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Abstract

Periodic structures can be designed to exhibit elastic band gap behaviour by varying material or geometrical
properties, i.e. phononic crystals, or by periodically distributed resonators or boundary conditions, i.e.
acoustic metamaterials, with various applications in passive noise and vibration control. The additive
manufacturing, or 3D printing, has been used in the production of structures with complex features at low
cost and, even though it can significantly affect the band gap performance due to the manufacturing
variability, it has been shown that the use of 3D printers is feasible. In this work, an uncertainty analysis is
presented for the band gaps of beams with periodically distributed resonators manufactured by 3D printing
is proposed. An analytical tool, the WKB (after Wentzel, Kramers and Brillouin) approximation, is used in
order to find a suitable generalisation of the wave solutions in slowly varying waveguides and provides a
framework for the uncertainty analysis. Material and geometrical variability are modelled as spatially
correlated randomness and the statistics of the forced response are derived.

1 Introduction

Periodic structures can be designed to exhibit elastic band gap behaviour by varying material or geometrical
properties to present a Bragg scattering effect, i.e. phononic crystals. Other examples include periodically
distributed resonators, or inclusions that can be designed to be in the sub-Bragg region, i.e. acoustic
metamaterials. These structures have various applications in passive noise and vibration control through
elastic stop bands [1-5], where only non-propagating (evanescent) waves are generated. A straight beam
with periodically attached resonators works like a local resonant metamaterial, which has a stop band around
the tuned natural frequency of the resonators that is associated to a vibration attenuation zone. The beam
and resonator coupling is the mechanism responsible to produce the band gap in this case [6, 7]. In addition,
an acoustic mode can be observed at low-frequencies where the beam and the resonators move in-phase and
an optical mode at higher-frequencies where the beam and the resonators move out-of-phase.

Recently, additive manufacturing and its developments have enabled the production of mechanical
structures with complex geometry at a low cost [8], becoming an emerging topic in phononic crystals and
metamaterials [9]. Like any manufacturing process, it can introduce variability in the material and
geometrical properties of the unit cells [10], affecting the band gap performance and consequently the
vibration attenuation [11]. Wave-based methods commonly assume that waveguide properties are
homogeneous, thus limiting the application of such approaches to the investigation of the influence of
manufacturing variability on the band gaps behaviours. This assumption arises mainly because analytical
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solutions for non-homogeneous waveguides are only possible for very particular cases, for example acoustic
horns, ducts, rods and beams, e.g. [12-15].

The Spectral Element Method (SEM) [16, 17], is a wave-based method relying on the exact analytical
solution to generate dynamic stiffness matrices, and it is often employed in the dynamic analysis of periodic
structures. Moreover, by modelling only one periodic unit cell, it is possible to assess free wave propagation
through dispersion curves as well as the forced response in the frequency and time domains. This approach
is, however, limited to homogeneous or piecewise constant waveguides. Non-homogeneous waveguides can
be modelled with SEM by dividing the structures into a number of elements, but making the method less
appealing in terms of computation cost. This is an important factor to take into account especially when
considering randomly varying material and geometric properties, in which the calculation of the response
statistics usually involves a great number of evaluations over a large frequency band.

The classical WKB approximation is a method for finding suitable modifications of plane-wave solutions
for non-homogeneous waveguides [18]. Named after Wentzel, Kramers and Brillouin, it was initially
developed for solving the Schrédinger equation in quantum mechanics, and it was also applied to periodic
potential function to investigate propagation bands [19]. The formulation assumes that the waveguide
properties vary slowly enough such that there are no or negligible reflections due to these local changes,
even if the net change is large, and it can be extended to include spatially correlated random variability [20].
It maintains the wave-like interpretation of non-uniform waveguides, but it is restricted to available
analytical solutions. Fabro et al. [21] have proposed an approach to extend the applicability of the WKB
using a finite element approach, so that no analytical solution is required.

In this work, the WKB approximation is used along with the SEM in order to find a suitable generalization
of the wave solutions considering slowly varying properties of a beam with periodically attached resonators.
This approach provides a framework to represent randomness with spatial correlation of the periodic unit
cell and then to quantify the effects of this uncertainty in band gaps. Section 2 presents the dynamic model
of the nominal period unit cell using the SEM. A dynamic stiffness matrix is assembled using Timoshenko
frame spectral elements [17] for the I-beam and the resonators and it is used to create a transfer matrix, from
which the wave properties can calculated as a function of the position along the waveguide. In Section 3,
this information is used with the WKB approach. The phase change is calculated using a Gauss-Legendre
guadrature scheme for numerical integration of the local wavenumber. At each integration point, the SEM
is used to calculate the wavenumber. These points are kept to a minimum to reduce computation cost while
being able to capture the non-homogeneity to a given accuracy. The wave amplitude change is calculated
using conservation of power.

This work aims at investigating the effects of the random variability due to the additive manufacturing
process on the performance of the elastic band gap behaviour in creating a stop band effect on the forced
response of the waveguide. A numerical example considers the spatially varying Young’s modulus, aiming
to represent the effects of the random variability due to the additive manufacturing process on the
performance of the elastic band gap behaviour in creating a stop band effect on the forced response of the
waveguide. The effects of the variability of the others material and geometrical properties can be evaluated
using the same approach. Random field properties are expressed in terms of a Karhunen-Loeve (KL)
expansion using an analytical solution for a specific family of correlation functions [22]. The forced
response at one end to a point excitation at the other end is calculated and results show good agreement
when compared to the direct inversion of the dynamic stiffness matrix obtained from assembling the SEM
elements. They require only a few SEM evaluations. It is also shown that variability in the Young’s modulus
of the I-beam does not affect the performance of the band gap, while variability of the stiffness of the
resonator can drastically reduce the band gap performance. In addition, it is also shown that the correlation
length plays a significant role on the band gap region.

2 Dynamic modelling using the spectral element approach

The unit cell, an 1-beam with attached resonators on both sides of the web, was built using Timoshenko
frame spectral elements (SE) [16, 17]. These elements have two nodes and six degrees of freedom (DOF)
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per node, three displacements and three rotations, which describe vertical bending, lateral bending,
extension/compression and torsion dynamic effects. The main I-beam is composed of three nodes (1-3) with
resonators placed in the middle node (2). The side resonators are composed of two elements, one
characterized by stiffness (nodes 2-4 and 2-6) and the other by mass (nodes 4-5 and 6-7). The coupling
between the I-beam and the resonators is responsible for the band gaps in the dispersion relation and
corresponding attenuation zones in the frequency response of the built up structure [11]. After the assembly
process, the dynamic stiffness matrix of the periodic unit cell can be partitioned as

Dyy Dy Dir
DIL DII DIR
Dri, Dgr Dgr
where |, L and R are related to interior, left and right DOF, respectively, and q and f are vectors of nodal
DOF and external forces, respectively. If no forces are applied to the interior DOFs, Eq. (1) can be written
as a function of the L and R DOFs using dynamic condensation, leading to Dz = Dgg — Dg;(D;) " 1Dyp,
where the sub index B can be replaced by L or R [23, 24].

q=f, (1)
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Figure 1: Schematics of the unit cell in isometric view (a), cross-section view (b), resonator details (c),
neutral plane view with left, right and interior nodes (d) and corresponding representation using SE (e).

Considering the relations between internal and external forces, the state vector of the left-hand side cross
section can be related to the right-hand side one by a transfer matrix, which is written in terms of the
condensed dynamic transfer matrix as

« —1ps . -1

S GG [ R A B | o
—Dgp + DrrDir D1 —DgrrDir L R L

In addition, by using the Bloch’s theorem, the state vector of the left cross-section is related to the one of

the right cross-section by means of the eigenvalues of T, [qk  f%]17 = ulq] —f[]", which are functions

of the jt" wavenumbers kj, with p; = e~jla, Replacing this relation in Eq. (2), yields the following

eigenvalue problem

To; = u;d; 3)
This eigenproblem provides 2n eigenvalues and the respective eigenvectors, where n corresponds to the
number of DOFs associated with each cross section. While the eigenvalues are associated with phase change
or attenuation along the beam length, the eigenvectors, or wave mode shapes, indicate the spatial distribution
of the displacements and forces on the cross section [23, 24]. They appear in pairs (u;, ) and (1/u;, ¢7 )
corresponding to n positive and negative going travelling waves, respectively.

+ —
The eigenvectors can be rearranged such that ¢+ = [$Z] and ¢~ = [$‘l] and are then used for a linear
f f

transformation of the displacement and force from the wave domain to the physical domain

q = ¢ia* + dga~andfy, = pfa* + pra, (4)
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where a® and a~ are respectively positive-going and negative-going wave amplitudes. Any boundary
condition can subsequently be written as Af + Bq = 0, so that the reflection matrices are given by [15, 25]

I, = —(Ad} +BdE) ™ (Ad; + Bdg) and Ty = —(Ad; + Bdg)  (Adf + By), (5)

In this work, it is particularly interesting to calculate the time averaged power transmitted through the cross-
section, i.e.

1 W
P= —ERe{iwaq} = glm{qu}, (6)

where the superscript H stands for the Hermitian.

The forced response can be calculated using the global dynamic stiffness matrix, assembled by the usual
finite or spectral element method procedure. Once the boundary conditions have been applied, the
corresponding displacements can be calculated by direct inversion. Alternatively, the wave modes and
wavenumbers obtained from the unit cell can also be used to calculate the forced response in terms of
propagating and reflection matrices. This approach is suitable for use within the WKB approximation and
it is detailed in the next section.

3 The WKB approximation using the spectral element approach

The WKB formulation has been applied in many fields of engineering, including, acoustics [26, 27] and
structural dynamics [18, 20, 28]. However, the WKB approximation breaks down if the properties change
rapidly or when the travelling wave reaches a local cut-off section where the wave mode ceases to propagate.
This transition, also known as a turning point, leads to an internal reflection, breaking down the main
assumption in the theory, requiring a different approximation for certain frequency bands (e.g. [29]).
Assuming a time harmonic solution, u(x, t) = U(x) e~'¢, it is possible to define a local wavenumber k (x).
Thus, the eikonal function S(x) = In U(x) + i6(x) is introduced, in order to find wave solutions of the kind
[30]

U(x) = e5%) = J(x)etf@), (7

It is possible to define positive b™ = A* (x4, x,)at and negative going b~ = A™(x,, x;)a” propagation
matrices for a wave travelling between x,, and x3, with x;, = x, + nl,, where n is an integer number. This
condition is necessary due to the periodic condition of the unit cell, then the propagation matrices can be
indexed to the cell number as A*(xg, x,) = AT(0,n) and A~ (x4, x,) = A™(0,n). In this work, the forced
response can be considered as in Fig. 2, where the wave amplitudes are given at the excitation point by

ct=et +at, (8)

where et is the amplitude of the waves directly generated from the excitation that can be calculated from
equilibrium and continuity conditions, by solving [15]

¢;e+ = fextr (9)

either by direct inversion or by using the orthogonality properties of the left eigenvector of the transfer
matrix. Wave amplitudes at the boundaries are related by the reflection matrices as at =T ,a” and b~ =
Ixb*. The travelling wave amplitudes are related by the propagating matrices as bt = AT(0,n)a*t and
b~ = A~ (0,n)a". These relations can be used to find

b* = [I — A*(0,n)TL,A~(0,n)Tz] "1 [A*(0,n)et], (10)

from which the input mobility can be calculated. The same rationale can be used to calculate the response
at any point in the waveguide [25]. The propagation matrices are given by [21]

At(0,n) = diag{exp[—iej(o, n) +v;(0, n)|}, (11)
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A~ (0,n) = diag{exp[—iej(o, n) —v;(0, n)]}, (12)
where diag{-} stands for a diagonal matrix and 6;(0,n) is calculated following an integration scheme

considering the locally defined wavenumber kj(n) at the nt" cell, and ¥;(0,n) is the amplitude change caused
by the slowly varying waveguide, Eq. (15). In this work, a numerical integration using a Gauss-Legendre
quadrature scheme is applied, i.e.

Ngi

Gj(xa,xb) = fxbkj(X) dx =~ Z Gikj(xi), (13)
*a i=1

where G; are the weights and k;(x;) is the j th wavenumber calculated from the unit cell dynamic model at
the sampling point x;, defined by the Gauss-Legendre quadrature. The proprieties are evaluated at x; from
a given function describing the spatial variability and then assumed constant within the unit cell. This is
equivalent to a mid-point discretization for the spatial variability given by a random field, [31-33]. The
integration scheme gives the exact integral for a polynomial of a given order depending on the number of
points Ng;. Therefore, this is equivalent to a polynomial fitting of the wavenumber over the waveguide
between x, and x;,. The number of points used by the quadrature must be kept to a minimum number of
evaluations, to avoid excessive computational cost. No re-meshing of the model is necessary for each
evaluation.

The amplitude change can be calculated from the energy conserving property as a consequence of the WKB
approximation [18, 34]. Therefore, for a positive-going wave travelling from x,, with amplitude a™*, to x;, =
Xq + nlg, with amplitude b*, assuming no damping, the time average power transmitted through the cross-
section at both positions must be equal, leading to

o [*Re{iw@}] )% (0} = [b] | Refiwd ] (g, (). (14)

This relation is written in order to define the amplitude change, giving

. B Ib*]\ _ 1 Re{iwg} j(0)¢q,j(0)}>
¥;j(0,n) = log <|a+|> =3 log <Re{iw¢}‘i’,j(n)¢q,]~(n)} : (15)
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Figure 2: Point excitation and wave amplitudes on a waveguide with slowly varying properties. The
displacement and force from the wave domain to the physical domain.

4  Random variability

Random field theory can be used to model spatially distributed randomness using a probability measure.
There are a number of methods available in the literature for generating random fields [22, 32, 33, 35],
including formulations using series expansions that are able to represent the field using deterministic spatial
functions and random uncorrelated variables. The KL expansion is a special case where these deterministic
spatial functions are orthogonal and derived from the covariance function.

A Gaussian homogeneous random field H(x, p) with a finite, symmetric and positive definite covariance
function Cy (x4, x,), defined over a domain D, has a spectral decomposition in a generalized series as [22]
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HG) = Ho)+ ) 16350, (16
=

where &; are Gaussian uncorrelated random variables, 4; and f;(x) are eigenvalues and eigenfunctions. The
eigenvalues and eigenfunctions can be ordered in descending order of eigenvalues and the KL expansion is
then calculated with a finite number of terms N, chosen by the accuracy of the series in representing the
covariance function [36]. As a rule of thumb, Ny, can be chosen such that Ay,, /4, < 0.1, and Ny, will
depend on the correlation length of the random field.

In general, this problem can only be solved numerically by discretizing the covariance function. However,
for some families of correlation functions and specific geometries, there exist analytical solutions. One such
case is the one dimensional exponentially decaying autocorrelation function, C(x;,x,) = e ¥17%2l/lc,
where b is the correlation length, in the interval —L/2 < x < L/2, where L is the length of the domain and
where x; and x, are any two points within the interval. In this case, the KL expansion, for a zero-mean
random field, can be written as

Ny
H(x) = Z[ajflj sin(wy jx) + B;&,j cos(wqx)] (17)
j=1
where ¢;; and &;; are Gaussian zero-mean, unity standard-deviation, independent random variables with
the properties (£ ;) = (§1;) = 0,($1:82;) = 0,(&1:§1;) = 8;j where 6;; = 1 fori = j and §;; = 0 for i # j,

L i iL L i iL
and ; = \/’111'/ (E_M>' pi = \/’12}'/ (}"‘%): Ay = 2¢/(wii + %), Agj = 2¢/(wg; + c?),

2W1] 2j

where ¢ = 1/b and wy; and w; are the i roots of the transcendental equations ¢ tanw; + w; = 0 and
w, tanw, — ¢ = 0, respectively. This expansion is truncated to Ng; terms according the weight of the
higher order eigenvalues in the series. A complete derivation can be found in the book by Ghanem and
Spanos [22].

The KL expansion is then used to describe the Young’s modulus of the I-beam and the resonators as a
random field in the numerical examples of the following section, given by E(x) = Ey[1 + oH(x)], where
E is the nominal value for the Young’s modulus and o is the standard deviation, that can also be seen as a
dispersion term quantifying the influence of H(x) on the mean value E. The spatial variability is assumed
to be constant within each unit cell, using the value of H(x) at its centroid, which is equivalent to the mid-
point approach for random field discretization. The slowly varying condition can be achieved by choosing
an appropriate value of the correlation length b. The larger the correlation length, the smoother the spatial
variability. The Gaussian probability distribution implies that the Young’s modulus could assume negative
values, but the choice of the parameters makes it a very unlikely event. From a Monte Carlo (MC) sampling
framework, the distribution can be clipped to avoid values of Young's modulus smaller than a given
threshold. Even though an analytical solution of the KL expansion is used in this work, the proposed method
is not restricted to it and any numerical solution for a different correlation function or probability density
function can be directly applied.

5 Numerical examples

In this section some numerical examples are presented aiming to represent the effects of the random
variability due to the additive manufacturing process on the performance of the elastic band gap behaviour
in creating a stop band effect, i.e. a vibration attenuation zone, on the forced response of the waveguide. The
model analysed consists of an I-beam with attached periodic resonators, as described in section 2, with
nominal geometric dimensions of the unit cell, shown in Fig. 1, givenby [, = 16 mm, [, = 12mm, [, =
13mm, ly; = 2mm,l, = 3mm, [ = 5mm, l[; = 1mm, and [, = 12 mm. The global structure has
21 cells and is made of polyamide, whose mean properties are shown in Table 1. Only the Young’s modulus
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of the I-beam and of the periodically attached resonators are considered to be spatially varying, even though
it is expected that other material and geometric properties are also affected by the additive manufacturing
process. The WKB approximation using the spectral element approach, as described in section 3, is used to
calculate the forced response and results are compared to the direct inversion of the dynamic stiffness matrix.
The phase change integral, Eq. (13), was performed using N,; = 8 points. Even though the latter approach
produces smaller matrices when compared to the usual finite element approach, it does not benefit from the
periodicity of the structure.

I-beam | Resonator mass | Resonator spring
Young’s modulus (GPa) 0.86 0.86 0.72
Density (kg/m?3) 700 1000 700
Poisson coefficient 0.39 0.39 0.39
Structural damping ratio | 0.03 0.03 0.03

Table 1: Polyamide nominal material properties used in the SEM model.

Figure 3 presents the real and imaginary parts of the dispersion curve of the nominal periodic unit cell for
all of the wave modes present in the waveguide, normalized by the cell length . It can be noticed the band
gap behaviour in the frequency band between 800 Hz and 1200 Hz is related to the flexural resonators
vertical natural frequencies, as shown in Table 2 [11]. Figures 4 and 5 present the forced response
considering the spatially varying Young’s modulus in the I-beam only and in the periodically attached
resonators only, respectively. The Young’s modulus value is given by Eq. (16), for both cases with o = 0.1
and correlation length b = 0.4 L and b = L. For this first analysis, only one sample of the KL expansion is
used, i.e. it is a deterministic analysis, but with changing properties from one unit cell to another. A very
good agreement between the WKB the full SEM approaches. It can be noticed that the variability in the
material properties of the I-beam affects only the FRF away from band gap region, but variability in the
stiffness of the resonators greatly affects the band gap performance, in terms of vibration attenuation, 50 dB
reduction, and also in terms of frequency band. Despite the great reduction in performance, it is still feasible
for applications on vibration attenuation.

The uncertainty analysis is carried out using a Monte Carlo sampling scheme, with 250 samples, which is
enough to achieve acceptable convergence. Firstly, randomness is considered only in the Young’s modulus
of the I-beam for two cases of correlation length, b = 0.4 L and b = L. Figure. 6 presents the 95%
confidence bounds of the forced response and mean value obtained from the WKB approach and full SEM
model. Results are compared with the forced response obtained from the nominal waveguide, and it can be
noticed that it does not introduce uncertainty in the band gap region, regardless of the correlation length.
However, when the variability is considered only in the stiffness properties of the resonators, as shown in
Fig. 7, it can be seen that the performance of the band gap is greatly affected, as expected from the results
obtained in the deterministic analysis. The lower confidence bounds of the forced response reached a
performance almost as good as the nominal case, which means that there are some configurations that are
almost as good as the nominal periodic conditions in producing the band gaps. The upper confidence bound
show that there is a high probability of reaching feasible levels of attenuation in the band gap frequency
band, and that this probability is higher for the lower correlation length.

| Torsion | Vertical Flexural | Lateral Flexural
Frequency (Hz) | 776.7 | 941.6 | 1315.4

Table 2: Natural frequencies related to the torsion, vertical and lateral flexural mode shapes of the
resonator.
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6 Concluding remarks

A method was proposed for uncertainty analysis of beams with periodically attached resonators produced
from additive manufacturing, or 3D printing. The WKB approximation is used along with the SEM in order
to find a suitable generalization of the wave solutions considering slowly varying properties of the beam
with periodically attached resonators. It extends the applicability of the WKB approach to cases where no
analytical solution exists by using the SEM. This approach provides a framework to represent randomness
with spatial correlation of the periodic unit cell and then to quantify the effects of this uncertainty in the
band gaps. Properties within the unit cell were considered as constant. A Gaussian random field and an
analytical solution of the KL expansion were used to model the spatially correlated variability, but different
random field models, including numerical solutions, can be used straightforwardly.

It was shown that only variability in the material properties of resonators affects the performance of the
vibration attenuation in the band gap region. The maximum attenuation is greatly reduced, but it is still
feasible for vibration isolation applications. It was also shown that the correlation length of the spatial
variability also plays a role. Variability in the material properties of the host I-beam only affects the forced
response away from the band gap region. Understanding these influences is fundamental for the control of
manufacturing tolerances, such that a minimum performance of the band gap is guaranteed.

Further possible steps to investigate include analysing the influence of the other material and geometrical
properties and comparison of the simulations with experimental results.
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