details thin on the ground. *Mongabay*. - Mongabay Haze Beat (2015) Jokowi pledges Indonesia peatland "revitalization" to stop the burning. *Mongabay*. - Nurbianto B (2016a) Congress may change views on cultivation of peatland: IPS. *The Jakarta Post*. - Nurbianto B (2016b) Malaysia challenges the world over palm oil on peatland. The Jakarta Post. - Oil palm planting on peat soil handled well, says Uggah (2016) BorneoPost. - Olam International (2015) Olam Sustainable Palm Oil Policy. 1–9. - Page SE, Hooijer A (2016) In the line of fire: the peatlands of Southeast Asia. *Philosophical transactions of the Royal Society of London. Series B, Biological sciences*, **371**, 20150176. - Page SE, Siegert F, Rieley JO, Boehm H V (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. *Nature*, **1999**, 61–65. - Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. *Global Change Biology*, **17**, 798–818. - Posa MRC, Wijedasa LS, Corlett RT (2011) Biodiversity and conservation of tropical peat swamp forests. *BioScience*, **61**, 49–57. - President of Indonesia (2011) Instruction of the President of the Republic of Indonesia number 10 of 2011 about suspension of granting of new licenses and improvement of governance of natural primary forest and peatland. - President of Indonesia (2014) Government Regulation Number 71 of year 2014 about Protection and Management of Peat Ecosystems. - President of Indonesia (2016) Presidential Regulation Number 1 of year 2016 About Peat Restoration Agency. - Ramdani F, Hino M (2013) Land Use Changes and GHG Emissions from Tropical Forest Conversion by Oil Palm Plantations in Riau Province, Indonesia. *PLoS ONE*, **8**, 1–6. - Schrier-Uijl AP, Silvius M, Parish F, Lim KHH, Rosediana S, Anshari G (2013) *Environmental* and social impacts of oil palm cultivation on tropical peat: a scientific review. Kuala Lumpur, Malaysia, 131-168 pp. - Sime Darby Plantation (2014) Sustainability: Peatland planting policy. - Stockwell CE, Jayarathne T, Cochrane MA et al. (2016) Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia during the 2015 El Niño. *Atmospheric Chemistry and Physics Discussions*, **53**, 1–37. - Sumarga E, Hein L, Hooijer A, Vernimmen R (2016) Hydrological and economic effects of oil palm cultivation in Indonesian peatlands. *Ecology and Society*, **21**, 52. - Turetsky MR, Benscoter B, Page S, Rein G, Werf GR Van Der, Watts A (2015) Global vulnerability of peatlands to fire and carbon loss. *Nature Geoscience*, **8**, 11–14. - Warren M, Frolking S, Dai Z, Kurnianto S (2016) Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the twenty-first century: implications for climate mitigation. *Mitigation and Adaptation Strategies for Global Change*. - Wijedasa LS, Posa MRC, Clements GR (2015) Peat fires: consumers to help beat them out. *Nature*, **527**, 305. - Wilmar (2013) No Deforestation, No Peat, No Exploitation Policy. 1–9. - Wong J (2016) Yield of oil palm on peatland can be doubled. The Star. - Wösten JHM, Ismail AB, Van Wijk ALM (1997) Peat subsidence and its practical implications: A case study in Malaysia. *Geoderma*, **78**, 25–36.