LETTER TO THE EDITOR

Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences

LAHIRU S. WIJEDASA1,2,3,*, JYRKI JAUHIAINEN4, MARI KÖNÖNEN4, MAIJA LAMPела4, HARRI VASANDER4, MARIE-CLARICE LEBLANC5, STEPHANIE EVERS6,7,8, THOMAS E. L. SMITH9, CATHERINE M. YULE7,10, HELENA VARKKEY7,11, MASSIMO LUPASCU12, FAIZAL PARISH13, IAN SINGLETON14, GOPALASAMY R. CLEMENTS3,6,10,15,16, SHEEMA ABDUL AZIZ3,6,16, MARK E. HARRISON17,18, SUSAN CHEYNE17, GUSTI Z. ANSHARI19, ERIK MEIJJAARD20,21, JENNY E. GOLDSTEIN22, SUSAN WALDRON23, KRISTELL HERGOULAC'H24, RENE DOMMAIN25, STEVE FROLKING26, CHRISTOPHER D. EVANS27, MARY ROSE C. POSA1, PAUL H. GLASER28, NYOMAN SURYADIPUTRA29, REZA LUBIS29, TRULY SANTIKA21, RORY PA Arial B. (2017), Global Change Biology, 23, 977–982, doi: 10.1111/gcb.13516

Correspondence: Lahiru Wijedasa & Roxane Andersen, tel. +65-90667160, fax +65-67792486, e-mails: lahirux@gmail.com, Roxane.Andersen@uhi.ac.uk

© 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

LETTER TO THE EDITOR

Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences

LAHIRU S. WIJEDASA1,2,3,*, JYRKI JAUHIAINEN4, MARI KÖNÖNEN4, MAIJA LAMPела4, HARRI VASANDER4, MARIE-CLARICE LEBLANC5, STEPHANIE EVERS6,7,8, THOMAS E. L. SMITH9, CATHERINE M. YULE7,10, HELENA VARKKEY7,11, MASSIMO LUPASCU12, FAIZAL PARISH13, IAN SINGLETON14, GOPALASAMY R. CLEMENTS3,6,10,15,16, SHEEMA ABDUL AZIZ3,6,16, MARK E. HARRISON17,18, SUSAN CHEYNE17, GUSTI Z. ANSHARI19, ERIK MEIJJAARD20,21, JENNY E. GOLDSTEIN22, SUSAN WALDRON23, KRISTELL HERGOULAC'H24, RENE DOMMAIN25, STEVE FROLKING26, CHRISTOPHER D. EVANS27, MARY ROSE C. POSA1, PAUL H. GLASER28, NYOMAN SURYADIPUTRA29, REZA LUBIS29, TRULY SANTIKA21, RORY PA Arial B. (2017), Global Change Biology, 23, 977–982, doi: 10.1111/gcb.13516

Correspondence: Lahiru Wijedasa & Roxane Andersen, tel. +65-90667160, fax +65-67792486, e-mails: lahirux@gmail.com, Roxane.Andersen@uhi.ac.uk

© 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

LETTER TO THE EDITOR

Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences

LAHIRU S. WIJEDASA1,2,3,*, JYRKI JAUHIAINEN4, MARI KÖNÖNEN4, MAIJA LAMPела4, HARRI VASANDER4, MARIE-CLARICE LEBLANC5, STEPHANIE EVERS6,7,8, THOMAS E. L. SMITH9, CATHERINE M. YULE7,10, HELENA VARKKEY7,11, MASSIMO LUPASCU12, FAIZAL PARISH13, IAN SINGLETON14, GOPALASAMY R. CLEMENTS3,6,10,15,16, SHEEMA ABDUL AZIZ3,6,16, MARK E. HARRISON17,18, SUSAN CHEYNE17, GUSTI Z. ANSHARI19, ERIK MEIJJAARD20,21, JENNY E. GOLDSTEIN22, SUSAN WALDRON23, KRISTELL HERGOULAC'H24, RENE DOMMAIN25, STEVE FROLKING26, CHRISTOPHER D. EVANS27, MARY ROSE C. POSA1, PAUL H. GLASER28, NYOMAN SURYADIPUTRA29, REZA LUBIS29, TRULY SANTIKA21, RORY PA Arial B. (2017), Global Change Biology, 23, 977–982, doi: 10.1111/gcb.13516

Correspondence: Lahiru Wijedasa & Roxane Andersen, tel. +65-90667160, fax +65-67792486, e-mails: lahirux@gmail.com, Roxane.Andersen@uhi.ac.uk

© 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

LETTER TO THE EDITOR

Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences

LAHIRU S. WIJEDASA1,2,3,*, JYRKI JAUHIAINEN4, MARI KÖNÖNEN4, MAIJA LAMPела4, HARRI VASANDER4, MARIE-CLARICE LEBLANC5, STEPHANIE EVERS6,7,8, THOMAS E. L. SMITH9, CATHERINE M. YULE7,10, HELENA VARKKEY7,11, MASSIMO LUPASCU12, FAIZAL PARISH13, IAN SINGLETON14, GOPALASAMY R. CLEMENTS3,6,10,15,16, SHEEMA ABDUL AZIZ3,6,16, MARK E. HARRISON17,18, SUSAN CHEYNE17, GUSTI Z. ANSHARI19, ERIK MEIJJAARD20,21, JENNY E. GOLDSTEIN22, SUSAN WALDRON23, KRISTELL HERGOULAC'H24, RENE DOMMAIN25, STEVE FROLKING26, CHRISTOPHER D. EVANS27, MARY ROSE C. POSA1, PAUL H. GLASER28, NYOMAN SURYADIPUTRA29, REZA LUBIS29, TRULY SANTIKA21, RORY PA Arial B. (2017), Global Change Biology, 23, 977–982, doi: 10.1111/gcb.13516

Correspondence: Lahiru Wijedasa & Roxane Andersen, tel. +65-90667160, fax +65-67792486, e-mails: lahirux@gmail.com, Roxane.Andersen@uhi.ac.uk

© 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Psychology, Liverpool John Moores University, Byrom Street, Liverpool L33 2AF, UK, 48School of Geography, King’s College London, London WC2R 2NA, UK, 49Monash University Malaysia, Jalan Lagoon Selatan, Bandar Saujana, 47500 Subang Jaya, Selangor, Malaysia, 50Department of International & Strategic Studies and Asia-Europe Institute, University of Malaya, 50603 Kuala Lumpur, Malaysia, 51Department of Geography, National University of Singapore, AS2, #03-01, 1 Arts Link, Kent Ridge, 117570, Singapore, 52Global Environment Centre, 2nd Floor, Wisma Hing, 78, Jalan SS2/72, Petaling Jaya, Selangor 47300, Malaysia, 53Sumatran Orangutan Conservation Programme, Jl. Wahid Hasyim No. 51/74 Medan, 20154 Sumatera Utara – Indonesia, 54Kenyir Research Institute, Universiti Malaya Terengganu, T145, 21300 Kuala Terengganu, Malaysia, 55Department d’Écologie et Gestion de la Biodiversité, Muséum National d’Histoire Naturelle, UMR 7179/CNRS-MNHN, 1 Avenue du Petit Chateau, 91800 Brunoy, France, 56Borneo Nature Foundation, Jalan Bukit Raya No. 82 Bukit Raya Palangka Raya, 73112 Central Kalimantan, Indonesia, 57University of Leicester, Rd, Leicester LE1 7RH, UK, 58Centre for Wetlands, People and Biodiversity, Tanjungpura University, Pontianak Tenggara, Barat, 78124 Western Kalimantan, Indonesia, 59Borneo Futures, Country Woods 306, Jalan WR Supratman, Pondok Ranji-Rengas, Ciputat, 15412 Tangerang, Indonesia, 60School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia, 61Department of Politics, History and International Relations, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia, 62Sumatran Orangutan Conservation Programme, Jl. Wahid Hasyim No. 51/74 Medan, 20154 Sumatera Utara – Indonesia, 63Centre for Social Sciences, University of Oxford, Headington Campus, Oxford OX3 0BP, UK, 64Department of Fisheries and Wildlife, Oregon State University, Nash Hall, 2820 SW Campus Way, Corvallis, OR 97331, USA, 65Human Origins Program, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave, NW, Washington, D.C. 20560, USA, 66Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH 03824, USA, 67Centre for Ecology and Hydrology, Environment Centre, Denial Rd, Bangor LL57, UK, 68Department of Earth Sciences, University of Minnesota, 310 Pillsbury Drive SE, Minneapolis, MN 55455-0231, USA, 69Wetlands International Indonesia Programme, Jl. Bango No. 11, Bogor 16161, Indonesia, 70Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia, 71Department of Social Sciences, Oxford Brooks University, Headington Campus, Oxford OX3 0BP, UK, 72Department of Fisheries and Wildlife, Oregon State University, Nash Hall, 2820 SW Campus Way, Corvallis, OR 97331, USA, 73Sumatran Orangutan Conservation Programme, Jl. Wahid Hasyim No. 51/74 Medan, 20154 Sumatera Utara – Indonesia, 74School of Politics, History and International Relations, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia, 75School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesa 10, Coblong, Kota Bandung, Jawa Barat 40132, Indonesia, 76Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH 03824, USA, 77Centre for Social Sciences, University of Oxford, Headington Campus, Oxford OX3 0BP, UK, 78Department of Fisheries and Wildlife, Oregon State University, Nash Hall, 2820 SW Campus Way, Corvallis, OR 97331, USA, 79Institute of Technology, Cambridge, 77 Massachusetts Ave 48, Cambridge, MA 02139, USA, 80Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, PO Box 37012 SI Building, Room 153, MRC 010, Washington, D.C. 20013-7012, USA, 81Wageningen University and Research, 6708 PB Wageningen, The Netherlands, 82Fenner School of Environment and Society, Australian National University, Linneaus Way, Acton, ACT 2601, Australia, 83Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93300 Kuching, Sarawak, Malaysia, 84Euroconsult Matt MacDonald.
Amsterdamseweg 15, 6814 CM Arnhem, The Netherlands, Lancaster Environment Centre, Library Avenue, Lancaster University, Lancaster LA1 4YQ, UK, Southeast Asian Biodiversity Society, Raffles Museum of Biodiversity Research, Faculty of Science, The National University of Singapore, Block 56, Level 3, Science Drive 2, 117600, Singapore, Wetlands International, P.O. Box 471, 6700 AL Wageningen, The Netherlands, Department of Plant Sciences, University of Cambridge, Downing St, Cambridge CB2 3EA, UK, Hokkaido University, 5 Chome Kitas 8 Jonishi, Kita Ward, Sapporo, Hokkaido Prefecture 060-0808, Japan, NPO Hokkaido Institute of Hydro-Climate, Frontier 14, N 14 W 3, Kita-ku, Sapporo 001-0014, Japan, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka 804-8550, Japan, Research and Development Institute on Watershed Management Technology, Research, Development and Innovation Agency, Ministry of Environment and Forestry, Wanahakti Block I 2nd Floor Jalan Jenderal Gatot Subroto Jakarta Pusat, 10270 Jakarta, Indonesia, Institute for Environment and Natural Resources, National University at HCM City, 6 Quarter, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam, Peatland Restoration Agency (BRG), UNPAR, jakarta LPSLH, Indonesia, Joint Research Centre of the European Commission, Directorate D – Sustainable Resources – Bio-Economy Unit, Via E. Fermi, 2749, 1-21027 Ispra (VA), Italy, Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK, School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St, Seattle, WA 98105, USA, Faculty of Earth and Life Sciences, University Amsterdam, De Boelelaan 1085-1087, 1081 HV Amsterdam, The Netherlands, International Union for Conservation of Nature (IUCN), National Committee of The Netherlands, Plantage Middenlaan 2K, 1018 DD Amsterdam, The Netherlands, School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China, Laboratoire Ecologie Fonctionnelle et Environnement, Universite de Toulouse, CNRS, INPT, UPS, 18, Route de Narbonne Bât. 4R1, 31062 Toulouse Cedex 9, France, Borneo Orangutan Survival Foundation (BOSF), jalan Papdanaga No. 10, Bogor 16513, Indonesia, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands, School of Geography, University of Nottingham, University Park, Nottingham NG7 2RD, UK, School of Geography, Earth and Environmental Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK, Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK, Nature Society (Singapore), 510 Geylang Road, 02-05, The Sunflower, 389466, Singapore, Remote Sensing Centre, Institute of Geodesy and Cartography, ul. Modzelewskiego 27, 02-679 Warsaw, Poland, School of Animal Biology, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia, University of Palangka Raya, Palangkaraya, 73112 Central Kalimantan, Indonesia, Wildwood and Wetlands Trust, Queen Elizabeth’s Walk, London SW13 9WT, Tropical Forest Ecology and Conservation Division, Faculty of Forestry, Universitas Sumatera Utara, Jl. Dr. Mansur No. 9B, Kampus USU, Padang Bulan, Kota Medan, Sumatera Utara 20155, Indonesia, Department of Geophysics and Meteorology, Bogor Agricultural University, Jln. Meranti, Kampus IPB Darmaga, Bogor 16680, Indonesia, Department of Global Change Biology Zoology, Oxford Long-term Ecology Laboratory, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK, Crawford School of Public Policy, The Australian National University, Acton, Canberra, ACT 2601, Australia, Graduate School for International Development and Cooperation, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan, Asian School of the Environment, Nanyang Technological University, Nanyang Avenue, Singapore, 639798, Singapore, International Peatland Society, Nisulankatu 78, 40720 Jyväskylä, Finland, World Wide Fund for Nature, Simatupang Tower 2 Unit C 7 Floor Jl. Leleten TB. Simatupang Kav. 38, Jakarta Selatan 12540, Indonesia, Faculty of Forestry, Bogor Agricultural University, Jl. Lingkar Akademik Kampus IPB, Dramaga, Bogor, Jawa Barat 16680, Indonesia, Grand Challenge Earth Lab, University of Colorado, 4001 Discover Drive Suite S348, Boulder, CO 80303, USA, Queen Mary University of London, Mile End Rd, London E1 4NS, UK, Land Surface Flux Measurements Group, Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK, Department of Aquatic Science, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, Centre for Remote Imaging, Sensing and Processing, National University of Singapore, 10 Lower Kent Ridge Road, Blk S17, Level 2, 119076, Singapore, Geological Survey of Finland, P.O. Box 97 (Vaasantie 6), FI 67101 Kokkola, Finland, Earthly Matters Environmental Consultants, Glenvar, Letterkenny, Co., Donegal, Ireland, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Jl. Raya Jakarta – Bogor Km. 46 Cibinong, 16911 Bogor, Indonesia, Department of Soil Science and Land Reclamation, Faculty of Environment and Agriculture, Universiti of Warmia and Mazury, Michała Oczapowskiego 2, Olsztyn, Poland, Ecological Sciences Group, The James Hutton Institute, Craigiebuckler, Aberdeen, AB158QH Scotland, UK, Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Malaysia, Centre for Southeast Asian Studies, Kyoto University, 46 Shimoaachi-cho, Yoshida Sakyo-ku, Kyoto 606-8501, Japan, Southeast Asia Program, Research and Conservation Division, Copenhagen Zoo, Roskildevej 32, 2000 Frederiksberg, Denmark, Institute of Biodiversity and Environmental Conservation, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, Environmental Research Institute, University of Highlands and Islands, Castle St., Thurso KW147JD, UK

© 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd., 23, 977–982
The first International Peat Congress (IPC) held in the tropics – in Kuching (Malaysia) – brought together over 1000 international peatland scientists and industrial partners from across the world (‘International Peat Congress with over 1000 participants’, 2016). The congress covered all aspects of peatland ecosystems and their management, with a strong focus on the environmental, societal and economic challenges associated with contemporary large-scale agricultural conversion of tropical peat.

However, recent encouraging developments towards better management of tropical peatlands have been undermined by misleading newspaper headlines and statements first published during the conference. Articles in leading regional newspapers (‘Oil palm planting on peat soil handled well, says Uggah, 2016b; Cheng & Sibon, 2016; Nurbianto, 2016a,b; Wong, 2016) widely read across the region portrayed a general consensus, in summary of the conference, that current agricultural practices in peatland areas, such as oil palm plantations, do not have a negative impact on the environment. This view is not shared by many scientists or supported by the weight of evidence that business-as-usual management is not sustainable for tropical peatland agriculture.

Peer-reviewed scientific studies published over the last 19 years, as reflected in the Intergovernmental Panel on Climate Change (IPCC) Wetland Supplement on greenhouse gas inventories, affirm that drained tropical peatlands lose considerable amounts of carbon at high rates (Drösler et al., 2014). Tropical peat swamp forests have sequestered carbon for millennia, storing a globally significant reservoir below ground in the peat (Page et al., 2011; Dommaint et al., 2014). However, contemporary agriculture techniques on peatlands heavily impact this system through land clearance, drainage and fertilization, a process that too often involves fire. Along with biodiversity losses driven by deforestation (Koh et al., 2011; Posa et al., 2011; Giam et al., 2012), the carbon stored in drained peatlands is rapidly lost through oxidation, dissolution and fire (Couvemberg et al., 2009; Hirano et al., 2012; Ramdani & Hino, 2013; Schrier-Uijl et al., 2013; Carlson et al., 2015; Warren et al., 2016). Tropical peat fires are a major contributor to global greenhouse gas emissions and produce trans-boundary haze causing significant impacts on human health, regional economies and ecosystems (Page et al., 2002; Marlier et al., 2012; Jaafar & Loh, 2014; Chisholm et al., 2016; Huijnen et al., 2016; Stockwell et al., 2016). With future El-Niño events predicted to increase in frequency and severity (Cai et al., 2014) and with fire prevalence now decoupled from drought years (Gaveau et al., 2014), future large-scale fire and haze events are imminent given the extensive areas of now-drained fire-prone drained peatlands (Kettridge et al., 2015; Turetsky et al., 2015; Page & Hooijer, 2016).

In reality, just how much of the estimated 69 gigatonnes of carbon (Page et al., 2011) stored in South-East Asian tropical peatlands is being lost due to agricultural operations under the current management regime is still uncertain. Of great concern is that none of the agricultural management methods applied to date have been shown to prevent the loss of peat and the associated subsidence of the peatland surface following drainage (Wosten et al., 1997; Melling et al., 2008; Hooijer et al., 2012; Evers et al., 2016). Recent projections suggest that large areas of currently drained coastal peatlands will become undrainable and progressively be subjected to longer periods of inundation by river and ultimately sea water (Hooijer et al., 2015a,b; Sumarga et al., 2016). With growing risk of saltwater intrusion, agriculture in these coastal lands will become increasingly untenable, calling into question the very notion of ‘long-term sustainability of tropical peatland agriculture’.

A more accurate view of drained peatland agriculture is that of an extractive industry, in which a finite resource (the peat) is ‘mined’ to produce food, fibre and fuel, driven by global demand. In developing countries with growing populations, there are strong socio-economic arguments for exploiting this resource to support local livelihoods and broader economic development (Mizuno et al., 2016). However, we must accept that ongoing peat loss is inevitable under this scenario. Science-based measures towards improved management, including limitations on the extent of plantation development, can be used to minimize the rate of this peat loss (President of Indonesia, 2011). Such an evidence-based position, supported with data and necessary legal instruments, is needed for sustainable futures. The scientifically unfounded belief that drained peatland agriculture can be made ‘sustainable’, and peat loss can be halted, via unproven methods such as peat compaction debilitates the effort to find sustainable possibilities. To a large extent, the issues surrounding unsustainabe peatland management have now been recognized by sections of industry (Wilmar, 2013; APP, 2014; Cargill Inc., 2014; Mondelēz International, 2014; Sime Darby Plantation, 2014; APRIL, 2015; Olam International, 2015), government (President of Indonesia, 2014, 2016, Mongabay, 2015; Mongabay Haze Beat, 2015; Hermansyah, 2016) and consumers (Wijedasa et al., 2015). In recognition of the constraints and risks of peatland development, many large and experienced oil palm and pulpwood companies have halted further development on peat and introduced rigorous management requirements for existing peatland plantations (Lim et al., 2012). However, the denial of the empirical basis calling for improved peatland management
remains persistent in influential policy spaces, as illustrated by the articles reporting on the conference (‘Oil palm planting on peat soil handled well, says Uggah, 2016b; Cheng & Sibon, 2016; Nurbiano, 2016a,b). The search for more responsible tropical peatland agriculture techniques includes promising recent initiatives to develop methods to cultivate crops on peat under wet conditions (Giesen, 2015; Dommain et al., 2016; Mizuno et al., 2016). While a truly sustainable peatland agriculture method does not yet exist, the scientific community and industry are collaborating in the search for solutions (International Peat Society, 2016), and for interim measures to mitigate ongoing rates of peat loss under existing plantations. Failing to recognize the devastating consequences of the current land use practices on peat soils and failing to work together to address them could mean that the next generation will have to deal with an irreversibly altered, dysfunctional landscape where neither environment nor society, globally or locally, will be winners.

Acknowledgements

Open access facilitated by Greifswald Mire Centre and Department of Forestry Sciences, University of Helsinki.

References

President of Indonesia (2014) Government Regulation Number 71 of year 2014 about Protection and Management of Peat Ecosystems.

President of Indonesia (2016) Presidential Regulation Number 1 of year 2016 About Peat Restoration Agency.


Wong J (2016) Yield of oil palm on peatland can be doubled. The Star.


© 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd., 23, 977–982