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We present a novel QM/MM approach in which a quantum subsystem is coupled to a

classical subsystem described by the AMOEBA polarizable force field. Our approach

permits mutual polarization between the QM and MM subsystems, effected through

multipolar electrostatics. Self-consistency is achieved for both the QM and MM sub-

systems through a total energy minimization scheme. We provide an expression for

the Hamiltonian of the coupled QM/MM system, which we minimize using gradient

methods. The QM subsystem is described by the onetep linear-scaling DFT ap-

proach, which makes use of strictly localized orbitals expressed in a set of periodic

sinc basis functions equivalent to plane waves. The MM subsystem is described by the

multipolar, polarizable force field AMOEBA, as implemented in tinker. Distributed

multipole analysis (DMA) is used to obtain, on the fly, a classical representation of

the QM subsystem in terms of atom-centered multipoles. This auxiliary represen-

tation is used for all polarization interactions between QM and MM, allowing us to

treat them on the same footing as in AMOEBA. We validate our method in tests of

solute-solvent interaction energies, for neutral and charged molecules, demonstrat-

ing the simultaneous optimization of the quantum and classical degrees of freedom.

Encouragingly, we find that the inclusion of explicit polarization in the MM part of

QM/MM improves the agreement with fully QM calculations.

a)Corresponding author. Email: c.skylaris@soton.ac.uk
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I. INTRODUCTION

Combining quantum-mechanical (QM) calculations with a classical description is a well-

established technique in computational studies of molecular systems1–7. The computational

cost of purely QM approaches becomes prohibitive for many systems. One reason is the long-

range nature of Coulombic interactions, which makes many properties of interest converge

slowly with the size of the system. This makes it necessary to include hundreds of atoms8,

if not more9, in the calculation before acceptable accuracy can be reached10, with suitable

truncation of larger systems often far from trivial11. Another difficulty arises for systems

which cannot be well represented by a single conformer, necessitating a statistical averaging

of properties over a large number of configurations12. Linear scaling approaches13–20 can

help ameloriate the length scale problem, but they do not address the effects of conforma-

tional sampling, which may become more important with the increase of the system size21.

While molecular mechanics (MM) approaches can be routinely applied to systems compris-

ing ∼ 105 to 106 atoms for timescales in the order of 1µs, the purely classical description is

inherently unable to describe intrinsically electronic processes (such as bond breaking and

bond reconstruction) and properties (e.g. band gaps or solvent shifts).

In many cases, the properties of interest are localized to a certain part of the system

(usually a molecule) that is embedded in a greater environment (such as solvent or solid

state matrix). Although typically the presence of the environment cannot be neglected, it is

often the case that we are not interested in its detailed properties or behavior. This is the

raison d’être of focused models such as QM/MM, which seek to describe the subsystem of

interest at a desired level of theory, while representing the environment only approximately12.

Hybrid (quantum-classical) calculations fall into two main categories, depending on how

they describe this environment. QM/continuum approaches employ an averaged descrip-

tion, with the environment lacking any internal structure. This strategy is best exemplified

by widely used implicit solvation techniques, such as PCM22,23, COSMO24,25, or density-

dependent models26–28, which help to address the sampling problem by reducing the dimen-

sionality of the system. QM/MM approaches instead adopt a molecular description of the

environment, retaining its atomistic detail and thereby preserving directional and specific in-

teractions, such as hydrogen bonds between solvent and solute29. Methodologies combining

all three descriptions (e.g. QM/MM/PCM) have recently been reported12,30–32.
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The relative ease with which QM/MM methods enable a meaningful compromise between

efficiency and accuracy is now well-accepted in biomolecular chemistry33, particularly in ap-

plications where electronic excitations are of interest12,30,34. Consequently, a wide gamut

of approaches of varying sophistication, and targeting different classes of systems has been

proposed12,21,29–57 since the pioneering work of Warshel and Levitt1. While even the briefest

of reviews is beyond the scope of this paper, an interested Reader may benefit from a presen-

tation of model hierarchies58, a review of QM/MM methods for biomolecular systems2 and

for materials science59, and a recent overview of applications of QM/MM in enzymology60.

In parallel to the progress of QM/MM techniques, the last two decades have witnessed

significant developments in the sophistication of force fields61, following the identification

of deficiencies in commonly used fixed point charge models. The way in which molecules

respond to environmental conditions, such as the presence of a solvent, pH, or ion concen-

tration is, unsurprisingly, difficult to capture without taking polarization into account62. In

the absence of explicit polarization terms, fixed point charge models can only describe polar-

ization effects in an averaged fashion, through the reparametrization of the pairwise energy

terms that they have at their disposal. This crude description may be adequate under condi-

tions that are sufficiently close to those for which the potential has been parametrized, but,

more often than not, it is poorly transferrable to different phases or different environments,

such as interfaces63.

The non-additive, many-body nature of polarization interactions makes such models more

involved and computationally demanding compared to traditional fixed point charge models.

In consequence, a wide variety of competing treatments of polarization has emerged (see

Refs. 62 and 64 for a review), employing: Drude oscillators65,66, fluctuating charges67,68, and

induced point dipoles69–75 or higher multipoles76.

Correspondingly, a number of distinct QM/MM models employing polarizable force fields

have since been proposed. These models differ in their approach to MM polarization (Drude

oscillators50,52, fluctuating charges12,51,55,77, induced dipoles21,29–31,33,34,37,48,54,56,78), and the

sophistication of their treatment of the non-polarizable (permanent) part of MM electro-

statics (partial charges only12,29–31,37,48,50–52,55,77,78, higher-order multipoles21,32,34,56). Several

groups have developed models specifically focused on electronic excitations, using polarizable

embedding alongside time-dependent density functional theory (TDDFT)12,21,29–33,55, where
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dynamic mutual polarization33 poses an additional challenge. Other models restrict their

scope to ground-state density functional theory (DFT). Some of the models further extend

their classical description by coupling to a continuum dielectric12,30–32,51,54,78. Other desir-

able features include analytical gradients31,48,55, the ability to treat covalent bonds spanning

the QM/MM interface31,48,50,56, and the availability of post-Hartree-Fock methods for the

QM part31,34,53,55,79.

In this work we present a new QM/MM approach, which combines the DFT methodology

of onetep80,81, and the polarizable force-field AMOEBA70,72,73. The QM and MM subsys-

tems are coupled electrostatically, and undergo mutual polarization. The electrostatic effect

of the MM subsystem is included in the QM Hamiltonian, polarizing the QM subsystem by

deforming its electronic charge density. Conversely, the electric field of the QM subsystem

is included in the direct field that drives the polarization of the MM subsystem.

A crucial element of our electrostatics model is an auxiliary representation of the QM

system in terms of point, atom-centered multipoles, which is used in the calculation of

polarization interactions. This representation is obtained through a variant of distributed

multipole analysis (DMA)82,83, which is a technique for partitioning charge density into

single-atom contributions. Invoking this intermediate classical representation for the QM

system allows our model to describe QM/MM polarization interactions on the same footing

as in AMOEBA, that is using damped, point-multipole electrostatics.

A second distinguishing feature of our approach is the use of linear-scaling DFT80,84 to

describe the QM subsystem with the aim of, ultimately, undertaking QM/polarizable-MM

calculations with QM regions spanning thousands of atoms. To the best of our knowledge,

there have been no reports to date of a polarizable QM/MM model with a linear-scaling

QM component, although we note in passing that a QM/MM approach with linear-scaling

MM (in CPU and memory use) has recently been reported54.

In our approach, van der Waals interactions in the MM subsystem use the unmodified

AMOEBA buffered 7-14 formalism73,85, and the same pairwise functional form is used for

QM/MM interactions. In the QM subsystem, the repulsive term is naturally accounted for

through the exchange-correlation term, while standard empirical corrections86 are used to

account for dispersion.

We derived a total energy expression for the entire system (QM+MM). This energy is
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iteratively minimized under suitable constraints using gradient methods87 until the simulta-

neous self-consistency of both subsystems is achieved.

We envision this paper to be the first in a series of continued developments, serving as a

proof of concept. For this reason we will primarily focus on a detailed description of theory

behind our model, and its validation.

This paper is organized as follows. In Sec. II we describe our approach – starting from

a description of the QM and MM components, we follow with an explanation of how they

are coupled. Section III is devoted to validation and demonstration of the utility of the

proposed approach. Conclusions and closing remarks will be found in Section IV.

II. METHOD

A. Conventions and notation

We follow the sign convention where electrons are positively charged. Atomic units are

used throughout the text, unless indicated otherwise. Quantities typeset in bold denote

Cartesian column vectors (positions r, electric fields E, dipoles µ, etc.), Cartesian tensors

of rank 2 (e.g. T d-d
LM) and of rank 3 (T d-q

LM). Matrices with dimensions other than 3× 3 are

typeset with blackboard capitals (e.g. K). Indices I and J always refer to atoms in the QM

subsystem, and indices L and M refer to atoms in the MM subsystem. Localized orbitals

are indexed with Greek symbols. By van der Waals interactions we will mean the sum of

the repulsive and dispersive terms, referring to the attractive term simply as “dispersion”.

B. QM component

In this section we describe how the QM subsystem is treated in our model. We employ

the linear-scaling onetep20,80,88–91 approach, which is a reformulation of Kohn-Sham DFT

in terms of the one-electron density matrix, ρ (r, r′). The density matrix is expressed in a

separable form

ρ (r, r′) =
∑
αβ

φα (r)K
αβφ∗

β (r
′) (1)

in terms of non-orthogonal, localized orbitals (support functions) φα (r), and a density kernel

K =
[
Kαβ

]
. The support functions, termed non-orthogonal generalized Wannier functions
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(NGWFs)92, are strictly localized within atom-centered spherical regions. The density kernel

is the matrix representation of the density matrix (1) in the duals of the NGWFs.

Linear scaling is achieved by making the NGWF localization regions finite, and by trun-

cating the density matrix beyond a chosen cutoff distance, exploiting the “nearsightedness

principle” of electronic matter93. The assumption of finite localization regions makes the

overlap matrix S = [Sαβ], whose elements are given by

Sαβ = ⟨φα|φβ⟩ , (2)

sparse, while the truncation of the density matrix introduces sparsity into the density ker-

nel K.

Unlike in most linear-scaling approaches, in onetep the NGWFs themselves are ex-

panded in an underlying basis of periodic sinc94 (psinc) functions, which are equivalent to

plane waves. Gradient methods87 are used to minimize the total energy by optimizing not

only the elements of the density kernel, but also the expansion coefficients of the NGWFs

in terms of psincs. As the NGWFs are optimized in situ, using a minimal NGWF basis is

sufficient for obtaining high accuracy and systematic convergence of total energies to those

of a plane-wave approach with Kohn-Sham molecular orbitals. Alternatively, the NGWFs

can be kept fixed following suitable initialization – e.g. to pseudoatomic orbitals (PAOs),

or to orbitals that have been pre-optimized in advance. This simpler approach obviates the

requirement of deriving and computing energy gradients with respect to the NGWFs. In

the interest of simplicity in this communication we limit ourselves to this latter approach.

onetep permits calculations both on periodic systems (in the Γ-point approximation),

and on isolated (non-periodic) systems through the use of open boundary conditions (OBC)

and a selection of techniques for eliminating the effects of undesired periodicity95. The model

described here uses the latter methodology, and, unless indicated otherwise, we shall assume

in the text that follows that OBC are in effect.

For an isolated QM system, the minimized quantity is the usual Born-Oppenheimer

DFT energy of electrons in the potential of clamped nuclei, which in the density-matrix

formulation is given by

EQM
DFT =

ˆ [
−1

2
∇2

r′ρ (r, r
′)

]
r′=r

dr+

ˆ
vext (r)n (r) dr+

1

2

¨
n (r)n (r′)

|r− r′|
drdr′+EQM

XC [n] , (3)

where ρ (r, r′) is the density matrix (1), vext (r) is the external potential of the QM ions,

EQM
XC is the exchange-correlation energy functional, and n (r) is the electronic density, given
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by

n (r) = ρ (r, r) , (4)

where we assume a closed-shell system for simplicity, with the factor of 2 that is a conse-

quence of spin degeneracy accounted for in the scaling of K. We note that in practice the

pseudopotential approach is used, and so vext (r) would correspond to the pseudopotential

of the QM cores, and n (r) – to the pseudodensity of valence electrons.

The remaining energy terms associated with the QM subsystem are independent of the

electronic degrees of freedom. The first of these is the Coulombic repulsion energy of the

cores, which, under open boundary conditions is simply

EQM
core-core =

1

2

NQM∑
I

NQM∑
J ̸=I

ZIZJ

|RJ −RI |
, (5)

where NQM is the number of atoms in the QM subsystem, {RI}
NQM

I=1 are the positions of

the cores, and {ZI}
NQM

I=1 are their charges. The last term, EQM
disp, is an empirical dispersion-

correction term, which accounts for the well-known deficiency of generalized gradient approx-

imation (GGA) DFT in describing dispersion interactions86. The exact expression depends

on the model used, but the general form is that of a double sum of pairwise terms. This

work uses the Elstner96 formulation, with parameters determined by Hill et al.86. The total

energy associated with the QM subsystem is the sum of the three above-mentioned terms:

EQM = EQM
DFT + EQM

core-core + EQM
disp. (6)

C. MM component

In our model the MM subsystem is described with an unmodified AMOEBA73 polarizable

force-field, as implemented in the tinker71 code. AMOEBA is a succesful polarizable force

field offering a consistent treatment of electrostatic interactions through permanent multi-

poles up to a quadrupole, with polarization realized via damped, induced, point dipoles. The

accuracy of the AMOEBA description and parametrization has been demonstrated72 for a

variety of properties (i.a. heats of vaporization, dimer binding energies, vibrational frequen-

cies, solvation free energies). Its canonical implementation, tinker, provides the means

for extracting individual MM energy terms and induced dipoles, which greatly simplifies
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interfacing with QM. In this section we give a brief account of those aspects of AMOEBA

that are relevant to our QM/MM approach and we introduce necessary terminology.

The AMOEBA energy expression can be written in the general form

EMM = EMM
perm + EMM

pol + EMM
val + EMM

vdW, (7)

with the four energy components respectively accounting for: permanent electrostatic inter-

actions, polarization, short-range valence interactions, and van der Waals interactions.

Permanent electrostatics—In its treatment of electrostatic interactions AMOEBA

uses a point multipole representation. Each atomic site L is associated with permanent, point

multipoles up to a quadrupole:
{
qpL,µ

p
L,Q

p
L

}
. The permanent multipoles are parametrized

from ab initio calculations97–99, and use a suitable local coordinate frame70 to maintain

transferability between different molecular conformations. Interactions between permanent

multipoles on different sites are purely Coulombic, i.e. they are not damped. However, to

ensure a smooth transition between an electrostatic description of interactions at medium

range and bonded interactions at short range, permanent electrostatic interactions between

nearest and second-nearest neighbors (as determined by bond connectivity) are zeroed, and

corresponding interactions between third- and fourth-nearest neighbors are attenuated72, in

what is known as scaling or masking. We shall denote the permanent electrostatic energy of

the MM subsystem by EMM
perm, Readers interested in the full expression can consult Ref. 73,

eqs. 1 and 10.

Polarization—In addition to permanent multipoles, AMOEBA associates an induced

dipole µL with each atomic site L. These dipoles are induced primarily by the electric field

of the permanent multipoles, termed the direct field, in what is known as direct induction.

AMOEBA uses an interactive induction scheme, whereby each induced dipole µL will further

polarize induced dipoles at other sites M ̸= L. Such mutual induction continues until the

induced dipoles at each site reach convergence73. Induced dipole self-consistency is usually

achieved through the use of iterative solver techniques, such as SOR71,100, although a variety

of alternative schemes is also in use101–103. For a more detailed discussion the Reader is

referred to Ref. 104. At convergence the dipole induced at site L through linear response is

simply

µL = αL (EL + Em
L ) , (8)
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where αL is the atomic polarizability of site L, and EL and Em
L are, respectively, the direct

and the mutual electric fields at RL.

AMOEBA uses a non-additive polarization model, where mutual polarization takes place

between all polarizable sites, even those belonging to the same molecule71. This means that

the polarizability of a molecule is not a sum of atomic polarizabilities of its constituent

atoms; and that intramolecular polarization needs to be accounted for (removed) during

the parametrization of permanent multipoles. An important advantage of the non-addi-

tive model is that it makes the atomic polarizability tensors isotropic, which is why the

polarizability αL featuring in (8) is a scalar value.

In order to avoid a well-known deficiency of point polarizability models known as the “po-

larization catastrophe”105 (an unbounded mutual polarization of nearby dipoles), AMOEBA

damps all interactions involving induced dipoles. The damping model devised by Thole106

and subsequently revised107 modifies the dipole-dipole interaction tensor, ensuring interac-

tion energies approach a finite value rather than becoming infinite as the distance between

the two dipoles approaches zero. Analogous modifications108 to dipole-charge and dipole-

quadrupole interaction tensors make it possible to similarly damp the interactions of induced

dipoles with permanent multipoles used in AMOEBA. The relevant modified Cartesian in-

teraction tensors will be given later in the text, cf. eqs. (27)-(29).

Other modifications to electrostatic interactions involving induced dipoles employed in

AMOEBA include the scaling of permanent-induced interactions (which are zeroed for near-

est and second-nearest neighbors, as determined by bond connectivity), and the use of po-

larization groups (permanent multipoles do not induce dipoles within their own polarization

groups). A detailed discussion of the AMOEBA electrostatics model is beyond the scope of

this paper, and the interested Reader is referred to Ref. 70.

The polarization energy EMM
pol is given by the expression (A1) in the Appendix (Sec. A 1),

where we discuss polarization in more detail.

Short-range valence interactions—By EMM
val in (7) we denote all short-range valence

interactions local to the MM subsystem. In the AMOEBA force field EMM
val comprises the

following terms: bond-stretch, angle-bend, stretch-bend coupling, out-of-plane bend and

torsional rotation. As the detailed expressions for these terms can be found in Ref. 73,

eqs. 2-6, we shall refrain from recounting them here.

10

http://dx.doi.org/10.1063/1.4962909


Van der Waals interactions—The term EMM
vdW in (7) accounts for van der Waals

(dispersion-repulsion) interactions local to the MM subsystem. AMOEBA uses the Hal-

gren formulation85 of the buffered 14-7 potential:

EMM
vdW (Rij) = εij

(
1 + δ

ρij + δ

)7(
1 + γ

ρ7ij + γ
− 2

)
, (9)

where ρij = Rij/R
0
ij, δ = 0.07, γ = 0.12. Detailed expressions, along with a description of

mixing rules and hydrogen “reduction factors” can be found in Ref. 73, eqs. 7-8.

D. Auxiliary point-multipole representation QM∗

1. Rationale

Like in most plane-wave and plane-wave-like DFT codes, the electronic density in onetep

is represented on a uniform, real-space, Cartesian grid, with a typical spacing of ∼ 0.25 a0,

which corresponds to commonly used kinetic energy cutoffs in the range of 800 eV. As the

localized orbitals in onetep typically extend for ∼ 8 a0 from the atomic cores, some MM

sites will invariably be found in regions of non-negligible QM electronic density, arbitrarily

close to (or even exactly at) grid points on which this density is represented. In the absence

of any mitigating measures, such as damping, attempts to directly use the grid representa-

tion in calculations of polarization involving point dipoles run into issues of ill-conditioning

due to the singularities of the point dipole potential and the sensitivity of energies to the po-

sitioning of the grid relative to the point dipole. These issues manifest as quantum-classical

counterparts of the polarization catastrophe, such as unbounded polarization of the MM

point dipole in the direct field of the (discretized) density, or the electronic density being

“sucked out” by the unbounded potential of the MM point dipole.

In order to address these difficulties our model uses Thole damping in the calculation of

QM/MM polarization, in line with what is done in AMOEBA. Since the Thole damping

scheme is pairwise, it requires specifying the polarizabilities of two point dipoles, or in its

more general version, of a point dipole and point multipole (cf. (30)-(31)). This requirement

makes it impossible to directly use Thole damping for distributed electronic densities. The

use of an auxiliary representation of the QM charge density in terms of point multipoles

alleviates this problem.
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2. Implementation

Here we describe how to obtain an auxiliary representation of the QM subsystem charge

density in terms of atom-centered, fixed, point multipoles up to a quadrupole. We shall refer

to this representation as QM∗.

The technique whereby a continuous charge distribution is represented in terms of a set

of point multipoles is known as distributed multipole analysis (DMA). Atomic centers are

usually, although not universally, used as the centers for the multipoles. DMA, first proposed

by Rein109, has been pioneered and popularised by Stone82 and Alderton83. Distributed mul-

tipole analysis is typically performed in a Gaussian basis set110,111. Below we briefly outline

how electronic densities represented in a localised (NGWF) basis can be similarly expanded.

A more detailed description can be found in Refs. 112 and 113. Our approach belongs to

the class of the density-fitting techniques pioneered independently by Baerends et al.114 and

Whitten115.

The first step involves decomposing the electronic density (4) into two-center contribi-

tions:

n (r) =
∑
αβ

φα (r)K
αβφ∗

β (r) (10)

=
∑
I

∑
J

∑
α∈I

∑
β∈J

φα (r)K
αβφ∗

β (r) (11)

=
∑
I

∑
J

SIJ ̸=0

nIJ(r). (12)

The shortcut notation α ∈ I used in (11) is understood as “NGWFs α belonging to atom I”.

Equation (12) explicitly separates the density into two-center contributions from atomic

centers I and J that have nonzero overlap SIJ . The case of I = J , although technically

a one-center contribution, can be treated on the same footing for simplicity of notation.

By construction, NGWFs which do not overlap do not contribute to density.

We approximate each contribution as a linear combination of one-center contributions,

represented in an auxiliary basis set, i.e.:

ñIJ(r) =

Nf∑
s

fs (r)C
s
IJ , (13)

where Cs
IJ are the sought coefficients in the expansion, and {fs(r)}Nf

s=1 are the functions
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making up our auxiliary basis set, Nf/2 of which originate on center I, and the remaining

Nf/2 on center J .

We subsequently define an electrostatic metric V = [Vst]:

Vst = (fs|ft) , (14)

where, for the sake of brevity, we introduced the notation

(g|h) =
¨

g∗(r)
1

|r− r′|
h(r′) dr dr′. (15)

The use of the electrostatic (Coulomb) metric has long been recognized to be more advan-

tageous compared to the simple overlap metric116,117. Robust schemes that make it possible

to maintain variationality in the presence of density fitting have been proposed116–119.

The expansion coefficients are obtained as

Cs
IJ =

Nf∑
t

(nIJ |ft)V ts, (16)

by requiring that the electrostatic self-energy of (nIJ (r)− ñIJ (r)) be minimum. Here t

indexes auxiliary basis functions originating on centers I and J in the same way s does. V ts

are elements of the inverse electrostatic metric matrix.

When calculating gradients with respect to the density kernel it is useful to separate

the atom-pair coefficients Cs
IJ into combinations of kernel matrix elements and NGWF-pair

coefficients csαβ. By comparing (11) and (12) we obtain from (16):

Cs
IJ =

Nf∑
t

(∑
α∈I

∑
β∈J

φα (r)K
αβφ∗

β (r)
∣∣∣ft)V ts

=
∑
α∈I

∑
β∈J

Kαβ

Nf∑
t

(
φα (r)φ

∗
β (r) |ft

)
V ts

=
∑
α∈I

∑
β∈J

Kαβcsαβ. (17)

We have now decomposed the electronic density of the system into a sum of atom-centered

contributions, with each contribution being a linear combination of auxiliary basis functions.

For the sake of concreteness, we will now explicitly assume the auxiliary basis functions to

be truncated spherical waves (SWs)81,120, indexed by their angular momentum number l,
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magnetic quantum number m, and number of zeros q in the radial part., i.e.:

fSW
lmq (r) =

jl (r/blq)Zlm (r̂) r < rSW,

0 r ≥ rSW

, (18)

where rSW is the localization radius of the SW, jl (·) is a spherical Bessel function, and

Zlm (r̂) is a real spherical harmonic. The values of the length scale blq are chosen so that

jl (r/blq) has exactly q zeros on the interval (0, rSW] , with the last one at r = rSW for the

truncation not to introduce a discontinuity. The index q runs from 1 to a chosen maximum

value qmax, which is in the order of 10 − 20 and in practice is limited by the fineness of

the grid. Higher values make the density fitting more accurate at the expense of increased

computational cost, which grows as O (N2
f )∼O (q2maxl

4). The localization radii rSW of the

SWs and of the NGWFs coincide.

We recall that the index s runs over auxiliary basis functions originating on both centers,

while l, m, q describe a truncated spherical wave at r = 0, and so

fs (r) ≡

fSW
lmq (r−RI) , s ≤ Nf/2

fSW
lmq (r−RJ) , s > Nf/2

. (19)

The sought spherical multipoles associated with an atomic center I can be calculated

as112,121:

Mlm(I) =
∑
J

SIJ ̸=0

∑
q

C lmq
IJ Jlq, (20)

where C lmq
IJ correspond to Cs

IJ originating only on I, and

Jlq =

ˆ a

0

rl+2jl(r/blq) dr (21)

is a radial integral that can be computed analytically.

While the approach described above is general, in this work we truncate the expansion

at quadrupoles (l ≤ 2). Charges qQM∗

I , Cartesian dipoles µQM∗

I , and traceless Cartesian

quadrupoles QQM∗

I are obtained from the spherical representation (20) using well-known

relations122 (eqs. 2.85-2.87). To obtain a representation of the total density, the charges ZI

of the atomic cores need to be added to qQM∗

I .

The procedure described above minimizes the self-interaction energy of the error in the

approximate density, with no constraint on the total charge of the entire system
∑

I q
QM∗

I .
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Numerical tests indicate that the total electronic charge obtained from the expansion is

within 0.05% of the expected number of valence electrons for reasonable qualities of the

auxiliary basis set. Of course this valence charge is to a large degree compensated by a

similar, but negative, contribution from the cores, which makes the relative error in the total

charge substantially larger (and, infinite, by definition, for neutral systems). In practice we

found it sufficient to compensate for this by uniformly rescaling the electronic monopole

terms, matching the total with the number of valence electrons. We discuss the effect of this

scaling on gradients in Appendix A 3.

E. Consistent coupling between QM and MM

Our model uses the following total energy expression:

E = EQM + EMM + EQM/MM
perm + EQM/MM

vdW , (22)

which we variationally minimize using gradient methods. The minimization is a single

SCF process following the approach of Aida et al.37, where the linear response equations

for induced dipoles are solved at each SCF step. This iterative solution requires only the

evaluation of classical multipole interactions, and its computational cost is minor compared

to the costs associated with QM terms in the energy. To maintain variationality, this scheme

requires the recomputation of the QM∗ representation at every SCF step. This can be done

efficiently for two reasons. First, the bottleneck here is the evaluation of the electrostatic

metric matrix (14), which does not depend on either the electronic or MM degrees of freedom,

and can be precomputed. Second, by construction, the expansion coefficients csα,β in (17)

only need to be recomputed when the NGWFs change, and not at every SCF step.

In this communication we restrict ourselves to computing gradients with respect to the

density kernel K, which we will derive for every term in turn. In future communications

we plan to outline the calculation of gradients with respect to the NGWFs (which will

permit optimizing them in situ), and with respect to ionic positions (which will pave the

way towards geometry optimization, transition state searches, and molecular dynamics).

The superscript of each term identifies it as a property of a particular subsystem (QM,

MM) or as a cross energy term (QM/MM). We shall discuss each term in turn. The single-

system energy terms EQM and EMM are defined by (6) and (7), respectively. Regardless of
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whether the QM and MM subsystems are isolated or coupled, the functional form of these

two terms is the same. That is to say, our approach does not modify the descriptions of the

individual subsystems. When coupling is introduced, however, the interpretation of these

terms changes: EQM becomes the energy of the QM subsystem polarized by the electric field

of the MM subsystem, and EMM becomes the energy of the MM subsystem polarized by the

electric field of the QM subsystem. To elucidate how these changes arise, we insert (6) and

(7) into (22), to obtain the total energy expression for our model:

E = EQM
core-core + EQM

disp + EMM
perm + EMM

val + EMM
vdW

+ EQM
DFT + EMM

pol

+ EQM/MM
perm + EQM/MM

vdW . (23)

The first five energy terms are insensitive to whether QM and MM are isolated or cou-

pled, and, as they have been defined already, can be omitted from further discussion. The

introduction of coupling does, however, change the values of EQM
DFT and EMM

pol , which reflects

the fact that the two subsystems mutually polarize.

Polarization—The change in EQM
DFT = EQM

DFT [n (r)] is brought about by the deformation

of the electronic density n (r) in response to the electric field of the MM subsystem, and

thus accounts for the polarization of QM due to MM. This deformation of n (r) is driven by

the gradient contributions (36) and (41).

The change in EMM
pol is a consequence of the inclusion of the electric field of the QM

subsystem in the direct field experienced by the MM induced dipoles, cf. (24). Following

the introduction of coupling, EMM
pol accounts for not only the internal polarization of the

MM subsystem (cf. Fig. 1, interactions 5⃝, 6⃝), but also for the polarization of MM due to

QM (cf. Fig. 1, interaction 4⃝). The two contributions are non-additive. In our model po-

larization contributions from QM/MM interactions are damped, consistent with MM/MM

polarization contributions owing to the use of the auxiliary QM∗ representation (Sec. IID 2).

This representation is used in the calculation of EMM
pol and its gradient dEMM

pol /dK
ηθ (cf. (33)).

This gradient contribution, apart from being essential for maintaining the variational be-

havior of our method, enables the electronic degrees of freedom to respond to the induced

dipoles of the MM subsystem, thereby capturing the polarization effect of the environment.

Before we proceed with a more detailed account of polarization in our model, we refer the

Reader to the Appendix, Sec. A 1 for a brief review of how polarization energy is calculated
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for an isolated MM system – this serves as a starting point for the discussion that follows.

In our QM/MM model the direct field experienced by an MM site L (which we will denote

with E′
L) contains two contributions – the direct electric field of permanent MM multipoles

(A5), and the direct electric field of QM∗multipoles:

E′
L = EL + EQM∗

L . (24)

The corresponding polarization energy is

EMM
pol = −1

2

NMM∑
L

µᵀ
LE

′
L, (25)

which has the same form as (A6), except for the fact that the dipoles µL are now induced

in response to the total direct field E′
L. Here, NMM is the number of atoms in the MM

subsystem.

The multipole expansion QM∗ is truncated at quadrupoles, leading to the following ex-

pression (cf. Ref. 122, eq. 2.63) for the electric field it generates at RL:

EQM∗

L =

NQM∑
I

(
−T d-c

LI q
QM∗

I + T d-d
LI µ

QM∗

I − 1
3
T d-q

LI : QQM∗

I

)
. (26)

The sum runs over all atomic sites I of the QM∗ representation. Each site contains a point

charge qQM∗

I , dipole µQM∗

I and quadrupole QQM∗

I .

The Thole-damped, dipole-charge interaction tensor T d-c
LI is given by

T d-c
LM =


−λ3Rx

R3

−λ3Ry

R3

−λ3Rz

R3

 , (27)

the corresponding dipole-dipole interaction tensor is given by

T d-d
LI =



3λ5R
2
x

R5
− λ3

R3

3λ5RxRy

R5

3λ5RxRz

R5

3λ5RxRy

R5

3λ5R
2
y

R5
− λ3

R3

3λ5RyRz

R5

3λ5RxRz

R5

3λ5RyRz

R5

3λ5R
2
z

R5
− λ3

R3

 , (28)

and the dipole-quadrupole interaction tensor T d-q
LI is given by
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T d-q
LI =




−15λ7R

3
x

R7
+

9λ5Rx

R5

−15λ7R
2
xRy

R7
+

3λ5Ry

R5

−15λ7R
2
xRz

R7
+

3λ5Rz

R5




−15λ7R

2
xRy

R7
+

3λ5Ry

R5

−
15λ7RxR

2
y

R7
+

3λ5Rx

R5

−15λ7RxRyRz

R7




−15λ7R

2
xRz

R7
+

3λ5Ry

R5

−15λ7RxRyRz

R7

−15λ7RxR
2
z

R7
+

3λ5Rx

R5



−15λ7R

2
xRy

R7
+

3λ5Ry

R5

−
15λ7RxR

2
y

R7
+

3λ5Rx

R5

−15λ7RxRyRz

R7





−
15λ7RxR

2
y

R7
+

3λ5Rx

R5

−
15λ7R

3
y

R7
+

9λ5Ry

R5

−
15λ7R

2
yRz

R7
+

3λ5Rz

R5





−15λ7RxRyRz

R7

−
15λ7R

2
yRz

R7
+

3λ5Rz

R5

−15λ7RyR
2
z

R7
+

3λ5Ry

R5



−15λ7R

2
xRz

R7
+

3λ5Ry

R5

−15λ7RxRyRz

R7

−15λ7RxR
2
z

R7
+

3λ5Rx

R5





−15λ7RxRyRz

R7

−
15λ7R

2
yRz

R7
+

3λ5Rz

R5

−15λ7RyR
2
z

R7
+

3λ5Ry

R5




−15λ7RxR

2
z

R7
+

3λ5Rx

R5

−15λ7RyR
2
z

R7
+

3λ5Ry

R5

−15λ7R
3
z

R7
+

9λ5Rz

R5





,

(29)

where R is the norm of the vector RI −RL, and {Rx, Ry, Rz} are its Cartesian components.

Here, λ3, λ5, and λ7 are the Thole damping factors, given by:

λ3 (u) = 1− e−au3

λ5 (u) = 1−
(
1 + au3

)
e−au3

λ7 (u) = 1−
(
1 + au3 + 3

5
a2u6

)
e−au3

, (30)

where u is the reduced distance

u =
R

(αLαI)
1/6

, (31)

a is a dimensionless width parameter73, and αL, αI are the (scalar) polarizabilities of the

sites L, I, respectively. Since our model adopts a damped polarization treatment consistent

with AMOEBA, it requires specifying classical scalar polarizabilities of QM sites, αI .

During the AMOEBA self-consistency procedure in which {µL} are determined the de-

grees of freedom in QM∗ are temporarily clamped, meaning EQM∗

L , and in turn E′
L, remain

constant. A zero residual condition analogous to (A7) is satisfied at induced dipole self-
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consistency:

∀L

dEMM
pol

dµL

= 0. (32)

As we follow a gradient-based approach, we seek the total derivative of the polarization

energy with respect to a density kernel element Kηθ, namely:

dEMM
pol

dKηθ
=

∂EMM
pol

∂Kηθ
+

NMM∑
L

dEMM
pol

dµL

∂µL

∂Kηθ
. (33)

Once the induced dipoles reach self-consistency, the second term vanishes owing to (32),

leading to

dEMM
pol

dKηθ
=

∂EMM
pol

∂Kηθ
= −1

2

NMM∑
L

µᵀ
L

∂

∂Kηθ

(
EL + EQM∗

L

)
, (34)

which, with EL being independent of the density kernel, simplifies to

dEMM
pol

dKηθ
= −1

2

NMM∑
L

µᵀ
L

∂EQM∗

L

∂Kηθ
. (35)

By substituting (26) into (35) we obtain

dEMM
pol

dKηθ
= −1

2

NMM∑
L

µᵀ
L

NQM∑
I

(
−T d-c

LI

∂qQM∗

I

∂Kηθ
+ T d-d

LI

∂µQM∗

I

∂Kηθ
− 1

3
T d-q

LI :
∂QQM∗

I

∂Kηθ

)
, (36)

having used the fact that the interaction tensors are independent of Kηθ. Expressions for the

partial derivatives remaining in (36) are given in the Appendix, Sec. A 2, which completes

the derivation.
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Figure 1. Schematic representation of electrostatic interactions in our model. Intra-QM electro-

statics is that of standard pseudopotential and has been ommitted for clarity. A single atomic

site (I) has been highlighted in the QM subsystem and its auxiliary representation, QM∗. The

QM subsystem is described with point-charge cores ZI , and a distributed electronic density n(r),

while the QM∗ representation uses permanent point charges qQM∗

I , dipoles µQM∗

I , and quadrupoles

QQM∗

I . In the MM subsystem two atomic sites (L, M) have been highlighted. The MM subsystem

is described with permanent multipoles up to a quadrupole
{
qpL/M ,µp

L/M ,Qp
L/M

}
, and induced

dipoles µL/M . Interactions 1⃝ and 2⃝ are described by eqs. (39)-(41). Interaction 3⃝ is described

in Ref. 73. Interactions 4⃝, 5⃝, 6⃝ are treated on the same footing and are described by eqs. (25)

and (36).
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Permanent electrostatics—The next term, EQM/MM
perm , accounts for the electrostatic

interaction between the permanent multipoles in the MM subsystem and the QM charge

density (cf. Fig. 1, interactions 1⃝, 2⃝). In our model this interaction is not damped, by

analogy to how AMOEBA does not damp interactions between permanent multipoles. The

Coulombic potential at r due to the permanent MM multipoles (cf. Ref. 122, eq. 2.62) is

simply

vMM
p (r) =

NMM∑
L

(
T c-c
Lr q

p
L −Tc-d

Lr

ᵀ
µp

L + 1
3
Tc-q

Lr : Qp
L

)
, (37)

where qpL, µ
p
L, and Qp

L have been defined in Sec. II C, and T c-c
Lr , T

c-d
Lr , T

c-q
Lr are, respectively,

the Coulombic (undamped) charge-charge, charge-dipole and charge-quadrupole interaction

tensors acting from RL to r:

T c-c
Lr = 1/R,

Tc-d
Lr =


−Rx

R3

−Ry

R3

−Rz

R3

 ,

Tc-q
Lr =



3R2
x

R5
− 1

R3

3RxRy

R5

3RxRz

R5

3RxRy

R5

3R2
y

R5
− 1

R3

3RyRz

R5

3RxRz

R5

3RyRz

R5

3R2
z

R5
− 1

R3

, (38)

where R = |RL − r|.

The charge density of the QM subsystem is

nQM (r) = n (r) +

NQM∑
I

δ (r−RI)ZI , (39)

and its energy of interaction with the potential of the permanent MM multipoles is given by

EQM/MM
perm =

ˆ
Ω

vMM
p (r)nQM (r) dr, (40)

where Ω can be restricted to the union of the localization regions of {φα}, as nQM (r) is zero

elsewhere.

In practice, n (r) is defined on a uniform Cartesian grid, and the integral (40) is com-

puted as a three-dimensional sum over grid points. Even though n (r) is a slowly-varying
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(pseudo)density, this approach suffers from similar ill-conditioning issues as those desribed in

Sec. IID 1 – since a grid point can be located arbitrarily close to a point MM multipole, the

value of R in (38) can become arbitrarily small (or indeed zero), making the corresponding

tensors, and the resultant potential (37) unbounded, and EQM/MM
perm ill-conditioned.

One solution to this problem would be to resort again to the QM∗ representation and

to calculate this interaction energy as a pairwise sum of point-multipole–point-multipole

interactions. However, abandoning the distributed description of charge density in favor of

a multipole expansion would lead to the introduction of charge penetration error. This well-

known deficiency of point-multipole models123 is a consequence of their poor description

of the interaction between extended atomic charge densities at short distances. In this

regime the overlap of the two atomic densities becomes significant, leading to a decrease

in the shielding of the nuclear charge by its density124, an effect that is not captured by

point-multipole models, unless specifically corrected for.

In order to preserve the advantages that having access to the full density nQM (r) offers,

we choose to avoid the ill-conditioning by smoothing the potential (37) in the vicinity of

every MM multipole. To this effect we replace Coulombic interaction tensors (38) with their

Thole-damped counterparts, but instead of using atomic polarizabilities in the denominator

of (31), we use a fixed value of 0.2 a0 for the characteristic length. The influence of such

smearing is negligible aready for R > 0.5 a0, but it effectively removes singularities as R → 0.

We find the results to be practically insensitive to the particular choice of this value.

Since vMM
p (r) does not depend on the electronic degrees of freedom, the corresponding

energy gradient is simply a matrix element of the potential in the NGWF basis:

dEQM/MM
perm

dKηθ
=

∂

∂Kηθ

ˆ
Ω

vMM
p (r)nQM (r) dr (41)

=

ˆ
Ω

vMM
p (r)

∂

∂Kηθ

∑
αβ

φα (r)K
αβφ∗

β (r) dr

=

ˆ
Ω

vMM
p (r)

∑
αβ

φα (r) δαηδβθφ
∗
β (r) dr

=
⟨
φθ| ˆvMM

p |φη

⟩
.

This gradient term enables the electronic degrees of freedom to respond to the permanent

dipoles of the MM subsystem, thereby capturing the direct polarization of QM by MM.
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Van der Waals interactions—In the calculation of EQM/MM
vdW we use the same formalism

as is used for MM/MM van der Waals interactions, i.e. the pairwise Halgren formulation85 of

the buffered 14-7 potential73. The calculation of this term is performed entirely in tinker,

with the QM subsystem treated as an embedding inactive region, which avoids calculating

QM/QM contributions that are already accounted for in EQM.

Adopting such classical approach requires choosing suitable vdW parameters for atoms

in the QM subsystem. In contrast to the fine-grained system of atom types that AMOEBA

uses for electrostatics, van der Waals interactions are parametrized using a broader notion

of atom classes, meaning the vdW parameters are, to a large extent, shared by atoms

whose chemical species and hybridization are identical. With this in mind, we simply use

unmodified AMOEBA parameters for atom classes deemed to be nearest matches for atoms

in the QM subsystem, avoiding the need for parametrizing the QM subsystem altogether.

Since EQM/MM
vdW is independent of the electronic degrees of freedom, the corresponding

gradient contribution vanishes:

dEQM/MM
vdW

dKηθ
= 0. (42)

F. The TINKTEP implementation

tinktep is a software package that enables self-consistent, mutually polarizable QM/MM

calculations combining onetep and tinker. The theory outlined above has been imple-

mented entirely within onetep, within an infrastructure of general-use software modules:

spherical wave resolution of identity (SWRI), spherical wave expansion (SWX), distributed

multipole analysis (DMA), and polarizable embedding (PE).

Our approach does not require any intervention into the general mechanisms of tinker

in order to actualize the coupling. Only a small, well-contained set of trivial adjustments to

tinker’s input/output routines is necessary to increase the numerical precision of certain

inputs and outputs, and to adjust the maximum line length. This is realized through a

patch that is distributed with onetep.

tinktep itself comprises several core scripts and about a dozen utility scripts. The role

of the core scripts is to provide a user-friendly environment in which onetep and tinker

are executed, and to oversee and synchronize their execution, providing user feedback, error

logging and graceful abort in case of errors. The utility scripts facilitate the set-up of
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QM/MM calculations, file format conversions, translations of frame of reference etc.

tinktep is available to all users of onetep v4.5 and later. In addition to polarizable

QM/MM calculations, tinktep supports QM/MM calculations with fixed point-charge force

fields, such as the General Amber Force Field (GAFF).

III. DEMONSTRATION OF METHODOLOGY

We demonstrate the feasibility of our QM/MM approach using two test setups. First, we

briefly validate the correctness of the total (QM+MM) energy gradient by examining the

convergence of total energy for a diphenylhydramine molecule embedded in a water sphere.

Second, we closely examine how accurately the binding energy of six solutes to water solvent

is reproduced by a number of MM and QM/MM approaches. Having selected larger, small,

neutral and charged solutes, and investigating the binding energy curves for increasing sizes

of solvent spheres, we can elucidate the advantages and deficiencies of each approach. We

demonstrate that in terms of accuracy our approach outperforms QM/MM schemes that do

not take mutual polarization into account.

A. Correctness of total energy gradient

We begin with basic validation of the correctness of our implementation. We compared

total (QM+MM) energy gradients obtained by finite differences (FD) with analytical gradi-

ents, ensuring they were in agreement for a variety of systems, including charged systems,

where mutual polarization becomes significant. In all cases we were able to converge the em-

bedded system to the same thresholds as the purely QM system, and we obtained expected

agreement between analytical and FD gradients. Below (Fig. 2) we restrict ourselves to

demonstrating that the convergence of the total energy during density matrix optimization

proceeds very similarly regardless of the type of embedding used. We demonstrate this on

a representative system, where the QM subsystem comprises a diphenylhydramine molecule

with 75 surrounding H2O molecules, and the MM subsystem comprises 256 H2O molecules.
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Figure 2. Convergence of density matrix optimization in the absence of embedding (black, circles),

with purely electrostatic fixed point charge embedding that neglects vdW interactions (red, dia-

monds), and with AMOEBA embedding (blue, squares). Test case: diphenylhydramine and 75

H2O molecules in the QM region; 256 H2O molecules in the MM region.

B. Binding energies

To assess the accuracy and robustness of our QM/MM approach we employed it to

calculate the interaction energy of six solutes with progressively larger shells of explicit water

molecules. Three of the solutes were chosen from the SAMPL4 blind challenge125 – these

were a) (–)-menthol, b) diphenylhydramine, and c) 2-chloro-4-hydroxy-3,5-dimethoxybenzal-

dehyde. These moderately-sized molecules (31, 40, and 23 atoms, respectively) encompass

a number of chemical features: a cyclohexane ring (a), an ether group (b), an aromatic ring

(b), an amine group (b), a halogen atom (c), and an aldehyde group (c). The remaining

three molecules were d) ammonia (NH3), e) the ammonium ion (NH+
4 ) and f) the cyanide

ion (CN−) – which we chose to verify if our model correctly describes small and charged
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Figure 3. The protocol used for preparing configurations suitable for QM/MM calculations under

open boundary conditions (OBCs): a) AMOEBA molecular dynamics is performed under periodic

boundary conditions, and the final configuration is selected. b) Only H2O molecules fully contained

within a sphere around the solute are kept. c) The outermost H2O molecules are relaxed to reduce

the excess dipole moment arising from their temporarily unphysical orientation.

solutes.

1. Computational set-up

Each of the six solutes has been solvated in approx. 660 explicit H2Omolecules under peri-

odic boundary conditions (PBC). Classical polarizable MD trajectories in the NpT ensemble

(p = 1 atm, T = 298 K) were then obtained using the dynamic program from the tinker

suite. The dynamics was run for 50 ps with a timestep of 1 fs and the final configuration

was used in subsequent calculations. AMOEBA parametrization for solutes (a)-(c) has been

taken from Ref. 97, solutes (d)-(f) used parameters natively available in AMOEBA0972 and

for water molecules we used the AMOEBA 2003 water model. Long-range electrostatics

used the Particle Mesh Ewald approach126, with a real-space cutoff of 8 Å. Van der Waals

interactions were cut off at 9 Å, and a long-range correction was applied.

The above procedure yields configurations suitable for calculations with periodic bound-

ary conditions (cf. Fig. 3, panel a). At present our QM/MM implementation only supports

calculations with open boundary conditions, which necessitates augmenting the simulation

protocol with an intermediate step. First, we discard all water molecules which are not
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entirely contained in a sphere with a radius of half of the simulation box size (cf. Fig. 3,

panel b). No longer part of the bulk, the water molecules at the surface of the sphere are

now misoriented, generating a non-negligible, spurious dipole moment. As has been recently

shown by Lever et al.11, this can lead to an unphysical lowering of the HOMO-LUMO gap

in ab initio calculations, making it crucial to address this effect. We mitigate the problem

by allowing the outermost water molecules to relax to a local energy minimum. This is

illustrated in Fig. 3, panel c. The relaxation is performed with tinker’s optimize program,

using open boundary conditions (OBC) and an infinite interaction cutoff. The solute and

water molecules whose geometric centers are within 12 Å from the geometric center of the

solute are restrained during the relaxation. As expected, in the course of the relaxation we

observe a lowering of the dipole moment of the system and the final solute-solvent binding

energy is close to that of the original PBC system. The resultant configurations consist of

the solute and 325-400 H2O molecules and are suitable for calculations with OBC.

We examined the binding energies between the solute and the surrounding water

molecules for a single snapshot for each of the solutes, investigating how the solute-solvent

interaction energy converged as the number of surrounding H2O molecules was increased.

Water molecules were added in the order of increasing distance from the center of the solute.

Binding energies were calculated as

Ebind = Esolute+solvent − Esolute − Esolvent, (43)

with atomic positions taken from the solute+solvent configuration.

Our comparison involved four computational approaches:

a) Fully-QM calculations with no embedding (entire system treated at the DFT level of

theory), which serve as reference;

b) QM calculations using a purely electrostatic embedding, where the QM subsystem

encompassed only the solute, and H2O molecules were described with fixed partial

charges. In this set-up only a fixed, external potential is included in the QM Hamil-

tonian; we emphasize the neglect of van der Waals interactions between the QM and

the embedding;

c) QM/MM calculations with either a fixed point-charge embedding (GAFF v1.5127) or

a polarizable embedding (AMOEBA). Here too the QM subsystem encompassed
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only the solute, and all water molecules were described by a classical force field.

What is also different from (b) is that van der Waals interactions between the solvent

and solute were included at the MM level of theory (Lennard-Jones potential for GAFF

embedding, Halgren’s 7-14 potential (cf. (9)) for AMOEBA embedding);

d) Fully-MM calculations, where the entire system was treated with classical MM (GAFF

or AMOEBA).

All QM calculations were performed using the onetep linear-scaling package. Since

our QM/MM approach does not currently support optimizing the NGWFs in situ, we used

a fixed minimal NGWF basis pre-optimized in vacuum, and only optimized the density

kernel K. Open boundary conditions were imposed by using direct Coulombic summation

(5) for EQM
core-core, and through the use of the cut-off Coulomb128 technique in the calcula-

tion of electronic interactions. The kinetic energy cutoff was set to 1000 eV. The PBE129

exchange-correlation functional was used. Empirical dispersion correction in the formula-

tion of Elstner96, with parameters determined by Hill et al.86 was employed to correct the

deficiencies of GGA DFT description of dispersion interactions.

All MM calculations were performed with tinker’s analyze program. Open boundary

conditions were used, with an infinite cutoff for all interactions. Induced dipoles were con-

verged to a tight rms threshold of 10−11 D in order to make the residual (A7) negligible.

QM/MM calculations used the above settings for the QM and MM subsystems, respec-

tively. QM/MM coupling was effected through the use of the tinker-onetep interface, tin-

ktep (cf. Sec. II F), that has been implemented as part of this work. In QM/polarizable-MM

calculations the QM∗ expansion (cf. Sec. IID 1) was truncated after quadrupoles. In fixed

point charge QM/MM calculations and in QM calculations with fixed point-charge embed-

ding we used partial charges of 0.417 e for H atoms and −0.834 e for O atoms, which are

identical to the TIP3P130 model used in GAFF. In this case the QM∗ expansion was limited

to atom-centered charges only – in the absence of polarization, the QM∗ representation is

only of relevance to the tests of the refined model described in Sec. III B 3, and in Fig. 6,

curve (b) in particular.
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2. Initial results

We first focus on one of the molecules, (–)-menthol, to illustrate in detail how the accuracy

of MM, QM and QM/MM approaches compares when no adjustments are made to any of

the models, and to elaborate on the metrics we used for judging accuracy.
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Figure 4. Binding energy between the solute ((–)-menthol) and increasing shells of H2O molecules

– comparison between the reference DFT calculation (black, +), QM with purely electrostatic

point charge electrostatic embedding (red, ⋄), QM/MM with GAFF (orange, ×), QM/MM with

AMOEBA (blue, �), and purely MM calculations with GAFF (grey, �) and AMOEBA (green, ◦).

Dashed lines denote a margin of ±1 kcal/mol from the converged QM result.

Figure 4 shows the binding energy between the (–)-menthol molecule and the molecules

of the solvent. By the time the water shell comprises 130 H2O molecules, the reference QM

energy is converged to within 1 kcal/mol of the value obtained for the largest shell. The

purely classical AMOEBA results closely track the QM trend, consistently underbinding by

as little as 2 kcal/mol for the larger systems. GAFF’s predictions are not as accurate, with

the error accumulating quickly in the short range and plateauing at about 10 kcal/mol by
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the time 50 H2O molecules are reached.

The behaviors of the studied approaches are easier to interpret if we adopt the QM results

as a baseline, and examine errors in the binding energy, understood as energy differences

from the reference. To this effect we replot the same data in Figure 5, immediately re-es-

tablishing that AMOEBA’s predictions are very good for all system sizes, and that GAFF’s

long-range behavior is correct, but its predictions are plagued by short-range error.

We now examine the predictions of QM/MM models and the of the purely electrostatic

embedding approach. Electrostatic (point-charge) embedding severely underbinds the sys-

tem by accumulating as much as 20.5 kcal/mol of error in the short- and medium-range.

To a large extent this is an expected consequence of not taking solute-solvent (QM/MM)

van der Waals interactions into account. Since the partial charges used in calculations with

electrostatic embedding and QM/MM with GAFF are identical, and the van der Waals con-

tribution in the latter is calculated classically and so does not affect the electronic degrees

of freedom, the entire difference between electrostatic embedding and QM/MM with GAFF

is due to missing van der Waals interactions. Here these interactions are strongly attractive

and their neglect accounts for the majority (12.5 kcal/mol) of electrostatic embedding’s error

(cf. Fig. 5, (a)). The remaining error is the same as the error in QM/MM with GAFF and

amounts to about 8 kcal/mol in the long range (cf. Fig. 5, (b)).

In the calculation of binding energies, all intra-MM terms (valence, van der Waals and

electrostatic) cancel out between the solute-solvent “complex” and the solvent-only calcu-

lation. The classical intra-QM dispersion correction similarly cancels out between calcula-

tions on the complex and on the solute. The only remaining energy terms are QM/MM

electrostatic and van der Waals terms, and intra-QM electronic energies (i.e. the polariza-

tion response of the solute). Of these three, only point-charge electrostatic interactions are

long-ranged, and the behavior of the QM/MM GAFF curve – which becomes almost flat

beyond 100 H2O molecules – suggests that in this case the point-charge description is suf-

ficient at long range. We will later demonstrate that this is no longer the case for charged

solutes. Here, however, the errors in both MM GAFF and QM/MM with GAFF are already

accumulated (to values of ∼ 10 kcal/mol and ∼ 8 kcal/mol, respectively) by the time the

solvent shell comprises ∼ 60 H2O molecules – a regime where the mean distance between a

solute atom and a solvent atom is 6.8 Å. This indicates the unsurprising breakdown of the
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Figure 5. Error (difference with respect to pure QM calculation) in the binding energy between

(–)-menthol and increasing shells of H2O. Color-coding follows that of Fig. 4.

fixed point charge description, and/or GAFF’s van der Waals model, at short range, where

AMOEBA’s polarizable model is seen to cope very well. The curves obtained from MM with

GAFF and QM/MM with GAFF have very similar shapes, differing mostly by an almost

constant offset of 2.5 kcal/mol. This implies that the majority of the error (the remain-

ing ∼ 8 kcal/mol) is due to a short-range deficiency in the shared components of the two

models, i.e. in GAFF’s treatment of solute-solvent vdW interactions and the limitations of

point-charge description – rather than any serious deficiency of the QM/MM interface. Aida

et al. reached similar conclusions for solute-solvent interactions with their QM/MM-pol-vib

model37.

The opposite is true for the QM/MM with AMOEBA model proposed in this work. A

comparison of the QM/MM with AMOEBA curve with the MM AMOEBA curve reveals

that their shapes differ significantly only at short range (up to ∼ 40 H2O molecules), where

the QM/MM calculation already underbinds by 8.5 kcal/mol (cf. Fig. 5, (c)) compared to

31

http://dx.doi.org/10.1063/1.4962909


MM AMOEBA. From this point on the offset between the two curves remains practically

constant, indicating almost identical, correct medium- and long-range behavior. Given that

at short range the purely MM AMOEBA description is in remarkable agreement with the

DFT result (cf. Fig. 5, (d)), we must conclude that in this case the QM/MM interface itself

is responsible for most of the error by which our QM/MM scheme underbinds (–)-menthol.

3. Model refinement

We will now elucidate the sources of this error, and propose a simple measure to remediate

the problem. The main differences between the treatment of interactions in QM/MM with

AMOEBA and MM with AMOEBA are the following:

a) Quantum-mechanical treatment of the QM subsystem;

b) Absence of QM-side charge penetration error in the treatment of QM/permanent-MM

electrostatics (cf. (40)).

c) Inclusion of polarization contributions in nQM (r) appearing in (40) in the interaction of

QM with permanent MM multipoles. The entire QM contribution is thus not damped,

whereas it would be more consistent with AMOEBAmethodology to separate this term

into a permanent part (nQM
vac (r)), and an induced part (nQM (r) − nQM

vac (r)), damping

the latter;

Of these three differences, the first two are, of course, desired features of the model,

introduced to improve upon the MM description. The last one is an unwelcome simplifi-

cation resulting from the desire to avoid dealing with induced partial charges and induced

quadrupoles in the QM∗ representation, as these would not be directly compatible with the

AMOEBA model, and having to perform a separate QM calculation in vacuum.

Regardless of their origin, each of these changes affects the behavior of electrostatic inter-

actions in the system, with no corresponding change in the repulsive part of van der Waals

interactions that AMOEBA leverages to balance strongly attractive electrostatics at short

range. Similarly, since our approach changes the description of permanent interactions,

while retaining AMOEBA’s damped multipolar scheme for polarization, we potentially dis-

rupt the balance between permanent and induction interactions. That is to say, even when
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the description of electrostatics is improved e.g. by the elimination of charge penetration

error on the QM side, the balance between electrostatics and van der Waals interactions can

easily become disrupted, necessitating adjustments to parametrization or functional forms

for interactions crossing the QM/MM interface. Similar conclusions have been reached in-

dependently by Aida et al.37. Carnimeo et al.55 have also found it necessary to adjust van

der Waals parameters in the QM/MM interface. Ultimately, the classical description of van

der Waals interactions, with its inherent neglect of the coupling to an atom’s local electronic

structure131, may altogether prove unsatisfactory for describing QM/MM interactions. More

refined models, where van der Waals parameters could be made density-dependent through

atomic volumes132, or where exchange and dispersion energies is made charge-dependent in

a many-body formulation131 might alleviate this issue in the long term.

We now lay out a very simple two-step remediation measure that we find to be sufficient

to obtain reasonable accuracy for both neutral and charged solutes.

In the first step we resign ourselves to approximately reintroducing charge penetration

error (CPE) into QM/permanent-MM interactions in the hope of restoring some of the

balance between electrostatics and the repulsive van der Waals term. We achieve that

by “correcting” the converged total energy – removing the CPE-mitigated interaction (40)

and replacing it with the CPE-afflicted interaction energy of QM∗with the permanent MM

multipoles, as calculated by tinker. This is not equivalent to reintroducing the entirety of

CPE – we emphasize that the QM density is still optimized under the original CPE-mitigated

Hamiltonian, and the “correction” is done a posteriori. Furthermore, the CPE-mitigated

interaction only accounted for charge penetration on the QM side, with the MM subsystem

still represented by point multipoles. Nevertheless, this improves the agreement of our

model with the QM reference (cf. Fig. 6, (a)), not only for (–)-menthol, but for all six

studied molecules. Interestingly, analogous reintroduction of CPE into QM/MM with GAFF

leads to marked worsening of obtained binding energies, again for all six molecules (shown

for (–)-menthol in Fig. 6, (b)). It remains to be determined whether the difference in

behaviors is due to the multipolar nature of AMOEBA, the fact that it is a polarizable

model (and thus has to balance permanent electrostatics and polarization), or the fact

that its balance between electrostatics and van der Waals interactions is perhaps somewhat

more fragile. Intuitively we would expect switching back to the multipolar description to
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bring the QM/MM description closer to the MM model, and this is indeed what happens

– binding becomes stronger in QM/MM with AMOEBA (compare Fig. 6, (a) with Fig. 5,

blue and green curves), and weaker in the case of QM/MM with GAFF (compare Fig. 6, (b)

with Fig. 5, orange and grey curves). A detailed study of the electrostatics of our model,

supported by energy decomposition analysis will be the subject of a future communication.

In the following we will of course not include this detrimental adjustment in the results

obtained with QM/MM with GAFF.
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Figure 6. Two-step remediation measure aimed at restoring the balance between electrostatics and

van der Waals interactions in QM/MM with AMOEBA. Step 1: QM-side charge penetration error

(CPE) is reintroduced. Step 2: A single parameter is adjusted in the buffer of the Halgren 7-14

potential to uniformly reduce the steepness of the repulsive wall at very short distances.

The second step of our refinement consists in a simple adjustment of the steepness of

the repulsive wall in the buffered 7-14 van der Waals potential (9) used in AMOEBA. We

stress that this is only done for interactions crossing the QM/MM interface. Moreover,

this adjustment does not involve any changes to the position or value of the minimum of
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the potential, and is independent of chemical species. That is, we keep using the original

parametrization of AMOEBA, only applying a uniform a posteriori adjustment to the shape

of the repulsive wall. Our change amounts in replacing the value of δ = 0.07 in (9) with

δ = 0.21, which achieves the effect illustrated in Fig. 7. This adjustment is done with the

aim of attenuating a small number of severely repulsive van der Waals interaction pairs

corresponding to a scenario where a QM atom and an MM atom are drawn close together

by very favorable electrostatic interactions, as is the case for hydrogen bonds crossing the

QM/MM interface. In AMOEBA the energetics of such pairs relies on a delicate balance

between strongly attractive electrostatic interactions and strongly repulsive van der Waals

interactions. This balance, disrupted by the differences in the treatment of electrostatics

in our QM/MM model, can be restored, to a large degree, by attenuating only the most

excessive van der Waals interactions. The significant improvement to the short-range be-

havior of our QM/MM model resulting from this simple adjustment can be seen in Fig. 6,

(c). Each of the remaining solutes, with the sole exception of NH+
4 , benefits from this final

adjustment to our model. We point out that a similar adjustment is neither possible, nor

necessary for QM/MM with GAFF. This is because the Lennard-Jones potential does not

offer the flexibility of the buffered 7-14 potential, and, respectively, because in GAFF the

balance in question can be more robust owing to the absence of polarization. The choice of

δ = 0.21 minimises the extremely-short range error (best examined, for the (–)-menthol test

case, by comparing curves (a) and (c) in Fig. 6) across the six tested molecules, while ensur-

ing long-range behavior is not adversely affected – as excessive changes to δ will gradually

influence the attractive regime.

4. Final results

The performance of each of the approaches is compared in Tab. I, where we report errors

of each approach (with DFT results as baseline) obtained for the systems with the largest

numers of solvent molecules. Error values were averaged over systems with 200 or more H2O

molecules to give an idea of the feasibility of each approach in practical scenarios, where the

computational effort associated with the MM embedding is small compared with the effort

of the QM calculation, permitting the use of large embedding regions.

For each of the molecules, purely classical calculations with AMOEBA are in significantly
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Table I. Comparison of accuracy offered by fixed point charge (GAFF) and multipolar polarizable

(AMOEBA) force-fields in MM calculations and QM/MM calculations. The values shown are

errors (kcal/mol) with respect to DFT reference calculations, averaged over systems with 200+

H2O molecules. RMSE: root mean square error, MSE: mean signed error.

molecule MM MM QM/MM QM/MM QM/MM QM/MM

GAFF AMOEBA point-charge GAFF AMOEBA (initial) AMOEBA (refined)

(–)-menthol 10.4 1.9 20.5 8.0 10.5 −1.3

diphenylhydramine 13.7 −0.1 41.3 14.9 15.3 2.8

2-Cl-4-OH-3,5-dimethoxy-BALD 4.7 −0.6 24.4 6.8 6.9 0.3

NH3 2.7 1.5 3.7 4.1 7.6 −1.8

NH+
4 5.1 1.1 −5.0 4.5 1.2 −4.1

CN− −7.7 7.2 0.9 −1.8 18.2 2.9

RMSE 8.3 3.1 21.5 7.9 11.4 2.5

MSE 4.8 1.8 14.3 6.1 10.0 −0.2

better agreement with DFT than GAFF is, with CN− being the only solute that is not cap-

tured to within 2 kcal/mol, presumably due to the complex electronic structure of this ion (a

σ-donor, π-acceptor ligand). Calculations with point-charge embedding perform very poorly

due to their neglect of solute-solvent van der Waals interactions. With the exception of NH+
4

and NH3, these interactions are attractive, which means their neglect leads to consistent un-

derbinding, which is particularly severe for larger molecules – this is well evidenced in the

large, positive mean average error (14.3 kcal/mol) plaguing this approach. The inclusion of

van der Waals interactions at the GAFF level of theory (QM/MM with GAFF embedding)

improves accuracy, but only to a level that is on par with purely MM GAFF calculations.

As pointed out earlier, we believe the errors here are mostly attributable to the fixed point

charge description, rather than to an unbalanced QM/MM interface.

Initial results obtained with QM/MM with AMOEBA indicate that the QM/MM inter-

face becomes unbalanced by the mitigation of charge penetration error and other changes

that our model applies to the treatment of electrostatics. As a result, the initial model

consistently underbinds due to strongly repulsive van der Waals terms that are no longer

sufficiently balanced by strong electrostatic attraction. This effect manifests most signif-

icantly for hydrogen bonds crossing the QM/MM interface. Once the model is adjusted

by re-introducing some of the charge penetration error and softening the repulsive wall of

the buffered 7-14 potential, we observe a dramatic improvement. While our refined model
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Figure 7. Adjustment to the slope of the repulsive wall in the Halgren potential achieved by using

δ = 0.21 in lieu of δ = 0.07 in (9). The x axis minimum in both plots (∼ 0.593) corresponds to

the minimum dimensionless distance encountered in the (–)-menthol-H2O test case, highlighting

how large the repulsive interactions can occasionally become in AMOEBA. At this zoom level the

attractive part can hardly be seen – in the interest of clarity the inset shows the same potential

with more familiar axis ranges.

cannot yet boast chemical accuracy, its rms error is the lowest of all the studied approaches,

and the very low mean average error (-0.2 kcal/mol) is a good indication of a well-balanced

approach. Given that in this work only the solute molecules are treated at the DFT level

of theory, we consider achieving an rms error 2.5 kcal/mol against full DFT calculations on

1000+ atoms a success.

Full binding energy error curves illustrating how the studied approaches compare at all

system sizes are shown Fig. 8. For QM/MM with AMOEBA only the results obtained with

the refined model are shown for clarity. The conclusions we have reached using (–)-menthol

as a test case are seen to be generally applicable to the remaining molecules. Below we
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briefly comment on a number of differences obsreved for particular molecules.

Earlier we used the similarity in the trends between QM/MM with GAFF and MM

GAFF and to argue that the majority of the error in both approaches is likely due to a

shared component of the models (GAFF’s description of solute-solvent interactions). If so,

we would expect the short-range part of the two curves to differ more for solutes that are

more difficult to describe with a pure MM description (where there difference between the

QM and MM treatments of the solute would be highlighted). This is indeed the case for

2-chloro-4-hydroxy-3,5-dimethoxybenzaldehyde.

For (–)-menthol we reasoned about good long-range behavior of MM GAFF from the

flat shape of the energy error curve at long range. We point out that this is no longer the

case for charged solutes, for which the fixed-point charge model is clearly insufficient. This

is evidenced by large oscillations in the MM GAFF, QM/MM with GAFF and QM with

point charge embedding curves for NH+
4 and CN−. The same curves are much flatter for

MM AMOEBA and QM/MM with AMOEBA, indicating that, as expected, polarization of

the solvent needs to be taken into account for charged solutes.

Finally, we point out that the largest errors in our QM/MM model also appear for

charged solutes, and have opposite signs for a cation and an anion. This suggests directions

for further refinement of the model through improving the description of electrostatics, and

polarization in particular.

IV. CONCLUSIONS AND CLOSING REMARKS

We have presented an implementation of a QM/MM approach in which the quantum sub-

system described by DFT is coupled to a classical subsystem described by the AMOEBA

polarizable force field. The two components mutually polarize one another within a to-

tal energy minimization scheme which achieves self-consistency for both the MM and QM

subsystems. We have derived an expression for the Hamiltonian of the coupled QM/MM

system, which we minimize using gradient methods.

We describe the QM subsystem with the onetep linear-scaling DFT program, which

makes use of localized orbitals expressed in a set of periodic sinc basis functions equivalent

to plane waves. We have interfaced onetep with the tinker code, which is a prototyp-

ical implementation of the AMOEBA force field, used in our model to describe the MM

38

http://dx.doi.org/10.1063/1.4962909


-5

 0

 5

 10

 15

 20

 25

 0  50  100  150  200  250  300

QM reference

(-)-menthol
E

rr
or

 in
 s

ol
ut

e-
so

lv
en

t i
nt

er
ac

tio
n 

en
er

gy
 (

kc
al

/m
ol

)

Number of water molecules surrounding the solute

 0

 10

 20

 30

 40

 0  50  100  150  200  250  300

QM reference

diphenylhydramine

E
rr

or
 in

 s
ol

ut
e-

so
lv

en
t i

nt
er

ac
tio

n 
en

er
gy

 (
kc

al
/m

ol
)

Number of water molecules surrounding the solute

-5

 0

 5

 10

 15

 20

 25

 30

 0  50  100  150  200  250  300

QM reference

2-chloro-4-hydroxy-3,5-dimethoxybenzaldehyde

E
rr

or
 in

 s
ol

ut
e-

so
lv

en
t i

nt
er

ac
tio

n 
en

er
gy

 (
kc

al
/m

ol
)

Number of water molecules surrounding the solute

-5

 0

 5

 10

 0  50  100  150  200  250  300

QM reference

NH3

E
rr

or
 in

 s
ol

ut
e-

so
lv

en
t i

nt
er

ac
tio

n 
en

er
gy

 (
kc

al
/m

ol
)

Number of water molecules surrounding the solute

-15

-10

-5

 0

 5

 10

 0  50  100  150  200  250  300

QM reference

NH4
+

E
rr

or
 in

 s
ol

ut
e-

so
lv

en
t i

nt
er

ac
tio

n 
en

er
gy

 (
kc

al
/m

ol
)

Number of water molecules surrounding the solute

-10

-5

 0

 5

 10

 15

 0  50  100  150  200  250  300  350  400

QM reference

CN-

E
rr

or
 in

 s
ol

ut
e-

so
lv

en
t i

nt
er

ac
tio

n 
en

er
gy

 (
kc

al
/m

ol
)

Number of water molecules surrounding the solute

Figure 8. Error in the solute-solvent interaction energy with increasing number of H2O molecules

surrounding the solute with reference to DFT calculation – with fixed point charge embedding

(red, ⋄), with GAFF embedding (orange, ×), with AMOEBA embedding (blue, �), and in purely

MM calculations with GAFF (grey, �) and AMOEBA (green, ◦). In QM/MM calculations only

the solute is included in the QM subsystem.
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subsystem. We have put great emphasis on treating polarization interactions consistently

between the MM and QM subsystems, particularly with regard to damping, which is a

crucial mechanism in polarizable point dipole approaches.

We have carried out tests to validate our method, demonstrating the simultaneous opti-

mization of the quantum and classical degrees of freedom. We identified and remediated the

sources of inaccuracy in the QM/MM interface that stem from a disruption of the balance

between (improved) electrostatics and van der Waals interactions.

This is a proof-of-principle implementation, as we have not yet implemented the in situ

optimization of the local orbitals of onetep. Despite this limitation, which we plan to ad-

dress in a future communication, our results indicate that our approach offers superior con-

vergence and accuracy compared to conventional QM/MM methods. Future work also will

be devoted to investigating suitable reparametrization of interactions crossing the QM/MM

interface, and refining the treatment of electrostatics in our model.

SUPPLEMENTARY MATERIAL

See supplementary material for the coordinates of solvated test systems referred to in

Figs. 2, 4, 5, 6, and 8.
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Appendix A: Polarization energy and its derivative with respect to the density

kernel

1. Polarization in an isolated MM system

We start from the expression for the polarization energy of a set of point dipoles as

formulated by Simmonett et al.101 (eq. 9), which we rewrite using explicit summations over

NMM polarizable dipole sites:

EMM
pol =

1

2

NMM∑
L

NMM∑
M

µᵀ
LTLMµM −

NMM∑
L

Eᵀ
LµL, (A1)

where EL is the direct electric field at site L, µL is the dipole induced at site L in response

to the total (direct and mutual) electric field, and TLM is a 3 × 3 coupling tensor between

sites L and M :

TLM =

−T d-d
LM , L ̸= M

α−1
L I, L = M

. (A2)

T d-d
LM is the Thole-damped, Cartesian dipole-dipole interaction tensor (dipole field tensor)

between induced dipoles at sites L and M (cf. (28)). Authors preferring the block matrix

notation refer to the 3N × 3N block matrix T = [TLM ] describing the entire system as the

coupling tensor101 or the relay matrix107.

Inserting (A2) into (A1) yields

EMM
pol =

1

2

NMM∑
L

µᵀ
L

(
µL

αL

−
NMM∑
M ̸=L

T d-d
LMµM

)
−

NMM∑
L

Eᵀ
LµL (A3)

=
1

2

NMM∑
L

µᵀ
LµL

αL

− 1

2

NMM∑
L

NMM∑
M ̸=L

µᵀ
LT

d-d
LMµM −

NMM∑
L

Eᵀ
LµL. (A4)

We identify the three terms in (A4) as: the work cost of assembling the set of dipoles, the

mutual interaction energy of induced dipoles, and the interaction of induced dipoles with

the direct field.
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By expressing the direct field as a difference between the total field and the mutual field

EL =
µL

αL

−
NMM∑
M ̸=L

T d-d
LMµM (A5)

we can rewrite (A3) simply as

EMM
pol = −1

2

NMM∑
L

µᵀ
LEL, (A6)

which is the same as the result given in Ref. 72, eq. 5.

In the standard AMOEBA formulation the induced dipoles µL are determined through

an iterative procedure, with the zero residual condition satisfied at self-consistency101:

∀L

dEMM
pol

dµL

= 0. (A7)

2. Gradients of the auxiliary representation QM∗ with respect to the density

kernel

Here we finalize the derivation presented in Sec. II E, where we sought to calculate the

gradient of the polarization energy with respect to the density kernel. We continue from

(II E), where the components that remain to be derived are the derivatives of Cartesian

traceless multipole moments with respect to the density kernel,
∂qQM∗

I

∂Kηθ
,
∂QQM∗

I

∂Kηθ
, and

∂µQM∗

I

∂Kηθ
.

We begin by inserting (17) into (20) to obtain

Mlm(I) =
∑
J

SIJ ̸=0

∑
q

∑
α∈I

∑
β∈J

Kαβclmq
αβ Jlq

=
∑
J

SIJ ̸=0

∑
α∈I

∑
β∈J

Kαβdlmαβ, (A8)

where

dlmαβ =
∑
q

clmq
αβ Jlq. (A9)

The shortcut notation α ∈ I used in (A8) is understood as “NGWFs α belonging to atom I”.
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Since dlmαβ are independent of the density kernel, it follows from (A8) that

∂Mlm(I)

∂Kηθ
=
∑
J

SIJ ̸=0

∑
α∈I

∑
β∈J

δαηδβθd
lm
α,β

=

dlmηθ η ∈ I ∧ θ ∈ J : SIJ ̸= 0

0 otherwise
. (A10)

This means that a multipole at a QM atomic site I only has non-vanishing derivatives with

respect to density kernel elements coupling NGWFs on atom I to NGWFs on its neighbors

J . By neighbors we mean atoms J (including J = I), whose overlap with I is non-zero,

SIJ ̸= 0.

With this in place, the only operation left is the conversion between spherical multipoles

and Cartesian traceless multipoles:

∂qQM∗

I

∂Kηθ
= d00ηθ, (A11)

∂µQM∗

I

∂Kηθ
=
(
d11ηθ, d

1−1
ηθ , d10ηθ

)ᵀ
, (A12)

∂QQM∗

I

∂Kηθ
=


√
3
2
d22ηθ − 1

2
d20ηθ

√
3
2
d2−2
ηθ

√
3
2
d21ηθ

√
3
2
d2−2
ηθ −d20ηθ −

√
3
2
d22ηθ +

1
2
d20ηθ

√
3
2
d2−1
ηθ

√
3
2
d21ηθ

√
3
2
d2−1
ηθ d20ηθ

. (A13)

3. Charge scaling

In Sec. IID 2 we briefly mentioned that the total charge obtained from the DMA procedure

is not constrained to be integer, and typically needs to be scaled to match the number of

valence electrons. This is achieved by replacing all electronic monopoles qQM∗

I with q̃QM∗

I =

λqQM∗

I , where λ is the ratio between the expected valence charge and the total charge obtained

from DMA, i.e.:

λ =
TrKS∑
I′
qQM∗

I′

. (A14)
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The scaling is very modest, with typical values of λ ∈ (0.9995, 1.0005). Nevertheless, this

additional dependence on K needs to be taken into account in the gradients. To this effect

we correspondingly replace (A11) with

∂q̃QM∗

I

∂Kηθ
=

∂qQM∗

I

∂Kηθ
λ+ qQM∗

I

∂λ

∂Kηθ

= d00ηθλ+ qQM∗

I

∂

∂Kηθ

TrKS∑
I′
qQM∗

I′

(A15)

= λ
qQM∗

I Sθη + d00ηθ

(
TrKS− qQM∗

I λ
)

TrKS
, (A16)

where we used

∂

∂Kηθ
TrKS = Sθη. (A17)

REFERENCES

1A. Warshel and M. Levitt, Journal of Molecular Biology 103, 227 (1976).

2H. M. Senn and W. Thiel, Angewandte Chemie International Edition 48, 1198 (2009).

3J. M. Parks, R. K. Kondru, H. Hu, D. N. Beratan, and W. Yang, The Journal of Physical

Chemistry B 112, 3168 (2008).

4H. Hu and W. Yang, Journal of Molecular Structure: THEOCHEM 898, 17 (2009).

5J. Gao, Accounts of Chemical Research 29, 298 (1996).

6P. D. Lyne, A. J. Mulholland, and W. G. Richards, Journal of the American Chemical

Society 117, 11345 (1995).

7D. Riccardi, P. Schaefer, Y. Yang, H. Yu, N. Ghosh, X. Prat-Resina, P. König, G. Li,

D. Xu, H. Guo, M. Elstner, and Q. Cui, The Journal of Physical Chemistry B 110, 6458

(2006).
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