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In this work, we address two major problems of the Standard Model of particle physics:
the baryon asymmetry of the Universe and neutrino masses and mixing. A strict link
between these two aspects can be established by the seesaw mechanism and leptogenesis.
This connection can be fruitfully exploited to gain information on neutrino parameters.
To this aim, we first introduce the type-I seesaw mechanism and leptogenesis, moving
then to the strong thermal leptogenesis scenario. Here a large pre-existing asymmetry is
efficiently erased by leptogenesis, and an analytical lower bound on the absolute neutrino
mass scale can be derived. We then consider SO(10)-inspired leptogenesis, in which a
set of conditions kindred to those realised in SO(10) Grand Unification Theories is
imposed on the seesaw setup. A rigorous analytical study of this scenario is performed,
allowing us to obtain analytical explanations of the numerous predictions on neutrino
parameters. SO(10)-inspired and strong thermal SO(10)-inspired leptogenesis appear
then to represent a very interesting scenario, rich of definite predictions on neutrino
parameters that will be in the reach of forthcoming experiments. Finally, we examine the
supersymmetric extension of SO(10)-inspired leptogenesis, analysing how the constraints
on neutrino parameters change. The lower bound imposed by thermal leptogenesis on the
reheating temperature is carefully studied, in light of the gravitino problem. We conclude
that the thermal leptogenesis scenario represents an intriguing and viable mechanism

also in the supersymmetric framework.
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Chapter 1

Introduction

With the discovery of the Higgs boson at the LHC [7-9], the Standard Model (SM)
[10-12] confirmed once more its validity in the description of particle physics. Intensive
searches have been carried out on the experimental side to put to test this model, in
order to understand its validity regime. So far, collider experiments have only been
able to highlight some faint deviations from the SM paradigm, without showing any
substantial discrepancy form theoretical predictions. However, several issues have been
raised, pointing out that the SM cannot be the complete theory of nature.

Firstly, it is clear that the SM, with its quantum field theory foundations, is not able to
explain gravity in the same way as the other fundamental interactions. For this reason,
already from the point of view of scientific speculation, the SM necessarily appears as a
non-exhaustive theory.

In addition to this, several experimental evidences highlight the incompleteness of this
model. Cosmological observations have pointed out that the Universe is mainly com-
posed of constituents which are not accounted for in the SM: Dark Energy (DE) and
Dark Matter (DM). At the same time, in the SM there is no satisfactory justification
for the preponderance of matter over antimatter in the Universe. The experimental ev-
idence of the matter/antimatter asymmetry of the Universe cannot be explained within
the SM framework, thus requiring new physics contributions.

Inconsistencies inside the SM itself have been found as well. In the model, neutrinos are
described as massless fields. However, it has been proven that these particles oscillate
among flavours, a phenomenon that cannot take place if all neutrinos are massless. Neu-
trino oscillations therefore represent another clear support for physics not contemplated
in the SM.

In this work we shall put aside the striking issues of DM and DE, and we shall deal
with the dynamical production of the matter/antimatter asymmetry of the Universe, in

connection with neutrino oscillations. Let us now introduce these two problems.
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1.1 The baryon asymmetry of the Universe

It is an experimentally solid evidence that the amount of matter in the Universe is larger
than that of antimatter. An equal amount of matter and antimatter would have basically
resulted in a general annihilation into an “empty” Universe, filled only with radiation.
Since this is not the case, the necessity to account for this fundamental asymmetry arises.
Although this problem can be ascribed to the indisputable initial conditions of the Uni-
verse, it is more interesting and more scientific to look for a dynamical mechanism able
to generate the asymmetry we observe, starting from an initially symmetric Universe.
This is the approach we will undertake. We shall now discuss the fundamental features

of such a mechanism.

1.1.1 Sakharov’s conditions

A dynamical mechanism able to produce a final asymmetry between matter and anti-
matter starting from symmetric initial conditions, must satisfy three conditions, first
pointed out by A. Sakharov [13].

1. Baryon number violation. The dominant amount of matter in the Universe
is represented by baryons. Therefore, the matter/antimatter asymmetry is more
precisely referred to as baryon asymmetry. In the SM, baryons are associated
to an accidental global U(1) symmetry that, at the classical level, implies the
conservation of its related charge: the baryon number B. However, in the SM
baryon number (together with the lepton number L) is violated at the quantum
level by non-perturbative processes that we shall analyse in more detail in the
following chapter (see subsection 2.2.1.1).

Nevertheless, in order to have an asymmetry between baryons and antibaryons
starting from an initially symmetric Universe, we necessarily need some asymmetry

production processes that violate the baryon number, AB # 0.

2. C and CP violation. It is clear that in order to generate an asymmetry between
particles and antiparticles we must violate the charge conjugation symmetry, C.
However, if our theory distinguishes between chiralities, we need to violate also
the charge-parity symmetry, CP.

Let us consider the decay of particle N into left-handed (LH) particles, N — [,
and into right-handed (RH) particles N — lg. If C is violated we have that the

charged-conjugated reaction rates are different

(N = 1) #T(N —11), and T'(N —Ig) #T(N —Ig). (1.1)
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However, if CP is not violated, we have that the rates of the CP-conjugated reac-

tions are the same
(N —=1)=T(N —=1Ig), and T(N —Ig)=T(N —1). (1.2)

If we now consider the total decay rates into particles and antiparticles, due to

eq. (1.2) we have
(N = 1)+ T(N —=1g) =T(N —Ig) + (N —1). (1.3)

Total decays into particles and antiparticles proceed at the same rate, and it is
then impossible to generate an asymmetry. Therefore, in order to produce an

asymmetry, both C' and CP must be violated.

3. Departure from thermal equilibrium. Even if baryon number is violated, if
thermal equilibrium is enforced, no net change AB can occur during the Universe
evolution. Indeed, in thermal equilibrium we can compute the thermal average

of B

(B)r = tr [e_H/TB] - tr[(CPT)(CPT)_le_H/TB]

= tr [e*H/T(CPT)*lB(CPT)] S— [e*H/TB} , (1.4)

hence (B)7r = 0. Here we have used that CPT is a conserved symmetry, that the
hamiltonian H commutes with CPT and the fact that B is CPT odd.

A dynamical mechanism able to generate a final baryon asymmetry must satisfy all
these three conditions simultaneously. In chapter 2 we shall study in detail how these

are satisfied within a real class of models.

1.1.2 The baryon-to-photon ratio

The mechanism we are looking for must be able to produce the asymmetry in the correct
amount, matching the experimental results obtained from cosmological observations. In
order to quantify the baryon asymmetry, it is customary to define the quantity

nE = W (1.5)
where np, ng and n, are the number densities of baryons, antibaryons and photons
respectively. Given that we do not observe a significant antibaryon density, we can set
ng = 0, so that np actually measures the baryon-to-photon ratio of the Universe. It is
possible to obtain the value of np mainly from the study of Big Bang Nucleosynthesis
(BBN) and from the Cosmic Microwave Background (CMB) radiation.
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1.1.2.1 np from the Big Bang Nucleosynthesis

BBN is the process, within the cosmological standard model, by which light elements are
produced in the Early Universe. It takes place at temperatures around Tgpy ~ 0.1 MeV,
when the abundances of light nuclei, mainly *He, reach their final values. BBN can be
regarded as a brilliant success of the cosmological standard model, due to the excellent
agreement of its prediction with the actual measurements of primordial light nuclei
abundances.

Primordial abundances basically depend on three parameters.

e Neutron half-life 7,,. This particle physics parameter rules the weak interaction
reactions that keep neutrons and protons in equilibrium. Indeed the neutron-
proton interaction rate is I'yp o T?/7,. These reactions fall out of thermal equi-
librium at a certain freeze-out temperature Tr at which the rate becomes slower
than the Universe expansion rate, I'yp,/H < 1. This temperature is directly linked
to the value of 7, and for its experimental value we have Tp ~ 1 MeV. A larger
value of 7, would decrease the interaction rate, giving higher values of T and
hence higher values of the neutron-to-proton ratio. This in turn would imply a

larger production of light elements, especially *He.

e Number of relativistic degrees of freedom g,. The expansion rate is propor-
tional to the number of relativistic degrees of freedom H o gi/ T2 A change in the
value of g, implies a change in the freeze-out temperature Tr, and hence a change
in the final light element abundances. This feature can also be employed in order
to gain information on the number of relativistic degrees of freedom, constraining,

for instance, the number of neutrino species.

e Baryon-to-photon ratio 7. The value of the abundances is proportional to the
baryon-to-photon ratio. In particular, higher values of np would allow an earlier
growth of deuterium and *He abundances, which in turn would then be burnt into
4He. A larger value of 5 would then imply a higher *He abundance. Moreover,
the same D, >He, together with “Li abundances show a peculiar sensitivity to the

value of np, thus representing a very important probe.

From cosmological observations of the primordial element abundances and employing the
most precise determination of the other free parameters, it is then possible to determine
the value of the baryon-to-photon ratio from BBN. Employing data on deuterium and

“He it was recently obtained [14]

nEBN = (6.172 +0.195) x 10710, (1.6)
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1.1.2.2 np from the Cosmic Microwave Background

The baryon-to-photon ratio can be very precisely measured by means of the analysis of
the CMB anisotropies angular power spectrum. The CMB was “accidentally” discovered
in 1964 [15] as very highly isotropic radiation field coming from the Universe. It is made
of the photons released in the Early Universe at the recombination era, Ty ~ 0.3eV,
when neutral atoms were formed and photon interaction with matter suddenly became
very suppressed, thus decoupling matter and radiation. It shows a perfect black-body
spectrum with an average temperature Tioqay ~ 2.72K, as predicted by the standard
cosmological model. However, the most interesting feature of the CMB is provided by its
subtle temperature anisotropies around the sky. It is therefore possible to map the sky
and expand the temperature fluctuation field in terms of spherical harmonics functions,

as AT )
@(n) = %n: A Yim (70), (1.7)

where n gives a specific direction in the sky. Hence, a power spectrum can be obtained

as a function of the multipole moment [

l
0 = 211+1 S (). (1.8)

m=—

This angular power spectrum is physically originated by the oscillations of baryons and
radiation in the gravitational potential wells provided by Dark Matter. These oscillations
created more dense and more rarefied regions in the Early Universe, which left a clear
signature on the temperature of the photons released at recombination. Therefore, the
CMB angular power spectrum is extremely powerful at determining the content of the
Early Universe. In particular, for our purposes, it is possible to precisely measure the

baryonic density wg = Qg h?, where

=2 Hy=100hkms ! Mpc 2, (1.9)
Pc
pe =3H QMI%I /87 is the critical density, pp is the baryon energy density and Hy the Hub-
ble constant at the present day. Increasing the baryon density results in an enhancement
of the odd peaks in the power spectrum with respect to the even ones, so that the am-
plitude ratio of the second and third peaks is particularly sensitive to wp [16].

From Qp it is then easy to obtain the value of the baryon-to-photon ratio

0
ng = B = PB__ TBPe | 973 6Qph?, (1.10)

Ny My Ny mp N~

where m,, is the proton mass. The CMB angular power spectrum is often combined
with other cosmological measurements in order to reduce some degeneracies and help

constraining the parameters. Particularly powerful complementary data are provided
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by Baryon Acoustic Oscillations (BAO) and, more recently, by the study of CMB po-

larisation. From the latest Planck results [17], we can conservatively obtain
n$MB = (6.1 £0.1) x 10719, (1.11)

The evolution of the baryon number density np after recombination is ruled by Universe
expansion only (i.e. we assume no other mechanism changes the number of baryons in

the era between recombination and the present day), so that

S (Ttoday)

S(To) np(Th), (1.12)

np (ﬂoday) -

where s(7') is the entropy density. We therefore have

nB(ﬂoday) . S(ﬂoday) n'y(TO) nB(TO) o S(ﬂoday) nw(TO) CMB

5(T = = =
g ( today) nv(Ttoday) S(TO) Ny (Ttoday> Ty (TO) S(TO) Ny (Ttoday>nB
(1.13)
Since s(T') o g3(T)T? and n(T) o< T3, we have
95 (Ttod
15 (Troday) = L01000) oz (1.14)

95 (To)

where g7 (T') counts the relativistic degrees of freedom contributing to the entropy den-
sity. However, the relativistic degrees of freedom in the SM do not change from the
recombination era to the present day, therefore g(Tioday) = 95(70), so that the baryon-
to-photon ratio measured from the CMB is a measure of present day np as well.

In the rest of this work, we shall employ the CMB measurement of the baryon-to-photon
ratio, eq. (1.11), as the fiducial experimental estimation of the baryon asymmetry of the
Universe. Therefore, our sought production mechanism will be required to be able to

reproduce this experimental value.

It must be mentioned that the SM itself can satisfy the Sakharov’s conditions. Indeed,
baryon number is violated by non-perturbative processes such as electroweak sphalerons,
C and CP are violated by the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix
while the out-of-equilibrium dynamics can be provided by the Electroweak Spontaneous
Symmetry Breaking (EWSSB). Exploiting these features, it is in principle possible to
generate a baryon asymmetry within the SM, through the so-called electroweak baryo-
genesis [18]. However, this scenario ultimately fails to produce the required size of CP
asymmetry [19] and appears in conflict with the found value of the Higgs boson mass.
For these reasons, the baryon asymmetry of the Universe indeed represents a problem
that cannot be solved in the framework of the SM.
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1.2 Neutrino oscillations

Neutrino oscillations were first theoretically predicted by B. Pontecorvo in 1957 [20],
but solid experimental evidences were found only in the last few decades.

The first experimental hint at neutrino oscillations came from the so-called “solar neu-
trino problem”. The Homestake experiment results showed a critical deficit of measured
neutrino flux [21] with respect to the prediction of the Standard Solar Model, mainly
developed by J. Bahcall [22]. This result was confirmed by other experiments such as
SAGE [23], GALLEX [24] and Super-Kamiokande [25]. The puzzle was finally solved by
the SNO experiment [26] in 2001. The first experiments detected neutrinos via charged-
current interactions or elastic scattering, thus being only sensitive to electron neutrinos.
By using a heavy-water Cerenkov detector, the SNO experiment was sensitive to all
flavours, through neutral current interactions. The total flux measured by SNO was in
agreement with the Standard Solar Model prediction, thus supporting the idea that the
deficit in the electron neutrino flux could be due to the “disappearance” of v.’s that had
oscillated into v,’s and v;’s in their propagation.

In the meantime, the Super-Kamiokande experiment highlighted a different issue in the
flux of neutrinos produced by cosmic rays in the atmosphere. The measured flux of
muon neutrinos and antineutrinos showed an anomalous dependence on the zenith angle
[27], which was not registered in the electron (anti)neutrino flux. This anomaly took
the name of “atmospheric neutrino problem” and could naturally find an explanation in
the oscillation v, — v and v, — V7.

The solar and atmospheric neutrino problems thus solidly established that neutrinos
oscillate among different flavours, in contrast with the prediction of the SM. For the dis-
covery of neutrino oscillations both the SNO and Super-Kamiokande experiments were
awarded the Nobel Prize for Physics in 2015, in the persons of Arthur McDonald and
Takaaki Kajita respectively.

In the following years, several other experiments have joined the challenge of determin-
ing with precision the parameters ruling neutrino oscillations. Together with solar and
atmospheric neutrinos, also antineutrinos from nuclear reactors have been measured and
studied. It is worth mentioning the contribution of KamLAND [28] in the determination
of the so-called “solar mixing angle” and, later, of DayaBay [29], followed by RENO [30]

and DoubleChooz [31], in the precise measurement of the °

‘reactor mixing angle”.
Moreover, also neutrino beams from accelerators have been detected and studied. Par-
ticularly interesting is the T2K experiment, that has firmly established the electron
neutrino appearance in a beam of muon neutrinos, thus helping constraining several
mixing parameters [32, 33]. The OPERA experiment has also provided strong direct
evidence of v, — v, oscillation [34].

We shall now briefly overview the theoretical description of neutrino oscillations' and

"We shall deal here with the standard plane-wave approximation, while not considering the more
correct and detailed wave-packet treatment (see e.g. [35]). This is enough for our purposes of pointing
out the basic features and the involved low-energy neutrino parameters.
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its consequences, highlighting the parameters that are required and experimentally mea-

sured.

1.2.1 Neutrino mixing

Neutrino interactions in the SM take place only through weak charged and neutral cur-
rents, coupled to the W and Z bosons respectively. We can define the neutrino states
that are produced in the weak interactions as flavour eigenstates |v,), since, via charged
currents, they always interact with the charged lepton of corresponding flavour. If we
now assume, as in the SM, that neutrinos are massless, then the hamiltonian eigenstates
|v;), that are involved in the propagation, can be made coincide with the flavour eigen-
states. Interaction and propagation eigenstates are then the same and no particular
phenomenon occurs.

However, considering massive neutrinos can spoil this alignment. The hamiltonian eigen-
states, that we can now also call mass eigenstates, do not necessarily coincide with flavour
eigenstates. Assuming 3 mass eigenstates and a misalignment between flavour and mass

eigenstates we can write
vg) = Z * ), (1.15)

that is, flavour eigenstates can be seen as a linear combination of mass eigenstates
through the unitary matrix U.

We can now consider a neutrino produced by weak interaction in a certain flavour «
and study its propagation through spacetime to a detector in which it is measured by
another weak interaction. The neutrino will therefore propagate until time ¢, |v4(t)), at
which it is measured in the detector. We can compute the probability of measuring the

propagated neutrino along the flavour g
_ 2
Prasvs (t) = [plva(t))]- (1.16)
Since now flavour and hamiltonian eigenstates do not coincide, the time evolution of

state |V, ) gets less trivial, depending on the evolution of states |v;). Employing the time

evolution operator, we obtain

[Val(t) Z “E . (1.17)
being |v;) the mass/hamiltonian eigenstate of eigenvalue E;. We therefore have

Py (t Z i UsiUasUgj e BBt (1.18)
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where we used the normalisation (v;|v;) = d;;.

For the hamiltonian eigenstate with mass m; we can approximate
m2
Eﬂ:E—i—ﬁ, (1.19)

where E = |p], neglecting the mass contribution. Therefore we have

EZ' —Ej >~ ij, (120)

where we defined the squared-mass differences

Am?j =m? — m? (1.21)
Moreover, since neutrinos are ultrarelativistic, we can also take t = L so that
. y ‘Am?jL
Py (t) = Z UaiUpiUajUs; exp| —i 5 . (1.22)
Z7j

We can see, therefore, that even if 8 # «, there is a certain probability of measuring, at
time ¢ in the detector, a neutrino of a different flavour than what was produced. The
probability P, ., with a # 8 is called transition probability, while for o = 3 it takes
the name of survival probability. From eq. (1.22), we can notice that the oscillation
probability depends on the entries of the unitary matrix U and on the mass-squared
differences Am?j. It is clear that in order to account for the observed neutrino oscil-
lations it is necessary that at least two neutrinos are massive and non-degenerate, so
that Am?j # 0. The experimental discovery of neutrino oscillations thus implies that
neutrinos cannot be massless as considered in the SM. For this reason, the SM must be
expanded in order to provide a description and an explanation for neutrino masses and

mixing.

From oscillation experiments, two mass-squared differences have been determined, Am?2,
and Am?2,, with Am?

sol’ atm

neutrino absolute masses, therefore these two mass differences can be accommodated

> Amgol. However, these experiments are not sensitive to

in the neutrino mass spectrum in two different ways. Always assuming the pattern

m1 < mo < mg, we can have

2

m3 —m3 = Am? 2

atm> mgy — m% = Amgolv (123)

which is referred to as Normal Ordering (NO), or

2 9 2 2 9 2
m3 —my = Amgy,  my —my = Amg,, (1.24)

which takes the name of Inverted Ordering (IO). These two patterns are still both viable,

even though, as we shall see in the rest of this work, they generally provide different



Chapter 1. Introduction 10
theoretical predictions.
It is useful to define two mass scales
Matm = m% - m%a Msol = 4/ Amgop (125)
so that
mo = /m? + m?2 m :\/m2—|—m2 —m?
NO{ P S (o ¥ i LT atm T ol (1.26)
ms = \/m3 +m2, ms = \/m? +m2,,
From global analysis of neutrino oscillation data we obtain [36]
Matm =~ 0.0495¢eV, Mgol =~ 0.0087 V. (1.27)

Neutrino mass spectra given by eq. (1.26) using the experimental values in eq. (1.27)

are plotted in fig. 1.1. We can notice that for m; < 3meV neutrino spectrum is fully

TN e TN e Mg — 3TN - - TN TN Mg — 31T = -
1 E Lo L rin Lol I || HHHE 1 E Lol Ll LoLrrrn Loty | HHHE
1071 E __,’,, L 1071 mmm——————T - E
510-2 5\/10-2
1079 3 5 1079 3 E
10_4 T T TTTTITT T T TTTTTT T T TTTIT T T TTTI 10_4 T T TTTT7T T T TTTTIT T rormd T TTTTTT
1074 1073 1072 107! 1 107 107% 1072 107!
my (eV) my (eV)
(a) (b)

Figure 1.1: Neutrino masses vs. mj for NO (left panel) and IO (right panel).
Red, green and blue lines are mj, ms and ms respectively, obtained from
egs. (1.26) and (1.27). The dashed black line represents the sum of the neu-
trino masses ), m;. The hatched region marks the cosmological upper bound

eq. (1.43).

hierarchical, in particular for NO. For higher neutrino masses my 2 Mmaim we can say

that neutrino masses are quasi-degenerate.

~

The unitary matrix U is referred to as neutrino mizing matriz or PMNS matrix, after

Pontecorvo-Maki-Nakagawa-Sakata [37, 38]. As shown in the following chapter, in its



Chapter 1. Introduction 11

general form it can be expressed in terms of 3 mixing angles, 013, 612, 623, and 3 phases
d, p, 0. The three angles take also the name of “reactor”, “solar” and “atmospheric”
mixing angle respectively. The three phases all introduce a CP violation, § is referred to
as Dirac phase, while p and o are the Majorana phases. For normally ordered neutrino

masses, we have?

C12€13 512€13 s13e % e 0
_ is i
U= | —s12c23 — c12523513€"°  C12¢23 — S12523513€" 523C13 0 1 0|,
s s A
512523 — C12C23513€""  —C12523 — 512C23513€"0  €23C13 0 0 e

(1.28)
where ¢;; = cosf;; and s;; = sinf);;. Respecting our convention of always labelling
neutrino masses as m; < mg < ms, in Inverted Ordering the mixing matrix is obtained

from eq. (1.28) through a permutation, as

s13e” % c12€13 512€13 e’ 0 0
U(IO) _ o _ 5 _ 0 0 w
= | s23C13 512C23 — C12523513€ C12C23 — 512523513€ e
s s
€23C13 512523 — C12C23513€"°  —C12523 — $12C23513€" 0 0 1
(1.29)

If neutrinos are Dirac particles, the phases p and ¢ are non-physical and can be dropped.
However, the probability expression in eq. (1.22) is invariant under rephasing Uy; —
eMa ;e so that oscillation experiments are not sensitive to the Majorana phases p
and o.

From [40] we can obtain the best fit values and 3o ranges for NO and IO, which are

Normal Ordering Inverted Ordering
lo 3o ‘ lo 3o
013 8.8° +0.4° 7.6° —9.9° 8.9° +0.4° 7.7°—9.9°
012 33.7°+1.1° 30.6° — 36.8° 33.7°+1.1° 30.6° — 36.8°
0o3 41.4°7190 37.7° — 52.3° 4240489 38.1° — 52.3°

Table 1.1: Best-fit, 1o and 30 ranges for the three mixing angles from global
neutrino analysis [40], for NO and IO.

reported in tab. 1.1 and will be employed in the rest of this work. It must be noticed
that all mixing angles differ from zero with more than 5o significance, thus definitively
ruling out the U = 1, i.e. non-oscillation, possibility.

The Dirac phase § is still loosely constrained, indeed we have [40]

NO §/m=-0.617938 10 4/ = —0.69702 (1.30)

2Qur parameterisation differs form the PDG one [39] in the definition of the Majorana phases.
Thereby we find diag(l, gla1/2) eia31/2>, so that, with respect to our conventions, we have a1 = —2p

and az1 = 2(o — p).
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while at 30 the whole variability range [—m, 7] is still allowed.

Several current and forthcoming experiment have taken up the challenge of determining
the neutrino mass ordering. In particular, we can mention the JUNO reactor experiment
[41], together with the proposed PINGU [42] extension of the IceCube experiment and
the currently data-taking long-baseline accelerator experiment NOvA [43]. The deter-
mination of the mass ordering basically depends on the exploitation of matter-induced
resonant conversion of neutrinos (if NO) or antineutrinos (if I0). For this reason, ordering
determination relies on a precise determination of the CP violating phase d. Therefore,
a combination of different experiments such as NOvA, T2K and the proposed LBNE
[44], has the highest chances to obtain a significative result [45].

1.2.2 Neutrino masses

Given the sensitivity of neutrino oscillation experiments to mass-squared differences
only, it is necessary to consider other complementary experiments in order to determine

the absolute neutrino mass scale m;.

1.2.2.1 Neutrino masses from beta decay

In a rather general way, it is possible to obtain information on the absolute neutrino
masses by measuring the energy spectrum of the electron emitted by a 5-decaying nucleus

N; of atomic mass and number A and Z
Ni(A,Z) — Ny(A, Z 4+ 1)+ e+ De. (1.31)
Given the @Q-value of the decay
Qp = Mn, — Mn, — me, (1.32)

the maximal kinetic energy of the electron is given by Qg if the emitted neutrino is
massless. However, if neutrinos are massive, we get that the maximal electron kinetic
energy is

Egy = Qp —my,. (1.33)

Therefore, massive neutrinos imply a distortion around the endpoint of the electron
energy spectrum. However, as noticed above, electron neutrino is not a mass eigenstate
and mixing must be taken into account. Hence, this effect is more conveniently studied

in terms of the effective electron neutrino mass

mg =Y |Ueil® m, (1.34)
7
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on which the currently most stringent upper bound is provided by the Troitzk experi-
ment [46]
mg < 2.05eV  (95%C.L.). (1.35)

The most promising experiment on [-decay, employing tritium nuclei, is KATRIN [47,
48], that may probe mg with a sensitivity of about 0.2eV in the near future [49, 50].

1.2.2.2 Neutrino masses from neutrinoless double-beta decay

While B-decay can prove neutrino masses in a general way, if neutrinos are Majorana
particles (as specified and explained in detail in the following chapter) it is possible to
study a characteristic phenomenon: the neutrinoless double-3 decay (OvSp).

Double 8 decay takes place naturally for certain nuclei that decay into lighter ones via

two simultaneous 5 decays
Ni(A,Z) — N¢(A, Z +2) + 2e + 20, (1.36)

asin fig. 1.2(a). However, if neutrinos are Majorana particles, it is possible to connect the

Figure 1.2: Double 8 decay, panel (a) and neutrinoless double 8 decay, panel

(b).

two neutrino lines into the propagator of a virtual Majorana neutrino, as in fig. 1.2(b).

This way, no neutrinos appear in the final state and the process results into
Ni(A,Z) — N¢(A, Z +2) + 2e, (1.37)

that is a double 8 decay without outgoing neutrinos [51]. It must be noticed that Ov33
decay is possible if and only if neutrinos are Majorana particles [52], independently of
other contributions from new physics. Therefore, experiments trying to detect Ov3(

decays are of the utmost importance in determining whether neutrinos are Dirac or
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Majorana particles.
The half-life of a Ov83 decaying nucleus can be expressed as
-2
0 1% — v —
T = (@)t M| 2, (1.38)
where ®%/#8 is the phase-space factor, M%#7 is the nuclear matrix element while m,
is the effective Ov35 decay mass defined as
i

(1.39)

Mee =

Employing the mass scale values as in eq. (1.27), the mixing angles as in table 1.1, and
taking 4, p, o in their whole variability range, we can study the behaviour of me. vs. my,
both for NO and IO. The result is shown in fig. 1.3 (adapted from [35, 53]). Thereby, the

i
. 4

—

10°* 102 1072 10!
my (eV)

Figure 1.3: Effective Ovf33 decay mass vs. mj for NO (red region) and IO
(blue region). The lighter regions are obtained with mixing angles varying
within their 30 ranges as in tab. 1.1, while the darker regions are obtained
by using their best-fit values. The vertical hatched region marks the current
upper bound on m; imposed by cosmological observations, eq. (1.43), while the
horizontal hatching marks the current conservative experimental upper bound
on Mee, eq. (1.40). The horizontal dashed line indicates the expected future
experimental sensitivity. Plot adapted from [35, 53].

horizontal hatched region marks the current conservative upper bound obtained from
experiments. The current experimental constraints on the effective Ov 35 decay mass are
reported in tab. 1.2. It must be noticed that experimental results on Ov38 decay must

face high theoretical uncertainties in the determination of the nuclear matrix element
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Experiment Result at 90% C.L.

GERDA [54] Mee < 0.22 — 0.646V

EX0-200 [55] Mee < 0.2 — 0.69V
KamLAND-Zen [56] Mee < 0.15 —0.52eV

Table 1.2: Experimental upper bounds on the effective Ov /35 decay mass.

MO%BB We can therefore employ as a conservative upper bound on the effective 0vS4
decay mass
Mee S 0.2V, (1.40)

which is marked in fig. 1.3 with the horizontal hatched region.

Experiments such as MAJORANA [57] and GERDA [58], are expected to reach, in
the near future, a sensitivity around 0.05eV (marked by the dashed line in fig. 1.3).
This would be particularly interesting since it would severely constrain quasi-degenerate
neutrino masses (0.02eV < my < 0.07eV) while starting probing the fully hierarchical
10 spectrum (m; — 0).

1.2.2.3 Neutrino masses from cosmology

The currently most stringent information on neutrino masses comes from cosmology,
which is most sensitive to their sum?®. The massive nature of neutrinos causes modifica-
tions in the CMB angular power spectrum from what would be obtained in the massless
neutrino scenario. Massive neutrinos can impact the spectrum by modifying the cosmic
evolution through a shift of the matter-radiation equality, as well as by affecting se-
condary anisotropies via, for instance, the Integrated Sachs-Wolfe effect. However, the
sensitivity to neutrino masses of the CMB spectrum alone is in practice quite little to
provide solid results. For this reason, it is much more useful to combine CMB data with
other observations, such as BAO data. Combining the Planck2015 CMB spectrum with
polarisation data and BAO information, it is possible to place the upper bound [17]

> m; <0.17eV  (95%C.L.). (1.41)

In the rest of this work, we shall more conservatively employ the upper bound obtained
from the Planck2013 release, [60]

> m; <023eV (95%C.L), (1.42)

3In principle, the mass splittings between the different neutrino mass states can be seen in the matter
power spectrum probing large scale structures in the Universe. However, this effect is still too subtle to
be measured with significance even by future surveys [59].
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which, using the mass values in eq. (1.27), translates into an upper bound on m; valid
for both NO and IO
my < 0.07eV. (1.43)

This is the upper bound derived from cosmology shown in fig. 1.3 and in the figures that
will appear in what follows.
We shall comment more in detail on how cosmological data can further constrain the

bound on the sum of the neutrino masses in chapter 4.

1.3 Two problems, one solution?

We have introduced two serious problems of modern physics that unavoidably call for
an extension of the SM. The baryon asymmetry of the Universe needs a dynamical
mechanism able to explain the observed baryon-to-photon ratio, while neutrino masses
and mixing require a theoretical justification. In the rest of this work we shall consider
an interesting possible extension of the SM that, on the one hand, is able to naturally
account for neutrino masses via the so-called seesaw mechanism, while on the other hand
can provide a way to produce the baryon asymmetry of the Universe, via leptogenesis.
This theoretical framework turns out to be particularly interesting not only because it
can solve two problems at the same time, but also because it creates a strict link between
two phenomenological domains: cosmology and neutrino oscillation physics. This way,
cosmological evidences, like the baryon asymmetry of the Universe, can be employed
to gain more information on the physics ruling neutrino masses and mixing, through
a theoretical explanation and prediction of the seesaw free parameters. This is indeed
the main aim of this work: exploiting the link between neutrino phenomenology and
cosmology in order to constrain and predict the otherwise free parameters introduced

by the seesaw extension of the SM.

This work is divided into two main parts: in the first part we shall introduce the theore-
tical framework and the needed formalism, while in the second we will derive constraints
and predictions on neutrino parameters.

Part one includes chapters 2 and 3. In chapter 2 we shall address the problem of neutrino
masses and mixing and introduce the seesaw mechanism and leptogenesis, pointing out
its main features. In chapter 3 we shall expand the leptogenesis paradigm by introdu-
cing flavour effects and considering a particular scenario, called No-dominated. We shall
highlight two important theoretical motivations that naturally lead to it: strong thermal
leptogenesis and SO(10)-inspired leptogenesis. These two theoretical frameworks will
turn out to be particularly rich of phenomenological consequences, giving interesting
predictions and constraints on neutrino masses and mixing parameters.

In the second part we shall analyse in detail these results. In chapter 4 strong ther-

mal leptogenesis will be considered, while in chapter 5 we will derive the predictions
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obtained within SO(10)-inspired leptogenesis. In chapter 6 we will study the supersym-
metric extension of SO(10)-inspired leptogenesis, commenting on the differences with
the non-supersymmetric scenario and focusing on the implications on the reheating tem-
perature of the Universe.

Finally, in chapter 7 we will summarise the results obtained in the preceding chapters

and draw our conclusions.






Part 1

The framework

19






Chapter 2

The seesaw mechanism and

leptogenesis

In this chapter, we shall analyse how it is possible to extend the SM lagrangian to
account for a mass term for neutrinos. We shall see the basic ways it can be accomplished
and then devote ourselves to a very interesting realisation: the seesaw mechanism. In
particular, we will focus on a direct consequence entailed by the seesaw mechanism:
leptogenesis. In the second part of this chapter, the basic features of leptogenesis will

be explored and the main formalism will be laid out.

2.1 How to give mass to neutrinos?

In the SM [10-12], neutrinos are massless and purely LH. However, as discussed in the
Introduction, experimental results have nowadays firmly established that neutrinos of
different flavours oscillate into each other. The main consequence of this experimental
phenomenon is that neutrinos cannot be all massless. Therefore, we are compelled by

evidence to expand the SM lagrangian in order to accomodate a mass term for neutrinos.

2.1.1 Dirac masses

Perhaps the most immediate way to give mass to neutrinos consists in extending the
Higgs mechanism to neutrinos as well. This of course requires the addition of RH
neutrino fields, which must be singlets under the SM gauge group, since they do not
appear to take part into any interaction. In a basis in which charged lepton Yukawa

matrix is diagonal, we can add to the SM lagrangian a term such as

Lp = —Yuiloa Njp® + hec, (2.1)

21
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where Y,; are Yukawa couplings, [, are the LH lepton doublets, defined as

ly = (Za> : (2.2)

and ® = ioy®* is the Higgs doublet ® transformed by means of the second Pauli matrix
o2 in order to act on the down part of the lepton doublet. Sum over repeated indices is
understood, unless specified otherwise. After electroweak spontaneous symmetry break-
ing (EWSSB) we get a term

Lp = —vYa; V[ Ng; + h.c., (2.3)

where v is the Higgs Vacuum Expectation Value (VEV) v >~ 174 GeV.
In order to get a mass term for the neutrinos, the Yukawa matrix must be diagonalised

via a bi-unitary transformation such as
U'YVgr = Dy, (2.4)

where Dy is diagonal with diagonal entries y; real and non-negative. Inserting it into

the lagrangian we can rotate the neutrino fields as
VL, = UTiocVLon NR’L’ = V}QZJNII%W (25)

so that we have
Lp= —UZyimNRi—kh.c. = —Zmiﬁiw, (2.6)
i i

where we defined the fields v; = vp; + Ng; and the masses m; = vy;. In this way we
have obtained massive neutrino fields v;, through a rotation of the fields appearing in

the lagrangian.

The unitary matrix U in eq. (2.5) is then the PMNS neutrino mixing matrix.

This is in principle a generic N x N = 3 X 3 unitary matrix, which is determined by
N? = 9 parameters. Any unitary matrix can be written in terms of N(N — 1)/2 angles
and N(N + 1)/2 phases, so that in our N = 3 cases we have in general 3 angles and 6

phases. It is possible to show that a generic 3 x 3 unitary matrix U can be written as
U= Dy R®ARZATR2Dp, (2.7)
where, setting ¢;; = cos0;; and s;; = sin 0;;,

D, = diag (ei(wlfp), e2, ei(“’r”)) ) (2.8)
Dp = diag (¢, 1, €"7), (2.9)
A = diag (e“, 1, 1) : (2.10)
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and
ci2 si2 0 ci3 0 s13 1 co3  s23
R?=1|—-s5 c1o 0|, R®= 0 1 0], R®=10 —s03 c3
0 0 1 —S513 0 C13 0 0 1

(2.11)

The angles can be limited to the interval 0 < §;; < m/2. Defining the vector of the LH

components of the neutrino mass eigenstates v;

vy
ny= (v, |, (2.12)

L%

we can insert eq. (2.7) in the expression of the charged current

T
Ji =mpUiyre, = mg (DLR23A RIBAT R12DR> Ve (2.13)
=D} (R2) A (R AT(R®) DI Avey,. (2.14)

Our lagrangian is invariant under global U(1) transformations of the neutrino mass
eigenstates

ny;, — DR’I’LL, (2.15)

and under global U(1) transformations of the charged lepton fields
£, — D} ;. (2.16)

Therefore, by performing a rephasing of ny and €1, matrices Dg and Dy, drop out of
the charged current expression. Since these phases do not appear anymore, anywhere,
in the lagrangian, they are clearly non-physical, and they can be neglected in the pa-
rameterisation of the mixing matrix U. In the case of Dirac neutrino masses, we can

therefore write the mixing matrix as

U = RPARPATR!? (2.17)
€12€13 512€13 s13e~%

= | —S12€23 — 01282:’,8136“S C12€23 — é>’12823$1:‘56i‘S 523C13 (2-18)
12823 — C12C23513€"0  —C12523 — S12C23513€%°  cosci3

which coincides with eq. (1.28) if p and o are dropped. In this case then, only the Dirac
CP violating phase § remains.

It must be noticed that, for simplicity, we have considered here the NO case. As already
mentioned, with our conventions, the IO case can be obtained via a permutation of the

columns in U.
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We can also notice that, in order to get as small neutrino masses as those required by
experimental evidence, it is necessary to fix the Yukawa couplings to small values. This
tuning of the Yukawas lacks of elegance, therefore more natural ways to explain the

smallness of neutrino masses are generally sought.

2.1.2 Majorana masses

We have seen that the Dirac mass term requires the two chirality components of the
field v = v;, + Ngr. However, in the case of neutrinos, which have zero electric charge, it
is possible to build a mass term using only one independent chirality component. The
generic fermion mass term connects a LH and a RH field, but in the case of neutrino it
is possible to obtain one chiral field from the other. We can consider for instance the

RH field Ng, and make use of the charge conjugation matrix C which satisfies

ct=c! (2.19)
Ct=-C (2.20)
C(y")eTt=—* (2.21)
C(p)C = (2.22)
C(a")ct=—om. (2.23)
From the RH field Ng, it is possible to build a field, up to an arbitrary phase, as
NS =Cc Ny, (2.24)

which is LH. Indeed we have
. _ t _
PrN§ = PrCNg' =C (N Pg)' =C (NT PIEWOPR> —C (NP Pp)' =0, (225)

where we used eq. (2.22). Therefore, using the field in eq. (2.24) it is possible to build a
fermion mass term connecting a LH and a RH field actually using only one independent

chirality component. We have therefore
1 C
Ly = —§mNRNR+h.C., (2.26)

which is the so-called Majorana mass term. It is important to notice the factor 1/2,
needed to avoid the double counting due to the fact that the LH and the RH fields are

not independent. Expanding the hermitian conjugate we get the full lagrangian

1 /—= — 1
Ly = —im (NgNR + NRNg> = —imﬁl/. (2'27)
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In the last equality we have defined a four component spinor field
v = N§ + Ng, (2.28)

whose RH component is the field Ng and the LH component is obtained from Ng by
eq. (2.24). Such field is called Majorana field and, applying the charge conjugation
eq. (2.24), it can be seen that v is equal to its charge conjugate V. Tt is clear then that
Majorana fields must be neutral under the electric charge, since the charge conjugation

relates particles and antiparticles.

The Majorana mass term can be easily extended to the multi-generation case. Introdu-

cing RH neutrino fields Ny, we have
17
Ly = _§N;§i M;j Np; +h.c. (2.29)

where M;; is a complex symmetric matrix. Indeed, rewriting the mass term as

l— 1
- §N;§i M;j N +h.c. = 5 7 CT MijNp, . (2.30)

we can then take the transpose in the spinor space and relabel the indices as

1 1
LY Ct My Ng; = —5 Nk, (CT) My N, =

1
§N§§i C' MjiNg;. (2.31)
Comparing the first and the last terms we conclude that M;; = Mj;, so that the Majorana
mass matrix M must be symmetric. Since it is a complex symmetric matrix, it can be

diagonalised via Takagi diagonalisation as
VEM Vi = Dy, (2.32)

where D)y is a diagonal matrix with diagonal entries m; real and non-negative. Inserting

eq. (2.32) in the lagrangian, we can define new fields as
Npi = Vb, Np, (2.33)

so that we have )
Ly =—5 Z N§.miNg; + h.c. (2.34)
K

Completing the hermitian conjugate, we can define the fields v; = Ngi + Ng; which are
mass eigenstates with masses m;. Similarly to the Dirac case, the rotation due to the
matrix Vg implies the appearance of a mixing matrix U in the charged current, so that

also in the Majorana case we have neutrino oscillations.

It must be noticed that the Majorana mass term eq. (2.26) is not invariant under global

U(1) transformations of neutrino fields. This is indeed the global symmetry that ensures
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the conservation of the leptonic current and hence the lepton number. In this case, since
the Majorana mass term explicitly breaks this symmetry, we must conclude that the
lepton number is not conserved when a Majorana mass term is introduced.

This remark is important also with respect to the determination of the mixing matrix
U. Indeed, it is not possible anymore to perform the transformation eq. (2.15) on the
neutrino fields, therefore we cannot anymore drop the matrix Dp in the parameterisation

of U, eq. (2.7). Therefore, in the case of Majorana mass term, we have

U= R®ARBATR? Dy (2.35)
c12€13 512€13 s13e”% e 0
_ i i
= | —S12c23 — c12523513€"  C12C23 — S12523513€" $23C13 0 1 0|,
s s .
512823 — C12C23513€"°  —C12823 — 512€23513€"°  €23C13 0 0 €7

(2.36)

which coincides with the parameterisation presented in the introduction, eq. (1.28).

Finally, it is evident that the Majorana mass term is not a simple extension of the SM
as in the case of the Dirac mass, where the Higgs mechanism was simply extended to
neutrinos. Using the SM field content, it is possible to obtain a Majorana mass term
only via non-renormalisable operators. In particular, the lowest dimensional operator

that generates a Majorana mass term is the so-called Weinberg dimension-5 operator

Ls = y“Tﬁ (1h 2 @) (@421l ) + hc, (2.37)

where y,4 is a symmetric matrix of couplings and A is a high scale with dimension one.
After the electroweak symmetry breaking a Majorana mass term for neutrinos appears

1 1)2 t
Ly = 3} Yab v Cf V;;ﬁ +h.c. (2.38)

The neutrino masses are then obtained from the matrix

?}2

Mag = Xyoé/j. (2.39)

Therefore, the mass scale is given by the interplay between the electroweak scale v
and the high-scale A. Due to the largeness of A, this relation ensures that neutrino
masses are smaller than the typical electroweak scale, as pointed out by the experiments.
Such relations, in which the neutrino masses are proportional to the electroweak scale
suppressed by a higher scale take the name of seesaw relations. It will be a feature of the
seesaw mechanism which we will deal with in the next section and that will implement

it without effective, non-renormalisable operators.
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2.1.3 The seesaw mechanism

So far we have explored two distinct ways of adding a mass term for neutrinos to the SM
lagrangian. It is possible, however, to combine them so to have a Dirac-Majorana mass
term. We can thus take into account LH fields v}  and RH fields Ny, with o = e, pu, 7
and ¢ = 1,2,3. Considering these LH and the RH fields independent (i.e. not related
by conjugation relations), we can in principle build three different mass terms. A Dirac
mass term involving both LH and RH fields, a Majorana mass term with LH fields only
and a Majorana mass term with RH fields only. However, choosing to respect the SM
gauge group, the LH fields v} , would not provide a Majorana mass term invariant under
SU(2)r, x U(1)y. For this reason, we are left with only one Majorana mass term, made
of the RH fields, which, not being constrained by the SM, can be chosen to be singlets
under SU(3)¢c xSU(2), xU(1)y. Considering for completeness also the charged leptons,
we have

LD =Y/ g laligs® =Yl Np® — %WM{]- Np; +h.c. (2.40)
where Y is the matrix of charged lepton Yukawa couplings, with £g being the charged
lepton RH component. It is more convenient to rotate the charged leptons to a basis
in which the Yukawa’s are diagonal, as well as the RH neutrino fields onto a basis in
which the Majorana mass matrix M is diagonal. This choice of basis is also referred to

as flavour basis. For the charged leptons, we employ the bi-unitary diagonalisation
vty vt = D, (2.41)

where D{, is a diagonal matrix with real, non-negative entries. The charged lepton fields

are transformed as

o = Ulaglig (2.42)
lRa = Uhap Urs- (2.43)

For the RH neutrinos, we perform the Takagi diagonalisation of M’ as
VEM'Vi = Dy, (2.44)

where Vg is a unitary matrix and Dj; a diagonal matrix with diagonal entries M;, real

and non-negative. The RH fields are then rotated as
Ngi = Vi N (2.45)
The lagrangian then becomes

. . - 1 -
£5=) Dyglalra® = Yaila Npi® = 5 3  Ni{ Dy Nei +he. (2.46)
a %
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where we have defined the neutrino Yukawa couplings in the flavour basis as
Yai = Ul up Vi Vaji- (2.47)
After EWSSB this lagrangian develops mass terms

_ le~——
L= D lialra — Mpai Vig Nri — 3 > " Ng{ Dy Ng; + hec. (2.48)
« %

where D!, = va, is the charged-leptons diagonal mass matrix and mp = vY is the
so-called Dirac mass matrix for neutrinos. It is possible to expand the Dirac term by

noticing that

Nt o t L S
NgiVLCa = (CNRi ) Crr,t = (’YOTNRi) CYCrr,' = Nk, Vi’ = ViaNg,

(2.49)
so that we have
1 1 — 1 —
Ls = ~5MDaiVia NRi = 5MDai N Vi o — 3 > Ng{ Dyi Ng; + hec. (2.50)
i

This can then be rewritten more compactly by adopting a matrix notation as

1 —=\ [ 0 ¢ 1—
Ls = -5 (TL, Nﬁ) ( t ;’;D> (1’:;:) +he = —in}JMn’LC +h.c., (2.51)
mp M R

where we defined the six-component vector of fields

/ vy
ny = , (2.52)
(Nz? >

that is LH. The mass term in eq. (2.51) has a Majorana structure, therefore the neutrino
fields that arise from the seesaw lagrangian must be Majorana. In order to obtain the
mass eigenstates, it is still necessary to diagonalise the matrix M. We can first obtain

the two diagonal blocks

1
A2 = 5 <DM ¥ \/D]zw + 4mDmtD> . (2.53)

2
Now, if we assume that the M; are much larger than all the elements of the Dirac mass
matrix mp, we can simplify the expression of the blocks to the leading order in the
D&lmD expansion. This is the so called seesaw limit and it is indeed naturally realised
in several UV completions of the SM. For instance, as we shall see in more detail in
the following chapters, in Grand Unified Theories (GUT) such as SO(10)-GUT, RH
neutrino fields are predicted to complete the representation of the mass fields. In these
theories, the scale of the Majorana mass matrix M lies naturally around the GUT

scale Aqur ~ 106 GeV. The scale of the matrix mp is typically the electroweak scale
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Agw ~ 102 GeV, therefore, in these frameworks, the seesaw limit is naturally realised.

In this limit we have

M = —mp Dy} mby + O(Dy/mp), (2.54)
Aa = Dy + O(Dyfmp), (2.55)

while the diagonalising matrix W performing the block diagonalisation is

-1 T
W~ ( ! (D3 mp) > (2.56)

—D]T/[lmp 1

Hence, in the seesaw limit we have

, 0
wtmw ~ " = B, (2.57)
0 Dy
where we defined
my, = —mp Dy} mb,. (2.58)

We can immediately notice that the neutrino mass spectrum splits into two distinct sets.
Three neutrinos have masses given by the eigenvalues of m,, while three others have
masses M;. We can already say that the first set of fields will be much lighter than the
second, due to eq. (2.58). In order to have a clear idea of the final mass eigenstates and
the mixing among the neutrino fields, it is still necessary to diagonalise the block matrix

Bu. To this aim, given that D) is already diagonal, we can adopt the 6 x 6 matrix

_ (@0
P_<0 1) (2.59)

-D 0
P By P* = m = Dy, 2.60
M ( 0 DM> M (2.60)

such that

where the diagonal 3 x 3 matrix D, is obtained as QT my Q* = —D,,. Using the 6 X 6

diagonal matrices Byq and Dpg we can rewrite eq. (2.51) as
17/ * ta.1C 17/ * tyiTa,/C
L= —5np W BuWinf +he. = —Snf W*PDuPWin + e, (2.61)

Hence, the vector of fields n’; is transformed into

nlight
ny = (nhLeavy> = PTWin/, (2.62)

(ot o 1 — (Dytmp)"\ [(vr
6 s ) R) o
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so that the LH components of the final mass eigenstates are

n%ght =Qf |:I/L = (D;Jlmp)tNg} , (2.64)

nt* = (Dytmp) " vi + N§. (2.65)
Since all fields are Majorana, we can build the final mass eigenstates as
light light light c heavy heavy heavy c
ne =n> + (nL ) ) n =n; ° + (nL ) . (2.66)

Given the suppression introduced by the factor D]T/[lm D, we can notice that the heavy
mass eigenstates are almost entirely composed out of the RH neutrino fields Np, with a
tiny mixing with the fields vy. Similarly, the LH light mass eigenstates almost coincide
with a rotation of the fields vy, in the vector vy. Thus, neglecting the corrections of

order D;jmp, we can say

. C
nlight ~ Oty 4 (QT I/L) : (2.67)

nheay ~ N 4 Np. (2.68)

Focusing on eq. (2.67), since the lagrangian in eq. (2.46) is already written in a basis in
which the charged leptons Yukawa couplings are diagonal, the fields vy, correspond to
the flavour eigenstates that appear in the charged current interactions. In the seesaw
limit, we can identify the matrix Q with the PMNS unitary mixing matrix U. Therefore,
we have

Dy, = —Utm, U, (2.69)

This holds in the seesaw limit approximation, in which the mixing with the N fields,
that would imply a rectangular mixing matrix, is suppressed. This avoids an unpleasant
outcome related to the non-unitarity of the mixing: the failure of the Glashow-Iliopoulos-

Maiani (GIM) mechanism [61] and the appearance of flavour changing neutral currents.

It should be now clear how the seesaw mechanism [62-67] works: the heavy RH neutrinos
and the LH neutrinos mix in such a way that, due to the different scales involved, the
spectrum of the final mass eigenstates splits into two sets. One is composed of light
neutrinos, almost entirely made of the LH neutrinos, while the other consisting in heavy
neutrinos almost coinciding with the RH neutrinos. The heavy scale of the Majorana
mass matrix suppresses the final active neutrino masses so that they can naturally lie

around the small experimental values.

2.1.4 Parameters in the seesaw lagrangian

The addition of three new fields in the SM lagrangian necessarily implies an enlargement

of the parameter space. Indeed, looking at eq. (2.46), we can see that new Yukawa
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couplings Y,; and the diagonal Majorana mass matrix D), are introduced. In general,
the 3 x 3 complex matrix Yy, is specified by 18 real parameters, however, a rephasing of
the lepton fields can eliminate 3 of them, reducing the number to 15. D, includes the
three Majorana masses M;, therefore, in total, the number of parameters introduced by
this realisation of the seesaw mechanism is 18. In a particular seesaw model, however,
it is not practical to directly specify the Yukawa couplings. Instead, it is possible to
input a set of parameters that have a more direct physical meaning. We can notice that

combining eq. (2.58) and (2.69) we have
Dy, = UlmpDy}tmb, U, (2.70)

that is
1= D, V2UtmpDy}mb, U* D, V2. (2.71)

By splitting also matrix D;Jl we can see that the seesaw mechanism implies
¢
(D,;W UTmDD;j”) (Dgf/? UTmDD;j”) =1 (2.72)

If we define
Q= D, 2UtmpD; (2.73)

eq. (2.72) implies that 2 is a complex orthogonal matriz [68]. From eq. (2.73) we can

express mp, that is, the Yukawa couplings, as
mp =UDY? QDY (2.74)

Therefore, the model is completely specified if we provide

(a) 6 mixing parameters in U: 3 mixing angles and 3 phases,
(b) 3 light neutrino masses m; in D,y,,
(c) 3 heavy neutrino masses M; in Dy,

(d) 6 real parameters of the complex orthogonal matrix .

The total, clearly, still sums up to 18 parameters, but this parameterisation is quite
convenient since (a) and (b) are related to the low-energy scale of the active neutrino
physics. Points (¢) and (d) are linked to the high-energy physics of the RH Majorana
neutrinos. Clearly, while the former set is experimentally accessible, the latter is difficult
(if not impossible) to directly measure.

Constraining these sets of free parameters is indeed the aim of the present work.
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The Q matrix entries have also a precise physical meaning. From eq. (2.73) we can easily

obtain ,
(UTmD)ij

02— 'Y
K miMj ’

(2.75)

which satisfy the orthogonality condition
dai=1 (2.76)
J

Therefore, we can write [69]

UTmD

m; = Zmi Z M, (2.77)

Each entry Q?j corresponds to a contribution to m; proportional to the inverse of the
heavy neutrino mass M;. We can regard then the elements Q%j as the weights [69,
70] with which the heavy neutrino masses contribute to the determination of the light

mass m;.

2.1.5 Types of seesaw mechanisms

The mechanism we have described in detail in the previous section is actually called
type-1 seesaw. There are indeed other types of seesaw mechanism, all sharing the same
idea of different interplaying scales that suppress the neutrino masses. We will very

briefly mention the general scheme of the most relevant other types.

Type-II seesaw [71-73]. In this version, an additional Higgs field A is introduced,
which is a triplet under SU(2) . This couples both to the leptons and the Higgs doublets,
so that, when the neutral component of A acquires a VEV, va, a Majorana mass term
is generated. This is of the order guva, where g is the Higgs triplet-lepton doublets
coupling. The triplet VEV is linked by cubic scalar interaction to the EW VEV v so
that va ~ pv?/M3, therefore, the light neutrino mass scale results m ~ guv?/M3X.
Often, type-1I seesaw is found in the so-called left-right symmetric models, in which the

gauge group is extended to SU(2)r x SU(2)r x U(1)p_r.

Type-I1I seesaw [74]. In this case, three RH neutrinos are added as in type-1, however
they are assumed to be triplets ¥ of SU(2)r. They couple via Yukawa couplings Yy, the
lepton doublets and they are given a Majorana mass term with scale My. Assuming
Ms; > v, the procedure to obtain the final mass spectrum is the same as in type-I, so
that the final light neutrino mass scale is given by m ~ Y§v2 /My. The most important
difference with type-I is given by the triplet nature of the RH neutrino fields, that allows
them to couple to the gauge fields and to induce the mixing of the charged leptons with
New Physics.
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Finally, it is possible to generate a Majorana mass term for the neutrino fields via
quantum corrections. This is the feature of the so-called radiative seesaw mechanism,

whose models usually involve new particles and additional discrete symmetries.

2.2 Leptogenesis

We can now turn to the production of the baryon asymmetry of the Universe and study
a mechanism which is indissolubly linked to the seesaw mechanism we have seen in the
previous section.

In the framework of the seesaw mechanism, the source of the final asymmetry can
be traced back to the new physics represented by the heavy neutrino fields! we have
introduced. Considering the seesaw lagrangian, eq. (2.46), we must therefore determine
if there are all the ingredients needed to satisfy the Sakharov conditions and thus to
generate an asymmetry through the interaction term. This term, in form of Yukawa
coupling, is responsible for decays and inverse-decays of the heavy neutrinos into lepton
and Higgs doublets. However, since only leptons, but no quarks, are involved, we can
already understand that an asymmetry is going to be primarily produced among leptons
and anti-leptons. Clearly, there must be in addition some other processes that provide
the conversion of at least part of this lepton asymmetry into an asymmetry among
baryons and anti-baryons, since the experimental evidence refers to a baryon asymmetry.
A mechanism in which an asymmetry is originally produced in the lepton sector and
partly converted to the baryons takes the name of leptogenesis [75]. In this section
we shall study the leptogenesis mechanism that naturally arises from the type-I seesaw
lagrangian, analysing one by one how the three Sakharov conditions can indeed be

satisfied in this framework.

2.2.1 Lepton number violation and baryon asymmetry

Basing on the seesaw lagrangian eq. (2.46), the non-SM physics can be directly source
of an asymmetry only in the lepton sector. The conversion of at least part of this
asymmetry to the baryons is achieved thanks to the different interactions that take
place in the Early Universe and that are in equilibrium at those temperatures. Among
these, a crucial role is played by non-perturbative processes, predicted by the SM, that

violate the baryon and the lepton numbers: the so-called electroweak sphalerons.

In order to obtain a link between the lepton and the baryon asymmetry, we must consider
all the relevant interactions that are in equilibrium in the Early Universe [76]. At

very high temperatures we can assume that mixing among quark and lepton families

'From here onwards, we shall call “heavy neutrinos” directly the fields N; = Ngi + Ng; that appear
in the lagrangian eq. (2.46), exploiting the fact that they coincide with the heavy mass eigenstates n**",
eq. (2.68).
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is efficient, so that we can identify a single chemical potential for quarks and leptons.
Moreover, also SU(2)1 gauge interactions are in equilibrium, so that the components of
the same SU(2)r, doublet can be given the same chemical potential. We have therefore

the chemical potentials as in tab. 2.1. We can get an expression of the baryon and lepton

HQ, Chemical potential for the quark doublets
iy Chemical potential for the lepton doublets

Hup, Hdy | Chemical potentials for up and down RH quark fields

Ml Ny | Chemical potentials for RH charged lepton and neutrino fields
e Chemical potential for the Higgs field

Table 2.1: Relevant chemical potentials in the Early Universe.

asymmetries in terms of the chemical potentials. Considering the high temperatures of

the Early Universe, and thus /T < 1, for fermion species we have

T3
nx —ng = =24 0 (ux /1)), (2.78)

where X = B, L. From tab. 2.1 we have

pr =3 2y, + pg) (2.79)
1B =3 (2uQ, + Hug + Hdg) » (2.80)
so that
gT? gT?
np —np = "o (20Qy + Hug + Hdp) s nL—np =T (2 ). (281)

Considering all the processes that are efficient in the Early Universe, we can find relations

between these chemical potentials and try to reduce them to fewer independent ones.

Not only SU(2);, gauge interactions are in equilibrium in the Early Universe, but also
Higgs Yukawa interactions. Without considering, for the time being, the RH neutrinos

Yukawa couplings, we have a set of equations

Hugr — HQr = He¢
1Qp — Hdr = Hg (2.82)
/‘LlL - .LLZR = lu’¢>

To these equations, we add the requirement that the total hypercharge of the plasma in

the Early Universe vanishes. In terms of chemical potentials we have

2
BQr T 2Mup — Mg — My, — Mg + §M¢> =0. (2.83)
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We can now notice that in the SM the lepton and baryon currents J} and J4 are
conserved only at the classical level. Taking into account quantum corrections, these
currents are no longer conserved, which ultimately leads to non-perturbative processes,
called sphalerons, that can efficiently violate both the baryon and the lepton numbers

in the Early Universe plasma. We shall now briefly describe how these processes work.

2.2.1.1 Electroweak sphalerons

The pure SM lagrangian is invariant under global U(1) transformations of the lepton
and the quark fields respectively. Through the Noether theorem, this invariance leads
to the conservation of the lepton and the baryon currents J}' and J%4, so that the lepton
and baryon numbers are conserved too. However, this only holds at the classical level.
When quantum corrections are considered, these currents are no longer conserved in the

SM due to the chiral anomaly [77, 78] and their divergences are non-vanishing

_ Ny
3272

(—g2FLZVFg“” + g’2FyWF¢”) , (2.84)

where Fpy,, and Fy,, are the field strengths of SU(2) and U(1)y respectively. The
tilde denotes the dual tensor, i.e. Fg‘“’ =1/2 eMP Loy, g and ¢’ are the gauge couplings
and Ny is the number of fermion generations. Clearly eq. (2.84) implies that both the
baryon and the lepton number are not conserved anymore at the quantum level. It is

very important to notice that we still have
0, (75~ 1) =0, (2.85)

at any order in the quantum theory. Therefore, in the SM the quantum number B — L
is exactly conserved. It is interesting to understand how B, L and in general B + L are
violated within the SM.

It is possible to re-write eq. (2.84) as

0Tt = 0,J% = Ny 9, K", (2.86)

where we have introduced the new current

2 2

9 9 _abeyyrb 9
KV = =Sy (a,,wg +3e prwg) + 55 B Fy (2.87)
where W and By, are the gauge fields of SU(2)r, and U(1)y respectively. In order to
gain information on the variation of the baryon and lepton numbers, the divergences
must be integrated on space and time. However, the integral of the divergence of K*
can be transformed into an integral over a hypersurface at infinity, by Gauss’ theorem.

It can be shown that for vanishing field strength at infinity, the abelian part vanishes,
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while the non-abelian term gives

3

/ diz 0, K" = 9ng / Ao o 2T VTP (2.88)
b

Choosing as integration surface ¥ a cylinder with top and bottom at definite time
coordinates t; and ty respectively, and exploiting the gauge invariance of the current
in order to pick the temporal gauge W{§ = 0, it is possible to show that the integral
over the side surface of the cylinder vanishes and the only contribution is given by the

integration over the top and bottom surfaces. We have

3 t1
4 g abeyxraiyyrbjyrsck
/d N R el L U . (2.89)
We can define 5
— 3 abeyrraiyrsbivrsck
Ncg(t) = 0672 /d T E5kE Wa*W9 W t, (2.90)
which is the so-called Chern-Simons number, so that in the end we have
AB = AL = Ny [Nos(t1) — Nes(to)] = NyANcs. (2.91)

The variation in the baryon and lepton number is related to the difference between the
Chern-Simons number assigned to the field configurations at ¢; and ty. The nonabelian
group SU(2)y, implies a non-trivial structure of the gauge field vacuum configurations,
which can then differ by ANgg = 0, £1, +2..... These vacuum states are separated
by a potential barrier. We can therefore say that in the SM, transitions between gauge
field configurations with different Chern-Simons number can in principle take place [79],
thus implying a non-conservation of the baryon and lepton numbers.

It must be noticed that in perturbation theory, the field fluctuations are small, and
oscillate around a well defined vacuum state, without falling into a different one. For
this reason, in perturbation theory we always have ANgcg = 0 and baryon and lepton
numbers are conserved at all orders. However, large non-perturbative field configura-
tions that induce the transition between two different topological vacua can exist. The
dominant one gives ANcg = 41 and therefore a violation of the baryon and lepton

number of three units. This can be described by the effective 12-field operator

3

0 =][(QLiQLQuilL:). (2.92)

=1

At zero temperature, these transitions can take place via quantum tunnelling through
the potential barrier and we can expect their rate to be exponentially suppressed. These
transitions are induced by the anti-instanton [80] and the transition rate can be estimated
[79, 81] to be

4
[inst ~ exp <_7T> = 10_1647 (293)
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where oy, = 47/g%. Tt is clear that the instanton processes are negligible in the SM at

zero temperature and so are baryon and lepton number violations.

The situation is different if we consider the thermal effects due to the coupling to a
thermal bath, as in the Early Universe. In this case, transitions between different vacua
can happen by thermal fluctuations over the potential barrier [82], rather than by tun-
nelling through it. Two different vacua are separated by a saddle point in the energy
which corresponds to a field configuration called sphalerons. These have a Chern-Simons

number equal to +n/2 and an energy given by
Ey(T) ~ —uv(T), (2.94)

where v(T) is the VEV of the Higgs field at temperature 7. At low temperatures,
T < Tew ~ 100 GeV, the SU(2)r, x U(1)y symmetry is broken and v(7T") # 0. Therefore
the sphalerons configurations have a finite energy and the transition rate from one
vacuum to the other is Boltzmann suppressed. It is possible to compute the rate per
unit volume in the broken phase [18, 83, 84]

T, miy, Ey(T)
VAREYE exp<— T > , (2.95)

l

where myy is the mass of the W boson. This rate is clearly small. However, for high
temperatures T' > Trw, the electroweak symmetry is restored, the Higgs VEV is zero
and the transitions are no longer suppressed by the Boltzmann factor. From eq. (2.95),
taking v(T') = 0 and employing the W-boson thermal mass my; ~ g?T we could expect

that the transition rate per unit volume in the symmetric phase is

L'y

o ol T, (2.96)

However, accounting for thermal effects, the transition rate per unit volume in the

symmetric phase is more precisely given by [85, 86]

% ~ad log(a;l) T4 (2.97)

It is then possible to have a rather high rate and thus efficient B and L violating processes
in the Early Universe. Comparing this rate to the Hubble parameter we find that the

sphaleron processes are in equilibrium within the temperature range
100 GeV < T < 1012 GeV. (2.98)

These are indeed the temperatures relevant for leptogenesis, as we shall see in the next
sections. Therefore, we can consider the sphaleron processes to be in equilibrium at the

temperatures we consider.
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Efficient sphaleron processes act in a way to minimise the free energy of the plasma in
the Early Universe [87]. Indeed, considering the LH quarks and leptons, the free energy
is given by

F(T) x 6 T*(3ud, + 1i,)- (2.99)

Since sphalerons preserve B — L, the variation in the baryon number must be accompa-
nied by a similar variation in the lepton number, that is dy;, = dpug,. For this reason,

we can minimise the free energy as

dF(T)
dp,

x 12T%(3pug, + wu,) =0, (2.100)

which gives
3uqg, + iy, = 0. (2.101)

Clearly, we can obtain the same relation by considering the interactions represented by

the operator in eq. (2.92).

Using eqs. (2.82), (2.83) and (2.101) we can rewrite eq. (2.81) in terms of 1y, as

2
ng—ng= —§9T2Mlu ng —ny =

%gTQML. (2.102)
This clearly shows that in the Early Universe a baryon asymmetry is strictly linked to
a lepton asymmetry, through the chemical potential L2. Therefore, the generation of
a lepton asymmetry implies the production of a baryon asymmetry at the same time.
These relations show that the idea of leptogenesis is indeed viable: the production of a
lepton asymmetry is accompanied in the Early Universe by the generation of a baryon

asymmetry.

However, since both B and L are violated by SM processes, while B — L is not, we can
focus on this quantum number in order to single out the effective contribution of the

New Physics through leptogenesis. We have

79
np-p =ng—ng—(np—ng) = _EQTZMIL' (2.103)
Hence
28
np—Ng = ETLB_L, (2.104)
51
np —ng = —%nB—L- (2.105)

Since all the SM processes we have analysed do actively modify both the lepton and
the baryon asymmetry, it is more convenient to focus on the B — L asymmetry, rather
than on the lepton one. Indeed, B — L is preserved by the SM and eventually broken
exclusively by the leptogenesis setup. Therefore, by studying the B — L asymmetry we

2The choice of . as independent variable will turn out particularly useful in the following sections.
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are allowed to concentrate only on the relevant leptogenesis processes, leaving aside the

SM ones, which will then imply the generation of a baryon asymmetry as in eq. (2.104).

We can conclude by observing that the violation of L introduced by the Majorana
nature of the heavy neutrinos implies a violation of B — L and the generation of a
baryon asymmetry. Therefore, in our setup the first of Sakharov’s conditions is satisfied
by the violation of the lepton number which implies a final baryon asymmetry through

the net of SM processes in equilibrium in the Early Universe.

2.2.2 Violation of C and CP

The C' and CP symmetry violation in our model is provided by decays and inverse-decays
of the heavy neutrinos into leptons and anti-leptons. We can estimate this asymmetry

through the so called flavoured CP-asymmetry parameters

I i I_ i
. — 2.106

where we have defined the flavoured decay rates into both components of the SU(2)r,
doublets

(Ni S é*) : (2.107)
(

N = I+ <i>) : (2.108)

Ii=) Tie, Li=) T (2.109)
When no dependence in the rates is specified, they are considered as calculated at zero
temperature.

The CP asymmetries vanish when the decay rates are computed at tree level. However,
taking into account loop corrections they can get a finite value. Indeed, considering the

decay process up to one loop, we have a matrix element
Mo = M?a + Mila = yOA?a + ylAilou (2110)

where we have distinguished the coupling parts 1o, y1 and the amplitudes A°, A' at tree

level and 1-loop respectively. For the CP conjugate process we have

Mo = y§ A%, + v Alia, (2.111)
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Figure 2.1: Tree-level and 1-loop diagram for the decay N; — 1, @1 Majorana
neutrinos are depicted with a solid line without arrow, while the arrow on the
Higgs dotted line represents the hypercharge flow.

therefore from eq. (2.106) we have

del,¢ |M2'a|2 - ‘ﬂiaf
>p Jdlg <‘M?@

2
dela¢ ‘yoA?a + ylAila -

Eia = —

’ + ’Wzg

)

J— 2
ySAOia + yTAlia

= 5 5 , (2.112)
>p Jdllg (’yOAgﬁ + |5 A% )
where 3 )
_ D¢ d°py
dll 4 = (2m)164 (p; — 2.113
is the phase-space integration measure.
2
Since ‘Ak‘Z = ‘Ak , We can write
21 ) [dIT;  Tm{ A9 ALY
Cin = — m{yoyl} f l,¢ m{ 1ey za} . (2114)

2
S5 lol? Jllg |49,

It is then clear that the CP asymmetry depends on the imaginary part of the couplings
and on the interference between the tree-level and the 1-loop decay amplitudes, whose
relevant Feynman diagrams are shown in fig. 2.1. It is easy to verify that in order to
have non-vanishing CP asymmetry, we must have at least two heavy neutrinos. The
imaginary part of A2 A'7 can be computed with cutting rules [88, 89], by cutting the

1-loop diagrams and putting the intermediate particles on shell. For hierarchical heavy

neutrino masses, My < My < Ms, the flavoured CP asymmetries are then given by [90]

i ij
"o

<)

3 «
i = Tor TV 3 Im{YMYaj <YTY)' T

2

+ 2 2
3 (Mm2/M2 -1

Jt

>Im{ygiyaj (YTY) } : (2.115)
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where

£(z) = ;:c [(1 —|—x)ln<1—;x> 2_96] . (2.116)

T 1-g
As already mentioned, purely real Yukawa couplings Y,; will result in vanishing CP

asymimetries.

Using the Dirac neutrino mass matrix mp = vY, it will be useful to define here

m} mp )
m —7( DMi >”, (2.117)

M?
Eia:5(Mi)Z{Iiaj§<]\4g> +\7g3(1]\24~2/]\42)}’ (2.118)

i i
where Y
_ i Matm
M) = 2 MiMatm 2.119
EMi) = fom 2 ( )
and
Lo _ m{mbampesmbmo)s
o — - : 2.120
* M; M; m; Magm ( )
Im{m*D -mDaj(mEmD)jz} M,
TG = = i (2.121)

Mi Mj ™mg; Matm Mj

Without distinguishing the flavour of the final lepton doublet, i.e. considering the decay
of heavy neutrino N; into a coherent superposition |/;) of flavour eigenstates, it is possible

to define the unflavoured CP asymmetries

Im{ (m} mp)?;
f=Y =) Y Mi{Mjfﬁi mm} £(0M2/M2), (2.122)

We can exploit the orthogonal matrix parameterisation and rewrite eq. (2.118) as

o 3
i = TomT
M?2/M?
X Z M; Im{ (Z m,lﬁ/zU;kQZJ (Z ml1/2Uazin> (Z anZiQnJ) } W
i k ! " e

2 12715 yx 1/2 A N '
S N e v |

(2.123)
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and
mi= Yy my Q. (2.124)
J

It is possible to have non-vanishing flavour CP asymmetry also if the orthogonal matrix
Q) is purely real®>. However, in our discussion we will not consider these special cases.
We can also notice that, in order to have a sizeable CP asymmetry for heavy neutrino

N;, at least one heavier neutrino is needed, so to avoid suppression.

It is worth underlining that in the present work we shall always deal with a hierarchical
neutrino spectrum, therefore eq. (2.118) will always be the correct expression for the
CP asymmetries. In case of degenerate heavy neutrino spectrum, this expression is not
valid anymore and it is possible to have sizeable enhancements of the CP asymmetry.

Leptogenesis scenarios relying on this effect are said to realise resonant leptogenesis [91].

2.2.3 Departure from equilibrium

It is important to verify that in this scenario also the last Sakharov’s condition is indeed
realised. We have seen that, in our seesaw model, the process that violates L, C and
CP, and therefore is eligible for the production of a final asymmetry, is the decay of the
heavy neutrinos into leptons and Higgs doublets. Therefore we must investigate if it is
possible that these decays occur out of thermal equilibrium. If equilibrium is enforced,
we have

N +— [+, (2.125)

where we have generically indicated the heavy neutrinos, the leptons and the Higgs
fields. This means that both the decay and the inverse decay processes take place in

equilibrium and we have an additional relation on the relevant chemical potentials

HUNg — M, — H¢ = 0. (2126)

Considering the full set of relations given by eqs. (2.82), (2.83), (2.101) and (2.126), we
have that the only solution is given by the trivial one, i.e. all the chemical potentials
vanish. Therefore, we also have y;, = 0 which, through eq. (2.104), implies zero baryon
asymmetry. If at least one between the decay and the inverse-decay reactions is not in
equilibrium, then we have departure from thermal equilibrium, eq. (2.126) does not hold
anymore and a non-vanishing 1, can give a sizeable final baryon asymmetry. We must
therefore study if and when decays and inverse-decays can take place out of thermal
equilibrium.

To understand if this is possible, we can calculate the decay and inverse decay rates and
compare them with the Hubble expansion rate H(T). If the rates are larger than the

Hubble parameter, then the reaction is in thermal equilibrium [92]. In the temperature

3Except for permutations of the identity, as we shall see later on.
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range of our interest the radiation-dominated expression of the Hubble rate can be used

2
H(T) = g —— ~1.66¢gy " —. (2.127)
1
To capture the general picture, we shall consider the total decay rate

L2 =Y "(Nig + Tia) (2.128)

«

and the total inverse decay rate

ID,tot _ =ID
D2 =3 (TR + Tia)- (2.129)

2
«

We are interested in studying the ratios

FD,tOt (T) F%D’tOt (T)

7

R T (2.130)

where the temperature-dependent decay and inverse decay rates appear. The reactions

are in equilibrium when

FD,tOt (T) ]-—\I-D,tot (T)

1 2 2
- H(T)

) > 2, (2.131)

where we have the factor 2 since in the definitions of I';, and F%QD we consider the decay
in the two components of the SU(2) doublets, cf. eq. (2.107).

Taking into account the proper dilation factor, we have [93]

Ka(T)
PN T) = TPt 2.132
2 ( ) ? ,CQ(T)’ ( )
where /C;(T') are modified Bessel functions and at tree-level
D,tot __ |mDm‘ M;
S R
m,- M7,2
= ) 2.133
8mv? ( )
We can also define the so-called (unflavoured) decay parameters
IR T; + T
Ki= i _ it (2.134)

H(T =M;) H(T = M)’
so that, using eqs. (2.127) and (2.133), the ratio in eq. (2.130) can be written as

I apam eam
H(T) — H(T=M)T?Ky(T) ~'T2KoT) |




Chapter 2. Seesaw and leptogenesis 44
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Figure 2.2: Behaviour of T>"*"(2)/H(z) (red line) and FED’tOt(z)/H(z) (blue

line) for two different values of K;: K; = 100 left panel and K; = 1072 right
panel. zp denotes the value of z = M;/T such that I’?’tOt(zD)/H(zD) =2.1In

ID,tot
i

(a), 21,2 are such that I’ (z12)/H(z1,2) = 2 and we have z; ~ zp.

It will turn useful to introduce here the variable z = M; /T so that we have

1

Hz) 7 Ka(z)

L) oo oKalz) (2.136)

This way, by studying the behaviour of I';(z)/H(z), we are able to understand when
decays are in equilibrium or out of equilibrium. We can also introduce further useful

relations by defining the equilibrium neutrino mass

Smv? 16%5/2\/9* v2
m, = H(T=M)= """ _—_ ~1.08x 10 %V, 2.137
M7 ( 2 3v5  Mp ( )
so that B
K= (2.138)
e

The total inverse decay rate can be obtained at equilibrium from the decay rate
nfd TP = gl TP (2.139)

where n?q and ni,qi are the equilibrium number densities of lepton doublets and heavy
neutrinos. This way we obtain
FI-D7tOt(Z) 1

’H(Z) = 5Kilcl(z)z‘*, (2.140)

ID,tot
i
drop out of thermal equilibrium. Egs. (2.136) and (2.140) are plotted in fig. 2.2 for two
different values of K;: K; = 100 in fig. 2.2(a) and K; = 1072 in fig. 2.2(b).

and it is possible to study the behaviour of I' (z)/H(z) to see if the inverse decays
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Studying the red curve in fig. 2.2, we can notice that we always have a value zp such

that Dtot

L o) _y (2.141)
H(zp)

so that for z > zp we can say that the decay reaction is in equilibrium.

Studying the blue curve, we can notice two different behaviours in fig. 2.2(a) and 2.2(b),

depending on the value of Kj:

e for K; > 1 we can find two values z1, z9 at which we have

F,I£D7t0t (2172)

Ha) ~ 2 (2.142)

and therefore a window 2z; < z < zo in which inverse decays reactions are in

equilibrium,

e for K; < 1 the blue curve never reaches 2, therefore in this case inverse decays are

never in equilibrium.

These two situations take the names of strong washout and weak washout regime respec-

tively.

e In the strong washout regime we have a full departure from equilibrium for z < zp,
when both decays and inverse decays are out of equilibrium. In this situation the
third Sakharov’s condition is satisfied and an asymmetry can be generated. For
zp < z1 < z < z9 both reactions are in equilibrium and proceed efficiently to
erase the asymmetry produced before. Therefore, if thermal equilibrium were
maintained, no asymmetry would survive eventually. However, for z > 29 inverse
decays drop out of equilibrium, therefore N; decays take place out of equilibrium,
satisfying again the third Sakharov’s condition. For this reason, a net asymmetry

can be finally produced.

e In the weak washout regime inverse decays are never in equilibrium, therefore
the third Sakharov’s condition is satisfied and an asymmetry can be produced.
However, by missing an equilibrium window like that in the strong washout regime,

the final asymmetry is sensitive to the initial conditions.

With this analysis of decay and inverse decay rates we have shown that in the framework
of leptogenesis the heavy neutrino decays can take place out of thermal equilibrium, thus
satisfying also the third Sakharov’s condition. In the following section we shall analyse

in detail how the asymmetry is actually produced.
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2.2.4 Vanilla leptogenesis

Once established that all three Sakharov’s conditions can be satisfied within our model,
we can study in detail how the asymmetry is generated by the leptogenesis mechanism.
In order to point out the key aspects and the fundamentals of the asymmetry produc-
tion process, it can be more convenient to study the simplest version of leptogenesis,
often referred to as wvanilla leptogenesis. In this framework we shall make the following

assumptions.

1. We shall assume a hierarchical heavy neutrino spectrum My < My < Ms.

2. We shall assume that the dominant contribution to the final asymmetry comes
from the lightest, N1, while those of No and N3 are negligible. For this reason,

this is called Ni-dominated leptogenesis.

3. We shall assume that the leptons originated from the decay of N; are produced
in a coherent superposition of flavour eigenstates. We are therefore neglecting the
effects of lepton flavour, hence the name of unflavoured Ni-dominated leptogenesis
[75, 76, 94]. We shall study flavour effects in the following chapter.

4. We are considering only heavy neutrinos decays and inverse decays, while neglect-
ing the scattering processes predicted by our lagrangian. These violate the lepton
number by 1 or 2 units and would in principle concur to the evolution of the asym-
metry. We shall comment on their effect in the following section and neglect them

in the rest of this work.

5. We shall also neglect other corrective effects such as thermal corrections [95], which
in general have a small impact, quantum corrections [96-98], and spectator pro-
cesses [99, 100]. We will return on the latter effect later in the following chapters

when commenting on flavour coupling.

As a matter of convention, we can study the evolution of the number density of a species
(or asymmetry) X normalised to a comoving volume containing one heavy neutrino in
ultra relativistic equilibrium. Therefore we shall use

nx (Z ) M 1

with z= — (2.143)

Ny = a2,
Tl (<) T

where nx is the number density of X. This can be easily linked to the abundance, or

yield Yx =nx /s as

dnx(z) 4 7'gi(z) nx(2)

Nx(z) = 3nS9(z) 135 ((3) s(2)

~2.409;(2)Yx(2), (2.144)
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where ¢3(T) = >, 9o(T/T) + 7/8 dof g¢(Ty/T)3. Under the assumption (2), we shall

focus on the evolution of the abundance of N1, which is ruled by the Boltzmann equation

dNp,
dz

= ~Di(2) (Nw (2) = N (=) . (2.145)

where only decays and inverse decays are taken into account in the decay factor Di(z),

following assumption (4). The decay factor is given by

I Ki(2)
Di(z) = ;T(z) =K K (2.146)

where we have used the result in eq. (2.136). The variation in the abundance of Nj is

then determined by how far its distribution is from the equilibrium one.

By what was shown in subsection 2.2.1, it is more convenient to quantify the asymmetry
with the B — L term, which is genuinely due to leptogenesis. The B — L asymmetry
will then receive a contribution from the decays and inverse-decays of N7 that takes into
account the CP asymmetry factor. On top of this, the asymmetry in general will tend
to be erased through inverse decay processes that will statistically take place depending
on the size of the asymmetry itself. This second contribution is called washout. Putting
these two terms together we have the following Boltzmann equation for the evolution of

the B — L asymmetry

L — 2\ Di(2) (NNI(Z) e (z>) — WP (NP (2). (2.147)

Here the washout factor (due to inverse decays into N7) is defined as

1Pty 1
el L A (O 2.14
2 zH(z) 4 Ka(z), (2.148)

Wi (2)
where we used the result in eq. (2.140). Eq. (2.147) can be integrated giving
. z
NgP (z) = NB' | exp {— / dz’WfD(z’)} + e1k(2), (2.149)
0

where Ng’i_ ;, is the initial asymmetry and we have defined the efficiency factor

z N z
k(z) = —/0 dz’ ddzl>f1 exp [— // dz" WllD(z")} . (2.150)

In eq. (2.149), the dependence on the initial asymmetry Ng’i_ 1 is evident. Here we shall
consider a vanishing initial asymmetry Ng’i ;, = 0, thus eliminating the first term in the
equation and leaving
1
NP, (2) = e16(2). (2.151)
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In the strong washout regime the contribution of any initial asymmetry is anyways erased
by the intense washout due to K7 > 1. We shall here concentrate on this case, giving
only some comments on the expressions valid in the weak washout regime.

Assuming vanishing initial abundance of the heavy neutrinos implies that Ny is thermally
produced by inverse decays, which try to reach the equilibrium distribution. Assuming

the N distribution reaches the equilibrium distribution
N (z) = 222K
N (2) = 57 2(2) (2.152)

at zeq, for 2z < z¢q the distribution of N; is negligible compared to the equilibrium one,

so that we can rewrite eq. (2.145) as

dNn;,
dz

~ D1(2)Nyt(2), 2 < 2eq- (2.153)

However, given the detailed balance condition Nle TP = N;,ql 'y, and Nle 9 =1, we also

have
dNp,

= 2WiP(2), 2 < zeq- (2.154)

Therefore we obtain
K (2) = k(2 < 2eq) = —2/ dz' WiP (") exp {—/ dz" WllD(z")]
0 2!
1 3
~—-2(1—exp _EKlz : (2.155)

Integrating eq. (2.153), we get

K

Ny, (2 < 2eq) >~ #23. (2.156)

For z — 400 this gives [94]

_ _ 1 1 -
Ky (K1) =k (2 = +00) = —2e 2 VUKL <exp [2N(Kl)] - 1) , (2.157)
where
3 N N(K1)

N(Ki) = K, N(K) = (2.158)

(1+ VN ED)

This expression for £ (K1) is also valid in the weak washout regime. From eq. (2.157)
we can see that the strong washout causes an exponential suppression of the asymmetry
produced, for z < 24, by the inverse decay processes that build up the N; abundance.
This implies that around z., the asymmetry is quickly erased by the strong washout.

The final asymmetry must then be produced in the following stage, for z > z,.
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For z > 24 the actual distribution Ny, (2) cannot be neglected anymore. We can study

the deviation from the equilibrium distribution by defining

A(z) = Ny, (2) = Nyt (2), (2.159)
and rewriting eq. (2.145) as
B 1 dNp,
A(z) = Di(s) dz (2.160)

Having assumed strong washout, i.e. K; > 1, we can use that Di(z) o< K3 and solve
eq. (2.145) by perturbatively expanding in 1/K7, so that [94]

AN (2
A(z) = —Dll(z) ;V;() + O(%) . (2.161)

Using eq. (2.152), (2.148) and the properties of modified Bessel functions, we obtain

1 2 D

Az) = . 2.162
(Z) Dl (Z) P Kl 1 ( )
This can be used in the derivation of the efficiency factor for z > 2.,
KY(2) = k(2 > 2¢9) = / dz' D1(2")A(2") exp [—/ dz" WIID(,Z")}
Zeq 2’
9 z WID(Z/) z
- i [0 T e[ [Carwpn). (2,163

This integral can be evaluated by asymptotically expanding around the minimum of the
exponent, where the integrand gives the largest contribution. For z — 400 this gives
[94]

2 1 _
E}_(Kl) =rt(z = +00) = 2K (1 — exp [—22L(K1)N(K1)]> , (2.164)

valid also in the weak washout regime, where zy, is such that the exponent in eq. (2.163)

has a stationary point and is given by [101]

20 (Ky) ~ 24+ 4 K)13 exp(—ié)) : (2.165)
The fact that the efficiency factor receives its largest contribution around this value
means that the asymmetry is mostly produced around z;. Moreover, in the strong
washout regime we also have zj ~ zo. For these reasons, in the strong washout regime
we can take zy, and the related temperature 17, as a good estimate for the scale at
which leptogenesis takes place.
We can also notice that /ﬁ)}_ and Ky have different sign, which implies that also the
asymmetries produced for z < 2., and for z > 2., have different sign as well. We

can therefore say that around z., the asymmetry previously produced is exponentially



Chapter 2. Seesaw and leptogenesis 50

1072 4 -
1074~ -
1076 - -

'B-L

108 ‘Nlep,f L

10710 S _EDiE1Zeq | ‘ A \ ‘
1072 1071 1 10 100

Figure 2.3: Evolution of the Ny and |Np_r| abundances, in red and blue re-
spectively. The dashed red line marks the N; equilibrium distribution. zp is
defined as in eq. (2.141) and z1 2 as in eq. (2.142). Here we have K; = 100

suppressed and on top of it a new asymmetry with different sign is produced.

The final asymmetry NEE’? = N};E ;(z = +00) is then given by
NgPp = e1rp(K1), (2.166)

where
k(K1) = w5 (K1) + k7 (Kq). (2.167)

If we assume thermal initial abundance for Nj, the final efficiency factor is given by
[94, 102]

K Klzj(Kl) [1 - exp(—;Kl zL(Kl))] . (2.168)

It must be noticed that in the strong washout regime the efficiency factors for both
vanishing and initial N; abundance are given by the same asymptotic expression [103—

105]
0.5

1

thus confirming that the strong washout regime is insensitive to the initial conditions.

The evolution of N; and B — L abundances in the strong washout case is shown in
fig. 2.3. We can notice that for z < 1 N;’s abundance grows thanks to inverse decays
that produce a certain amount of asymmetry N};E .- At zp, as in eq. (2.141), the decay
processes enter equilibrium and at z., Ni’s distribution reaches the equilibrium one.
Around z¢4 both decays and inverse decays are in equilibrium and the asymmetry gener-
ated so far is quickly erased. Decays will then give a new contribution to the asymmetry,
with different sign. This would vanish if equilibrium were maintained, however at zo, as

in eq. (2.142), inverse decays drop out of thermal equilibrium, while the heavy neutrino
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abundance reaches negligible values. Therefore, around 29 ~ z; the asymmetry gets

frozen to its final amount N};E’z.

In order to make a comparison with the experimental results, it is necessary to com-
pute the baryon asymmetry that can be obtained from the B — L one produced by
leptogenesis. The conversion factor has already been obtained in eq. (2.104), where SM
sphalerons and all the processes in equilibrium in the early Universe have been consid-
ered. However, as pointed out in the introduction, the experimental evidence we refer to
is provided in terms of the baryon-to-photon ratio measured through the CMB, ngMB.
In order to compare it with the final result of leptogenesis, we must take into account
the thermal history of the Universe between the leptogenesis scale ~ Ty, ~ 1019 GeV and
the recombination era Ty ~ 0.3eV. Following the standard picture, during the Universe
evolution the baryon-to-photon ratio was diluted by photon production due to the tran-
sition to the non-relativistic regime of almost all the particles composing the thermal
bath. Therefore, we must obtain the baryon-to-photon ratio produced by leptogene-
sis and evolve it down to the decoupling temperature, nlgp (Tp). Considering that after
the leptogenesis process, the asymmetry remains stable until present, the asymmetry

number density np_s, evolves in a similar way as ng in eq. (1.12)

S (TO) nlep
S(TL) B—L

ng 1 (To) = (Tr), (2.170)

Considering the baryon-to-photon ratio, its evolution is similar to eq. (1.13)

le le
Ulep _nB—np (Th) = @”BEL(TO) _ 28 s(To) ny(T%) ng- [ (Tr) (2.171)
B Ty 79 ny(Tp) 79 s(Tr) ny(To) ny(Tp) '

where we have used the conversion factor in eq. (2.104). In terms of the Np_ quantity

we have

1 1
v — 28 92(Th) np-(Tr) _ 28 g3(To) Ny®(T1)
B 19g5(Ty) na(Ty) 7995(TL) Ny(TL)
283 gi(TO) lep
-2 T
794 g5(T1) 5-1(T1)

=dNE (2.172)

where we have used that N, = 4/3. In the evolution from the high leptogenesis scale
Tr, down to the recombination era, the count of relativistic degrees of freedom changes
sensibly. Indeed, we have gf(77,) ~ 106.75, while gf(7p) ~ 3.91, therefore

d~0.96 x 1072 (2.173)

We are interested in models which are able to produce a final asymmetry compatible

with the experimental result 5B, eq. (1.11). In our analysis we shall impose the loose
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condition
g > ngMe. (2.174)

Models that are able to satisfy it are said to realised successful leptogenesis.

2.2.5 Bounds on vanilla leptogenesis

The simplest leptogenesis scenario we have just discussed is characterised by a lower
bound on the mass of the heavy neutrino N;. We shall now analyse the origin of this

important constraint.

Having assumed a hierarchical heavy neutrino spectrum M; < My <« Ms;, we can

further simplify the expression of the unflavoured CP asymmetry, eq. (2.122), given that

5 13

(@) =1+ +55+06@"), =+ (2.175)
Taking*
M3 M2
§<2) :£<3> ~ 1, (2.176)
M} M}
we can rewrite eq. (2.106) for N; as [102, 106]
3 M, 9 9
€L e ij Im {3} . (2.177)

It can be immediately noticed that in the degenerate limit, m; ~ mo ~ ms = m
we have €1 = 0 since, given the orthogonality condition ) Qi = i we get
Im{Q}, + Q3, + Q3,} = 0. By maximising eq. (2.177) we get an upper bound on the
unflavoured CP asymmetry [102, 107]

(m3 —ma). (2.178)

e1] S e =

This gives the maximum value of the final baryon-to-photon ratio

3 M,

lep,max:d max :d
I ) 16702

(mg —m1) Ky > ngME, (2.179)

where in the last step we imposed the successful leptogenesis condition. This clearly

translates into a condition on My

1 2 CMB
b B (2.180)

mz —mi) Kf

“A detailed study that takes into account the difference between £(M3/M7) and (M3 /M?) can be
found in [102].
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Therefore we can say that in the vanilla leptogenesis scenario the mass of the lightest
heavy neutrino, producing the asymmetry, is bounded from below [107, 108]. It is possi-
ble to show that for the experimental value of m,ty, and vanishing initial N; abundance
the bound is given by [94, 102, 108]

M; >3 x 10° GeV. (2.181)

In this scenario the successful leptogenesis condition is then able to put a constraint on
the heavy neutrino mass spectrum by placing a lower bound on M;. This is an example
of a prediction on the, otherwise inaccessible, high-energy neutrino parameters that is
derived indirectly through the requirement that the model reproduces the correct final

asymmetry.

2.2.6 Comment on scattering processes

The seesaw lagrangian implies the existence of lepton number violating processes other
than the decay of the heavy neutrinos. These are generically scatterings involving the
lepton doublets and the heavy neutrinos and can be divided into processes violating L

by one or two units [109]. The relevant Feynman diagrams are shown in fig. 2.4. They

\f\/
N; q 1 q
- A
]
o P N,
! /\
la

Figure 2.4: Feynman diagrams of lepton number violating scattering processes.
The full set can be obtained by reversing the fermion/hypercharge arrows.
(a) |AL| = 1 scattering processes involving the top quark. (b) |AL| = 2 scat-
tering processes involving a heavy neutrino in the s and ¢ channel.

in general play a role in the thermalisation and modification of the heavy neutrinos
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abundance and in the generation of the B — L asymmetry, affecting also the washout

term. The Boltzmann equations are modified into

dgévl =~ (D1(2) + $1(2) (N () = N (2)) (2.182)
d]\;Z_L =e1(Di(2) + S1(2)) (NN1 (2) = Nyt (z)> — Wi(2)Np_r(2). (2.183)

Here the scattering factor S; involves the |AL| = 1 processes in fig. 2.4(a), that modify

the number of heavy neutrinos, and is defined as the decay factor

M)
z H(z)

S1(2) (2.184)

The washout factor W7 must take into account also the |AL| = 2 processes, in fig. 2.4(b),
since these also cause a rebalancing of the asymmetry. The full washout factor is then

defined as the sum of three terms
Wi(z) = WIP(2) + WIAHE () + /A2 (), (2.185)

We shall analyse separately the [AL| = 1 and the |AL| = 2 processes.

2.2.6.1 |AL|=1 scattering

These processes receive the most important contribution from the scattering with top
quarks fig. 2.4(a), and gauge bosons. However, here we shall consider only the first case,
ignoring the impact of the gauge bosons, which is still rather controversial. It is possible

to obtain an expression for the decay plus scattering factor [94]

M
Dl(Z)-l-Sl(Z) ~ Kg |:1+111(1) Z2ln(1+a):| R (2.186)
myg z
where s o
_ M . g 4m°gv
and )
81
= 2.188
= 9m(M/my)’ (2.188)

with myg and m; being respectively the Higgs and the top-quark masses. In eq. (2.186)
the scattering term is dominant for z < 2, while for z 2 2 the decay term dominates.
This implies that the result of |[AL| = 1 processes is to favour the heavy neutrino
production. Therefore, affecting the the physics before z., will have an impact mainly
in the weak washout regime, which is sensitive to the early stage of leptogenesis. The

AL|=1 .
term W1| | can be written as

WA= ) = 1 () WIP(2), (2.189)
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where

ji(z) =1+ 2118 ~ [i ln(l + %) + ZK;J <1 + ;i) : (2.190)

It can be shown that, as expected, the final efficiency factor is mildly affected only in

the weak washout for vanishing initial abundance. In the strong washout regime the

effect of the |AL| = 1 scattering processes is negligible [103].

2.2.6.2 |AL| =2 scattering

These processes involve the exchange of a heavy neutrino in the s and ¢ channel. In

AL|=2 . I
W1| =2 care must be taken in considering only

order to compute the washout factor
the non-resonant contribution of the s-channel processes. It is possible to show that
these scattering processes are mostly important in the non-relativistic regime and their

expression can be approximated as [94]

My >, m7,2

|AL|=2 ~ ﬁ
221010 GeV 1eV2'’

W, ~ (2.191)

where w =~ 0.186. It can be shown [109, 110] that |AL| = 2 scatterings give a sizeable

contribution only for

2
m
M; > 10 GeV <a““> : (2.192)

For this reason, we shall safely neglect them in the rest of this work.






Chapter 3

The importance of the

No-dominated scenario

In the previous chapter we analysed the general setup of the type-1 seesaw mechanism
and the leptogenesis process linked to it. We described in detail the production of the
baryon asymmetry in the particular scenario of wanilla leptogenesis. As pointed out,
in this case the asymmetry is dominantly produced by the lightest heavy neutrino Ny,
while the contributions of No and N3 are assumed to be negligible. We have shown that
this scenario is actually able to reproduce the correct final baryon-to-photon ratio ngMB,
thus realising successful leptogenesis. This achievement implies an important constraint
on the heavy neutrino sector, imposing a lower bound, eq. (2.181), on the mass of
the lightest neutrino that generates the asymmetry. This feature is undoubtedly an
interesting prediction on the heavy neutrinos mass spectrum imposed by the successful
leptogenesis condition. However, it also represents a drawback of the model. Indeed,
when type-I seesaw mechanism is embedded in some larger framework, such as SO(10)
GUTs, this bound is typically not respected. The lightest heavy neutrino predicted by
grand unification models is sensibly lighter than what required by vanilla leptogenesis.
It may therefore seem that the leptogenesis mechanism, though viable on its own, cannot
be embedded into a broader and more elegant picture such those proposed by theories
like SO(10) GUTs.

Nonetheless, it is possible to find a way to circumvent the lower bound in eq. (2.181).
This bound is imposed by the successful leptogenesis condition on the mass of the heavy
neutrino that produces the asymmetry. In vanilla leptogenesis this is the lightest one,
Ny, which is also subject to opposite restrictions on its mass originating from SO(10)
GUT models. A possible way out is to set Ny free from eq. (2.181) by assigning the
leptogenesis task to the next-to-lightest heavy neutrino, Ns. In this way, we can expect
successful leptogenesis to impose a bound on My, while M; can now agree with the
lower values predicted by SO(10) GUT models, M; < 10? GeV. We can try, therefore,

to shift leptogenesis from the lightest to the next-to-lightest neutrino, thus introducing

o7
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the so-called Nao-dominated leptogenesis models, in which the final asymmetry is now

produced by Ny and the contribution of Ny (and N3) is negligible.

We can make a first attempt to study the asymmetry production in the No-dominated
models by following the steps explained in the previous chapter. Firstly, we shall consider

a hierarchical spectrum, in particular such that
M1 2 3 M;, (3.1)

so to avoid the overlapping of the processes associated to different heavy neutrinos
[101]. With this assumption, we can divide the complete leptogenesis process into dif-
ferent stages, depending on the temperature, each one characterised by the interactions
involving one particular heavy neutrino. Considering that the heaviest neutrino will
have a negligible contribution, we can first concentrate on the processes taking place at
T ~ M, that is on the stage involving the next-to-lightest neutrino, and then on the

second stage at T' ~ Mj, where the lightest neutrino becomes important.

e Stage I T ~ M>. Assuming a vanishing initial No abundance and zero initial
asymmetry, the situation is totally similar to the vanilla leptogenesis case, but

here we are referring to No. We have therefore

d;\;];@ = ~Da(z) (NN2(Z2) - vag(zg)) (3.2)
lep
dJZZ_L = e9Dy(2) (NNz(zQ) ~- Ny (z2>) — WP (22) NP | (22), (3.3)

where zo = My /T. The expression for the asymmetry produced by Na at the end
of stage I (i.e. z2 > 1) will be therefore

NP7 = egrip(Ky) (3.4)

e Stage II T ~ M;. In this second stage, we can assume again vanishing initial
N abundance, however the initial value of the B — L asymmetry is now given by
eq. (3.4). Since we are now considering M; < 10° GeV, we already know that the
asymmetry produced by N; will be negligible. For this reason, we can simplify the

Boltzmann equations into

dNy
T = =Di(a) (N, (1) = N () (3.5)
leeE .
T = WP )N (), (3.6)

le
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Figure 3.1: Scatter plots of Ms vs. K for models realising successful leptoge-
nesis in No-dominated models [111]. In the left panel (a) the unflavoured case
is considered. In the right panel (b) the flavoured case is studied. Here the
shadowed region marks the transition zone around My ~ 5 x 10 GeV.

where z; = M;/T. As we can see, the role of Nj is now restricted to the washout

factor, therefore the expression for the final asymmetry is given by

lep,f _ a7lep,2 —37 gy
NpZp =NpZpe s

B_
= €2I<Jf(K2) 6_%1(1. (37)

In this first attempt to study the asymmetry produced in the No-dominated scenario, we
can notice that the final asymmetry is produced by Ns at T' ~ Ms and then undergoes
the washout due to Ny at T' ~ M;. The washout depends exponentially on K;. We can
therefore expect that for large values of K the final asymmetry is suppressed, so that
successful leptogenesis can be achieved only for suitable choices of My and K;j. This
can be clearly noticed in fig. 3.1(a) [111]. Here values of M5 and K realising successful
leptogenesis according to eq. (3.7) are plotted. A suitable baryon asymmetry can be

> 10 GeV. Moreover, the value of M increases

~

produced in this model only for M,
with K7 in order to produce an asymmetry large enough to survive the washout. For
K; Z 10 successful leptogenesis cannot be achieved. This means that for values of
K1 ~ Magm/m. =~ 50, successful leptogenesis cannot be realised. We can therefore
conclude that in this scenario successful leptogenesis can be achieved only by selecting

small values of K7, and therefore by admitting a certain level of tuning on the parameters.

This analysis may therefore lead us to the conclusion that No-dominated leptogenesis is
hardly viable. However, it has been pointed out that this study is incomplete, since it
neglects very important effects due to flavour. We shall then first focus on these new

features and then propose an improved model of No-dominated leptogenesis.
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3.1 Flavour effects

In the analysis previously carried out, the flavour of the produced lepton doublets was
completely neglected. However, a more careful study of the model shows that flavour
plays a very important role in leptogenesis [112, 113]. In our lagrangian, lepton doublet
flavour appears in the Yukawa couplings with the RH neutrinos and with the RH charged-
lepton singlets. In general, we have therefore two kinds of flavour effects: heavy flavour
effects and light flavour effects. We shall analyse them separately and then consider how

they apply to our No-dominated scenario.

3.1.1 Heavy flavour effects

Assuming eq. (3.1), in the thermal window around T' ~ M; the dynamics is ruled by the
processes involving the neutrino N;. In particular, its Yukawa couplings to the lepton
and Higgs doublets

LD —Yyily Ng;® + hec., (3.8)

where o = e, u, 7, imply that the lepton doublets are produced in definite quantum

states as
IN;) = |1;) Zcmyz (3.9)
INg) = [la) ZCW!Z (3.10)

that is on coherent superpositions of e-, y- and 7-flavoured lepton doublets. The super-

position is specified by the coefficients C;, and C;, such that
— 2
Y CilP =1, ) |Ci| =1. (3.11)
e o

and therefore CP|l;) # |I;). The

flavour states |l;) and |l;) are not in general CP conjugated. Moreover, the lepton dou-

Due to loop corrections, we have in general Cjo # Cf,

blets produced by the different heavy neutrinos do not generally respect orthogonality

conditions. That is, in general, we have [113]

(Lill;) # 635 (3.12)
This has remarkable consequences on our No-dominated model.

e Stage I T' ~ M. Here lepton doublets are produced by the decay of Ny in the

flavour states |l2), |l2).

e Stage II T ~ M;. At these temperatures N7 becomes relevant, i.e. its decays and

inverse decays are efficient. These processes would involve lepton doublets in the
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flavour states |l1), |I1), which are, in general, different from the states produced
earlier by No. However, since heavy flavour states are not, generally, orthogonal,
N7 interactions measure the projection of states |l2), |l2) along the flavour direction
imposed by Nj. This means that N; interactions will break the coherence of state
|l2) into a |l;) component and an orthogonal component \112@. Similarly happens
for states |l3). Only states |l1) and |l1) will now be involved in the dynamics of
Ny, while the orthogonal states \112@, |E> will not be touched by N;. Out of
the asymmetry produced by Nj, only the projection onto the flavour |i1), |I1) will
then be affected by the processes involving Ny, and undergo the washout. The
orthogonal component will survive stage II unmodified.

We can define the probabilities

pij = [(1]1:)] . Dy = |G| ;o (313)

Ja T

such that
Pij + Pijl = L, Dij + Pl = 1. (3.14)

Neglecting here!, for simplicity, the differences in flavour composition between |;)
and |[;), at tree-level 6? =0

o

so that p?j = ﬁ?j. This way, eq. (3.7) can be
rewritten as
ngf Nlepf_i_NZepo
_ 3
> phy eakp(Ka) e = M1 4 (1 — phy Jeanf(Ko), (3.15)

where Na, and N, A, are, respectively, the components of the lepton asymmetry

along the flavour |l1) and its orthogonal state.

We can already notice that flavour effects, in this case heavy flavour effects, introduce
significant modifications to our initial picture. In particular, it is very important to

notice that part of the asymmetry produced can actually escape Np’s washout [114].

It is also interesting to obtain an expression for the probabilities in eq. (3.13). At tree
level we have [115, 116]

2 2

’(mEmD)ij

ka Q]kaj (316)

p.._ =
Y (mlymp)i (mhymp)y; My

When p% = 0 it means that the flavour compositions of the lepton states produced
by neutrinos IV; and N; are orthogonal in the flavour space. Therefore, a lepton state
produced by N; cannot interact with N; and this can be the case of the lepton states
exchanged in the 1-loop neutrino decay, fig. 2.1. Therefore, pgj = 0 implies that the

1We shall consider this feature in the following sections.
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interference of neutrino N; with IV; does not occur and the relative term in the CP
asymmetry vanishes. This can be easily seen since pgj = 0 implies (m%m p)ij = 0, which
can then be plugged in eq. (2.118).

From eq. (3.16) it is also interesting to notice that if the orthogonal matrix is Q = 1 or
one of the 5 permutations that can be obtained from the identity, we have p?j =0Vi,j,
so that the flavour compositions of the lepton states produced by the heavy neutrinos
are all orthogonal. In this case it is easy to realise that the heavy neutrinos do not
interfere and therefore all the CP asymmetries vanish. We can therefore conclude that
the particular seesaw models in which the complex orthogonal matrix €2 is the identity,
or one of its permutation, are not able to provide any CP asymmetry, hence they cannot

realise leptogenesis.

3.1.2 Light flavour effects

The flavour of lepton doublets plays a role in the Yukawa interactions with Higgs doublets

and charged-lepton singlets as well

LD =) Dy lalra® +he. (3.17)

This implies that, beside the leptogenesis processes, interactions involving the charged
singlets take place in the Early Universe involving definite flavour lepton doublets. Since,
as we have seen, the heavy neutrino decays produce lepton doublets in a coherent su-
perposition of flavour states, in principle the interaction given by (3.17) could act as a
quantum measurement of the flavour components of the lepton doublet states |I;), |I;).
We must therefore understand when these interactions are efficient enough to break the
coherence of the heavy flavour states produced by heavy neutrino decays.

Given the interaction term in eq. (3.17), the reaction rates can be estimated as [117]
3 (ne )2
To(T) =5 x 10~ (Dya) T, (3.18)

so that, comparing it to the Hubble rate and using eq. (2.127), we can expect that these
interactions enter thermal equilibrium while temperature drops. The exact temperature
depends on the Yukawa coupling D o> therefore we have different thresholds at which
different flavour interactions enter equilibrium: for 7' < 10'2 GeV 7-interactions are in
equilibrium, while for T < 10° GeV also p-interactions enter equilibrium. Finally, for

T < 10% GeV also e-interaction are in thermal equilibrium.

The light flavour interactions given by eq. (3.17) are then competing with the heavy
flavour interactions in eq. (3.8). If light flavour interactions are “faster”, the lepton
doublets produced by the heavy neutrinos will be measured along the light flavour di-
rections, otherwise they will be projected onto the heavy flavour ones. It is possible to

say [118] that if the charged-lepton Yukawa interactions are in equilibrium and we also
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have
Lo 2y TP (3.19)
)

the light flavour effects dominate and the coherence of the produced lepton doublets
is broken accordingly. This is easily understood considering that in these situations a
lepton doublet produced by a heavy neutrino decay interacts on average with a charged-
lepton singlet before scattering with a Higgs doublet back to the heavy neutrino. Thus
the coherence of the heavy flavour state is broken and the temperature regions in which
this occurs take the name of fully-flavoured regimes.

In the temperature intervals in which this situation is not realised and neither of the
two kinds of Yukawa interactions dominates, the full decoherence of the lepton doublet
quantum states is not achieved. In these cases a detailed density matrix formalism must
be employed [116, 119-121]. In this work we shall not deal with these situations, and

we will always consider the full decoherence limit.

We can therefore consider the dynamics involving the heavy neutrino N;. From the
discussion in chapter 2, we can focus on a temperature window around its mass M;,
since it is in this range that the relevant processes (decays and inverse decays) are
mostly effective. From the condition eq. (3.19) and comparing the interaction rates with
the Hubble parameter eq. (2.127), we can define three different regimes in which the

dynamics take place

1. M; > 5 x 101 GeV. At temperatures T ~ M; > 5 x 101! GeV charged-lepton
Yukawa interactions are not in equilibrium, therefore the coherence of the lepton
doublet produced by N; decays is not broken. Heavy neutrino flavour dynamics
dominates. This regime is often called unflavoured, in the sense of light flavour

effects.

2. 5 x 103GeV < M; <5 x 10" GeV. At temperatures T ~ M; in this case the
7 Yukawa interactions are in equilibrium and efficient enough to measure the 7
component of the lepton doublets. The heavy flavour quantum states are therefore

broken into

that is in a component along the 7 flavour direction and a component orthogonal
to 7 obtained from the heavy flavour direction |l;). We have a two fully-flavoured
regime. The splitting in the two components can be quantified by introducing the
probabilities

P = [(lall)]®, Pia = |l (3:22)



Chapter 3. The No-dominated scenario 64

where a = T, TiL. These expressions account for loop corrections. We can write
[116]
Pio = P, + 6P, (3.23)
ﬁia = Pz?)z + 6Fiou (324)

where we extract the tree level expression PP

s equal in both cases:

2

1
Pi(z)x = ﬁTZ Z w/ijanji . (325)

J

The tree-level expressions satisfy as well
> pl=1, (3.26)
o

so that we have
> 6P =) 0Pin =0, (3.27)

The full probabilities eq. (3.22) can be derived from the decay rates of the heavy

neutrinos, so that

. - T.
Pa=F0  Pa=g (3.28)
Hence . —
P 'y — P 0 0Pio + 6Piq AP
o il = pPYc. p— 3.29
ia Fz + Fz iafi + 2 € 9 ( )

where AP;, = Py, — Piq.

3. M; <5x 108 GeV. At temperatures 7' ~ M, now also the 1 Yukawa interactions
are in equilibrium and efficient enough to measure also the pu component of the
heavy flavour state. Given that e, p and 7 flavours form an orthonormal basis,

also the e-component is measured. This implies

|:)

|:)

— |l7'>’ |lu>a |l6>a (330)
= L) (L), [Le)- (3.31)
We have therefore a three fully-flavoured regime. Here, similar probability defini-

tions as in the previous point hold, with o = e, u, 7.

In the regions around M; ~ 5 x 10 GeV and M; ~ 5 x 108 GeV we do not have full
decoherence and density matrices must be employed. As already stated, we shall always

avoid this situation or approximate the behaviour with an instantaneous transition.

We can now employ these new features to study how the No-dominated leptogenesis

process must be modified to account for them. Always assuming a hierarchical spectrum
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eq. (3.1) and M; < 10° GeV we shall also consider a very heavy N3, M3z > 102 GeV,

and two cases

a) 5 x 108GeV < My < 5 x 101 GeV,

b) My > 5 x 10 GeV.

3.1.2.1 Case (a): 5 x 10°GeV < My < 5 x 101 GeV

We can identify two stages through which the leptogenesis process will proceed.

Stage I: production.  Since leptogenesis takes place at temperatures T' ~ Ms, the
asymmetry will be produced in the two fully-flavoured regime. The lepton doublets pro-
duced by the decay of Ny in the heavy flavour states |I2), |l2) will be broken by 7-Yukawa
interactions into the projection onto the 7 flavour direction, giving |l,), |I,), and along
the direction given by N3 on the plane orthogonal to 7, giving |ZT2J_>, |g> Therefore,
the relevant quantities will be the asymmetries A; = B/3 — L, and AT; = B/3— LTQL.
Defining here z9 = My /T, the Boltzmann equations will be

dN,

A N 0 D

s = €974 Da(22) (N, (22) = Niyy (22) ) = Popy Woo(22) (Nr, + Ne ), (3.32)
AN .

- = 22 Da(22) (Naa(z2) = N3 (z2)) = PSP (22) (N, + Na). (3.33)

together with eq. (3.2). Here we can notice what follows.

e The CP asymmetries involved are €2, and Egrd = E2¢ + €24-

e The washout factor is reduced by the factors PJ and P2OT i to account for the fact
that here we are considering its action only on the respective flavour component.
We are considering the tree-level probabilities since we can safely neglect terms
O(6P2q Np,, ). We have

PQTQL =Py, + Py, (3.34)

e The washout factor is expressed now only in terms of the asymmetries in the
Higgs and lepton doublets of the relevant flavour. This is a peculiar difference

from eq. (2.147), where we summed over all flavours.

It is possible to relate the asymmetries in the Higgs and lepton doublets to the B/3 — L,
asymmetries Na, by exploiting the network of efficient reactions in the Early Universe,
as in section 2.2.1. Employing the so-called flavour-coupling matrices [99, 103, 112, 113,
119, 122, 123], in the two fully-flavoured regime we have

Np, + No = C8)Na,. (3.35)
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For a = 7, 73~ we have

dNa |
. (S] 2
S =0y D) (Maa(z2) = N (22)) = PS, . WAP(22) Zﬂ:cj D Nay(z2), (3.36)
WNar _ ¢, Do) (NN (22) — Ny (zz)) — PRWER(20) > CHNA,(20).  (337)
dzo ’ ’ " i B v

And the flavour coupling matrix in the two fully-flavoured regime is [123]

2 2
@ _ CQTQL CQT ~ (581/589 104/589 (3.38)
@ o 194/580 614/589 ) '
7'7'2

If we now assume C'?) ~ 1, thus neglecting flavour coupling?, we can easily solve these
equations, together with that ruling the abundance of Ny. Indicating with Trs > 5 x 10% GeV
the temperature scale at which the asymmetry production by Ny is completed, we get,

at the end of stage I:

NAT2L (TLQ) ~ 627_21_ /{f(K%_;_), (339)

NAT(TLQ) >~ E9r Hf(KQT), (3.40)

where K, are the flavoured decay parameters defined as

Fia + fioz
Kig = —2 10 41
T H(T = M) (3.41)
We also have
Kio = PYK;, (3.42)

so that, using egs. (3.25) and (2.138), we obtain the expression of the flavoured decay

parameters in the orthogonal matrix parameterisation

1

e

Kia =

>V UajQil (3.43)

J
We have KQTQJ_ = PQOTLKQ, therefore, from eq. (3.34), we get
2
Kyt = Koo + Ky (3.44)

The efficiency factors in eq. (3.40) and (3.39) are given by egs. (2.157), (2.164) and
(2.167).

2In the following chapter we shall analyse in some detail the effects of flavour coupling.
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Stage II: washout. Below 172, the asymmetry stays constant. However, for tem-
peratures T < 5 x 10® GeV the p Yukawa interactions are in equilibrium. This im-
plies that the coherence of the quantum states |l7_2L>, ]g> is broken. At temperatures
M, < T <5 x 108 GeV the asymmetry NAT2L gets projected onto the e and u flavour

directions. We might expect this projection to be

Py Py
Na(T') = 5o=Na (Tra)s Ny (T) = " Nay (i) (3.45)
27'2 27'2

However, this simple projection does not consider the effects due to the different flavour
composition of ‘szl> and |g> For this reason, the asymmetry in the e and p flavours is
not simply the projection of the asymmetry in TQJ‘, but must take into account the fact
that additional asymmetry between each light flavour and its CP conjugate is stored in
|l 2¢) and \E) This is a consequence of the fact that in general \g} # CP|l_ QL). It is
possible to show that, taking correctly into account also flavour-blind gauge interactions

[116] the projection is given by

PO

Na, (T') = =< NAL(TL2)+p2e K(Kyp1/2), (3.46)
27’
02

Na, (T') = po i (Ti2) & poyu k(K /2). (3.47)
27’2

Here pos, with 0 = e, u, are the so-called phantom terms and can be obtained from the

flavoured CP asymmetries as

PO
PO

272

P2s = €25 — 627—J—a 0= €, . (348)
In the three fully-flavoured regime the action of N; will take place along the three
flavour directions e, p, 7. Considering that the asymmetry produced by N; can be safely

neglected we can write the three-flavoured Boltzmann equations as

dN,
. —P{LZ P(21)Nay(z1),  with a,f=e p,7, (3.49)

where z1 = M;/T. The role of N; is again essentially to apply a washout on the
asymmetry produced by Ny. Here C'®) is the flavour coupling matrix in the three fully-

flavoured regime [123]

c® c c® 188/179  32/179  32/179
cO=1c® @ o | = 19/358 500/537 142/537 | . (3.50)
c® c8 c® 49/358 142/537 500/537
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Neglecting again flavour coupling, C® ~ 1, and taking as initial conditions egs. (3.46),
(3.47) and (3.40), the Boltzmann equations can be solved giving the total final asym-
metry produced by leptogenesis [102, 116, 123-125]

lep,f lep,f
NBfL - E :NAa
e

Py, Py .
~ _PO EQTQLKJf(KzTQL) + €% — PngTQL Kf(KQTQL/Q) e~ 8 e
2T2J_ 2T2J‘
PO PO ﬂ
+ | e (Karg) + ( - p> @(KQT;/z)] o
27—2L 2721-
+ earhig(Kap)e™ s fr. (3.51)

It is possible to notice that the final asymmetry is obtained from the sum of the final
asymmetries in the flavours e, x and 7, each of them affected by N1’s washout depending
on Ki,. This implies that, in general, the final asymmetry can escape Ni’s washout
along at least one particular flavour direction, in which the decay parameter is small
Kio S 1. Therefore, due to flavour effects, the condition imposed by successful leptoge-

nesis changes from the rather stringent K7 < 1 to the milder condition on at least one

flavoured decay parameter.

3.1.2.2 Case (b): My >5 x 10! GeV

In this case, the asymmetry is produced by Ns in the unflavoured regime. Indeed, for
T > 5x 10" GeV charged-lepton Yukawa interaction are all out of equilibrium, therefore
the coherence of the lepton doublets produced by N is not spoilt.

Stage I: production. As observed, the production takes place in the unflavoured
regime, therefore we employ eq. (2.147) suitably modified for Ny. We get a final asym-

metry at the end of the production process

NB_L(TLQ) ~ 62/€f(K2). (352)

Stage II: washout. For T' < 5 x 108 GeV, the p-Yukawa interactions are in equilib-
rium and the asymmetry is projected onto the three flavours e, u and 7. Following the

previous discussion, at M; < T" <5 x 10% GeV we get

Na(T') = P), Ng_1,(Tr2) + p2e i (K2/2), (3.53)
N, (T') = Py, Np_1(T12) + pau rip(K2/2), (3.54)
Na, (T') = PY. Np_r(T12) + por k5 (K2/2), (3.55)
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where the phantom terms are given by
P2a = €20 — PO €9, a=e,,T. (3.56)

It is important to notice that in this case also the 7 flavour gets a phantom term, since
we are projecting a fully unflavoured asymmetry onto the three light flavours. Similarly
to the previous case, these asymmetries undergo the washout by N; each one along its

flavour direction, so that we eventually obtain

a
3
= [PQOe EQKf(KQ) + (526 - PZUe 52) /if(Kz/Q)] e~ 8 Kie
3n
+ [P20M €2Kf(K2) + (52u - PQOM 52) Hf(KQ/Q)] e~ s K
_3m
+ [P eakp(Ka) + (29, — P, e2) rp(Ka2/2)] e 5 K, (3.57)

Considerations similar to the previous case hold here as well, since again it is possible
that the final asymmetry escape Ni’s suppression along a flavour direction in which the

washout is particularly mild.

Considering flavour effects, then, the No-dominated scenario of leptogenesis dramatically
changes from the first attempt considered at the beginning, see eq. (3.7). To show the
important modifications brought about by flavour effects, we can consider fig. 3.1(b).
Here, each point in the plane My — K7 marks an No-dominated model able to realise
successful leptogenesis. The final asymmetry is computed using eqs. (3.51) and (3.57),
depending on the value of Ms. We have assumed an instantaneous transition between
the unflavoured and the two fully-flavoured regimes at My = 5 x 10! GeV. The shaded
band marks the actual transition region in which a fuller treatment with density matrices
must be employed. Comparing fig. 3.1(a) and 3.1(b), we can notice that, in the latter,
successful leptogenesis can be achieved also for high values of K7, which are forbidden in
the unflavoured case. Moreover, lower values of My are accessible, since the asymmetry
produced does not have to be high in order to survive the strong washout by K; as in

the unflavoured case. We can find a lower bound
My >3 x 10° GeV. (3.58)

In conclusion, flavour effects greatly help the No-dominated scenario by making it possi-
ble to realise successful leptogenesis much more easily than in the unflavoured case. For
this reason, flavoured No-dominated leptogenesis can indeed be regarded as a promising
mechanism for producing the baryon asymmetry of the Universe, while complying with

the bounds on the lightest heavy neutrino mass.

We shall now analyse in detail two theoretical frameworks that significantly draw the at-

tention on the Na-dominated scenario: strong thermal leptogenesis and SO(10)-inspired
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leptogenesis.

3.2 Strong thermal leptogenesis

In chapter 2, we saw that, in principle, the conditions imposed on the initial value of the
asymmetry can actually play a role, cf. eq. (2.149). The initial value of the asymmetry
directly depends on the detailed history of the Early Universe before the leptogenesis
stage and, in general, there are no theoretical reasons to assume it to be vanishing, as
in eq. (2.151). On the contrary, if we assume a vanishing initial abundance of the heavy
neutrinos, in order to produce enough neutrinos and consequently enough asymmetry,
we get that the reheating temperature of the Universe must be at least of the order of
the mass of the neutrino producing the asymmetry. Therefore, we can in general expect
rather high reheating temperatures Try 2 1019 GeV.

With these rather high reheating temperatures, it is possible that other mechanisms are
able to produce a sizeable amount of asymmetry before leptogenesis takes place. For
instance, in the late stages of inflation we can have Affleck-Dine [126] or gravitational
baryogenesis [127, 128], while after inflation, but before the onset of leptogenesis, more
standard GUT baryogenesis [93, 129-132] can take place. For these reasons, we can
expect that the initial value of the asymmetry is not zero, and a sizeable value of initial
pre-existing asymmetry, Ng’i_ ;» must be taken into account. After the leptogenesis

process, we are therefore left with a total asymmetry given by
N, =NgPL +NB (3.59)

where the first term is the asymmetry genuinely produced by leptogenesis, while the
second represents the remnants of the initial pre-existing asymmetry after it undergoes
leptogenesis. It is possible that, due to mechanisms such as those mentioned before, the
final pre-existing asymmetry, Ng’f 1» is even larger than the contribution of leptogenesis
itself. Since these processes actually escape the experimental probes, the fact that the
final baryon asymmetry of the Universe can heavily depend on the initial conditions and
the detailed history of the Early Universe poses a serious theoretical problem. The value
of Ng’i ;. is difficult to estimate since it depends on the precise state of the Universe at
the inflation era, so that also the final value of the baryon asymmetry remains difficult to
explain. Moreover, the experimental evidences on the baryon asymmetry of the Universe
cannot be employed to constrain our leptogenesis model, since the final asymmetry can

in general receive a large, unknown contribution from other mechanisms.

For these reasons, we can require that leptogenesis is able to erase any pre-existing con-
tribution, while producing the correct amount of baryon asymmetry. We can therefore
require
p,f lep,f lep,f __ arexp
B < |NEPE| and NP = B (3.60)
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where N3®, is obtained from the experimental observations, eq. (1.11). Leptogenesis
models that satisfy the conditions (3.60) are said to realise strong thermal leptogenesis
[115]. This way, the final asymmetry is entirely produced by leptogenesis processes and

full independence of the initial conditions is ensured.

The key of strong thermal leptogenesis is to rely on strong washout in the thermal pro-
duction of the heavy neutrinos. We can analyse first the unflavoured vanilla leptogenesis
case. Here we assume that only N; thermalises. Starting from eq. (2.149), we assume
now a non-vanishing initial pre-existing asymmetry Ng’i_ 1» S0 that the total final B — L

asymmetry is given by
f . p,f lep,f
Np_=Np_p +Np7yp
= NP e S ey (). (3.61)
Strong thermal leptogenesis requires that the final pre-existing asymmetry be smaller

than the final asymmetry produced by leptogenesis. Adopting the CMB measurement

of the baryon-to-photon ratio, eq. (1.11), we can quantify this requirement as
05| S 010 = 0.1 G, (3.62)
with ngf = ng,’i - Therefore, from eq. (3.61) we get the condition
K1 2 Kg(NY' ), (3.63)

where [1]

~ 8 0.1 : .
Ka(NBL,) = o [111 <ngMB> +1n ’Ng‘L” ~16+085In [N}, |. (3.64)

We can therefore see that strong thermal leptogenesis implies strong washout that is
able to erase the pre-existing asymmetry. The amount of washout depends on the size

of the initial pre-existing asymmetry.

When flavour is considered, the scenario becomes in general more involved. This is due
to the fact that now the pre-existing asymmetry can in principle escape the washout of
the heavy neutrinos along a certain flavour direction. It is possible to show [115] that,
taking into account light flavour effects, strong thermal leptogenesis can be achieved

only if the heavy neutrino spectrum is hierarchical and

5% 10°GeV <My < 5 x 10 GeV, (3.65)
M; < 10° GeV. (3.66)

Since Nj is too light, and the CP asymmetries of N3 are suppressed, the asymmetry

must be produced dominantly by Ns. Therefore we can conclude that strong thermal
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leptogenesis can be realised only in a No-dominated leptogenesis scenario.

The asymmetry produced by leptogenesis is then given by eq. (3.51), while the final

pre-existing asymmetry is obtained in the following ways.

3.2.1 Case M3 > 5 x 101! GeV

In this case, the heaviest neutrino is either not thermalised or, in general, cannot wash
out completely the pre-existing asymmetry. Indeed, for M3 > 5 x 10'! GeV the washout
by N3 would take place in the unflavoured (in the sense of light flavours) regime, therefore
the component of the asymmetry orthogonal to the heavy flavour direction |I3), |I3) would
escape washout. We can therefore neglect its presence. The washout by Ns will then
take place in the two fully-flavoured regime, while the washout by N; will be in the
three fully-flavoured regime. Eventually we get a final pre-existing asymmetry given by
Ng{L =>. Ng’i where a = e, u, 7 and [115]

= { -

0 0
P;, PO o= T (KactKay) 4 (1 D ) (1 _ po L)

Py, Py, gk
+ AR, fe ¥R NG (3.67)
PO 3 PO
NRI = (1= ) | oo PO e S et oy (11— 20 ) (1 PP )
Ay { ( PT) P2072L ;m—QJ-6 + P20T2L pTs-
+ pr} e ¥ K NP (3.68)
NR! = (PY 4+ AP,,) e F FartKa) NBT (3.69)

Here PST and P;)T L are the fractions of the pre-existing asymmetry in the 7 and sz-
components. The quantities APy, with ) AP, = 0, take into account the possibility
of different flavour composition of the initial pre-existing asymmetry. Similarly to what
was discussed in the previous section, the pre-existing asymmetry along the e, 4 and
7 directions is not simply a fraction of the initial pre-existing asymmetry, but possible
difference in the flavour composition of the leptons and anti-leptons states must be

accounted for.

In order to have successful strong thermal leptogenesis, we must combine egs. (3.67),
(3.68) and (3.69) with eq. (3.51) to account for the asymmetry production. Taking all
these equations together, it is possible to notice that successful strong thermal leptoge-

nesis can be realised only if [1, 115]

~

Kie, K1 2 Ka(NR! ), Kop 2 Ka(NRY),  Kir S 1. (3.70)
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Here, the first condition ensures that the pre-existing asymmetry along e and u direc-
tions is washed-out by the action of Nj in the three fully-flavoured regime. The second
condition implies that the pre-existing asymmetry in the 7 flavour is washed out by Ns
in the two fully-flavoured regime. In order to produce at the same time the suitable
asymmetry through leptogenesis itself, and given the conditions on Ki. and K7y, the
final asymmetry must necessarily be produced by N» in the 7 flavour. Hence, the last
condition on Ky, ensures that the contribution of leptogenesis, in the 7 flavour, is not
washed out by Nj.

This scenario realising a tauon Ns-dominated leptogenesis is the only possibility to

achieve successful strong thermal leptogenesis [115].

3.2.2 Case M3 <5 x 1011 GeV

If M3 < 5x 10" GeV, the dynamics of N3 takes place in the two-fully flavoured regime,
as for Ny. Therefore, the contribution of N3 adds up to the washout operated by the
next-to-lightest. We therefore have [1]

0
Np,f _ 1— P() ) 0 f)27'2l P205 0 _%(K3TL+K2T2J‘)
s = OB | P o Py
37t T 2rs
PY ”
+ (1 PO L) <1 _ Dot Py e-ﬁ%;)
: 0 0
pT3 PSTL PQTQL
0 0 P205 _ 37 pii
+ PpT3l (1_Pij‘) I—PT +APp5 e 8 ISNBv_L’ (371)
2‘1‘2l
f 37 (Ko i B i
Ngr = (PI?T + APPT)e 8 (Kd +K2 +K1 )Ng—[ﬂ (372)

where 6 = e,y and K3 1 = K3, + K3,. Clearly, the addition of the washout by V3
tends to relax the strong thermal conditions eq. (3.70), replacing the second one with

Kor+ K3 2 Kst(Nz’i). In this way one can have strong thermal leptogenesis with lower

values of Ko, and so the condition of successful leptogenesis can be more easily satisfied.

We can therefore conclude that strong thermal leptogenesis, by solving the problem of
the initial conditions of the asymmetry abundance, has very important implications and
consequences in the leptogenesis setup.

It necessarily selects a hierarchical spectrum of the heavy neutrinos that realises No-
dominated leptogenesis and selects a final asymmetry dominantly produced in the 7
flavour. It is noticeable that the requirement of full independence of the initial conditions
is able to fix the heavy neutrino mass spectrum, thus giving a prediction in the otherwise
almost unattainable realm of the high-energy neutrino parameters. This requirement
provides also an additional theoretical reason for shifting the leptogenesis paradigm

from the Ny to the Ny-dominated scenario.
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Moreover, the conditions implied by strong thermal leptogenesis, eq. (3.70), can be
regarded as further constraints on the seesaw parameter space, beyond the requirement
of successful leptogenesis eq. (2.174). We shall see in the following chapter how these
constraints are able to provide us with interesting predictions on the low-energy neutrino

parameters as well.

3.3 SO(10)-inspired leptogenesis

The attractive feature of the seesaw mechanism, able to provide a solution to the prob-
lems of neutrino masses and asymmetry of the Universe, relies on the addition of extra
particles. These particles, the RH neutrinos introduced in eq. (2.46), are somehow added
by hand to the SM lagrangian and so is their high mass scale. A more elegant and attrac-
tive origin of the RH neutrinos and their mass scale can be found in GUT. In particular,
it can be noticed that theories based on SO(10) as grand unification group [133-135],
naturally include three RH neutrinos in the same irreducible representation together
with quarks and leptons. In particular, RH neutrinos precisely fit in the 16-dimensional
spinor representation of SO(10). Moreover, in SO(10) GUTs interesting links between
quark and lepton parameters arise, as well as relations between charged leptons and
neutrinos.

We shall analyse here a large class of leptogenesis models based on the seesaw lagrangian
eq. (2.46) that enjoy additional conditions on the parameters which are inspired to those
realised in SO(10) GUTSs. For this reason, we shall call these models SO(10)-inspired
[136-141].

The type-I seesaw mass lagrangian eq. (2.48) is written in the flavour basis, in which
both the charged leptons and the RH neutrinos mass matrices, DY, and D) respectively,
are diagonal. It is possible to rotate both the LH and the RH neutrino fields to a basis
in which the Dirac mass matrix mp is diagonal. This basis is called Yukawa basis. The

transformation can be performed via a bi-unitary transformation
mp =V} Dy Ur, (3.73)

where Vi, and Ug are unitary matrices acting respectively on the LH and RH neutrino
fields. Matrix D, is then diagonal with real, non-negative entries mp;. The matrix

Ug, in particular, defines the RH neutrino Majorana mass matrix in the Yukawa basis
M = U}, Dy U (3.74)

Inserting eq. (3.73) in the seesaw relation eq. (2.70), we can obtain the expression of the

Majorana mass matrix M in terms of Vy,, Dy,, U and D, ,:

M = Dy, ViU* D UV D, (3.75)
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Eq. (3.74) performs the Takagi diagonalisation of M, thus it is possible to obtain also
the matrix Ur and the diagonal matrix Dy in terms of D,,, Vi, U and D,,,,.
More in detail, the procedure goes as follows [2]. First, we can diagonalise, according to

the standard procedure, the hermitian matrix MTM with a unitary matrix Ug:
MM = UrD3,UT},. (3.76)

Using matrix Ug in eq. (3.74) would diagonalise M up to a diagonal matrix of phases.

We can solve the phase ambiguities in Ug by fixing the phases matrix

D, = diag (e_i%, e_i%Q, e_i73> , (3.77)
to
_ Tt oA =177
Dy = \/DM UpM~—Up. (3.78)
Finally, the matrix
UR = ﬁR D¢, (379)

performs the Takagi diagonalisation of M as in eq. (3.74).

The bi-unitary transformation eq. (3.73) therefore allows us to express several quantities
in terms of a definite set of parameters. This introduces a parameterisation of the seesaw
space alternative to the orthogonal matrix one, eq. (2.74). The set of free parameters

now is

3 Dirac masses in Dy, ,,
e 3 mixing angles and 3 phases in the unitary matrix Vf,

e 3 mixing angles and 3 phases in the PMNS matrix U,

3 active neutrino masses in D,,.

Clearly, the total always sums up to 18 free parameters. On these parameters, additional
conditions inspired to those realised in SO(10) GUT theories can be placed. We define

SO(10)-inspired leptogenesis models those respecting the following conditions.

1. The entries of the Dirac mass matrix D,,, can be parameterised in terms of the

up-type quark masses as
Mp1 = Q1 My, mpa = Qg M, mps3 = Qg My. (3.80)
In SO(10)-inspired models we have

a; = 0(0.1 + 10). (3.81)
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This condition implies a natural hierarchy mp; < mps < mps that traces the

quark masses hierarchy. In what follows, we shall assume
my, = 1 MeV, me = 400 MeV, my = 100 GeV, (3.82)

as reference values of the up-type quark masses at the leptogenesis scale [142].

2. The unitary matrix V7, is bounded by the Cabibbo-Kobayashi-Maskawa (CKM)
quark mixing matrix

1<VL S Vekwu. (3.83)

By labelling the three mixing angles in Vi, as (9{3, 0L, 02L3, as in the usual PDG
parameterisation, this condition implies that the HZ»Lj are not too larger than the

corresponding mixing angles in CKM and in particular 6%, < G%K M =g, ~12°.

It is worth mentioning that these conditions can be also satisfied beyond traditional
SO(10)-models. For instance, in the cases of the examples discussed in [143], in the 5D-
SO(10) model [144], in the ‘tetra-model’ [145] or in the ‘A to Z’ model [146]. Vice-versa
not all SO(10)-models necessarily respect them. For example, SO(10) GUT models
could give rise to a type II see-saw contribution for the neutrino masses (e.g. [141, 147])
and to alternative leptogenesis scenarios than those considered here. It should also be
said that traditional (4D, no flavour symmetries) SO(10) models that have been explored
as viable realistic models able to fit both quarks and leptons parameters also usually

respect these conditions (see discussion in [125]).

3.3.1 Heavy neutrino masses and CP asymmetries

By exploiting the bi-unitary parameterisation and applying the two defining conditions,
it is possible to obtain analytical expressions for the heavy neutrino masses and their
CP asymmetries [2]. These expressions can be obtained by means of some further

assumptions and approximations:

(a) considering mp; < mpj; for j > i, we shall assume we can always make an expansion
in mp;/mp; and neglect subheading terms with mp;/mp; < 1, regardless of their

factor;
(b) we shall assume V, = 1.
We will comment later on the impact of assumption (a), while the discussion about
assumption (b) is postponed to chapter 5, where we shall present our results.

In the following, the ordering of the light neutrino mass spectrum is not specified and

all results are valid both for NO and IO, if the suitable expressions of my and U are
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employed.
For Vi, = 1 we have
UpDpUl, = Dy U* D UT D, (3.84)

and using eq. (2.69) we have
M = U}DyUl = =Dy Dy (3.85)

We can now notice that M;3/Mss = Ms;/Mss < mp;/mps, therefore, according to the
assumptions mentioned above, we can say that the matrix M is in a block-diagonal form.

Neglecting terms O(mpi1/mps) and O(mpa/mps) we get

My = iy [ o = i |00 Gl W o as6)
where, from eq. (2.69), we have used
(my o = = mi ' UsiUsy. (3.87)
The phase ¢3 in Dy is simply given by
¢3 = Arg[—(m;)rr] - (3.88)

Similar procedure can be employed with matrix M ~!. In this case we have

M~' =UgrD;/ Uk = -D;)} m, D} (3.89)

mp?
and we can notice that ]\451/M1_11 = Mﬂ'l/Mﬂl o mp1/mpi, so that the largest M !
eigenvalue, 1/M; can be obtained as 1/M; =~ |my,..| /m2,,. Hence we have

2 2

m m
M, ~ —DPL — D1 ox a2m2, 3.90
uee] [l U + sG]~ 1 (390

where we have used
Myag =~ Y miUail;. (3.91)

i

We can also obtain

¢1 = Arg[_miee] : (392)

From eq. (2.70), and taking the determinant of both sides, we have

D1 My My i(22R—20y 3, ¢1) (3.93)

M2 = T F N M ’
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where ®p = Arg [det (ﬁRﬂ and @y = Arg[det(U)] = p + 0. Hence we get

My ~ My M e 2 (MU + maU2, + maUg|
mi mo ms ‘(m;l)w} b2 ’mgmng_‘lQ + Tmmg,U;fz2 + mlmgU;*32
o asm?. (3.94)

We can also notice that >, ¢; = 2P r — 2Py, and therefore

¢2 =2(Pp — D) — ¢3 —

= Arg [m”l} +285 — 2(p + o). (3.95)

(mu T

From egs. (3.90), (3.94) and (3.86) we notice that the heavy neutrinos mass spectrum is

hierarchical with approximately

My : My : Ms=aim? : a2m? : aim?, (3.96)
thus implying
M, < 10° GeV, (3.97)
10° GeV <M, < 1012 GeV, (3.98)
M3 > 102 GeV. (3.99)

This spectrum is precisely the one realising No-dominated leptogenesis, since, as we
have already seen, the lightest heavy neutrino is too light to contribute significantly
to the asymmetry, and the heaviest also gives negligible contribution since it is either
non thermalised or its CP asymmetries are in general suppressed. In this way, we can
notice that SO(10)-inspired conditions naturally select a heavy neutrino mass spectrum

compatible only with Na-dominated leptogenesis.

It is really important to comment on approximation (a) stated above. The obtained
expressions are only valid within the range of applicability of this approximation. It is
possible to find [140] particular configurations of the low-energy neutrino parameters in
which one cannot adopt approximation (a) and safely expand in mp;/mp;, j > i. In
these situations, called crossing level solutions, the heavy neutrino spectrum does not
follow eq. (3.96) anymore and two or even all three heavy neutrinos become degenerate.
Our analytical expressions are not valid in the vicinity of these solutions. It must be
noted that crossing level solutions involve in general a rather high level of fine tuning,
taking place only for some special values of the low-energy parameters.

In fig. 3.2 we compare the analytical expressions of the heavy neutrino masses (cf.
egs. (3.90), (3.94) and (3.86)) with the numerical solutions in the four sets of parameters
yielding level crossings for special values of m; as discussed in [140] (note that for

simplicity 613 = 0 and 693 = 7/4). It can be noticed that the analytical solutions
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Figure 3.2: Comparison between the numerical solutions for the heavy neu-
trino masses (solid lines) and the analytical solutions egs. (3.90), (3.94)
and (3.86) (dashed lines), [2]. The solutions are obtained for 613 = 0,
923 = 45°, 912 = 330, o = 0, o] = y = Q3 = 1, VL = 1 and for
(p,o) =(0,0),(7/2,0),(0,7/2), (7/2,7/2) from top left to bottom right respec-
tively.

(dashed black lines) perfectly track the numerical ones (solid coloured lines) except in
the close vicinity of those values of m, where the heavy neutrino masses become quasi-
degenerate and the validity of the adopted approximations breaks down.

Sticking to assumption (a), we shall bar regions around the crossing level solutions in
the rest of this work.

In fig. 3.3 we show a comparison between the analytical expressions of M;, Ms, M3 and
the values obtained numerically. Here we chose three particular setups with physical
meaning. These three choices of parameters are able, as we shall see in chapter 5, to
realise successful leptogenesis around the indicated values of mi. As we can see, there

are no level crossings and the analytical solutions perfectly track the numerical values.

It is also possible to find an analytical approximate expression for the RH neutrino
mixing matrix Ur. From the discussions that led to the expressions of M3 and M it
should be clear that Ug is of the form Ur = 1+ &, where §; = 0 and the §;+; leading
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Figure 3.3: Comparison of the analytical expressions for the RH neutrino
masses eqs.(3.86), (3.94), (3.90) (dashed lines) with the numerical solutions
(solid lines) versus mj for the three following sets of parameters: Vp = 1,
(051,052,053) = (1,5,1), (913 = (7.550,8.140,9.20), 912 = (35.20,34.750,35.00),
O3 = (46.2°,42.1°,40.0°), § /7 = (0.275,0.067, —0.24), p/m = (0.54,1.080,0.24),
o/m = (1.14,0.94,0.80). These three solutions are examples of 74, 75 and
strong thermal solutions respectively and realise successful leptogenesis for
mi =~ (2.5,300,10) meV. All three cases are for NO, [2].

terms are suppressed o< mp;/mp; with j > i. Here we shall compute the matrix Ug,
while the matrix Dy can be obtained afterwards from egs. (3.92), (3.95) and (3.88).
From the unitarity condition U Rikﬁgk ;= 0;; we get

Uri2 ~ —Ufor, Urss ~ —Upas, (3.100)

while
Upsi ~ —Uriz — UriaUpgo. (3.101)

From eq. (3.89) we also have
Dyt = ~ULD;Y m, Dyt U, (3.102)

which, for the matrix entries, translates to

5 - B 3 ~
17 = Ui (Dyrymu Dyt ), Uk (3.103)
(2
For (i,7) = (1,2) this gives
- my
Upor o~ 2L Zven, (3.104)
mp2 Myee

Plugged into eq. (3.103), with the help of eq. (3.101) and (3.100), for (i,5) = (3,1) we
have

Uy ~ 2DLMver.

mp3 Myee

(3.105)

From eq. (3.103) for (i,7) = (2,3) and using eq. (3.100) in order to write Uy, in terms
of Uk, 5 and Ugsy we find

(3.106)
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Finally, from eq. (3.100) and (3.101) we obtain

7 7 —1\*
~ Uris3 +Ups;  mb2 (my " )r

URos ~ ~ — . (3.107)
Ur12 mp3 (my, ),
Putting everything together, we can approximate the Urp matrix as
1 _mp; Men mpy (my )i,
mp2 M., mps (my )%,
~ | m Mye m (my )jir
Ur ~ —mg; ot 1 mﬁﬁ (m;l)gT - Dyg. (3.108)
Mp1 Myer __ MpD2 (mtjl)w 1
mp3 Muee mps3 (mljl)ﬁ.

We can notice now that, given the expression of the Ur matrix, we have bp ~ 0,

therefore

¢o ~ Arg [m_”le} —2(p+ o), (3.109)
(ml/ )’7’7‘

so that the matrix Dy, eq. (3.77) is now entirely determined.

Once the matrix Ug is expressed in terms of the input parameters through the matrix

m,, and its inverse m,, !

, we can obtain an analytical expression for the CP asymmetries
as well. Considering that, by barring the crossing level solutions, the relevant CP asym-
metries are related to No and that the spectrum is hierarchical, we can concentrate on
€94 and consider only the interference with N3 by taking j = 3 in eq. (2.118). Indeed,
the contribution of the interference with N7 given by j = 1 is heavily suppressed by the

mass hierarchy. We get

M3 2
o =080 {26 ) + S | R

where, specialising egs. (2.120) and (2.121),

. Im{m*DMmDa?)(m}rij)w} M,

9 \7 == P -
23 Mo M3 mo matm M3
(3.111)

Moreover, since also M3 > My we can approximate £(M3/M3) ~ 1 and neglect the

Im{mEQZmDag(mEmD)%}

IO[
23 ~
My M3 mo matm

term Jg3, so that we get the simpler expression
€2q 2 E(M2) I35, (3.112)

It must be noticed that this result is a feature of any Ns-dominated leptogenesis sce-
nario. The additional constraints and relations typical of SO(10)-inspired models will
be employed in what follows.

Always considering V7, = 1, we can use our previous results to find a final approximated
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analytical expression for the flavoured CP asymmetries

mh, [(my )|~

E9a g(MQ) Im{UEQQURagUE32UR33} . (3.113)

2 2 |2 2 m
mMp3 |UR32‘ + Mo atm

Using the expressions in eq. (3.108), we find that also the CP asymmetries follow a

hierarchical pattern

2,2
) . 9 9 9 9 9 oQ3mpaymy
€97 €24 i €2¢ X Q3mMy 1 Qymyg L aym

(3.114)

“agme a3m?2’

As one can see, while €9, is suppressed by about four orders of magnitude (~ m2/m?)
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Figure 3.4: Plots of the CP flavoured asymmetries corresponding respectively
to the same three sets of parameters of fig. 3.3, [2]. The solid coloured lines are
the numerical curves (blue, green and red lines correspond respectively to 7, u
and e flavours). The dashed lines are the analytical expressions egs. (3.113).

compared to €9,, the electronic CP asymmetry is suppressed even by about seven orders
of magnitude compared to e,. For this reason, for Vz = 1 and avoiding the crossing
level solutions, the electron contribution to the final asymmetry is always completely
negligible. With respect to eg, it is worth noticing that, since the contribution from
the interference with N3 is so suppressed, actually it becomes comparable to the term
coming from the interference with N; that we are neglecting in eq. (3.113).

The hierarchy among the CP asymmetries and the goodness of the analytical expression
eq. (3.113) are well shown in fig. 3.4. Here, for the same four sets of parameters of
fig. 3.3, the flavoured CP asymmetries are plotted versus mi, comparing the numerical

result (solid lines) with the analytic expressions (dashed lines).

It is possible to obtain an analytical expression for the flavoured decay parameters as
well. From the definition eq. (3.41) and eq. (2.133), we get an expression of Kj, in terms

of the Dirac mass matrix mp

’mDai|2
Kio=—"7"-. 3.115
! M M; ( )
Therefore, using the relations found above, for V;, = 1 we have
mZDa 2
Kio = —=% |Upail” - (3.116)
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We can finally employ the analytical expressions of M; and Upg in order to obtain also
the expression of the orthogonal matrix © in SO(10)-inspired models. From eq. (2.73)
and (3.73) we have

O = D;'?UtV{ D,,, UrD;}'?, (3.117)

therefore, for V, = 1 we have

Q= with Vg = 1. (3.118)

1 *
\/W Zka Uki URkj7
k

Using egs. (3.90), (3.94), (3.86) and (3.108) we get

Vv |muee|U 1 m2m3|(m;1)‘r7—‘
e

Muee ‘muee|

U]_ U* (mu )uT

( my TT) \/m1| mu 7‘7'
O~ | _vm |muee|U62 mims|(my, )| (U* « (my Y, T) Us, - Dy,

Muee ‘myeel 12 2 (m_1 \/m2| mu TT

U* * (mv )w) Uls

y/mal(ms )|

_yms |muee|U 3 m1m2|(m;1)‘r7—‘
e

Muyee ‘muee| u3 7-3(

my )TT

(3.119)

We have therefore shown that, barring crossing level solutions, the SO(10)-inspired
conditions egs. (3.81) and (3.83) give a hierarchical heavy neutrino mass spectrum with
M, < 10° GeV, 10°GeV < My < 10" GeV and M3 > 10'2GeV. Therefore, we can
conclude that in SO(10)-inspired models the Nj-dominated scenario of leptogenesis is
naturally realised.

Moreover, the hierarchy in the CP asymmetries, eq. (3.114), suggests that the final
asymmetry is dominantly produced in the 7 flavour. Therefore, we can say that the
SO(10)-inspired leptogenesis setup can naturally favour the 7 No-dominated leptogenesis
scenario that is requested by strong thermal leptogenesis. We can then expect that the
condition of strong thermal leptogenesis can be imposed and successfully realised also in
SO(10)-inspired models, thus providing additional constraints on the parameter space.
In chapter 5, we shall consider the impact on the parameter space of the SO(10)-inspired

conditions and the additional strong thermal leptogenesis requirement.
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Chapter 4

Strong thermal leptogenesis and

the absolute neutrino mass scale

In chapter 2 we explained the basic mechanism of leptogenesis and laid out our for-
malism. In particular, we have noticed that, in the minimal setup, the type-I seesaw
lagrangian has a total of 18 free parameters. Leptogenesis generally implies the ad-
ditional condition that the asymmetry produced is compatible with the experimental
observation. Therefore, by requiring successful leptogenesis, eq. (2.174), we can impose
a constraint over the parameters. This condition is able to provide us with some infor-
mation on the heavy neutrino spectrum, see eqgs. (2.180) and (2.181). However, this is
in the form of a generic lower bound. Moreover, no additional information is given on
the other parameters such as the mixing angles or the light neutrino masses.

In chapter 3 we showed that both strong thermal leptogenesis and SO(10)-inspired lep-
togenesis are able to provide us with important predictions on the heavy neutrino spec-
trum: in both cases a hierarchical spectrum that favours No-dominated leptogenesis is
required. This is a remarkable prediction that draws attention to the Ns-dominated
scenario, providing solid theoretical reasons for this leptogenesis paradigm. However,
the consequences of both strong thermal leptogenesis and SO(10)-inspired leptogenesis
are much richer than that. In this chapter we shall study what are the consequences on
the leptogenesis mechanism of imposing strong thermal leptogenesis. We shall focus in
particular on the constraints on neutrino parameters that are entailed by this scenario
and on the predictions that can be derived. As we shall see, these will turn out to be
quite robust so that the idea of strong thermal leptogenesis can be put to test especially

by forthcoming cosmological observations.

We shall analyse here how the strong thermal leptogenesis condition (3.62) can imply
interesting constraints, in particular on the absolute neutrino mass scale m; [1]. We shall
discuss first the more significant case Mz > 5 x 10'! GeV, so that the final pre-existing
asymmetry is given by egs. (3.67), (3.68) and (3.69). As we have seen, this implies the

87
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conditions on the flavoured decay parameters eq. (3.70). Let us study first the case with

normally ordered light neutrino masses.

4.1 Normal Ordering

> Kg > 1 can be

~

Our aim is to show that the conditions K1, < 1 and Kie, Ky,
satisfied simultaneously, without fine-tuned conditions, only if m; is sufficiently large.

Let us start by analysing K7,. The general eq. (3.43) for the Kj,’s specialises into

Ki; = '\/ L + \/ D 191 + \/ S U501
M Mk Mk

From this expression, anticipating that the lower bound falls in a range of values

2

(4.1)

my < Mgol, We can approximate mg =~ mgo and ms =~ Magm, and write

Matm mi Mol i
S Qe = — ST 0 — PO 00 1 K €, 42
. Ul . Uréin . U 91 + 1r€ (4.2)

where ¢ is some generic phase. Adopting our assumption on m;, the expression of K,

and K7, can be similarly obtained from eq. (3.43) as

2

m m m
Kio = ’\/ LU Q11 + \/ o1 + \/ 0 31| (4.3)
My M M
where a = e, u. By using eq. (4.2), we get
[m Urn Mol Ur2 Uas ol
K, = |02 — Uy — —U, Q Uyp — —U, K_ | .
lo 11 p— ( al Us a3) + 82 p— < a2 Uos a3> + Us \V Kre
(4.4)

We can define K¢, = K1,(m; = 0) and ¢ such that

i SO UT Ua .
VKO €0 = Qg /”;L 1 (Ua2 - UzUa3> + 5 Z’\/Kh e, (4.5)

this way eq. (4.4) can be rewritten as

U, .
Ky, = ‘Qm jm <Ua1 _ Ua3> + /KO ¢ivo
My Urs

Imposing the strong thermal leptogenesis conditions K1, > Kst(Ng’i), o = e, i, we get

mi UTl 0 _ip
Qo (Ual - UU> TV

2
(4.6)

2
> Ku(NR). (4.7)
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Taking the square root of both sides and maximising the left-hand side, we obtain a

lower bound on my (o = e, p),

] (D -

mp > my = M, max
o

max[[11] ‘Ual 72Uas

when K™ < Ky (Ng’;), where

/KO max maX[|le|] Msol
m

*

U7'2
Uy — —U,
2 U7—3 3

Uas
U‘r3

VR, (4.9)

.

Because of the smallness of the reactor mixing angle 63 there are two consequences:
firstly, the maximum is found for a = e and secondly, imposing K72** < 1 as prescribed
by the strong thermal leptogenesis condition, both the two terms in K, 0 "% proportional
to Ues are suppressed and in this way there is indeed a lower bound for a sufficiently
small value of max[|{221|]. Assuming in general |Qij|2 < Mg, we can study the depen-
dence of the lower bound m! on the maximum values of |Q;1| and |Q21], by putting
max[|§211| } :max[mgl\ ] = Mgq.

We can study more in detail an intermediate situation in which Mg = 2. In fig. 4.1(a) we
plotted, with a solid red line, the lower bound m!P for Ng’i_ 1, = 0.1 as a function of the
Dirac phase § and at 95% C.L. on the mixing angles. Here 613 and 612 were drawn from
a Gaussian distribution as reported in tab. 1.1. For the atmospheric mixing angle we
have employed the Gaussian distribution 8%3 = 0.540.1, centred on the maximal value,
in order to account for the current experimental instabilities. At 6 = 0 we find (top-left
panel) m{® ~ 0.7meV while for § = £7 we obtain m!” ~ 2meV, showing how a future
determination of the Dirac phase § could tighten the lower bound. The lower bound
becomes more stringent for Mg = 1 and we find m?(§ = 0) ~ 6meV. On the other
hand for Mg = 3 the lower bound gets relaxed and we obtain mP(6 = 0) ~ 0.13meV.
For Mg Z 4 the condition K, Omax o is not verified anymore and hence the lower
bound vanishes.

In order to verify the existence of the lower bound, to test the validity of the analytical
estimation and to show in more detail the level of fine tuning involved in order to
saturate the lower bound, we performed a scatter plot analysis in the space of the 13
parameters (m1, 6 in U, 6 in 2). For the scatter plots, the mixing angles were uniformly
extracted on their experimental 30 ranges. The orthogonal matrix 2 was also randomly

generated, with the constraint Qij|2 < Mgq. For each set of extracted parameters, the

final produced asymmetry NEE’Z was computed according to eq. (3.51), while the final
pre-existing asymmetry was obtained from egs. (3.67), (3.68) and (3.69). We assumed

flavour-blindness of the initial pre-existing asymmetry by taking

Pl 1
22 =P = APy = APy, = 3 (4.10)
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Figure 4.1: Scatter plot points in the plane § —m; (a) and 613 —my (b) satisfy-
ing successful strong thermal leptogenesis for Ng’l_ L= 1071, 10721073 in red,
green and blue respectively, and Mq = 2, [1]. The vertical grey band marks the
experimental upper bound from Planck on my for NO. In figure (a), the mixing
angles are extracted according to their experimental Gaussian distribution, ex-
cept for a3 which is obtained from the Gaussian distribution of s3; = 0.540.1.
The solid red band is the analytic lower bound mﬁb at 95% C.L. on the mixing
angles. In figure (b) the mixing angles are uniformly extracted over [—7/2, 7/2].
The shadowed bands mark the experimental 3o range for 6;3.

This corresponds to the most general choice and provides us with the most conserva-
tive results. We shall discuss later the situation without phantom terms AP, in the
flavoured initial pre-existing asymmetries. It must be noticed, anyways, that the results
depend only logarithmically on these parameters, so the final analysis is rather insen-
sitive to a precise choice. Each set of parameters is accepted if satisfies the successful

strong thermal leptogenesis conditions

nﬁp’f > pEMB and n%’f <0.1 nlgp’f, (4.11)
and is represented in the scatter plot as a point coloured according to the pre-existing
initial asymmetry: Ng,’i L= 10~1,1072,1073 respectively in red, green and blue.

The points in fig. 4.1(a) represent models realising successful strong thermal leptogenesis
in the plane § —mq for Mg = 2. One can see that for Ng’iL = 10! the minimum values
of my at different values of § are much higher than the analytic estimation given by the
solid red line. The reason is due to the fact that the lower bound is saturated for very
special choices of Q such that [Q11]* and Qg1 |* are as close as possible to the maximum
value Mg, but at the same time are such that the CP asymmetry e2,, given by eq. (3.112),
is not too suppressed and successful leptogenesis can be realised. This is confirmed by
fig. 4.2 where in the three panels we plotted Z5,, |11]% and |Qgs|? for Mg = 2. We made

a focused search (by fine-tuning the parameters) managing to find a point (the red
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Figure 4.2: Scatter plots for Mg = 2 of T3, |Q11]* and [Qg1]? versus my, [1].

diamond) where m; is very close to the lower bound. The same red diamond is shown in
fig. 4.1(a). For this point 77, gets considerably reduced since it corresponds to a situation
where the term oc \/mq in the flavoured decay parameters becomes negligible and the
strong thermal condition is satisfied for a very special condition. Indeed, plugging into
the expression of Zj; the results of eq. (4.2) when the terms on the right-hand side
o /m1, VK1 are neglected and [Q11], [Q21] become maximal, we obtain that the final
CP asymmetry is suppressed.

In order to show the importance of the smallness of the reactor mixing angle in the deter-
mination of the lower bound, we also performed a scatter plot with the same procedure,
but letting the mixing angles vary within the whole range of physical values with no
experimental constraints. They were randomly extracted uniformly over [—m /2, w/2].
In fig. 4.1(b) we show the results in the plane m; — ;3. One can see that the smallness
of 013 is crucial for the existence of the lower bound. For larger values, such as 613 ~ 45°
the lower bound disappears irrespectively of the size of the pre-existing asymmetry.
This can be well understood analytically considering that in the expression for K™,
eq. (4.9), there are two terms oc|Ues|?.

In fig. 4.3 we also show the values of the four relevant decay parameters K, and K, for
Mg = 2. Firstly, we can see that the values of the flavoured decay parameters respect
the strong thermal conditions eq. (3.70). From the plot of Kj. vs. mj, bottom-right
panel, we can notice that for values m; < 10 meV the maximum value of K. gets con-
siderably reduced until it falls below Ky, indicated by the horizontal dashed line for
Ng’i_ ;= 0.1. It is also clear that already below m; ~ 10meV the possibility to realise
strong thermal leptogenesis requires a high fine tuning in the parameters since in this
case K1 S K ?émax ~ 4 Mg < K for large asymmetries and not too unreasonably high

values of Mq.

In order to quantitatively show that it is actually very difficult to saturate the analytical
lower bound, thus demonstrating that it requires some level of fine-tuning of the param-
eters, we have plotted the distributions of the values of m; obtained from the scatter
plots. These are shown in fig. 4.4 for Mg =1, 2, 5,10 and for Ng’iL =10"1,1072, 1073
(red, green and blue lines respectively). One can see that there is a clear peak around

M1 >~ Matm and that the distributions rapidly tend to zero when mj < mgo ~ 10 meV.
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Figure 4.3: Results of the scatter plots of Ki;, Ki,, Ki,, Ki. versus
my for Mg = 2, [1]. The horizontal dashed line indicates the value
Kst(Nz’; =0.03) ~ 13.

For instance, for Mg = 2 and Ng’i_ L= 10—, top-right panel, it can be noticed that in
more than 99% we have m; 2 10 meV.

For Mg = 5 the analytical lower bound vanishes, however we still have that 95% of
points satisfying successful strong thermal leptogenesis are found for m; 2 6 meV. For
Mg = 10 one obtains that 95% of points fall at m; 2 1 meV while for Mg = 100, which
is not shown in fig. 4.4, this limit decreases at the untestable values m; 2 0.4 meV.
This provides another example of how, more generally, leptogenesis neutrino mass bounds
tend to disappear in the limit Mq > 1 [102, 148]. However, considering eq. (2.77), we
can notice that large values of |Qij|2 imply high cancellations in the seesaw formula, so
that the lightness of the active neutrino masses becomes a combined effect of these can-
cellations with the actual seesaw mechanism. Therefore, barring these special situations

in which the seesaw mechanism is not genuinely realised, we can expect Mq < O(1).

4.2 Inverted Ordering

We shall now discuss the IO case. The analytical procedure shown before for NO can be
applied to the 10 case to find an expression similar to eq. (4.8) with the replacements
Mesol — Matm and U — UO. These replacements have a significant impact on the results.

Firstly, replacing mgo — Matm tends to push all K, values to much higher values. If
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Figure 4.4: Distributions of the values of m; from the scatter plots of successful
strong thermal leptogenesis models, [1]. From left to right, top to bottom:
Mg =1, 2,5, 10. The coloured lines correspond to Ng’l_L =10"1, 1072, 1073
in red, green and blue respectively. The diamonds mark the m; minimum values
if found. For N§'; = 107! light and dark red filling indicate regions where,
respectively, 99% and 95% of points accumulate.

one considers again the quantity K ? 27 in eq. (4.9), it is possible to check that now we
always have K ?émax > K for Ng’i_ 1 < 0.1. On the other hand, this time the value of
K1, has to be tuned in order to be larger than K. The reason is that for IO there is

now a cancellation in the quantity

10
UIO __ 7710 % (4 12)
p2 T2 Ulgv :
ul

that suppresses K%tmax, though not as strongly as Ki. in NO. Indeed one finds now
that K ? /;max < Ky, implying the existence of the lower bound, holds only for Mg < 0.9.
Therefore, the lower bound on mj for IO is much looser than for the NO case. This
result is again confirmed by a scatter plot analysis. The results are shown in fig. 4.5
directly in the form of the distribution of probabilities for m;. The distributions were
obtained in the same way as for the NO case, by simply adopting the IO expressions for
the light neutrino mass spectra and the mixing matrix U. We can notice that, in the
10 case, there is no analytical lower bound for Mg = 1, 2, 5, 10 and successful strong
thermal leptogenesis could be realised with arbitrarily small m;. However, we still find

a peak in the distributions and a rapid decrease towards small values of m;. Indeed,
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Figure 4.5: 10 case. Distributions of the values of m; from the scatter
plots of successful strong thermal leptogenesis models, [1]. From left to
right, top to bottom: Mg = 1,2, 5, 10. The coloured lines correspond to
N5 =1071, 1072, 1073 in red, green and blue respectively. For N5, = 107!
light and dark red filling indicate regions where, respectively, 99% and 95% of
points accumulate.

the fact that K?ﬁnax is suppressed implies that one has to fine tune the parameters in
the orthogonal matrix in order to maximise K1, so that it can get slightly higher than
Kst(NZi)' This still acts in a way that, in the limit mj/matm — 0, the density of
points drops quickly. For instance, we can see that for Mg = 2 we still have that 99%

of the solutions are found for values m; >

~

3meV. The tuning on Ki, can be noticed
from the panel in fig. 4.6. Here, values of K1, > K ~ 13 can be easily found even
for small values of m;. On the other hand, the maximum value of K7, for small values
m1 < Matm 18 just a little larger than K. Therefore, in the IO case, the leading role

in constraining the absolute neutrino mass scale my is played by K, instead of K. as
in NO.

For completeness, we can now turn to analyse the case in which M3 < 5 x 10! GeV. In
this case, the final pre-existing asymmetry is given by eq. (3.71) and, as already pointed

out, the condition Ko, > Kst(NX’i) becomes Ko, + K3, = Kst(Ng’Ti). Potentially, this

condition can be much more easily satisfied and, in particular, the value of Ko, has not
to be necessarily very large. However, this does not substantially change the results on

the absolute neutrino mass scale obtained before for M3 > 5 x 10 GeV. Indeed, as
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Figure 4.6: 10 case. Results of the scatter plots of Ko, Ki,, Ki,, Kie
versus my for Mg = 2, [1]. The horizontal dashed line indicates the value
Kst(Ng’; = 0.03) ~ 13.

we have shown, these results depend only on the the Ki,’s rather than on K5, and in
particular on the fact that in the NO (I0) case the value of K™ (K &Lmax
close to K.

In fig. 4.7 we show Ko, and the Ki,’s for M3 <5 x 10! GeV in the NO case. We can

compare these results with those obtained for the case of large Mjs, fig. 4.3, and notice

) is very

that now Ko, can also be smaller than K. Nonetheless, the scatter plot for K. is
substantially the same, so that the conclusions drawn above are essentially still valid. In
general, for Mz < 5x 10! GeV the success rate of successful strong thermal leptogenesis
becomes higher, since the conditions are less restrictive, but still the possibility to get

values m; < 10meV relies on a tuned choice of the orthogonal matrix.

4.3 Comments on the results

The results shown before were all obtained with some assumptions and present some
features that are worth discussing with some detail. Here we shall comment on the most

relevant issues.
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Figure 4.7: NO case with M3 < 5 x 10 GeV, [1]. Results of the scatter plots of
Ko, K1+, K1y, K1 versus my for Mg = 2. The horizontal dashed line indicates

the value Ky (N’ = 0.03) ~ 13.

4.3.1 Neutrino oscillation data

The results we obtained rely on the smallness of K ?émax and K ? o for NO and IO re-
spectively, once K1, < 1isimposed. As we have seen, the condition K ?émax < Ks(Na,),
which allows for the existence of the lower bound in NO, is enforced by the current mea-
sured value of the PMNS matrix entries, in particular |Ugs|? < 1. Similarly, in 10 we
have Kfl’tmax < Kg(Na,) thanks to |UJ — U US /U ? < 1. Tt is then quite re-
markable that the strong thermal leptogenesis conditions realise an interesting interplay

between low-energy neutrino data and leptogenesis predictions.

4.3.2 Pre-existing asymmetry phantom terms

In the derivation of our results we have assumed eq. (4.10). It is possible to study
how the results would vary if the initial pre-existing asymmetry had the same flavour
composition for leptons and anti-leptons, so that AFP,, = 0. In this case there is no

lower bound for any value of Mgq, since now, for instance, the strong thermal condition

0
(1 ~ ]i?e > <1077 (4.13)

1
2715

is also satisfied if
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in eq. (3.67) (without AP,,), independently of the value of K., which depends on m;.
From egs. (3.34), (3.44) and (3.42) we obtain

PQOQ — K2€
P207_2J_ KZe + K2,u

~1 = Ky, ~0, (4.14)

therefore this situation is realised only for very special models where Ny essentially
decays into leptons without a muon component. Clearly, this is a very special case,
though not excluded by experimental data. However, even though the lower bound on

m1 can be evaded, the my distributions are not modified by these very special solutions.

4.3.3 Flavour coupling

It is important to remark here that in our analysis we have fully neglected flavour
coupling of the Boltzmann equations. This effect would generally imply modifications of
the results, since it would open new ways for the pre-existing asymmetry to escape Ni’s
washout [123]. For this reason, accounting for flavour coupling would then make strong
thermal leptogenesis conditions more strict, so tightening the lower bound on m;.

We can briefly analyse how the strong thermal leptogenesis setup would change if these
effects were taken into account [111]. We shall always consider the heavy neutrino mass
spectrum as in egs. (3.65), (3.66) and, for simplicity take M3 > 5 x 10* GeV. In this
case, as we have seen, No’s dynamics take place in the two fully-flavoured regime, while

N7’s washout happens in the three fully-flavoured one.

Let us start by analysing the production stage in the two fully-flavoured regime. When
flavour coupling is considered, the relevant Boltzmann equations for the asymmetry
production are given by egs. (3.37) and (3.36). We can notice that the asymmetries in
each flavour a = 7, 7'2L are coupled by means of the two-flavour coupling matrix C(?) in
eq. (3.38). We can solve the system of Boltzmann equations in a basis (7', 75 ) in which
the equations are uncoupled [123]. The basis change is performed by the unitary matrix

Q@ that diagonalises the matrix

PO, 0
P)=| 2% C®), (4.15)
0 P
as
QPYQ~ = PY = diag(PQO B P207,> . (4.16)
)

Using eq. (3.42) we can rewrite

py = (Hort MKa 00 o) (4.17)
0 Ko /Ko
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If K, . # Ky, a perturbative expansion in the off-diagonal terms of C can be per-
275

formed and it is easy to obtain an expression of the entries of @ and Q'

K, 1

(2) 275
0= S A ! CT%TKQT;*KQT (4.18)
QT’TJ- Qrir (21L 1 ’
2 TTS KQT—K2T2L
o, o 1 O
Q—l = T 5T ~ 73 TKerJ-_KQT (4.19)
71L/ Qill —0(2) _ Koy 1
TT, T TS K27—7K272J_

From eq. (4.16) and the expressions of Q and Q! we obtain that the primed decay
parameters are K, L K, n and Ko, >~ Ko,;. Solving the Boltzmann equations in the
uncoupled basis and then rotating back to the (7, 75-) one we can replace eqgs. (3.39)
and (3.40) with

Nao  (Try) ~ K. c® Kary

K
Na, (Tr) ~ eoriis (Kor) + cﬁ;ﬁe% [m ; (KQ#) - W(KQT)} . (421
275 T

Ear [K;f (K%L) - W(KQT)] . (4.20)

The pre-existing asymmetry in the two fully-flavoured regime is ruled by equations

similar to egs. (3.36), (3.37) but without the production term, i.e.

dN®
T3 _ 0 D (2) Arp
dzy - _PQTQJ‘ 2 (22) zﬁ: CTQJ_BNAﬂ (22), (422)
4N} :
e ;WQID(@)XB:cﬁ;NgB(zQ). (4.23)
Therefore we get
_3T g KQTL 3T 3 .

NP ~ NP 8 Torg 0(2) 2 8 Dord L~ Kor Np,l’ 4.94
Ay T UALC TR, Ko \f ¢ an (424)
NP ~ Npaief:%err + C(z) KQT 67%[(27'5‘ o ef%KQT Np,i (4.25)

Ar Ar TTQJ‘ K2T2L _ KQT AT2J_7

where Ng’iL = P;?ri(l — PIE)T)Ng’i_L and Nz’i = (PST + APPT)Ng’i_L. It is important to

stress that ?:hese apﬂproximated expressions hold only in the case of non-degenerate decay
parameters. If K, L K, the perturbative expansion is not reliable anymore [149] and
the full formulae must be adopted. We can notice, however, that these degenerate cases
require quite a high level of fine tuning in the leptogenesis setup, therefore in what

follows we will always bar them, without loss of generality.

The impact of flavour-coupling at Na’s decay is plotted in fig. 4.8(a). Here we consider

flavour coupling only in the two fully-flavoured regime, while we neglect the coupling



Chapter 4. Strong thermal leptogenesis and the absolute neutrino mass scale 99

in the three fully-flavoured one, C® = 1. The asymmetries in eqs. (4.20), (4.21) and
(4.24), (4.25) will then undergo N;’s washout as shown in the previous chapter, in the

uncoupled regime. Here a random extraction of leptogenesis parameters is performed and
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Figure 4.8: Plot of the final baryon-to-photon ratio ng) computed in flavour-

coupled strong thermal leptogenesis versus ng), computed from the same setup,
but in the unflavoured regime. The initial pre-existing asymmetry we required
to washout is N} ; = 1073 and we have Mg = 2, 10° GeV < M, < 5x10M GeV
and NO, [111].

(a) Flavour coupling at Na’s decay only is considered,

(b) Flavour coupling at N7’s washout only is considered.

Blue dots indicate models in which strong thermal leptogenesis is successful only
in the uncoupled regime, while red points denote models in which strong thermal
leptogenesis is realised both in the uncoupled and in the coupled regimes. The
solid line represents ng) = ng), the dashed lines ng) =(1- C,gi) — Cﬁ?})) 771(;)7
while the dotted lines in (a) are ng) = 4% x nj(Bu). We hatched out the part of

the plot corresponding to ng) < 5.8-10719 the 30 lower bound, eq. (1.11)

(u)

the final baryon-to-photon ratio is computed both in the flavour-uncoupled, Bu

the coupled, 771(30)7 regimes. A NO spectrum of the light neutrino masses is considered. At

, and in

the same time, the efficient washout of an initial pre-existing Ng’i_ L= 1073 is required.
We selected a standard setup with Mg = 2 and with My logarithmically extracted
between 10° GeV < My < 5 x 10 GeV. In fig. 4.8(a) the blue dots represent models in
which strong thermal leptogenesis is successful only in the uncoupled regime, while red
points indicate models in which strong thermal leptogenesis is successful in both regimes.
The solid line represents a baryon-to-photon ratio equal in the coupled and uncoupled

regimes, i.e. no significant effect from flavour coupling. The two dotted lines indicate
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an enhancement/suppression of the final asymmetry in the coupled regime of a factor 4.
The dashed lines represent an enhancement /suppression of 40%, which is shown for an
easier comparison with the case with flavour coupling at N;’s washout, discussed below.
From fig. 4.8(a) it can also be noticed that the number of red points is comparable with
the number of blue points. This shows that strong thermal leptogenesis, when flavour
coupling at No’s decay is considered, is not harder to realise than in the uncoupled
case. This can be explained by noticing that the flavour coupling in the two-flavoured
regime does not modify significantly the strong thermal leptogenesis conditions found
in the uncoupled case. As it can be seen from eq. (4.25), flavour coupling here adds the
requirement

Ky > 1, (4.26)

in order to suppress the additional term proportional to Ng’l. Nevertheless, this is not

particularly difficult to realise together with the Condition;2 (3.70). A rough estimate
of the bounds given by the two dotted lines can be obtained if the ratio of the two
terms in eq. (4.21) is taken. We can consider the limit case K27_2J_, Ks; > 1 and the fact
that the CP asymmetries are bounded from above €9, < 1070My/(10'° GeV)/Kaa /Ko
[123]. Considering Ms ~ 5 x 10! GeV and the strong thermal leptogenesis conditions,
we obtain a value for this ratio ~ 3, in absolute value. The sign depends on the sign
of Eords which can be negative. Therefore, in the coupled regime, the final asymmetry

lep,f

given by N, can be at most approximately four times larger (or smaller) than the

uncoupled case.

We can now turn to study the dynamics in the three fully-flavoured regime. We shall
first study flavour coupling only at N;’s washout, thus assuming C® = 1. This way it
will be possible to analyse separately the effects on the final asymmetry produced by
flavour coupling in each regime. Finally, we will combine the two effects.

Both the produced and the pre-existing asymmetries undergo Ni’s washout. In both
cases, we have to solve eq. (3.49) with the coupling matrix C®) in eq. (3.50). Since the
treatment is the same for both the produced and the pre-existing asymmetry, we shall
generally indicate with Na, the former as well as the latter.

The Boltzmann equations can be solved in an uncoupled, double-primed basis (e”, ", 7”)

which is reached thanks to the unitary matrix V' that diagonalises the matrix

Py,
P = P, .00, (4.27)
PO

17

as
VPV~ = P}, = diag(PLy, Pl Pia). (4.28)
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The final pre-existing asymmetry will have a general form given by [123]

- 3z "
Nga = Z Vaal,,e 8 Kla Z VO/’,BNAB (TLQ) s (429)
o’ 8

where, as already mentioned, Na, stands for both the pre-existing and the produced
asymmetries.

In order to obtain approximated expressions for the final asymmetries, and thus also
for the entries of ¥V and V™1, it is convenient to directly consider here the conditions
imposed by strong thermal leptogenesis in the uncoupled case. Indeed, in the flavour-
coupled regime, the final asymmetry in each flavour will be composed of the terms
already present in the uncoupled case, plus terms proportional to the asymmetries in
the other flavours. Therefore, we can say that a necessary condition for successful strong
thermal leptogenesis in the flavour-coupled case is given by the conditions obtained in
the uncoupled one, eq. (3.70). Hence, we can perturbatively expand in the off diagonal
terms of C® and in exp(—37/8K1s), with § = e, ju. Attention must be paid here as well
to the degenerate cases that, given the conditions in eq. (3.70), can occur if K, ~ Ky,,.
Barring these cases without loss of generality, we end with the set of equations for the

final asymmetry

NA, = Na (T")e™ 5 — COINL (T)e™ F 507, (4.30)
NA, = Na, (T")e™ $ 50 — ORI (T)e 50, (4.31)

. Kir K.
N& o N (Te 55— |c® By (1) 0@ 21r

Na (T))| e ¥Kir (4.32
Te Kie e T Klu Ap,( ) e 8 ) ( )

where My <T" <5 x 108GeV as in the previous chapter, and, again, the Na_’s mean
both the pre-existing and the produced asymmetries.

Since we are here considering flavour coupling only at Ni’s washout, for the produced
asymmetry, Na,(T") and Na,(T") are given by eqs. (3.46), (3.47) and (3.39), (3.40).
Always ignoring flavour coupling in the two fully-flavoured stage, for the pre-existing

asymmetry we have (0 = e, p), as in the uncoupled regime

Py o Ky Py 0
SEPL e T g (1= 22 ) (1P )

s -fo- )

27'2J- 27'2J-
+ APM} NB' (4.33)
NR (T') = (Pp, + APyr) e 8 B . (4.34)

It is interesting to notice that, given the strong thermal leptogenesis conditions eq. (3.70),

the final asymmetry produced by leptogenesis in the flavour-coupled regime is [5]

NgPh = STNKP o N (Ta) (1= € — ) ) e ¥R, (4.35)
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Considering flavour coupling in the three fully-flavoured regime only, Na_(T7.2) e~ XK i,

with Na_(Tr2) given by eq. (3.40), is the final asymmetry produced in the uncoupled
case. We can immediately notice that, when flavour coupling at the washout only is
taken into account, the final asymmetry produced is reduced by a factor (—C’e(i) — C,(;)T)).
This amounts to a reduction of around 40% with respect to the uncoupled case and
can be seen in fig. 4.8(b). Here we plotted points realising successful strong thermal
leptogenesis only in the uncoupled regime (blue dots) and points that realise successful
strong thermal leptogenesis also when flavour coupling at Ni’s washout is considered
(red dots). In the generation of this plot we adopted the same procedure described for
fig. 4.8(a). It is evident the reduction of the final asymmetry due to flavour coupling.
Points tend to cluster around the dashed line that marks 77530) =(1- Ce(i) — C,(Ai))ngl). At
the same time, it is interesting to notice that here, unlike in the previous case, the red
dots are fewer than the blue ones. This means that successful strong thermal leptogenesis
with flavour coupling in the three fully-flavoured regime is much more difficult to realise
than in the uncoupled regime. This can be understood by looking at eq. (4.32), where
the contribution of Na, ("), 0 = e, u, must be suppressed by the power law Ky,/K;,

and not exponentially as usual, thus forcing

K, <1 (4.36)

We can now turn to consider together both cases analysed so far.

In the fully-coupled regime, when both the flavour coupling in the two and in the
three fully-flavoured regimes are considered, the final produced asymmetry is given by
eqs. (4.30), (4.31) and (4.32) with Na_(T") and N, (T") given by egs. (3.46), (3.47) and
(4.20), (4.21).

The final pre-existing asymmetry is always given by eqgs. (4.30), (4.31) and (4.32), but

now we have

P0(5 0 P0(5 0 i
NR(T) = 52-NR (Tua) + (1= PY) (1= 2 | (1= P ) + AR | NB,,
275 2 275
(4.37)
N, (1) = N} (Tra), (4.38)

where N}  (Tp2) and NR_(Trz) are given by eqs. (4.24) and (4.25). The results in the

fully—coupléd regime are shown in fig. 4.9. Here the same conventions as for fig. 4.8 apply.
As expected, the results in the fully-coupled case show the combination of the effects
of the previous cases. From fig. 4.9 we can notice that the points show the spreading
we found already in fig. 4.8(a) for the washout in the two fully-flavoured regime only,
while at the same time they tend to cluster around 771(5(;) = <1 — Ce(.?r’) — Cffp) nj(gu) as in

fig. 4.8(b), where the flavour coupling at Np’s washout only was considered. We can
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Figure 4.9: (a) Plot of the final baryon-to-photon ratio ng) in fully-coupled

strong thermal leptogenesis versus ng), computed from the same setup, but

in the uncoupled regime, [111]. In the fully-coupled regime flavour coupling is
considered both at No’s decay and at N;’s washout. The same setup and legend
as in fig. 4.8 applies.

summarise the overall effect of flavour coupling by saying that coupling in the two-
flavoured regime causes a spreading of the points around the line 771(96) = ng“t), while the
coupling in the three-flavoured regime translates downwards this line, reducing the final
asymmetry produced by leptogenesis by a factor ~40%.

A comparison between red and blue points shows that when successful strong thermal
leptogenesis in the fully-coupled case is required, the dominant effect is given by the
coupling at Ni’s washout. Indeed, in fig. 4.9 we can see that the red points tend to
cluster around ng) = (1 - C’S) — Cﬁ?) ng), as in fig. 4.8(b), and their number is much
smaller than the number of blue points. The dominance of the coupling in the three-
flavoured regime can be explained if we recall that, unlike the coupling in the two-fully
flavoured regime, strong thermal leptogenesis with flavour coupling at Ni’s washout
requires the very stringent condition K, < 1, as discussed above, eq. (4.36). On the
contrary, the condition K,_ L > 1 imposed, as we have seen, by the coupling in the two-
fully flavoured regime eq. (4.26), is easier to be realised and, together with eq. (3.70),
forces the final asymmetry to be close to what is found with flavour coupling at Ni’s
washout alone. For this reason, it is a good approximation to neglect flavour coupling
in the two fully-flavoured regime and consider only coupling in the three fully-flavoured

one [5].

We can now comment on the changes that these effects imply on the lower bound m/!P.
In the derivation of the analytical bound, eq. (4.8), we employed K7, ~ 0. This is indeed

the case we have described when flavour coupling at Ni’s washout is considered, that
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Figure 4.10: Distribution of probability of m; for Mg = 2 and Ng’i_ L= 1073,
[111]. In the right column, flavour coupling is taken into account, while in the
left column the uncoupled case is shown. NO case.

implies eq. (4.36). Therefore we can conclude that flavour coupling does not change the
analytical lower bound in eq. (4.8).

Nonetheless, flavour coupling severely strengthen the condition on K., that must now
be very small. From the top-right panel in fig. 4.3, the K1, vs. mj scatter plot, we
can see that low values of K1, can be obtained much more easily for high values of m1,
since this allows for cancellations in the formula of Ki,. It is possible to obtain quite
a low K7, also for smaller values of my, as can be seen in the case of the red diamond
corresponding to the saturation of the analytical lower bound, but this can happen,
as already discussed, only at the expense of fine-tuning in the decay parameters and
in the seesaw formula. For this reason, a good tool to understand the modifications
caused by flavour coupling is again given by the distribution of the values of mj. As
an example, in fig. 4.10 we show the distributions of m; both in the uncoupled and in
the coupled cases, for Mg = 2 and Ng’i_ L= 1073, For simplicity, we have considered
NO light neutrino spectrum. Here we can notice that the values of m; above which we
have 95% and 99% of points are shifted towards higher values when flavour coupling is
considered. In particular, for Ng’i L= 1073 we can notice that in the uncoupled case
my > 11.8meV for 95% of points, while in the coupled regime my > 18.8 meV for 95%
of points. Similarly, in the uncoupled case we have m; > 6.7meV for 99% of points,
while in the coupled one we get m; > 11.1 meV.

We can conclude that, as we could expect since the beginning of this detailed study,
flavour coupling tends to tighten the bounds on mq, pushing them towards higher values
that are approximately a factor 2 larger than in the uncoupled case. As we have seen,
this is explained by the need of strong thermal leptogenesis in the coupled regime for

high values of m; that allow Ki, to be very small.
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4.4 Experimental implications of the lower bound

We have seen that the strong thermal leptogenesis conditions imply, for not too large
values of Mg, a lower bound on mi. In general, we have noticed a preference for rather
high values of m; also for those cases (such as IO) in which the analytical lower bound
was not present. In particular, referring to a standard case with Mo = 2 we have
mq 2 10meV for 99% of points in NO and my = 3meV for 99% of points in 0.

This conclusion can be regarded as quite robust, and we can speculate on the power of
different experimental observations to test the strong thermal leptogenesis scenario by
providing some results on the absolute neutrino mass scale. Clearly, the NO case can
be more easily tested since it favours values of m; sufficiently large to produce sizeable
deviations from the fully hierarchical case. Therefore, it is very important that in the
next years neutrino experiments will be able to solve the ambiguity between NO and 10
neutrino masses.

We shall discuss here the implication of the obtained lower bounds on some important

experimental observations.

4.4.1 Cosmological observations

As mentioned in section 1.2.2.3, cosmological observations are sensitive to neutrino
masses and are able to place an upper bound on their sum. Future observations
could potentially reach a precision of 6(>,m;) ~ 10meV [150]. In the case of NO,
assuming that experiments would be able to measure the hierarchical lower limit finding
>.;mi = (60 £10) meV, it would be possible to place a 20 upper bound m; S 10meV.
From our results, this means that future cosmological observations will be potentially
able to severely constrain strong thermal leptogenesis. On the other hand, a measure-
ment ) . m; 2 (95+10) meV would correspond to m; 2 (204 5) meV, allowing to place
a 20 lower bound m; 2 10meV. This would be in agreement with the expectations from
strong thermal leptogenesis.

In the case of 10, expected values m; 2 3meV would correspond to measurements
>, m; 2 (100 = 10) meV, generally not distinguishable from the inverted hierarchical
limit. As already mentioned, this shows that NO would be a much more favourable op-
tion than IO for a significant test of strong thermal leptogenesis, since it more strongly
favours detectable deviations from the hierarchical limit. It should be noticed that nor-
mally ordered neutrino masses with m; ~ 20meV would also yield >, m; ~ 100 meV
as for IO hierarchical neutrino masses (m; < mgo) thus providing another reason why
it is important that neutrino oscillation experiments will be able to solve the NO-10O
ambiguity independently of absolute neutrino mass experiments.

We can in any case notice that the cosmological observations, especially when com-
bined, are becoming able to put more and more stringent upper bounds. We can men-

tion, in particular the promising results obtained when the data from CMB anisotropies
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are combined with those from the Lyman-a forest. Combining Planck13 plus a low-I
WMAP+Planck polarisation likelihood, the high-I likelihood from the Atacama Cos-
mology Telescope and the South Pole Telescope (SPT) ground-based experiments with
the measurement of the BAO scale by the BOSS collaboration and the BOSS Lyman-
a likelihood, it is possible to place an upper bound ) ,m; < 140meV at 95% C.L.
[151]. Combining the BOSS Lyman-« likelihood with the full Planck mission polarisa-
tion likelihood, the upper bound is improved to >, m; < 120meV at 95% C.L. [152].
Considering the CMB data from Planck15, BAO and data from luminous red galaxies
it is possible to tighten even more the upper bound to ), m; < 110meV at 95% C.L.
[153]. It is interesting to notice that if cosmological observations become able to place
an upper bound ), m; < 100meV at a reliable significance level, they would also be
able to exclude the IO neutrino spectrum.

While these analyses are improving, but are still placing an upper bound which allows
for the fully hierarchical limit, some results pointing at a non-vanishing absolute neu-
trino mass scale have already been published. We can mention, in particular, the results
obtained by the Planck collaboration in 2013 when the Sunyaev-Zel’dovich effect [154] is
taken into account. Adding the constraints imposed by the Sunyaev-Zel’dovich effect to
the CMB and BAO data, the Planck collaboration obtained for the sum of the neutrino
masses y_, m; = (0.22+0.09) eV [155], thus pointing at nonzero m;. More recently, com-
bining CMB datasets with low-redshift growth of structure measurements from BOSS
provided a tighter prediction on the sum of the neutrino masses ), m; = (0.36+£0.10) eV
at 3.40 [156]. Though these results are susceptible of large improvements and modifi-
cations, they can be nonetheless regarded with some interests as an indication of a
deviation of the light neutrino spectrum from the fully hierarchical limit, as favoured by

strong thermal leptogenesis.

4.4.2 Neutrinoless double-beta decay

In fig. 4.11, we plotted the results of successful strong thermal leptogenesis on the Ov 35
decay effective mass mee, eq. (1.39). The yellow points correspond to vanishing pre-
existing initial abundance, i.e. strong thermal leptogenesis conditions not imposed. It
can be seen that for NO the effective neutrino mass m.. can be well below my thanks
to phase cancellations [157]. Imposing the 99% statistical lower bound on the absolute
neutrino mass scale my ~ 10meV, the effective neutrino mass falls around m; ~ 1 meV,
as indicated by the solid horizontal and vertical lines in fig. 4.11. This implies that
strong thermal leptogenesis is not able to produce effective constraints on me.. Vice
> 10meV,

~

versa, a future measurement of m.. 2 10 meV would imply necessarily my
providing an interesting support to the strong thermal leptogenesis expectations.

Similarly, in the IO case, imposing the statistical lower bound on m; does not give any
useful information on me.., since its corresponding value coincides with that obtained in

the fully hierarchical limit.
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Figure 4.11: Scatter plot [1] of the neutrinos double-beta decay effective mass
Mee in strong thermal leptogenesis, for Mg = 2and N5' , = 1071, 1072, 1073, 0
respectively in red, green, blue and yellow. The solid and dashed vertical lines
indicate the values of m1 above which respectively 99% and 95% of the points
are found.

4.4.3 Tritium beta decay

As mentioned in section 1.2.2.1, in case of absence of signal, the KATRIN experiment will
be able to place an upper bound on the effective electron neutrino mass mg < 0.2eV
[49]. This translates into a similar upper bound on mj. Therefore, it will not be
able to place severe constraints on strong thermal leptogenesis. In the PROJECT 8
experimental proposal [158], the energy of electrons emitted in tritium beta decay is
determined from the frequency of cyclotron radiation and the upper bound could be
improved to mg < 50meV. This would translate again into a similar upper bound on
myq, providing a more stringent constraint. Nonetheless, this is still not able to severely

corner strong thermal leptogenesis.

We can therefore conclude that the lower bounds imposed by strong thermal leptogenesis,
in particular the more stringent statistical ones, are remarkably interesting in relation
to forthcoming cosmological observations. This kind of experimental evidence results,

at the moment, far more compelling than other neutrino mass experiments.






Chapter 5

SO(10)-inspired leptogenesis and

neutrino parameters

In chapter 3, we mentioned that, in general, it is possible to resort to viable embed-
dings of the seesaw mechanism in larger theoretical frameworks. This is what is done
when referring to SO(10)-inspired leptogenesis. We shall now consider this possibility
by studying the constraints on the neutrino parameters originating from the SO(10)-
inspired conditions, when imposing successful leptogenesis as well as the successful strong

thermal leptogenesis.

In section 3.3 we introduced the two conditions that define SO(10)-inspired leptogenesis
and derived analytical expressions for the quantities relevant to leptogenesis, within the
assumption V;, = 1. We also showed that these analytical relations very well reproduce
the numerical results, away from some special, fine-tuned regions called crossing level
solutions. As already mentioned, we shall avoid these particular situations and deal with
hierarchical, non-resonant leptogenesis.

We can now impose successful leptogenesis, and, later, successful strong thermal lepto-
genesis, on the SO(10)-inspired framework and see what constraints on the parameters
arise. In this respect, we shall extend the results found in the hierarchical limit of the

light neutrino masses [125, 159] to arbitrary values of m;.

5.1 Successful leptogenesis condition

The final produced asymmetry should be calculated using eq. (3.51). However, from
eq. (3.114) we noticed that, in the approximation V; = 1, the tauon CP asymmetry
is by far the dominant one and the inclusion of the washout at the production cannot
change the 7-dominance as a contribution to the final B— L asymmetry. We can therefore

neglect the contribution of the other flavours and retain only the term proportional to

109
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€97 in eq. (3.51)
3
NP~ g, kp(Kop) e s Kr, (5.1)

It should be stressed that this result holds in the V;, = 1 approximation. As we shall see
later on, if we relax this approximation, a y-dominated solution appears for m; 2 10 meV
[159, 160]. For the time being, we shall assume V7, = 1 and stick to the approximation
eq. (5.1). Using the explicit expressions egs. (3.108), (3.94) and (3.116), we are now able
to express the final B — L asymmetry in SO(10)-inspired models in terms of the a; and
the neutrino parameters.

We can specialise eq. (3.113) to the case a = 7, obtaining

3Ms mi, 1

16702 m%)g ‘URSZ‘Q + m%)Q |(m;1)7'7"

Eor Im{(UESz UR33)2} . (52)

Using the expressions of Ur and Ms, we get

12 1y 12\ 7!
3 a%mg ‘muee‘ (‘(mu )TT’ + ‘(m” )‘“Tl ) ‘(m;l)m—i sina,, (5-3)

Eor =
TT 16T 02 mimgmg |(ms ) 7r |

where ay, is the effective SO(10)-inspired leptogenesis phase, in the approximation

Vi = 1. It is given by
ar = 2Arg[(m, " )rr] — 2 Arg[(m;, ) s ] + 02 — ¢3. (5.4)
From egs. (3.88) and (3.109) we have
¢ — ¢3 = Arglmyee] — 2Arg[(m; )rr] + 7 = 2(p + 0), (5.5)
so that we obtain
ar, = Arglmy.] — 2 Arg[(my ) ur] +7 = 2(p + 0). (5.6)

We can also obtain analytical expressions of Ko, and Ki,. From eq. (3.116) we get

2 -1y |2
m m1mgms3 (my, ")
K27- ~ D3 ‘U332|2 ~ ‘ Y 'u_Tl{ y (57)
MMy L My el |(mv )rr
and
K. ~ m2D3 ‘U ‘2 ~ ‘ml/er‘Q (5 8)
e Tt My med] .
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From this equation and using eq. (3.91), we can obtain an explicit expression in terms

of the mixing angles and phases that will prove useful

Ky, ~ |m1 UanUr1 +maUgUro + m3U€3U7'3‘2
T My ‘mlUfl +moUZ + m3U623‘

. o . . 2
2P — my) + s13c13¢23 (M3 270 iy s3.e —my 0%262(2’”5))}

2 2 2 2 2 2 2i(c—8
My ‘ml C19C13€°"Y + Mg S79C73 + M3 S73€ ( )‘

 |eizcrasiasaz(mae

(5.9)

Putting everything together we can find an explicit expression for the final B — L asym-

metry! [2]

2 Imee] (1m0 1m0 e ) )
Nlepyf N 3 aim? Myee my = )rr my " )ur ’(my )NT‘ .
B-L = Ja- .2 1.2 Smar
167 v my mag ms3 |(mw ') rr
_ 2
X mimomsg ‘(my l)m‘
M M eel ‘(m;l)ﬂ"

2
X exp <—37T|m””|) . (5.10)

8 s ‘ml/ee|

It is interesting to notice that in this expression the asymmetry does not depend on
a1 and ag [125]. The only left non-observable parameter is awg, which, however, given
eq. (3.81), cannot be in any case too large. This shows the power of the SO(10)-inspired

conditions to severely restrict the set of free parameters. The final asymmetry is indeed

107 i U . y 1079 i TR . PR g 1079 i

B
B
B

10~10 | 10~10 | 10710 |

0-0 1070 102 1071 101074 02 1o 070 10 o2 10
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Figure 5.1: Plots of the final ng for the same three sets of parameters of
figs. 3.3 and 3.4, [2]. The numerical results (blue solid lines) are compared
with the analytical results (black dashed lines) obtained using eq. (5.10).
The dotted lines are obtained for Vi # 1. From left to right, we have
0%, = (0.79°,4.1°,0.1°), 6% = (0,0.05°,0.07°), 0% = (2.3°,2.3°,2.3°),
dr,/m = (0.2,0.63,1.22), pr/m = (1.65,0.85,0.79) and or/m = (1.05,1.1,0.94).
The shaded band marks the 3¢ interval around the experimental measure,
eq. (1.11).

Here we correct a typo in [3], where, instead of ‘(m,jl)w‘2 / ‘(m,jl)”|2 there is, incorrectly, its
inverse.
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strictly linked to the low-energy neutrino parameters, which are constrained to lie on a
hypersurface determined by the only theoretical parameter left, as.

Moreover, we can also notice that the effective O35 decay mass mee = |my.e| plays a
direct role in eq. (5.10) and, as we shall see, the successful leptogenesis condition will be
able to interestingly constrain it.

In fig. 5.1 we have plotted np vs. my for the same three sets of parameters of figs. 3.3
and 3.4, comparing the numerical results (blue solid lines) with the analytical results
(black dashed lines) obtained from eq. (5.10). We can see that the analytical results
perfectly match the numerical ones.

We also made a more general comparison between the constraints derived from the
analytical expression eq. (5.10) and the numerical constraints (for V7, = 1). In fig. 5.2
we show, with orange points, the results of a scatter plot for V;, = 1 imposing successful
SO(10)-inspired leptogenesis for ay = 5. The asymmetry is computed from eq. (3.51),
in which the heavy neutrino masses and mixing matrix Ug are calculated numerically.
The mixing angles are randomly extracted according to a uniform distribution over the

following ranges
0 <63 <11.5% 35° < fa3 < 52°, 31.3° < 012 < 36.3°. (5.11)
The phases are uniformly extracted over their full variability ranges as
§ € [—m, m), o,p € [0, 2m). (5.12)

The value of the next-to-lightest neutrino mass is imposed to be My < 5 x 10! GeV in
order to ensure the production in the two fully-flavoured regime and avoid the transition

region. Moreover, in the numerical simulation we fixed
Q] = (3 = 1, (5.13)

even though, as already mentioned, these parameters do not play a role in the deter-
mination of the final produced asymmetry, eq. (5.10). In general, the results in fig. 5.2
confirm those obtained in [125, 159], but here a much larger (about thousand times)
amount of points was obtained and the constraints are much sharper.

For comparison with fig. 5.2, we have produced the corresponding scatter plots using
directly the analytical expression for the final asymmetry, eq. (5.10). The results are
shown in fig. 5.3. We can notice that they perfectly reproduce the numerical results
given by the orange points in fig. 5.2. We can then conclude that eq. (5.10) provides a
very precise analytical way to calculate the final asymmetry in SO(10)-inspired models
when Vi, = 1 and crossing level solutions are avoided. Indeed it can be reliably applied
in all models where SO(10)-inspired conditions hold, in order impose the successful lep-
togenesis condition using directly input on the low-energy neutrino parameters. In these
cases, the only additional parameter that has to be introduced is as.

Once established that eq. (5.10) precisely reproduces the final leptogenesis asymmetry
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Figure 5.2: Scatter plots [2] in the neutrino parameter space projected on
different selected planes for NO and as = 5. We imposed the bound
My < 5 x 10" GeV. The orange points respect the successful leptogenesis con-
dition nf,p’f > nEMB > 59 x 10710 for Vi, = 1 where nﬁp’f is calculated from
eq. (3.51) using a numerical determination of heavy neutrino masses, Ur matrix,
mixing matrix and phases. The mixing angles vary within the ranges eq. (5.11).
The blue points are those respecting the additional successful strong thermal
leptogenesis condition for V;, = 1 (light blue) or for 1 < Vi, < Veogn (dark
blue). The vertical hatched regions mark the cosmological upper bound on of
mq, eq. (1.43), in all panels except for the bottom-central one, where the 3o
experimental lower bound on fs3 is showed (see tab. 1.1). In the top-central
panel the horizontal hatched regions mark the experimentally excluded values
of 613 at 30. In the bottom-right panel the horizontal hatched region marks
the values of m,, excluded by Ov3 experiments, while the dashed (solid) black
lines indicate the generally allowed bands, both for NO and IO, for 6,3 in the
range in eq. (5.11).

for Vi, = 1, we can proceed further and safely employ eq. (5.10) to derive analytical

constraints on the neutrino parameters, when successful leptogenesis is imposed.
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Figure 5.3: Scatter plots [2] in the neutrino parameter space projected on dif-
ferent selected planes for NO and «g = 5, respecting the successful leptogenesis
condition nﬁp > ngMB > 5.9x 10719 and obtained from the analytical expression
eq. (5.10) for the final asymmetry. Same ranges and conventions as in fig. 5.2
are adopted. These analytical results should be compared with the numerical
results of fig. 5.2 (orange points).

5.1.1 Lower bound on m;

Using eq. (5.10), we can calculate the final asymmetry in the limit m; — 0 showing that

this tends to vanish. Therefore, successful SO(10)-inspired leptogenesis implies a lower

bound on the absolute neutrino mass scale. It is convenient to start from the expression

of Ki-, eq. (5.9). In the limit m;/mg, — 0 we have

Ky, o~

N |matrn 513C13C23€

(20-9) Mol C13

2
$12€12523|

2 2 2 i(o— ’

(5.14)
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and we can notice that the condition K, < 1 can be realised for 20 — § ~ 2n7 and

~

s13 2 MMsol s19¢12 tan O3 Z 0.06. (515)

~J
atm

This implies a lower bound on 63 given by
913 z 3° ml/msol — 0, (516)

confirmed by the scatter plots in [125] and by the top-central panel of figs. 5.2 and 5.3.
The asymptotic limit of Ky, can be obtained from eq. (5.7) giving

2
Ko ~ 023771& ~ 25, (5.17)

thus showing that, in the low m; limit, the washout at the production is strong. We

can therefore employ the simple approximation (see eq. (2.169))

0.5

2T

for the final efficiency factor.

We can now turn to the m; — 0 limit of the CP asymmetry €2,. From eq. (5.3) we have

3 adm?  my Mo U + Matm U U | o
L

€21 &= ———
160 22 Mgol Matm |U‘rl|4 (|U7-1|2 + |Uu1|2>

2 2 2 2i(c—3)| 2
3 a%mz mi ‘msolsucm—i—matmslge i(o )‘023

~ — 4 4
16T v2  Mgo] Matm 512523

sinap, (5.19)

and the asymptotic limit of the effective leptogenesis phase is given by
ap ~2(p—o0), mi/mgel — 0. (5.20)

The expression for €9, is maximised for o — § >~ nx and for sinay, = 1, so that

75 m2 fa9\2 m c2 m 52
€y S ——5 (72> e (1l (5.21)
167 v 5 Matm 312523 Msol S719

Combining all these expressions together, we find that, in the limit m; — 0, the baryon-

to-photon ratio is maximised by

2 2 2
lep,f max aQ 2 —4 75 m. Ca3 Matm S13
n <n ~ my (—) 107 —— 1+
B B 5 167 2 Magm S39555 Mol S39
a9 2
=m (E) f(012, 013, 023). (5.22)
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If we now impose the successful leptogenesis condition nF** 2 ngMB, we obtain a lower

bound on the absolute neutrino mass scale

min _

miy 2> m

6 x 10710 5\2 5\2
= 2=  (2) >08mev (2] , 5.23
! f(612, 613, 623) (042> ~ <a2> (5.23)

where the last step is obtained for the values of the mixing angles, within the ranges in
eq. (5.11), that maximise f(612,6012,023). This result is in very good agreement with the
scatter plots in figs. 5.2 and 5.3.

Eventually, we can also notice that the three conditions for maximal asymmetry on the
phases, i.e. 20 —d ~2mm, 0 — 6 ~ n7m and sin[2(p — )] ~ 1 with n, m € Z, imply that,

always for mj/mgo — 0, we have
o~ km, 0 ~2m, with k,l € Z. (5.24)

This is confirmed by the scatter plots in the two panels of figs. 5.2 and 5.3 for ¢ and §
vs. mq.

One also finds p = w/4 + qm, with ¢ € Z. However, from the scatter plots it can be
noticed that at small m; the value of p is actually p ~ 0.357 4 g7. The reason for this
shift can be understood from the complete expression of K. in eq. (5.9). For p = 7/2

2imp

the term mqe —mq adds to the term —mq in a way that K1, < 1 for slightly

lower values of so3. However, because of the strong dependence g9, 82_34, a shift of p
towards 7/2 maximises the asymmetry even though the phase «ay, is not maximal. This

interplay results in an intermediate solution p ~ 0.357 4 ¢ .

5.1.2 Upper bound on m,

As can be seen from figs. 5.2 and 5.3, together with a lower bound on my, there is also
an upper bound. We can work in the quasi-degenerate neutrino limit m; >~ mo ~ mgj
and then check whether the upper bound does indeed fall in this regime. We can obtain
the expressions of the quantities relevant to the final asymmetry, i.e. €9, Ko, and K.,
in the quasi-degenerate limit.

Starting from K., from eq. (5.9) for p = nm we have

mq o 12 mq o 12
K1, ~ 513¢55 e!20=0) _ g2 2P <0.015— |77 — 2, — 2,e| | (5.25)
M M

so that for m; < 0.1eV we always have K1, < 4. The maximum is obtained for o = 2mmn
and 6 = /2 + kn. Hence, K, is never too large and, in general, it can always be made
vanish.

Always taking p = nm, we can compute the limit of eo,. To this aim, we can separately

study the behaviour of the m,, and (m;!) entries, neglecting all the subdominant terms
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ocs%S. This way, the dependence on § cancels out. In the quasi degenerate limit we have
Mee = ‘ml/ee| =ma, (526)

as can be seen from bottom-right panel of figs. 5.2 and 5.3. Moreover, we have

1 .

’(m;l)ﬁ_‘? ~ ‘533 + 0336_2“"2 , (5.27)
1

|(my )r | 32;;23 |27 — 17 (5.28)

Using these results, from eq. (5.3) we get the quasi degenerate limit of o,

: ’ e 1‘ 53333 .
3 5 5 sinar, (5.29)
167 v |35 + cBae 2| |53y + cye 7| + sBycdy e — 1]

3 a3m?

Eor ™~
where the asymptotic limit of «ay, is given by af ~ —40.
Finally, from eq. (5.7) we get

my s3,c2, }e‘zw — 1|2

Koy o~ (5.30)

|35 + c3ge 27|
We can now obtain the expression of the baryon-to-photon ratio in the quasi-degenerate
limit. Approximating the efficiency factor as r(Ka,) ~ (1 + 2K3:?)~!, we have

2 ‘ —2io 1|

2 2
lep.f 3 aim? 55aC
7’]ep ~ 0.01 2 23-23

16m 02 ‘823—1—0236 2@0‘ }8234—6236 2w| +$23623 e 220_1‘2

sinay  _smpe

X —————¢ 8 5.31
e T (5.31)

where we always have p = nm, so that K1, < 1. We can notice that the asymptotic
limit mainly depends on o, since p is fixed and the dependence on 9 is very weak and
negligible. We can therefore assume that Ko, is minimised by 20 ~ 2n7, so that, simply

using sinay, < 1, we have that 7] 5 Pfis maximised by

2,2 2,2
nlep f < nmax =0.01— 3 ()[27’277, z — S 001 QQZLC m*7 (532)
167 v 149 (%) c 12 1920 v* my
where
T = s533¢3, ‘e_%” - 1‘2 . (5.33)
Eq. (5.32) is maximised for
=952 (5.34)

ml
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which indeed implies o ~ nm as guessed. Imposing successful leptogenesis n5** 2 ng,MB

we obtain the upper bound

2.512 x 10® a3m?
1927 v?

myp S mp = m,

< 52meV. (5.35)

This very well reproduces the result from the scatter plots in figs. 5.2 and 5.3. In the
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Figure 5.4: Scatter plots [2] for the four flavoured decay parameters Kor, K-,
Ki,, Kie vs. m1. The colour code is the same as in fig. 5.2.

top-left panel of fig. 5.4 a scatter plot of Ko, vs. m; (orange points) confirms that for
m1 2 10meV the value of Ko, becomes smaller and smaller for growing mgi, in order
to minimise the washout at the production that would suppress the asymmetry. The
upper bound on m; is saturated for an analytical minimum value of Ky, ~ 2.5 well in

agreement with the numerical result.

5.1.3 74 solution: my < mge

We can now study the behaviour for intermediate values of my, between the lower and
the upper bound. From this point of view, as we shall see, the value of mgy ~ 10 meV

will represent a sort of border between two different solutions, the so-called 74 and 75.
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It is clear that the labels of these two different solutions emphasise the fact that the
final asymmetry is dominantly produced in the 7-flavour. These two kinds of solutions,
anyways, are not precisely distinct, but there is an overlap around m; ~ 10meV. This
distinction will be useful when we will discuss the strong thermal leptogenesis solution

in the next section. We shall start considering values mi < my).

In the case of low values of my < my, imposing K, < 1 has an important consequence

~

on the atmospheric mixing angle. Indeed, from eq. (5.14), taking into account the
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Figure 5.5: Scatter plot [2] in the plane m; — 63 obtained imposing success-
ful leptogenesis with the asymmetry calculated from the analytical expression
eq. (5.10). Here we have 35° < 63 < 70° uniformly distributed. The dashed
lines indicate the lower bound on m; eq. (5.23) and the upper bound on 63
at low my eq. (5.36). The dot-dashed lines indicate the upper bound on my
eq. (5.35) and the upper bound on 63 at high m;. The solid line is the lower
bound on my from the strong thermal leptogenesis condition for Ng’l_ L= 1073,

eq. (5.48).

dominant term ocmye?*”; that was previously discarded, and approximating p ~ /2,

we obtain the upper bound

Bas < arctan(matm ~ Mol STy 513 > < 65°, (5.36)
Mgol + M1 C12512

where the maximum value in the last step is obtained in the hierarchical limit. In fig. 5.5

we show the results of a specific scatter plot obtained from the analytical expression in

eq. (5.10), with V7 = 1, in the plane mj — f3. The mixing angles are extracted as

previously specified, but here we have 35° < a3 < 70°, uniformly distributed. It can be
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seen that the analytical upper bound eq. (5.36), given by the dashed line, well reproduces

the numerical result.

It is interesting to study the link between the values of the mixing phases 4, p, 0 and
the final produced asymmetry, in particular its sign.
We have seen that for m; < mg, we have to impose 20 — 0 ~ 2mm to minimise K.,
o — 6 ~ nm to maximise the CP asymmetry, while the effective leptogenesis phase is
given by ay, ~ 2(p — ). In order to maximise, in magnitude, sin oy, we have

37

sinap, =+1 =— ng—kqw, Vv pzz—kqw. (5.37)

Since the sign of the asymmetry is determined by the sign of sin «p,, the second possi-
bility must be discarded because, even though maximal, it would give a negative final
asymmetry. Therefore, the sign of the asymmetry selects p ~ 7/4 + qw. However, as
already mentioned, for low m; we actually have p ~ 0.357 + gm. This is originated by a
compromise that maximises the CP asymmetry (p — 7/2) and minimises K, (p — 7/4)
at the same time.

When m; increases, we can understand the values taken by the phases by looking at
eq. (5.9). For growing m1, the first term in the numerator ocmye?” becomes non neg-
ligible. Since, as said, we have p # /2, this term gives an imaginary part that must
be cancelled out in order to keep K. sufficiently small. At low mq, since 613 # 0, this

20-9) with 20 — & < 0. For larger values

imaginary part is cancelled by the term ocms e
of m; we must have the cancellation m; €2 — mg ~ 0 in the first term, therefore p
has necessarily to tend to p ~ nw. There are two possibilities: either p > /2 and so
20 —0 >0, or p < w/2 with 20 — § < 0. The latter solution is the dominant case,
since at very low mj we already have p ~ 0.357 < 7/2 with small K, and maximal
leptogenesis phase. The other solution is forbidden for small m;, due to the sign of the
asymmetry, as said before, and exists only for intermediate values of m1, though being
very subdominant, since a;, cannot be maximised.

In order to better show these results in the scatter plots, we produced new plots con-
straining the reactor mixing angle in the current 3o experimental range, fig. 5.6. In the
top-left panel we show the p vs. my scatter plot. We can notice that, due to the more re-
stricted 013 range, many points disappear compared to the corresponding plot in figs. 5.2
and fig. 5.3. The behaviour is then much cleaner. At the lower bound m; ~ 1 meV we
can see that indeed p ~ 0.357. For increasing values of m; there are two branches for
p: in a first “high” branch the value of p increases to 7, while in a second “low” branch
it decreases to 0, where the two branches actually merge because of the m periodicity.
It is clearly noticeable that the low branch dominates, since it corresponds to values of
p that produce the correct sign of the asymmetry and to maximal leptogenesis phase
already at minimum my values. The high-p branch is suppressed since it corresponds to
non-maximal oy, values.

In the top-right panel we show the 20 — § scatter plot. This clearly shows that the
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Figure 5.6: Scatter plots [2] of points satisfying successful leptogenesis generated
using the analytical expression eq. (5.10) for the final asymmetry. The mixing
angle 013 is uniformly randomly generated within the 3 ¢ allowed experimental
range. Panels should be compared with the corresponding ones in fig. 5.3, in
particular the last one for § vs. 0a3.

low-p branch corresponds to dominant 20 — § values below 2n7, while the high-p branch
corresponds to sub-dominant 20 — § values larger than 2nr.

From these results, we can also obtain the corresponding values of ¢. In the bottom-left
panel of fig. 5.6 we show o vs. my. Since oy ~ 2(p— o) for m; < mge], the subdominant
p > /2 values branch corresponds to a sub-dominant o branch ¢ > nmw. The dominant
low-p values branch corresponds to a dominant ¢ < n7 branch.

Finally, combining the results on o with the results on 20 — §, we can deduce the
behaviour of §. For the dominant low-p values branch, corresponding to a dominant
o < nm values branch and values of 20 — 0 < 2mm we can conclude that § shifts towards
negative values. Vice versa, for the sub-dominant high-p values branch, corresponding
to 20 — 6 > 2nm and o > nmw, we have positive d values. These results are shown in the
bottom-right panel. Here we can see the clear dominance of values of § in the fourth
quadrant. This conclusion is supported by the scatter plot of § vs. 63, showing that
actually positive values of § are even more constrained if one imposes the current 3o
lower bound 6a3 2 38°. This result shows that within SO(10)-inspired leptogenesis the
sign of the asymmetry yields asymmetric constraints between positive and negative sin §
values, favouring § < 0. We must, nevertheless, remind that this discussion is valid when

Vi = 1. Relaxing this assumption will also relax this link.
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5.1.4 75 solution: m; 2 mge

For my 2 mge and given the upper bound eq. (5.35), we can approximate m; ~ mgy and

M3 ™~ Magm, SO that eq. (5.9) can be rewritten as

K 1312512823 M1 (€27 — 1) + s13¢13¢23 € [Matm 2070 —my (s2y + 2, e?r) ] \2
1r =

My [ma cis (c1,e2% + s1,) + Marm 57527 |

(5.38)
It is clear that if s;3 = 0, having p = nx gives K1, = 0. However, with the experimental
value s13 >~ 0.15 we need a non-vanishing first term in the numerator in order to cancel
the second one. The exact value of p depends on the value of m;. The value of § must
then be able to cancel the imaginary part of e?®” while, at the same time, being such
to keep 0 — d >~ nm, in order to maximise mee in €9,. Moreover, since ay, ~ —40, o
has to be negative, which also leads to negative values of § and hence favours positive
values of p. This is confirmed by the first panel of fig. (5.6) showing a scatter plot of
p vs. mq with 013 in its experimental 30 range. It can be seen that now, compared
to the analogous plot of fig. 5.3, where 0 < 0135 < 11.54°, we have p = n7m only when
mq saturates its upper bound. Indeed, in this case the first term in the numerator of
eq. (5.38) vanishes, while, since m; ~ M, we have a sizeable cancellation within the
second one. We can anyway set p = nm even for mj >~ mg,) < matm and take 0 —6 = nmw

in order to maximise |my..| in €2,, obtaining

< 533635 (Matm —ma)°

K
1~ Mk matm(l + 3%3)

~ 2. (5.39)

Considering the CP asymmetry, we can still approximate |m, .| ~ m, but now we have

_ 1 my
|(my 1)7_7_‘ ~ E 5%3 + m730%3 s (540)
~1 523C23 mi
~ =11 - — 5.41
’(my )W" my ms |’ ( )

where 0 ~ nm. With these expressions we obtain again that nﬁp £ 5‘213, which implies
a strong suppression of the final asymmetry for increasing sg3. This originates a tight

N

upper bound on 63 for my 2 mg,. We also have nlgp

~

x mi/mg. This implies that

the upper bound on 6o3 gets relaxed at higher values of mq, reaching a maximum at

m1 =~ 35meV. For higher values of m; the term !(ml,

1),”‘ x 1 —mj/mg suppresses the
asymmetry.

For intermediate values of m; and for the 75 region we also have

ms3 553C53 (1 — ml/m3)2
M 533+ cjyma/ms

Kor ~ (5.42)

Combining together all these results, and imposing the successful leptogenesis condition,

we can find an implicit expression for the upper bound of so3 vs. mj. In fig. 5.5 we
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have plotted with the dot-dashed line the result. As we can see, it overestimates the
allowed region, a consequence of the crude approximations used for the phases. In any
case, these results well explain the existence of an upper bound on 653 also for values
my 2 Mg and how this gets relaxed for increasing values of my up to a peak value that

is reached for m; ~ 35meV. For values m; = 35meV the upper bound on 63 vs my

~

becomes more stringent and 055 — 0 when m; — m"®*, given by eq. (5.35).

It should be noticed that the regions for the 74 and for the 75 solutions overlap to some
extent for m; ~ 10meV. This is not contradictory since they are realised for different
values of the phases, in particular in the case of the 74 solution we have p ~ 7/2 for

my =~ 0, while for the 75 solution one has p ~ 7 for m; >~ m"®*.

5.2 Strong thermal leptogenesis condition

We can now impose the successful strong thermal leptogenesis condition on our SO(10)-
inspired model and derive analytical expressions for the features already discussed in
[160]. However, we shall consider here always V7, = 1.

We have already seen that in SO(10)-inspired models, with V7, = 1, the final asymmetry
is dominantly produced in the 7 flavour and that K1, < 1. This is perfectly in line with

what is required by strong thermal leptogenesis, therefore we only have to impose the
conditions eq. (3.70) on Ko, K1 and Ky,

5.2.1 Ruling out the 75 solution

From eq. (5.42), in the 75 case, we can check that for m; ~ mg, we have Ko, ~ 13.
Using eq. (3.64), we can conclude that this would be sufficient to wash out a pre-existing
asymmetry as large as about 1072, Starting from eq. (3.116) for K;, and using eq. (3.90)
and |Ugi1| ~ 1 as in eq. (3.108), one immediately obtains, in general and therefore also
for 7 solutions

Mee M1

K. ~ ~ ,
Mse Ms

(5.43)

where, as we have already discussed, the last approximation can be accepted both in
the low and high m regimes. This is sufficient to wash out electronic pre-existing
asymmetries as large as 1072 for m; > 10meV and even larger if m; increases. However,
considering Ky, in the 7 case we have

2

2 .2
Ky, oo atm T893 <y (5.44)
M ‘ml + s73 matm|

As we can see, K1y, is then too small to provide an efficient washout of a sizeable pre-

existing asymmetry in the p flavour, therefore successful strong thermal leptogenesis
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cannot be realised by 75 solutions. This confirms in a general analytical way the nu-
merical examples shown in [125, 159, 160]. For this reason, from now on we shall focus

on the 74 solutions.

5.2.2 Lower bounds on m,.. and m;

From eq. (5.43), the requirement Kj. 2 Kst(Nz’i) translates into a constraint over the

Ovfp decay effective mass me.. Using the expression eq. (3.64) we immediately have

p,i
Mee > 8meV (1 +0.0951In 1.5><7Afof4 ) . (5.45)

This is rather interesting since it predicts that, despite neutrino masses are NO, next
generation Ov5S experiments, such as MAJORANA and GERDA as mentioned in sec-
tion 1.2.2.2, should be able to find a signal.

Using eq. (3.91), we can better approximate m.. as
2 2 2 2 2 2 2i(o— 2 2 2
Mee = |1 C19C13€ Kd “+ mo 512C13 + ms3 Si3€ (o 6)) >~ mq }C126 Kd + 812’ y (546)

where, already assuming mi =~ mgy, we have approximated mq ~ mo and neglected the
term o< mgs?y. Considering that in the 74 solution we have 7/4 < p < 7/2 (plus 7

periodicity), we can choose p = /4, that corresponds to lower values of m;. This way

Mee \/ o + sty =~ 0.75. (5.47)
mi

From this result and eq. (5.45) we obtain
> | (5.45)

This is perfectly in line with the general feature of strong thermal leptogenesis for NO,

p;i

Ae

that we analysed in the previous chapter. As seen, it is the washout of the electronic
pre-existing asymmetry that imply a lower bound on mj, eq. (4.8). When SO(10)-
inspired conditions are also considered, this lower bound becomes more stringent, yield-
ing eq. (5.48). This result totally agrees with the numerical simulations in fig. 5.2, where
the successful strong thermal leptogenesis solutions for Vz, = 1 are represented by light
blue points. The lower bound on m; obtained by successful strong thermal leptogenesis
for Ng’ei = 1073 is also shown in fig. 5.5 by the solid blue line.
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5.2.3 Atmospheric mixing angle and upper bounds on m.. and m;

The lower bound on m; given by successful strong thermal leptogenesis, eq. (5.48),
can be used to further constrain the atmospheric mixing angle. Plugging eq. (5.48) in
eq. (5.36), we obtain that, for Ng’i = 1073, the atmospheric mixing angle is a3 < 40°.
This is well in agreement with the numerical results in the top-right panel of fig. 5.2
(light blue points). Successful strong thermal leptogenesis therefore remarkably requires
053 to lie in the first octant.

Since eq. (5.42) is valid also for intermediate values of m;, we can impose Ko, 2 Kt (NX’Ti ).
Plugging the minimum experimental value of 623 ~ 35°, we can obtain an upper bound
my < 20meV. This in turn implies an upper bound on me, given by mee < 0.8m; < 16 meV,

which is in fair agreement with the results in fig. 5.2.

5.2.4 Lower bound on the reactor mixing angle

From eq. (3.116), we can obtain an expression of Ky, valid for intermediate values of
my

' 2
g |s12c12¢23 M (1 — €%%) + mg3 s13823)]
Klﬂ ~

, (5.49)

My |m1 + m38%3‘

where we used m1 ~ mo, 20 —9 ~ 2nm and we retained the terms occmg s13 and ocmg 3%3.
For s?; = 0 the strong thermal leptogenesis condition Ky, 2 Kst(Ng’i ~ 1073) would
2> 30meV, which contradicts the upper bound m; < 20meV. However, for

imply m1 2 S
non vanishing values of the reactor mixing angle this incompatibility can be overcome.
Indeed, for s?; > 0.1, that is 613 > 5°, we can have Kj, > 10 and m; < 20meV at the
same time. This confirms the result obtained in [160], that successful strong thermal
leptogenesis predicts a non vanishing reactor mixing angle, as now firmly established by

neutrino oscillation experiments.

5.2.5 Dirac phase

While discussing the 74 solution, we noticed that the Dirac phase § preferably takes
negative values. The Dirac phase was linked to o by the condition 20 — é < 0 that sup-
presses K1, when 613 is non vanishing. The more stringent lower bound on #,3 imposed
by strong thermal leptogenesis strengthens the preference for negative values of §. This
is well shown in the bottom-right panel in fig. 5.6, where 613 lies in its 30 experimental
range, tab. 1.1. It is also possible to notice that for 38° < 693 < 42° the phase § is basi-
cally constrained in the fourth quadrant. This is indeed the situation realised in strong
thermal leptogenesis, where, as seen, we have the upper bound 235 < 40°. Therefore,
by constraining the atmospheric mixing angle between its 3o experimental lower bound

A3 > 38° and the upper bound imposed by strong thermal leptogenesis o3 < 40°, we

~
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obtain that the Dirac phase 0 lies necessarily in the fourth quadrant, i.e. —7/2 < < 0.
This can be clearly seen in the bottom-central panel of fig. 5.2, where the highest value
093 ~ 41° is obtained for § ~ —m /3 (light blue points). The constraint of ¢ in the fourth
quadrant is particularly interesting in light of the experimental hint at sin§ < 0. More
precisely, the SO(10)-inspired strong thermal leptogenesis solution implies sind < 0 and
cosd > 0.

5.3 Inverted ordering

We shall now study SO(10)-inspired leptogenesis in case the light neutrino masses fol-
low the IO spectrum. As in the previous discussion, we shall first analyse the results
obtained by imposing the successful leptogenesis condition and later consider strong
thermal leptogenesis.

The analytical expression of the final B — L asymmetry, eq. (5.10) is valid in the IO
case as well, if we employ the correct expressions of mg, and the IO mixing matrix U©,
eq. (1.29). In fig. 5.7 we repeated the scatter plots made in fig. 5.3 for the NO case.
The analytical expressions for 10 are able to reproduce the numerical results of [159] for
Vi, = 1. In particular, we can notice that IO is only marginally allowed, since it requires
a very narrow range of values 20meV < m; < 40meV. Moreover, from the top-right
panel of fig. 5.7, we clearly have now a lower bound on the atmospheric mixing angle
fa3 = 48°, that falls in the second octant. For Vi, = 1, values ag < 4.5 are not allowed.
From eq. (3.116), we can compute K1, and using now msg ~ ms we get that it is min-

imised for p = nw with
2.2 2
my $13¢3

Kir 2 (5.50)
sy
Imposing K1, < 1 we have the upper bound
0.01
S13C23
We can also obtain
KQT = i 5%37 (552)

*

so that again we can employ the strong washout approximation xy(Ks;) ~ 0.5K2_Tl'2 for
the efficiency factor.
Considering the CP asymmetry €., in the approximation mg ~ ms >~ Matm, M1 << Matm

and taking p = nm we have

Mee ™~ M2, (5.53)

!(m;l)ﬂ‘ ~ ﬁ, (5.54)
m

‘(m;1>/w‘ = 223723 (5.55)
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Figure 5.7: Scatter plots [2] in the neutrino parameter space projected on dif-
ferent selected planes for IO and ao = 5, respecting the successful leptogenesis
condition nﬁp > ngMB > 5.9x107'Y and obtained from the analytical expression
eq. (5.10) for the final asymmetry. Same ranges and conventions as in fig. 5.3
are adopted.

This way we obtain
2,2 2
3 asmg s53 M

Eor X —— ———sin aj,. 5.56
T 16n w2 C33 Matm ( )
With respect to the effective leptogenesis phase, here we have

ar =~ 2p — Argc},e® + s3] . (5.57)

Hence, for p = nm the CP asymmetry would vanish. Therefore, we must have a small
positive displacement from p = n, so that the upper bound eq. (5.51) actually becomes

more stringent. The shift from p = nx is clearly visible in the central panel of fig. 5.7.
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Figure 5.8: Scatter plots [2] for the four flavoured decay parameters Ko, K.,
Ky, Kie vs. mq, 10 case.

Combining all these results together and imposing successful leptogenesis, we obtain a
lower bound on m;y
_g Matm V2 € o
my 2 321 107° —5—— 57 [kp(K2r) sinag] .

2

5 (5.58)
Qaome  So3

When this lower bound is combined with the result of eq. (5.51), we obtain a lower
bound on 3 2 45° for sin ay, ~ 0.5. The phase cannot be maximal since, otherwise, we

would not have K1, < 1 anymore.

Considering the strong thermal leptogenesis conditions, we can notice that the washout
of the pre-existing asymmetry along the e flavour does not pose any problem. Indeed,
Kie = mee/ms ~ 50. However, for the p-flavour from the third panel of fig. 5.8, we can
notice that Ky, $9 < Kst(Ng’i). Therefore, in 1O it is not possible to efficiently wash

out a sizeable pre-existing asymmetry along the p flavour.
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5.4 Beyond the V; =1 approximation

The assumption V7, = 1 greatly reduces the number of free parameters so that, as already
mentioned, the neutrino parameters lie on a hypersurface described by the only free
theoretical parameter left: ag. This allowed us to obtain several interesting results on the
neutrino parameters by imposing successful leptogenesis or, even more strictly, successful
strong thermal leptogenesis. We can now ask what happens when this assumption is
relaxed and the more general SO(10)-inspired condition 1 < Vi, < Vg, eq. (3.83), is
enforced.

In fig. 5.2 we have included the results of a scatter plot, for g = 5 and NO, of points
respecting successful leptogenesis for 1 < Vi, < Viogas, in yellow. In particular, for these

points we uniformly extracted the angles in Vy, from
0° <01, <13°, 0°<65 <25 0°<6i3<0.2° (5.59)

while the phases 6%, p” and o’ are kept varying on [0, 27).

The results in fig. 5.2 confirm once more what previously obtained in [159, 160]. Com-
paring the results with varying Vi, in yellow, with those obtained for Vi, = I, in orange,
we can see that some constraints do not get strongly modified, such as the lower bound
on mi. On the contrary, some other constraints are more sizeably affected, as in the
case of the upper bound on mi. The most remarkable difference can be noticed in the
top-right panel, 623 vs. mj. Here a complete new region at large values mi 2 mgo
appears. This region corresponds to a py-dominated solution that is now possible since,
when deviations from V;, = 1 are taken into account, the strong hierarchy in the CP
asymmetries, eq. (3.114), gets relaxed and a muonic solution is allowed [159].

We can also notice that for the 75 solution the upper bound on 653 is much more relaxed
when 1 < Vi, < Vogar. On the other hand, the constraints for the 74 solution do not
change dramatically, a part from the disappearance of the lower bound on 6;3.
Imposing successful strong thermal leptogenesis for 1 < Vi, < Vogas, in the same setup,
produced the dark blue points in fig. 5.2. We can see that the constraints obtained
for Vi, = 1 (light blue points) get moderately relaxed. The lower bound on 63 gets
relaxed from 613 2 5° to 613 = 2°. The upper bound on a3 changes from 693 < 41.5°
to fa3 < 43°. This can likely be regarded as the most important effect in light of the
current experimental constraints on 23 that tend to favour fa3 2> 40°, at least at 20 [40].
It is then clear that relaxing the V;, = 1 assumption acts to enlarge the parameter space
allowed by successful leptogenesis as well as by successful strong thermal leptogenesis.
This is also due to the enhancement of the final produced asymmetry that Vi, £ 1 brings
about. In fig. 3.4 we plotted nﬁp’f vs. mq in three examples with V7 # 1 (dotted lines).
This clearly shows that turning on the angles and phases in V7, can significantly enhance
the final asymmetry, though not generally more than a factor 2.

Nevertheless, it is interesting to notice that the modifications on the constraints on the
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neutrino parameters are not dramatic, so that the analytical bounds obtained for Vj, =1

can often represent a good approximation.

As we have shown, overimposing the successful leptogenesis condition or the successful
strong thermal leptogenesis conditions on SO(10)-inspired models determines the ap-
pearance of several interesting constraints on the neutrino parameters. It also allows
us to make predictions on the value of some of them. In particular, on the ranges of
the absolute neutrino mass scale m; and on the octant of the atmospheric mixing angle
f25. In view of the forthcoming neutrino experiments and cosmological observations,
these results become particularly fascinating, since they will allow compelling tests of
the SO(10)-inspired scenario, as well as of the strong thermal leptogenesis assumptions.
In order to get a better insight on these features and obtain quantitative results that can
be compared to the experimental observations, we can now proceed to a first statistical

analysis of the scatter plots.

5.5 A statistical analysis of the SO(10)-inspired leptogene-

sis results

Our aim is now to gain some information on the free parameters of the model through
the analysis of the numerical simulations. Important results were found in the previous
discussion, imposing successful leptogenesis and even more when combining the SO(10)-
inspired conditions with the successful strong thermal leptogenesis one. Together, these
conditions were able to constrain several parameters to narrow regions in the parameter
space. Nevertheless, the scatter plots in fig. 5.2 do not consider the statistical significance
of the different regions, so that, as we have seen, it is only possible to derive lower
and upper bounds. We now propose to extract more information from the simulations
through a statistical analysis of the numerical results, constraining the parameters to

intervals with a precise statistical meaning [161].

The SO(10)-inspired models rely on a set of input parameters A = {m1,6;;,0,...}, in
which we do not include mg, and mam, given the great precision of their measure-
ments. In the simulations that give the scatter plots, the parameters in A are randomly
extracted according to some prior Probability Density Function (PDF) m(A). Given a
set A of parameters, a value nﬁp’f of the final asymmetry produced by leptogenesis can be
obtained and compared to the experimental value ngMB. Following a bayesian approach,
the comparison of the final produced asymmetry with the experimental value provides
additional information that allows us to update the PDFs of the input parameters to
the so-called posterior functions. These can then be used to obtain credible regions and
intervals in the parameter space.

According to Bayes’ theorem [162-164], the probability density f( | nlgp’f = np) of hav-

ing a parameter set A, given that the final produced asymmetry nlgp’f fully explains the
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baryon asymmetry of the Universe np, is

c FgP = np | N 7(N)
A 1p7 — B
P =) = F = | ) (V)

(5.60)

where f(ng len.f — g | A) is the probability of reproducing the baryon asymmetry of the
Universe np with the asymmetry produced by leptogenesis with the given input pa-
rameters A. It is possible to rewrite f(n5 lep.f = np|A) in a simpler way, assuming the
baryon-to-photon ratio np of the Universe is normally distributed around the experi-

mental value nCMB so that

1 B B
lepf sl A lepfin)) = expd — 5.61
f(ng nB|A) = fo(ng” (X)) Py Xp ;. (5.61)

where nCMB = 6.1 x 1071% and 0,) = 0.1 x 1070, as given by eq. (1.11). The posterior
PDF, f(\] nlepf = np), can then be marginalised in order to obtain a PDF for each

parameter \;

£Ou g = na) = [| TLans ) SO = ), (5.62)
J#i

which updates the prior PDF m();). The function f(\] nlep’ = np) and the marginalised
PDFs f(A;] nlep’ = np) enclose information about the parameters and show the regions
of the parameter space preferred by the model, together with their likelihood.

In order to obtain a posterior PDF f(\] nlep’ = np) it is necessary to specify the priors

of the input parameters.

e Absolute neutrino mass scale. m; is randomly extracted according to a uni-

form logarithmic distribution on [107%, 107!]eV.

e Solar and reactor mixing angles. These two mixing angles are well deter-
mined by the current neutrino global analyses and they are assumed as normally
distributed as in tab. 1.1.

e Atmospheric mixing angle. This angle is still poorly constrained by neutrino
global fits, which are not yet able to pin down the octant. To account for these
large uncertainties we have chosen to uniformly extract fa3 in its 30 range as in
eq. (5.11). With this flat prior it is also possible to clearly notice the preference

determined by leptogenesis itself.

e (CP-violating phases. Given the little knowledge on the Dirac phase §, this is
chosen to be uniformly extracted on its full variability range, i.e. § € [—m, 7).

Similarly, the Majorana phases are uniformly extracted on p,o € [0, 27).
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e V; unitary matrix. The V} matrix parameters are uniformly extracted on the

ranges in eq. (5.59).

The input parameter set A is therefore determined according to these priors and the
generated asymmetry nlgp’f()\) is then weighted according to eq. (5.61). In addition, we
shall take ao = 5.

Being particularly interested in the tight constraints originating by imposing successful
strong thermal leptogenesis, and considering the marginal role of the IO case in SO(10)-
inspired models, we shall focus our statistical study to the NO case only.

The results obtained for the different parameters and in different setups are shown in the
following paragraphs. Firstly, we shall analyse the SO(10)-inspired and strong thermal
SO(10)-inspired scenarios with V7, = 1. We shall then relax this assumption and consider

more general models with 1 <V, < Vogar.

5.5.1 Results for V; =1

Here we describe the results of the statistical analysis of the numerical simulations with
Vi = 1. For clearness, we have separately studied the two scenarios: the SO(10)-inspired
successful leptogenesis solution and the successful strong thermal SO(10)-inspired one.
In the former we have not taken into account any pre-existing asymmetry, while in the
latter we have considered the washout of an initial pre-existing asymmetry N g’i_ .= 1073,
As expected from our previous discussion, the allowed regions for the parameters are
quite tight for V, = 1. At the same time, they are narrower when the strong thermal

conditions are imposed on the SO(10)-inspired scenario.

5.5.1.1 Successful SO(10)-inspired leptogenesis with V7, =1

Here we summarise the results obtained when only the successful leptogenesis condition
is imposed on the SO(10)-inspired model. We show a set of planes cutting the parameter
space along definite directions and for each 2-dimensional slice we plot the 68% and 95%
credible regions obtained following the procedure described above. The 2-dimensional
plots are shown in fig. 5.9 [161]. The statistical analysis points out the preferred subre-
gions within the allowed ones that were found in [159, 160] and in the previous discussion
[2]. In particular, the top-central panel confirms that Vz, = 1 SO(10)-inspired successful
leptogenesis introduces a net asymmetry between positive and negative values of the
Dirac CP-violating phase §. Negative values are favoured with respect to positive ones.
The top-right and bottom-left panels, respectively showing p and ¢ versus mj confirm
the analytical results discussed in the previous section. The maximal values at low
and high m, are connected by branches, and we can notice that the lower branches are

dominant. This provides us with a clear confirmation of what was analytically derived
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Figure 5.9: 2-dimensional credible regions for different sections of the parameter
space (first four panels) plus effective O35 decay mass me. and oscillation bi-
probability plot (bottom centre and right panels) for SO(10)-inspired successful
leptogenesis with ap = 5 and Vi, = 1, [161]. In dark purple the 68% credible
region, while in light purple the 95% one. The hatched regions are currently
excluded by the experimental observations, in particular, the upper bound on
my imposed by cosmology, eq. (1.43).

~—

before, quantitatively showing the preference for particular values of the phases.

From the top-left panel it is not possible to obtain clear information about the atmo-
spheric mixing angle. All values of fs3 in its 30 range are allowed both at 68% and 95%
probability.

The bottom-right panel shows the oscillation probability P(7, — 7.) versus the proba-
bility P(v, — v.). This can be a useful way to compare the predictions of the models
with the next results coming from long-baseline oscillation experiments such as NOvA
[43, 165]. These experiments will be able, in the coming future, to place confidence
regions on this plane, which can then be compared with the region shown in the panel of
fig. 5.9, and corresponding to the SO(10)-inspired successful leptogenesis solution, with

Vi, = 1. To this aim, these probabilities are computed taking into account matter effects
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as [166]

=) () . ) sin?[(A — 1)A]
P<1/M — v, > ~ Sln2(2013)51n2923w

sin(AA) sin[(A — 1)A]

+ 2a sinf;3 cosd sin(260;2) sin(26023) cos A

A A-1
in(AA) sin[(A — 1)A
— 2« sinf3 sind sin(2612) sin(2023)sm(A ) sm[(A — )4 sin A, (5.63)

where A = AZIE*%“ 1?.1997L with L being the distance in km (for NOvA, L = 810km),

2
a = 2231 and A = +F/(11GeV) for NO, with + or — respectively for neutrinos and
31

antineutrinos and EF = 2 GeV for NOvA.

5.5.1.2 Successful strong thermal SO(10)-inspired leptogenesis with V; =1

Along the lines of the previous analysis, we show in fig. 5.10 the results obtained when
the strong thermal leptogenesis condition is imposed on the SO(10)-inspired model.
Here we considered an initial pre-existing asymmetry Ng’i_ L= 10~3. We can notice that
the regions are compatible with what found in fig. 5.2 (light blue points). As expected,
the regions are dramatically narrower than in the successful SO(10)-inspired leptoge-
nesis case. Strong thermal SO(10)-inspired leptogenesis with V7, = 1 realises the most
predictive scenario, with the tightest bounds on the low-energy neutrino parameters.
From the top-left panel it is possible to notice that the atmospheric mixing angle is con-
strained to a very narrow region in the first octant. Similarly, from the top-central panel
we can see that the Dirac phase § can only take negative values in its fourth quadrant,
i.e. around § = —7/4. The top-right and bottom-left panel show that the Majorana
phases are constrained to very small regions, with 7 periodicity.

Moreover, in the bottom-centre panel the Ov53 decay effective mass is allowed to vary
in a tight region around 15 meV.

In the bi-probability plot (bottom-right panel) the region corresponding to the strong
thermal SO(10)-inspired leptogenesis solution, with Vz = 1, is quite small, which is a
direct consequence of the predictivity of the model.

For a better understanding of the statistical significance of these intervals, it is conve-
nient to obtain the single parameter PDFs by marginalisation, as in eq. (5.62). The
results are shown in fig. 5.11, where the 68% and 95% intervals are plotted in dark and
light blue respectively. Each parameter shown in fig 5.11 had a flat uniform prior on
the allowed 30 range. As can be seen from the panels, the posterior PDFs are greatly
changed and show pronounced peaks around particular values. From the top-left panel
we can notice that the absolute neutrino mass scale is constrained to a very narrow
range, in particular m; € [12, 15]meV with 95% probability. At the same time, the
effective OvBf mass is mee € [10, 13] meV with 95% probability. Due to the precise

values assumed by the Majorana phases (see bottom-centre and bottom-right panels)
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Figure 5.10: 2-dimensional credible regions for different sections of the parame-
ter space (first four panels) plus effective Ov35 decay mass m.. and oscillation
bi-probability plot (bottom centre and right panels) for SO(10)-inspired success-
ful strong thermal leptogenesis with as = 5, V, = 1 and N&' ; = 1072, [161].
In dark blue is the 68% credible region, while in light blue is the 95% one.
The hatched regions are currently excluded by the experimental observations,
in particular, the upper bound on m; imposed by cosmology, eq. (1.43).

the cancellations in m. are very mild, so that we have me. ~ m;.

The top-right panel shows the PDF of the atmospheric mixing angle. As we can see, we
have 023 < 39° with 95% probability and o3 < 40.5° at 99.99994%, corresponding to
50 in a frequentist approach. This clearly shows that strong thermal SO(10)-inspired
leptogenesis, with Vi, = 1, strongly disfavours maximal atmospheric mixing angle, and
constrains it to the first octant.

In the bottom-left panel the PDF of § is plotted and we have § /7 € [—0.36, —0.08] with
95% probability. All the § values are negative, and it is also possible to compute the
‘50’ range: —0.5 < 0/m < —0.01 with 99.99994% probability. This confirms once again
the discussion of the previous section, and we can conclude that V7 = 1 strong thermal
SO(10)-inspired leptogenesis strongly favours ¢ in the fourth quadrant, thus implying
sind < 0 and cosé > 0.
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Figure 5.11: Single parameter posterior PDFs for SO(10)-inspired successful
strong thermal leptogenesis with ap =5, V;, = 1 and N5'; = 1073, [161]. In
dark blue the 68% credible region, while in light blue the 95% one. The ranges
of mq1 and me, are restricted to the intervals of interest in the first and second
panels. The Majorana phases p and ¢ show m-periodicity which is not plotted.
The dashed line in the top-right panel marks the maximal solution 0535 = 45°.

5.5.2 Results for 1 <V, < Veogwu

We can now statistically analyse the SO(10)-inspired models imposing successful lep-
togenesis and successful strong thermal leptogenesis when the assumption Vp = 1 is
relaxed. These models are clearly more general than those analysed so far, therefore we
can regarded the results obtained in this case as the most important ones. Indeed they
provide predictions which are more general, encompassing all the SO(10)- and strong
thermal SO(10)-inspired leptogenesis models. The range of the mixing angle and phases
in V7, can be found in eq. (5.59). We shall follow the same guidelines as in the previous
section, dealing with successful leptogenesis first and then adding the strong thermal

condition.

5.5.2.1 Successful SO(10)-inspired leptogenesis with varying V7,

The 2-dimensional plots are shown in fig. 5.12. Here we can notice that the statistically
significant regions are almost coinciding with what found in fig. 5.2 (dark blue points),

and it is not possible to improve the bounds already obtained thereby.
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Figure 5.12: 2-dimensional credible regions for SO(10)-inspired successful lep-
togenesis with e = 5 and 1 < Vi, < Vg, [161]. Panels and conventions as in
fig. 5.9.
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It is possible, however, to notice an asymmetry between positive and negative values of
0, as in the V7, = 1 case. Here again, for low values of the lightest neutrino mass, i.e.
m1 < Mo, positive values of ¢ are statistically disfavoured, being scarcely included in
the 95% credible region.

Similarly, the Majorana phases keep showing preferences for some branches, as already
pointed out in the V7 = 1 case. With varying V7, however, the favourable zones are
larger and slightly less evident.

An analysis of the one-dimensional PDFs does not allow us to obtain any interesting
predictions on the values of the unknown parameters, other than the bounds already
found. In the case of successful SO(10)-inspired leptogenesis with varying V7, there-
fore, the statistical analysis is not particularly powerful in constraining the low-energy

parameters to tight intervals with definite statistical meaning.

5.5.2.2 Successful strong thermal SO(10)-inspired leptogenesis with vary-
ing Vi,

When imposing the successful strong thermal leptogenesis condition on an SO(10)-
inspired model, the allowed regions in the parameter space are largely reduced. The
statistical analysis performed on this scenario enables us to provide the intervals with a

statistical significance. As before, we have considered an initial pre-existing asymmetry



—_

Chapter 5. SO(10)-inspired leptogenesis and neutrino parameters 38

0.5

T4 frifr
-1

,_4
I=E
—
—
9
A

100 107 102 10102 10701 104107102 10t 1
my (eV) my (eV) my (eV)

-~

L

10-4 1073 102 1ot 1073 1072 107! 1 0 002 004 006 0.08

my (eV) my (eV) P(ve)

H
<)
—
—
9
S

Figure 5.13: 2-dimensional credible regions for SO(10)-inspired successful strong
thermal leptogenesis with g = 5, 1 < Vi, < Vogy and Ng’l_L = 1073, [161].
Panels and conventions as in fig. 5.10.

Ng’i L= 1073, In fig. 5.13 we show the 2-dimensional sections of the parameter space.

The allowed regions are much smaller than in the varying V7, successful leptogenesis only

—~

case, but larger than the successful strong thermal SO(10)-inspired case with Vi = 1.
The comparison between fig. 5.13 and 5.10 shows how much the bounds relax when the
Vi = 1 assumption is removed. The most important differences between the two cases
can be found in the top-left and top-central panels. The 95% contour of fy3 extends up
to 44°, while for ¢ it goes up to about 7/2. For a better understanding of the statistical
significance of these intervals, it is convenient to obtain the single parameter PDFs by
marginalisation, as in eq. (5.62). The results are shown in fig. 5.14, where the 68% and
95% intervals are plotted in dark and light blue respectively. As for the Vi, = 1 case, we
can get precise predictions on the parameters.

In table 5.1, [161], we have summarised the posterior 68% and 95% credible regions for
the free low-energy neutrino parameters, the effective Ov53 decay mass m.. and the sum
of the neutrino masses ), m;. Very precise statements can then be made on the basis

of table 5.1. In particular, the following can be noticed.

e Atmospheric mixing angle. The second octant of #o3 is highly disfavoured.
More precisely, 63 < 43.7° with 99.99994% probability (corresponding to 50 in a
frequentist approach), which clearly excludes the maximal value a3 = 45°.

It must be noticed that the intervals in tab. 5.1 are bounded from below by the
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Figure 5.14: Single parameter posterior PDFs for SO(10)-inspired successful
strong thermal leptogenesis with as = 5, 1 < Vi, < Veogar and Ng’l_L = 1073,
[161]. Panels and conventions as in fig. 5.11.

choice of the prior distribution. This is due to the feature of SO(10)-inspired
models, in which the final asymmetry ngp’f o sin~4(6a3) as shown in the previous
discussion. Therefore low values of the atmospheric angle are preferred.

We shall comment on the choice of the priors in the following paragraph.

e Dirac CP-violating phase. Negative values of § are preferred, positive values

are marginally allowed, since we have ¢ < 0.31 7 with 99.99994% probability (50).

e Absolute neutrino mass scale. m; shows preferred values which are not com-
patible with the hierarchic limit (m; — 0). More in detail, m; > 8.78 meV with
99.99994% probability (50).

Neglecting the errors on mg, and mayy it is possible to give a credible interval
to the sum of the neutrino masses, which is particularly interesting for cosmology

and reported in the last row of tab. 5.1.

e Majorana phases and me.. The values of the Majorana phases are strongly
constrained to small regions. This implies mild cancellations in the expression of
the effective Ov55 decay mass, which falls around 12meV, a region within the

reach of forthcoming experiments.
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Prior range Posterior ranges
68% 95%
my [107%, 107 1] eV [12, 16] meV [11, 21] meV
(log)
023 [37.7°, 52°] [37.7°, 39°] [37.7°, 40.8°]
0 -1, 1|7 [—0.13, —0.031]7 [—0.17, —0.038]7
p [0, 2]m [0.063, 0.079]7 [0.054, 0.089]7
o [0, 2|7 [0.25, 0.28]7 [0.23, 0.29]7
Mee [11, 13] meV [10, 17] meV
> oMy [76, 85] meV [75, 97) meV

Table 5.1: Credible intervals at 68% and 95% for the low-energy parameters,
effective OvB mass me. and sum of the neutrino masses ), m; for SO(10)-
inspired.successful strong thermal leptogenesis with g = 5, 1 < Vi, < Veogm
and NB', = 1073, [161]. The Majorana phases p and o show m-periodicity,
while § has a 27 period.

These considerations build up a very definite pattern of predictions, as shown in tab. 5.1,
which precisely characterises the strong thermal SO(10)-inspired leptogenesis solution,

making it possible to put it to the experimental test, at least in part, in the next future.

5.5.3 Comments and remarks

As in any Bayesian analysis, these results are dependent on the choice of the priors and
this can often be a source of controversy. However, as pointed out in the previous section,
the parameter priors have been chosen on the basis of solid experimental evidences, that
constrain the variability ranges to narrow intervals. When the experimental results are
not well grounded, we have adopted a conservative approach, accounting for the current
uncertainties with flat distributions over 3o ranges, as in the case of a3, or the full
variability ranges, as for 9, p, and 0.

As mentioned in the previous paragraph, the prior of the atmospheric mixing angle can
raise some concern. Indeed, the posterior distribution is bounded from below by the
lower limit of the prior, thus showing a sizeable impact of this on the final result. We
have considered a more generic, though experimentally not supported, case with o3
over its full variability range, i.e. 623 € [0°, 90°]. This is shown in fig. 5.15. Here,
all the other input parameters are extracted as described above, while the atmospheric
mixing angle is extracted uniformly over [0°, 90°]. From this figure we can notice that
SO(10)-inspired leptogenesis indeed tends to prefer low values of f23. However they do
not saturate the range accumulating around 0°, rather they show a definite peak around
25°. In particular, it is possible to identify the credible intervals 63 € [21.6°, 32°] with
68% probability and 63 € [17.6°, 36°] with 95% probability. It is possible to notice that
the leptogenesis-favoured 653 values marginally encompass the experimentally allowed

band, the shadowed region in the figure. In this setup, with wide variability range for
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Figure 5.15: PDF histogram of the atmospheric mixing angle 623 with uniform
prior on [0°, 90°], [161]. All the other input parameters have their usual prior
distributions. The shadowed region corresponds to the current 3o experimental
range. The dashed lines marks the maximal solution 3 = 45°.

the atmospheric mixing angle, the probability that leptogenesis picks a 653 value in the
30 experimental region is about 1%. This is quite small, however it is not sufficient to
rule out the model. It must also be noticed that the Dirac phase ¢ is free to vary on its
entire variability range. Values around § ~ —27/3, as hinted by recent best-fits, make

large values of #23 much more likely.

We have also studied the strong thermal SO(10)-inspired scenario with a different choice
of priors. In order to be extremely general, we have considered the case in which all
the mixing angles are randomly extracted from a PDF uniform over the full variability
range [0°, 90°]. For simplicity, we shall refer to this choice of priors as prior 7. We
can thus make comparison with the choice of priors described and used in the previous
paragraphs, and that we shall call base prior #°. Firstly, it is possible to study the global
sensitivity to the prior choice, via standard range analysis, by comparing the outcomes
of the two choices. Focusing on the main parameters mi, 613, 612 and 653 the range
analysis implies a study of the variation of their expectation values from the base prior

79 to . In table 5.2 we have reported the expectation values for the two cases. The

‘ my (meV) 013 (°) 612 (°) ta3 (°)
7 14.5 8.8 33.7 38.8
i 8 37.0 45.5 67.6
R, 0.88 2.04 2.07 1.18

Table 5.2: Range of the expectation values of the parameters in the case of prior
70 and 7. In the last row we show the relative sensitivity.
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priors 7° and 7’ do not belong to a continuous class and the difference between them is
rather big (e.g. 013 goes from a peaked gaussian distribution to a flat uniform distribu-
tion over a finite range [0, 90°]), therefore we could expect significant variations in the
expected values and so quite a wide range. This is indeed the case in tab. 5.2, where
the comparison between the first two rows shows a large change of the expected values
between ¥ and 7/. We may conclude that our analysis is sensitive to the prior choice
and, in general, lacks of robustness. Other sensitivity analyses, e.g. the study of relative
sensitivity [167], can be carried out, in general confirming this situation. However, this
high prior sensitivity is not worrying in our case, since we have solid reasons to prefer
the prior 7° to the extreme case 7/, so that they are not considered a priori equally
plausible. On the contrary, it can be shown that our analysis is actually robust with
respect to a neighbourhood class of priors around 7°.

We can conclude in any case that the priors described in the previous section and em-
ployed in the analysis can be considered as the most reasonable and accurate, therefore
more suitable than other possible prior choices.

Finally, it is possible to reproduce an analysis in the lines of what already carried out in
[160]. We can compute the fraction of the total parameter space that allows successful
strong thermal leptogenesis, in the 7° and 7/ setups. We shall consider only the pa-
Q7Sr'OTlep

rameter space related to the mixing angles. Computing the volume of the region

corresponding to successful strong thermal leptogenesis, its ratio to the total volume
QY is
STlep
ro=-—2%_ =93.0%. (5.64)

0 = tot
QWO

/

As for the prior 7/, the mixing angles are all uniformly extracted on [0°, 90°], and
computing the ratio of the successful strong thermal leptogenesis volume to the total

volume we get

Tﬂ—/ =
QL

= 5.7%. (5.65)

We can conclude that, considering just the mixing angles and marginalising on the
other free parameters, the probability to have successful strong thermal leptogenesis
from a randomly picked triplet of mixing angles is just 5% in the generic 7’ case. This
probability raises up to 93% when the parameter space is restricted to the experimentally
allowed range. It is important to recall that this restriction is made independently of
leptogenesis and only on the basis of current neutrino oscillation experiment. For this
reason, we can conclude that the experimental data from neutrino oscillations are in
good agreement with strong thermal SO(10)-inspired leptogenesis and seem to represent

a valid support.

It must be mentioned that a fully detailed analysis would require the derivation of the
PDFs of the parameters directly from the experimental data, by fitting the relevant
datasets and then marginalising the joint PDF. This would also take correctly into

account the correlations between the different neutrino parameters. Our aim was to
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provide a first analysis of the numerical leptogenesis results. We have therefore adopted
prior distributions based on the information currently available from global neutrino fits.
In a first approximation, then, we have neglected the correlation between the different
oscillation parameters. This can be considered sufficient for our goal of showing the
constraining power of the strong thermal solution and providing predictions that can be
used for comparison with the forthcoming experimental measurements.

In this regard, it is important to recall that these results are obtained for an initial pre-
existing asymmetry Ng’i_ L= 1073, Lower values of Ng’i_ ; imply looser bounds, while
higher ones give narrower intervals. The chosen value Ng’i L= 1073 can be regarded
as a good estimation of the large pre-existing asymmetry that can be generated by
different primordial mechanisms. In general, it is possible to verify the compatibility of
the ranges shown in the previous section with the experimental results, thus allowing to
either support or severely corner the assumptions of the models. However, we can also
reverse the perspective and employ the new experimental data to put an upper bound
on the magnitude of the pre-existing asymmetry that is possible to efficiently wash
out. Clearly, if the parameter values only allow the washout of negligible pre-existing

asymmetries, the strong thermal condition will lose its interest.






Chapter 6
A supersymmetric extension

We can now consider the supersymmetric extension of the SO(10)-inspired models we
have studied so far. Supersymmetric extensions are important since they offer a tradi-
tional way to address naturalness, while at the same time they can help improving the
goodness of fits of lepton and quark parameters in GUTs [168-170]. In this respect, it
is worth noticing that in [170] good fits of the fermion parameters have been obtained
within supersymmetric SO(10) models with hierarchical RH neutrino masses and, in-
terestingly, IO light neutrino masses. Moreover, the found values of me. are well in
the reach of next generation Ov33 decay experiments. This can motivate an analysis of
leptogenesis within the supersymmetric framework.

Care must be taken since supersymmetry is typically implemented as a local symmetry,
leading to supergravity. In this case one has to worry whether successful thermal lepto-
genesis can be achieved with values of the reheating temperature Try compatible with
the upper bound imposed by the solution of the gravitino problem [171-174]. A quite
conservative and model independent upper bound, Try < 10'° GeV, is obtained in order
to avoid DM over abundance [174], where the DM particle can be either the neutralino
or the gravitino itself or some other hidden sector lighter particle, depending whether the
gravitino is the lightest supersymmetric particle. There exist, however, different ways
to circumvent this upper bound. For example, considering entropy production diluting
the DM abundance [175] or in models with mixed axion/axino DM [176]. Another pos-
sibility is that the gravitino is heavier than ~ 107 GeV so that its lifetime is so short to
decay before neutralino dark matter freeze-out [177].

Here we will extend SO(10)-inspired leptogenesis to the supersymmetric case, studying
how the constraints derived in the non-supersymmetric case (in the previous chapter)
change [3]. We shall also consider with attention the lower bound on Try.

For what explained in the previous sections, we already know that SO(10)-inspired

models naturally realise the No-dominated scenario, and this feature is preserved in the

145
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supersymmetric extension. In the following section we shall then analyse how the key in-
gredients of leptogenesis in the No-dominated scenario are modified by the introduction

of supersymmetry.

6.1 Calculation of the asymmetry within supersymmetric

Ns-dominated leptogenesis

In this section we will extend the calculation of the asymmetry in the Ns-dominated
scenario, as rising from SO(10)-inspired conditions, to a supersymmetric framework.
The supersymmetric extension of the seesaw lagrangian eq. (2.46) is given by the super-
potential [178, 179]

_ _ 1 —
Wesvan = 3 DY laeHal gy + Yo lo €HyNg; + 3 > Ng{ Dy Ng; +he.,  (6.1)

where where [, and (g, are respectively the SU(2) doublets and singlets lepton super-
fields, H, and H, are the Higgs superfields and € is the total antisymmetric tensor. After
spontaneous symmetry breaking the two neutral Higgs field VEVs, v, and vy, generate

the Dirac masses for the charged leptons and for the neutrinos, respectively
my = U4 sz and mp =1v,Y, (6.2)

with tan 8 = v, /vg and v = y/v2 4+ v3 ~ 174.6 GeV, the usual SM Higgs VEV.
The supersymmetric extension of the model implies modifications in the expression of
the parameters related to leptogenesis, in particular of the decay parameters and of the

CP asymmetries.

The flavoured decay parameters are given by

’mDozi |2

Ko = — D0l __

(6.3)

where the equilibrium neutrino mass is [105]

5/2 . /- MSSM MSSM
s _ 87 VgITSSM oy ¥ F masin? B~ 0.78 x 103 sin® BeV, (6.4)

3V5

where m, and g, are the parameters in the SM. This difference is due to the fact that
the number of decay channels into leptons is now double than in the SM and that,
because of the presence of superpartners, the number of relativistic degrees of freedom
is now gM55M = 915/4. We shall assume that g™ does not change between the Ny
production and N; washout. The overall effect is to reduce the final value of mM9SM

so that the decay factors are about /2 times larger than in the SM.



Chapter 6. Supersymmetric extension 147

The CP asymmetries are different in the supersymmetric extension, due to the presence
of additional interference terms. We shall focus on No’s flavoured CP asymmetries,

which are given by [178]

3 M matm 2 02\ 1 2 M; /M,
f0 =) gjs(Mj/MngJng/M%_l, (6.5)

where Ig‘j and jQOJ‘» are obtained from egs. (2.120) and (2.121) respectively, but now

f(:n):g[ln<1—;x> —13@] (6.6)

Neglecting here as well the interference with Ny, we obtain

3 Mz maim -

€20 = 87'(' ’U2 239 (67)

which is double compared to the SM case, eq. (3.112).

Finally, also the conversion factor of the B — L asymmetry to the baryon-to-photon
ratio, defined in eq. (2.172), is modified in the supersymmetric extension. Indeed it is
np = dMSSM N};E’z where, following eq. (2.172) we have [105]

JMSSM _ 9 MSSM%LTO) ~ 0.80 x 10~2 (6.8)
= 24 Qgph 4 (g,f(T))MSSM - ’ '

where a5 = 8/23 [180, 181] and (g5)M5M = gM55M — 915/4.
With these relations we shall compute the final B — L asymmetry along the lines ex-
plained in the previous chapters. We will neglect again flavour coupling effects, which,
in the supersymmetric extension, must receive a dedicated treatment [182]. We will also
not consider the possibility given by soft leptogenesis, that offers a way to lower the
leptogenesis scale, thus avoiding the gravitino problem [183-186].

The standard high scale leptogenesis scenario we have shown before gets modified when
supersymmetry is introduced and light flavour effects are considered. Due to the struc-
ture of the superpotential eq. (6.1), the charged lepton masses are now given by

(Dy, )M Moy, (6.9)

[e3

Mo =

where the VEV vy appears, in place of v as in the SM. Therefore, to ensure the matching

of the charged lepton masses we must have

1
DZ MSSM _ DZ SM ) 6.10
(Df.) (D505 5 (6.10)

Using this relation in eq. (3.19) and in the discussion of section 3.1.2, we obtain that the
thresholds of the fully-flavoured regimes are modified by a factor (1 4+ tan? ) [113, 187].
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Considering, in our case, asymmetry production from the next-to-lightest, Ny, the three

fully-flavoured production regimes are now given by

o Ms > 5x 10 GeV(1+tan? 8): unflavoured regime. The final asymmetry is given
by eq. (3.57), where the different terms are computed in their supersymmetric

version.

e 5 x 10" GeV(1 + tan? B) > My > 5 x 108 GeV(1 + tan? 8): two fully-flavoured

regime. The asymmetry is computed from eq. (3.51).

e My < 5 x 108(1 + tan? 3): three fully-flavoured regime. The asymmetry is com-
puted as

s _sm _3m
N;E’z ~ egchi(Koe)e™ 8 M1e 4 eg ki (Koy)e™ 8 K e r(Kar)e™ 8 K17 (6.11)

In the SM framework, this case is never realised in Na-dominated leptogenesis,
given the lower bound eq. (3.58). However, in the supersymmetric extension,
large values of tan 8 can raise the threshold above this lower bound and cause the

asymmetry production to take place in the three fully-flavoured regime.

As already discussed, in the transition regimes around My ~ 5 x 10! GeV(1 + tan? 3)
and My ~ 5 x 108 GeV(1 + tan? 3) the asymmetry should be calculated using density
matrix equations. We will not consider these particular regimes and we shall describe the
transitions by switching sharply from one fully-flavoured regime to the other, depending

on the value of Ms.

We can also study the evolution of a pre-existing asymmetry in the supersymmetric

extension, taking into consideration the three different regimes described above.

o If My > 5x10 GeV(1+tan? j3) it is impossible to realise successful strong-thermal
leptogenesis, since Ny’s washout cannot suppress the pre-existing asymmetry in
any of the three light flavours. The pre-existing asymmetry can then be erased
only by Np’s washout, occurring in the three fully-flavoured regime. However, this
would also washout the produced asymmetry, thus making it impossible to realise

successful leptogenesis.

o If 5 x 10" GeV(1 + tan? 8) > My > 5 x 108 GeV(1 + tan? 3) successful strong
thermal leptogenesis can be realised as in the SM case. The final pre-existing
asymmetry is given by eqgs. (3.67), (3.68) and (3.69) and can be efficiently washed
out by imposing the conditions in eq. (3.70).

o If My < 5 x 108GeV(1 + tan? 8) Ny’s dynamics take place in the three fully-
flavoured regime so that also the washout by N occurs along the three light
flavours. Egs. (3.67), (3.68) and (3.69) are thus modified by the replacements
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Kie = Kie + K¢ and Ky, — Kg, + K7, in the exponentials. The conditions in
eq. (3.70) are then modified to

Kie + Ko, K1, + Koy 2 Kst(NZ’;H)a Kor 2 Kst(Nz’i% Kir $1. (6.12)

Hence, it is possible to have successful strong-thermal leptogenesis also with K1, < 1,
if Ky, > 1. This way, Ky, will provide the washout of the pre-existing asymme-
try along the p-flavour, while small values of K7, will allow the final produced
asymmetry to be dominated by the muon flavour, instead of tauon. Therefore,
in the supersymmetric scenario it is possible to have a p-dominated successful

strong-thermal leptogenesis scenario.

We can now study how these modifications impact on the results on the low-energy

neutrino parameters that we have derived in the previous chapter.

6.2 Low-energy neutrino parameters

In order to study the constraint imposed by successful leptogenesis and successful strong
thermal leptogenesis on the low-energy parameters in supersymmetric SO(10)-inspired
leptogenesis, we have numerically calculated the asymmetry and produced scatter plots
as in the SM SO(10)-inspired case. Again, we have considered (aq, ag, a3) = (1, 5, 1)
and checked that, as in the SM case, the final results do not depend on a3 and a3. We
also imposed the hierarchy condition M3 > 3Ma, eq. (3.1). In the supersymmetric exten-
sion we have to distinguish between “small tan 8 values”, in which the production takes
place in the two fully-flavoured regime as in the non-supersymmetric case, and “large
tan 8 values” for which the asymmetry is produced in the three-fully flavoured regime.
Since for successful SO(10)-inspired leptogenesis, barring crossing level solutions, we
typically have My > 10! GeV, and given the threshold My ~ 5 x 108 GeV(1 + tan? B3),
for tan 8 2 15 the production mainly occurs in the three fully-flavoured regime, while
for tan 8 < 15 it takes place in the two fully-flavoured one. On the other hand, since
there are no solutions for My > 3 x 102 GeV, we can conclude that for tan 8 > 80 all
solutions fall in the three fully-flavoured regime. For definiteness, we considered two
representative cases: tan 8 = 5, in which the production occurs almost entirely in the
two flavoured regime, and tan § = 50 in which the asymmetry is mainly produced in the
three fully-flavoured regime.

As in the SM case, we also distinguished between NO and IO light neutrino mass spec-
trum, so that we studied 4 cases in total.

All the parameter values were taken as described in the previous chapter for the non-

supersymmetric case.
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6.2.1 Normal ordering

We shall first deal with normally ordered light neutrino masses. As mentioned. we will

separately discuss the tan 5 = 5 and the tan 5 = 50 cases.

6.2.1.1 Small tan 8 values: tan =5

The value tan 8 = 5 gives a threshold between the two-fully flavoured and the three
fully flavoured regimes My ~ 10'°© GeV. This is sufficiently small to ensure that almost
all values of Ms fall in the two fully-flavoured regime. We present the results in fig. 6.1.
As in the non-supersymmetric case, yellow points correspond to successful leptogenesis
with 1 <V, < Vo, while orange points have V;, = 1. Here we consider thermal initial

N5 abundance.

107 1073 1072 107! 107 1073 1072
my (eV) my (V)

[
N

0.1
/ 0.01
K | .1 14 /A 0.001 b
1074 1073 1072 107! 0=t 107% 1072 107! 1074 107% 1072 107!
my (V) my (V) my (V)

- 0.001
1

—_

Figure 6.1: Scatter plots [3] in the low-energy neutrino parameter space pro-
jected on different selected planes for NO, in supersymmetric SO(10)-inspired
leptogenesis. Here we have tan =5, as = 5 and thermal initial Ny abundance.
The yellow (orange) points realise successful leptogenesis for 1 < Vi < Vegm
(Vi = I). The dark (light) blue points realise successful SO(10)-inspired strong
thermal leptogenesis for 1 < Vi, < Voxwm (Vi = I) for an initial value of the
pre-existing asymmetry N5' , = 1073, The hatched regions indicate either the
cosmological upper bound eq. (1.43), or the values of fa3 excluded by current
data at 30, eq. (5.11). The grey points indicate the minimum value of Try.
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The results for tan3 = 5 are similar to those obtained in the non-supersymmetric
case, fig. 5.2. It must be noticed that, even if they are obtained with thermal initial
Ny abundance, they are very little dependent on the initial Ny abundance, since both
for the 7-dominated and the pu-dominated solutions we have Ko, > 1 and K27_2J_ > 1
respectively (except for very few points with K, _ L 1). In principle, due to the smaller
value of mM9SM compared to m,, the washout is stronger and therefore it should be
more difficult to obtain K, < 1. However, from the analytical expression of Ki,,
eq. (5.9) with Vz = 1, we know that Ky, < 1 produces conditions on the phases that are
only marginally dependent on m2SSM | The overall effect introduced by supersymmetry
is an increase of the asymmetry at the production of a factor ~ /2, due to the doubling
of the CP asymmetries partly compensated by the stronger washout. This causes the
allowed range of m; to be slightly larger compared to the non-supersymmetric case. In

particular, the upper bound moves from 0.06eV to 0.1eV.

When studying successful strong thermal leptogenesis, we can notice that the most sig-
nificant difference with respect to the non-supersymmetric case is given by the larger o3
allowed range. In particular, we now have 3 < 46°, more relaxed than the upper bound
derived in the SM. We can understand this relaxation by considering the analytical de-
scription of the Vi, = 1 case. The upper bound on 653 is obtained by plugging the lower
bound on m; in eq. (5.36). In strong thermal leptogenesis, the lower bound on m; is
derived from the lower bound on me, eq. (5.45), which is originated by the requirement
Ki. > 1. Since in the supersymmetric case all K, are about v/2 larger, the condition
on K. is more easily satisfied, resulting in a relaxation of the lower bounds on m.. and

> 7TmeV, as can be seen from the

~

my. Indeed we now have m.. = 6meV, giving m;

bottom-left panel in fig. 6.1. This in turn implies a3 < 46°.

We can also study the dependence of the asymmetry on the value of as. To this aim,
in fig. 6.2 we show the scatter plots of M; vs. mj for integer values ap = 1,...,10 and
1 <V < Vogu. Here we also plot the minimum requested value of Try and highlight
the flavour that dominates the final asymmetry: red, green and blue colours correspond
to electron-, muon- and tauon-domination respectively. It is possible to notice that,
beyond 7- and p-dominated, also e-dominated solutions appear. At low values, as = 1,2,
these are the only solutions found for m; < 20meV. As shown in section 3.3.1, for V; =1
the electron CP asymmetry €2, is many orders of magnitude suppressed compared to g3,
and, even more, to €2, (see eq. (3.114) and fig. 3.4). However, when Vj, # 1 this strict
hierarchy does not hold anymore. In the non-supersymmetric case electron-dominated
solutions can indeed be found, but are extremely marginal and were not mentioned in
the previous discussion. They are obtained for very special conditions and the maximum
possible asymmetry produced in these solutions is slightly above the observed value. In
the supersymmetric case, since the produced asymmetry is increased by about a factor
V2, these marginal e-dominated solutions can be realised more easily than in the SM

case.
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Figure 6.2: Scatter plots [3] in the plane M; vs.

1 < Vi < Voga and for integer

my for NO, tang = 5,
ag = [1,10] from top left to bottom. All points

respect the successful leptogenesis condition. The hatched region marks the

cosmological upper bound, eq. (

1.43). The red, green and blue points are such

that the final asymmetry is dominated by the electron, muon and tauon flavour
respectively. The grey points indicate the minimum value of Try.
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We must notice, however, that these solutions are realised only for K,_ L < 1 and with
thermal initial Ny abundance. Therefore, they are strongly dependent on the initial Ny
abundance and disappear for initial vanishing No abundance. For these reasons, we can
conclude that these e-dominated solutions do not really open up a new allowed region

in the low-energy parameters.

6.2.1.2 Large tan 3 values: tan [ = 50

For tan 5 = 50 the threshold between the two-fully flavoured and the three-fully flavoured
regimes is My ~ 10'2GeV, so that the production occurs mostly in the three fully-
flavoured one. The results are shown in fig. 6.3 and are obtained for the same setup

as in the small tan 8 regime. It is possible to notice that the constraints are now

10'6

104
1012

1()1[)

Mi (Gt‘\/)

108
106
10* 1

102

0.1

0.01 S/ —
107 1073 1072
my (eV)

Figure 6.3: Scatter plots as in fig. 6.1 for NO but with tan 8 = 50, [3].

generally more relaxed than in the tan 5 = 5 case. However, there is still a lower bound
my 2 1meV, so that we can conclude that the lower bound on mj is quite stable,

constituting a general feature of SO(10)-inspired leptogenesis.

Considering strong thermal leptogenesis, the allowed region is more extended as well.
Moreover, we can find successful strong thermal leptogenesis solution also for high values

of the absolute neutrino mass scale m; 2 50 meV.
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We know that for these values of m; the solution is pu-dominated and indeed in the SM
case strong thermal leptogenesis could not be realised in this region. However, in the
supersymmetric framework, for tan 8 = 50, My falls in the three fully-flavoured regime,
therefore, as mentioned above, we can have successful leptogenesis with K>, > 1 and
Ki, < 1, which imply a p-dominated scenario. Nevertheless, this new p-dominated

strong thermal leptogenesis solutions are largely excluded by the cosmological upper

bound on mj.

As in the small tan 5 case, we can study the behaviour of the final asymmetry at different
values of ai. In fig. 6.4 we show the scatter plots of M; vs. m; for ag = 1,...,10, high-
lighting the flavour dominating the final asymmetry, as in fig. 6.2. From the bottom-left
panel of fig. 6.3 it can be noticed that for Vi, # 1 (yellow points) the region satisfy-
ing Ki. < 1 is enlarged compared to the previous cases. Indeed, from fig. 6.4 it is
clear that electron-dominated solutions are more numerous than before, in the range
2meV < my < 10meV. Moreover, these solutions are always realised for weak washout,
but now, in the three fully-flavoured regime, Kj. < 1 is more easily satisfied than
K272L < 1 as for tan 8 = 5. They can also allow for a relaxation of the reheating tem-
perature Try < 10'9GeV. In the second panel in fig. 6.4, for ap = 2, we have marked
with a darker red colour those e-dominated solutions that are obtained with a complex
orthogonal matrix such that |Q,-j]2 > 3. As already discussed, models with larger entries
of the orthogonal matrix entail some degree of fine tuning in the seesaw formula. We
can therefore see that those e-dominated solutions that correspond to the lowest values
of Tru are obtained at the expense of some fine tuning. Moreover, it must be recalled
that these solutions exist only for thermal initial abundance of Na. We can conclude
that these electron solutions are quite fine tuned and, in particular, strongly dependent

on the initial conditions.

6.2.2 Inverted ordering

We shall now study the IO case, distinguishing between small tan § and large tan 3

values.

6.2.2.1 Small tan 8 values: tan§ =5

The results for tan S = 5 in the 1O case are shown in fig. 6.5. As for NO, for tan 5 = 5 the
results on the low-energy neutrino parameters are very similar to the non-supersymmetric
case. This allows us to conclude that also in the supersymmetric extension 10 is dis-
favoured compared to NO. However, the allowed regions are slightly enlarged compared
to the SM. In particular, there is no lower bound on the atmospheric mixing angle.
Nevertheless, values of f23 in the second octant require high values of my, very close to

the cosmological upper bound.
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Figure 6.5: Scatter plots as in fig. 6.1, with tan 8 = 5, but for 10, [3].

In fig. 6.6 we show the solutions for various values of ao, with the same colour code as in
fig. 6.2 and 6.4. We can now notice that even for thermal Ny initial abundance there are
no e-dominated solutions. Indeed, in IO we have Kie ~ mee/ my SSM 2 70, as can be
noticed from the bottom-left panel of fig. 6.5. This implies that the electron asymmetry

is completely washed out by Nj.
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Figure 6.6: Scatter plots as in fig. 6.2, with tan 8 = 5, but for 10, [3].
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6.2.2.2 Large tanf values: tan [ = 50

For large tan 8 values and imposing successful leptogenesis condition, the situation is
qualitatively similar to the previous case, as one can see from fig. 6.7. The allowed
regions slightly further enlarge: for instance, now we have m; 2 7meV.

We can find a substantial difference with the non-supersymmetric scenario when suc-

cessful strong thermal leptogenesis is required. In the supersymmetric case we can
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Figure 6.7: Scatter plots as in fig. 6.3, with tan § = 50, but for 10, [3].

indeed find solutions realising successful strong thermal leptogenesis both for Vi = 1
and V7, # 1, while in the SM this did not occur. The reason is that for large tan 3, as
already mentioned, the condition for the washout of the pre-existing asymmetry is now
Ky, + Ko, > 1 and can be easily satisfied even for low K7y, values.

We can conclude that in all cases supersymmetry helps realising successful strong ther-

mal leptogenesis.

In the panels of fig. 6.8 we show the dominant flavour as in figs. 6.2, 6.4 and 6.6. We
can see that, for the same reason as for small tan 3, there are no electron dominated

solutions.
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6.3 Lower bound on the reheating temperature

Our scenario of thermal leptogenesis requires that the initial temperature of the radiation
dominated regime, the reheating temperature Try within inflation, be high enough for
the heavy neutrinos to be thermally produced before their interactions, in particular
their inverse decays, go out of equilibrium producing the asymmetry. As mentioned
at the beginning of the chapter, in the supersymmetric scenario the lower bound on
Tryu imposed by thermal leptogenesis can be in tension with the constraint imposed by
the gravitino problem. The upper bound on the reheating temperature, in order not
to overproduce the gravitino, can be conservatively assumed to be Try < 100 GeV.
This clashes with what was found in the non-supersymmetric case, Try > 10'° GeV
[159], and even in a dedicated analysis of the supersymmetric scenario [188], where it
was concluded that supersymmetric thermal leptogenesis requires Try > 101! GeV. For
these reasons it is interesting to study the results on the reheating temperature obtained

within supersymmetric SO(10)-inspired thermal leptogenesis.

As discussed in section 2.2.4, in the strong washout regime a good measure of the scale at
which the asymmetry is produced is provided by the function zy (K), eq. (2.165). When
flavour effects are taken into account, and assuming that the final asymmetry produced
by Ns is dominated by flavour «, we can estimate the leptogenesis temperature scale as
Ty, = My/z(Kaa), where a = 7, 75~ in the two fully-flavoured regime or a = e, y, 7 in
the three fully-flavoured regime. Clearly, there could be fine tuned situations in which
the contributions from different flavours are equivalent. In these cases we should take
Tru above the maximum value out of the relevant flavours. We can, thus, identify a

temperature interval around 77, in which the asymmetry is produced [94]
(6.13)

so that in the strong washout regime we can require the reheating temperature to be

My

Tru 2 TRIY (K2a) = 1 (Kam) =2
(6%

(6.14)
In the weak washout regime it is not possible to identify such a sharp interval of tem-
peratures and, moreover, the process of production of the asymmetry depends on the
initial N9 abundance. In this regime we can generally require Tryy = Ma.

An expression that interpolates quite well between the strong and weak washout regimes

is given by [94]
My

21 (K2a) — 2exp(—3/Kaa)

This expression gives the minimum of the reheating temperature for each solution with

TR (K2a) ~ (6.15)

specific values of Ky, and Ms. The global lower bound on Try for each ao can then be
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calculated minimising over all the solutions found
TR = min TP (Ko )] (6.16)

For each point satisfying successful leptogenesis we computed the corresponding Tlgﬁi{n(Kga)
value. These are shown with grey points in all plots where also the heavy neutrino masses
are plotted. In particular, in figs. 6.2, 6.4, 6.6 and 6.8, for ag = 1,...,10. We can ex-
pect a non trivial dependence of the reheating temperature on as, since, for decreasing
«a, one has that My decreases, which would lower Try;. However, the final asymmetry
decreases as x a3, so that there must be a lower bound on ay coming from successful

leptogenesis.

We summarised the dependence of the global lower bound on the reheating temperature
on «g in fig. 6.9. Here Tﬁnﬁn is computed for each value of as = 1,...,10 minimising
over the models with m; < 0.07 eV, the cosmological upper bound on m;, eq. (1.43). In
fig. 6.9 we indicated which flavour dominates the final asymmetry with the same colour
code as in in figs. 6.2, 6.4, 6.6 and 6.8.

The results are shown both for initial thermal Ny abundance (thin lines) and for vani-
shing initial Ny abundance (thick lines). Dotted lines correspond to Vi, = 1 scenarios,
while dashed lines to V;, = Vogas. In the left (right) panels we show the results for low
(high) values of tan /3, while in the top (bottom) panels the results for NO (10).

In the case of low tan S values, left panels, one can see how the results do not differ much
from those in the non-supersymmetric case [159]. There is actually a ~ v/2 relaxation
due to the increase of the asymmetry at the production.

In the right panels, for large tan S values, we can notice that in the NO case the red
branch, corresponding to the e-dominated solutions, for as € [1,2], allows for tempera-
tures as low as T}r{}i{n ~ 4 x 10° GeV, showing that it is possible to go below 1010 GeV.
However, as already mentioned, these e-dominated solutions exhibit two important prob-
lems. Firstly, they exist only for thermal initial Ny abundance. This requires further
justification within larger theoretical models where, for instance, heavy neutrinos are
produced by Z’ particles of a left-right symmetry left by the breaking of SO(10) [189).
Secondly, these solutions are characterised by large values of |Qij|2, thus implying fine-
tuned cancellations in the seesaw formula. For these reasons, these solutions, though
appealing and representing a viable possibility, should not be over-emphasised. We must
then more conservatively consider the values of Tf{}i{n given by p- and 7-dominated so-
lutions which are independent of the initial Ny abundance and not fine tuned. Indeed,
when considering vanishing initial Ny abundance, only these solutions survive, while the

e-dominated ones disappear.

We can therefore conclude that supersymmetric SO(10)-inspired leptogenesis conserva-
tively gives a lower bound on the reheating temperature Tryy > 1 x 10'° GeV. This is in

line with the conservative, model independent bound posed by the gravitino problem.
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Figure 6.9: Global lower bound on Try as a function of ag, [3]. The blue, green
and red lines correspond to an asymmetry tauon, muon and electron dominated
respectively. Thin lines are for initial thermal Ns abundance. Solid lines are
for 1 < Vi, < Vogwm, dotted for Vi, = 1 and dashed for Vi, = Vogas. The thick
solid lines are for initial vanishing abundance and 1 < V; < Viogas. The top
(bottom) panels are for NO (I0). The left (right) panels are for tan 5 = 5 (50).

Indeed, for large values of the gravitino mass, ms/, 2 30 TeV, it is possible to reconcile
the lower bound imposed by SO(10)-inspired thermal leptogenesis with the bound im-
posed by the gravitino problem [174]. Clearly, within specific models one should verify
whether the lower bound Tﬁlﬁ“ ~ 1 x 10’ GeV can indeed be saturated.

There is, however, another possibility, proposed in [3], that can relax the lower bound

even below 100 GeV, without the need for fine-tuned solutions.

6.4 A new scenario of No,-dominated leptogenesis

It is typically assumed that the lightest heavy neutrino mass M; is heavier than the

sphaleron freeze-out scale [82]

My Z Tog ~ 100 GeV.

(6.17)
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In this case the lightest heavy neutrino washout affects the entire B — L asymmetry

and has to be taken into account. However, if M; is below Ts‘;if, then its washout

1011 1011
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].()8 T T T T T ].()8 T T T T T
123456 78910 1 23456 78 910
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Figure 6.10: Lower bound on Tgry as a function of ay for models with M; < Ts‘;ﬂf,

[3]. The top (bottom) panels are for NO (IO). The left (right) panels are for
tan 8 = 5(50). The line code is the same as in fig. 6.9.

can only act on the lepton asymmetry, leaving untouched the produced baryon asym-
metry, now frozen. More precisely, IN1’s washout acts within the temperature interval
T = [My/z1, My /2] with 23 ~ 2/y/Ki4 [94]. Therefore, more precisely one has to im-
pose My S 21 Ty

In any case, conservatively assuming M7 < Tsopuht, the final asymmetry is given in the
various regimes by egs. (3.57), (3.51) and (6.11) without the exponentials encoding the
washout by Nj.

We can then repeat the calculation of Tﬁnﬁ“ in this scenario and the results are shown
in the four panels of fig. 6.10, that correspond to the same cases of fig. 6.9. In this
cases the minimum is always realised within 7-dominated solutions with strong washout
at the production, so that the final asymmetry is independent of the initial N, abun-

dance. Moreover, these solutions do not imply fine tuning, since we always naturally
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have |Q,-j]2 < 1. It can be seen, remarkably, that values of Ty as low as 109 GeV are
possible. In this case the gravitino overabundance problem can be circumvented for a

wider range of gravitino masses compared to the traditional scenario discussed above.

From eq. (3.90) we can see that this scenario can be realised for values a; < 0.1. This
implies that mpsg < Tsop‘ilt ~ 100 GeV in order for the seesaw limit to be valid, therefore
giving g < 1 as well. One can wonder whether this can be achieved in some realistic
models. Interestingly, in [170] where fits to realistic SO(10) GUT models are performed,
the found best case is realised for M; ~ 1 TeV corresponding to a; ~ 0.3. Since this case
also has a very small 2. ~ 0.6, it can be tempting to think that, with some deviation
from the best fit, M7 < Tlf{%h can be obtained, with a still acceptable value of Xfmn. In
any case, the specific case found in [170] seems to suggest that this scenario might be

indeed realised within some realistic model.

Finally, in this scenario the low-energy neutrino constraints are not showed because they
basically disappear. As discussed in chapter 5, these constraints exist mainly because of
the presence of Ny’s washout. Removing the action of N; make these bounds vanish. It
is also worth mentioning that, though introduced in a supersymmetric framework, this
scenario might be realised and find applications within a non-supersymmetric framework

as well.

6.5 Comments and remarks

In the study of the supersymmetric extension of SO(10)-inspired leptogenesis we have
made some assumptions that can have some impact on the final results. However, the
effect of the approximations adopted should not be large. The main sources of theoretical

uncertainties are listed below.

e Flavour coupling has been neglected as in the non-supersymmetric scenario. The
treatment of flavour coupling is generally similar to the SM case, however the
presence of supersymmetric particles and additional high-energy symmetries (such
as R and Peccei-Quinn symmetries) require a dedicated and detailed study [182].
As already discussed, the inclusion of flavour coupling can in general open new ways
to avoid Ni’s washout. Therefore it is clear that its effect can at most result in
a relaxation of the reheating temperature in the traditional scenario (M; 2 Ts%utf)
to the minimum value, Tﬁnﬁn ~ 1 x 10° GeV, found in the new scenario with

t
My < TSM

e The regimes around M ~ 5x 108 GeV(1+tan? ) and My ~ 5 x 10! GeV(1 + tan? j3)
have been described by an instantaneous transition from one fully-flavoured regime
to another. As mentioned, a detailed treatment with density matrices should be

employed.
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e In the supersymmetric extension, especially for large values of tan 3, the running of
low-energy neutrino parameters might be important and give some modifications
to the constraints we derived [190-192]. However, this effect does not change our

main results on the lower bound on the reheating temperature.

We must also notice that the results on Tryy we obtained for ap = 5, Ty 2, 1.5 % 1010 GeV
[3], is more than one order of magnitude lower than what is obtained in [188]. Indeed,
there it was found quite a stringent lower bound Try = 5 x 10! GeV, which entailed
that thermal supersymmetric SO(10)-inspired leptogenesis was not compatible with the
gravitino problem. Hence, this motivated the quest for different, non-thermal, scenarios.
Given the lack of some details about the calculation in [188] (for instance, it is not
explained how the matrix Up is computed) it is not possible to provide an explanation
for this discrepancy. We can just notice that in [188] the 7-dominated solutions we
found are completely absent and the lower bound on Try obtained thereby relies on
e-dominated solutions. For what shown above, this implies a dependence on the initial

Ny abundance.

It is interesting to notice that our result on the lower bound on the reheating temperature
in the traditional scenario, Tryy > 1 x 10'° GeV, falls in the vicinity of what is needed
in order to produce the DM gravitino abundance, depending on the gluino mass. For
this reason, it may be tempting to relate matter-antimatter asymmetry production in
thermal leptogenesis to gravitino DM production, as done for Nj-dominated scenarios
[193]. However, recent LHC results on the lower bound on gluino masses [194, 195] pose
a stringent upper bound on the reheating temperature Ty < 5 x 109 GeV within the
pMSSM [196]. This would then disfavour this intriguing link between baryon asymmetry
and gravitino DM. As we have seen, the new scenario we proposed, with M; < Tscijulf can
in any case still be compatible with this more stringent constraint.






Chapter 7
Summary and conclusions

In this final part, we shall summarise the previous chapters, highlighting the most im-
portant points that guided the development of this work. For the sake of clarity, we

shall divide this resumé in sections following the chapter structure.

7.1 'Two serious problems

Although the Standard Model of particle physics can probably be regarded as the most
successful theory developed so far, several issues remain unsolved. Apart from leaving
aside the gravitational interaction and not contemplating the presence of DM and DE;,
the SM fails to explain two other fundamental aspects: the baryon asymmetry of the
Universe and neutrino oscillations.

In section 1.1 we introduced the baryon asymmetry of the Universe. We pursue the
quest for a dynamical mechanism, able to generate this asymmetry from symmetric (and
thus “natural”) initial conditions. Such a mechanism must satisfy the three conditions
pointed out by A. Sakharov, that were thereby explained. Moreover, this mechanism
must be able to produce an amount of asymmetry compatible with the experimental
observations. In order to be more quantitative, we introduced the baryon-to-photon
ratio np and mentioned how it can be precisely measured via BBN and by the study of
the acoustic peaks in the CMB angular power spectrum.

In section 1.2 we introduced the other problem of the SM we focused on: neutrino
oscillations. Several experiments measuring neutrino fluxes from different sources have
accumulated striking evidences that neutrinos can change their flavour during their
propagation. We briefly showed that neutrino oscillations can take place only if not all
of the neutrinos are massless, in net contrast with the assumptions of the SM. Neutrino
oscillations can be described with the introduction of the PMNS matrix U, and two mass-
squared differences, Am2,  and Am? . These parameters can be efficiently probed by

atm sol*

neutrino oscillations experiments. However, the absolute neutrino masses can only be
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measured through other kinds of experimental evidences, such as 8-decay, Ov33 decay
experiments or cosmological observations. Currently, cosmology can provide us with the

most stringent upper bounds.

Having described these two important shortcomings of the SM, we introduced the idea
of leptogenesis within the seesaw extension of the SM, which provides an explanation to
both problems at the same time. The seesaw mechanism can account for neutrino mixing
and masses in a rather natural way, at the price of introducing additional particles and
free parameters. In turn, these same particles can be responsible for the generation of the
baryon asymmetry in the Early Universe. This establishes a strict link between neutrino
phenomenology and cosmology, thus allowing us to employ cosmological evidences, such
as the baryon asymmetry, to constrain and predict the otherwise free parameters of
the seesaw mechanism. This is the guideline of our work. In order to follow our main
goal, we described in detail the seesaw mechanism and the generation of the baryon

asymmetry via leptogenesis.

7.2 The foundations

In chapter 2 we studied in detail how the SM can be extended in order to provide
neutrinos with a mass term. We focused on the seesaw mechanism by highlighting its

features and the number of additional parameters it introduces.

7.2.1 Neutrino masses

The simplest ways to account for neutrino masses, and hence neutrino mixing, are given
by the introduction in the SM lagrangian of a “Dirac” or a “Majorana” neutrino mass
term, whether neutrinos are Dirac or Majorana fermions. In sections 2.1.1 and 2.1.2
we briefly discussed the main features of these two possibilities. We then turned to the
most interesting case, given by the combination of both. This is the basis of the so
called seesaw mechanism. In its type-I formulation, additional right handed Majorana
neutrinos, singlets under the SM gauge group, are introduced, together with their Ma-
jorana mass term and Yukawa couplings to left handed lepton and Higgs doublets. If
the Majorana mass scale, M, is much larger than the electroweak scale v ~ 174 GeV,
the neutrino mass spectrum splits into two sets: a very heavy one, made of neutrino
fields whose RH component is almost coinciding with the introduced RH fields, and a
light set of neutrinos whose LH component mostly coincides with a combination of the
LH fields appearing in the weak interaction lagrangian. The key feature of the seesaw
mechanism is the fact that the light neutrino masses are naturally small, thanks to the
interplay between the electroweak scale and the RH Majorana neutrino mass scale. The

latter can be provided by new high-energy physics beyond the SM, such as in GUTSs, so
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that it can be particularly high, M ~ 10 GeV. This way, in type-I seesaw, the light
neutrino mass scale is proportional to v?/M, which is interestingly in accordance with
the mass scales obtained from neutrino oscillation experiments. Considering a minimal
type-I seesaw scenario, with the introduction of three RH Majorana neutrinos, the SM
lagrangian is extended by the addition of 18 new parameters. Adopting the so-called
orthogonal matrix €} parameterisation of the seesaw relation, we can identify the 18 free

seesaw parameters:

6 mixing parameters in the PMNS matrix U: 3 mixing angles and 3 phases,

3 light neutrino masses m;,

3 heavy neutrino masses M;

6 real parameters in the complex orthogonal matrix €.

This parameterisation is rather convenient since we can now identify a set of low-energy
neutrino parameters, given by the mixing parameters and the light neutrino masses, and
a set of high-energy parameters made of the heavy neutrino masses and the parameters
in . The first set is experimentally accessible, while the second is difficult, if not
impossible, to directly probe. We shall look for additional requirements to overimpose
on the model in order to constrain and predict both parameter sets. We shall find such

additional conditions by exploiting the leptogenesis mechanism.

7.2.2 Leptogenesis

Within the seesaw framework all three Sakharov’s conditions can be satisfied. In sec-

tion 2.2 we analysed in detail how the seesaw mechanism can fulfil each of them.

1. The seesaw lagrangian violates the lepton number due to the presence of the RH
neutrinos Majorana mass term. Thanks to the network of SM interactions that
are in equilibrium in the Early Universe, and in particular to SM electroweak
sphalerons, lepton number violation implies a violation of B — L and hence a

violation of the baryon number B.

2. The seesaw lagrangian introduces additional CP violation due to the decay of the
heavy neutrinos. For each heavy neutrino NV; it is possible to define CP asymme-
try parameters proportional to the difference between the decay rates of INV; into
particles and antiparticles. These parameters are not zero at 1-loop, thus implying

a net violation of CP.

3. The out-of-equilibrium dynamics is provided by the decays and inverse decays of

the heavy neutrinos into lepton and Higgs (anti)doublets. It is possible to show
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that the inverse decay rate drops out of thermal equilibrium, or is even always out
of equilibrium, during the evolution of the Early Universe. The third Sakharov’s
condition is then naturally satisfied within the seesaw setup by the freeze-out of

heavy neutrinos inverse decays.

We then introduced the actual leptogenesis mechanism, by concentrating on its most
simple realisation. We considered only the lightest heavy neutrino, N7, while neglecting
the dynamics of the other heavy neutrinos and any other interactions a part from Ny’s
decays and inverse decays. This rather simplified scenario, often referred to as “vanilla
leptogenesis”, does nonetheless introduce all the key features and formalism of the lep-
togenesis mechanism.

In section 2.2.4 we studied the dynamics of the heavy neutrino decays and inverse de-
cays by introducing the Boltzmann equations for the abundances of Ny and of the B — L
asymmetry. As expected, the final asymmetry is produced thanks to the interplay of
decays and inverse decays, in and out of thermal equilibrium.

As reference value for the final produced asymmetry, we chose the baryon-to-photon ra-
tio obtained from the CMB angular power spectrum, ngMB. Any leptogenesis model able
to produce a final asymmetry that, evolved down to the recombination era, is compatible
with ngMB, is said to realise successful leptogenesis. This is indeed one of the additional
conditions we were looking for in order to try to constrain the seesaw free parameters.
Even in its most simple realisation, leptogenesis can give interesting information on the
otherwise unattainable high-energy neutrino parameters. It can be shown that vanilla

leptogenesis can be successful for lightest heavy neutrino masses M; > 3 x 10? GeV.

We conclude chapter 2 with a brief comment on subleading corrections to the proposed
scenario. These are given by additional scattering processes, implied by the seesaw
lagrangian, whose impact on leptogenesis can nonetheless be safely neglected. There
are indeed other more important effects that can completely modify this simple vanilla

scenario and that were considered in chapter 3.

7.3 A shift in the paradigm

When the type-I seesaw lagrangian is embedded into a larger theoretical framework,
such as GUTs, the lower bound on M; obtained by successful vanilla leptogenesis can
become a problem. Indeed, in many of these theories, the lightest heavy neutrino is
typically much lighter than what required by successful vanilla leptogenesis. However,
it is possible to circumvent the lower bound on M; by considering leptogenesis models
in which the asymmetry is produced by the next-to-lightest heavy neutrino, N2, while
the contributions by N; and N3 can be neglected. Such a scenario is referred to as Na-
dominated leptogenesis. We always considered a hierarchical spectrum with M; 1 = 3M;,

so that the processes related to different heavy neutrinos do not overlap. This way,
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No-dominated leptogenesis implies asymmetry production by Ns’s decays and inverse
decays, followed by the washout operated by Ni’s inverse decays, at lower temperatures.
However, Ni’s washout would basically erase any asymmetry, unless crucial effects,

neglected in the vanilla scenario, are taken into account.

7.3.1 Flavour effects

After mentioning the “heavy flavour effects”, in section 3.1.2 we focused on the “light
flavour effects”, which eventually play a very significant role in No-dominated leptoge-
nesis. While the temperature in the Early Universe drops, the interactions of the lepton
doublets with the charged RH singlets enter thermal equilibrium and become efficient.
If their rate becomes larger than the heavy neutrinos inverse decay rate, then a lepton
doublet produced by the decay of N; into the coherent state |l;) would, on average,
interact with a charged singlet before inverse-decaying back to a heavy neutrino. For
this reason, the coherence of the lepton state |/;) is broken by the charged lepton inter-
action of a certain flavour «, in equilibrium. This acts as a quantum measurement of
the flavour composition of |/;), and the flavoured A, = B/3 — L,, asymmetries must be
studied in place of the total B — L one. It is possible to distinguish three different light

flavour regimes, depending on the mass of the heavy neutrino /N; we are considering

1. M; > 5 x 10" GeV: charged-lepton Yukawa interactions are not in equilibrium,

therefore light flavour effects can be neglected and heavy flavours dominate.

2. 5 x 108GeV < M; <5 x 101 GeV: 7-Yukawa interactions are equilibrium and
efficient enough to project the coherent states |/;) on the 7 flavour direction and
on |l_1), the flavour composition of |l;) which is orthogonal to 7. Similar projection

holds for the antilepton states. This is the so-called two fully-flavoured regime.

3. M; < 5x103GeV: also u-Yukawa interactions are equilibrium and able to fully
break the coherence of |I;) and |I;). The flavour composition is completely measured
and the (anti)lepton states are projected onto the three light flavour directions

a = e, pu, 7. We have the so-called three fully-flavoured regime.

In the transition regions between one fully-flavoured regime and another, a density ma-
trix formalism must be adopted. We decided to avoid this situation and we studied how
the Boltzmann equations of the No-dominated scenario are modified when flavour effects
are considered in these three fully-flavoured regime. We neglected the so-called flavour
coupling, by assuming that the different asymmetries A, evolve independently. The fi-
nal asymmetry is composed of the sum of the different asymmetries A, along which Ny
acts with its exponential washout, respectively ruled by the flavoured decay parameters
Ki.. Hence, it is well possible that a sizeable final asymmetry can survive N1’s washout

in a flavour along which the washout is particularly mild, i.e. K1, < 1. This situation
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is quite easily satisfied, so that, thanks to flavour effects, No-dominated leptogenesis
can indeed be regarded as a viable mechanism to produce the baryon asymmetry of the

Universe.

In the rest of chapter 3 we introduced two main theoretical frameworks that justify
the shift from N;-dominated to No-dominated leptogenesis: strong thermal leptogenesis
and SO(10)-inspired leptogenesis. These setups also impose additional conditions on the
seesaw model, thus providing us with predictions and constraints on the free parameters,

as desired.

7.3.2 Strong thermal leptogenesis

The initial value of the B — L asymmetry depends, in principle, on the detailed history
of the Early Universe after inflation. Assuming a thermal production of the heavy neu-
trino abundances requires a rather high reheating temperature Tgy which, in general,
would allow other mechanisms to efficiently produce a sizeable asymmetry, called initial
pre-existing asymmetry Ng’i 1» before the leptogenesis era. The final asymmetry amount
can then be the sum of the contribution produced by leptogenesis, NEE{, and of what
remains of the pre-existing asymmetry, Ng’f ;- In order to correctly employ the exper-
imental information on the baryon asymmetry of the Universe to constrain the seesaw
mechanism, we must require that the pre-existing asymmetry is efficiently erased by
leptogenesis, while producing the correct final asymmetry. Leptogenesis models that are
able to satisfy this condition are said to realise successful strong thermal leptogenesis.
Considering a hierarchical spectrum of the heavy neutrinos, it was remarkably found
that successful strong thermal leptogenesis can be obtained only within a No-dominated
scenario in which the final asymmetry is produced in the 7-flavour. This gives the strong
thermal conditions on the flavour decay parameters of Ny and Na: Ky, Ky, Kor > 1
and K7, < 1. We therefore noticed with great interest how the theoretical request of full
independence of the initial conditions naturally selects a particular leptogenesis setup
that coincides with the Ns-dominated scenario. This can be regarded as a first con-
straint on the seesaw parameters (in this case, on the high-energy neutrino parameters)
obtained when imposing this additional condition. In chapter 4 we carefully analysed

the consequences brought about by strong thermal leptogenesis on the low-energy sector.

7.3.3 SO(10)-inspired leptogenesis

The type-I seesaw mechanism can be very elegantly embedded into a larger theoretical
framework such as GUTs based on SO(10) as grand unification gauge group. The three
RH neutrinos naturally fit in the same irreducible representation together with leptons

and quarks. It is therefore interesting to study the type-I seesaw leptogenesis mechanism
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when conditions inspired to those realised in SO(10) GUTs are imposed. We considered

two main conditions that define SO(10)-inspired leptogenesis.

1. Once the Dirac neutrino mass matrix is diagonalised, its entries are assumed to be
proportional to the up-quark masses through coefficients a; = O(0.1 + 10). This

implies that the neutrino Dirac masses mp; track the quark masses hierarchy.

2. The Dirac mass matrix is diagonalised via a bi-unitary transformation involving a
unitary matrix Vg, that acts on the LH neutrino fields. We assume that the angles
in V7, cannot be larger than the corresponding angles in the CKM quark mixing

matrix, so that 1 < Vi, < Vogu-

Imposing these additional conditions on the seesaw lagrangian implies a rich series of
consequences. In particular, avoiding special configurations called “crossing-level solu-

tions”, we obtain that the heavy neutrino spectrum is highly hierarchical, typically
M; < 10°GeV, 10°GeV < My <102 GeV, Mz > 102 GeV. (7.1)

We could therefore conclude that within SO(10)-inspired leptogenesis the Na-dominated
scenario is once again naturally realised.

Assuming V7, = 1, we obtained the analytical expressions of the various quantities
relevant to leptogenesis, directly in terms of the low-energy neutrino parameters. In
particular, with this assumption, also No’s flavoured CP asymmetries follow a highly
hierarchical pattern 2, > 9, > e9.. This feature is particularly interesting since it
shows that the tauon Njp-dominated scenario required by strong thermal leptogenesis

can indeed be realised within this framework.

7.4 Results from strong thermal leptogenesis

In chapter 4 we studied the implications on low-energy neutrino parameters obtained
when seesaw models are requested to realise strong thermal leptogenesis. We pointed
out that the strong thermal conditions on the flavoured decay parameters can be simul-
taneously realised, without fine-tuning, only for sufficiently high values of the absolute

neutrino mass scale m;.

7.4.1 Normal ordering

For normally ordered light neutrino masses, N1’s electron decay parameter K7, becomes
smaller and smaller with decreasing m;, due to the suppression introduced by the small
atmospheric mixing angle. The request on Kj. to be large enough to wash out the

pre-existing asymmetry along the e-flavour, together with the requirement Ki, < 1,

~
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that allows the produced asymmetry to escape washout in the 7-flavour, can be realised
only for sufficiently large values of mq, so that it is possible to place an analytical lower
bound, mllb. This lower bound explicitly depends on the mixing matrix U, on the size
of the pre-existing asymmetry and on the size of the entries of the complex orthogonal

matrix €.

e The presence of matrix U is reflected by the crucial role played by small atmo-
spheric mixing angles: for larger values of 613 the electron decay parameter would
not be suppressed anymore, so that no lower bound could be found. Moreover, a

clear dependence on the Dirac phase of mllb is noticeable.

e For very small initial pre-existing asymmetries the lower bound becomes negligible.
We chose to consider rather large values Ngji_L =1073,1072, 10~ L.

e For max[\Qij\z] = Mgq 2 4, Kj. gets enhanced, so that the lower bound disappears.
We chose to adopt € matrices such that Mg ~ 1. Indeed, large values of |Qij|2
imply sizeable fine-tuned cancellations in the seesaw formula, so that the light
neutrino masses are not anymore obtained by a genuine interplay between the

different scales involved in the seesaw mechanism.

We also noticed that the analytical lower bound is actually hardly saturated, since it
requires rather special combinations of the parameters. Studying the distribution of my,
we could obtain that successful strong thermal leptogenesis models tend to prefer higher
values of mi. In particular, for a standard setup with Mg = 2 and Ng’i_ L= 1071, for
NO, 99% of the models show m; 2 10meV.

7.4.2 Inverted Ordering

In IO, Ky, plays the crucial role of K. in NO. Indeed, employing the IO expression
of the mixing matrix, K7y, is suppressed by a combination of mixing parameters, so
that now it is the request of efficient washout of the pre-existing asymmetry along the
p-flavour that places the lower bound on m;. However, the suppression is now much
milder than in the NO case, so that the bounds obtained in IO are looser. In particular,
we found that there exists an analytical lower bound only for models with Mg < 0.9.
Nevertheless, a preference of successful strong thermal leptogenesis for high my values
was found in IO as well. In the same standard setup as for NO we got that 99% of

models have m; 2 3meV.

7.4.3 Flavour coupling and comments

In obtaining the results described above, we neglected flavour coupling. By linking the

different flavour asymmetries through Higgs and quarks interactions, flavour coupling



Chapter 7. Summary and conclusions 175

in general opens up new ways for the pre-existing asymmetry to escape the high elec-
tron and muon Np’s washout, by being converted into the 7-flavour, along which the
washout is mild. We therefore studied how the strong thermal leptogenesis scenario
gets modified when flavour coupling is accounted for. We obtained that the successful
strong thermal leptogenesis conditions get strengthened, although the analytical result,
obtained neglecting flavour coupling, still holds. The statistical bounds become stricter,

since strong thermal leptogenesis with flavour coupling is more difficult to realise.

Finally, we commented on the experimental implications of the obtained results. The
lower bound placed by strong thermal leptogenesis turns out to be particularly interest-
ing in terms of experimental evidences. Future cosmological observations are expected
to be able to measure the sum of neutrino masses with rather high precision, thus po-
tentially putting a definite bound on the absolute neutrino mass scale. In this respect,
successful strong thermal leptogenesis in the NO case will become subject to very in-
teresting tests. Cosmological measurements pointing at small, or vanishing, absolute
neutrino mass scale will severely corner this scenario, which, as mentioned, favours
quasi-degenerate neutrino masses. As for the IO case, the theoretical predictions are
looser, hence experimental tests are unable to provide us with decisive results. For this
reason, it is of the utmost importance that future experiments will determine the order-
ing of light neutrino masses.

The lower bound imposed by strong thermal leptogenesis is then a first example of how
the link established by seesaw and leptogenesis can help providing us with constraints

and predictions on the low-energy neutrino parameters.

7.5 Results from SO(10)-inspired leptogenesis

In chapter 5 we imposed on our setup the conditions inspired to SO(10) GUTs, men-
tioned in chapter 3, in order to look for interesting features in the low-energy neutrino
parameter space obtained when realising successful leptogenesis. On top of that, we also
studied the realisation of successful strong thermal leptogenesis and derived its related
constraints.

Adopting the Vi = 1 approximation and avoiding crossing level solutions, we derived a
fully analytical expression for the final asymmetry, directly in terms of low-energy neu-
trino parameters, that we compared to numerical simulations. To this aim, we projected
the parameter space onto different planes, highlighting the most interesting results. We
obtained that our analytical expression perfectly matches the numerical results, thus re-
presenting a very useful tool for computing the final asymmetry within SO(10)-inspired
type-I seesaw model with V7, = 1. Moreover, our results on the RH neutrino mixing
matrix, masses and phases can have different applications beyond leptogenesis. We also
analytically showed that the final asymmetry only depends on as.

We first focused on the most interesting case provided by NO, distinguishing the results
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obtained from successful leptogenesis and those derived from successful strong thermal

leptogenesis.

7.5.1 Successful leptogenesis

We assumed Vi, = 1 and a standard setup with as = 5. We shall summarise here

the most important features obtained when successful leptogenesis is imposed on the

SO(10)-inspired scenario.

A lower bound on the absolute neutrino mass scale is obtained, m; 2 0.8 meV. In-
deed, the asymmetry tends to vanish for decreasing m;. Therefore, when requiring

it to be compatible with the experimental results, a lower bound on m; appears.

Since the CP asymmetries are strongly hierarchical and the final asymmetry is
produced in the tauon flavour, we must require a mild washout by N; along 7.
This in turn implies, for m; < mgo1, a lower bound on the reactor mizing angle:
013 Z 3°.

For quasi-degenerate light neutrino masses, the final asymmetry decreases with
increasing mq, so that by comparing it with the experimental results we can derive

an upper bound on the absolute neutrino mass scale: m; < 52meV.

Two types of solutions, namely 74 and 75, exist for m; < mgo and my 2 mgol

~

respectively. They are characterised by different values of the Majorana phases.

An upper bound on the atmospheric mizing angle, 623 < 65°, is obtained in the 74

solution.

A very interesting link between the CP-violating phases and the sign of the asym-
metry is derived. The sign of the final asymmetry selects more favourable values

of the phases. In particular, negative values of ¢ are preferred.

7.5.2 Successful strong thermal leptogenesis

When successful strong thermal leptogenesis is imposed, the panorama of the results

becomes richer.

In the 7p solution we always have Kj, < 4, which is too small to efficiently
wash out the muonic pre-existing asymmetry. Hence, successful strong thermal

leptogenesis cannot be realised by 75 solutions.

The requirement of large Ki. implies a lower bound on the effective Ov55 decay

mass depending on the size of the initial pre-existing asymmetry.
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e The lower bound on mee implies in turn a strict lower bound on the absolute
neutrino mass scale. This is in perfect agreement with the result obtained inde-

pendently in chapter 4, where strong thermal leptogenesis was studied in general.

e A stricter upper bound on the atmospheric mizing angle appears. The lower bound
on my implies that the atmospheric mixing angles is bounded from above and

constrained to the first octant.
e Upper bounds on me. and mq are derived from the condition Ko, > 1.

o A stricter lower bound on the reactor mixing angle is given by the requirement
Kl# >1

e The Dirac phase varies in the fourth quadrant. —m/2 < 6 < 0. The upper bound
on 623 imposed by successful strong thermal leptogenesis, together with the current
experimental lower bound, constrain the Dirac phase to take values, in the fourth

quadrant, thus implying sind < 0 and cosd > 0.

We therefore noticed that SO(10)-inspired leptogenesis and, even more, strong thermal
SO(10)-inspired leptogenesis imply precise constraints and predictions on the low-energy
neutrino parameters, thus realising definite solutions that can be interestingly tested at

the experiments.

Relaxing the assumption V;, = 1, and adopting a varying matrix 1 < Vi < Vogwm,
slightly modify the bounds analytically obtained. In particular, a new type of solution,
pu-dominated, appears for my 2 mgo. This is possible because the strict hierarchy among

the CP asymmetries is now spoilt and muonic solutions are allowed.

7.5.3 Inverted Ordering

We considered also the IO case, noticing that it is actually only marginally allowed,
requiring a very narrow range of values 20meV < m; < 40 meV. We analytically derived
the upper and lower bounds on m;. We found a lower bound on the atmospheric mixing
angle fo3 = 45°, thus constrained in the second octant. Finally, we noticed that in 10
we always have K1, < 9, so that it is not possible to realise strong thermal leptogenesis.
For these reasons, we concluded that SO(10)-inspired conditions naturally favour the

NO case, able to realise strong thermal leptogenesis as well.

7.5.4 A statistical analysis

In section 5.5 we introduced a first statistical analysis of the numerical results obtained
in successful and successful strong thermal SO(10)-inspired leptogenesis. We employed

a bayesian approach, adopting conservative priors on the mixing angles and phases. We
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separately analysed the Vi = 1 and the 1 < Vi, < Vg cases, studying successful and
successful strong thermal leptogenesis in the NO case.

The most general and interesting case is represented by the varying Vi successful
strong thermal leptogenesis, for NO. In this scenario we obtained precise predictions
on the low-energy neutrino parameters, in particular, a more than 50 preference for
the atmospheric mixing angle in the first octant and negative values of the Dirac
phase §. We could also provide a mass window for the absolute neutrino mass scale:
11meV < m; < 21meV at 95% credibility and for the effective Ov35 decay mass:
10meV < mee < 17meV. This implies a 95% credibility range for the sum of neutrino
masses 75meV < ) .m; < 97meV, which is on the verge of being probed by forthcom-
ing cosmological observations.

We also commented on the strategy followed in carrying out the analysis and on the
choice of priors.

Finally, it was also interestingly pointed out that by randomly extracting the mixing
angles on their full variability range (without employing current experimental results),
successful strong thermal leptogenesis can only be realised in around 6% of the angular
parameter space. This ratio increases to about 93% when the mixing angles are con-
strained by the experimental information.

We could conclude on statistical grounds that the experimental data from neutrino
oscillation experiments are in good agreement with strong thermal SO(10)-inspired lep-

togenesis and seem to provide a valid support.

7.6 A supersymmetric extension

In chapter 6 we have considered the supersymmetric version of the SO(10)-inspired
leptogenesis models previously analysed. The study of this supersymmetric extension
is theoretically well motivated by the solution of the naturalness issues of the SM and
by the improvement in the global fits of lepton and quark parameters. The supersym-
metric framework demands a careful study of the reheating temperature Try required
in order to realise successful leptogenesis. Indeed, in a rather conservative and model-
independent way, supersymmetry fixes an upper bound Try < 10'° GeV to avoid DM
overabundance due to the gravitino problem. With this issue in mind, we studied the
supersymmetric extension of SO(10)-inspired leptogenesis, determining how the con-
straints obtained in the non-supersymmetric case get modified and obtaining bounds on

the reheating temperature.

7.6.1 Supersymmetric modifications

Within supersymmetry, several parameters involved in leptogenesis get modified in their

expressions. The larger number of relativistic degrees of freedom in the Early Universe
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and the doubled number of decay channels into leptons increase the flavour decay pa-
rameters by around /2, while the CP asymmetries get doubled. Supersymmetry also
implies a very important modification in the ranges of the fully-flavoured regimes. The
thresholds obtained within non-supersymmetric leptogenesis get modified by a factor
(1 + tan? B), where tan 3 is the ratio of the supersymmetric Higgs VEVs. Therefore,
within the SO(10)-inspired framework, for tan 8 < 15 the asymmetry production hap-
pens in the two fully-flavoured regime while for tan 5 2 80 it takes place in the three
fully-flavoured regime. We analysed in detail two representative cases, tan 3 = 5 and
tan 8 = 50 and studied the low-energy neutrino parameter space. We studied these two
cases for both NO and 10.

In our analysis we neglected once again flavour coupling and the running of low-energy
neutrino parameters, that within a supersymmetric framework must both receive a care-
ful treatment. Nevertheless, their impact on our results, especially on the reheating

temperature, should not be significant.

7.6.2 Results for Normal Ordering

We distinguished small and large tan 8 values: tan 8 = 5 and tan 8 = 50 respectively.

e Small tan values. The results on the low-energy neutrino parameters, for
tan 8 = 5, are similar to those obtained in the non-supersymmetric scenario. When
imposing strong thermal leptogenesis, we found a relaxation of the upper bound
on the atmospheric mixing angle: 033 < 46°. This is due to the enhancement of
K1, and K1, implied by supersymmetry. We studied in detail the dependence of
the asymmetry on the values of as, in the 1 < Vi < Viogps case. Beside tauon-
and muon-dominated solutions, also electron-dominated points appear for small
absolute neutrino mass scales, m; < 20meV. This is due to the varying V7, matrix,
that spoils the strict CP asymmetry hierarchy, and to the overall increase of the
asymmetry at the production because of supersymmetry. We also found that these
e-dominated solutions can be obtained only for thermal initial No abundance and
Kor, S 1.

e Large tan 3 values. For tan 5 = 50 the results are generally more relaxed than in
the non-supersymmetric case, both for V = 1 and 1 <V < Viogasr. When strong
thermal leptogenesis is considered in the 1 < Vi < Vogar, a new region appears in
which the final asymmetry is py-dominated. This is possible because in the super-
symmetric framework, with high tan 8, Ms falls in the three fully-flavoured regime,
so that the final washout of the muon asymmetry is provided by Kz, + K7,. This
allows for Ky, <1 and hence a final py-dominated asymmetry.

We could also notice that the e-dominated solutions for low m; become more nu-
merous. Some of these solutions could allow reheating temperatures Try < 100 GeV,

although at the expense of fine-tuning, signalled by |Qij|2 > 3.
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7.6.3 Results for Inverted Ordering

e Small tan § values. Also in 10, the results for tan 5 = 5 do not differ significantly
from the non-supersymmetric scenario. We could point out that the lower bound
on the atmospheric mixing angle now disappears. Moreover, no e-dominated solu-

tions appear in 10, since we always have K. > 1.

e Large tan $ values. The most important difference from the non-supersymmetric
case appears when strong thermal leptogenesis is considered. Indeed we now found
that successful strong thermal leptogenesis can be realised also for IO. This is once
again due to the fact that, for large tan 8, the production takes place in the three
fully-flavoured regime, so that the pre-existing asymmetry along the u-flavour can

now be efficiently washed out by Kj,.

7.6.4 Results on the reheating temperature

In section 6.3 we focused on the lower bound imposed by leptogenesis on the reheating
temperature. We computed the minimum value of the reheating temperature Tﬁnﬁn that
is allowed by supersymmetric successful SO(10)-inspired leptogenesis at different values
of aip, both in NO and in IO and for small and large values of tan 3.

We obtained that the overall minimum is realised by e-dominated solution in NO for
tan 8 = 50. However, as already mentioned, these solutions imply a certain level of
fine-tuning and, moreover, can be obtained only for thermal initial Ny abundance and
weak washout. These solutions are then strongly dependent on the initial conditions
and require further justification for No’s thermal initial abundance. Considering vani-
shing N initial abundance, these e-dominated solutions disappear and the minimum
on the relating temperature is saturated by tauon solutions, with strong washout, that
give T; ﬁn}iln ~ 1 x 101°GeV. This result implies that supersymmetric SO(10)-inspired
leptogenesis can be reconciled with the gravitino problem, at least for large values of
the gravitino mass. We could quite generally conclude that thermal leptogenesis in
the supersymmetric framework cannot be ruled out because of inconsistencies with the

gravitino problem.

7.6.5 A new scenario

In section 6.4 we introduced a new scenario of Ns-dominated leptogenesis that can
greatly reduce the lower bound on the reheating temperature. We proposed that the
lightest heavy neutrino mass M; could be smaller than the sphaleron freeze-out tempe-
rature, My < T. S‘;)u}f ~ 100 GeV. This way, N;’s washout would not modify the frozen

baryon asymmetry produced at earlier stages by Na. This represents a valid possibility
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to avoid Np’s washout and allows for a large relaxation of the lower bound on Tgry. In-
deed we found that reheating temperatures as low as Try ~ 10° GeV are now possible.
Remarkably, these are obtained for solutions independent of the initial Ny’s abundance
and without fine tuning.

We commented on the viability of seesaw setups with such a heavy neutrino mass spec-
trum, by noticing that recent global fits of SO(10) GUT models tend to favour small
values of M7, thus suggesting that this newly proposed scenario might be realised in some
realistic models. Finally we noticed that by removing Ni’s washout the constraints on

low-energy neutrino parameters disappear.

Afterword

In conclusion, this work analysed how two serious problems of the SM, such as neutrino
masses and mixing and the matter/antimatter asymmetry of the Universe, are solved
via leptogenesis and a fertile link between these two aspects can be established. The
same setup that introduces new particles and free parameters to account for neutrino
masses and mixing gives us a very elegant way to constrain and predict them, by ex-
plaining the asymmetry of the Universe. The predictivity of leptogenesis can then be
enhanced by additional theoretical requirements. Firstly, the fundamental request for
full independence of the initial conditions leads to the idea of strong thermal leptogenesis
and to the Ny-dominated scenario. Hence an analytical lower bound on the unknown
absolute neutrino mass scale is derived. Secondly, the embedding of the leptogenesis
setup within a larger theoretical framework, such as SO(10) GUT, remarkably leads to
the same scenario, allowing also for a natural realisation of strong thermal leptogenesis.
SO(10)-inspired leptogenesis is thus realised and a rich panorama of constraints on low-
energy parameters is obtained. Successful leptogenesis and strong thermal leptogenesis
are then able to determine a precise set of predictions that can be efficiently tested at
forthcoming experiments.

By following this path, we provided some evidence of how the intriguing scenario of
leptogenesis can be extremely fruitful and rich of features that may dissolve the haze on

some of the major puzzles of modern physics.
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