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Abstract 
Periodic structures can be designed to exhibit elastic band gap behaviour by varying material or geometrical 

properties, i.e. phononic crystals, or by periodically distributed resonators or boundary conditions, i.e. 

acoustic metamaterials, with various applications in passive noise and vibration control. The additive 

manufacturing, or 3D printing, has been used in the production of structures with complex features at low 

cost and, even though it can significantly affect the band gap performance due to the manufacturing 

variability, it has been shown that the use of 3D printers is feasible. In this work, an uncertainty analysis is 

presented for the band gaps of beams with periodically distributed resonators manufactured by 3D printing 

is proposed. An analytical tool, the WKB (after Wentzel, Kramers and Brillouin) approximation, is used in 

order to find a suitable generalisation of the wave solutions in slowly varying waveguides and provides a 

framework for the uncertainty analysis. Material and geometrical variability are modelled as spatially 

correlated randomness and the statistics of the forced response are derived. 

1 Introduction 

Periodic structures can be designed to exhibit elastic band gap behaviour by varying material or geometrical 

properties to present a Bragg scattering effect, i.e. phononic crystals. Other examples include periodically 

distributed resonators, or inclusions that can be designed to be in the sub-Bragg region, i.e. acoustic 

metamaterials. These structures have various applications in passive noise and vibration control through 

elastic stop bands [1–5], where only non-propagating (evanescent) waves are generated. A straight beam 

with periodically attached resonators works like a local resonant metamaterial, which has a stop band around 

the tuned natural frequency of the resonators that is associated to a vibration attenuation zone. The beam 

and resonator  coupling is the mechanism responsible to produce the band gap in this case  [6, 7]. In addition, 

an acoustic mode can be observed at low-frequencies where the beam and the resonators move in-phase and 

an optical mode at higher-frequencies where the beam and the resonators move out-of-phase.  

Recently, additive manufacturing and its developments have enabled the production of mechanical 

structures with complex geometry at a low cost [8], becoming an emerging topic in phononic crystals and 

metamaterials [9]. Like any manufacturing process, it can introduce variability in the material and 

geometrical properties of the unit cells [10], affecting the band gap performance and consequently the 

vibration attenuation [11]. Wave-based methods commonly assume that waveguide properties are 

homogeneous, thus limiting the application of such approaches to the investigation of the influence of 

manufacturing variability on the band gaps behaviours. This assumption arises mainly because analytical 



solutions for non-homogeneous waveguides are only possible for very particular cases, for example acoustic 

horns, ducts, rods and beams, e.g. [12–15]. 

The Spectral Element Method (SEM) [16, 17], is a wave-based method relying on the exact analytical 

solution to generate dynamic stiffness matrices, and it is often employed in the dynamic analysis of periodic 

structures. Moreover, by modelling only one periodic unit cell, it is possible to assess free wave propagation 

through dispersion curves as well as the forced response in the frequency and time domains. This approach 

is, however, limited to homogeneous or piecewise constant waveguides. Non-homogeneous waveguides can 

be modelled with SEM by dividing the structures into a number of elements, but making the method less 

appealing in terms of computation cost. This is an important factor to take into account especially when 

considering randomly varying material and geometric properties, in which the calculation of the response 

statistics usually involves a great number of evaluations over a large frequency band. 

The classical WKB approximation is a method for finding suitable modifications of plane-wave solutions 

for non-homogeneous waveguides [18]. Named after Wentzel, Kramers and Brillouin, it was initially 

developed for solving the Schrödinger equation in quantum mechanics, and it was also applied to periodic 

potential function to investigate propagation bands [19]. The formulation assumes that the waveguide 

properties vary slowly enough such that there are no or negligible reflections due to these local changes, 

even if the net change is large, and it can be extended to include spatially correlated random variability [20]. 

It maintains the wave-like interpretation of non-uniform waveguides, but it is restricted to available 

analytical solutions. Fabro et al. [21] have proposed an approach to extend the applicability of the WKB 

using a finite element approach, so that no analytical solution is required. 

In this work, the WKB approximation is used along with the SEM in order to find a suitable generalization 

of the wave solutions considering slowly varying properties of a beam with periodically attached resonators. 

This approach provides a framework to represent randomness with spatial correlation of the periodic unit 

cell and then to quantify the effects of this uncertainty in band gaps. Section 2 presents the dynamic model 

of the nominal period unit cell using the SEM. A dynamic stiffness matrix is assembled using Timoshenko 

frame spectral elements [17] for the I-beam and the resonators and it is used to create a transfer matrix, from 

which the wave properties can calculated as a function of the position along the waveguide. In Section 3, 

this information is used with the WKB approach. The phase change is calculated using a Gauss-Legendre 

quadrature scheme for numerical integration of the local wavenumber. At each integration point, the SEM 

is used to calculate the wavenumber. These points are kept to a minimum to reduce computation cost while 

being able to capture the non-homogeneity to a given accuracy. The wave amplitude change is calculated 

using conservation of power. 

This work aims at investigating the effects of the random variability due to the additive manufacturing 

process on the performance of the elastic band gap behaviour in creating a stop band effect on the forced 

response of the waveguide. A numerical example considers the spatially varying Young’s modulus, aiming 

to represent the effects of the random variability due to the additive manufacturing process on the 

performance of the elastic band gap behaviour in creating a stop band effect on the forced response of the 

waveguide. The effects of the variability of the others material and geometrical properties can be evaluated 

using the same approach. Random field properties are expressed in terms of a Karhunen-Loeve (KL) 

expansion using an analytical solution for a specific family of correlation functions [22]. The forced 

response at one end to a point excitation at the other end is calculated and results show good agreement 

when compared to the direct inversion of the dynamic stiffness matrix obtained from assembling the SEM 

elements. They require only a few SEM evaluations. It is also shown that variability in the Young’s modulus 

of the I-beam does not affect the performance of the band gap, while variability of the stiffness of the 

resonator can drastically reduce the band gap performance. In addition, it is also shown that the correlation 

length plays a significant role on the band gap region. 

2 Dynamic modelling using the spectral element approach 

The unit cell, an I-beam with attached resonators on both sides of the web, was built using Timoshenko 

frame spectral elements (SE) [16, 17]. These elements have two nodes and six degrees of freedom (DOF) 

PROCEEDINGS OF ISMA2016 INCLUDING USD2016



per node, three displacements and three rotations, which describe vertical bending, lateral bending, 

extension/compression and torsion dynamic effects. The main I-beam is composed of three nodes (1-3) with 

resonators placed in the middle node (2). The side resonators are composed of two elements, one 

characterized by stiffness (nodes 2-4 and 2-6) and the other by mass (nodes 4-5 and 6-7).  The coupling 

between the I-beam and the resonators is responsible for the band gaps in the dispersion relation and 

corresponding attenuation zones in the frequency response of the built up structure [11]. After the assembly 

process, the dynamic stiffness matrix of the periodic unit cell can be partitioned as 

[
𝐃𝑳𝑳 𝐃𝑳𝑰 𝐃𝑳𝑹

𝐃𝑰𝑳 𝐃𝑰𝑰 𝐃𝑰𝑹

𝐃𝑹𝑳 𝐃𝑹𝑰 𝐃𝑹𝑹

] 𝐪 = 𝐟, (1) 

where I, L and R are related to interior, left and right DOF, respectively, and 𝐪 and 𝐟 are vectors of nodal 

DOF and external forces, respectively. If no forces are applied to the interior DOFs, Eq. (1) can be written 

as a function of the L and R DOFs using dynamic condensation, leading to 𝐃𝑩𝑩
∗ = 𝐃𝑩𝑩 − 𝐃𝑩𝑰(𝐃𝑰𝑰)−𝟏𝐃𝑰𝑩, 

where the sub index B can be replaced by L or R [23, 24]. 

 

 
 

 

  

(a) (b) (c) (d) (e) 

Figure 1: Schematics of the unit cell in isometric view (a), cross-section view (b), resonator details (c), 

neutral plane view with left, right and interior nodes (d) and corresponding representation using SE (e). 

 

Considering the relations between internal and external forces, the state vector of the left-hand side cross 

section can be related to the right-hand side one by a transfer matrix, which is written in terms of the 

condensed dynamic transfer matrix as  

[
𝐪𝑹

𝐟𝑹
] = [

−𝐃𝐋𝐑
∗ −𝟏𝐃𝐋𝐋

∗ 𝐃𝐋𝐑
∗ −𝟏 

−𝐃𝐑𝐋
∗ + 𝐃𝐑𝐑

∗ 𝐃𝐋𝐑
∗ −𝟏

𝐃𝐋𝐋
∗ −𝐃𝐑𝐑

∗ 𝐃𝐋𝐑
∗ −𝟏

] [
𝐪𝐋

𝐟𝐋
]   or  [

𝐪𝑹

𝐟𝑹
] = 𝐓 [

𝐪𝐋

𝐟𝐋
].    (2) 

In addition, by using the Bloch’s theorem, the state vector of the left cross-section is related to the one of 

the right cross-section by means of the eigenvalues of 𝐓, [𝐪𝑹
𝑇 𝐟𝑹

𝑇]𝑇 = 𝜇[𝐪𝐋
𝑇 −𝐟𝐋

𝑇]𝑇, which are functions 

of the 𝑗𝑡ℎ wavenumbers 𝑘𝑗, with 𝜇𝑗 = 𝑒−𝑖𝑘𝑗𝑙𝑎. Replacing this relation in Eq. (2), yields the following 

eigenvalue problem  

𝐓𝛟𝑗 = 𝜇𝑗𝛟𝑗 (3) 

This eigenproblem provides 2n eigenvalues and the respective eigenvectors, where n corresponds to the 

number of DOFs associated with each cross section.  While the eigenvalues are associated with phase change 

or attenuation along the beam length, the eigenvectors, or wave mode shapes, indicate the spatial distribution 

of the displacements and forces on the cross section [23, 24]. They appear in pairs (𝜇𝑗, 𝛟𝑗
+) and (1/𝜇𝑗 , 𝛟𝑗

−) 

corresponding to n positive and negative going travelling waves, respectively.  

The eigenvectors can be rearranged such that 𝛟+ = [
𝛟𝑞

+

𝛟𝑓
+] and 𝛟− = [

𝛟𝑞
−

𝛟𝑓
−] and are then used for a linear 

transformation of the displacement and force from the wave domain to the physical domain 

𝐪𝐋 = 𝛟𝐪
+𝐚+ + 𝛟𝐪

−𝐚− and 𝐟𝐋 = 𝛟𝐟
+𝐚+ + 𝛟𝐟

−𝐚−, (4) 
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where 𝐚+ and 𝐚− are respectively positive-going and negative-going wave amplitudes. Any boundary 

condition can subsequently be written as 𝐀𝐟 + 𝐁𝐪 = 𝟎, so that the reflection matrices are given by [15, 25] 

𝚪𝐋 = −(𝐀𝛟𝐟
+ + 𝐁𝛟𝐪

+)
−𝟏

(𝐀𝛟𝐟
− + 𝐁𝛟𝐪

−) and 𝚪𝐑 = −(𝐀𝛟𝐟
− + 𝐁𝛟𝐪

−)
−𝟏

(𝐀𝛟𝐟
+ + 𝐁𝛟𝐪

+), (5) 

In this work, it is particularly interesting to calculate the time averaged power transmitted through the cross-

section, i.e.  

𝑃 = −
1

2
Re{𝑖𝜔𝐟𝐻𝐪} =

𝜔

2
Im{𝐟𝐻𝐪}, (6) 

where the superscript 𝐻 stands for the Hermitian. 

The forced response can be calculated using the global dynamic stiffness matrix, assembled by the usual 

finite or spectral element method procedure. Once the boundary conditions have been applied, the 

corresponding displacements can be calculated by direct inversion. Alternatively, the wave modes and 

wavenumbers obtained from the unit cell can also be used to calculate the forced response in terms of 

propagating and reflection matrices. This approach is suitable for use within the WKB approximation and 

it is detailed in the next section. 

3 The WKB approximation using the spectral element approach 

The WKB formulation has been applied in many fields of engineering, including, acoustics [26, 27] and 

structural dynamics [18, 20, 28]. However, the WKB approximation breaks down if the properties change 

rapidly or when the travelling wave reaches a local cut-off section where the wave mode ceases to propagate. 

This transition, also known as a turning point, leads to an internal reflection, breaking down the main 

assumption in the theory, requiring a different approximation for certain frequency bands (e.g. [29]). 

Assuming a time harmonic solution, 𝑢(𝑥, 𝑡) = 𝑈(𝑥) 𝑒−𝑖𝜔𝑡, it is possible to define a local wavenumber 𝑘(𝑥). 

Thus, the eikonal function 𝑆(𝑥) = ln 𝑈̃(𝑥) + 𝑖𝜃(𝑥) is introduced, in order to find wave solutions of the kind 

[30] 

𝑈(𝑥) = 𝑒𝑆(𝑥) = 𝑈̃(𝑥)𝑒±𝑖𝜃(𝑥). (7) 

It is possible to define positive 𝐛+ = 𝚲+(𝑥𝑎, 𝑥𝑏)𝐚+ and negative going 𝐛− = 𝚲−(𝑥𝑎, 𝑥𝑏)𝐚− propagation 

matrices for a wave travelling between 𝑥𝑎 and 𝑥𝑏, with 𝑥𝑏 = 𝑥𝑎 + 𝑛𝑙𝑎, where 𝑛 is an integer number. This 

condition is necessary due to the periodic condition of the unit cell, then the propagation matrices can be 

indexed to the cell number as 𝚲+(𝑥𝑎, 𝑥𝑏) = 𝚲+(0, 𝑛) and 𝚲−(𝑥𝑎, 𝑥𝑏) = 𝚲−(0, 𝑛). In this work, the forced 

response can be considered as in Fig. 2, where the wave amplitudes are given at the excitation point by  

𝐜+ = 𝐞+ + 𝐚+, (8) 

where 𝐞+ is the amplitude of the waves directly generated from the excitation that can be calculated from 

equilibrium and continuity conditions, by solving [15] 

 𝛟𝑓
+𝐞+ = 𝐟𝐞𝐱𝐭, (9) 

either by direct inversion or by using the orthogonality properties of the left eigenvector of the transfer 

matrix. Wave amplitudes at the boundaries are related by the reflection matrices as 𝐚+ = 𝚪𝐿𝐚− and 𝐛− =
𝚪𝑅𝐛+. The travelling wave amplitudes are related by the propagating matrices as 𝐛+ = 𝚲+(0, 𝑛)𝐚+ and 

𝐛− = 𝚲−(0, 𝑛)𝐚−. These relations can be used to find 

𝐛+ = [𝐈 − 𝚲+(0, 𝑛)𝚪𝐿𝚲−(0, 𝑛)𝚪𝑅]−1[𝚲+(0, 𝑛)𝐞+], (10) 

from which the input mobility can be calculated. The same rationale can be used to calculate the response 

at any point in the waveguide [25]. The propagation matrices are given by [21] 

𝚲+(0, 𝑛) = 𝑑𝑖𝑎𝑔{𝑒𝑥𝑝[−𝑖𝜃𝑗(0, 𝑛) + 𝛾𝑗(0, 𝑛)]}, (11) 
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𝚲−(0, 𝑛) = 𝑑𝑖𝑎𝑔{𝑒𝑥𝑝[−𝑖𝜃𝑗(0, 𝑛) − 𝛾𝑗(0, 𝑛)]}, (12) 

where 𝑑𝑖𝑎𝑔{∙}  stands for a diagonal matrix and 𝜃𝑗(0, 𝑛) is calculated following an integration scheme 

considering the locally defined wavenumber 𝑘𝑗
(𝑛)

 at the 𝑛𝑡ℎ cell, and 𝛾𝑗(0, 𝑛) is the amplitude change caused 

by the slowly varying waveguide, Eq. (15). In this work, a numerical integration using a Gauss-Legendre 

quadrature scheme is applied, i.e. 

𝜃𝑗(𝑥𝑎, 𝑥𝑏) = ∫ 𝑘𝑗(𝑥)
𝑥𝑏

𝑥𝑎

𝑑𝑥 ≈ ∑ 𝐺𝑖𝑘𝑗(𝑥𝑖),

𝑁𝑔𝑙

𝑖=1

 (13) 

where 𝐺𝑖 are the weights and 𝑘𝑗(𝑥𝑖) is the 𝑗𝑡ℎ wavenumber calculated from the unit cell dynamic model at 

the sampling point 𝑥𝑖, defined by the Gauss-Legendre quadrature. The proprieties are evaluated at 𝑥𝑖 from 

a given function describing the spatial variability and then assumed constant within the unit cell. This is 

equivalent to a mid-point discretization for the spatial variability given by a random field, [31–33]. The 

integration scheme gives the exact integral for a polynomial of a given order depending on the number of 

points 𝑁𝑔𝑙. Therefore, this is equivalent to a polynomial fitting of the wavenumber over the waveguide 

between 𝑥𝑎 and 𝑥𝑏. The number of points used by the quadrature must be kept to a minimum number of 

evaluations, to avoid excessive computational cost. No re-meshing of the model is necessary for each 

evaluation.  

The amplitude change can be calculated from the energy conserving property as a consequence of the WKB 

approximation [18, 34]. Therefore, for a positive-going wave travelling from 𝑥𝑎, with amplitude 𝑎+, to 𝑥𝑏 =
𝑥𝑎 + 𝑛𝑙𝑎, with amplitude 𝑏+, assuming no damping, the time average power transmitted through the cross-

section at both positions must be equal, leading to 

|𝑎𝑗
+|

2
𝑅𝑒{𝑖𝜔𝝓𝑓,𝑗

+𝐻(0)𝝓𝑞,𝑗
+ (0)} = |𝑏𝑗

+|
2

𝑅𝑒{𝑖𝜔𝝓𝑓,𝑗
+𝐻(𝑛)𝝓𝑞,𝑗

+ (𝑛)}. (14) 

This relation is written in order to define the amplitude change, giving 

𝛾𝑗(0, 𝑛) = 𝑙𝑜𝑔 (
|𝑏+|

|𝑎+|
) =

1

2
𝑙𝑜𝑔 (

𝑅𝑒{𝑖𝜔𝝓𝑓,𝑗
𝐻 (0)𝝓𝑞,𝑗(0)}

𝑅𝑒{𝑖𝜔𝝓𝑓,𝑗
𝐻 (𝑛)𝝓𝑞,𝑗(𝑛)}

). (15) 

 

Figure 2: Point excitation and wave amplitudes on a waveguide with slowly varying properties. The 

displacement and force from the wave domain to the physical domain.  

4 Random variability 

Random field theory can be used to model spatially distributed randomness using a probability measure. 

There are a number of methods available in the literature for generating random fields [22, 32, 33, 35], 

including formulations using series expansions that are able to represent the field using deterministic spatial 

functions and random uncorrelated variables. The KL expansion is a special case where these deterministic 

spatial functions are orthogonal and derived from the covariance function. 

A Gaussian homogeneous random field 𝐻(𝑥, 𝑝) with a finite, symmetric and positive definite covariance 

function 𝐶𝐻(𝑥1, 𝑥2), defined over a domain 𝐷, has a spectral decomposition in a generalized series as [22] 
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𝐻(𝑥) = 𝐻0(𝑥) + ∑ √𝜆𝑗

∞

𝑗=1

𝜉𝑗𝑓𝑗(𝑥), (16) 

where 𝜉𝑗 are Gaussian uncorrelated random variables, 𝜆𝑗 and  𝑓𝑗(𝑥) are eigenvalues and eigenfunctions. The 

eigenvalues and eigenfunctions can be ordered in descending order of eigenvalues and the KL expansion is 

then calculated with a finite number of terms 𝑁𝐾𝐿, chosen by the accuracy of the series in representing the 

covariance function [36]. As a rule of thumb, 𝑁𝐾𝐿 can be chosen such that 𝜆𝑁𝐾𝐿
/𝜆1 < 0.1, and 𝑁𝐾𝐿 will 

depend on the correlation length of the random field. 

In general, this problem can only be solved numerically by discretizing the covariance function. However, 

for some families of correlation functions and specific geometries, there exist analytical solutions. One such 

case is the one dimensional exponentially decaying autocorrelation function, 𝐶(𝑥1, 𝑥2) = 𝑒−|𝑥1−𝑥2|/𝑙𝑐 , 
where 𝑏 is the correlation length, in the interval −𝐿/2 ≤ 𝑥 ≤ 𝐿/2, where 𝐿 is the length of the domain and 

where 𝑥1 and 𝑥2 are any two points within the interval. In this case, the KL expansion, for a zero-mean 

random field, can be written as  

𝐻(𝑥) = ∑[𝛼𝑗𝜉1𝑗 sin(𝑤1𝑗𝑥) + 𝛽𝑗𝜉2𝑗 cos(𝑤2𝑗𝑥)]

𝑁𝑘𝑙

𝑗=1

 (17) 

where 𝜉1𝑗 and 𝜉2𝑗 are Gaussian zero-mean, unity standard-deviation, independent random variables with 

the properties 〈𝜉1𝑗〉 = 〈𝜉1𝑖〉 = 0, 〈𝜉1𝑖𝜉2𝑗〉 = 0 , 〈𝜉1𝑖𝜉1𝑗〉 = 𝛿𝑖𝑗 where 𝛿𝑖𝑗 = 1 for 𝑖 = 𝑗 and 𝛿𝑖𝑗 = 0 for 𝑖 ≠ 𝑗, 

and 𝛼𝑗 = √𝜆1𝑗/ (
𝐿

2
−

sin(𝑤1𝑗𝐿)

2𝑤1𝑗
),  𝛽𝑗 = √𝜆2𝑗/ (

𝐿

2
+

sin(𝑤2𝑗𝐿)

2w2j
), 𝜆1j = 2𝑐/(𝑤1𝑖

2 + 𝑐2),  𝜆2𝑗 = 2𝑐/(𝑤2𝑖
2 + 𝑐2), 

where 𝑐 = 1/𝑏 and 𝑤1𝑖 and w2𝑖 are the 𝑖th roots of the transcendental equations 𝑐 tan 𝑤1 + 𝑤1 = 0 and 

𝑤2 tan 𝑤2 − 𝑐 = 0, respectively. This expansion is truncated to 𝑁𝐾𝐿 terms according the weight of the 

higher order eigenvalues in the series. A complete derivation can be found in the book by Ghanem and 

Spanos [22]. 

The KL expansion is then used to describe the Young’s modulus of the I-beam and the resonators as a 

random field in the numerical examples of the following section, given by 𝐸(𝑥) = 𝐸0[1 + 𝜎𝐻(𝑥)], where 

𝐸0 is the nominal value for the Young’s modulus and 𝜎 is the standard deviation, that can also be seen as a 

dispersion term quantifying the influence of 𝐻(𝑥) on the mean value 𝐸0. The spatial variability is assumed 

to be constant within each unit cell, using the value of 𝐻(𝑥) at its centroid, which is equivalent to the mid-

point approach for random field discretization. The slowly varying condition can be achieved by choosing 

an appropriate value of the correlation length 𝑏. The larger the correlation length, the smoother the spatial 

variability. The Gaussian probability distribution implies that the Young’s modulus could assume negative 

values, but the choice of the parameters makes it a very unlikely event. From a Monte Carlo (MC) sampling 

framework, the distribution can be clipped to avoid values of Young`s modulus smaller than a given 

threshold. Even though an analytical solution of the KL expansion is used in this work, the proposed method 

is not restricted to it and any numerical solution for a different correlation function or probability density 

function can be directly applied. 

5 Numerical examples 

In this section some numerical examples are presented aiming to represent the effects of the random 

variability due to the additive manufacturing process on the performance of the elastic band gap behaviour 

in creating a stop band effect, i.e. a vibration attenuation zone, on the forced response of the waveguide. The 

model analysed consists of an I-beam with attached periodic resonators, as described in section 2, with 

nominal geometric dimensions of the unit cell, shown in Fig. 1, given by 𝑙𝑎  =  16 mm, 𝑙𝑏  =  12 mm, 𝑙𝑐  =
 13 mm, 𝑙𝑑  =  2 mm, 𝑙𝑒  =  3 mm, 𝑙𝑓  =  5 mm, 𝑙𝑔 =  1 mm, and 𝑙ℎ  =  12 mm. The global structure has 

21 cells and is made of polyamide, whose mean properties are shown in Table 1. Only the Young’s modulus 
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of the I-beam and of the periodically attached resonators are considered to be spatially varying, even though 

it is expected that other material and geometric properties are also affected by the additive manufacturing 

process. The WKB approximation using the spectral element approach, as described in section 3, is used to 

calculate the forced response and results are compared to the direct inversion of the dynamic stiffness matrix. 

The phase change integral, Eq. (13), was performed using 𝑁𝑔𝑙 = 8 points. Even though the latter approach 

produces smaller matrices when compared to the usual finite element approach, it does not benefit from the 

periodicity of the structure. 

 

 I-beam Resonator mass Resonator spring 

Young’s modulus (GPa) 0.86 0.86 0.72 

Density (kg/m3) 700 1000 700 

Poisson coefficient 0.39 0.39 0.39 

Structural damping ratio 0.03 0.03 0.03 

Table 1: Polyamide nominal material properties used in the SEM model. 

 

Figure 3 presents the real and imaginary parts of the dispersion curve of the nominal periodic unit cell for 

all of the wave modes present in the waveguide, normalized by the cell length 𝑙𝑎. It can be noticed the band 

gap behaviour in the frequency band between 800 Hz and 1200 Hz is related to the flexural resonators 

vertical natural frequencies, as shown in Table 2 [11]. Figures 4 and 5 present the forced response 

considering the spatially varying Young’s modulus in the I-beam only and in the periodically attached 

resonators only, respectively. The Young’s modulus value is given by Eq. (16), for both cases with 𝜎 = 0.1 

and correlation length 𝑏 = 0.4 𝐿 and 𝑏 = 𝐿. For this first analysis, only one sample of the KL expansion is 

used, i.e. it is a deterministic analysis, but with changing properties from one unit cell to another. A very 

good agreement between the WKB the full SEM approaches. It can be noticed that the variability in the 

material properties of the I-beam affects only the FRF away from band gap region, but variability in the 

stiffness of the resonators greatly affects the band gap performance, in terms of vibration attenuation, 50 dB 

reduction, and also in terms of frequency band. Despite the great reduction in performance, it is still feasible 

for applications on vibration attenuation.  

The uncertainty analysis is carried out using a Monte Carlo sampling scheme, with 250 samples, which is 

enough to achieve acceptable convergence. Firstly, randomness is considered only in the Young’s modulus 

of the I-beam for two cases of correlation length, 𝑏 = 0.4 𝐿 and 𝑏 = 𝐿. Figure. 6 presents the 95% 

confidence bounds of the forced response and mean value obtained from the WKB approach and full SEM 

model. Results are compared with the forced response obtained from the nominal waveguide, and it can be 

noticed that it does not introduce uncertainty in the band gap region, regardless of the correlation length. 

However, when the variability is considered only in the stiffness properties of the resonators, as shown in 

Fig. 7, it can be seen that the performance of the band gap is greatly affected, as expected from the results 

obtained in the deterministic analysis. The lower confidence bounds of the forced response reached a 

performance almost as good as the nominal case, which means that there are some configurations that are 

almost as good as the nominal periodic conditions in producing the band gaps. The upper confidence bound 

show that there is a high probability of reaching feasible levels of attenuation in the band gap frequency 

band, and that this probability is higher for the lower correlation length. 

 

 Torsion Vertical Flexural Lateral Flexural 

Frequency (Hz) 776.7 941.6 1315.4 

Table 2: Natural frequencies related to the torsion, vertical and lateral flexural mode shapes of the 

resonator. 
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(a) 

 

(b) 

 

 

Figure 3: Real (a) and imaginary (b) parts of the dispersion curves of the beam with identical periodically 

distributed resonators. 

(a)

 

(b)

 

Figure 4: Forced response from full SEM model (red) and the WKB approach (black) considering one 

sample of random Young’s modulus for the I-beam with 𝜎 = 0.1 and (a) 𝑏 = 0.4𝐿 and b) 𝑏 = 𝐿 

correlation length, and using nominal periodic properties (grey dotted). 
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(a)

 

(b)

 

Figure 5: Forced response from full SEM model (red) and the WKB approach (black) considering one 

sample of random Young’s modulus for the resonators with 𝜎 = 0.1 and (a) 𝑏 = 0.4𝐿 and (b) 𝑏 = 𝐿 

correlation length, and using nominal periodic properties (grey dotted). 

(a)

 

(b) 

 

Figure 6: Forced response 95% confidence bounds (full line) and mean value (dashed) from full SEM 

model (red) and the WKB approach (black) considering random Young’s modulus for the I-beam with 

𝜎 = 0.1 and (a) 𝑏 = 0.4𝐿 and (b) 𝑏 = 𝐿 correlation length, and using nominal periodic properties (grey 

dotted). 

(a)

 

(b) 

 

Figure 7: Forced response 95% confidence bounds (full line) and mean value (dashed) from full SEM 

model (red) and the WKB approach (black) considering random Young’s modulus for the resonators with  

𝜎 = 0.1 and (a) 𝑏 = 0.4𝐿 and (b) 𝑏 = 𝐿 correlation length, and using nominal periodic properties (blue 

dotted). 
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6 Concluding remarks 

A method was proposed for uncertainty analysis of beams with periodically attached resonators produced 

from additive manufacturing, or 3D printing. The WKB approximation is used along with the SEM in order 

to find a suitable generalization of the wave solutions considering slowly varying properties of the beam 

with periodically attached resonators. It extends the applicability of the WKB approach to cases where no 

analytical solution exists by using the SEM. This approach provides a framework to represent randomness 

with spatial correlation of the periodic unit cell and then to quantify the effects of this uncertainty in the 

band gaps. Properties within the unit cell were considered as constant. A Gaussian random field and an 

analytical solution of the KL expansion were used to model the spatially correlated variability, but different 

random field models, including numerical solutions, can be used straightforwardly. 

It was shown that only variability in the material properties of resonators affects the performance of the 

vibration attenuation in the band gap region. The maximum attenuation is greatly reduced, but it is still 

feasible for vibration isolation applications. It was also shown that the correlation length of the spatial 

variability also plays a role. Variability in the material properties of the host I-beam only affects the forced 

response away from the band gap region. Understanding these influences is fundamental for the control of 

manufacturing tolerances, such that a minimum performance of the band gap is guaranteed.  

Further possible steps to investigate include analysing the influence of the other material and geometrical 

properties and comparison of the simulations with experimental results.  
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