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In this work, we address two major problems of the Standard Model of particle physics:

the baryon asymmetry of the Universe and neutrino masses and mixing. A strict link

between these two aspects can be established by the seesaw mechanism and leptogenesis.

This connection can be fruitfully exploited to gain information on neutrino parameters.

To this aim, we first introduce the type-I seesaw mechanism and leptogenesis, moving

then to the strong thermal leptogenesis scenario. Here a large pre-existing asymmetry is

e�ciently erased by leptogenesis, and an analytical lower bound on the absolute neutrino

mass scale can be derived. We then consider SO(10)-inspired leptogenesis, in which a

set of conditions kindred to those realised in SO(10) Grand Unification Theories is

imposed on the seesaw setup. A rigorous analytical study of this scenario is performed,

allowing us to obtain analytical explanations of the numerous predictions on neutrino

parameters. SO(10)-inspired and strong thermal SO(10)-inspired leptogenesis appear

then to represent a very interesting scenario, rich of definite predictions on neutrino

parameters that will be in the reach of forthcoming experiments. Finally, we examine the

supersymmetric extension of SO(10)-inspired leptogenesis, analysing how the constraints

on neutrino parameters change. The lower bound imposed by thermal leptogenesis on the

reheating temperature is carefully studied, in light of the gravitino problem. We conclude

that the thermal leptogenesis scenario represents an intriguing and viable mechanism

also in the supersymmetric framework.
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Like th’ other foot, obliquely run;

Thy firmness makes my circle just,

And makes me end where I begun.

— John Donne, Songs and Sonnets





Chapter 1

Introduction

With the discovery of the Higgs boson at the LHC [7–9], the Standard Model (SM)

[10–12] confirmed once more its validity in the description of particle physics. Intensive

searches have been carried out on the experimental side to put to test this model, in

order to understand its validity regime. So far, collider experiments have only been

able to highlight some faint deviations from the SM paradigm, without showing any

substantial discrepancy form theoretical predictions. However, several issues have been

raised, pointing out that the SM cannot be the complete theory of nature.

Firstly, it is clear that the SM, with its quantum field theory foundations, is not able to

explain gravity in the same way as the other fundamental interactions. For this reason,

already from the point of view of scientific speculation, the SM necessarily appears as a

non-exhaustive theory.

In addition to this, several experimental evidences highlight the incompleteness of this

model. Cosmological observations have pointed out that the Universe is mainly com-

posed of constituents which are not accounted for in the SM: Dark Energy (DE) and

Dark Matter (DM). At the same time, in the SM there is no satisfactory justification

for the preponderance of matter over antimatter in the Universe. The experimental ev-

idence of the matter/antimatter asymmetry of the Universe cannot be explained within

the SM framework, thus requiring new physics contributions.

Inconsistencies inside the SM itself have been found as well. In the model, neutrinos are

described as massless fields. However, it has been proven that these particles oscillate

among flavours, a phenomenon that cannot take place if all neutrinos are massless. Neu-

trino oscillations therefore represent another clear support for physics not contemplated

in the SM.

In this work we shall put aside the striking issues of DM and DE, and we shall deal

with the dynamical production of the matter/antimatter asymmetry of the Universe, in

connection with neutrino oscillations. Let us now introduce these two problems.

1



Chapter 1. Introduction 2

1.1 The baryon asymmetry of the Universe

It is an experimentally solid evidence that the amount of matter in the Universe is larger

than that of antimatter. An equal amount of matter and antimatter would have basically

resulted in a general annihilation into an “empty” Universe, filled only with radiation.

Since this is not the case, the necessity to account for this fundamental asymmetry arises.

Although this problem can be ascribed to the indisputable initial conditions of the Uni-

verse, it is more interesting and more scientific to look for a dynamical mechanism able

to generate the asymmetry we observe, starting from an initially symmetric Universe.

This is the approach we will undertake. We shall now discuss the fundamental features

of such a mechanism.

1.1.1 Sakharov’s conditions

A dynamical mechanism able to produce a final asymmetry between matter and anti-

matter starting from symmetric initial conditions, must satisfy three conditions, first

pointed out by A. Sakharov [13].

1. Baryon number violation. The dominant amount of matter in the Universe

is represented by baryons. Therefore, the matter/antimatter asymmetry is more

precisely referred to as baryon asymmetry. In the SM, baryons are associated

to an accidental global U(1) symmetry that, at the classical level, implies the

conservation of its related charge: the baryon number B. However, in the SM

baryon number (together with the lepton number L) is violated at the quantum

level by non-perturbative processes that we shall analyse in more detail in the

following chapter (see subsection 2.2.1.1).

Nevertheless, in order to have an asymmetry between baryons and antibaryons

starting from an initially symmetric Universe, we necessarily need some asymmetry

production processes that violate the baryon number, �B 6= 0.

2. C and CP violation. It is clear that in order to generate an asymmetry between

particles and antiparticles we must violate the charge conjugation symmetry, C.

However, if our theory distinguishes between chiralities, we need to violate also

the charge-parity symmetry, CP .

Let us consider the decay of particle N into left-handed (LH) particles, N ! lL

and into right-handed (RH) particles N ! lR. If C is violated we have that the

charged-conjugated reaction rates are di↵erent

�(N ! lL) 6= �(N ! lL), and �(N ! lR) 6= �(N ! lR). (1.1)
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However, if CP is not violated, we have that the rates of the CP -conjugated reac-

tions are the same

�(N ! lL) = �(N ! lR), and �(N ! lR) = �(N ! lL). (1.2)

If we now consider the total decay rates into particles and antiparticles, due to

eq. (1.2) we have

�(N ! lL) + �(N ! lR) = �(N ! lR) + �(N ! lL). (1.3)

Total decays into particles and antiparticles proceed at the same rate, and it is

then impossible to generate an asymmetry. Therefore, in order to produce an

asymmetry, both C and CP must be violated.

3. Departure from thermal equilibrium. Even if baryon number is violated, if

thermal equilibrium is enforced, no net change �B can occur during the Universe

evolution. Indeed, in thermal equilibrium we can compute the thermal average

of B

hBiT = tr
h

e�H/TB
i

= tr
h

(CPT )(CPT )�1e�H/TB
i

= tr
h

e�H/T (CPT )�1B(CPT )
i

= �tr
h

e�H/TB
i

, (1.4)

hence hBiT = 0. Here we have used that CPT is a conserved symmetry, that the

hamiltonian H commutes with CPT and the fact that B is CPT odd.

A dynamical mechanism able to generate a final baryon asymmetry must satisfy all

these three conditions simultaneously. In chapter 2 we shall study in detail how these

are satisfied within a real class of models.

1.1.2 The baryon-to-photon ratio

The mechanism we are looking for must be able to produce the asymmetry in the correct

amount, matching the experimental results obtained from cosmological observations. In

order to quantify the baryon asymmetry, it is customary to define the quantity

⌘B ⌘ nB � nB̄

n�
, (1.5)

where nB, nB̄ and n� are the number densities of baryons, antibaryons and photons

respectively. Given that we do not observe a significant antibaryon density, we can set

nB̄ = 0, so that ⌘B actually measures the baryon-to-photon ratio of the Universe. It is

possible to obtain the value of ⌘B mainly from the study of Big Bang Nucleosynthesis

(BBN) and from the Cosmic Microwave Background (CMB) radiation.



Chapter 1. Introduction 4

1.1.2.1 ⌘B from the Big Bang Nucleosynthesis

BBN is the process, within the cosmological standard model, by which light elements are

produced in the Early Universe. It takes place at temperatures around TBBN ' 0.1 MeV,

when the abundances of light nuclei, mainly 4He, reach their final values. BBN can be

regarded as a brilliant success of the cosmological standard model, due to the excellent

agreement of its prediction with the actual measurements of primordial light nuclei

abundances.

Primordial abundances basically depend on three parameters.

• Neutron half-life ⌧n. This particle physics parameter rules the weak interaction

reactions that keep neutrons and protons in equilibrium. Indeed the neutron-

proton interaction rate is �np / T 5/⌧n. These reactions fall out of thermal equi-

librium at a certain freeze-out temperature TF at which the rate becomes slower

than the Universe expansion rate, �np/H < 1. This temperature is directly linked

to the value of ⌧n and for its experimental value we have TF ' 1 MeV. A larger

value of ⌧n would decrease the interaction rate, giving higher values of TF and

hence higher values of the neutron-to-proton ratio. This in turn would imply a

larger production of light elements, especially 4He.

• Number of relativistic degrees of freedom g⇤. The expansion rate is propor-

tional to the number of relativistic degrees of freedom H / g1/2⇤ T 2. A change in the

value of g⇤ implies a change in the freeze-out temperature TF , and hence a change

in the final light element abundances. This feature can also be employed in order

to gain information on the number of relativistic degrees of freedom, constraining,

for instance, the number of neutrino species.

• Baryon-to-photon ratio ⌘B. The value of the abundances is proportional to the

baryon-to-photon ratio. In particular, higher values of ⌘B would allow an earlier

growth of deuterium and 3He abundances, which in turn would then be burnt into
4He. A larger value of ⌘B would then imply a higher 4He abundance. Moreover,

the same D, 3He, together with 7Li abundances show a peculiar sensitivity to the

value of ⌘B, thus representing a very important probe.

From cosmological observations of the primordial element abundances and employing the

most precise determination of the other free parameters, it is then possible to determine

the value of the baryon-to-photon ratio from BBN. Employing data on deuterium and
4He it was recently obtained [14]

⌘BBN
B = (6.172 ± 0.195)⇥ 10�10. (1.6)
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1.1.2.2 ⌘B from the Cosmic Microwave Background

The baryon-to-photon ratio can be very precisely measured by means of the analysis of

the CMB anisotropies angular power spectrum. The CMB was “accidentally” discovered

in 1964 [15] as very highly isotropic radiation field coming from the Universe. It is made

of the photons released in the Early Universe at the recombination era, T0 ' 0.3 eV,

when neutral atoms were formed and photon interaction with matter suddenly became

very suppressed, thus decoupling matter and radiation. It shows a perfect black-body

spectrum with an average temperature Ttoday ' 2.72 K, as predicted by the standard

cosmological model. However, the most interesting feature of the CMB is provided by its

subtle temperature anisotropies around the sky. It is therefore possible to map the sky

and expand the temperature fluctuation field in terms of spherical harmonics functions,

as
�T

hT i (n̂) =
X

l,m

almYlm(n̂), (1.7)

where n̂ gives a specific direction in the sky. Hence, a power spectrum can be obtained

as a function of the multipole moment l

Cl =
1

2l + 1

l
X

m=�l

h|alm|2i. (1.8)

This angular power spectrum is physically originated by the oscillations of baryons and

radiation in the gravitational potential wells provided by Dark Matter. These oscillations

created more dense and more rarefied regions in the Early Universe, which left a clear

signature on the temperature of the photons released at recombination. Therefore, the

CMB angular power spectrum is extremely powerful at determining the content of the

Early Universe. In particular, for our purposes, it is possible to precisely measure the

baryonic density !B = ⌦B h2, where

⌦B ⌘ ⇢B
⇢c

, H0 = 100h km s�1 Mpc�1, (1.9)

⇢c ⌘ 3H2M2
Pl/8⇡ is the critical density, ⇢B is the baryon energy density and H0 the Hub-

ble constant at the present day. Increasing the baryon density results in an enhancement

of the odd peaks in the power spectrum with respect to the even ones, so that the am-

plitude ratio of the second and third peaks is particularly sensitive to !B [16].

From ⌦B it is then easy to obtain the value of the baryon-to-photon ratio

⌘B =
nB

n�
=

⇢B
mp n�

=
⌦B⇢c
mp n�

' 273.6 ⌦Bh2, (1.10)

where mp is the proton mass. The CMB angular power spectrum is often combined

with other cosmological measurements in order to reduce some degeneracies and help

constraining the parameters. Particularly powerful complementary data are provided
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by Baryon Acoustic Oscillations (BAO) and, more recently, by the study of CMB po-

larisation. From the latest Planck results [17], we can conservatively obtain

⌘CMB
B = (6.1 ± 0.1)⇥ 10�10. (1.11)

The evolution of the baryon number density nB after recombination is ruled by Universe

expansion only (i.e. we assume no other mechanism changes the number of baryons in

the era between recombination and the present day), so that

nB(Ttoday) =
s(Ttoday)

s(T0)
nB(T0), (1.12)

where s(T ) is the entropy density. We therefore have

⌘B(Ttoday) =
nB(Ttoday)

n�(Ttoday)
=

s(Ttoday)

s(T0)

n�(T0)

n�(Ttoday)

nB(T0)

n�(T0)
=

s(Ttoday)

s(T0)

n�(T0)

n�(Ttoday)
⌘CMB
B .

(1.13)

Since s(T ) / gs⇤(T )T 3 and n�(T ) / T 3, we have

⌘B(Ttoday) =
gs⇤(Ttoday)

gs⇤(T0)
⌘CMB
B , (1.14)

where gs⇤(T ) counts the relativistic degrees of freedom contributing to the entropy den-

sity. However, the relativistic degrees of freedom in the SM do not change from the

recombination era to the present day, therefore gs⇤(Ttoday) = gs⇤(T0), so that the baryon-

to-photon ratio measured from the CMB is a measure of present day ⌘B as well.

In the rest of this work, we shall employ the CMB measurement of the baryon-to-photon

ratio, eq. (1.11), as the fiducial experimental estimation of the baryon asymmetry of the

Universe. Therefore, our sought production mechanism will be required to be able to

reproduce this experimental value.

It must be mentioned that the SM itself can satisfy the Sakharov’s conditions. Indeed,

baryon number is violated by non-perturbative processes such as electroweak sphalerons,

C and CP are violated by the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix

while the out-of-equilibrium dynamics can be provided by the Electroweak Spontaneous

Symmetry Breaking (EWSSB). Exploiting these features, it is in principle possible to

generate a baryon asymmetry within the SM, through the so-called electroweak baryo-

genesis [18]. However, this scenario ultimately fails to produce the required size of CP

asymmetry [19] and appears in conflict with the found value of the Higgs boson mass.

For these reasons, the baryon asymmetry of the Universe indeed represents a problem

that cannot be solved in the framework of the SM.
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1.2 Neutrino oscillations

Neutrino oscillations were first theoretically predicted by B. Pontecorvo in 1957 [20],

but solid experimental evidences were found only in the last few decades.

The first experimental hint at neutrino oscillations came from the so-called “solar neu-

trino problem”. The Homestake experiment results showed a critical deficit of measured

neutrino flux [21] with respect to the prediction of the Standard Solar Model, mainly

developed by J. Bahcall [22]. This result was confirmed by other experiments such as

SAGE [23], GALLEX [24] and Super-Kamiokande [25]. The puzzle was finally solved by

the SNO experiment [26] in 2001. The first experiments detected neutrinos via charged-

current interactions or elastic scattering, thus being only sensitive to electron neutrinos.

By using a heavy-water Čerenkov detector, the SNO experiment was sensitive to all

flavours, through neutral current interactions. The total flux measured by SNO was in

agreement with the Standard Solar Model prediction, thus supporting the idea that the

deficit in the electron neutrino flux could be due to the “disappearance” of ⌫e’s that had

oscillated into ⌫µ’s and ⌫⌧ ’s in their propagation.

In the meantime, the Super-Kamiokande experiment highlighted a di↵erent issue in the

flux of neutrinos produced by cosmic rays in the atmosphere. The measured flux of

muon neutrinos and antineutrinos showed an anomalous dependence on the zenith angle

[27], which was not registered in the electron (anti)neutrino flux. This anomaly took

the name of “atmospheric neutrino problem” and could naturally find an explanation in

the oscillation ⌫µ ! ⌫⌧ and ⌫̄µ ! ⌫̄⌧ .

The solar and atmospheric neutrino problems thus solidly established that neutrinos

oscillate among di↵erent flavours, in contrast with the prediction of the SM. For the dis-

covery of neutrino oscillations both the SNO and Super-Kamiokande experiments were

awarded the Nobel Prize for Physics in 2015, in the persons of Arthur McDonald and

Takaaki Kajita respectively.

In the following years, several other experiments have joined the challenge of determin-

ing with precision the parameters ruling neutrino oscillations. Together with solar and

atmospheric neutrinos, also antineutrinos from nuclear reactors have been measured and

studied. It is worth mentioning the contribution of KamLAND [28] in the determination

of the so-called “solar mixing angle” and, later, of DayaBay [29], followed by RENO [30]

and DoubleChooz [31], in the precise measurement of the “reactor mixing angle”.

Moreover, also neutrino beams from accelerators have been detected and studied. Par-

ticularly interesting is the T2K experiment, that has firmly established the electron

neutrino appearance in a beam of muon neutrinos, thus helping constraining several

mixing parameters [32, 33]. The OPERA experiment has also provided strong direct

evidence of ⌫µ ! ⌫⌧ oscillation [34].

We shall now briefly overview the theoretical description of neutrino oscillations1 and

1We shall deal here with the standard plane-wave approximation, while not considering the more
correct and detailed wave-packet treatment (see e.g. [35]). This is enough for our purposes of pointing
out the basic features and the involved low-energy neutrino parameters.
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its consequences, highlighting the parameters that are required and experimentally mea-

sured.

1.2.1 Neutrino mixing

Neutrino interactions in the SM take place only through weak charged and neutral cur-

rents, coupled to the W and Z bosons respectively. We can define the neutrino states

that are produced in the weak interactions as flavour eigenstates |⌫↵i, since, via charged

currents, they always interact with the charged lepton of corresponding flavour. If we

now assume, as in the SM, that neutrinos are massless, then the hamiltonian eigenstates

|⌫ii, that are involved in the propagation, can be made coincide with the flavour eigen-

states. Interaction and propagation eigenstates are then the same and no particular

phenomenon occurs.

However, considering massive neutrinos can spoil this alignment. The hamiltonian eigen-

states, that we can now also call mass eigenstates, do not necessarily coincide with flavour

eigenstates. Assuming 3 mass eigenstates and a misalignment between flavour and mass

eigenstates we can write

|⌫↵i =
3
X

i=1

U⇤
↵i |⌫ii, (1.15)

that is, flavour eigenstates can be seen as a linear combination of mass eigenstates

through the unitary matrix U .

We can now consider a neutrino produced by weak interaction in a certain flavour ↵

and study its propagation through spacetime to a detector in which it is measured by

another weak interaction. The neutrino will therefore propagate until time t, |⌫↵(t)i, at

which it is measured in the detector. We can compute the probability of measuring the

propagated neutrino along the flavour �

P⌫↵!⌫� (t) ⌘ |h⌫� |⌫↵(t)i|2 . (1.16)

Since now flavour and hamiltonian eigenstates do not coincide, the time evolution of

state |⌫↵i gets less trivial, depending on the evolution of states |⌫ii. Employing the time

evolution operator, we obtain

|⌫↵(t)i =
3
X

i=1

U⇤
↵i e

�iEit|⌫ii, (1.17)

being |⌫ii the mass/hamiltonian eigenstate of eigenvalue Ei. We therefore have

P⌫↵!⌫� (t) =
X

i,j

U⇤
↵iU�iU↵jU

⇤
�j e�i(Ei�Ej)t, (1.18)
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where we used the normalisation h⌫i|⌫ji = �ij .

For the hamiltonian eigenstate with mass mi we can approximate

Ei ' E +
m2

i

2E
, (1.19)

where E = |~p|, neglecting the mass contribution. Therefore we have

Ei � Ej '
�m2

ij

2E
, (1.20)

where we defined the squared-mass di↵erences

�m2
ij = m2

i �m2
j . (1.21)

Moreover, since neutrinos are ultrarelativistic, we can also take t = L so that

P⌫↵!⌫� (t) =
X

i,j

U⇤
↵iU�iU↵jU

⇤
�j exp

 

�i
�m2

ijL

2E

!

. (1.22)

We can see, therefore, that even if � 6= ↵, there is a certain probability of measuring, at

time t in the detector, a neutrino of a di↵erent flavour than what was produced. The

probability P⌫↵!⌫� with ↵ 6= � is called transition probability, while for ↵ = � it takes

the name of survival probability. From eq. (1.22), we can notice that the oscillation

probability depends on the entries of the unitary matrix U and on the mass-squared

di↵erences �m2
ij . It is clear that in order to account for the observed neutrino oscil-

lations it is necessary that at least two neutrinos are massive and non-degenerate, so

that �m2
ij 6= 0. The experimental discovery of neutrino oscillations thus implies that

neutrinos cannot be massless as considered in the SM. For this reason, the SM must be

expanded in order to provide a description and an explanation for neutrino masses and

mixing.

From oscillation experiments, two mass-squared di↵erences have been determined, �m2
atm

and �m2
sol, with �m2

atm � �m2
sol. However, these experiments are not sensitive to

neutrino absolute masses, therefore these two mass di↵erences can be accommodated

in the neutrino mass spectrum in two di↵erent ways. Always assuming the pattern

m1 < m2 < m3, we can have

m2
3 �m2

2 = �m2
atm, m2

2 �m2
1 = �m2

sol, (1.23)

which is referred to as Normal Ordering (NO), or

m2
3 �m2

2 = �m2
sol, m2

2 �m2
1 = �m2

atm, (1.24)

which takes the name of Inverted Ordering (IO). These two patterns are still both viable,

even though, as we shall see in the rest of this work, they generally provide di↵erent
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theoretical predictions.

It is useful to define two mass scales

matm ⌘
q

m2
3 �m2

1, msol ⌘
q

�m2
sol, (1.25)

so that

NO

8

<

:

m2 =
q

m2
1 + m2

sol

m3 =
p

m2
1 + m2

atm

, IO

8

<

:

m2 =
q

m2
1 + m2

atm �m2
sol

m3 =
p

m2
1 + m2

atm

. (1.26)

From global analysis of neutrino oscillation data we obtain [36]

matm ' 0.0495 eV, msol ' 0.0087 eV. (1.27)

Neutrino mass spectra given by eq. (1.26) using the experimental values in eq. (1.27)

are plotted in fig. 1.1. We can notice that for m1 . 3 meV neutrino spectrum is fully

(a) (b)

Figure 1.1: Neutrino masses vs. m1 for NO (left panel) and IO (right panel).
Red, green and blue lines are m1, m2 and m3 respectively, obtained from
eqs. (1.26) and (1.27). The dashed black line represents the sum of the neu-
trino masses

P

i mi. The hatched region marks the cosmological upper bound
eq. (1.43).

hierarchical, in particular for NO. For higher neutrino masses m1 & matm we can say

that neutrino masses are quasi-degenerate.

The unitary matrix U is referred to as neutrino mixing matrix or PMNS matrix, after

Pontecorvo-Maki-Nakagawa-Sakata [37, 38]. As shown in the following chapter, in its
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general form it can be expressed in terms of 3 mixing angles, ✓13, ✓12, ✓23, and 3 phases

�, ⇢, �. The three angles take also the name of “reactor”, “solar” and “atmospheric”

mixing angle respectively. The three phases all introduce a CP violation, � is referred to

as Dirac phase, while ⇢ and � are the Majorana phases. For normally ordered neutrino

masses, we have2

U =

0

B

@

c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13

s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

C

A

0

B

@

ei⇢ 0 0

0 1 0

0 0 ei�

1

C

A

,

(1.28)

where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . Respecting our convention of always labelling

neutrino masses as m1 < m2 < m3, in Inverted Ordering the mixing matrix is obtained

from eq. (1.28) through a permutation, as

U (IO) =

0

B

@

s13e�i� c12c13 s12c13

s23c13 �s12c23 � c12s23s13ei� c12c23 � s12s23s13ei�

c23c13 s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei�

1

C

A

0

B

@

ei� 0 0

0 ei⇢ 0

0 0 1

1

C

A

.

(1.29)

If neutrinos are Dirac particles, the phases ⇢ and � are non-physical and can be dropped.

However, the probability expression in eq. (1.22) is invariant under rephasing U↵i !
ei⌘↵U↵iei�i , so that oscillation experiments are not sensitive to the Majorana phases ⇢

and �.

From [40] we can obtain the best fit values and 3� ranges for NO and IO, which are

Normal Ordering Inverted Ordering
1� 3� 1� 3�

✓13 8.8� ± 0.4� 7.6� � 9.9� 8.9� ± 0.4� 7.7� � 9.9�

✓12 33.7� ± 1.1� 30.6� � 36.8� 33.7� ± 1.1� 30.6� � 36.8�

✓23 41.4�+1.9�
�1.4� 37.7� � 52.3� 42.4�+8.9�

�1.8� 38.1� � 52.3�

Table 1.1: Best-fit, 1� and 3� ranges for the three mixing angles from global
neutrino analysis [40], for NO and IO.

reported in tab. 1.1 and will be employed in the rest of this work. It must be noticed

that all mixing angles di↵er from zero with more than 5� significance, thus definitively

ruling out the U = 1, i.e. non-oscillation, possibility.

The Dirac phase � is still loosely constrained, indeed we have [40]

NO �/⇡ = �0.61+0.38
�0.27, IO �/⇡ = �0.69+0.29

�0.33, (1.30)

2Our parameterisation di↵ers form the PDG one [39] in the definition of the Majorana phases.

Thereby we find diag
⇣
1, ei↵21/2, ei↵31/2

⌘
, so that, with respect to our conventions, we have ↵21 = �2⇢

and ↵31 = 2(� � ⇢).
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while at 3� the whole variability range [�⇡, ⇡] is still allowed.

Several current and forthcoming experiment have taken up the challenge of determining

the neutrino mass ordering. In particular, we can mention the JUNO reactor experiment

[41], together with the proposed PINGU [42] extension of the IceCube experiment and

the currently data-taking long-baseline accelerator experiment NO⌫A [43]. The deter-

mination of the mass ordering basically depends on the exploitation of matter-induced

resonant conversion of neutrinos (if NO) or antineutrinos (if IO). For this reason, ordering

determination relies on a precise determination of the CP violating phase �. Therefore,

a combination of di↵erent experiments such as NO⌫A, T2K and the proposed LBNE

[44], has the highest chances to obtain a significative result [45].

1.2.2 Neutrino masses

Given the sensitivity of neutrino oscillation experiments to mass-squared di↵erences

only, it is necessary to consider other complementary experiments in order to determine

the absolute neutrino mass scale m1.

1.2.2.1 Neutrino masses from beta decay

In a rather general way, it is possible to obtain information on the absolute neutrino

masses by measuring the energy spectrum of the electron emitted by a �-decaying nucleus

Ni of atomic mass and number A and Z

Ni(A, Z) �! Nf (A, Z + 1) + e + ⌫̄e. (1.31)

Given the Q-value of the decay

Q� ⌘MNi �MNf �me, (1.32)

the maximal kinetic energy of the electron is given by Q� if the emitted neutrino is

massless. However, if neutrinos are massive, we get that the maximal electron kinetic

energy is

Emax
kin = Q� �m⌫e . (1.33)

Therefore, massive neutrinos imply a distortion around the endpoint of the electron

energy spectrum. However, as noticed above, electron neutrino is not a mass eigenstate

and mixing must be taken into account. Hence, this e↵ect is more conveniently studied

in terms of the e↵ective electron neutrino mass

m� ⌘
X

i

|Uei|2 m2
i , (1.34)
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on which the currently most stringent upper bound is provided by the Troitzk experi-

ment [46]

m� < 2.05 eV (95%C.L.). (1.35)

The most promising experiment on �-decay, employing tritium nuclei, is KATRIN [47,

48], that may probe m� with a sensitivity of about 0.2 eV in the near future [49, 50].

1.2.2.2 Neutrino masses from neutrinoless double-beta decay

While �-decay can prove neutrino masses in a general way, if neutrinos are Majorana

particles (as specified and explained in detail in the following chapter) it is possible to

study a characteristic phenomenon: the neutrinoless double-� decay (0⌫��).

Double � decay takes place naturally for certain nuclei that decay into lighter ones via

two simultaneous � decays

Ni(A, Z) �! Nf (A, Z + 2) + 2e + 2⌫̄e, (1.36)

as in fig. 1.2(a). However, if neutrinos are Majorana particles, it is possible to connect the

d

d

⌫̄e

⌫̄e

u

W

u

W

e

e

1

(a)

d

d

u

W

u

W

⌫
e

e

1

(b)

Figure 1.2: Double � decay, panel (a) and neutrinoless double � decay, panel
(b).

two neutrino lines into the propagator of a virtual Majorana neutrino, as in fig. 1.2(b).

This way, no neutrinos appear in the final state and the process results into

Ni(A, Z) �! Nf (A, Z + 2) + 2e, (1.37)

that is a double � decay without outgoing neutrinos [51]. It must be noticed that 0⌫��

decay is possible if and only if neutrinos are Majorana particles [52], independently of

other contributions from new physics. Therefore, experiments trying to detect 0⌫��

decays are of the utmost importance in determining whether neutrinos are Dirac or
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Majorana particles.

The half-life of a 0⌫�� decaying nucleus can be expressed as

T 0⌫��
1/2 = (�0⌫��)�1

�

�

�

M0⌫��
�

�

�

�2
m�2

ee , (1.38)

where �0⌫�� is the phase-space factor, M0⌫�� is the nuclear matrix element while mee

is the e↵ective 0⌫�� decay mass defined as

mee ⌘
�

�

�

�

�

X

i

U2
ei mi

�

�

�

�

�

. (1.39)

Employing the mass scale values as in eq. (1.27), the mixing angles as in table 1.1, and

taking �, ⇢, � in their whole variability range, we can study the behaviour of mee vs. m1,

both for NO and IO. The result is shown in fig. 1.3 (adapted from [35, 53]). Thereby, the

Figure 1.3: E↵ective 0⌫�� decay mass vs. m1 for NO (red region) and IO
(blue region). The lighter regions are obtained with mixing angles varying
within their 3� ranges as in tab. 1.1, while the darker regions are obtained
by using their best-fit values. The vertical hatched region marks the current
upper bound on m1 imposed by cosmological observations, eq. (1.43), while the
horizontal hatching marks the current conservative experimental upper bound
on mee, eq. (1.40). The horizontal dashed line indicates the expected future
experimental sensitivity. Plot adapted from [35, 53].

horizontal hatched region marks the current conservative upper bound obtained from

experiments. The current experimental constraints on the e↵ective 0⌫�� decay mass are

reported in tab. 1.2. It must be noticed that experimental results on 0⌫�� decay must

face high theoretical uncertainties in the determination of the nuclear matrix element
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Experiment Result at 90% C.L.
GERDA [54] mee < 0.22� 0.64 eV
EXO-200 [55] mee < 0.2� 0.69 eV

KamLAND-Zen [56] mee < 0.15� 0.52 eV

Table 1.2: Experimental upper bounds on the e↵ective 0⌫�� decay mass.

M0⌫�� . We can therefore employ as a conservative upper bound on the e↵ective 0⌫��

decay mass

mee . 0.2 eV, (1.40)

which is marked in fig. 1.3 with the horizontal hatched region.

Experiments such as MAJORANA [57] and GERDA [58], are expected to reach, in

the near future, a sensitivity around 0.05 eV (marked by the dashed line in fig. 1.3).

This would be particularly interesting since it would severely constrain quasi-degenerate

neutrino masses (0.02 eV . m1 . 0.07 eV) while starting probing the fully hierarchical

IO spectrum (m1 ! 0).

1.2.2.3 Neutrino masses from cosmology

The currently most stringent information on neutrino masses comes from cosmology,

which is most sensitive to their sum3. The massive nature of neutrinos causes modifica-

tions in the CMB angular power spectrum from what would be obtained in the massless

neutrino scenario. Massive neutrinos can impact the spectrum by modifying the cosmic

evolution through a shift of the matter-radiation equality, as well as by a↵ecting se-

condary anisotropies via, for instance, the Integrated Sachs-Wolfe e↵ect. However, the

sensitivity to neutrino masses of the CMB spectrum alone is in practice quite little to

provide solid results. For this reason, it is much more useful to combine CMB data with

other observations, such as BAO data. Combining the Planck2015 CMB spectrum with

polarisation data and BAO information, it is possible to place the upper bound [17]

X

i

mi < 0.17 eV (95%C.L.). (1.41)

In the rest of this work, we shall more conservatively employ the upper bound obtained

from the Planck2013 release, [60]

X

i

mi < 0.23 eV (95%C.L.), (1.42)

3In principle, the mass splittings between the di↵erent neutrino mass states can be seen in the matter
power spectrum probing large scale structures in the Universe. However, this e↵ect is still too subtle to
be measured with significance even by future surveys [59].
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which, using the mass values in eq. (1.27), translates into an upper bound on m1 valid

for both NO and IO

m1 . 0.07 eV. (1.43)

This is the upper bound derived from cosmology shown in fig. 1.3 and in the figures that

will appear in what follows.

We shall comment more in detail on how cosmological data can further constrain the

bound on the sum of the neutrino masses in chapter 4.

1.3 Two problems, one solution?

We have introduced two serious problems of modern physics that unavoidably call for

an extension of the SM. The baryon asymmetry of the Universe needs a dynamical

mechanism able to explain the observed baryon-to-photon ratio, while neutrino masses

and mixing require a theoretical justification. In the rest of this work we shall consider

an interesting possible extension of the SM that, on the one hand, is able to naturally

account for neutrino masses via the so-called seesaw mechanism, while on the other hand

can provide a way to produce the baryon asymmetry of the Universe, via leptogenesis.

This theoretical framework turns out to be particularly interesting not only because it

can solve two problems at the same time, but also because it creates a strict link between

two phenomenological domains: cosmology and neutrino oscillation physics. This way,

cosmological evidences, like the baryon asymmetry of the Universe, can be employed

to gain more information on the physics ruling neutrino masses and mixing, through

a theoretical explanation and prediction of the seesaw free parameters. This is indeed

the main aim of this work: exploiting the link between neutrino phenomenology and

cosmology in order to constrain and predict the otherwise free parameters introduced

by the seesaw extension of the SM.

This work is divided into two main parts: in the first part we shall introduce the theore-

tical framework and the needed formalism, while in the second we will derive constraints

and predictions on neutrino parameters.

Part one includes chapters 2 and 3. In chapter 2 we shall address the problem of neutrino

masses and mixing and introduce the seesaw mechanism and leptogenesis, pointing out

its main features. In chapter 3 we shall expand the leptogenesis paradigm by introdu-

cing flavour e↵ects and considering a particular scenario, called N2-dominated. We shall

highlight two important theoretical motivations that naturally lead to it: strong thermal

leptogenesis and SO(10)-inspired leptogenesis. These two theoretical frameworks will

turn out to be particularly rich of phenomenological consequences, giving interesting

predictions and constraints on neutrino masses and mixing parameters.

In the second part we shall analyse in detail these results. In chapter 4 strong ther-

mal leptogenesis will be considered, while in chapter 5 we will derive the predictions
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obtained within SO(10)-inspired leptogenesis. In chapter 6 we will study the supersym-

metric extension of SO(10)-inspired leptogenesis, commenting on the di↵erences with

the non-supersymmetric scenario and focusing on the implications on the reheating tem-

perature of the Universe.

Finally, in chapter 7 we will summarise the results obtained in the preceding chapters

and draw our conclusions.





Part I

The framework

19





Chapter 2

The seesaw mechanism and

leptogenesis

In this chapter, we shall analyse how it is possible to extend the SM lagrangian to

account for a mass term for neutrinos. We shall see the basic ways it can be accomplished

and then devote ourselves to a very interesting realisation: the seesaw mechanism. In

particular, we will focus on a direct consequence entailed by the seesaw mechanism:

leptogenesis. In the second part of this chapter, the basic features of leptogenesis will

be explored and the main formalism will be laid out.

2.1 How to give mass to neutrinos?

In the SM [10–12], neutrinos are massless and purely LH. However, as discussed in the

Introduction, experimental results have nowadays firmly established that neutrinos of

di↵erent flavours oscillate into each other. The main consequence of this experimental

phenomenon is that neutrinos cannot be all massless. Therefore, we are compelled by

evidence to expand the SM lagrangian in order to accomodate a mass term for neutrinos.

2.1.1 Dirac masses

Perhaps the most immediate way to give mass to neutrinos consists in extending the

Higgs mechanism to neutrinos as well. This of course requires the addition of RH

neutrino fields, which must be singlets under the SM gauge group, since they do not

appear to take part into any interaction. In a basis in which charged lepton Yukawa

matrix is diagonal, we can add to the SM lagrangian a term such as

LD = �Y↵i l↵ N 0
Ri�̃ + h.c, (2.1)

21
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where Y↵i are Yukawa couplings, l↵ are the LH lepton doublets, defined as

l↵ ⌘
 

⌫L↵

`L↵

!

, (2.2)

and �̃ ⌘ i�2�⇤ is the Higgs doublet � transformed by means of the second Pauli matrix

�2 in order to act on the down part of the lepton doublet. Sum over repeated indices is

understood, unless specified otherwise. After electroweak spontaneous symmetry break-

ing (EWSSB) we get a term

LD = �vY↵i ⌫L↵N 0
Ri + h.c., (2.3)

where v is the Higgs Vacuum Expectation Value (VEV) v ' 174 GeV.

In order to get a mass term for the neutrinos, the Yukawa matrix must be diagonalised

via a bi-unitary transformation such as

U †Y VR = DY , (2.4)

where DY is diagonal with diagonal entries yi real and non-negative. Inserting it into

the lagrangian we can rotate the neutrino fields as

⌫Li ⌘ U †
i↵⌫L↵, NRi ⌘ V †

RijN
0
Rj , (2.5)

so that we have

LD = �v
X

i

yi ⌫LiNRi + h.c. = �
X

i

mi ⌫i⌫i, (2.6)

where we defined the fields ⌫i = ⌫Li + NRi and the masses mi ⌘ vyi. In this way we

have obtained massive neutrino fields ⌫i, through a rotation of the fields appearing in

the lagrangian.

The unitary matrix U in eq. (2.5) is then the PMNS neutrino mixing matrix.

This is in principle a generic N ⇥ N = 3 ⇥ 3 unitary matrix, which is determined by

N2 = 9 parameters. Any unitary matrix can be written in terms of N(N � 1)/2 angles

and N(N + 1)/2 phases, so that in our N = 3 cases we have in general 3 angles and 6

phases. It is possible to show that a generic 3⇥ 3 unitary matrix U can be written as

U = DL R23 � R13 �† R12DR, (2.7)

where, setting cij ⌘ cos ✓ij and sij ⌘ sin ✓ij ,

DL = diag
⇣

ei(!1�⇢), ei!2 , ei(!3��)
⌘

, (2.8)

DR = diag
�

ei⇢, 1, ei�
�

, (2.9)

� = diag
⇣

ei�, 1, 1
⌘

, (2.10)
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and

R12 =

0

B

@

c12 s12 0

�s12 c12 0

0 0 1

1

C

A

, R13 =

0

B

@

c13 0 s13

0 1 0

�s13 0 c13

1

C

A

, R23 =

0

B

@

1 c23 s23

0 �s23 c23

0 0 1

1

C

A

.

(2.11)

The angles can be limited to the interval 0  ✓ij  ⇡/2. Defining the vector of the LH

components of the neutrino mass eigenstates ⌫i

nL ⌘

0

B

@

⌫L1

⌫L2

⌫L3

1

C

A

, (2.12)

we can insert eq. (2.7) in the expression of the charged current

Jµ
W = nLU †�µ`L = nL

⇣

DLR23� R13�†R12DR

⌘†
�µ`L (2.13)

= nLD†
R (R12)t� (R13)t �†(R23)t D†

L�µ`L. (2.14)

Our lagrangian is invariant under global U(1) transformations of the neutrino mass

eigenstates

nL �! DR nL, (2.15)

and under global U(1) transformations of the charged lepton fields

`L �! D†
L `L. (2.16)

Therefore, by performing a rephasing of nL and `L, matrices DR and DL drop out of

the charged current expression. Since these phases do not appear anymore, anywhere,

in the lagrangian, they are clearly non-physical, and they can be neglected in the pa-

rameterisation of the mixing matrix U. In the case of Dirac neutrino masses, we can

therefore write the mixing matrix as

U = R23�R13�†R12 (2.17)

=

0

B

@

c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13

s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

C

A

(2.18)

which coincides with eq. (1.28) if ⇢ and � are dropped. In this case then, only the Dirac

CP violating phase � remains.

It must be noticed that, for simplicity, we have considered here the NO case. As already

mentioned, with our conventions, the IO case can be obtained via a permutation of the

columns in U .
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We can also notice that, in order to get as small neutrino masses as those required by

experimental evidence, it is necessary to fix the Yukawa couplings to small values. This

tuning of the Yukawas lacks of elegance, therefore more natural ways to explain the

smallness of neutrino masses are generally sought.

2.1.2 Majorana masses

We have seen that the Dirac mass term requires the two chirality components of the

field ⌫ = ⌫L + NR. However, in the case of neutrinos, which have zero electric charge, it

is possible to build a mass term using only one independent chirality component. The

generic fermion mass term connects a LH and a RH field, but in the case of neutrino it

is possible to obtain one chiral field from the other. We can consider for instance the

RH field NR, and make use of the charge conjugation matrix C which satisfies

C† = C�1 (2.19)

Ct = �C (2.20)

C (�µ)t C�1 = ��µ (2.21)

C (�5)
t C�1 = �5 (2.22)

C (�µ⌫)t C�1 = ��µ⌫ . (2.23)

From the RH field NR, it is possible to build a field, up to an arbitrary phase, as

NC
R ⌘ C NR

t
, (2.24)

which is LH. Indeed we have

PR NC
R = PR C NR

t
= C �NR PR

�t
= C

⇣

N † P †
R�0PR

⌘t
= C �N PL PR

�t
= 0, (2.25)

where we used eq. (2.22). Therefore, using the field in eq. (2.24) it is possible to build a

fermion mass term connecting a LH and a RH field actually using only one independent

chirality component. We have therefore

LM = �1

2
m NC

R NR + h.c., (2.26)

which is the so-called Majorana mass term. It is important to notice the factor 1/2,

needed to avoid the double counting due to the fact that the LH and the RH fields are

not independent. Expanding the hermitian conjugate we get the full lagrangian

LM = �1

2
m
⇣

NC
R NR + NRNC

R

⌘

= �1

2
m ⌫⌫. (2.27)
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In the last equality we have defined a four component spinor field

⌫ = NC
R + NR, (2.28)

whose RH component is the field NR and the LH component is obtained from NR by

eq. (2.24). Such field is called Majorana field and, applying the charge conjugation

eq. (2.24), it can be seen that ⌫ is equal to its charge conjugate ⌫C . It is clear then that

Majorana fields must be neutral under the electric charge, since the charge conjugation

relates particles and antiparticles.

The Majorana mass term can be easily extended to the multi-generation case. Introdu-

cing RH neutrino fields N 0
Ri, we have

LM = �1

2
N 0C

R i Mij N 0
Rj + h.c. (2.29)

where Mij is a complex symmetric matrix. Indeed, rewriting the mass term as

� 1

2
N 0C

R i Mij N 0
Rj + h.c. =

1

2
N 0t

Ri C† MijN
0
Rj , (2.30)

we can then take the transpose in the spinor space and relabel the indices as

1

2
N 0t

Ri C† MijN
0
Rj = �1

2
N 0t

Rj (C†)t MijN
0
Ri =

1

2
N 0t

Ri C† MjiN
0
Rj . (2.31)

Comparing the first and the last terms we conclude that Mij = Mji, so that the Majorana

mass matrix M must be symmetric. Since it is a complex symmetric matrix, it can be

diagonalised via Takagi diagonalisation as

V t
R M VR = DM , (2.32)

where DM is a diagonal matrix with diagonal entries mi real and non-negative. Inserting

eq. (2.32) in the lagrangian, we can define new fields as

NRi ⌘ V †
Ril N

0
Rl, (2.33)

so that we have

LM = �1

2

X

i

NC
R i miNRi + h.c. (2.34)

Completing the hermitian conjugate, we can define the fields ⌫i ⌘ NC
R i + NRi which are

mass eigenstates with masses mi. Similarly to the Dirac case, the rotation due to the

matrix VR implies the appearance of a mixing matrix U in the charged current, so that

also in the Majorana case we have neutrino oscillations.

It must be noticed that the Majorana mass term eq. (2.26) is not invariant under global

U(1) transformations of neutrino fields. This is indeed the global symmetry that ensures
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the conservation of the leptonic current and hence the lepton number. In this case, since

the Majorana mass term explicitly breaks this symmetry, we must conclude that the

lepton number is not conserved when a Majorana mass term is introduced.

This remark is important also with respect to the determination of the mixing matrix

U . Indeed, it is not possible anymore to perform the transformation eq. (2.15) on the

neutrino fields, therefore we cannot anymore drop the matrix DR in the parameterisation

of U , eq. (2.7). Therefore, in the case of Majorana mass term, we have

U = R23�R13�†R12 DR (2.35)

=

0

B

@

c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13

s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

C

A

0

B

@

ei⇢ 0 0

0 1 0

0 0 ei�

1

C

A

,

(2.36)

which coincides with the parameterisation presented in the introduction, eq. (1.28).

Finally, it is evident that the Majorana mass term is not a simple extension of the SM

as in the case of the Dirac mass, where the Higgs mechanism was simply extended to

neutrinos. Using the SM field content, it is possible to obtain a Majorana mass term

only via non-renormalisable operators. In particular, the lowest dimensional operator

that generates a Majorana mass term is the so-called Weinberg dimension-5 operator

L5 =
y↵�
⇤

⇣

l0L
t
↵ �2 �

⌘

C†
⇣

�t �2 l0L�

⌘

+ h.c., (2.37)

where y↵� is a symmetric matrix of couplings and ⇤ is a high scale with dimension one.

After the electroweak symmetry breaking a Majorana mass term for neutrinos appears

LM =
1

2

v2

⇤
y↵� ⌫ 0

L
t
↵ C† ⌫ 0

L� + h.c. (2.38)

The neutrino masses are then obtained from the matrix

m↵� =
v2

⇤
y↵� . (2.39)

Therefore, the mass scale is given by the interplay between the electroweak scale v

and the high-scale ⇤. Due to the largeness of ⇤, this relation ensures that neutrino

masses are smaller than the typical electroweak scale, as pointed out by the experiments.

Such relations, in which the neutrino masses are proportional to the electroweak scale

suppressed by a higher scale take the name of seesaw relations. It will be a feature of the

seesaw mechanism which we will deal with in the next section and that will implement

it without e↵ective, non-renormalisable operators.
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2.1.3 The seesaw mechanism

So far we have explored two distinct ways of adding a mass term for neutrinos to the SM

lagrangian. It is possible, however, to combine them so to have a Dirac-Majorana mass

term. We can thus take into account LH fields ⌫ 0
L↵ and RH fields N 0

Ri, with ↵ = e, µ, ⌧

and i = 1, 2, 3. Considering these LH and the RH fields independent (i.e. not related

by conjugation relations), we can in principle build three di↵erent mass terms. A Dirac

mass term involving both LH and RH fields, a Majorana mass term with LH fields only

and a Majorana mass term with RH fields only. However, choosing to respect the SM

gauge group, the LH fields ⌫ 0
L↵ would not provide a Majorana mass term invariant under

SU(2)L ⇥U(1)Y . For this reason, we are left with only one Majorana mass term, made

of the RH fields, which, not being constrained by the SM, can be chosen to be singlets

under SU(3)C⇥SU(2)L⇥U(1)Y . Considering for completeness also the charged leptons,

we have

L � �Y 0
` ↵� l0↵ `0R��� Y 0

↵i l
0
↵ N 0

Ri�̃�
1

2
N 0

R
C
i M 0

ij N 0
Rj + h.c. (2.40)

where Y 0
` is the matrix of charged lepton Yukawa couplings, with `R being the charged

lepton RH component. It is more convenient to rotate the charged leptons to a basis

in which the Yukawa’s are diagonal, as well as the RH neutrino fields onto a basis in

which the Majorana mass matrix M is diagonal. This choice of basis is also referred to

as flavour basis. For the charged leptons, we employ the bi-unitary diagonalisation

U `
L Y 0

` U `
R
†

= D`
Y , (2.41)

where D`
Y is a diagonal matrix with real, non-negative entries. The charged lepton fields

are transformed as

lL↵ ⌘ U `
L↵� l0L� (2.42)

`R↵ ⌘ U `
R↵� `0R� . (2.43)

For the RH neutrinos, we perform the Takagi diagonalisation of M 0 as

V t
RM 0VR = DM , (2.44)

where VR is a unitary matrix and DM a diagonal matrix with diagonal entries Mi, real

and non-negative. The RH fields are then rotated as

NRi ⌘ V †
Rij N 0

Rj . (2.45)

The lagrangian then becomes

L � �
X

↵

D`
Y ↵ l↵`R↵�� Y↵i l↵ NRi�̃�

1

2

X

i

NR
C
i DMi NRi + h.c. (2.46)
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where we have defined the neutrino Yukawa couplings in the flavour basis as

Y↵i ⌘ U `
L↵� Y 0

�j VRji. (2.47)

After EWSSB this lagrangian develops mass terms

L � �
X

↵

D`
m↵

`L↵ `R↵ �mD↵i ⌫L↵ NRi �
1

2

X

i

NR
C
i DMi NRi + h.c. (2.48)

where D`
m = vD`

Y is the charged-leptons diagonal mass matrix and mD ⌘ vY is the

so-called Dirac mass matrix for neutrinos. It is possible to expand the Dirac term by

noticing that

NC
R i⌫

C
L ↵ =

⇣

CNRi
t
⌘†

�0C ⌫L↵
t =

⇣

�0†NRi

⌘t C�1�0C ⌫L↵
t = �N t

Ri ⌫L↵
t = ⌫L↵NR,

(2.49)

so that we have

Ls = �1

2
mD↵i ⌫L↵ NRi �

1

2
mD↵i N

C
R i ⌫

C
L ↵ �

1

2

X

i

NR
C
i DMi NRi + h.c. (2.50)

This can then be rewritten more compactly by adopting a matrix notation as

Ls = �1

2

⇣

⌫L, NC
R

⌘

 

0 mD

mt
D DM

! 

⌫C
L

NR

!

+ h.c. ⌘ �1

2
n0
LMn0C

L + h.c., (2.51)

where we defined the six-component vector of fields

n0
L ⌘

 

⌫L

NC
R

!

, (2.52)

that is LH. The mass term in eq. (2.51) has a Majorana structure, therefore the neutrino

fields that arise from the seesaw lagrangian must be Majorana. In order to obtain the

mass eigenstates, it is still necessary to diagonalise the matrix M. We can first obtain

the two diagonal blocks

�1,2 =
1

2

✓

DM ⌥
q

D2
M + 4mDmt

D

◆

. (2.53)

Now, if we assume that the Mi are much larger than all the elements of the Dirac mass

matrix mD, we can simplify the expression of the blocks to the leading order in the

D�1
M mD expansion. This is the so called seesaw limit and it is indeed naturally realised

in several UV completions of the SM. For instance, as we shall see in more detail in

the following chapters, in Grand Unified Theories (GUT) such as SO(10)-GUT, RH

neutrino fields are predicted to complete the representation of the mass fields. In these

theories, the scale of the Majorana mass matrix M lies naturally around the GUT

scale ⇤GUT ⇠ 1016 GeV. The scale of the matrix mD is typically the electroweak scale
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⇤EW ⇠ 102 GeV, therefore, in these frameworks, the seesaw limit is naturally realised.

In this limit we have

�1 = �mD D�1
M mt

D + O(D�1
M mD), (2.54)

�2 = DM + O(D�1
M mD), (2.55)

while the diagonalising matrix W performing the block diagonalisation is

W '
 

1
�

D�1
M mD

�†

�D�1
M mD 1

!

(2.56)

Hence, in the seesaw limit we have

W tMW '
 

m⌫ 0

0 DM

!

⌘ BM, (2.57)

where we defined

m⌫ ⌘ �mD D�1
M mt

D. (2.58)

We can immediately notice that the neutrino mass spectrum splits into two distinct sets.

Three neutrinos have masses given by the eigenvalues of m⌫ , while three others have

masses Mi. We can already say that the first set of fields will be much lighter than the

second, due to eq. (2.58). In order to have a clear idea of the final mass eigenstates and

the mixing among the neutrino fields, it is still necessary to diagonalise the block matrix

BM. To this aim, given that DM is already diagonal, we can adopt the 6⇥ 6 matrix

P =

 

Q 0

0 1

!

(2.59)

such that

P † BM P ⇤ =

 

�Dm 0

0 DM

!

⌘ DM, (2.60)

where the diagonal 3⇥ 3 matrix Dm is obtained as Q† m⌫ Q⇤ = �Dm. Using the 6⇥ 6

diagonal matrices BM and DM we can rewrite eq. (2.51) as

Ls = �1

2
n0
L W ⇤BMW †n0C

L + h.c. = �1

2
n0
L W ⇤PDMP tW †n0C

L + h.c.. (2.61)

Hence, the vector of fields n0
L is transformed into

nL ⌘
 

nlight
L

nheavy
L

!

= P † W tn0
L (2.62)

=

 

Q† 0

0 1

! 

1 � �D�1
M mD

�t

�

D�1
M mD

�⇤
1

! 

⌫L

NC
R

!

(2.63)
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so that the LH components of the final mass eigenstates are

nlight
L = Q†

h

⌫L �
�

D�1
M mD

�t
NC

R

i

, (2.64)

nheavy
L =

�

D�1
M mD

�⇤
⌫L + NC

R . (2.65)

Since all fields are Majorana, we can build the final mass eigenstates as

nlight = nlight
L +

⇣

nlight
L

⌘C
, nheavy = nheavy

L +
⇣

nheavy
L

⌘C
. (2.66)

Given the suppression introduced by the factor D�1
M mD, we can notice that the heavy

mass eigenstates are almost entirely composed out of the RH neutrino fields NR, with a

tiny mixing with the fields ⌫L. Similarly, the LH light mass eigenstates almost coincide

with a rotation of the fields ⌫L↵ in the vector ⌫L. Thus, neglecting the corrections of

order D�1
M mD, we can say

nlight ' Q†⌫L +
⇣

Q†⌫L
⌘C

, (2.67)

nheavy 'NC
R + NR. (2.68)

Focusing on eq. (2.67), since the lagrangian in eq. (2.46) is already written in a basis in

which the charged leptons Yukawa couplings are diagonal, the fields ⌫L↵ correspond to

the flavour eigenstates that appear in the charged current interactions. In the seesaw

limit, we can identify the matrix Q with the PMNS unitary mixing matrix U . Therefore,

we have

Dm = �U † m⌫ U⇤. (2.69)

This holds in the seesaw limit approximation, in which the mixing with the NR fields,

that would imply a rectangular mixing matrix, is suppressed. This avoids an unpleasant

outcome related to the non-unitarity of the mixing: the failure of the Glashow-Iliopoulos-

Maiani (GIM) mechanism [61] and the appearance of flavour changing neutral currents.

It should be now clear how the seesaw mechanism [62–67] works: the heavy RH neutrinos

and the LH neutrinos mix in such a way that, due to the di↵erent scales involved, the

spectrum of the final mass eigenstates splits into two sets. One is composed of light

neutrinos, almost entirely made of the LH neutrinos, while the other consisting in heavy

neutrinos almost coinciding with the RH neutrinos. The heavy scale of the Majorana

mass matrix suppresses the final active neutrino masses so that they can naturally lie

around the small experimental values.

2.1.4 Parameters in the seesaw lagrangian

The addition of three new fields in the SM lagrangian necessarily implies an enlargement

of the parameter space. Indeed, looking at eq. (2.46), we can see that new Yukawa
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couplings Y↵i and the diagonal Majorana mass matrix DM are introduced. In general,

the 3⇥ 3 complex matrix Y↵i is specified by 18 real parameters, however, a rephasing of

the lepton fields can eliminate 3 of them, reducing the number to 15. DM includes the

three Majorana masses Mi, therefore, in total, the number of parameters introduced by

this realisation of the seesaw mechanism is 18. In a particular seesaw model, however,

it is not practical to directly specify the Yukawa couplings. Instead, it is possible to

input a set of parameters that have a more direct physical meaning. We can notice that

combining eq. (2.58) and (2.69) we have

Dm = U †mDD�1
M mt

D U⇤, (2.70)

that is

1 = D�1/2
m U †mDD�1

M mt
D U⇤ D�1/2

m . (2.71)

By splitting also matrix D�1
M we can see that the seesaw mechanism implies

⇣

D�1/2
m U †mDD�1/2

M

⌘⇣

D�1/2
m U †mDD�1/2

M

⌘t
= 1. (2.72)

If we define

⌦ = D�1/2
m U †mDD�1/2

M , (2.73)

eq. (2.72) implies that ⌦ is a complex orthogonal matrix [68]. From eq. (2.73) we can

express mD, that is, the Yukawa couplings, as

mD = UD1/2
m ⌦ D1/2

M . (2.74)

Therefore, the model is completely specified if we provide

(a) 6 mixing parameters in U : 3 mixing angles and 3 phases,

(b) 3 light neutrino masses mi in Dm,

(c) 3 heavy neutrino masses Mi in DM ,

(d) 6 real parameters of the complex orthogonal matrix ⌦.

The total, clearly, still sums up to 18 parameters, but this parameterisation is quite

convenient since (a) and (b) are related to the low-energy scale of the active neutrino

physics. Points (c) and (d) are linked to the high-energy physics of the RH Majorana

neutrinos. Clearly, while the former set is experimentally accessible, the latter is di�cult

(if not impossible) to directly measure.

Constraining these sets of free parameters is indeed the aim of the present work.
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The ⌦ matrix entries have also a precise physical meaning. From eq. (2.73) we can easily

obtain

⌦2
ij =

�

U †mD

�2

ij

miMj
, (2.75)

which satisfy the orthogonality condition

X

j

⌦2
ij = 1. (2.76)

Therefore, we can write [69]

mi =
X

j

mi ⌦
2
ij =

X

j

�

U †mD

�2

ij

Mj
. (2.77)

Each entry ⌦2
ij corresponds to a contribution to mi proportional to the inverse of the

heavy neutrino mass Mj . We can regard then the elements ⌦2
ij as the weights [69,

70] with which the heavy neutrino masses contribute to the determination of the light

mass mi.

2.1.5 Types of seesaw mechanisms

The mechanism we have described in detail in the previous section is actually called

type-I seesaw. There are indeed other types of seesaw mechanism, all sharing the same

idea of di↵erent interplaying scales that suppress the neutrino masses. We will very

briefly mention the general scheme of the most relevant other types.

Type-II seesaw [71–73]. In this version, an additional Higgs field � is introduced,

which is a triplet under SU(2)L. This couples both to the leptons and the Higgs doublets,

so that, when the neutral component of � acquires a VEV, v�, a Majorana mass term

is generated. This is of the order gv�, where g is the Higgs triplet-lepton doublets

coupling. The triplet VEV is linked by cubic scalar interaction to the EW VEV v so

that v� ⇠ µv2/M2
�, therefore, the light neutrino mass scale results m ⇠ gµv2/M2

�.

Often, type-II seesaw is found in the so-called left-right symmetric models, in which the

gauge group is extended to SU(2)L ⇥ SU(2)R ⇥ U(1)B�L.

Type-III seesaw [74]. In this case, three RH neutrinos are added as in type-I, however

they are assumed to be triplets ⌃ of SU(2)L. They couple via Yukawa couplings Y⌃ the

lepton doublets and they are given a Majorana mass term with scale M⌃. Assuming

M⌃ � v, the procedure to obtain the final mass spectrum is the same as in type-I, so

that the final light neutrino mass scale is given by m ⇠ Y 2
⌃v2/M⌃. The most important

di↵erence with type-I is given by the triplet nature of the RH neutrino fields, that allows

them to couple to the gauge fields and to induce the mixing of the charged leptons with

New Physics.
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Finally, it is possible to generate a Majorana mass term for the neutrino fields via

quantum corrections. This is the feature of the so-called radiative seesaw mechanism,

whose models usually involve new particles and additional discrete symmetries.

2.2 Leptogenesis

We can now turn to the production of the baryon asymmetry of the Universe and study

a mechanism which is indissolubly linked to the seesaw mechanism we have seen in the

previous section.

In the framework of the seesaw mechanism, the source of the final asymmetry can

be traced back to the new physics represented by the heavy neutrino fields1 we have

introduced. Considering the seesaw lagrangian, eq. (2.46), we must therefore determine

if there are all the ingredients needed to satisfy the Sakharov conditions and thus to

generate an asymmetry through the interaction term. This term, in form of Yukawa

coupling, is responsible for decays and inverse-decays of the heavy neutrinos into lepton

and Higgs doublets. However, since only leptons, but no quarks, are involved, we can

already understand that an asymmetry is going to be primarily produced among leptons

and anti-leptons. Clearly, there must be in addition some other processes that provide

the conversion of at least part of this lepton asymmetry into an asymmetry among

baryons and anti-baryons, since the experimental evidence refers to a baryon asymmetry.

A mechanism in which an asymmetry is originally produced in the lepton sector and

partly converted to the baryons takes the name of leptogenesis [75]. In this section

we shall study the leptogenesis mechanism that naturally arises from the type-I seesaw

lagrangian, analysing one by one how the three Sakharov conditions can indeed be

satisfied in this framework.

2.2.1 Lepton number violation and baryon asymmetry

Basing on the seesaw lagrangian eq. (2.46), the non-SM physics can be directly source

of an asymmetry only in the lepton sector. The conversion of at least part of this

asymmetry to the baryons is achieved thanks to the di↵erent interactions that take

place in the Early Universe and that are in equilibrium at those temperatures. Among

these, a crucial role is played by non-perturbative processes, predicted by the SM, that

violate the baryon and the lepton numbers: the so-called electroweak sphalerons.

In order to obtain a link between the lepton and the baryon asymmetry, we must consider

all the relevant interactions that are in equilibrium in the Early Universe [76]. At

very high temperatures we can assume that mixing among quark and lepton families

1From here onwards, we shall call “heavy neutrinos” directly the fields Ni = NC
R i +NRi that appear

in the lagrangian eq. (2.46), exploiting the fact that they coincide with the heavy mass eigenstates nheavy
i ,

eq. (2.68).



Chapter 2. Seesaw and leptogenesis 34

is e�cient, so that we can identify a single chemical potential for quarks and leptons.

Moreover, also SU(2)L gauge interactions are in equilibrium, so that the components of

the same SU(2)L doublet can be given the same chemical potential. We have therefore

the chemical potentials as in tab. 2.1. We can get an expression of the baryon and lepton

µQL Chemical potential for the quark doublets
µlL Chemical potential for the lepton doublets

µuR , µdR Chemical potentials for up and down RH quark fields
µlR , µNR Chemical potentials for RH charged lepton and neutrino fields

µ� Chemical potential for the Higgs field

Table 2.1: Relevant chemical potentials in the Early Universe.

asymmetries in terms of the chemical potentials. Considering the high temperatures of

the Early Universe, and thus µ/T ⌧ 1, for fermion species we have

nX � nX̄ =
gT 3

6

µX

T
+ O �

(µX/T )3
�

, (2.78)

where X = B, L. From tab. 2.1 we have

µL = 3 (2µlL + µlR) , (2.79)

µB = 3 (2µQL + µuR + µdR) , (2.80)

so that

nB � nB̄ =
gT 2

2
(2µQL + µuR + µdR) , nL � nL̄ =

gT 2

2
(2µlL + µlR) . (2.81)

Considering all the processes that are e�cient in the Early Universe, we can find relations

between these chemical potentials and try to reduce them to fewer independent ones.

Not only SU(2)L gauge interactions are in equilibrium in the Early Universe, but also

Higgs Yukawa interactions. Without considering, for the time being, the RH neutrinos

Yukawa couplings, we have a set of equations

8

>

>

>

<

>

>

>

:

µuR � µQL = µ�

µQL � µdR = µ�

µlL � µlR = µ�.

(2.82)

To these equations, we add the requirement that the total hypercharge of the plasma in

the Early Universe vanishes. In terms of chemical potentials we have

µQL + 2µuR � µdR � µlL � µlR +
2

3
µ� = 0. (2.83)
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We can now notice that in the SM the lepton and baryon currents Jµ
L and Jµ

B are

conserved only at the classical level. Taking into account quantum corrections, these

currents are no longer conserved, which ultimately leads to non-perturbative processes,

called sphalerons, that can e�ciently violate both the baryon and the lepton numbers

in the Early Universe plasma. We shall now briefly describe how these processes work.

2.2.1.1 Electroweak sphalerons

The pure SM lagrangian is invariant under global U(1) transformations of the lepton

and the quark fields respectively. Through the Noether theorem, this invariance leads

to the conservation of the lepton and the baryon currents Jµ
L and Jµ

B, so that the lepton

and baryon numbers are conserved too. However, this only holds at the classical level.

When quantum corrections are considered, these currents are no longer conserved in the

SM due to the chiral anomaly [77, 78] and their divergences are non-vanishing

@µJµ
L = @µJµ

B =
Nf

32⇡2

⇣

�g2FL
a
µ⌫F̃

aµ⌫
L + g02FY µ⌫F̃

µ⌫
Y

⌘

, (2.84)

where FL
a
µ⌫ and FY µ⌫ are the field strengths of SU(2)L and U(1)Y respectively. The

tilde denotes the dual tensor, i.e. F̃ aµ⌫
L = 1/2 "µ⌫⇢�FL

a
⇢�, g and g0 are the gauge couplings

and Nf is the number of fermion generations. Clearly eq. (2.84) implies that both the

baryon and the lepton number are not conserved anymore at the quantum level. It is

very important to notice that we still have

@µ
�

Jµ
B � Jµ

L

�

= 0, (2.85)

at any order in the quantum theory. Therefore, in the SM the quantum number B � L

is exactly conserved. It is interesting to understand how B, L and in general B + L are

violated within the SM.

It is possible to re-write eq. (2.84) as

@µJµ
L = @µJµ

B = Nf @µKµ, (2.86)

where we have introduced the new current

Kµ = � g2

32⇡2
"µ⌫⇢�W a

⌫

⇣

@⇢W
a
� +

g

3
"abcW b

⇢W c
�

⌘

+
g02

32⇡2
"µ⌫⇢�B⌫FY ⇢�, (2.87)

where W a
µ and Bµ are the gauge fields of SU(2)L and U(1)Y respectively. In order to

gain information on the variation of the baryon and lepton numbers, the divergences

must be integrated on space and time. However, the integral of the divergence of Kµ

can be transformed into an integral over a hypersurface at infinity, by Gauss’ theorem.

It can be shown that for vanishing field strength at infinity, the abelian part vanishes,
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while the non-abelian term gives

Z

d4x @µKµ =
g3

96⇡2

Z

⌃
d�µ"µ⌫⇢�"abcW a⌫W b⇢W c�. (2.88)

Choosing as integration surface ⌃ a cylinder with top and bottom at definite time

coordinates t1 and t0 respectively, and exploiting the gauge invariance of the current

in order to pick the temporal gauge W a
0 = 0, it is possible to show that the integral

over the side surface of the cylinder vanishes and the only contribution is given by the

integration over the top and bottom surfaces. We have

Z

d4x @µKµ =
g3

96⇡2

Z

d3x "ijk"
abcW aiW bjW ck

�

�

�

�

t1

t0

. (2.89)

We can define

NCS(t) ⌘ g3

96⇡2

Z

d3x "ijk"
abcW aiW bjW ck

�

�

�

�

t

, (2.90)

which is the so-called Chern-Simons number, so that in the end we have

�B = �L = Nf [NCS(t1)�NCS(t0)] ⌘ Nf�NCS . (2.91)

The variation in the baryon and lepton number is related to the di↵erence between the

Chern-Simons number assigned to the field configurations at t1 and t0. The nonabelian

group SU(2)L implies a non-trivial structure of the gauge field vacuum configurations,

which can then di↵er by �NCS = 0, ±1, ±2, . . . . These vacuum states are separated

by a potential barrier. We can therefore say that in the SM, transitions between gauge

field configurations with di↵erent Chern-Simons number can in principle take place [79],

thus implying a non-conservation of the baryon and lepton numbers.

It must be noticed that in perturbation theory, the field fluctuations are small, and

oscillate around a well defined vacuum state, without falling into a di↵erent one. For

this reason, in perturbation theory we always have �NCS = 0 and baryon and lepton

numbers are conserved at all orders. However, large non-perturbative field configura-

tions that induce the transition between two di↵erent topological vacua can exist. The

dominant one gives �NCS = ±1 and therefore a violation of the baryon and lepton

number of three units. This can be described by the e↵ective 12-field operator

O =
3
Y

i=1

(QLiQLiQLilLi). (2.92)

At zero temperature, these transitions can take place via quantum tunnelling through

the potential barrier and we can expect their rate to be exponentially suppressed. These

transitions are induced by the anti-instanton [80] and the transition rate can be estimated

[79, 81] to be

�inst ⇠ exp

✓

� 4⇡

↵w

◆

' 10�164, (2.93)
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where ↵w = 4⇡/g2. It is clear that the instanton processes are negligible in the SM at

zero temperature and so are baryon and lepton number violations.

The situation is di↵erent if we consider the thermal e↵ects due to the coupling to a

thermal bath, as in the Early Universe. In this case, transitions between di↵erent vacua

can happen by thermal fluctuations over the potential barrier [82], rather than by tun-

nelling through it. Two di↵erent vacua are separated by a saddle point in the energy

which corresponds to a field configuration called sphalerons. These have a Chern-Simons

number equal to ±n/2 and an energy given by

Es(T ) ' 8⇡

g
v(T ), (2.94)

where v(T ) is the VEV of the Higgs field at temperature T . At low temperatures,

T < TEW ' 100 GeV, the SU(2)L⇥U(1)Y symmetry is broken and v(T ) 6= 0. Therefore

the sphalerons configurations have a finite energy and the transition rate from one

vacuum to the other is Boltzmann suppressed. It is possible to compute the rate per

unit volume in the broken phase [18, 83, 84]

�s

V
' m7

W

↵3
wT 3

exp

✓

�Es(T )

T

◆

, (2.95)

where mW is the mass of the W boson. This rate is clearly small. However, for high

temperatures T > TEW, the electroweak symmetry is restored, the Higgs VEV is zero

and the transitions are no longer suppressed by the Boltzmann factor. From eq. (2.95),

taking v(T ) = 0 and employing the W -boson thermal mass mW ⇠ g2T we could expect

that the transition rate per unit volume in the symmetric phase is

�s

V
' ↵4

wT 4. (2.96)

However, accounting for thermal e↵ects, the transition rate per unit volume in the

symmetric phase is more precisely given by [85, 86]

�s

V
' ↵5

w log
�

↵�1
w

�

T 4. (2.97)

It is then possible to have a rather high rate and thus e�cient B and L violating processes

in the Early Universe. Comparing this rate to the Hubble parameter we find that the

sphaleron processes are in equilibrium within the temperature range

100 GeV < T . 1012 GeV. (2.98)

These are indeed the temperatures relevant for leptogenesis, as we shall see in the next

sections. Therefore, we can consider the sphaleron processes to be in equilibrium at the

temperatures we consider.
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E�cient sphaleron processes act in a way to minimise the free energy of the plasma in

the Early Universe [87]. Indeed, considering the LH quarks and leptons, the free energy

is given by

F (T ) / 6 T 2(3µ2
QL

+ µ2
lL

). (2.99)

Since sphalerons preserve B�L, the variation in the baryon number must be accompa-

nied by a similar variation in the lepton number, that is dµlL = dµQL . For this reason,

we can minimise the free energy as

dF (T )

dµlL

/ 12 T 2(3µQL + µlL) = 0, (2.100)

which gives

3µQL + µlL = 0. (2.101)

Clearly, we can obtain the same relation by considering the interactions represented by

the operator in eq. (2.92).

Using eqs. (2.82), (2.83) and (2.101) we can rewrite eq. (2.81) in terms of µlL as

nB � nB̄ = �2

3
gT 2µlL , nL � nL̄ =

51

42
gT 2µlL . (2.102)

This clearly shows that in the Early Universe a baryon asymmetry is strictly linked to

a lepton asymmetry, through the chemical potential µlL
2. Therefore, the generation of

a lepton asymmetry implies the production of a baryon asymmetry at the same time.

These relations show that the idea of leptogenesis is indeed viable: the production of a

lepton asymmetry is accompanied in the Early Universe by the generation of a baryon

asymmetry.

However, since both B and L are violated by SM processes, while B � L is not, we can

focus on this quantum number in order to single out the e↵ective contribution of the

New Physics through leptogenesis. We have

nB�L ⌘ nB � nB̄ � (nL � nL̄) = �79

42
gT 2µlL . (2.103)

Hence

nB � nB̄ =
28

79
nB�L, (2.104)

nL � nL̄ = �51

79
nB�L. (2.105)

Since all the SM processes we have analysed do actively modify both the lepton and

the baryon asymmetry, it is more convenient to focus on the B � L asymmetry, rather

than on the lepton one. Indeed, B � L is preserved by the SM and eventually broken

exclusively by the leptogenesis setup. Therefore, by studying the B � L asymmetry we

2The choice of µlL as independent variable will turn out particularly useful in the following sections.
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are allowed to concentrate only on the relevant leptogenesis processes, leaving aside the

SM ones, which will then imply the generation of a baryon asymmetry as in eq. (2.104).

We can conclude by observing that the violation of L introduced by the Majorana

nature of the heavy neutrinos implies a violation of B � L and the generation of a

baryon asymmetry. Therefore, in our setup the first of Sakharov’s conditions is satisfied

by the violation of the lepton number which implies a final baryon asymmetry through

the net of SM processes in equilibrium in the Early Universe.

2.2.2 Violation of C and CP

The C and CP symmetry violation in our model is provided by decays and inverse-decays

of the heavy neutrinos into leptons and anti-leptons. We can estimate this asymmetry

through the so called flavoured CP -asymmetry parameters

"i↵ ⌘ ��i↵ � �̄i↵

�i + �̄i
, (2.106)

where we have defined the flavoured decay rates into both components of the SU(2)L

doublets

�i↵ ⌘ �
⇣

Ni ! l↵ + �̃†
⌘

, (2.107)

�̄i↵ ⌘ �
⇣

Ni ! l↵ + �̃
⌘

, (2.108)

and the unflavoured decay rates

�i ⌘
X

↵

�i↵, �̄i ⌘
X

↵

�̄i↵. (2.109)

When no dependence in the rates is specified, they are considered as calculated at zero

temperature.

The CP asymmetries vanish when the decay rates are computed at tree level. However,

taking into account loop corrections they can get a finite value. Indeed, considering the

decay process up to one loop, we have a matrix element

Mi↵ = M0
i↵ + M1

i↵ = y0A
0
i↵ + y1A

1
i↵, (2.110)

where we have distinguished the coupling parts y0, y1 and the amplitudes A0, A1 at tree

level and 1-loop respectively. For the CP conjugate process we have

Mi↵ = y⇤0A
0
i↵ + y⇤1A

1
i↵, (2.111)
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1

Figure 2.1: Tree-level and 1-loop diagram for the decay Ni ! l↵�̃†. Majorana
neutrinos are depicted with a solid line without arrow, while the arrow on the
Higgs dotted line represents the hypercharge flow.

therefore from eq. (2.106) we have

"i↵ = �
R

d⇧l,� |Mi↵|2 �
�

�Mi↵

�

�

2

P

�

R

d⇧l,�

✓

�

�

�

M0
i�

�

�

�

2
+
�

�

�

M0
i�

�

�

�

2
◆

= �
R

d⇧l,�

�

�y0A0
i↵ + y1A1

i↵

�

�

2 �
�

�

�

y⇤0A
0
i↵ + y⇤1A

1
i↵

�

�

�

2

P

�

R

d⇧l,�

✓

�

�

�

y0A0
i�

�

�

�

2
+
�

�

�

y⇤0A
0
i�

�

�

�

2
◆ , (2.112)

where

d⇧l,� ⌘ (2⇡)4�4(pi � pf )
d3p�

(2⇡)32E�

d3pl
(2⇡)32El

, (2.113)

is the phase-space integration measure.

Since
�

�Ak
�

�

2
=
�

�

�

Ak
�

�

�

2
, we can write

"i↵ = �2 Im{y0y⇤1}
R

d⇧l,� Im
�

A0
i↵A1⇤

i↵

 

P

� |y0|2
R

d⇧l,�

�

�

�

A0
i�

�

�

�

2 . (2.114)

It is then clear that the CP asymmetry depends on the imaginary part of the couplings

and on the interference between the tree-level and the 1-loop decay amplitudes, whose

relevant Feynman diagrams are shown in fig. 2.1. It is easy to verify that in order to

have non-vanishing CP asymmetry, we must have at least two heavy neutrinos. The

imaginary part of A0
i↵A1⇤

i↵ can be computed with cutting rules [88, 89], by cutting the

1-loop diagrams and putting the intermediate particles on shell. For hierarchical heavy

neutrino masses, M1 < M2 < M3, the flavoured CP asymmetries are then given by [90]

"i↵ =
3

16⇡ (Y †Y )ii

X

j 6=i

2

4Im

⇢

Y ⇤
↵iY↵j

⇣

Y †Y
⌘

ij

� ⇠
⇣

M2
j /M2

i

⌘

Mj/Mi

+
2

3
⇣

M2
j /M2

i � 1
⌘ Im

⇢

Y ⇤
↵iY↵j

⇣

Y †Y
⌘

ji

�

3

5 , (2.115)
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where

⇠(x) =
2

3
x



(1 + x) ln

✓

1 + x

x

◆

� 2� x

1� x

�

. (2.116)

As already mentioned, purely real Yukawa couplings Y↵i will result in vanishing CP

asymmetries.

Using the Dirac neutrino mass matrix mD = vY , it will be useful to define here

emi ⌘

⇣

m†
DmD

⌘

ii

Mi
, (2.117)

and rewrite the CP asymmetries as

"i↵ = "(Mi)
X

j 6=i

(

I↵
ij ⇠

 

M2
j

M2
i

!

+ J ↵
ij

2

3(1�M2
i /M2

j )

)

, (2.118)

where

"(Mi) ⌘ 3

16⇡

Mi matm

v2
, (2.119)

and

I↵
ij ⌘

Im
n

m⇤
D↵imD↵j(m

†
DmD)ij

o

Mi Mj emi matm
, (2.120)

J ↵
ij ⌘

Im
n

m⇤
D↵imD↵j(m

†
DmD)ji

o

Mi Mj emi matm

Mi

Mj
. (2.121)

Without distinguishing the flavour of the final lepton doublet, i.e. considering the decay

of heavy neutrino Ni into a coherent superposition |lii of flavour eigenstates, it is possible

to define the unflavoured CP asymmetries

"i ⌘
X

↵

"i↵ = "(Mi)
X

j 6=i

Im
n

(m†
DmD)2ij

o

Mi Mj emi matm
⇠(M2

j /M2
i ). (2.122)

We can exploit the orthogonal matrix parameterisation and rewrite eq. (2.118) as

"i↵ =
3

16⇡v2 emi

⇥
X

j 6=i

Mj

2

4Im

( 

X

k

m1/2
k U⇤

↵k⌦
⇤
ki

! 

X

l

m1/2
l U↵l⌦li

! 

X

n

mn⌦⇤
ni⌦nj

!)

⇠
⇣

M2
j /M2

i

⌘

Mj/Mi

+
2

3
⇣

M2
j /M2

i � 1
⌘ Im

( 

X

k

m1/2
k U⇤

↵k⌦
⇤
ki

! 

X

l

m1/2
l U↵l⌦li

! 

X

n

mn⌦⇤
nj⌦ni

!)

3

5 ,

(2.123)
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and

emi =
X

j

mj |⌦ji|2 . (2.124)

It is possible to have non-vanishing flavour CP asymmetry also if the orthogonal matrix

⌦ is purely real3. However, in our discussion we will not consider these special cases.

We can also notice that, in order to have a sizeable CP asymmetry for heavy neutrino

Ni, at least one heavier neutrino is needed, so to avoid suppression.

It is worth underlining that in the present work we shall always deal with a hierarchical

neutrino spectrum, therefore eq. (2.118) will always be the correct expression for the

CP asymmetries. In case of degenerate heavy neutrino spectrum, this expression is not

valid anymore and it is possible to have sizeable enhancements of the CP asymmetry.

Leptogenesis scenarios relying on this e↵ect are said to realise resonant leptogenesis [91].

2.2.3 Departure from equilibrium

It is important to verify that in this scenario also the last Sakharov’s condition is indeed

realised. We have seen that, in our seesaw model, the process that violates L, C and

CP , and therefore is eligible for the production of a final asymmetry, is the decay of the

heavy neutrinos into leptons and Higgs doublets. Therefore we must investigate if it is

possible that these decays occur out of thermal equilibrium. If equilibrium is enforced,

we have

N  ! l + �, (2.125)

where we have generically indicated the heavy neutrinos, the leptons and the Higgs

fields. This means that both the decay and the inverse decay processes take place in

equilibrium and we have an additional relation on the relevant chemical potentials

µNR � µlL � µ� = 0. (2.126)

Considering the full set of relations given by eqs. (2.82), (2.83), (2.101) and (2.126), we

have that the only solution is given by the trivial one, i.e. all the chemical potentials

vanish. Therefore, we also have µlL = 0 which, through eq. (2.104), implies zero baryon

asymmetry. If at least one between the decay and the inverse-decay reactions is not in

equilibrium, then we have departure from thermal equilibrium, eq. (2.126) does not hold

anymore and a non-vanishing µlL can give a sizeable final baryon asymmetry. We must

therefore study if and when decays and inverse-decays can take place out of thermal

equilibrium.

To understand if this is possible, we can calculate the decay and inverse decay rates and

compare them with the Hubble expansion rate H(T ). If the rates are larger than the

Hubble parameter, then the reaction is in thermal equilibrium [92]. In the temperature

3Except for permutations of the identity, as we shall see later on.
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range of our interest the radiation-dominated expression of the Hubble rate can be used

H(T ) =
2⇡3/2

3
p

5
g1/2⇤

T 2

MPl
' 1.66 g1/2⇤

T 2

MPl
. (2.127)

To capture the general picture, we shall consider the total decay rate

�D,tot
i ⌘

X

↵

(�i↵ + �i↵) (2.128)

and the total inverse decay rate

�ID,tot
i ⌘

X

↵

(�ID
i↵ + �

ID
i↵ ). (2.129)

We are interested in studying the ratios

�D,tot
i (T )

H(T )
,

�ID,tot
i (T )

H(T )
, (2.130)

where the temperature-dependent decay and inverse decay rates appear. The reactions

are in equilibrium when

�D,tot
i (T )

H(T )
> 2,

�ID,tot
i (T )

H(T )
> 2, (2.131)

where we have the factor 2 since in the definitions of �i↵ and �ID
i↵ we consider the decay

in the two components of the SU(2) doublets, cf. eq. (2.107).

Taking into account the proper dilation factor, we have [93]

�D,tot
i (T ) = �D,tot

i

K1(T )

K2(T )
, (2.132)

where Ki(T ) are modified Bessel functions and at tree-level

�D,tot
i ⌘

X

↵

(�i↵ + �i↵) =
X

↵

|mDi↵|2 Mi

8⇡v2

=
emi M2

i

8⇡v2
. (2.133)

We can also define the so-called (unflavoured) decay parameters

Ki ⌘ �D,tot
i

H(T = Mi)
=

�i + �i

H(T = Mi)
, (2.134)

so that, using eqs. (2.127) and (2.133), the ratio in eq. (2.130) can be written as

�D,tot
i (T )

H(T )
=

�D,tot
i

H(T = Mi)

M2
i

T 2

K1(T )

K2(T )
= Ki

M2
i

T 2

K1(T )

K2(T )
. (2.135)
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(a) (b)

Figure 2.2: Behaviour of �D,tot
i (z)/H(z) (red line) and �ID,tot

i (z)/H(z) (blue
line) for two di↵erent values of Ki: Ki = 100 left panel and Ki = 10�2 right
panel. zD denotes the value of z = Mi/T such that �D,tot

i (zD)/H(zD) = 2. In

(a), z1,2 are such that �ID,tot
i (z1,2)/H(z1,2) = 2 and we have z1 ' zD.

It will turn useful to introduce here the variable z ⌘Mi/T so that we have

�D,tot
i (z)

H(z)
= Ki z

2K1(z)

K2(z)
. (2.136)

This way, by studying the behaviour of �i(z)/H(z), we are able to understand when

decays are in equilibrium or out of equilibrium. We can also introduce further useful

relations by defining the equilibrium neutrino mass

m⇤ ⌘ 8⇡v2

M2
i

H(T = Mi) =
16⇡5/2pg⇤

3
p

5

v2

MPl
' 1.08⇥ 10�3eV, (2.137)

so that

Ki =
emi

m⇤
. (2.138)

The total inverse decay rate can be obtained at equilibrium from the decay rate

neq
l �ID,tot

i = neq
Ni

�D,tot
i , (2.139)

where neq
l and neq

Ni
are the equilibrium number densities of lepton doublets and heavy

neutrinos. This way we obtain

�ID,tot
i (z)

H(z)
=

1

2
KiK1(z)z4, (2.140)

and it is possible to study the behaviour of �ID,tot
i (z)/H(z) to see if the inverse decays

drop out of thermal equilibrium. Eqs. (2.136) and (2.140) are plotted in fig. 2.2 for two

di↵erent values of Ki: Ki = 100 in fig. 2.2(a) and Ki = 10�2 in fig. 2.2(b).
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Studying the red curve in fig. 2.2, we can notice that we always have a value zD such

that
�D,tot
i (zD)

H(zD)
= 2, (2.141)

so that for z � zD we can say that the decay reaction is in equilibrium.

Studying the blue curve, we can notice two di↵erent behaviours in fig. 2.2(a) and 2.2(b),

depending on the value of Ki:

• for Ki � 1 we can find two values z1, z2 at which we have

�ID,tot
i (z1,2)

H(z1,2)
= 2 (2.142)

and therefore a window z1  z  z2 in which inverse decays reactions are in

equilibrium,

• for Ki ⌧ 1 the blue curve never reaches 2, therefore in this case inverse decays are

never in equilibrium.

These two situations take the names of strong washout and weak washout regime respec-

tively.

• In the strong washout regime we have a full departure from equilibrium for z < zD,

when both decays and inverse decays are out of equilibrium. In this situation the

third Sakharov’s condition is satisfied and an asymmetry can be generated. For

zD < z1  z  z2 both reactions are in equilibrium and proceed e�ciently to

erase the asymmetry produced before. Therefore, if thermal equilibrium were

maintained, no asymmetry would survive eventually. However, for z > z2 inverse

decays drop out of equilibrium, therefore Ni decays take place out of equilibrium,

satisfying again the third Sakharov’s condition. For this reason, a net asymmetry

can be finally produced.

• In the weak washout regime inverse decays are never in equilibrium, therefore

the third Sakharov’s condition is satisfied and an asymmetry can be produced.

However, by missing an equilibrium window like that in the strong washout regime,

the final asymmetry is sensitive to the initial conditions.

With this analysis of decay and inverse decay rates we have shown that in the framework

of leptogenesis the heavy neutrino decays can take place out of thermal equilibrium, thus

satisfying also the third Sakharov’s condition. In the following section we shall analyse

in detail how the asymmetry is actually produced.
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2.2.4 Vanilla leptogenesis

Once established that all three Sakharov’s conditions can be satisfied within our model,

we can study in detail how the asymmetry is generated by the leptogenesis mechanism.

In order to point out the key aspects and the fundamentals of the asymmetry produc-

tion process, it can be more convenient to study the simplest version of leptogenesis,

often referred to as vanilla leptogenesis. In this framework we shall make the following

assumptions.

1. We shall assume a hierarchical heavy neutrino spectrum M1 < M2 < M3.

2. We shall assume that the dominant contribution to the final asymmetry comes

from the lightest, N1, while those of N2 and N3 are negligible. For this reason,

this is called N1-dominated leptogenesis.

3. We shall assume that the leptons originated from the decay of N1 are produced

in a coherent superposition of flavour eigenstates. We are therefore neglecting the

e↵ects of lepton flavour, hence the name of unflavoured N1-dominated leptogenesis

[75, 76, 94]. We shall study flavour e↵ects in the following chapter.

4. We are considering only heavy neutrinos decays and inverse decays, while neglect-

ing the scattering processes predicted by our lagrangian. These violate the lepton

number by 1 or 2 units and would in principle concur to the evolution of the asym-

metry. We shall comment on their e↵ect in the following section and neglect them

in the rest of this work.

5. We shall also neglect other corrective e↵ects such as thermal corrections [95], which

in general have a small impact, quantum corrections [96–98], and spectator pro-

cesses [99, 100]. We will return on the latter e↵ect later in the following chapters

when commenting on flavour coupling.

As a matter of convention, we can study the evolution of the number density of a species

(or asymmetry) X normalised to a comoving volume containing one heavy neutrino in

ultra relativistic equilibrium. Therefore we shall use

NX ⌘ nX(z)

neq
N1

(z ⌧ 1)
, with z ⌘ M1

T
, (2.143)

where nX is the number density of X. This can be easily linked to the abundance, or

yield YX ⌘ nX/s as

NX(z) =
4

3

nX(z)

neq
� (z)

=
4

135

⇡4gs⇤(z)

⇣(3)

nX(z)

s(z)
' 2.40 gs⇤(z)YX(z), (2.144)
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where gs⇤(T ) ⌘ P

b gb(Tb/T )3 + 7/8
P

f gf (Tf/T )3. Under the assumption (2), we shall

focus on the evolution of the abundance of N1, which is ruled by the Boltzmann equation

dNN1

dz
= �D1(z)

⇣

NN1(z)�N eq
N1

(z)
⌘

, (2.145)

where only decays and inverse decays are taken into account in the decay factor D1(z),

following assumption (4). The decay factor is given by

D1(z) ⌘ �D,tot
1 (z)

z H(z)
= K1 z

K1(z)

K1(z)
, (2.146)

where we have used the result in eq. (2.136). The variation in the abundance of N1 is

then determined by how far its distribution is from the equilibrium one.

By what was shown in subsection 2.2.1, it is more convenient to quantify the asymmetry

with the B � L term, which is genuinely due to leptogenesis. The B � L asymmetry

will then receive a contribution from the decays and inverse-decays of N1 that takes into

account the CP asymmetry factor. On top of this, the asymmetry in general will tend

to be erased through inverse decay processes that will statistically take place depending

on the size of the asymmetry itself. This second contribution is called washout. Putting

these two terms together we have the following Boltzmann equation for the evolution of

the B � L asymmetry

dN lep
B�L

dz
= "1D1(z)

⇣

NN1(z)�N eq
N1

(z)
⌘

�W ID
1 (z)N lep

B�L(z). (2.147)

Here the washout factor (due to inverse decays into N1) is defined as

W ID
1 (z) ⌘ 1

2

�ID,tot
1 (z)

z H(z)
=

1

4
K1z

3K1(z), (2.148)

where we used the result in eq. (2.140). Eq. (2.147) can be integrated giving

N lep
B�L(z) = Np,i

B�L exp



�
Z z

0
dz0W ID

1 (z0)

�

+ "1(z), (2.149)

where Np,i
B�L is the initial asymmetry and we have defined the e�ciency factor

(z) ⌘ �
Z z

0
dz0

dNN1

dz0
exp



�
Z z

z0
dz00 W ID

1 (z00)

�

. (2.150)

In eq. (2.149), the dependence on the initial asymmetry Np,i
B�L is evident. Here we shall

consider a vanishing initial asymmetry Np,i
B�L = 0, thus eliminating the first term in the

equation and leaving

N lep
B�L(z) = "1(z). (2.151)
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In the strong washout regime the contribution of any initial asymmetry is anyways erased

by the intense washout due to K1 � 1. We shall here concentrate on this case, giving

only some comments on the expressions valid in the weak washout regime.

Assuming vanishing initial abundance of the heavy neutrinos implies that N1 is thermally

produced by inverse decays, which try to reach the equilibrium distribution. Assuming

the N1 distribution reaches the equilibrium distribution

N eq
N1

(z) =
1

2
z2K2(z) (2.152)

at zeq, for z < zeq the distribution of N1 is negligible compared to the equilibrium one,

so that we can rewrite eq. (2.145) as

dNN1

dz
' D1(z)N eq

N1
(z), z < zeq. (2.153)

However, given the detailed balance condition N eq
l �ID

1 = N eq
N1

�1, and N eq
l = 1, we also

have
dNN1

dz
' 2 W ID

1 (z), z < zeq. (2.154)

Therefore we obtain

�(z) ⌘ (z < zeq) = �2

Z z

0
dz0 W ID

1 (z0) exp



�
Z z

z0
dz00 W ID

1 (z00)

�

' �2

✓

1� exp



� 1

12
K1z

3

�◆

. (2.155)

Integrating eq. (2.153), we get

NN1(z < zeq) ' K1

6
z3. (2.156)

For z ! +1 this gives [94]

�
f (K1) ⌘ �(z ! +1) ' �2e�

1
2N(K1)

✓

exp



1

2
N̄(K1)

�

� 1

◆

, (2.157)

where

N(K1) ⌘ 3⇡

4
K1, N̄(K1) ⌘ N(K1)

⇣

1 +
p

N(K1)
⌘2 . (2.158)

This expression for �
f (K1) is also valid in the weak washout regime. From eq. (2.157)

we can see that the strong washout causes an exponential suppression of the asymmetry

produced, for z < zeq, by the inverse decay processes that build up the N1 abundance.

This implies that around zeq the asymmetry is quickly erased by the strong washout.

The final asymmetry must then be produced in the following stage, for z > zeq.
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For z > zeq the actual distribution NN1(z) cannot be neglected anymore. We can study

the deviation from the equilibrium distribution by defining

�(z) ⌘ NN1(z)�N eq
N1

(z), (2.159)

and rewriting eq. (2.145) as

�(z) = � 1

D1(z)

dNN1

dz
. (2.160)

Having assumed strong washout, i.e. K1 � 1, we can use that D1(z) / K1 and solve

eq. (2.145) by perturbatively expanding in 1/K1, so that [94]

�(z) = � 1

D1(z)

dN eq
N1

(z)

dz
+ O

✓

1

K2
1

◆

. (2.161)

Using eq. (2.152), (2.148) and the properties of modified Bessel functions, we obtain

�(z) =
1

D1(z)

2

z K1
W ID

1 . (2.162)

This can be used in the derivation of the e�ciency factor for z > zeq

+(z) ⌘ (z > zeq) =

Z z

zeq

dz0D1(z
0)�(z0) exp



�
Z z

z0
dz00 W ID

1 (z00)

�

=
2

K1

Z z

zeq

dz0
W ID

1 (z0)

z0
exp



�
Z z

z0
dz00 W ID

1 (z00)

�

. (2.163)

This integral can be evaluated by asymptotically expanding around the minimum of the

exponent, where the integrand gives the largest contribution. For z ! +1 this gives

[94]

+
f (K1) ⌘ +(z ! +1) ' 2

zL(K1) K1

✓

1� exp



�1

2
zL(K1)N̄(K1)

�◆

, (2.164)

valid also in the weak washout regime, where zL is such that the exponent in eq. (2.163)

has a stationary point and is given by [101]

zL(K1) ' 2 + 4 K0.13
1 exp

✓

�2.5

K1

◆

. (2.165)

The fact that the e�ciency factor receives its largest contribution around this value

means that the asymmetry is mostly produced around zL. Moreover, in the strong

washout regime we also have zL ' z2. For these reasons, in the strong washout regime

we can take zL, and the related temperature TL, as a good estimate for the scale at

which leptogenesis takes place.

We can also notice that +
f and �

f have di↵erent sign, which implies that also the

asymmetries produced for z < zeq and for z > zeq have di↵erent sign as well. We

can therefore say that around zeq the asymmetry previously produced is exponentially
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Figure 2.3: Evolution of the N1 and |NB�L| abundances, in red and blue re-
spectively. The dashed red line marks the N1 equilibrium distribution. zD is
defined as in eq. (2.141) and z1,2 as in eq. (2.142). Here we have K1 = 100

suppressed and on top of it a new asymmetry with di↵erent sign is produced.

The final asymmetry N lep,f
B�L ⌘ N lep

B�L(z ! +1) is then given by

N lep,f
B�L = "1f (K1), (2.166)

where

f (K1) ⌘ �
f (K1) + +

f (K1). (2.167)

If we assume thermal initial abundance for N1, the final e�ciency factor is given by

[94, 102]

th
f '

2

K1 zL(K1)



1� exp

✓

�1

2
K1 zL(K1)

◆�

. (2.168)

It must be noticed that in the strong washout regime the e�ciency factors for both

vanishing and initial N1 abundance are given by the same asymptotic expression [103–

105]

f (K1 � 1) ' 0.5

K1.2
1

, (2.169)

thus confirming that the strong washout regime is insensitive to the initial conditions.

The evolution of N1 and B � L abundances in the strong washout case is shown in

fig. 2.3. We can notice that for z ⌧ 1 N1’s abundance grows thanks to inverse decays

that produce a certain amount of asymmetry N lep
B�L. At zD, as in eq. (2.141), the decay

processes enter equilibrium and at zeq N1’s distribution reaches the equilibrium one.

Around zeq both decays and inverse decays are in equilibrium and the asymmetry gener-

ated so far is quickly erased. Decays will then give a new contribution to the asymmetry,

with di↵erent sign. This would vanish if equilibrium were maintained, however at z2, as

in eq. (2.142), inverse decays drop out of thermal equilibrium, while the heavy neutrino
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abundance reaches negligible values. Therefore, around z2 ' zL the asymmetry gets

frozen to its final amount N lep,f
B�L.

In order to make a comparison with the experimental results, it is necessary to com-

pute the baryon asymmetry that can be obtained from the B � L one produced by

leptogenesis. The conversion factor has already been obtained in eq. (2.104), where SM

sphalerons and all the processes in equilibrium in the early Universe have been consid-

ered. However, as pointed out in the introduction, the experimental evidence we refer to

is provided in terms of the baryon-to-photon ratio measured through the CMB, ⌘CMB
B .

In order to compare it with the final result of leptogenesis, we must take into account

the thermal history of the Universe between the leptogenesis scale ⇠ TL ⇠ 1010 GeV and

the recombination era T0 ⇠ 0.3 eV. Following the standard picture, during the Universe

evolution the baryon-to-photon ratio was diluted by photon production due to the tran-

sition to the non-relativistic regime of almost all the particles composing the thermal

bath. Therefore, we must obtain the baryon-to-photon ratio produced by leptogene-

sis and evolve it down to the decoupling temperature, ⌘lepB (T0). Considering that after

the leptogenesis process, the asymmetry remains stable until present, the asymmetry

number density nB�L evolves in a similar way as nB in eq. (1.12)

nlep
B�L(T0) =

s(T0)

s(TL)
nlep
B�L(TL), (2.170)

Considering the baryon-to-photon ratio, its evolution is similar to eq. (1.13)

⌘lepB =
nB � nB̄

n�
(T0) =

28

79

nlep
B�L(T0)

n�(T0)
=

28

79

s(T0)

s(TL)

n�(TL)

n�(T0)

nlep
B�L(TL)

n�(TL)
, (2.171)

where we have used the conversion factor in eq. (2.104). In terms of the NB�L quantity

we have

⌘lepB =
28

79

gs⇤(T0)

gs⇤(TL)

nlep
B�L(TL)

n�(TL)
=

28

79

gs⇤(T0)

gs⇤(TL)

N lep
B�L(TL)

N�(TL)

=
28

79

3

4

gs⇤(T0)

gs⇤(TL)
N lep

B�L(TL)

⌘ d N lep,f
B�L, (2.172)

where we have used that N� = 4/3. In the evolution from the high leptogenesis scale

TL down to the recombination era, the count of relativistic degrees of freedom changes

sensibly. Indeed, we have gs⇤(TL) ' 106.75, while gs⇤(T0) ' 3.91, therefore

d ' 0.96⇥ 10�2. (2.173)

We are interested in models which are able to produce a final asymmetry compatible

with the experimental result ⌘CMB
B , eq. (1.11). In our analysis we shall impose the loose
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condition

⌘lepB � ⌘CMB
B . (2.174)

Models that are able to satisfy it are said to realised successful leptogenesis.

2.2.5 Bounds on vanilla leptogenesis

The simplest leptogenesis scenario we have just discussed is characterised by a lower

bound on the mass of the heavy neutrino N1. We shall now analyse the origin of this

important constraint.

Having assumed a hierarchical heavy neutrino spectrum M1 ⌧ M2 ⌧ M3, we can

further simplify the expression of the unflavoured CP asymmetry, eq. (2.122), given that

⇠(x) = 1 +
5

9x
+

13

8x2
+ O(x�3), x! +1. (2.175)

Taking4

⇠

✓

M2
2

M2
1

◆

' ⇠

✓

M2
3

M2
1

◆

' 1, (2.176)

we can rewrite eq. (2.106) for N1 as [102, 106]

"1 ' 3 M1

16⇡v2 m̃1

X

j

m2
j Im

�

⌦2
j1

 

. (2.177)

It can be immediately noticed that in the degenerate limit, m1 ' m2 ' m3 ⌘ m

we have "1 = 0 since, given the orthogonality condition
P

m ⌦lm⌦km = �lk we get

Im
�

⌦2
11 + ⌦2

21 + ⌦2
31

 

= 0. By maximising eq. (2.177) we get an upper bound on the

unflavoured CP asymmetry [102, 107]

|"1| . "max
1 ⌘ 3 M1

16⇡v2
(m3 �m1). (2.178)

This gives the maximum value of the final baryon-to-photon ratio

⌘lep,max
B = d"max

1 f = d
3 M1

16⇡v2
(m3 �m1) f � ⌘CMB

B , (2.179)

where in the last step we imposed the successful leptogenesis condition. This clearly

translates into a condition on M1

M1 � 16⇡v2

3d(m3 �m1)

⌘CMB
B

f
. (2.180)

4A detailed study that takes into account the di↵erence between ⇠(M2
2 /M

2
1 ) and ⇠(M2

3 /M
2
1 ) can be

found in [102].
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Therefore we can say that in the vanilla leptogenesis scenario the mass of the lightest

heavy neutrino, producing the asymmetry, is bounded from below [107, 108]. It is possi-

ble to show that for the experimental value of matm and vanishing initial N1 abundance

the bound is given by [94, 102, 108]

M1 & 3⇥ 109 GeV. (2.181)

In this scenario the successful leptogenesis condition is then able to put a constraint on

the heavy neutrino mass spectrum by placing a lower bound on M1. This is an example

of a prediction on the, otherwise inaccessible, high-energy neutrino parameters that is

derived indirectly through the requirement that the model reproduces the correct final

asymmetry.

2.2.6 Comment on scattering processes

The seesaw lagrangian implies the existence of lepton number violating processes other

than the decay of the heavy neutrinos. These are generically scatterings involving the

lepton doublets and the heavy neutrinos and can be divided into processes violating L

by one or two units [109]. The relevant Feynman diagrams are shown in fig. 2.4. They

l�

Ni q̄

�̃
t

l�

q̄

Ni

�̃

t̄

1

(a)

l� l̄�

�̃†
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�̃

l�

l̄�

�̃

Ni

�̃†

l�

l�

Ni

�̃

�̃

1

(b)

Figure 2.4: Feynman diagrams of lepton number violating scattering processes.
The full set can be obtained by reversing the fermion/hypercharge arrows.
(a) |�L| = 1 scattering processes involving the top quark. (b) |�L| = 2 scat-
tering processes involving a heavy neutrino in the s and t channel.

in general play a role in the thermalisation and modification of the heavy neutrinos
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abundance and in the generation of the B � L asymmetry, a↵ecting also the washout

term. The Boltzmann equations are modified into

dNN1

dz
= � (D1(z) + S1(z))

⇣

NN1(z)�N eq
N1

(z)
⌘

, (2.182)

dNB�L

dz
= "1 (D1(z) + S1(z))

⇣

NN1(z)�N eq
N1

(z)
⌘

�W1(z)NB�L(z). (2.183)

Here the scattering factor S1 involves the |�L| = 1 processes in fig. 2.4(a), that modify

the number of heavy neutrinos, and is defined as the decay factor

S1(z) ⌘ �|�L|=1
1 (z)

z H(z)
. (2.184)

The washout factor W1 must take into account also the |�L| = 2 processes, in fig. 2.4(b),

since these also cause a rebalancing of the asymmetry. The full washout factor is then

defined as the sum of three terms

W1(z) ⌘W ID
1 (z) + W |�L|=1

1 (z) + W |�L|=2
1 (z). (2.185)

We shall analyse separately the |�L| = 1 and the |�L| = 2 processes.

2.2.6.1 |�L| = 1 scattering

These processes receive the most important contribution from the scattering with top

quarks fig. 2.4(a), and gauge bosons. However, here we shall consider only the first case,

ignoring the impact of the gauge bosons, which is still rather controversial. It is possible

to obtain an expression for the decay plus scattering factor [94]

D1(z) + S1(z) ' KS



1 + ln

✓

M1

mH

◆

z2 ln
⇣

1 +
a

z

⌘

�

, (2.186)

where

KS ⌘ m⇤
mS

⇤
K1, with mS

⇤ ⌘
4⇡2

9

gv2

m2
t

m⇤, (2.187)

and

a ⌘ 8⇡2

9 ln(M1/mH)
, (2.188)

with mH and mt being respectively the Higgs and the top-quark masses. In eq. (2.186)

the scattering term is dominant for z . 2, while for z & 2 the decay term dominates.

This implies that the result of |�L| = 1 processes is to favour the heavy neutrino

production. Therefore, a↵ecting the the physics before zeq will have an impact mainly

in the weak washout regime, which is sensitive to the early stage of leptogenesis. The

term W |�L|=1
1 can be written as

W |�L|=1
1 (z) = j1(z)W ID

1 (z), (2.189)
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where

j1(z) ⌘ 1 +
S1(z)

D1(z)
'


z

a
ln
⇣

1 +
a

z

⌘

+
KS

zK1

�✓

1 +
15

8z

◆

. (2.190)

It can be shown that, as expected, the final e�ciency factor is mildly a↵ected only in

the weak washout for vanishing initial abundance. In the strong washout regime the

e↵ect of the |�L| = 1 scattering processes is negligible [103].

2.2.6.2 |�L| = 2 scattering

These processes involve the exchange of a heavy neutrino in the s and t channel. In

order to compute the washout factor W |�L|=2
1 care must be taken in considering only

the non-resonant contribution of the s-channel processes. It is possible to show that

these scattering processes are mostly important in the non-relativistic regime and their

expression can be approximated as [94]

W |�L|=2
1 ' !

z2
M1

1010 GeV

P

i m
2
i

1 eV2 , (2.191)

where ! ' 0.186. It can be shown [109, 110] that |�L| = 2 scatterings give a sizeable

contribution only for

M1 & 1014 GeV

✓

m2
atm

P

i m
2
i

◆

. (2.192)

For this reason, we shall safely neglect them in the rest of this work.





Chapter 3

The importance of the

N2-dominated scenario

In the previous chapter we analysed the general setup of the type-I seesaw mechanism

and the leptogenesis process linked to it. We described in detail the production of the

baryon asymmetry in the particular scenario of vanilla leptogenesis. As pointed out,

in this case the asymmetry is dominantly produced by the lightest heavy neutrino N1,

while the contributions of N2 and N3 are assumed to be negligible. We have shown that

this scenario is actually able to reproduce the correct final baryon-to-photon ratio ⌘CMB
B ,

thus realising successful leptogenesis. This achievement implies an important constraint

on the heavy neutrino sector, imposing a lower bound, eq. (2.181), on the mass of

the lightest neutrino that generates the asymmetry. This feature is undoubtedly an

interesting prediction on the heavy neutrinos mass spectrum imposed by the successful

leptogenesis condition. However, it also represents a drawback of the model. Indeed,

when type-I seesaw mechanism is embedded in some larger framework, such as SO(10)

GUTs, this bound is typically not respected. The lightest heavy neutrino predicted by

grand unification models is sensibly lighter than what required by vanilla leptogenesis.

It may therefore seem that the leptogenesis mechanism, though viable on its own, cannot

be embedded into a broader and more elegant picture such those proposed by theories

like SO(10) GUTs.

Nonetheless, it is possible to find a way to circumvent the lower bound in eq. (2.181).

This bound is imposed by the successful leptogenesis condition on the mass of the heavy

neutrino that produces the asymmetry. In vanilla leptogenesis this is the lightest one,

N1, which is also subject to opposite restrictions on its mass originating from SO(10)

GUT models. A possible way out is to set N1 free from eq. (2.181) by assigning the

leptogenesis task to the next-to-lightest heavy neutrino, N2. In this way, we can expect

successful leptogenesis to impose a bound on M2, while M1 can now agree with the

lower values predicted by SO(10) GUT models, M1 ⌧ 109 GeV. We can try, therefore,

to shift leptogenesis from the lightest to the next-to-lightest neutrino, thus introducing

57
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the so-called N2-dominated leptogenesis models, in which the final asymmetry is now

produced by N2 and the contribution of N1 (and N3) is negligible.

We can make a first attempt to study the asymmetry production in the N2-dominated

models by following the steps explained in the previous chapter. Firstly, we shall consider

a hierarchical spectrum, in particular such that

Mi+1 & 3 Mi, (3.1)

so to avoid the overlapping of the processes associated to di↵erent heavy neutrinos

[101]. With this assumption, we can divide the complete leptogenesis process into dif-

ferent stages, depending on the temperature, each one characterised by the interactions

involving one particular heavy neutrino. Considering that the heaviest neutrino will

have a negligible contribution, we can first concentrate on the processes taking place at

T ⇠ M2, that is on the stage involving the next-to-lightest neutrino, and then on the

second stage at T ⇠M1, where the lightest neutrino becomes important.

• Stage I T ⇠ M2. Assuming a vanishing initial N2 abundance and zero initial

asymmetry, the situation is totally similar to the vanilla leptogenesis case, but

here we are referring to N2. We have therefore

dNN2

dz2
= �D2(z2)

⇣

NN2(z2)�N eq
N2

(z2)
⌘

(3.2)

dN lep
B�L

dz2
= "2D2(z2)

⇣

NN2(z2)�N eq
N2

(z2)
⌘

�W ID
2 (z2)N

lep
B�L(z2), (3.3)

where z2 = M2/T . The expression for the asymmetry produced by N2 at the end

of stage I (i.e. z2 � 1) will be therefore

N lep,2
B�L = "2f (K2) (3.4)

• Stage II T ⇠ M1. In this second stage, we can assume again vanishing initial

N1 abundance, however the initial value of the B � L asymmetry is now given by

eq. (3.4). Since we are now considering M1 ⌧ 109 GeV, we already know that the

asymmetry produced by N1 will be negligible. For this reason, we can simplify the

Boltzmann equations into

dNN1

dz1
= �D1(z1)

⇣

NN1(z1)�N eq
N1

(z1)
⌘

, (3.5)

dN lep
B�L

dz1
= �W ID

1 (z1)N
lep
B�L(z1), (3.6)
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(a) (b)

Figure 3.1: Scatter plots of M2 vs. K1 for models realising successful leptoge-
nesis in N2-dominated models [111]. In the left panel (a) the unflavoured case
is considered. In the right panel (b) the flavoured case is studied. Here the
shadowed region marks the transition zone around M2 ⇠ 5⇥ 1011 GeV.

where z1 = M1/T . As we can see, the role of N1 is now restricted to the washout

factor, therefore the expression for the final asymmetry is given by

N lep,f
B�L = N lep,2

B�L e�
3⇡
8 K1

= "2f (K2) e�
3⇡
8 K1 . (3.7)

In this first attempt to study the asymmetry produced in the N2-dominated scenario, we

can notice that the final asymmetry is produced by N2 at T ⇠M2 and then undergoes

the washout due to N1 at T ⇠M1. The washout depends exponentially on K1. We can

therefore expect that for large values of K1 the final asymmetry is suppressed, so that

successful leptogenesis can be achieved only for suitable choices of M2 and K1. This

can be clearly noticed in fig. 3.1(a) [111]. Here values of M2 and K1 realising successful

leptogenesis according to eq. (3.7) are plotted. A suitable baryon asymmetry can be

produced in this model only for M2 & 1011 GeV. Moreover, the value of M2 increases

with K1 in order to produce an asymmetry large enough to survive the washout. For

K1 & 10 successful leptogenesis cannot be achieved. This means that for values of

K1 ⇠ matm/m⇤ ' 50, successful leptogenesis cannot be realised. We can therefore

conclude that in this scenario successful leptogenesis can be achieved only by selecting

small values of K1, and therefore by admitting a certain level of tuning on the parameters.

This analysis may therefore lead us to the conclusion that N2-dominated leptogenesis is

hardly viable. However, it has been pointed out that this study is incomplete, since it

neglects very important e↵ects due to flavour. We shall then first focus on these new

features and then propose an improved model of N2-dominated leptogenesis.
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3.1 Flavour e↵ects

In the analysis previously carried out, the flavour of the produced lepton doublets was

completely neglected. However, a more careful study of the model shows that flavour

plays a very important role in leptogenesis [112, 113]. In our lagrangian, lepton doublet

flavour appears in the Yukawa couplings with the RH neutrinos and with the RH charged-

lepton singlets. In general, we have therefore two kinds of flavour e↵ects: heavy flavour

e↵ects and light flavour e↵ects. We shall analyse them separately and then consider how

they apply to our N2-dominated scenario.

3.1.1 Heavy flavour e↵ects

Assuming eq. (3.1), in the thermal window around T ⇠Mi the dynamics is ruled by the

processes involving the neutrino Ni. In particular, its Yukawa couplings to the lepton

and Higgs doublets

L � �Y↵i l↵ NRi�̃ + h.c., (3.8)

where ↵ = e, µ, ⌧ , imply that the lepton doublets are produced in definite quantum

states as

|Nii ! |lii ⌘
X

↵

Ci↵|l↵i, (3.9)

|Nii ! |lii ⌘
X

↵

Ci↵|l↵i, (3.10)

that is on coherent superpositions of e-, µ- and ⌧ -flavoured lepton doublets. The super-

position is specified by the coe�cients Ci↵ and Ci↵ such that

X

↵

|Ci↵|2 = 1,
X

↵

�

�Ci↵

�

�

2
= 1. (3.11)

Due to loop corrections, we have in general Ci↵ 6= C⇤
i↵ and therefore CP |lii 6= |lii. The

flavour states |lii and |lii are not in general CP conjugated. Moreover, the lepton dou-

blets produced by the di↵erent heavy neutrinos do not generally respect orthogonality

conditions. That is, in general, we have [113]

hli|lji 6= �ij . (3.12)

This has remarkable consequences on our N2-dominated model.

• Stage I T ⇠ M2. Here lepton doublets are produced by the decay of N2 in the

flavour states |l2i, |l2i.

• Stage II T ⇠M1. At these temperatures N1 becomes relevant, i.e. its decays and

inverse decays are e�cient. These processes would involve lepton doublets in the
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flavour states |l1i, |l1i, which are, in general, di↵erent from the states produced

earlier by N2. However, since heavy flavour states are not, generally, orthogonal,

N1 interactions measure the projection of states |l2i, |l2i along the flavour direction

imposed by N1. This means that N1 interactions will break the coherence of state

|l2i into a |l1i component and an orthogonal component |l1?2 i. Similarly happens

for states |l2i. Only states |l1i and |l1i will now be involved in the dynamics of

N1, while the orthogonal states |l1?2 i, |l1?2 i will not be touched by N1. Out of

the asymmetry produced by N2, only the projection onto the flavour |l1i, |l1i will

then be a↵ected by the processes involving N1, and undergo the washout. The

orthogonal component will survive stage II unmodified.

We can define the probabilities

pij ⌘ |hlj |lii|2 =

�

�

�

�

�

X

↵

C⇤
j↵Ci↵

�

�

�

�

�

2

, pij ⌘
�

�hlj |lii
�

�

2
=

�

�

�

�

�

X

↵

C
⇤
j↵Ci↵

�

�

�

�

�

2

, (3.13)

such that

pij + pij?i = 1, pij + pij?i = 1. (3.14)

Neglecting here1, for simplicity, the di↵erences in flavour composition between |lii
and |lii, at tree-level C

0
i↵ = C0

i↵
⇤
, so that p0ij = p0ij . This way, eq. (3.7) can be

rewritten as

N lep,f
B�L = N lep,f

�1
+ N lep,f

�1?

' p021 "2f (K2) e�
3⇡
8 K1 + (1� p021)"2f (K2), (3.15)

where N�1 and N�1?
are, respectively, the components of the lepton asymmetry

along the flavour |l1i and its orthogonal state.

We can already notice that flavour e↵ects, in this case heavy flavour e↵ects, introduce

significant modifications to our initial picture. In particular, it is very important to

notice that part of the asymmetry produced can actually escape N1’s washout [114].

It is also interesting to obtain an expression for the probabilities in eq. (3.13). At tree

level we have [115, 116]

p0ij =

�

�

�

(m†
DmD)ij

�

�

�

2

(m†
DmD)ii (m

†
DmD)jj

=
1

emi emj

�

�

�

�

�

X

k

mk ⌦⇤
ki⌦kj

�

�

�

�

�

2

. (3.16)

When p0ij = 0 it means that the flavour compositions of the lepton states produced

by neutrinos Ni and Nj are orthogonal in the flavour space. Therefore, a lepton state

produced by Ni cannot interact with Nj and this can be the case of the lepton states

exchanged in the 1-loop neutrino decay, fig. 2.1. Therefore, p0ij = 0 implies that the

1We shall consider this feature in the following sections.



Chapter 3. The N2-dominated scenario 62

interference of neutrino Ni with Nj does not occur and the relative term in the CP

asymmetry vanishes. This can be easily seen since p0ij = 0 implies (m†
DmD)ij = 0, which

can then be plugged in eq. (2.118).

From eq. (3.16) it is also interesting to notice that if the orthogonal matrix is ⌦ = 1 or

one of the 5 permutations that can be obtained from the identity, we have p0ij = 0 8i, j,
so that the flavour compositions of the lepton states produced by the heavy neutrinos

are all orthogonal. In this case it is easy to realise that the heavy neutrinos do not

interfere and therefore all the CP asymmetries vanish. We can therefore conclude that

the particular seesaw models in which the complex orthogonal matrix ⌦ is the identity,

or one of its permutation, are not able to provide any CP asymmetry, hence they cannot

realise leptogenesis.

3.1.2 Light flavour e↵ects

The flavour of lepton doublets plays a role in the Yukawa interactions with Higgs doublets

and charged-lepton singlets as well

L � �
X

↵

D`
Y ↵ l↵`R↵� + h.c. (3.17)

This implies that, beside the leptogenesis processes, interactions involving the charged

singlets take place in the Early Universe involving definite flavour lepton doublets. Since,

as we have seen, the heavy neutrino decays produce lepton doublets in a coherent su-

perposition of flavour states, in principle the interaction given by (3.17) could act as a

quantum measurement of the flavour components of the lepton doublet states |lii, |lii.
We must therefore understand when these interactions are e�cient enough to break the

coherence of the heavy flavour states produced by heavy neutrino decays.

Given the interaction term in eq. (3.17), the reaction rates can be estimated as [117]

�↵(T ) ' 5⇥ 10�3
⇣

D`
Y ↵

⌘2
T, (3.18)

so that, comparing it to the Hubble rate and using eq. (2.127), we can expect that these

interactions enter thermal equilibrium while temperature drops. The exact temperature

depends on the Yukawa coupling D`
Y ↵, therefore we have di↵erent thresholds at which

di↵erent flavour interactions enter equilibrium: for T . 1012 GeV ⌧ -interactions are in

equilibrium, while for T . 109 GeV also µ-interactions enter equilibrium. Finally, for

T . 106 GeV also e-interaction are in thermal equilibrium.

The light flavour interactions given by eq. (3.17) are then competing with the heavy

flavour interactions in eq. (3.8). If light flavour interactions are “faster”, the lepton

doublets produced by the heavy neutrinos will be measured along the light flavour di-

rections, otherwise they will be projected onto the heavy flavour ones. It is possible to

say [118] that if the charged-lepton Yukawa interactions are in equilibrium and we also
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have

�↵ &
X

i

�ID,tot
i , (3.19)

the light flavour e↵ects dominate and the coherence of the produced lepton doublets

is broken accordingly. This is easily understood considering that in these situations a

lepton doublet produced by a heavy neutrino decay interacts on average with a charged-

lepton singlet before scattering with a Higgs doublet back to the heavy neutrino. Thus

the coherence of the heavy flavour state is broken and the temperature regions in which

this occurs take the name of fully-flavoured regimes.

In the temperature intervals in which this situation is not realised and neither of the

two kinds of Yukawa interactions dominates, the full decoherence of the lepton doublet

quantum states is not achieved. In these cases a detailed density matrix formalism must

be employed [116, 119–121]. In this work we shall not deal with these situations, and

we will always consider the full decoherence limit.

We can therefore consider the dynamics involving the heavy neutrino Ni. From the

discussion in chapter 2, we can focus on a temperature window around its mass Mi,

since it is in this range that the relevant processes (decays and inverse decays) are

mostly e↵ective. From the condition eq. (3.19) and comparing the interaction rates with

the Hubble parameter eq. (2.127), we can define three di↵erent regimes in which the

dynamics take place

1. Mi & 5 ⇥ 1011 GeV. At temperatures T ' Mi & 5 ⇥ 1011 GeV charged-lepton

Yukawa interactions are not in equilibrium, therefore the coherence of the lepton

doublet produced by Ni decays is not broken. Heavy neutrino flavour dynamics

dominates. This regime is often called unflavoured, in the sense of light flavour

e↵ects.

2. 5 ⇥ 108 GeV . Mi . 5 ⇥ 1011 GeV. At temperatures T ' Mi in this case the

⌧ Yukawa interactions are in equilibrium and e�cient enough to measure the ⌧

component of the lepton doublets. The heavy flavour quantum states are therefore

broken into

|lii ! |l⌧ i, |l⌧?i i, (3.20)

|lii ! |l⌧ i, |l⌧?i i, (3.21)

that is in a component along the ⌧ flavour direction and a component orthogonal

to ⌧ obtained from the heavy flavour direction |lii. We have a two fully-flavoured

regime. The splitting in the two components can be quantified by introducing the

probabilities

Pi↵ ⌘ |hl↵|lii|2 , P i↵ ⌘
�

�hl↵|lii
�

�

2
(3.22)
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where ↵ = ⌧, ⌧?
i . These expressions account for loop corrections. We can write

[116]

Pi↵ = P 0
i↵ + �Pi↵, (3.23)

P i↵ = P 0
i↵ + �P i↵, (3.24)

where we extract the tree level expression P 0
i↵, equal in both cases:

P 0
i↵ =

1

emi

�

�

�

�

�

�

X

j

p
mjU↵j⌦ji

�

�

�

�

�

�

2

. (3.25)

The tree-level expressions satisfy as well

X

↵

P 0
i↵ = 1, (3.26)

so that we have
X

↵

�Pi↵ =
X

↵

�P i↵ = 0. (3.27)

The full probabilities eq. (3.22) can be derived from the decay rates of the heavy

neutrinos, so that

Pi↵ =
�i↵

�i
, P i↵ =

�i↵

�i

. (3.28)

Hence

"i↵ = �Pi↵�i � P i↵�i

�i + �i

= P 0
i↵"i +

�Pi↵ + �P i↵

2
"i � �Pi↵

2
, (3.29)

where �Pi↵ ⌘ Pi↵ � P i↵.

3. Mi . 5⇥ 108 GeV. At temperatures T ' Mi now also the µ Yukawa interactions

are in equilibrium and e�cient enough to measure also the µ component of the

heavy flavour state. Given that e, µ and ⌧ flavours form an orthonormal basis,

also the e-component is measured. This implies

|lii ! |l⌧ i, |lµi, |lei, (3.30)

|lii ! |l⌧ i, |lµi, |lei. (3.31)

We have therefore a three fully-flavoured regime. Here, similar probability defini-

tions as in the previous point hold, with ↵ = e, µ, ⌧ .

In the regions around Mi ⇠ 5 ⇥ 1011 GeV and Mi ⇠ 5 ⇥ 108 GeV we do not have full

decoherence and density matrices must be employed. As already stated, we shall always

avoid this situation or approximate the behaviour with an instantaneous transition.

We can now employ these new features to study how the N2-dominated leptogenesis

process must be modified to account for them. Always assuming a hierarchical spectrum
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eq. (3.1) and M1 ⌧ 109 GeV we shall also consider a very heavy N3, M3 � 1012 GeV,

and two cases

a) 5⇥ 108 GeV < M2 < 5⇥ 1011 GeV,

b) M2 > 5⇥ 1011 GeV.

3.1.2.1 Case (a): 5⇥ 108GeV < M2 < 5⇥ 1011GeV

We can identify two stages through which the leptogenesis process will proceed.

Stage I: production. Since leptogenesis takes place at temperatures T ⇠ M2, the

asymmetry will be produced in the two fully-flavoured regime. The lepton doublets pro-

duced by the decay of N2 in the heavy flavour states |l2i, |l2i will be broken by ⌧ -Yukawa

interactions into the projection onto the ⌧ flavour direction, giving |l⌧ i, |l⌧ i, and along

the direction given by N2 on the plane orthogonal to ⌧ , giving |l⌧?2 i, |l⌧?2 i. Therefore,

the relevant quantities will be the asymmetries �⌧ ⌘ B/3� L⌧ and �⌧?2
⌘ B/3� L⌧?2

.

Defining here z2 ⌘M2/T , the Boltzmann equations will be

dN�
⌧?2

dz2
= "2⌧?2 D2(z2)

⇣

NN2(z2)�N eq
N2

(z2)
⌘

� P 0
2⌧?2

W ID
2 (z2)

⇣

NL
⌧?2

+ N�

⌘

, (3.32)

dN�⌧

dz2
= "2⌧D2(z2)

⇣

NN2(z2)�N eq
N2

(z2)
⌘

� P 0
2⌧W

ID
2 (z2) (NL⌧ + N�) , (3.33)

together with eq. (3.2). Here we can notice what follows.

• The CP asymmetries involved are "2⌧ and "2⌧?2 = "2e + "2µ.

• The washout factor is reduced by the factors P 0
2⌧ and P 0

2⌧?2
to account for the fact

that here we are considering its action only on the respective flavour component.

We are considering the tree-level probabilities since we can safely neglect terms

O(�P2↵ N�↵). We have

P 0
2⌧?2

= P 0
2e + P 0

2µ. (3.34)

• The washout factor is expressed now only in terms of the asymmetries in the

Higgs and lepton doublets of the relevant flavour. This is a peculiar di↵erence

from eq. (2.147), where we summed over all flavours.

It is possible to relate the asymmetries in the Higgs and lepton doublets to the B/3�L↵

asymmetries N�↵ by exploiting the network of e�cient reactions in the Early Universe,

as in section 2.2.1. Employing the so-called flavour-coupling matrices [99, 103, 112, 113,

119, 122, 123], in the two fully-flavoured regime we have

NL↵ + N� = C(2)
↵� N�� . (3.35)
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For ↵ = ⌧, ⌧?
2 we have

dN�
⌧?2

dz2
= "2⌧?2 D2(z2)

⇣

NN2(z2)�N eq
N2

(z2)
⌘

� P 0
2⌧?2

W ID
2 (z2)

X

�

C(2)

⌧?2 �
N�� (z2), (3.36)

dN�⌧

dz2
= "2⌧D2(z2)

⇣

NN2(z2)�N eq
N2

(z2)
⌘

� P 0
2⌧W

ID
2 (z2)

X

�

C(2)
⌧� N�� (z2). (3.37)

And the flavour coupling matrix in the two fully-flavoured regime is [123]

C(2) =

0

@

C(2)

⌧?2 ⌧?2
C(2)

⌧?2 ⌧

C(2)

⌧⌧?2
C(2)
⌧⌧

1

A =

 

581/589 104/589

194/589 614/589

!

. (3.38)

If we now assume C(2) ' 1, thus neglecting flavour coupling2, we can easily solve these

equations, together with that ruling the abundance of N2. Indicating with TL2 & 5⇥ 108 GeV

the temperature scale at which the asymmetry production by N2 is completed, we get,

at the end of stage I:

N�
⌧?2

(TL2) ' "2⌧?2 f (K2⌧?2
), (3.39)

N�⌧ (TL2) ' "2⌧ f (K2⌧ ), (3.40)

where Ki↵ are the flavoured decay parameters defined as

Ki↵ ⌘ �i↵ + �i↵

H(T = Mi)
. (3.41)

We also have

Ki↵ = P 0
i↵Ki, (3.42)

so that, using eqs. (3.25) and (2.138), we obtain the expression of the flavoured decay

parameters in the orthogonal matrix parameterisation

Ki↵ =
1

m⇤

�

�

�

�

�

�

X

j

p
mj U↵j⌦ji

�

�

�

�

�

�

2

. (3.43)

We have K2⌧?2
= P 0

2⌧?2
K2, therefore, from eq. (3.34), we get

K2⌧?2
= K2e + K2µ. (3.44)

The e�ciency factors in eq. (3.40) and (3.39) are given by eqs. (2.157), (2.164) and

(2.167).

2In the following chapter we shall analyse in some detail the e↵ects of flavour coupling.
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Stage II: washout. Below TL2, the asymmetry stays constant. However, for tem-

peratures T . 5 ⇥ 108 GeV the µ Yukawa interactions are in equilibrium. This im-

plies that the coherence of the quantum states |l⌧?2 i, |l⌧?2 i is broken. At temperatures

M1 < T 0 . 5 ⇥ 108 GeV the asymmetry N�
⌧?2

gets projected onto the e and µ flavour

directions. We might expect this projection to be

N�e(T
0) =

P 0
2e

P 0
2⌧?2

N�
⌧?2

(TL2), N�µ(T 0) =
P 0
2µ

P 0
2⌧?2

N�
⌧?2

(TL2). (3.45)

However, this simple projection does not consider the e↵ects due to the di↵erent flavour

composition of |l⌧?2 i and |l⌧?2 i. For this reason, the asymmetry in the e and µ flavours is

not simply the projection of the asymmetry in ⌧?
2 , but must take into account the fact

that additional asymmetry between each light flavour and its CP conjugate is stored in

|l⌧?2 i and |l⌧?2 i. This is a consequence of the fact that in general |l⌧?2 i 6= CP |l⌧?2 i. It is

possible to show that, taking correctly into account also flavour-blind gauge interactions

[116] the projection is given by

N�e(T
0) =

P 0
2e

P 0
2⌧?2

N�
⌧?2

(TL2) + p2e (K2⌧?2
/2), (3.46)

N�µ(T 0) =
P 0
2µ

P 0
2⌧?2

N�
⌧?2

(TL2) + p2µ (K2⌧?2
/2). (3.47)

Here p2�, with � = e, µ, are the so-called phantom terms and can be obtained from the

flavoured CP asymmetries as

p2� = "2� � P 0
2�

P 0
2⌧?2

"2⌧?2 , � = e, µ. (3.48)

In the three fully-flavoured regime the action of N1 will take place along the three

flavour directions e, µ, ⌧ . Considering that the asymmetry produced by N1 can be safely

neglected we can write the three-flavoured Boltzmann equations as

dN�↵

dz1
= �P 0

1↵

X

�

C(3)
↵� W ID

1 (z1)N�� (z1), with ↵, � = e, µ, ⌧, (3.49)

where z1 ⌘ M1/T . The role of N1 is again essentially to apply a washout on the

asymmetry produced by N2. Here C(3) is the flavour coupling matrix in the three fully-

flavoured regime [123]

C(3) ⌘

0

B

@

C(3)
ee C(3)

eµ C(3)
e⌧

C(3)
µe C(3)

µµ C(3)
µ⌧

C(3)
⌧e C(3)

⌧µ C(3)
⌧⌧

1

C

A

=

0

B

@

188/179 32/179 32/179

49/358 500/537 142/537

49/358 142/537 500/537

1

C

A

. (3.50)
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Neglecting again flavour coupling, C(3) ' 1, and taking as initial conditions eqs. (3.46),

(3.47) and (3.40), the Boltzmann equations can be solved giving the total final asym-

metry produced by leptogenesis [102, 116, 123–125]

N lep,f
B�L =

X

↵

N lep,f
�↵

'
"

P 0
2e

P 0
2⌧?2

"2⌧?2 f (K2⌧?2
) +

 

"2e � P 0
2e

P 0
2⌧?2

"2⌧?2

!

f (K2⌧?2
/2)

#

e�
3⇡
8 K1e

+

"

P 0
2µ

P 0
2⌧?2

"2⌧?2 f (K2⌧?2
) +

 

"2µ �
P 0
2µ

P 0
2⌧?2

"2⌧?2

!

f (K2⌧?2
/2)

#

e�
3⇡
8 K1µ

+ "2⌧f (K2⌧ )e
� 3⇡

8 K1⌧ . (3.51)

It is possible to notice that the final asymmetry is obtained from the sum of the final

asymmetries in the flavours e, µ and ⌧ , each of them a↵ected by N1’s washout depending

on K1↵. This implies that, in general, the final asymmetry can escape N1’s washout

along at least one particular flavour direction, in which the decay parameter is small

K1↵ . 1. Therefore, due to flavour e↵ects, the condition imposed by successful leptoge-

nesis changes from the rather stringent K1 . 1 to the milder condition on at least one

flavoured decay parameter.

3.1.2.2 Case (b): M2 > 5⇥ 1011GeV

In this case, the asymmetry is produced by N2 in the unflavoured regime. Indeed, for

T & 5⇥1011 GeV charged-lepton Yukawa interaction are all out of equilibrium, therefore

the coherence of the lepton doublets produced by N2 is not spoilt.

Stage I: production. As observed, the production takes place in the unflavoured

regime, therefore we employ eq. (2.147) suitably modified for N2. We get a final asym-

metry at the end of the production process

NB�L(TL2) ' "2f (K2). (3.52)

Stage II: washout. For T . 5⇥ 108 GeV, the µ-Yukawa interactions are in equilib-

rium and the asymmetry is projected onto the three flavours e, µ and ⌧ . Following the

previous discussion, at M1 < T 0 . 5⇥ 108 GeV we get

N�e(T
0) = P 0

2e NB�L(TL2) + p2e f (K2/2), (3.53)

N�µ(T 0) = P 0
2µ NB�L(TL2) + p2µ f (K2/2), (3.54)

N�⌧ (T
0) = P 0

2⌧ NB�L(TL2) + p2⌧ f (K2/2), (3.55)
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where the phantom terms are given by

p2↵ = "2↵ � P 0
2↵ "2, ↵ = e, µ, ⌧. (3.56)

It is important to notice that in this case also the ⌧ flavour gets a phantom term, since

we are projecting a fully unflavoured asymmetry onto the three light flavours. Similarly

to the previous case, these asymmetries undergo the washout by N1 each one along its

flavour direction, so that we eventually obtain

N lep,f
B�L =

X

↵

N lep,f
�↵

' ⇥

P 0
2e "2f (K2) +

�

"2e � P 0
2e "2

�

f (K2/2)
⇤

e�
3⇡
8 K1e

+
⇥

P 0
2µ "2f (K2) +

�

"2µ � P 0
2µ "2

�

f (K2/2)
⇤

e�
3⇡
8 K1µ

+
⇥

P 0
2⌧ "2f (K2) +

�

"2⌧ � P 0
2⌧ "2

�

f (K2/2)
⇤

e�
3⇡
8 K1⌧ . (3.57)

Considerations similar to the previous case hold here as well, since again it is possible

that the final asymmetry escape N1’s suppression along a flavour direction in which the

washout is particularly mild.

Considering flavour e↵ects, then, the N2-dominated scenario of leptogenesis dramatically

changes from the first attempt considered at the beginning, see eq. (3.7). To show the

important modifications brought about by flavour e↵ects, we can consider fig. 3.1(b).

Here, each point in the plane M2 � K1 marks an N2-dominated model able to realise

successful leptogenesis. The final asymmetry is computed using eqs. (3.51) and (3.57),

depending on the value of M2. We have assumed an instantaneous transition between

the unflavoured and the two fully-flavoured regimes at M2 = 5⇥ 1011 GeV. The shaded

band marks the actual transition region in which a fuller treatment with density matrices

must be employed. Comparing fig. 3.1(a) and 3.1(b), we can notice that, in the latter,

successful leptogenesis can be achieved also for high values of K1, which are forbidden in

the unflavoured case. Moreover, lower values of M2 are accessible, since the asymmetry

produced does not have to be high in order to survive the strong washout by K1 as in

the unflavoured case. We can find a lower bound

M2 & 3⇥ 109 GeV. (3.58)

In conclusion, flavour e↵ects greatly help the N2-dominated scenario by making it possi-

ble to realise successful leptogenesis much more easily than in the unflavoured case. For

this reason, flavoured N2-dominated leptogenesis can indeed be regarded as a promising

mechanism for producing the baryon asymmetry of the Universe, while complying with

the bounds on the lightest heavy neutrino mass.

We shall now analyse in detail two theoretical frameworks that significantly draw the at-

tention on the N2-dominated scenario: strong thermal leptogenesis and SO(10)-inspired
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leptogenesis.

3.2 Strong thermal leptogenesis

In chapter 2, we saw that, in principle, the conditions imposed on the initial value of the

asymmetry can actually play a role, cf. eq. (2.149). The initial value of the asymmetry

directly depends on the detailed history of the Early Universe before the leptogenesis

stage and, in general, there are no theoretical reasons to assume it to be vanishing, as

in eq. (2.151). On the contrary, if we assume a vanishing initial abundance of the heavy

neutrinos, in order to produce enough neutrinos and consequently enough asymmetry,

we get that the reheating temperature of the Universe must be at least of the order of

the mass of the neutrino producing the asymmetry. Therefore, we can in general expect

rather high reheating temperatures TRH & 1010 GeV.

With these rather high reheating temperatures, it is possible that other mechanisms are

able to produce a sizeable amount of asymmetry before leptogenesis takes place. For

instance, in the late stages of inflation we can have A✏eck-Dine [126] or gravitational

baryogenesis [127, 128], while after inflation, but before the onset of leptogenesis, more

standard GUT baryogenesis [93, 129–132] can take place. For these reasons, we can

expect that the initial value of the asymmetry is not zero, and a sizeable value of initial

pre-existing asymmetry, Np,i
B�L, must be taken into account. After the leptogenesis

process, we are therefore left with a total asymmetry given by

N f
B�L = N lep,f

B�L + Np,f
B�L, (3.59)

where the first term is the asymmetry genuinely produced by leptogenesis, while the

second represents the remnants of the initial pre-existing asymmetry after it undergoes

leptogenesis. It is possible that, due to mechanisms such as those mentioned before, the

final pre-existing asymmetry, Np,f
B�L, is even larger than the contribution of leptogenesis

itself. Since these processes actually escape the experimental probes, the fact that the

final baryon asymmetry of the Universe can heavily depend on the initial conditions and

the detailed history of the Early Universe poses a serious theoretical problem. The value

of Np,i
B�L is di�cult to estimate since it depends on the precise state of the Universe at

the inflation era, so that also the final value of the baryon asymmetry remains di�cult to

explain. Moreover, the experimental evidences on the baryon asymmetry of the Universe

cannot be employed to constrain our leptogenesis model, since the final asymmetry can

in general receive a large, unknown contribution from other mechanisms.

For these reasons, we can require that leptogenesis is able to erase any pre-existing con-

tribution, while producing the correct amount of baryon asymmetry. We can therefore

require
�

�

�

Np,f
B�L

�

�

�

⌧
�

�

�

N lep,f
B�L

�

�

�

and N lep,f
B�L ' N exp

B�L, (3.60)
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where N exp
B�L is obtained from the experimental observations, eq. (1.11). Leptogenesis

models that satisfy the conditions (3.60) are said to realise strong thermal leptogenesis

[115]. This way, the final asymmetry is entirely produced by leptogenesis processes and

full independence of the initial conditions is ensured.

The key of strong thermal leptogenesis is to rely on strong washout in the thermal pro-

duction of the heavy neutrinos. We can analyse first the unflavoured vanilla leptogenesis

case. Here we assume that only N1 thermalises. Starting from eq. (2.149), we assume

now a non-vanishing initial pre-existing asymmetry Np,i
B�L, so that the total final B �L

asymmetry is given by

N f
B�L = Np,f

B�L + N lep,f
B�L

= Np,i
B�Le�

3⇡
8 K1 + "1f (K1). (3.61)

Strong thermal leptogenesis requires that the final pre-existing asymmetry be smaller

than the final asymmetry produced by leptogenesis. Adopting the CMB measurement

of the baryon-to-photon ratio, eq. (1.11), we can quantify this requirement as

�

�

�

⌘p,fB

�

�

�

. 0.1 ⌘lep,fB ' 0.1 ⌘CMB
B , (3.62)

with ⌘p,fB = d Np,f
B�L. Therefore, from eq. (3.61) we get the condition

K1 & Kst(N
p,i
B�L), (3.63)

where [1]

Kst(N
p,i
B�L) ⌘ 8

3⇡



ln

✓

0.1

⌘CMB
B

◆

+ ln
�

�

�

Np,i
B�L

�

�

�

�

' 16 + 0.85 ln
�

�

�

Np,i
B�L

�

�

�

. (3.64)

We can therefore see that strong thermal leptogenesis implies strong washout that is

able to erase the pre-existing asymmetry. The amount of washout depends on the size

of the initial pre-existing asymmetry.

When flavour is considered, the scenario becomes in general more involved. This is due

to the fact that now the pre-existing asymmetry can in principle escape the washout of

the heavy neutrinos along a certain flavour direction. It is possible to show [115] that,

taking into account light flavour e↵ects, strong thermal leptogenesis can be achieved

only if the heavy neutrino spectrum is hierarchical and

5⇥ 109 GeV .M2 . 5⇥ 1011 GeV, (3.65)

M1 ⌧ 109 GeV. (3.66)

Since N1 is too light, and the CP asymmetries of N3 are suppressed, the asymmetry

must be produced dominantly by N2. Therefore we can conclude that strong thermal



Chapter 3. The N2-dominated scenario 72

leptogenesis can be realised only in a N2-dominated leptogenesis scenario.

The asymmetry produced by leptogenesis is then given by eq. (3.51), while the final

pre-existing asymmetry is obtained in the following ways.

3.2.1 Case M3 & 5⇥ 1011 GeV

In this case, the heaviest neutrino is either not thermalised or, in general, cannot wash

out completely the pre-existing asymmetry. Indeed, for M3 & 5⇥ 1011 GeV the washout

by N3 would take place in the unflavoured (in the sense of light flavours) regime, therefore

the component of the asymmetry orthogonal to the heavy flavour direction |l3i, |l3i would

escape washout. We can therefore neglect its presence. The washout by N2 will then

take place in the two fully-flavoured regime, while the washout by N1 will be in the

three fully-flavoured regime. Eventually we get a final pre-existing asymmetry given by

Np,f
B�L =

P

↵ Np,f
�↵

where ↵ = e, µ, ⌧ and [115]

Np,f
�e

=

(

�

1� P 0
p⌧

�

"

P 0
2e

P 0
2⌧?2

P 0
p⌧?2

e�
3⇡
8 (K2e+K2µ) +

 

1� P 0
2e

P 0
2⌧?2

!

⇣

1� P 0
p⌧?2

⌘

#

+ �Ppe

�

e�
3⇡
8 K1e Np,i

B�L, (3.67)

Np,f
�µ

=

(

�

1� P 0
p⌧

�

"

P 0
2µ

P 0
2⌧?2

P 0
p⌧?2

e�
3⇡
8 (K2e+K2µ) +

 

1� P 0
2µ

P 0
2⌧?2

!

⇣

1� P 0
p⌧?2

⌘

#

+ �Ppµ

�

e�
3⇡
8 K1µ Np,i

B�L, (3.68)

Np,f
�⌧

=
�

P 0
p⌧ + �Pp⌧

�

e�
3⇡
8 (K1⌧+K2⌧ )Np,i

B�L. (3.69)

Here P 0
p⌧ and P 0

p⌧?2
are the fractions of the pre-existing asymmetry in the ⌧ and ⌧?

2

components. The quantities �Pp↵, with
P

↵ �Pp↵ = 0, take into account the possibility

of di↵erent flavour composition of the initial pre-existing asymmetry. Similarly to what

was discussed in the previous section, the pre-existing asymmetry along the e, µ and

⌧ directions is not simply a fraction of the initial pre-existing asymmetry, but possible

di↵erence in the flavour composition of the leptons and anti-leptons states must be

accounted for.

In order to have successful strong thermal leptogenesis, we must combine eqs. (3.67),

(3.68) and (3.69) with eq. (3.51) to account for the asymmetry production. Taking all

these equations together, it is possible to notice that successful strong thermal leptoge-

nesis can be realised only if [1, 115]

K1e, K1µ & Kst(N
p,i
�e,µ

), K2⌧ & Kst(N
p,i
�⌧

), K1⌧ . 1. (3.70)
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Here, the first condition ensures that the pre-existing asymmetry along e and µ direc-

tions is washed-out by the action of N1 in the three fully-flavoured regime. The second

condition implies that the pre-existing asymmetry in the ⌧ flavour is washed out by N2

in the two fully-flavoured regime. In order to produce at the same time the suitable

asymmetry through leptogenesis itself, and given the conditions on K1e and K1µ, the

final asymmetry must necessarily be produced by N2 in the ⌧ flavour. Hence, the last

condition on K1⌧ ensures that the contribution of leptogenesis, in the ⌧ flavour, is not

washed out by N1.

This scenario realising a tauon N2-dominated leptogenesis is the only possibility to

achieve successful strong thermal leptogenesis [115].

3.2.2 Case M3 . 5⇥ 1011 GeV

If M3 . 5⇥ 1011 GeV, the dynamics of N3 takes place in the two-fully flavoured regime,

as for N2. Therefore, the contribution of N3 adds up to the washout operated by the

next-to-lightest. We therefore have [1]

Np,f
��

=

(

�

1� P 0
p⌧

�

"

P 0
p⌧?3

P 0
2⌧?2

P 0
3⌧?

P 0
2�

P 0
2⌧?2

P 0
p⌧?2

e
� 3⇡

8 (K3⌧?+K
2⌧?2

)

+
⇣

1� P 0
p⌧?3

⌘

 

1�
P 0
2⌧?2
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2⌧?2

e
� 3⇡

8 K
2⌧?2

!

+ P 0
p⌧?3
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1� P 0
p⌧?2

⌘

 

1� P 0
2�

P 0
2⌧?2

!#

+ �Pp�

)

e�
3⇡
8 K1�Np,i

B�L, (3.71)

Np,f
�⌧

= (P 0
p⌧ + �Pp⌧ )e

� 3⇡
8 (K3⌧+K2⌧+K1⌧ )Np,i

B�L, (3.72)

where � = e, µ and K3⌧? ⌘ K3e + K3µ. Clearly, the addition of the washout by N3

tends to relax the strong thermal conditions eq. (3.70), replacing the second one with

K2⌧ +K3⌧ & Kst(N
p,i
�⌧

). In this way one can have strong thermal leptogenesis with lower

values of K2⌧ and so the condition of successful leptogenesis can be more easily satisfied.

We can therefore conclude that strong thermal leptogenesis, by solving the problem of

the initial conditions of the asymmetry abundance, has very important implications and

consequences in the leptogenesis setup.

It necessarily selects a hierarchical spectrum of the heavy neutrinos that realises N2-

dominated leptogenesis and selects a final asymmetry dominantly produced in the ⌧

flavour. It is noticeable that the requirement of full independence of the initial conditions

is able to fix the heavy neutrino mass spectrum, thus giving a prediction in the otherwise

almost unattainable realm of the high-energy neutrino parameters. This requirement

provides also an additional theoretical reason for shifting the leptogenesis paradigm

from the N1 to the N2-dominated scenario.
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Moreover, the conditions implied by strong thermal leptogenesis, eq. (3.70), can be

regarded as further constraints on the seesaw parameter space, beyond the requirement

of successful leptogenesis eq. (2.174). We shall see in the following chapter how these

constraints are able to provide us with interesting predictions on the low-energy neutrino

parameters as well.

3.3 SO(10)-inspired leptogenesis

The attractive feature of the seesaw mechanism, able to provide a solution to the prob-

lems of neutrino masses and asymmetry of the Universe, relies on the addition of extra

particles. These particles, the RH neutrinos introduced in eq. (2.46), are somehow added

by hand to the SM lagrangian and so is their high mass scale. A more elegant and attrac-

tive origin of the RH neutrinos and their mass scale can be found in GUT. In particular,

it can be noticed that theories based on SO(10) as grand unification group [133–135],

naturally include three RH neutrinos in the same irreducible representation together

with quarks and leptons. In particular, RH neutrinos precisely fit in the 16-dimensional

spinor representation of SO(10). Moreover, in SO(10) GUTs interesting links between

quark and lepton parameters arise, as well as relations between charged leptons and

neutrinos.

We shall analyse here a large class of leptogenesis models based on the seesaw lagrangian

eq. (2.46) that enjoy additional conditions on the parameters which are inspired to those

realised in SO(10) GUTs. For this reason, we shall call these models SO(10)-inspired

[136–141].

The type-I seesaw mass lagrangian eq. (2.48) is written in the flavour basis, in which

both the charged leptons and the RH neutrinos mass matrices, D`
m and DM respectively,

are diagonal. It is possible to rotate both the LH and the RH neutrino fields to a basis

in which the Dirac mass matrix mD is diagonal. This basis is called Yukawa basis. The

transformation can be performed via a bi-unitary transformation

mD = V †
LDmDUR, (3.73)

where VL and UR are unitary matrices acting respectively on the LH and RH neutrino

fields. Matrix DmD is then diagonal with real, non-negative entries mDi. The matrix

UR, in particular, defines the RH neutrino Majorana mass matrix in the Yukawa basis

M = U⇤
R DM U †

R. (3.74)

Inserting eq. (3.73) in the seesaw relation eq. (2.70), we can obtain the expression of the

Majorana mass matrix M in terms of VL, Dm, U and DmD :

M = DmD V ⇤
LU⇤ D�1

m U †V †
LDmD . (3.75)
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Eq. (3.74) performs the Takagi diagonalisation of M , thus it is possible to obtain also

the matrix UR and the diagonal matrix DM in terms of Dm, VL, U and DmD .

More in detail, the procedure goes as follows [2]. First, we can diagonalise, according to

the standard procedure, the hermitian matrix M †M with a unitary matrix ŨR:

M †M = ŨRD2
M Ũ †

R. (3.76)

Using matrix ŨR in eq. (3.74) would diagonalise M up to a diagonal matrix of phases.

We can solve the phase ambiguities in ŨR by fixing the phases matrix

D� ⌘ diag
⇣

e�i
�1
2 , e�i

�2
2 , e�i

�3
2

⌘

, (3.77)

to

D� =
q

DM Ũ †
RM�1Ũ⇤

R. (3.78)

Finally, the matrix

UR ⌘ ŨR D�, (3.79)

performs the Takagi diagonalisation of M as in eq. (3.74).

The bi-unitary transformation eq. (3.73) therefore allows us to express several quantities

in terms of a definite set of parameters. This introduces a parameterisation of the seesaw

space alternative to the orthogonal matrix one, eq. (2.74). The set of free parameters

now is

• 3 Dirac masses in DmD ,

• 3 mixing angles and 3 phases in the unitary matrix VL,

• 3 mixing angles and 3 phases in the PMNS matrix U ,

• 3 active neutrino masses in Dm.

Clearly, the total always sums up to 18 free parameters. On these parameters, additional

conditions inspired to those realised in SO(10) GUT theories can be placed. We define

SO(10)-inspired leptogenesis models those respecting the following conditions.

1. The entries of the Dirac mass matrix DmD can be parameterised in terms of the

up-type quark masses as

mD1 = ↵1 mu, mD2 = ↵2 mc, mD3 = ↵3 mt. (3.80)

In SO(10)-inspired models we have

↵i = O(0.1 ÷ 10). (3.81)
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This condition implies a natural hierarchy mD1 < mD2 < mD3 that traces the

quark masses hierarchy. In what follows, we shall assume

mu = 1MeV, mc = 400MeV, mt = 100GeV, (3.82)

as reference values of the up-type quark masses at the leptogenesis scale [142].

2. The unitary matrix VL is bounded by the Cabibbo-Kobayashi-Maskawa (CKM)

quark mixing matrix

1  VL . VCKM . (3.83)

By labelling the three mixing angles in VL as ✓L13, ✓L12, ✓L23, as in the usual PDG

parameterisation, this condition implies that the ✓Lij are not too larger than the

corresponding mixing angles in CKM and in particular ✓L12 . ✓CKM
12 ⌘ ✓C ' 12�.

It is worth mentioning that these conditions can be also satisfied beyond traditional

SO(10)-models. For instance, in the cases of the examples discussed in [143], in the 5D-

SO(10) model [144], in the ‘tetra-model’ [145] or in the ‘A to Z’ model [146]. Vice-versa

not all SO(10)-models necessarily respect them. For example, SO(10) GUT models

could give rise to a type II see-saw contribution for the neutrino masses (e.g. [141, 147])

and to alternative leptogenesis scenarios than those considered here. It should also be

said that traditional (4D, no flavour symmetries) SO(10) models that have been explored

as viable realistic models able to fit both quarks and leptons parameters also usually

respect these conditions (see discussion in [125]).

3.3.1 Heavy neutrino masses and CP asymmetries

By exploiting the bi-unitary parameterisation and applying the two defining conditions,

it is possible to obtain analytical expressions for the heavy neutrino masses and their

CP asymmetries [2]. These expressions can be obtained by means of some further

assumptions and approximations:

(a) considering mDi ⌧ mDj for j > i, we shall assume we can always make an expansion

in mDi/mDj and neglect subheading terms with mDi/mDj < 1, regardless of their

factor;

(b) we shall assume VL = 1.

We will comment later on the impact of assumption (a), while the discussion about

assumption (b) is postponed to chapter 5, where we shall present our results.

In the following, the ordering of the light neutrino mass spectrum is not specified and

all results are valid both for NO and IO, if the suitable expressions of m2 and U are
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employed.

For VL = 1 we have

U⇤
RDMU †

R = DmDU⇤D�1
m U †DmD , (3.84)

and using eq. (2.69) we have

M = U⇤
RDMU †

R = �DmDm�1
⌫ DmD . (3.85)

We can now notice that Mi3/M33 = M3i/M33 / mDi/mD3, therefore, according to the

assumptions mentioned above, we can say that the matrix M is in a block-diagonal form.

Neglecting terms O(mD1/mD3) and O(mD2/mD3) we get

M3 ' m2
D3

�

�(m�1
⌫ )⌧⌧

�

� = m2
D3

�

�

�

�

(U⇤
⌧1)

2

m1
+

(U⇤
⌧2)

2

m2
+

(U⇤
⌧3)

2

m3

�

�

�

�

/ ↵2
3m

2
t , (3.86)

where, from eq. (2.69), we have used

(m�1
⌫ )↵� = �

X

i

m�1
i U⇤

↵iU
⇤
�i. (3.87)

The phase �3 in D� is simply given by

�3 = Arg
⇥�(m�1

⌫ )⌧⌧
⇤

. (3.88)

Similar procedure can be employed with matrix M�1. In this case we have

M�1 = URD�1
M U t

R = �D�1
mD

m⌫D
�1
mD

, (3.89)

and we can notice that M�1
i1 /M�1

11 = M�1
1i /M�1

11 / mD1/mDi, so that the largest M�1

eigenvalue, 1/M1 can be obtained as 1/M1 ' |m⌫ee| /m2
D1. Hence we have

M1 ' m2
D1

|m⌫ee|
=

m2
D1

�

�m1U2
e1 + m2U2

e2 + m3U2
e3

�

�

/ ↵2
1m

2
u, (3.90)

where we have used

m⌫↵� = �
X

i

mi U↵iU�i. (3.91)

We can also obtain

�1 = Arg[�m⇤
⌫ee] . (3.92)

From eq. (2.70), and taking the determinant of both sides, we have

m1m2m3 =
m2

D1 m2
D2 m2

D3

M1 M2 M3
ei(2�̃R�2�U�

P
i �i), (3.93)
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where �R ⌘ Arg
h

det
⇣

ŨR

⌘i

and �U ⌘ Arg[det(U)] = ⇢ + �. Hence we get

M2 ' m2
D2

m1 m2 m3

|m⌫ee|
�

�(m�1
⌫ )⌧⌧

�

�

= m2
D2

�

�m1U2
e1 + m2U2

e2 + m3U2
e3

�

�

�

�m2m3U⇤
⌧1

2 + m1m3U⇤
⌧2

2 + m1m2U⇤
⌧3

2
�

�

/ ↵2
2m

2
c . (3.94)

We can also notice that
P

i �i = 2�̃R � 2�U , and therefore

�2 = 2(�̃R � �U )� �3 � �1

= Arg



m⌫ee

(m�1
⌫ )⌧⌧

�

+ 2�̃R � 2(⇢ + �). (3.95)

From eqs. (3.90), (3.94) and (3.86) we notice that the heavy neutrinos mass spectrum is

hierarchical with approximately

M1 : M2 : M3 = ↵2
1m

2
u : ↵2

2m
2
c : ↵2

3m
2
t , (3.96)

thus implying

M1 ⌧ 109 GeV, (3.97)

109 GeV .M2 . 1012 GeV, (3.98)

M3 � 1012 GeV. (3.99)

This spectrum is precisely the one realising N2-dominated leptogenesis, since, as we

have already seen, the lightest heavy neutrino is too light to contribute significantly

to the asymmetry, and the heaviest also gives negligible contribution since it is either

non thermalised or its CP asymmetries are in general suppressed. In this way, we can

notice that SO(10)-inspired conditions naturally select a heavy neutrino mass spectrum

compatible only with N2-dominated leptogenesis.

It is really important to comment on approximation (a) stated above. The obtained

expressions are only valid within the range of applicability of this approximation. It is

possible to find [140] particular configurations of the low-energy neutrino parameters in

which one cannot adopt approximation (a) and safely expand in mDi/mDj , j > i. In

these situations, called crossing level solutions, the heavy neutrino spectrum does not

follow eq. (3.96) anymore and two or even all three heavy neutrinos become degenerate.

Our analytical expressions are not valid in the vicinity of these solutions. It must be

noted that crossing level solutions involve in general a rather high level of fine tuning,

taking place only for some special values of the low-energy parameters.

In fig. 3.2 we compare the analytical expressions of the heavy neutrino masses (cf.

eqs. (3.90), (3.94) and (3.86)) with the numerical solutions in the four sets of parameters

yielding level crossings for special values of m1 as discussed in [140] (note that for

simplicity ✓13 = 0 and ✓23 = ⇡/4). It can be noticed that the analytical solutions
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Figure 3.2: Comparison between the numerical solutions for the heavy neu-
trino masses (solid lines) and the analytical solutions eqs. (3.90), (3.94)
and (3.86) (dashed lines), [2]. The solutions are obtained for ✓13 = 0,
✓23 = 45�, ✓12 = 33�, � = 0, ↵1 = ↵2 = ↵3 = 1, VL = 1 and for
(⇢, �) = (0, 0), (⇡/2, 0), (0, ⇡/2), (⇡/2, ⇡/2) from top left to bottom right respec-
tively.

(dashed black lines) perfectly track the numerical ones (solid coloured lines) except in

the close vicinity of those values of m1 where the heavy neutrino masses become quasi-

degenerate and the validity of the adopted approximations breaks down.

Sticking to assumption (a), we shall bar regions around the crossing level solutions in

the rest of this work.

In fig. 3.3 we show a comparison between the analytical expressions of M1, M2, M3 and

the values obtained numerically. Here we chose three particular setups with physical

meaning. These three choices of parameters are able, as we shall see in chapter 5, to

realise successful leptogenesis around the indicated values of m1. As we can see, there

are no level crossings and the analytical solutions perfectly track the numerical values.

It is also possible to find an analytical approximate expression for the RH neutrino

mixing matrix UR. From the discussions that led to the expressions of M3 and M1 it

should be clear that UR is of the form UR = 1 + ⇠, where ⇠ii = 0 and the ⇠i 6=j leading
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Figure 3.3: Comparison of the analytical expressions for the RH neutrino
masses eqs.(3.86), (3.94), (3.90) (dashed lines) with the numerical solutions
(solid lines) versus m1 for the three following sets of parameters: VL = 1,
(↵1, ↵2, ↵3) = (1, 5, 1), ✓13 = (7.55�, 8.14�, 9.2�), ✓12 = (35.2�, 34.75�, 35.0�),
✓23 = (46.2�, 42.1�, 40.0�), �/⇡ = (0.275, 0.067,�0.24), ⇢/⇡ = (0.54, 1.080, 0.24),
�/⇡ = (1.14, 0.94, 0.80). These three solutions are examples of ⌧A, ⌧B and
strong thermal solutions respectively and realise successful leptogenesis for
m1 ' (2.5, 300, 10) meV. All three cases are for NO, [2].

terms are suppressed / mDi/mDj with j > i. Here we shall compute the matrix ŨR,

while the matrix D� can be obtained afterwards from eqs. (3.92), (3.95) and (3.88).

From the unitarity condition ŨRikŨ
†
Rkj = �ij we get

ŨR12 ' �Ũ⇤
R21, ŨR32 ' �ŨR23, (3.100)

while

Ũ⇤
R31 ' �ŨR13 � ŨR12Ũ

⇤
R32. (3.101)

From eq. (3.89) we also have

D�1
M = �Ũ †

RD�1
mD

m⌫D
�1
mD

Ũ⇤
R, (3.102)

which, for the matrix entries, translates to

�ij
Mi

= �Ũ⇤
Rki

�

D�1
mD

m⌫D
�1
mD

�

kl
Ũ⇤
Rlj . (3.103)

For (i, j) = (1, 2) this gives

ŨR21 ' mD1

mD2

m⌫eµ

m⌫ee
. (3.104)

Plugged into eq. (3.103), with the help of eq. (3.101) and (3.100), for (i, j) = (3, 1) we

have

ŨR31 ' mD1

mD3

m⌫e⌧

m⌫ee
. (3.105)

From eq. (3.103) for (i, j) = (2, 3) and using eq. (3.100) in order to write Ũ⇤
R23 in terms

of Ũ⇤
R13 and ŨR31 we find

ŨR13 ' mD1

mD3

(m�1
⌫ )⇤e⌧

m⌫
⇤
⌧⌧

. (3.106)
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Finally, from eq. (3.100) and (3.101) we obtain

ŨR23 ' ŨR13 + Ũ⇤
R31

ŨR12
' mD2

mD3

(m�1
⌫ )⇤µ⌧

(m�1
⌫ )⇤⌧⌧

. (3.107)

Putting everything together, we can approximate the UR matrix as

UR '

0

B

B

B

@

1 �mD1
mD2
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⌫eµ

m⇤
⌫ee

mD1
mD3
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m⌫ee
1 mD2
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m⌫ee

�mD2
mD3

(m�1
⌫ )µ⌧

(m�1
⌫ )⌧⌧

1

1

C

C

C

A

· D�. (3.108)

We can notice now that, given the expression of the ŨR matrix, we have �̃R ' 0,

therefore

�2 ' Arg



m⌫ee

(m�1
⌫ )⌧⌧

�

� 2(⇢ + �), (3.109)

so that the matrix D�, eq. (3.77) is now entirely determined.

Once the matrix UR is expressed in terms of the input parameters through the matrix

m⌫ and its inverse m�1
⌫ , we can obtain an analytical expression for the CP asymmetries

as well. Considering that, by barring the crossing level solutions, the relevant CP asym-

metries are related to N2 and that the spectrum is hierarchical, we can concentrate on

"2↵ and consider only the interference with N3 by taking j = 3 in eq. (2.118). Indeed,

the contribution of the interference with N1 given by j = 1 is heavily suppressed by the

mass hierarchy. We get

"2↵ ' "(M2)

⇢

I↵
23 ⇠

✓

M2
3

M2
2

◆

+ J ↵
23

2

3(1�M2
2 /M2

3 )

�

, (3.110)

where, specialising eqs. (2.120) and (2.121),

I↵
23 ⌘

Im
n

m⇤
D↵2mD↵3(m

†
DmD)23

o

M2 M3 em2 matm
, J ↵

23 ⌘
Im

n

m⇤
D↵2mD↵3(m

†
DmD)32

o

M2 M3 em2 matm

M2

M3
.

(3.111)

Moreover, since also M3 � M2 we can approximate ⇠(M2
3 /M2

2 ) ' 1 and neglect the

term J ↵
23, so that we get the simpler expression

"2↵ ' "(M2) I↵
23, (3.112)

It must be noticed that this result is a feature of any N2-dominated leptogenesis sce-

nario. The additional constraints and relations typical of SO(10)-inspired models will

be employed in what follows.

Always considering VL = 1, we can use our previous results to find a final approximated
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analytical expression for the flavoured CP asymmetries

"2↵ ' "̄(M2)
m2

D↵

m2
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�

�U2
R32

�

�

2
+ m2

D2

�

�(m�1
⌫ )⌧⌧

�

�

�1

matm
Im{U⇤

R↵2UR↵3U
⇤
R32UR33} . (3.113)

Using the expressions in eq. (3.108), we find that also the CP asymmetries follow a

hierarchical pattern

"2⌧ : "2µ : "2e ' ↵2
3m

2
t : ↵2

2m
2
c : ↵2

1m
2
u

↵3mt

↵2mc

↵2
1m

2
u

↵2
2m

2
c

. (3.114)

As one can see, while "2µ is suppressed by about four orders of magnitude (⇠ m2
c/m2

t )

Figure 3.4: Plots of the CP flavoured asymmetries corresponding respectively
to the same three sets of parameters of fig. 3.3, [2]. The solid coloured lines are
the numerical curves (blue, green and red lines correspond respectively to ⌧, µ
and e flavours). The dashed lines are the analytical expressions eqs. (3.113).

compared to "2⌧ , the electronic CP asymmetry is suppressed even by about seven orders

of magnitude compared to "2µ. For this reason, for VL = 1 and avoiding the crossing

level solutions, the electron contribution to the final asymmetry is always completely

negligible. With respect to "2e, it is worth noticing that, since the contribution from

the interference with N3 is so suppressed, actually it becomes comparable to the term

coming from the interference with N1 that we are neglecting in eq. (3.113).

The hierarchy among the CP asymmetries and the goodness of the analytical expression

eq. (3.113) are well shown in fig. 3.4. Here, for the same four sets of parameters of

fig. 3.3, the flavoured CP asymmetries are plotted versus m1, comparing the numerical

result (solid lines) with the analytic expressions (dashed lines).

It is possible to obtain an analytical expression for the flavoured decay parameters as

well. From the definition eq. (3.41) and eq. (2.133), we get an expression of Ki↵ in terms

of the Dirac mass matrix mD

Ki↵ =
|mD↵i|2
m⇤Mi

. (3.115)

Therefore, using the relations found above, for VL = 1 we have

Ki↵ =
m2

D↵

m⇤Mi
|UR↵i|2 . (3.116)
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We can finally employ the analytical expressions of Mi and UR in order to obtain also

the expression of the orthogonal matrix ⌦ in SO(10)-inspired models. From eq. (2.73)

and (3.73) we have

⌦ = D�1/2
m U †V †

L DmD URD�1/2
M , (3.117)

therefore, for VL = 1 we have

⌦ij =
1

p

mi Mj

X

k

mDk U⇤
ki URkj , with VL = 1. (3.118)

Using eqs. (3.90), (3.94), (3.86) and (3.108) we get
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(3.119)

We have therefore shown that, barring crossing level solutions, the SO(10)-inspired

conditions eqs. (3.81) and (3.83) give a hierarchical heavy neutrino mass spectrum with

M1 ⌧ 109 GeV, 109 GeV . M2 . 1012 GeV and M3 � 1012 GeV. Therefore, we can

conclude that in SO(10)-inspired models the N2-dominated scenario of leptogenesis is

naturally realised.

Moreover, the hierarchy in the CP asymmetries, eq. (3.114), suggests that the final

asymmetry is dominantly produced in the ⌧ flavour. Therefore, we can say that the

SO(10)-inspired leptogenesis setup can naturally favour the ⌧ N2-dominated leptogenesis

scenario that is requested by strong thermal leptogenesis. We can then expect that the

condition of strong thermal leptogenesis can be imposed and successfully realised also in

SO(10)-inspired models, thus providing additional constraints on the parameter space.

In chapter 5, we shall consider the impact on the parameter space of the SO(10)-inspired

conditions and the additional strong thermal leptogenesis requirement.
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Chapter 4

Strong thermal leptogenesis and

the absolute neutrino mass scale

In chapter 2 we explained the basic mechanism of leptogenesis and laid out our for-

malism. In particular, we have noticed that, in the minimal setup, the type-I seesaw

lagrangian has a total of 18 free parameters. Leptogenesis generally implies the ad-

ditional condition that the asymmetry produced is compatible with the experimental

observation. Therefore, by requiring successful leptogenesis, eq. (2.174), we can impose

a constraint over the parameters. This condition is able to provide us with some infor-

mation on the heavy neutrino spectrum, see eqs. (2.180) and (2.181). However, this is

in the form of a generic lower bound. Moreover, no additional information is given on

the other parameters such as the mixing angles or the light neutrino masses.

In chapter 3 we showed that both strong thermal leptogenesis and SO(10)-inspired lep-

togenesis are able to provide us with important predictions on the heavy neutrino spec-

trum: in both cases a hierarchical spectrum that favours N2-dominated leptogenesis is

required. This is a remarkable prediction that draws attention to the N2-dominated

scenario, providing solid theoretical reasons for this leptogenesis paradigm. However,

the consequences of both strong thermal leptogenesis and SO(10)-inspired leptogenesis

are much richer than that. In this chapter we shall study what are the consequences on

the leptogenesis mechanism of imposing strong thermal leptogenesis. We shall focus in

particular on the constraints on neutrino parameters that are entailed by this scenario

and on the predictions that can be derived. As we shall see, these will turn out to be

quite robust so that the idea of strong thermal leptogenesis can be put to test especially

by forthcoming cosmological observations.

We shall analyse here how the strong thermal leptogenesis condition (3.62) can imply

interesting constraints, in particular on the absolute neutrino mass scale m1 [1]. We shall

discuss first the more significant case M3 & 5⇥ 1011 GeV, so that the final pre-existing

asymmetry is given by eqs. (3.67), (3.68) and (3.69). As we have seen, this implies the

87
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conditions on the flavoured decay parameters eq. (3.70). Let us study first the case with

normally ordered light neutrino masses.

4.1 Normal Ordering

Our aim is to show that the conditions K1⌧ . 1 and K1e, K1µ & Kst � 1 can be

satisfied simultaneously, without fine-tuned conditions, only if m1 is su�ciently large.

Let us start by analysing K1⌧ . The general eq. (3.43) for the Ki↵’s specialises into

K1⌧ =

�

�

�

�

r

m1

m⇤
U⌧1⌦11 +

r

m2

m⇤
U⌧2⌦21 +

r

m3

m⇤
U⌧3⌦31

�

�

�

�

2

. (4.1)

From this expression, anticipating that the lower bound falls in a range of values

m1 . msol, we can approximate m2 ' msol and m3 ' matm, and write

r

matm

m⇤
U⌧3⌦31 = �

r
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r
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p

K1⌧ ei', (4.2)

where ' is some generic phase. Adopting our assumption on mi, the expression of K1e

and K1µ can be similarly obtained from eq. (3.43) as

K1↵ =
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where ↵ = e, µ. By using eq. (4.2), we get
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We can define K0
1↵ ⌘ K1↵(m1 = 0) and '0 such that
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this way eq. (4.4) can be rewritten as
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Imposing the strong thermal leptogenesis conditions K1↵ > Kst(N
p,i
�↵

), ↵ = e, µ, we get
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Taking the square root of both sides and maximising the left-hand side, we obtain a

lower bound on m1 (↵ = e, µ),

m1 > mlb
1 ⌘ m⇤ max
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when K0,max
1↵ < Kst(N

p,i
�↵

), where
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Because of the smallness of the reactor mixing angle ✓13 there are two consequences:

firstly, the maximum is found for ↵ = e and secondly, imposing Kmax
1⌧ . 1 as prescribed

by the strong thermal leptogenesis condition, both the two terms in K0,max
1e proportional

to Ue3 are suppressed and in this way there is indeed a lower bound for a su�ciently

small value of max[|⌦21|]. Assuming in general |⌦ij |2  M⌦, we can study the depen-

dence of the lower bound mlb
1 on the maximum values of |⌦11| and |⌦21|, by putting

max
h

|⌦11|2
i

= max
h

|⌦21|2
i

= M⌦.

We can study more in detail an intermediate situation in which M⌦ = 2. In fig. 4.1(a) we

plotted, with a solid red line, the lower bound mlb
1 for Np,i

B�L = 0.1 as a function of the

Dirac phase � and at 95% C.L. on the mixing angles. Here ✓13 and ✓12 were drawn from

a Gaussian distribution as reported in tab. 1.1. For the atmospheric mixing angle we

have employed the Gaussian distribution s223 = 0.5± 0.1, centred on the maximal value,

in order to account for the current experimental instabilities. At � = 0 we find (top-left

panel) mlb
1 ' 0.7 meV while for � = ±⇡ we obtain mlb

1 ' 2 meV, showing how a future

determination of the Dirac phase � could tighten the lower bound. The lower bound

becomes more stringent for M⌦ = 1 and we find mlb
1 (� = 0) ' 6 meV. On the other

hand for M⌦ = 3 the lower bound gets relaxed and we obtain mlb
1 (� = 0) ' 0.13 meV.

For M⌦ & 4 the condition K0,max
1↵ < Kst is not verified anymore and hence the lower

bound vanishes.

In order to verify the existence of the lower bound, to test the validity of the analytical

estimation and to show in more detail the level of fine tuning involved in order to

saturate the lower bound, we performed a scatter plot analysis in the space of the 13

parameters (m1, 6 in U , 6 in ⌦). For the scatter plots, the mixing angles were uniformly

extracted on their experimental 3� ranges. The orthogonal matrix ⌦ was also randomly

generated, with the constraint |⌦ij |2  M⌦. For each set of extracted parameters, the

final produced asymmetry N lep,f
B�L was computed according to eq. (3.51), while the final

pre-existing asymmetry was obtained from eqs. (3.67), (3.68) and (3.69). We assumed

flavour-blindness of the initial pre-existing asymmetry by taking

P 0
p⌧?2

2
= P 0

p⌧ = �Ppe = �Ppµ =
1

3
. (4.10)
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(a) (b)

Figure 4.1: Scatter plot points in the plane ��m1 (a) and ✓13�m1 (b) satisfy-
ing successful strong thermal leptogenesis for Np,i

B�L = 10�1, 10�2 10�3 in red,
green and blue respectively, and M⌦ = 2, [1]. The vertical grey band marks the
experimental upper bound from Planck on m1 for NO. In figure (a), the mixing
angles are extracted according to their experimental Gaussian distribution, ex-
cept for ✓23 which is obtained from the Gaussian distribution of s223 = 0.5± 0.1.
The solid red band is the analytic lower bound mlb

1 at 95% C.L. on the mixing
angles. In figure (b) the mixing angles are uniformly extracted over [�⇡/2, ⇡/2].
The shadowed bands mark the experimental 3� range for ✓13.

This corresponds to the most general choice and provides us with the most conserva-

tive results. We shall discuss later the situation without phantom terms �Pp↵ in the

flavoured initial pre-existing asymmetries. It must be noticed, anyways, that the results

depend only logarithmically on these parameters, so the final analysis is rather insen-

sitive to a precise choice. Each set of parameters is accepted if satisfies the successful

strong thermal leptogenesis conditions

⌘lep,fB & ⌘CMB
B and ⌘p,fB  0.1 ⌘lep,fB , (4.11)

and is represented in the scatter plot as a point coloured according to the pre-existing

initial asymmetry: Np,i
B�L = 10�1, 10�2, 10�3 respectively in red, green and blue.

The points in fig. 4.1(a) represent models realising successful strong thermal leptogenesis

in the plane ��m1 for M⌦ = 2. One can see that for Np,i
B�L = 10�1 the minimum values

of m1 at di↵erent values of � are much higher than the analytic estimation given by the

solid red line. The reason is due to the fact that the lower bound is saturated for very

special choices of ⌦ such that |⌦11|2 and |⌦21|2 are as close as possible to the maximum

value M⌦, but at the same time are such that the CP asymmetry "2⌧ , given by eq. (3.112),

is not too suppressed and successful leptogenesis can be realised. This is confirmed by

fig. 4.2 where in the three panels we plotted I⌧
23, |⌦11|2 and |⌦22|2 for M⌦ = 2. We made

a focused search (by fine-tuning the parameters) managing to find a point (the red
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Figure 4.2: Scatter plots for M⌦ = 2 of I⌧
23, |⌦11|2 and |⌦21|2 versus m1, [1].

diamond) where m1 is very close to the lower bound. The same red diamond is shown in

fig. 4.1(a). For this point I⌧
23 gets considerably reduced since it corresponds to a situation

where the term /pm1 in the flavoured decay parameters becomes negligible and the

strong thermal condition is satisfied for a very special condition. Indeed, plugging into

the expression of I⌧
23 the results of eq. (4.2) when the terms on the right-hand side

/pm1,
p

K1⌧ are neglected and |⌦11| , |⌦21| become maximal, we obtain that the final

CP asymmetry is suppressed.

In order to show the importance of the smallness of the reactor mixing angle in the deter-

mination of the lower bound, we also performed a scatter plot with the same procedure,

but letting the mixing angles vary within the whole range of physical values with no

experimental constraints. They were randomly extracted uniformly over [�⇡/2, ⇡/2].

In fig. 4.1(b) we show the results in the plane m1 � ✓13. One can see that the smallness

of ✓13 is crucial for the existence of the lower bound. For larger values, such as ✓13 ⇠ 45�

the lower bound disappears irrespectively of the size of the pre-existing asymmetry.

This can be well understood analytically considering that in the expression for K0,max
1e ,

eq. (4.9), there are two terms / |Ue3|2.
In fig. 4.3 we also show the values of the four relevant decay parameters K1↵ and K2⌧ for

M⌦ = 2. Firstly, we can see that the values of the flavoured decay parameters respect

the strong thermal conditions eq. (3.70). From the plot of K1e vs. m1, bottom-right

panel, we can notice that for values m1 . 10 meV the maximum value of K1e gets con-

siderably reduced until it falls below Kst, indicated by the horizontal dashed line for

Np,i
B�L = 0.1. It is also clear that already below m1 ⇠ 10 meV the possibility to realise

strong thermal leptogenesis requires a high fine tuning in the parameters since in this

case K1e . K0,max
1e ' 4 M⌦ . Kst for large asymmetries and not too unreasonably high

values of M⌦.

In order to quantitatively show that it is actually very di�cult to saturate the analytical

lower bound, thus demonstrating that it requires some level of fine-tuning of the param-

eters, we have plotted the distributions of the values of m1 obtained from the scatter

plots. These are shown in fig. 4.4 for M⌦ = 1, 2, 5, 10 and for Np,i
B�L = 10�1, 10�2, 10�3

(red, green and blue lines respectively). One can see that there is a clear peak around

m1 ' matm and that the distributions rapidly tend to zero when m1 . msol ' 10 meV.
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Figure 4.3: Results of the scatter plots of K2⌧ , K1⌧ , K1µ, K1e versus
m1 for M⌦ = 2, [1]. The horizontal dashed line indicates the value
Kst(N

p,i
�↵

= 0.03) ' 13.

For instance, for M⌦ = 2 and Np,i
B�L = 10�1, top-right panel, it can be noticed that in

more than 99% we have m1 & 10 meV.

For M⌦ = 5 the analytical lower bound vanishes, however we still have that 95% of

points satisfying successful strong thermal leptogenesis are found for m1 & 6 meV. For

M⌦ = 10 one obtains that 95% of points fall at m1 & 1 meV while for M⌦ = 100, which

is not shown in fig. 4.4, this limit decreases at the untestable values m1 & 0.4 meV.

This provides another example of how, more generally, leptogenesis neutrino mass bounds

tend to disappear in the limit M⌦ � 1 [102, 148]. However, considering eq. (2.77), we

can notice that large values of |⌦ij |2 imply high cancellations in the seesaw formula, so

that the lightness of the active neutrino masses becomes a combined e↵ect of these can-

cellations with the actual seesaw mechanism. Therefore, barring these special situations

in which the seesaw mechanism is not genuinely realised, we can expect M⌦ . O(1).

4.2 Inverted Ordering

We shall now discuss the IO case. The analytical procedure shown before for NO can be

applied to the IO case to find an expression similar to eq. (4.8) with the replacements

msol ! matm and U ! U IO. These replacements have a significant impact on the results.

Firstly, replacing msol ! matm tends to push all K1↵ values to much higher values. If
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Figure 4.4: Distributions of the values of m1 from the scatter plots of successful
strong thermal leptogenesis models, [1]. From left to right, top to bottom:
M⌦ = 1, 2, 5, 10. The coloured lines correspond to Np,i

B�L = 10�1, 10�2, 10�3

in red, green and blue respectively. The diamonds mark the m1 minimum values
if found. For Np,i

B�L = 10�1 light and dark red filling indicate regions where,
respectively, 99% and 95% of points accumulate.

one considers again the quantity K0,max
1e in eq. (4.9), it is possible to check that now we

always have K0,max
1e � Kst for Np,i

B�L . 0.1. On the other hand, this time the value of

K1µ has to be tuned in order to be larger than Kst. The reason is that for IO there is

now a cancellation in the quantity

U IO
µ2 � U IO

⌧2

U IO
µ3

U IO
⌧3

, (4.12)

that suppresses K0,max
1µ , though not as strongly as K1e in NO. Indeed one finds now

that K0,max
1µ < Kst, implying the existence of the lower bound, holds only for M⌦ . 0.9.

Therefore, the lower bound on m1 for IO is much looser than for the NO case. This

result is again confirmed by a scatter plot analysis. The results are shown in fig. 4.5

directly in the form of the distribution of probabilities for m1. The distributions were

obtained in the same way as for the NO case, by simply adopting the IO expressions for

the light neutrino mass spectra and the mixing matrix U . We can notice that, in the

IO case, there is no analytical lower bound for M⌦ = 1, 2, 5, 10 and successful strong

thermal leptogenesis could be realised with arbitrarily small m1. However, we still find

a peak in the distributions and a rapid decrease towards small values of m1. Indeed,
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Figure 4.5: IO case. Distributions of the values of m1 from the scatter
plots of successful strong thermal leptogenesis models, [1]. From left to
right, top to bottom: M⌦ = 1, 2, 5, 10. The coloured lines correspond to
Np,i

B�L = 10�1, 10�2, 10�3 in red, green and blue respectively. For Np,i
B�L = 10�1

light and dark red filling indicate regions where, respectively, 99% and 95% of
points accumulate.

the fact that K0,max
1µ is suppressed implies that one has to fine tune the parameters in

the orthogonal matrix in order to maximise K1µ so that it can get slightly higher than

Kst(N
p,i
�µ

). This still acts in a way that, in the limit m1/matm ! 0, the density of

points drops quickly. For instance, we can see that for M⌦ = 2 we still have that 99%

of the solutions are found for values m1 & 3 meV. The tuning on K1µ can be noticed

from the panel in fig. 4.6. Here, values of K1e � Kst ⇠ 13 can be easily found even

for small values of m1. On the other hand, the maximum value of K1µ for small values

m1 ⌧ matm is just a little larger than Kst. Therefore, in the IO case, the leading role

in constraining the absolute neutrino mass scale m1 is played by K1µ, instead of K1e as

in NO.

For completeness, we can now turn to analyse the case in which M3 . 5⇥ 1011 GeV. In

this case, the final pre-existing asymmetry is given by eq. (3.71) and, as already pointed

out, the condition K2⌧ & Kst(N
p,i
�⌧

) becomes K2⌧ + K3⌧ & Kst(N
p,i
�⌧

). Potentially, this

condition can be much more easily satisfied and, in particular, the value of K2⌧ has not

to be necessarily very large. However, this does not substantially change the results on

the absolute neutrino mass scale obtained before for M3 & 5 ⇥ 1011 GeV. Indeed, as
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Figure 4.6: IO case. Results of the scatter plots of K2⌧ , K1⌧ , K1µ, K1e

versus m1 for M⌦ = 2, [1]. The horizontal dashed line indicates the value
Kst(N

p,i
�↵

= 0.03) ' 13.

we have shown, these results depend only on the the K1↵’s rather than on K2⌧ and in

particular on the fact that in the NO (IO) case the value of K0,max
1e (K0,max

1µ ) is very

close to Kst.

In fig. 4.7 we show K2⌧ and the K1↵’s for M3 . 5 ⇥ 1011 GeV in the NO case. We can

compare these results with those obtained for the case of large M3, fig. 4.3, and notice

that now K2⌧ can also be smaller than Kst. Nonetheless, the scatter plot for K1e is

substantially the same, so that the conclusions drawn above are essentially still valid. In

general, for M3 . 5⇥1011 GeV the success rate of successful strong thermal leptogenesis

becomes higher, since the conditions are less restrictive, but still the possibility to get

values m1 . 10 meV relies on a tuned choice of the orthogonal matrix.

4.3 Comments on the results

The results shown before were all obtained with some assumptions and present some

features that are worth discussing with some detail. Here we shall comment on the most

relevant issues.
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Figure 4.7: NO case with M3 . 5⇥1011 GeV, [1]. Results of the scatter plots of
K2⌧ , K1⌧ , K1µ, K1e versus m1 for M⌦ = 2. The horizontal dashed line indicates

the value Kst(N
p,i
�↵

= 0.03) ' 13.

4.3.1 Neutrino oscillation data

The results we obtained rely on the smallness of K0,max
1e and K0,max

1µ for NO and IO re-

spectively, once K1⌧ . 1 is imposed. As we have seen, the condition K0,max
1e < Kst(N�e),

which allows for the existence of the lower bound in NO, is enforced by the current mea-

sured value of the PMNS matrix entries, in particular |Ue3|2 ⌧ 1. Similarly, in IO we

have K0,max
1µ < Kst(N�µ) thanks to

�

�U IO
µ3 � U IO

⌧2 U IO
µ3 /U IO

⌧3

�

�

2 ⌧ 1. It is then quite re-

markable that the strong thermal leptogenesis conditions realise an interesting interplay

between low-energy neutrino data and leptogenesis predictions.

4.3.2 Pre-existing asymmetry phantom terms

In the derivation of our results we have assumed eq. (4.10). It is possible to study

how the results would vary if the initial pre-existing asymmetry had the same flavour

composition for leptons and anti-leptons, so that �Pp↵ = 0. In this case there is no

lower bound for any value of M⌦, since now, for instance, the strong thermal condition

is also satisfied if
 

1� P 0
2e

P 0
2⌧?2

!

. 10�7 (4.13)
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in eq. (3.67) (without �Pp↵), independently of the value of K1e, which depends on m1.

From eqs. (3.34), (3.44) and (3.42) we obtain

P 0
2e

P 0
2⌧?2

=
K2e

K2e + K2µ
⇠ 1 ) K2µ ' 0, (4.14)

therefore this situation is realised only for very special models where N2 essentially

decays into leptons without a muon component. Clearly, this is a very special case,

though not excluded by experimental data. However, even though the lower bound on

m1 can be evaded, the m1 distributions are not modified by these very special solutions.

4.3.3 Flavour coupling

It is important to remark here that in our analysis we have fully neglected flavour

coupling of the Boltzmann equations. This e↵ect would generally imply modifications of

the results, since it would open new ways for the pre-existing asymmetry to escape N1’s

washout [123]. For this reason, accounting for flavour coupling would then make strong

thermal leptogenesis conditions more strict, so tightening the lower bound on m1.

We can briefly analyse how the strong thermal leptogenesis setup would change if these

e↵ects were taken into account [111]. We shall always consider the heavy neutrino mass

spectrum as in eqs. (3.65), (3.66) and, for simplicity take M3 & 5 ⇥ 1011 GeV. In this

case, as we have seen, N2’s dynamics take place in the two fully-flavoured regime, while

N1’s washout happens in the three fully-flavoured one.

Let us start by analysing the production stage in the two fully-flavoured regime. When

flavour coupling is considered, the relevant Boltzmann equations for the asymmetry

production are given by eqs. (3.37) and (3.36). We can notice that the asymmetries in

each flavour ↵ = ⌧, ⌧?
2 are coupled by means of the two-flavour coupling matrix C(2) in

eq. (3.38). We can solve the system of Boltzmann equations in a basis (⌧ 0, ⌧?
2

0
) in which

the equations are uncoupled [123]. The basis change is performed by the unitary matrix

Q that diagonalises the matrix

P 0
2 ⌘

 

P 0
2⌧?2

0

0 P 0
2⌧

!

· C(2), (4.15)

as

Q P 0
2 Q�1 = P 0

20 ⌘ diag
⇣

P 0
2⌧?2

0 , P 0
2⌧ 0

⌘

. (4.16)

Using eq. (3.42) we can rewrite

P 0
2 =

 

K2⌧?2
/K2 0

0 K2⌧/K2

!

· C(2). (4.17)



Chapter 4. Strong thermal leptogenesis and the absolute neutrino mass scale 98

If K2⌧?2
6= K2⌧ , a perturbative expansion in the o↵-diagonal terms of C(2) can be per-

formed and it is easy to obtain an expression of the entries of Q and Q�1:

Q ⌘
 

Q
⌧?2

0
⌧?2

Q
⌧?2

0
⌧

Q⌧ 0⌧?2
Q⌧ 0⌧

!

'

0

B

@

1 C(2)

⌧?2 ⌧

K
2⌧?2

K
2⌧?2

�K2⌧

C(2)

⌧⌧?2

K2⌧
K2⌧�K

2⌧?2
1

1

C

A

, (4.18)

Q�1 ⌘
0

@

Q�1
⌧?2 ⌧?2

0 Q�1
⌧?2 ⌧ 0

Q�1
⌧⌧?2

0 Q�1
⌧⌧ 0

1

A '

0

B

@

1 �C(2)

⌧?2 ⌧

K
2⌧?2

K
2⌧?2

�K2⌧

�C(2)

⌧⌧?2

K2⌧
K2⌧�K

2⌧?2
1

1

C

A

. (4.19)

From eq. (4.16) and the expressions of Q and Q�1 we obtain that the primed decay

parameters are K2⌧?2
0 ' K2⌧?2

and K2⌧ 0 ' K2⌧ . Solving the Boltzmann equations in the

uncoupled basis and then rotating back to the (⌧, ⌧?
2 ) one we can replace eqs. (3.39)

and (3.40) with

N�
⌧?2

(TL2) ' "2⌧?2 f

⇣

K2⌧?2

⌘

+ C(2)

⌧?2 ⌧

K2⌧?2

K2⌧?2
�K2⌧

"2⌧
h

f

⇣

K2⌧?2

⌘

� f (K2⌧ )
i

, (4.20)

N�⌧ (TL2) ' "2⌧f (K2⌧ ) + C(2)

⌧⌧?2

K2⌧

K2⌧?2
�K2⌧

"2⌧?2

h

f

⇣

K2⌧?2

⌘

� f (K2⌧ )
i

. (4.21)

The pre-existing asymmetry in the two fully-flavoured regime is ruled by equations

similar to eqs. (3.36), (3.37) but without the production term, i.e.

dNp
�

⌧?2

dz2
= �P 0

2⌧?2
W ID

2 (z2)
X

�

C(2)

⌧?2 �
Np

��
(z2), (4.22)

dNp
�⌧

dz2
= �P 0

2⌧W
ID
2 (z2)

X

�

C(2)
⌧� Np

��
(z2). (4.23)

Therefore we get

Np
�

⌧?2
' Np,i

�
⌧?2

e
� 3⇡

8 K
2⌧?2 + C(2)

⌧?2 ⌧

K2⌧?2

K2⌧?2
�K2⌧

✓

e
� 3⇡

8 K
2⌧?2 � e�

3⇡
8 K2⌧

◆

Np,i
�⌧

, (4.24)

Np
�⌧
' Np,i

�⌧
e�

3⇡
8 K2⌧ + C(2)

⌧⌧?2

K2⌧

K2⌧?2
�K2⌧

✓

e
� 3⇡

8 K
2⌧?2 � e�

3⇡
8 K2⌧

◆

Np,i
�

⌧?2
, (4.25)

where Np,i
�

⌧?2
= P 0

p⌧?2
(1 � P 0

p⌧ )N
p,i
B�L and Np,i

�⌧
= (P 0

p⌧ + �Pp⌧ )N
p,i
B�L. It is important to

stress that these approximated expressions hold only in the case of non-degenerate decay

parameters. If K2⌧?2
' K2⌧ the perturbative expansion is not reliable anymore [149] and

the full formulae must be adopted. We can notice, however, that these degenerate cases

require quite a high level of fine tuning in the leptogenesis setup, therefore in what

follows we will always bar them, without loss of generality.

The impact of flavour-coupling at N2’s decay is plotted in fig. 4.8(a). Here we consider

flavour coupling only in the two fully-flavoured regime, while we neglect the coupling
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in the three fully-flavoured one, C(3) = 1. The asymmetries in eqs. (4.20), (4.21) and

(4.24), (4.25) will then undergo N1’s washout as shown in the previous chapter, in the

uncoupled regime. Here a random extraction of leptogenesis parameters is performed and

(a) (b)

Figure 4.8: Plot of the final baryon-to-photon ratio ⌘(c)B computed in flavour-

coupled strong thermal leptogenesis versus ⌘(u)B , computed from the same setup,
but in the unflavoured regime. The initial pre-existing asymmetry we required
to washout is Np,i

B�L = 10�3 and we have M⌦ = 2, 109 GeV M2  5⇥1011 GeV
and NO, [111].
(a) Flavour coupling at N2’s decay only is considered,
(b) Flavour coupling at N1’s washout only is considered.
Blue dots indicate models in which strong thermal leptogenesis is successful only
in the uncoupled regime, while red points denote models in which strong thermal
leptogenesis is realised both in the uncoupled and in the coupled regimes. The

solid line represents ⌘(c)B = ⌘(u)B , the dashed lines ⌘(c)B = (1 � C(3)
e⌧ � C(3)

µ⌧ ) ⌘(u)B ,

while the dotted lines in (a) are ⌘(c)B = 4±1 ⇥ ⌘(u)B . We hatched out the part of

the plot corresponding to ⌘(u)B  5.8 · 10�10, the 3� lower bound, eq. (1.11)

the final baryon-to-photon ratio is computed both in the flavour-uncoupled, ⌘(u)B , and in

the coupled, ⌘(c)B , regimes. A NO spectrum of the light neutrino masses is considered. At

the same time, the e�cient washout of an initial pre-existing Np,i
B�L = 10�3 is required.

We selected a standard setup with M⌦ = 2 and with M2 logarithmically extracted

between 109 GeV M2  5⇥ 1011 GeV. In fig. 4.8(a) the blue dots represent models in

which strong thermal leptogenesis is successful only in the uncoupled regime, while red

points indicate models in which strong thermal leptogenesis is successful in both regimes.

The solid line represents a baryon-to-photon ratio equal in the coupled and uncoupled

regimes, i.e. no significant e↵ect from flavour coupling. The two dotted lines indicate
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an enhancement/suppression of the final asymmetry in the coupled regime of a factor 4.

The dashed lines represent an enhancement/suppression of 40%, which is shown for an

easier comparison with the case with flavour coupling at N1’s washout, discussed below.

From fig. 4.8(a) it can also be noticed that the number of red points is comparable with

the number of blue points. This shows that strong thermal leptogenesis, when flavour

coupling at N2’s decay is considered, is not harder to realise than in the uncoupled

case. This can be explained by noticing that the flavour coupling in the two-flavoured

regime does not modify significantly the strong thermal leptogenesis conditions found

in the uncoupled case. As it can be seen from eq. (4.25), flavour coupling here adds the

requirement

K2⌧?2
� 1, (4.26)

in order to suppress the additional term proportional to Np,i
�

⌧?2
. Nevertheless, this is not

particularly di�cult to realise together with the conditions (3.70). A rough estimate

of the bounds given by the two dotted lines can be obtained if the ratio of the two

terms in eq. (4.21) is taken. We can consider the limit case K2⌧?2
, K2⌧ � 1 and the fact

that the CP asymmetries are bounded from above "2↵ . 10�6M2/(1010 GeV)
p

K2↵/K2

[123]. Considering M2 ' 5⇥ 1011 GeV and the strong thermal leptogenesis conditions,

we obtain a value for this ratio ⇠ 3, in absolute value. The sign depends on the sign

of "2⌧?2 , which can be negative. Therefore, in the coupled regime, the final asymmetry

given by N lep,f
�⌧

can be at most approximately four times larger (or smaller) than the

uncoupled case.

We can now turn to study the dynamics in the three fully-flavoured regime. We shall

first study flavour coupling only at N1’s washout, thus assuming C(2) = 1. This way it

will be possible to analyse separately the e↵ects on the final asymmetry produced by

flavour coupling in each regime. Finally, we will combine the two e↵ects.

Both the produced and the pre-existing asymmetries undergo N1’s washout. In both

cases, we have to solve eq. (3.49) with the coupling matrix C(3) in eq. (3.50). Since the

treatment is the same for both the produced and the pre-existing asymmetry, we shall

generally indicate with N�↵ the former as well as the latter.

The Boltzmann equations can be solved in an uncoupled, double-primed basis (e00, µ00, ⌧ 00)

which is reached thanks to the unitary matrix V that diagonalises the matrix

P 0
1 ⌘

0

B

@

P 0
1e

P 0
1µ

P 0
1⌧

1

C

A

· C(3), (4.27)

as

V P 0
1 V �1 = P 0

100 ⌘ diag
�

P 0
1e00 , P 0

1µ00 , P 0
1⌧ 00

�

. (4.28)
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The final pre-existing asymmetry will have a general form given by [123]

N f
�↵

=
X

↵00

V �1
↵↵00e

� 3⇡
8 K1↵00

2

4

X

�

V↵00�N�� (TL2)

3

5 , (4.29)

where, as already mentioned, N�↵ stands for both the pre-existing and the produced

asymmetries.

In order to obtain approximated expressions for the final asymmetries, and thus also

for the entries of V and V �1, it is convenient to directly consider here the conditions

imposed by strong thermal leptogenesis in the uncoupled case. Indeed, in the flavour-

coupled regime, the final asymmetry in each flavour will be composed of the terms

already present in the uncoupled case, plus terms proportional to the asymmetries in

the other flavours. Therefore, we can say that a necessary condition for successful strong

thermal leptogenesis in the flavour-coupled case is given by the conditions obtained in

the uncoupled one, eq. (3.70). Hence, we can perturbatively expand in the o↵ diagonal

terms of C(3) and in exp(�3⇡/8K1�), with � = e, µ. Attention must be paid here as well

to the degenerate cases that, given the conditions in eq. (3.70), can occur if K1e ' K1µ.

Barring these cases without loss of generality, we end with the set of equations for the

final asymmetry

N f
�e
' N�e(T

0)e�
3⇡
8 K1e � C(3)

e⌧ N�⌧ (T
0)e�

3⇡
8 K1⌧ , (4.30)

N f
�µ
' N�µ(T 0)e�

3⇡
8 K1µ � C(3)

µ⌧ N�⌧ (T
0)e�

3⇡
8 K1⌧ , (4.31)

N f
�⌧
' N�⌧ (T

0)e�
3⇡
8 K1⌧ �



C(3)
⌧e

K1⌧

K1e
N�e(T

0) + C(3)
⌧µ

K1⌧

K1µ
N�µ(T 0)

�

e�
3⇡
8 K1⌧ , (4.32)

where M1 . T 0 . 5 ⇥ 108 GeV as in the previous chapter, and, again, the N�↵ ’s mean

both the pre-existing and the produced asymmetries.

Since we are here considering flavour coupling only at N1’s washout, for the produced

asymmetry, N�e(T
0) and N�µ(T 0) are given by eqs. (3.46), (3.47) and (3.39), (3.40).

Always ignoring flavour coupling in the two fully-flavoured stage, for the pre-existing

asymmetry we have (� = e, µ), as in the uncoupled regime

Np
��

(T 0) =

(

�

1� P 0
p⌧

�

"

P 0
2�

P 0
2⌧?2

P 0
p⌧?2

e
� 3⇡

8 K
2⌧?2 +

 

1� P 0
2�

P 0
2⌧?2

!

⇣

1� P 0
p⌧?2

⌘

#

+ �Pp�

�

Np,i
B�L, (4.33)

Np
�⌧

(T 0) =
�

P 0
p⌧ + �Pp⌧

�

e�
3⇡
8 K2⌧ Np,i

B�L. (4.34)

It is interesting to notice that, given the strong thermal leptogenesis conditions eq. (3.70),

the final asymmetry produced by leptogenesis in the flavour-coupled regime is [5]

N lep,f
B�L =

X

↵

N lep,f
�↵
' N�⌧ (TL2)

⇣

1� C(3)
e⌧ � C(3)

µ⌧

⌘

e�
3⇡
8 K1⌧ . (4.35)
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Considering flavour coupling in the three fully-flavoured regime only, N�⌧ (TL2) e�
3⇡
8 K1⌧ ,

with N�⌧ (TL2) given by eq. (3.40), is the final asymmetry produced in the uncoupled

case. We can immediately notice that, when flavour coupling at the washout only is

taken into account, the final asymmetry produced is reduced by a factor (�C(3)
e⌧ �C(3)

µ⌧ ).

This amounts to a reduction of around 40% with respect to the uncoupled case and

can be seen in fig. 4.8(b). Here we plotted points realising successful strong thermal

leptogenesis only in the uncoupled regime (blue dots) and points that realise successful

strong thermal leptogenesis also when flavour coupling at N1’s washout is considered

(red dots). In the generation of this plot we adopted the same procedure described for

fig. 4.8(a). It is evident the reduction of the final asymmetry due to flavour coupling.

Points tend to cluster around the dashed line that marks ⌘(c)B = (1�C(3)
e⌧ �C(3)

µ⌧ )⌘(u)B . At

the same time, it is interesting to notice that here, unlike in the previous case, the red

dots are fewer than the blue ones. This means that successful strong thermal leptogenesis

with flavour coupling in the three fully-flavoured regime is much more di�cult to realise

than in the uncoupled regime. This can be understood by looking at eq. (4.32), where

the contribution of N��(T
0), � = e, µ, must be suppressed by the power law K1⌧/K1�,

and not exponentially as usual, thus forcing

K1⌧ ⌧ 1. (4.36)

We can now turn to consider together both cases analysed so far.

In the fully-coupled regime, when both the flavour coupling in the two and in the

three fully-flavoured regimes are considered, the final produced asymmetry is given by

eqs. (4.30), (4.31) and (4.32) with N�e(T
0) and N�µ(T 0) given by eqs. (3.46), (3.47) and

(4.20), (4.21).

The final pre-existing asymmetry is always given by eqs. (4.30), (4.31) and (4.32), but

now we have

Np
��

(T 0) =
P 0
2�

P 0
2⌧?2

Np
�

⌧?2
(TL2) +

"

�

1� P 0
p⌧

�

 

1� P 0
2�

P 0
2⌧?2

!

⇣

1� P 0
p⌧?2

⌘

+ �Pp�

#

Np,i
B�L,

(4.37)

Np
�⌧

(T 0) = Np
�⌧

(TL2), (4.38)

where Np
�

⌧?2
(TL2) and Np

�⌧
(TL2) are given by eqs. (4.24) and (4.25). The results in the

fully-coupled regime are shown in fig. 4.9. Here the same conventions as for fig. 4.8 apply.

As expected, the results in the fully-coupled case show the combination of the e↵ects

of the previous cases. From fig. 4.9 we can notice that the points show the spreading

we found already in fig. 4.8(a) for the washout in the two fully-flavoured regime only,

while at the same time they tend to cluster around ⌘(c)B =
⇣

1� C(3)
e⌧ � C(3)

µ⌧

⌘

⌘(u)B as in

fig. 4.8(b), where the flavour coupling at N1’s washout only was considered. We can
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Figure 4.9: (a) Plot of the final baryon-to-photon ratio ⌘(c)B in fully-coupled

strong thermal leptogenesis versus ⌘(u)B , computed from the same setup, but
in the uncoupled regime, [111]. In the fully-coupled regime flavour coupling is
considered both at N2’s decay and at N1’s washout. The same setup and legend
as in fig. 4.8 applies.

summarise the overall e↵ect of flavour coupling by saying that coupling in the two-

flavoured regime causes a spreading of the points around the line ⌘(c)B = ⌘(u)B , while the

coupling in the three-flavoured regime translates downwards this line, reducing the final

asymmetry produced by leptogenesis by a factor ⇠40%.

A comparison between red and blue points shows that when successful strong thermal

leptogenesis in the fully-coupled case is required, the dominant e↵ect is given by the

coupling at N1’s washout. Indeed, in fig. 4.9 we can see that the red points tend to

cluster around ⌘(c)B =
⇣

1� C(3)
e⌧ � C(3)

µ⌧

⌘

⌘(u)B , as in fig. 4.8(b), and their number is much

smaller than the number of blue points. The dominance of the coupling in the three-

flavoured regime can be explained if we recall that, unlike the coupling in the two-fully

flavoured regime, strong thermal leptogenesis with flavour coupling at N1’s washout

requires the very stringent condition K1⌧ ⌧ 1, as discussed above, eq. (4.36). On the

contrary, the condition K2⌧?2
� 1 imposed, as we have seen, by the coupling in the two-

fully flavoured regime eq. (4.26), is easier to be realised and, together with eq. (3.70),

forces the final asymmetry to be close to what is found with flavour coupling at N1’s

washout alone. For this reason, it is a good approximation to neglect flavour coupling

in the two fully-flavoured regime and consider only coupling in the three fully-flavoured

one [5].

We can now comment on the changes that these e↵ects imply on the lower bound mlb
1 .

In the derivation of the analytical bound, eq. (4.8), we employed K1⌧ ' 0. This is indeed

the case we have described when flavour coupling at N1’s washout is considered, that
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(a) (b)

Figure 4.10: Distribution of probability of m1 for M⌦ = 2 and Np,i
B�L = 10�3,

[111]. In the right column, flavour coupling is taken into account, while in the
left column the uncoupled case is shown. NO case.

implies eq. (4.36). Therefore we can conclude that flavour coupling does not change the

analytical lower bound in eq. (4.8).

Nonetheless, flavour coupling severely strengthen the condition on K1⌧ , that must now

be very small. From the top-right panel in fig. 4.3, the K1⌧ vs. m1 scatter plot, we

can see that low values of K1⌧ can be obtained much more easily for high values of m1,

since this allows for cancellations in the formula of K1⌧ . It is possible to obtain quite

a low K1⌧ also for smaller values of m1, as can be seen in the case of the red diamond

corresponding to the saturation of the analytical lower bound, but this can happen,

as already discussed, only at the expense of fine-tuning in the decay parameters and

in the seesaw formula. For this reason, a good tool to understand the modifications

caused by flavour coupling is again given by the distribution of the values of m1. As

an example, in fig. 4.10 we show the distributions of m1 both in the uncoupled and in

the coupled cases, for M⌦ = 2 and Np,i
B�L = 10�3. For simplicity, we have considered

NO light neutrino spectrum. Here we can notice that the values of m1 above which we

have 95% and 99% of points are shifted towards higher values when flavour coupling is

considered. In particular, for Np,i
B�L = 10�3 we can notice that in the uncoupled case

m1 > 11.8 meV for 95% of points, while in the coupled regime m1 > 18.8 meV for 95%

of points. Similarly, in the uncoupled case we have m1 > 6.7 meV for 99% of points,

while in the coupled one we get m1 > 11.1 meV.

We can conclude that, as we could expect since the beginning of this detailed study,

flavour coupling tends to tighten the bounds on m1, pushing them towards higher values

that are approximately a factor 2 larger than in the uncoupled case. As we have seen,

this is explained by the need of strong thermal leptogenesis in the coupled regime for

high values of m1 that allow K1⌧ to be very small.
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4.4 Experimental implications of the lower bound

We have seen that the strong thermal leptogenesis conditions imply, for not too large

values of M⌦, a lower bound on m1. In general, we have noticed a preference for rather

high values of m1 also for those cases (such as IO) in which the analytical lower bound

was not present. In particular, referring to a standard case with M⌦ = 2 we have

m1 & 10 meV for 99% of points in NO and m1 & 3 meV for 99% of points in IO.

This conclusion can be regarded as quite robust, and we can speculate on the power of

di↵erent experimental observations to test the strong thermal leptogenesis scenario by

providing some results on the absolute neutrino mass scale. Clearly, the NO case can

be more easily tested since it favours values of m1 su�ciently large to produce sizeable

deviations from the fully hierarchical case. Therefore, it is very important that in the

next years neutrino experiments will be able to solve the ambiguity between NO and IO

neutrino masses.

We shall discuss here the implication of the obtained lower bounds on some important

experimental observations.

4.4.1 Cosmological observations

As mentioned in section 1.2.2.3, cosmological observations are sensitive to neutrino

masses and are able to place an upper bound on their sum. Future observations

could potentially reach a precision of �(
P

i mi) ' 10 meV [150]. In the case of NO,

assuming that experiments would be able to measure the hierarchical lower limit finding
P

i mi = (60 ± 10) meV, it would be possible to place a 2� upper bound m1 . 10 meV.

From our results, this means that future cosmological observations will be potentially

able to severely constrain strong thermal leptogenesis. On the other hand, a measure-

ment
P

i mi & (95± 10) meV would correspond to m1 & (20± 5) meV, allowing to place

a 2� lower bound m1 & 10 meV. This would be in agreement with the expectations from

strong thermal leptogenesis.

In the case of IO, expected values m1 & 3 meV would correspond to measurements
P

i mi & (100 ± 10) meV, generally not distinguishable from the inverted hierarchical

limit. As already mentioned, this shows that NO would be a much more favourable op-

tion than IO for a significant test of strong thermal leptogenesis, since it more strongly

favours detectable deviations from the hierarchical limit. It should be noticed that nor-

mally ordered neutrino masses with m1 ' 20 meV would also yield
P

i mi ' 100 meV

as for IO hierarchical neutrino masses (m1 ⌧ msol) thus providing another reason why

it is important that neutrino oscillation experiments will be able to solve the NO-IO

ambiguity independently of absolute neutrino mass experiments.

We can in any case notice that the cosmological observations, especially when com-

bined, are becoming able to put more and more stringent upper bounds. We can men-

tion, in particular the promising results obtained when the data from CMB anisotropies
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are combined with those from the Lyman-↵ forest. Combining Planck13 plus a low-l

WMAP+Planck polarisation likelihood, the high-l likelihood from the Atacama Cos-

mology Telescope and the South Pole Telescope (SPT) ground-based experiments with

the measurement of the BAO scale by the BOSS collaboration and the BOSS Lyman-

↵ likelihood, it is possible to place an upper bound
P

i mi < 140 meV at 95% C.L.

[151]. Combining the BOSS Lyman-↵ likelihood with the full Planck mission polarisa-

tion likelihood, the upper bound is improved to
P

i mi < 120 meV at 95% C.L. [152].

Considering the CMB data from Planck15, BAO and data from luminous red galaxies

it is possible to tighten even more the upper bound to
P

i mi < 110 meV at 95% C.L.

[153]. It is interesting to notice that if cosmological observations become able to place

an upper bound
P

i mi < 100 meV at a reliable significance level, they would also be

able to exclude the IO neutrino spectrum.

While these analyses are improving, but are still placing an upper bound which allows

for the fully hierarchical limit, some results pointing at a non-vanishing absolute neu-

trino mass scale have already been published. We can mention, in particular, the results

obtained by the Planck collaboration in 2013 when the Sunyaev-Zel’dovich e↵ect [154] is

taken into account. Adding the constraints imposed by the Sunyaev-Zel’dovich e↵ect to

the CMB and BAO data, the Planck collaboration obtained for the sum of the neutrino

masses
P

i mi = (0.22±0.09) eV [155], thus pointing at nonzero m1. More recently, com-

bining CMB datasets with low-redshift growth of structure measurements from BOSS

provided a tighter prediction on the sum of the neutrino masses
P

i mi = (0.36±0.10) eV

at 3.4� [156]. Though these results are susceptible of large improvements and modifi-

cations, they can be nonetheless regarded with some interests as an indication of a

deviation of the light neutrino spectrum from the fully hierarchical limit, as favoured by

strong thermal leptogenesis.

4.4.2 Neutrinoless double-beta decay

In fig. 4.11, we plotted the results of successful strong thermal leptogenesis on the 0⌫��

decay e↵ective mass mee, eq. (1.39). The yellow points correspond to vanishing pre-

existing initial abundance, i.e. strong thermal leptogenesis conditions not imposed. It

can be seen that for NO the e↵ective neutrino mass mee can be well below m1 thanks

to phase cancellations [157]. Imposing the 99% statistical lower bound on the absolute

neutrino mass scale m1 ' 10 meV, the e↵ective neutrino mass falls around m1 ' 1 meV,

as indicated by the solid horizontal and vertical lines in fig. 4.11. This implies that

strong thermal leptogenesis is not able to produce e↵ective constraints on mee. Vice

versa, a future measurement of mee & 10 meV would imply necessarily m1 & 10 meV,

providing an interesting support to the strong thermal leptogenesis expectations.

Similarly, in the IO case, imposing the statistical lower bound on m1 does not give any

useful information on mee, since its corresponding value coincides with that obtained in

the fully hierarchical limit.
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Figure 4.11: Scatter plot [1] of the neutrinos double-beta decay e↵ective mass
mee in strong thermal leptogenesis, for M⌦ = 2 and Np,i

B�L = 10�1, 10�2, 10�3, 0
respectively in red, green, blue and yellow. The solid and dashed vertical lines
indicate the values of m1 above which respectively 99% and 95% of the points
are found.

4.4.3 Tritium beta decay

As mentioned in section 1.2.2.1, in case of absence of signal, the KATRIN experiment will

be able to place an upper bound on the e↵ective electron neutrino mass m� . 0.2 eV

[49]. This translates into a similar upper bound on m1. Therefore, it will not be

able to place severe constraints on strong thermal leptogenesis. In the PROJECT 8

experimental proposal [158], the energy of electrons emitted in tritium beta decay is

determined from the frequency of cyclotron radiation and the upper bound could be

improved to m� . 50 meV. This would translate again into a similar upper bound on

m1, providing a more stringent constraint. Nonetheless, this is still not able to severely

corner strong thermal leptogenesis.

We can therefore conclude that the lower bounds imposed by strong thermal leptogenesis,

in particular the more stringent statistical ones, are remarkably interesting in relation

to forthcoming cosmological observations. This kind of experimental evidence results,

at the moment, far more compelling than other neutrino mass experiments.





Chapter 5

SO(10)-inspired leptogenesis and

neutrino parameters

In chapter 3, we mentioned that, in general, it is possible to resort to viable embed-

dings of the seesaw mechanism in larger theoretical frameworks. This is what is done

when referring to SO(10)-inspired leptogenesis. We shall now consider this possibility

by studying the constraints on the neutrino parameters originating from the SO(10)-

inspired conditions, when imposing successful leptogenesis as well as the successful strong

thermal leptogenesis.

In section 3.3 we introduced the two conditions that define SO(10)-inspired leptogenesis

and derived analytical expressions for the quantities relevant to leptogenesis, within the

assumption VL = 1. We also showed that these analytical relations very well reproduce

the numerical results, away from some special, fine-tuned regions called crossing level

solutions. As already mentioned, we shall avoid these particular situations and deal with

hierarchical, non-resonant leptogenesis.

We can now impose successful leptogenesis, and, later, successful strong thermal lepto-

genesis, on the SO(10)-inspired framework and see what constraints on the parameters

arise. In this respect, we shall extend the results found in the hierarchical limit of the

light neutrino masses [125, 159] to arbitrary values of m1.

5.1 Successful leptogenesis condition

The final produced asymmetry should be calculated using eq. (3.51). However, from

eq. (3.114) we noticed that, in the approximation VL = 1, the tauon CP asymmetry

is by far the dominant one and the inclusion of the washout at the production cannot

change the ⌧ -dominance as a contribution to the final B�L asymmetry. We can therefore

neglect the contribution of the other flavours and retain only the term proportional to

109
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"2⌧ in eq. (3.51)

N lep,f
B�L ' "2⌧ f (K2⌧ ) e�

3⇡
8 K1⌧ . (5.1)

It should be stressed that this result holds in the VL = 1 approximation. As we shall see

later on, if we relax this approximation, a µ-dominated solution appears for m1 & 10 meV

[159, 160]. For the time being, we shall assume VL = 1 and stick to the approximation

eq. (5.1). Using the explicit expressions eqs. (3.108), (3.94) and (3.116), we are now able

to express the final B �L asymmetry in SO(10)-inspired models in terms of the ↵i and

the neutrino parameters.

We can specialise eq. (3.113) to the case ↵ = ⌧ , obtaining

"2⌧ ' 3M2

16⇡v2
m2

D3

m2
D3 |UR32|2 + m2

D2

1
�

�(m�1
⌫ )⌧⌧

�

�

Im
�

(U⇤
R32 UR33)

2
 

. (5.2)

Using the expressions of UR and M2, we get

"2⌧ ' 3

16 ⇡

↵2
2 m2

c

v2

|m⌫ee|
⇣

�

�(m�1
⌫ )⌧⌧

�

�

2
+
�

�(m�1
⌫ )µ⌧

�

�

2
⌘�1

m1 m2 m3

�

�(m�1
⌫ )µ⌧

�

�

2

�

�(m�1
⌫ )⌧⌧

�

�

2 sin ↵L, (5.3)

where ↵L is the e↵ective SO(10)-inspired leptogenesis phase, in the approximation

VL = 1. It is given by

↵L ⌘ 2 Arg
⇥

(m�1
⌫ )⌧⌧

⇤� 2 Arg
⇥

(m�1
⌫ )µ⌧

⇤

+ �2 � �3. (5.4)

From eqs. (3.88) and (3.109) we have

�2 � �3 = Arg[m⌫ee]� 2 Arg
⇥

(m�1
⌫ )⌧⌧

⇤

+ ⇡ � 2(⇢ + �), (5.5)

so that we obtain

↵L = Arg[m⌫ee]� 2 Arg
⇥

(m�1
⌫ )µ⌧

⇤

+ ⇡ � 2(⇢ + �). (5.6)

We can also obtain analytical expressions of K2⌧ and K1⌧ . From eq. (3.116) we get

K2⌧ ' m2
D3

m⇤M2
|UR32|2 ' m1 m2 m3

m⇤

�

�(m�1
⌫ )µ⌧

�

�

2

|m⌫ee|
�

�(m�1
⌫ )⌧⌧

�

�

, (5.7)

and

K1⌧ ' m2
D3

m⇤M1
|UR31|2 ' |m⌫e⌧ |2

m⇤ |m⌫ee|
. (5.8)
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From this equation and using eq. (3.91), we can obtain an explicit expression in terms

of the mixing angles and phases that will prove useful

K1⌧ ' |m1Ue1U⌧1 + m2Ue2U⌧2 + m3Ue3U⌧3|2
m⇤

�

�m1U2
e1 + m2U2

e2 + m3U2
e3

�

�

=

�

�c13c12s12s23(m1e2i⇢ �m2) + s13c13c23
�

m3 ei(2���) �m2 s212e
i� �m1 c212e

i(2⇢+�)
�

�

�

2

m⇤
�

�m1 c212c
2
13e

2i⇢ + m2 s212c
2
13 + m3 s213e

2i(���)
�

�

.

(5.9)

Putting everything together we can find an explicit expression for the final B�L asym-

metry1 [2]

N lep,f
B�L '

3
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2m
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v2
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. (5.10)

It is interesting to notice that in this expression the asymmetry does not depend on

↵1 and ↵3 [125]. The only left non-observable parameter is ↵2, which, however, given

eq. (3.81), cannot be in any case too large. This shows the power of the SO(10)-inspired

conditions to severely restrict the set of free parameters. The final asymmetry is indeed

Figure 5.1: Plots of the final ⌘B for the same three sets of parameters of
figs. 3.3 and 3.4, [2]. The numerical results (blue solid lines) are compared
with the analytical results (black dashed lines) obtained using eq. (5.10).
The dotted lines are obtained for VL 6= 1. From left to right, we have
✓L12 = (0.79�, 4.1�, 0.1�), ✓L13 = (0, 0.05�, 0.07�), ✓L23 = (2.3�, 2.3�, 2.3�),
�L/⇡ = (0.2, 0.63, 1.22), ⇢L/⇡ = (1.65, 0.85, 0.79) and �L/⇡ = (1.05, 1.1, 0.94).
The shaded band marks the 3� interval around the experimental measure,
eq. (1.11).

1Here we correct a typo in [3], where, instead of
��(m�1

⌫ )µ⌧

��2 /
��(m�1

⌫ )⌧⌧
��2 there is, incorrectly, its

inverse.
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strictly linked to the low-energy neutrino parameters, which are constrained to lie on a

hypersurface determined by the only theoretical parameter left, ↵2.

Moreover, we can also notice that the e↵ective 0⌫�� decay mass mee ⌘ |m⌫ee| plays a

direct role in eq. (5.10) and, as we shall see, the successful leptogenesis condition will be

able to interestingly constrain it.

In fig. 5.1 we have plotted ⌘B vs. m1 for the same three sets of parameters of figs. 3.3

and 3.4, comparing the numerical results (blue solid lines) with the analytical results

(black dashed lines) obtained from eq. (5.10). We can see that the analytical results

perfectly match the numerical ones.

We also made a more general comparison between the constraints derived from the

analytical expression eq. (5.10) and the numerical constraints (for VL = 1). In fig. 5.2

we show, with orange points, the results of a scatter plot for VL = 1 imposing successful

SO(10)-inspired leptogenesis for ↵2 = 5. The asymmetry is computed from eq. (3.51),

in which the heavy neutrino masses and mixing matrix UR are calculated numerically.

The mixing angles are randomly extracted according to a uniform distribution over the

following ranges

0  ✓13  11.5�, 35�  ✓23  52�, 31.3�  ✓12  36.3�. (5.11)

The phases are uniformly extracted over their full variability ranges as

� 2 [�⇡, ⇡), �, ⇢ 2 [0, 2⇡). (5.12)

The value of the next-to-lightest neutrino mass is imposed to be M2 < 5⇥ 1011 GeV in

order to ensure the production in the two fully-flavoured regime and avoid the transition

region. Moreover, in the numerical simulation we fixed

↵1 = ↵3 = 1, (5.13)

even though, as already mentioned, these parameters do not play a role in the deter-

mination of the final produced asymmetry, eq. (5.10). In general, the results in fig. 5.2

confirm those obtained in [125, 159], but here a much larger (about thousand times)

amount of points was obtained and the constraints are much sharper.

For comparison with fig. 5.2, we have produced the corresponding scatter plots using

directly the analytical expression for the final asymmetry, eq. (5.10). The results are

shown in fig. 5.3. We can notice that they perfectly reproduce the numerical results

given by the orange points in fig. 5.2. We can then conclude that eq. (5.10) provides a

very precise analytical way to calculate the final asymmetry in SO(10)-inspired models

when VL = 1 and crossing level solutions are avoided. Indeed it can be reliably applied

in all models where SO(10)-inspired conditions hold, in order impose the successful lep-

togenesis condition using directly input on the low-energy neutrino parameters. In these

cases, the only additional parameter that has to be introduced is ↵2.

Once established that eq. (5.10) precisely reproduces the final leptogenesis asymmetry
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Figure 5.2: Scatter plots [2] in the neutrino parameter space projected on
di↵erent selected planes for NO and ↵2 = 5. We imposed the bound
M2 < 5⇥ 1011 GeV. The orange points respect the successful leptogenesis con-
dition ⌘lep,fB > ⌘CMB

B > 5.9 ⇥ 10�10 for VL = 1 where ⌘lep,fB is calculated from
eq. (3.51) using a numerical determination of heavy neutrino masses, UR matrix,
mixing matrix and phases. The mixing angles vary within the ranges eq. (5.11).
The blue points are those respecting the additional successful strong thermal
leptogenesis condition for VL = 1 (light blue) or for 1  VL  VCKM (dark
blue). The vertical hatched regions mark the cosmological upper bound on of
m1, eq. (1.43), in all panels except for the bottom-central one, where the 3�
experimental lower bound on ✓23 is showed (see tab. 1.1). In the top-central
panel the horizontal hatched regions mark the experimentally excluded values
of ✓13 at 3�. In the bottom-right panel the horizontal hatched region marks
the values of mee excluded by 0⌫�� experiments, while the dashed (solid) black
lines indicate the generally allowed bands, both for NO and IO, for ✓13 in the
range in eq. (5.11).

for VL = 1, we can proceed further and safely employ eq. (5.10) to derive analytical

constraints on the neutrino parameters, when successful leptogenesis is imposed.
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Figure 5.3: Scatter plots [2] in the neutrino parameter space projected on dif-
ferent selected planes for NO and ↵2 = 5, respecting the successful leptogenesis
condition ⌘lepB > ⌘CMB

B > 5.9⇥10�10 and obtained from the analytical expression
eq. (5.10) for the final asymmetry. Same ranges and conventions as in fig. 5.2
are adopted. These analytical results should be compared with the numerical
results of fig. 5.2 (orange points).

5.1.1 Lower bound on m1

Using eq. (5.10), we can calculate the final asymmetry in the limit m1 ! 0 showing that

this tends to vanish. Therefore, successful SO(10)-inspired leptogenesis implies a lower

bound on the absolute neutrino mass scale. It is convenient to start from the expression

of K1⌧ , eq. (5.9). In the limit m1/msol ! 0 we have

K1⌧ '
�

�matm s13c13c23ei(2���) �msol c13s12c12s23
�

�

2

m⇤
�

�msol s212c
2
13 + matm s213e

2i(���)
�

�

, (5.14)
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and we can notice that the condition K1⌧ . 1 can be realised for 2� � � ' 2n⇡ and

s13 &
msol

matm
s12c12 tan ✓23 & 0.06. (5.15)

This implies a lower bound on ✓13 given by

✓13 & 3� m1/msol ! 0, (5.16)

confirmed by the scatter plots in [125] and by the top-central panel of figs. 5.2 and 5.3.

The asymptotic limit of K2⌧ can be obtained from eq. (5.7) giving

K2⌧ ' c223matm

m⇤
' 25, (5.17)

thus showing that, in the low m1 limit, the washout at the production is strong. We

can therefore employ the simple approximation (see eq. (2.169))

f (K2⌧ ) ' 0.5

K1.2
2⌧

' 0.01, (5.18)

for the final e�ciency factor.

We can now turn to the m1 ! 0 limit of the CP asymmetry "2⌧ . From eq. (5.3) we have
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s412s

4
23

sin ↵L, (5.19)

and the asymptotic limit of the e↵ective leptogenesis phase is given by

↵L ' 2(⇢� �), m1/msol ! 0. (5.20)

The expression for "2⌧ is maximised for � � � ' n⇡ and for sin ↵L = 1, so that

"2⌧ . 75

16⇡

m2
c

v2

⇣↵2

5

⌘2 m1

matm

c223
s212s
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23
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1 +
matm s213
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◆

. (5.21)

Combining all these expressions together, we find that, in the limit m1 ! 0, the baryon-

to-photon ratio is maximised by

⌘lep,fB < ⌘max
B ' m1

⇣↵2

5

⌘2
10�4 75

16⇡

m2
c

v2
c223

matm s212s
4
23
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1 +
matm s213
msol s212

◆

⌘ m1

⇣↵2

5

⌘2
f(✓12, ✓13, ✓23). (5.22)



Chapter 5. SO(10)-inspired leptogenesis and neutrino parameters 116

If we now impose the successful leptogenesis condition ⌘max
B & ⌘CMB

B , we obtain a lower

bound on the absolute neutrino mass scale

m1 & mmin
1 ⌘ 6⇥ 10�10

f(✓12, ✓13, ✓23)

✓

5

↵2

◆2

& 0.8 meV

✓

5

↵2

◆2

, (5.23)

where the last step is obtained for the values of the mixing angles, within the ranges in

eq. (5.11), that maximise f(✓12, ✓12, ✓23). This result is in very good agreement with the

scatter plots in figs. 5.2 and 5.3.

Eventually, we can also notice that the three conditions for maximal asymmetry on the

phases, i.e. 2� � � ' 2m⇡, � � � ' n⇡ and sin[2(⇢� �)] ' 1 with n, m 2 Z, imply that,

always for m1/msol ! 0, we have

� ' k⇡, � ' 2l ⇡, with k, l 2 Z. (5.24)

This is confirmed by the scatter plots in the two panels of figs. 5.2 and 5.3 for � and �

vs. m1.

One also finds ⇢ = ⇡/4 + q ⇡, with q 2 Z. However, from the scatter plots it can be

noticed that at small m1 the value of ⇢ is actually ⇢ ' 0.35 ⇡ + q ⇡. The reason for this

shift can be understood from the complete expression of K1⌧ in eq. (5.9). For ⇢ = ⇡/2

the term m1 e2i⇡⇢ = �m1 adds to the term �m2 in a way that K1⌧ . 1 for slightly

lower values of s23. However, because of the strong dependence "2⌧ / s�4
23 , a shift of ⇢

towards ⇡/2 maximises the asymmetry even though the phase ↵L is not maximal. This

interplay results in an intermediate solution ⇢ ' 0.35 ⇡ ± q ⇡.

5.1.2 Upper bound on m1

As can be seen from figs. 5.2 and 5.3, together with a lower bound on m1, there is also

an upper bound. We can work in the quasi-degenerate neutrino limit m1 ' m2 ' m3

and then check whether the upper bound does indeed fall in this regime. We can obtain

the expressions of the quantities relevant to the final asymmetry, i.e. "2⌧ , K2⌧ and K1⌧ ,

in the quasi-degenerate limit.

Starting from K1⌧ , from eq. (5.9) for ⇢ = n⇡ we have

K1⌧ ' s13c
2
23

m1

m⇤

�

�

�

ei(2���) � s212 � c212e
i�
�

�

�

2
. 0.015

m1

m⇤

�

�

�

ei(2���) � s212 � c212e
i�
�

�

�

2
, (5.25)

so that for m1 . 0.1 eV we always have K1⌧ . 4. The maximum is obtained for � = 2m⇡

and � = ⇡/2 + k⇡. Hence, K1⌧ is never too large and, in general, it can always be made

vanish.

Always taking ⇢ = n⇡, we can compute the limit of "2⌧ . To this aim, we can separately

study the behaviour of the m⌫ and (m�1
⌫ ) entries, neglecting all the subdominant terms
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/s213. This way, the dependence on � cancels out. In the quasi degenerate limit we have

mee ⌘ |m⌫ee| ' m1, (5.26)

as can be seen from bottom-right panel of figs. 5.2 and 5.3. Moreover, we have

�

�(m�1
⌫ )⌧⌧

�

�

2 ' 1

m2
1

�

�s223 + c223e
�2i�

�

�

2
, (5.27)

�

�(m�1
⌫ )µ⌧

�

�

2 ' s223c
2
23

m2
1

�

�e�2i� � 1
�

�

2
. (5.28)

Using these results, from eq. (5.3) we get the quasi degenerate limit of "2⌧

"2⌧ ' 3

16⇡

↵2
2m

2
c

v2

�

�e�2i� � 1
�

�

2

�

�s223 + c223e
�2i�

�

�

2

s223c
2
23

�

�s223 + c223e
�2i�

�

�

2
+ s223c

2
23 |e�2i� � 1|2

sin ↵L, (5.29)

where the asymptotic limit of ↵L is given by ↵L ' �4�.

Finally, from eq. (5.7) we get

K2⌧ ' m1

m⇤

s223c
2
23

�

�e�2i� � 1
�

�

2

�

�s223 + c223e
�2i�

�

�

. (5.30)

We can now obtain the expression of the baryon-to-photon ratio in the quasi-degenerate

limit. Approximating the e�ciency factor as f (K2⌧ ) ' (1 + 2K1.2
2⌧ )�1, we have

⌘lep,fB ' 0.01
3

16⇡

↵2
2m

2
c

v2

�

�e�2i� � 1
�

�

2

�

�s223 + c223e
�2i�

�

�

2

s223c
2
23

�

�s223 + c223e
�2i�

�

�

2
+ s223c

2
23 |e�2i� � 1|2

⇥ sin ↵L

1 + 2K1.2
2⌧

e�
3⇡
8 K1⌧ , (5.31)

where we always have ⇢ = n⇡, so that K1⌧ . 1. We can notice that the asymptotic

limit mainly depends on �, since ⇢ is fixed and the dependence on � is very weak and

negligible. We can therefore assume that K2⌧ is minimised by 2� ' 2n⇡, so that, simply

using sin ↵L . 1, we have that ⌘lep,fB is maximised by

⌘lep,fB . ⌘max
B ⌘ 0.01

3

16⇡

↵2
2m

2
c

v2
x

1 + 2
⇣

m1
m⇤

⌘1.2
x1.2

. 0.01

192⇡

↵2
2m

2
c

v2
m⇤
m1

, (5.32)

where

x ⌘ s223c
2
23

�

�e�2i� � 1
�

�

2
. (5.33)

Eq. (5.32) is maximised for

x = 2.51.2
m⇤
m1

, (5.34)
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which indeed implies � ' n⇡ as guessed. Imposing successful leptogenesis ⌘max
B & ⌘CMB

B

we obtain the upper bound

m1 . mmax
1 ⌘ m⇤

2.51.2 ⇥ 108

192⇡

↵2
2m

2
c

v2
. 52 meV. (5.35)

This very well reproduces the result from the scatter plots in figs. 5.2 and 5.3. In the

Figure 5.4: Scatter plots [2] for the four flavoured decay parameters K2⌧ , K1⌧ ,
K1µ, K1e vs. m1. The colour code is the same as in fig. 5.2.

top-left panel of fig. 5.4 a scatter plot of K2⌧ vs. m1 (orange points) confirms that for

m1 & 10 meV the value of K2⌧ becomes smaller and smaller for growing m1, in order

to minimise the washout at the production that would suppress the asymmetry. The

upper bound on m1 is saturated for an analytical minimum value of K2⌧ ' 2.5 well in

agreement with the numerical result.

5.1.3 ⌧A solution: m1 . m
sol

We can now study the behaviour for intermediate values of m1, between the lower and

the upper bound. From this point of view, as we shall see, the value of msol ' 10 meV

will represent a sort of border between two di↵erent solutions, the so-called ⌧A and ⌧B.
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It is clear that the labels of these two di↵erent solutions emphasise the fact that the

final asymmetry is dominantly produced in the ⌧ -flavour. These two kinds of solutions,

anyways, are not precisely distinct, but there is an overlap around m1 ' 10 meV. This

distinction will be useful when we will discuss the strong thermal leptogenesis solution

in the next section. We shall start considering values m1 . msol.

In the case of low values of m1 . msol, imposing K1⌧ . 1 has an important consequence

on the atmospheric mixing angle. Indeed, from eq. (5.14), taking into account the

Figure 5.5: Scatter plot [2] in the plane m1 � ✓23 obtained imposing success-
ful leptogenesis with the asymmetry calculated from the analytical expression
eq. (5.10). Here we have 35� . ✓23 . 70� uniformly distributed. The dashed
lines indicate the lower bound on m1 eq. (5.23) and the upper bound on ✓23
at low m1 eq. (5.36). The dot-dashed lines indicate the upper bound on m1

eq. (5.35) and the upper bound on ✓23 at high m1. The solid line is the lower
bound on m1 from the strong thermal leptogenesis condition for Np,i

B�L = 10�3,
eq. (5.48).

dominant term /m1e2 i ⇢, that was previously discarded, and approximating ⇢ ' ⇡/2,

we obtain the upper bound

✓23 . arctan

✓

matm �msol s212
msol + m1

s13
c12s12

◆

. 65�, (5.36)

where the maximum value in the last step is obtained in the hierarchical limit. In fig. 5.5

we show the results of a specific scatter plot obtained from the analytical expression in

eq. (5.10), with VL = 1, in the plane m1 � ✓23. The mixing angles are extracted as

previously specified, but here we have 35� . ✓23 . 70�, uniformly distributed. It can be
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seen that the analytical upper bound eq. (5.36), given by the dashed line, well reproduces

the numerical result.

It is interesting to study the link between the values of the mixing phases �, ⇢, � and

the final produced asymmetry, in particular its sign.

We have seen that for m1 ⌧ msol we have to impose 2� � � ' 2m⇡ to minimise K1⌧ ,

� � � ' n⇡ to maximise the CP asymmetry, while the e↵ective leptogenesis phase is

given by ↵L ' 2(⇢� �). In order to maximise, in magnitude, sin ↵L we have

sin ↵L = ±1 =) ⇢ =
⇡

4
+ q⇡, _ ⇢ =

3⇡

4
+ q⇡. (5.37)

Since the sign of the asymmetry is determined by the sign of sin ↵L, the second possi-

bility must be discarded because, even though maximal, it would give a negative final

asymmetry. Therefore, the sign of the asymmetry selects ⇢ ' ⇡/4 + q⇡. However, as

already mentioned, for low m1 we actually have ⇢ ' 0.35⇡ + q⇡. This is originated by a

compromise that maximises the CP asymmetry (⇢! ⇡/2) and minimises K1⌧ (⇢! ⇡/4)

at the same time.

When m1 increases, we can understand the values taken by the phases by looking at

eq. (5.9). For growing m1, the first term in the numerator /m1e2i⇢ becomes non neg-

ligible. Since, as said, we have ⇢ 6= ⇡/2, this term gives an imaginary part that must

be cancelled out in order to keep K1⌧ su�ciently small. At low m1, since ✓13 6= 0, this

imaginary part is cancelled by the term /m3 ei(2���), with 2�� � < 0. For larger values

of m1 we must have the cancellation m1 e2i⇢ � m2 ' 0 in the first term, therefore ⇢

has necessarily to tend to ⇢ ' n⇡. There are two possibilities: either ⇢ > ⇡/2 and so

2� � � > 0, or ⇢ < ⇡/2 with 2� � � < 0. The latter solution is the dominant case,

since at very low m1 we already have ⇢ ' 0.35⇡ < ⇡/2 with small K1⌧ and maximal

leptogenesis phase. The other solution is forbidden for small m1, due to the sign of the

asymmetry, as said before, and exists only for intermediate values of m1, though being

very subdominant, since ↵L cannot be maximised.

In order to better show these results in the scatter plots, we produced new plots con-

straining the reactor mixing angle in the current 3� experimental range, fig. 5.6. In the

top-left panel we show the ⇢ vs. m1 scatter plot. We can notice that, due to the more re-

stricted ✓13 range, many points disappear compared to the corresponding plot in figs. 5.2

and fig. 5.3. The behaviour is then much cleaner. At the lower bound m1 ' 1 meV we

can see that indeed ⇢ ' 0.35 ⇡. For increasing values of m1 there are two branches for

⇢: in a first “high” branch the value of ⇢ increases to ⇡, while in a second “low” branch

it decreases to 0, where the two branches actually merge because of the ⇡ periodicity.

It is clearly noticeable that the low branch dominates, since it corresponds to values of

⇢ that produce the correct sign of the asymmetry and to maximal leptogenesis phase

already at minimum m1 values. The high-⇢ branch is suppressed since it corresponds to

non-maximal ↵L values.

In the top-right panel we show the 2� � � scatter plot. This clearly shows that the
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Figure 5.6: Scatter plots [2] of points satisfying successful leptogenesis generated
using the analytical expression eq. (5.10) for the final asymmetry. The mixing
angle ✓13 is uniformly randomly generated within the 3 � allowed experimental
range. Panels should be compared with the corresponding ones in fig. 5.3, in
particular the last one for � vs. ✓23.

low-⇢ branch corresponds to dominant 2�� � values below 2n⇡, while the high-⇢ branch

corresponds to sub-dominant 2� � � values larger than 2n⇡.

From these results, we can also obtain the corresponding values of �. In the bottom-left

panel of fig. 5.6 we show � vs. m1. Since ↵L ' 2(⇢��) for m1 ⌧ msol, the subdominant

⇢ > ⇡/2 values branch corresponds to a sub-dominant � branch � > n⇡. The dominant

low-⇢ values branch corresponds to a dominant � < n⇡ branch.

Finally, combining the results on � with the results on 2� � �, we can deduce the

behaviour of �. For the dominant low-⇢ values branch, corresponding to a dominant

� < n⇡ values branch and values of 2�� � . 2m⇡ we can conclude that � shifts towards

negative values. Vice versa, for the sub-dominant high-⇢ values branch, corresponding

to 2� � � > 2n⇡ and � > n⇡, we have positive � values. These results are shown in the

bottom-right panel. Here we can see the clear dominance of values of � in the fourth

quadrant. This conclusion is supported by the scatter plot of � vs. ✓23, showing that

actually positive values of � are even more constrained if one imposes the current 3�

lower bound ✓23 & 38�. This result shows that within SO(10)-inspired leptogenesis the

sign of the asymmetry yields asymmetric constraints between positive and negative sin �

values, favouring � < 0. We must, nevertheless, remind that this discussion is valid when

VL = 1. Relaxing this assumption will also relax this link.
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5.1.4 ⌧B solution: m1 & m
sol

For m1 & msol and given the upper bound eq. (5.35), we can approximate m1 ' m2 and

m3 ' matm, so that eq. (5.9) can be rewritten as

K1⌧ '
�

�c13c12s12s23 m1
�

e2i⇢ � 1
�

+ s13c13c23 ei�
⇥

matm ei2(���) �m1
�

s212 + c212 e2i⇢
�⇤

�

�

2

m⇤
�

�m1 c213
�

c212e
2i⇢ + s212

�

+ matm s213e
2i(���)

�

�

.

(5.38)

It is clear that if s13 = 0, having ⇢ = n⇡ gives K1⌧ = 0. However, with the experimental

value s13 ' 0.15 we need a non-vanishing first term in the numerator in order to cancel

the second one. The exact value of ⇢ depends on the value of m1. The value of � must

then be able to cancel the imaginary part of e2i⇢ while, at the same time, being such

to keep � � � ' n⇡, in order to maximise mee in "2⌧ . Moreover, since ↵L ' �4 �, �

has to be negative, which also leads to negative values of � and hence favours positive

values of ⇢. This is confirmed by the first panel of fig. (5.6) showing a scatter plot of

⇢ vs. m1 with ✓13 in its experimental 3� range. It can be seen that now, compared

to the analogous plot of fig. 5.3, where 0  ✓13  11.54�, we have ⇢ = n⇡ only when

m1 saturates its upper bound. Indeed, in this case the first term in the numerator of

eq. (5.38) vanishes, while, since m1 ' matm, we have a sizeable cancellation within the

second one. We can anyway set ⇢ = n⇡ even for m1 ' msol ⌧ matm and take ��� = n⇡

in order to maximise |m⌫ee| in "2⌧ , obtaining

K1⌧ . s213c
2
23 (matm �m1)

2

m⇤ matm
�

1 + s213
� ' 2. (5.39)

Considering the CP asymmetry, we can still approximate |m⌫ee| ' m1, but now we have

�

�(m�1
⌫ )⌧⌧

�

� ' 1

m1

�

�

�

�

s223 +
m1

m3
c223

�

�

�

�

, (5.40)

�

�(m�1
⌫ )µ⌧

�

� ' s23c23
m1

�

�

�

�

1� m1

m3

�

�

�

�

, (5.41)

where � ' n⇡. With these expressions we obtain again that ⌘lep,fB / s423, which implies

a strong suppression of the final asymmetry for increasing s23. This originates a tight

upper bound on ✓23 for m1 & msol. We also have ⌘lep,fB / m1/m3. This implies that

the upper bound on ✓23 gets relaxed at higher values of m1, reaching a maximum at

m1 ' 35 meV. For higher values of m1 the term
�

�(m�1
⌫ )µ⌧

�

� / 1�m1/m3 suppresses the

asymmetry.

For intermediate values of m1 and for the ⌧B region we also have

K2⌧ ' m3

m⇤

s223c
2
23 (1�m1/m3)

2

s223 + c223 m1/m3
. (5.42)

Combining together all these results, and imposing the successful leptogenesis condition,

we can find an implicit expression for the upper bound of s23 vs. m1. In fig. 5.5 we
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have plotted with the dot-dashed line the result. As we can see, it overestimates the

allowed region, a consequence of the crude approximations used for the phases. In any

case, these results well explain the existence of an upper bound on ✓23 also for values

m1 & msol and how this gets relaxed for increasing values of m1 up to a peak value that

is reached for m1 ' 35 meV. For values m1 & 35 meV the upper bound on ✓23 vs m1

becomes more stringent and ✓max
23 ! 0 when m1 ! mmax

1 , given by eq. (5.35).

It should be noticed that the regions for the ⌧A and for the ⌧B solutions overlap to some

extent for m1 ' 10 meV. This is not contradictory since they are realised for di↵erent

values of the phases, in particular in the case of the ⌧A solution we have ⇢ ' ⇡/2 for

m1 ' 0, while for the ⌧B solution one has ⇢ ' ⇡ for m1 ' mmax
1 .

5.2 Strong thermal leptogenesis condition

We can now impose the successful strong thermal leptogenesis condition on our SO(10)-

inspired model and derive analytical expressions for the features already discussed in

[160]. However, we shall consider here always VL = 1.

We have already seen that in SO(10)-inspired models, with VL = 1, the final asymmetry

is dominantly produced in the ⌧ flavour and that K1⌧ . 1. This is perfectly in line with

what is required by strong thermal leptogenesis, therefore we only have to impose the

conditions eq. (3.70) on K2⌧ , K1e and K1µ

5.2.1 Ruling out the ⌧B solution

From eq. (5.42), in the ⌧B case, we can check that for m1 ' msol we have K2⌧ ' 13.

Using eq. (3.64), we can conclude that this would be su�cient to wash out a pre-existing

asymmetry as large as about 10�2. Starting from eq. (3.116) for Ki↵ and using eq. (3.90)

and |UR11| ' 1 as in eq. (3.108), one immediately obtains, in general and therefore also

for ⌧B solutions

K1e ' mee

m⇤
' m1

m⇤
, (5.43)

where, as we have already discussed, the last approximation can be accepted both in

the low and high m1 regimes. This is su�cient to wash out electronic pre-existing

asymmetries as large as 10�3 for m1 & 10 meV and even larger if m1 increases. However,

considering K1µ, in the ⌧B case we have

K1µ ' m2
atm

m⇤

s213s
2
23

�

�m1 + s213 matm

�

�

. 4. (5.44)

As we can see, K1µ is then too small to provide an e�cient washout of a sizeable pre-

existing asymmetry in the µ flavour, therefore successful strong thermal leptogenesis
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cannot be realised by ⌧B solutions. This confirms in a general analytical way the nu-

merical examples shown in [125, 159, 160]. For this reason, from now on we shall focus

on the ⌧A solutions.

5.2.2 Lower bounds on mee and m1

From eq. (5.43), the requirement K1e & Kst(N
p,i
�e

) translates into a constraint over the

0⌫�� decay e↵ective mass mee. Using the expression eq. (3.64) we immediately have

mee & 8 meV

 

1 + 0.095 ln

�

�

�

�

�

Np,i
�e

1.5⇥ 10�4

�

�

�

�

�

!

. (5.45)

This is rather interesting since it predicts that, despite neutrino masses are NO, next

generation 0⌫�� experiments, such as MAJORANA and GERDA as mentioned in sec-

tion 1.2.2.2, should be able to find a signal.

Using eq. (3.91), we can better approximate mee as

mee =
�

�

�

m1 c212c
2
13e

2i⇢ + m2 s212c
2
13 + m3 s213e

2i(���)
�

�

�

' m1

�

�c212e
2i⇢ + s212

�

� , (5.46)

where, already assuming m1 ' msol, we have approximated m1 ' m2 and neglected the

term / m3s213. Considering that in the ⌧A solution we have ⇡/4 . ⇢ . ⇡/2 (plus ⇡

periodicity), we can choose ⇢ = ⇡/4, that corresponds to lower values of m1. This way

mee

m1
'
q

c412 + s412 ' 0.75. (5.47)

From this result and eq. (5.45) we obtain

m1 & 10 meV

 

1 + 0.095ln

�

�

�

�

�

Np,i
�e

1.5⇥ 10�4

�

�

�

�

�

!

. (5.48)

This is perfectly in line with the general feature of strong thermal leptogenesis for NO,

that we analysed in the previous chapter. As seen, it is the washout of the electronic

pre-existing asymmetry that imply a lower bound on m1, eq. (4.8). When SO(10)-

inspired conditions are also considered, this lower bound becomes more stringent, yield-

ing eq. (5.48). This result totally agrees with the numerical simulations in fig. 5.2, where

the successful strong thermal leptogenesis solutions for VL = 1 are represented by light

blue points. The lower bound on m1 obtained by successful strong thermal leptogenesis

for Np,i
�e

= 10�3 is also shown in fig. 5.5 by the solid blue line.
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5.2.3 Atmospheric mixing angle and upper bounds on mee and m1

The lower bound on m1 given by successful strong thermal leptogenesis, eq. (5.48),

can be used to further constrain the atmospheric mixing angle. Plugging eq. (5.48) in

eq. (5.36), we obtain that, for Np,i
�e

= 10�3, the atmospheric mixing angle is ✓23 . 40�.

This is well in agreement with the numerical results in the top-right panel of fig. 5.2

(light blue points). Successful strong thermal leptogenesis therefore remarkably requires

✓23 to lie in the first octant.

Since eq. (5.42) is valid also for intermediate values of m1, we can impose K2⌧ & Kst(N
p,i
�⌧

).

Plugging the minimum experimental value of ✓23 ' 35�, we can obtain an upper bound

m1 . 20 meV. This in turn implies an upper bound on mee given by mee . 0.8 m1 . 16 meV,

which is in fair agreement with the results in fig. 5.2.

5.2.4 Lower bound on the reactor mixing angle

From eq. (3.116), we can obtain an expression of K1µ valid for intermediate values of

m1

K1µ '
c213

�

�s12c12c23 m1(1� e2i⇢) + m3 s13s23
�

�

2

m⇤
�

�m1 + m3s213
�

�

, (5.49)

where we used m1 ' m2, 2��� ' 2n⇡ and we retained the terms /m3 s13 and /m3 s213.

For s213 = 0 the strong thermal leptogenesis condition K1µ & Kst(N
p,i
�µ
' 10�3) would

imply m1 & 30 meV, which contradicts the upper bound m1 . 20 meV. However, for

non vanishing values of the reactor mixing angle this incompatibility can be overcome.

Indeed, for s213 & 0.1, that is ✓13 & 5�, we can have K1µ & 10 and m1 . 20 meV at the

same time. This confirms the result obtained in [160], that successful strong thermal

leptogenesis predicts a non vanishing reactor mixing angle, as now firmly established by

neutrino oscillation experiments.

5.2.5 Dirac phase

While discussing the ⌧A solution, we noticed that the Dirac phase � preferably takes

negative values. The Dirac phase was linked to � by the condition 2�� � < 0 that sup-

presses K1⌧ when ✓13 is non vanishing. The more stringent lower bound on ✓13 imposed

by strong thermal leptogenesis strengthens the preference for negative values of �. This

is well shown in the bottom-right panel in fig. 5.6, where ✓13 lies in its 3� experimental

range, tab. 1.1. It is also possible to notice that for 38� < ✓23 . 42� the phase � is basi-

cally constrained in the fourth quadrant. This is indeed the situation realised in strong

thermal leptogenesis, where, as seen, we have the upper bound ✓23 < 40�. Therefore,

by constraining the atmospheric mixing angle between its 3� experimental lower bound

✓23 > 38� and the upper bound imposed by strong thermal leptogenesis ✓23 . 40�, we
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obtain that the Dirac phase � lies necessarily in the fourth quadrant, i.e. �⇡/2 . � . 0.

This can be clearly seen in the bottom-central panel of fig. 5.2, where the highest value

✓23 ' 41� is obtained for � ' �⇡/3 (light blue points). The constraint of � in the fourth

quadrant is particularly interesting in light of the experimental hint at sin � < 0. More

precisely, the SO(10)-inspired strong thermal leptogenesis solution implies sin � < 0 and

cos � > 0.

5.3 Inverted ordering

We shall now study SO(10)-inspired leptogenesis in case the light neutrino masses fol-

low the IO spectrum. As in the previous discussion, we shall first analyse the results

obtained by imposing the successful leptogenesis condition and later consider strong

thermal leptogenesis.

The analytical expression of the final B � L asymmetry, eq. (5.10) is valid in the IO

case as well, if we employ the correct expressions of m2, and the IO mixing matrix U IO,

eq. (1.29). In fig. 5.7 we repeated the scatter plots made in fig. 5.3 for the NO case.

The analytical expressions for IO are able to reproduce the numerical results of [159] for

VL = 1. In particular, we can notice that IO is only marginally allowed, since it requires

a very narrow range of values 20 meV . m1 . 40 meV. Moreover, from the top-right

panel of fig. 5.7, we clearly have now a lower bound on the atmospheric mixing angle

✓23 & 48�, that falls in the second octant. For VL = 1, values ↵2 . 4.5 are not allowed.

From eq. (3.116), we can compute K1⌧ and using now m2 ' m3 we get that it is min-

imised for ⇢ = n⇡ with

K1⌧ & m2
1 s213c

2
23

m⇤m2
. (5.50)

Imposing K1⌧ . 1 we have the upper bound

m1 . 0.1 eV
0.01

s213c
2
23

. (5.51)

We can also obtain

K2⌧ ' m3

m⇤
s223, (5.52)

so that again we can employ the strong washout approximation f (K2⌧ ) ' 0.5K�1.2
2⌧ for

the e�ciency factor.

Considering the CP asymmetry "2⌧ , in the approximation m2 ' m3 ' matm, m1 ⌧ matm

and taking ⇢ = n⇡ we have

mee ' m2, (5.53)

�

�(m�1
⌫ )⌧⌧

�

� ' c223
m1

, (5.54)

�

�(m�1
⌫ )µ⌧

�

� ' s23c23
m1

. (5.55)
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Figure 5.7: Scatter plots [2] in the neutrino parameter space projected on dif-
ferent selected planes for IO and ↵2 = 5, respecting the successful leptogenesis
condition ⌘lepB > ⌘CMB

B > 5.9⇥10�10 and obtained from the analytical expression
eq. (5.10) for the final asymmetry. Same ranges and conventions as in fig. 5.3
are adopted.

This way we obtain

"2⌧ ' 3

16⇡

↵2
2m

2
c

v2
s223
c423

m1

matm
sin ↵L. (5.56)

With respect to the e↵ective leptogenesis phase, here we have

↵L ' 2⇢�Arg
⇥

c212e
2i⇢ + s212

⇤

. (5.57)

Hence, for ⇢ = n⇡ the CP asymmetry would vanish. Therefore, we must have a small

positive displacement from ⇢ = n⇡, so that the upper bound eq. (5.51) actually becomes

more stringent. The shift from ⇢ = n⇡ is clearly visible in the central panel of fig. 5.7.
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Figure 5.8: Scatter plots [2] for the four flavoured decay parameters K2⌧ , K1⌧ ,
K1µ, K1e vs. m1, IO case.

Combining all these results together and imposing successful leptogenesis, we obtain a

lower bound on m1

m1 & 32⇡ 10�8 matm v2

↵2
2m

2
c

c423
s223

[f (K2⌧ ) sin ↵L]�1 . (5.58)

When this lower bound is combined with the result of eq. (5.51), we obtain a lower

bound on ✓23 & 45� for sin ↵L ' 0.5. The phase cannot be maximal since, otherwise, we

would not have K1⌧ . 1 anymore.

Considering the strong thermal leptogenesis conditions, we can notice that the washout

of the pre-existing asymmetry along the e flavour does not pose any problem. Indeed,

K1e = mee/m⇤ ' 50. However, for the µ-flavour from the third panel of fig. 5.8, we can

notice that K1µ . 9 < Kst(N
p,i
�µ

). Therefore, in IO it is not possible to e�ciently wash

out a sizeable pre-existing asymmetry along the µ flavour.
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5.4 Beyond the VL = 1 approximation

The assumption VL = 1 greatly reduces the number of free parameters so that, as already

mentioned, the neutrino parameters lie on a hypersurface described by the only free

theoretical parameter left: ↵2. This allowed us to obtain several interesting results on the

neutrino parameters by imposing successful leptogenesis or, even more strictly, successful

strong thermal leptogenesis. We can now ask what happens when this assumption is

relaxed and the more general SO(10)-inspired condition 1  VL . VCKM , eq. (3.83), is

enforced.

In fig. 5.2 we have included the results of a scatter plot, for ↵2 = 5 and NO, of points

respecting successful leptogenesis for 1  VL  VCKM , in yellow. In particular, for these

points we uniformly extracted the angles in VL from

0�  ✓L12  13�, 0�  ✓L23  2.5�, 0�  ✓L13  0.2�, (5.59)

while the phases �L, ⇢L and �L are kept varying on [0, 2⇡).

The results in fig. 5.2 confirm once more what previously obtained in [159, 160]. Com-

paring the results with varying VL, in yellow, with those obtained for VL = I, in orange,

we can see that some constraints do not get strongly modified, such as the lower bound

on m1. On the contrary, some other constraints are more sizeably a↵ected, as in the

case of the upper bound on m1. The most remarkable di↵erence can be noticed in the

top-right panel, ✓23 vs. m1. Here a complete new region at large values m1 & msol

appears. This region corresponds to a µ-dominated solution that is now possible since,

when deviations from VL = 1 are taken into account, the strong hierarchy in the CP

asymmetries, eq. (3.114), gets relaxed and a muonic solution is allowed [159].

We can also notice that for the ⌧B solution the upper bound on ✓23 is much more relaxed

when 1  VL  VCKM . On the other hand, the constraints for the ⌧A solution do not

change dramatically, a part from the disappearance of the lower bound on ✓13.

Imposing successful strong thermal leptogenesis for 1  VL  VCKM , in the same setup,

produced the dark blue points in fig. 5.2. We can see that the constraints obtained

for VL = 1 (light blue points) get moderately relaxed. The lower bound on ✓13 gets

relaxed from ✓13 & 5� to ✓13 & 2�. The upper bound on ✓23 changes from ✓23 . 41.5�

to ✓23 . 43�. This can likely be regarded as the most important e↵ect in light of the

current experimental constraints on ✓23 that tend to favour ✓23 & 40�, at least at 2� [40].

It is then clear that relaxing the VL = 1 assumption acts to enlarge the parameter space

allowed by successful leptogenesis as well as by successful strong thermal leptogenesis.

This is also due to the enhancement of the final produced asymmetry that VL 6= 1 brings

about. In fig. 3.4 we plotted ⌘lep,fB vs. m1 in three examples with VL 6= 1 (dotted lines).

This clearly shows that turning on the angles and phases in VL can significantly enhance

the final asymmetry, though not generally more than a factor 2.

Nevertheless, it is interesting to notice that the modifications on the constraints on the
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neutrino parameters are not dramatic, so that the analytical bounds obtained for VL = 1

can often represent a good approximation.

As we have shown, overimposing the successful leptogenesis condition or the successful

strong thermal leptogenesis conditions on SO(10)-inspired models determines the ap-

pearance of several interesting constraints on the neutrino parameters. It also allows

us to make predictions on the value of some of them. In particular, on the ranges of

the absolute neutrino mass scale m1 and on the octant of the atmospheric mixing angle

✓23. In view of the forthcoming neutrino experiments and cosmological observations,

these results become particularly fascinating, since they will allow compelling tests of

the SO(10)-inspired scenario, as well as of the strong thermal leptogenesis assumptions.

In order to get a better insight on these features and obtain quantitative results that can

be compared to the experimental observations, we can now proceed to a first statistical

analysis of the scatter plots.

5.5 A statistical analysis of the SO(10)-inspired leptogene-

sis results

Our aim is now to gain some information on the free parameters of the model through

the analysis of the numerical simulations. Important results were found in the previous

discussion, imposing successful leptogenesis and even more when combining the SO(10)-

inspired conditions with the successful strong thermal leptogenesis one. Together, these

conditions were able to constrain several parameters to narrow regions in the parameter

space. Nevertheless, the scatter plots in fig. 5.2 do not consider the statistical significance

of the di↵erent regions, so that, as we have seen, it is only possible to derive lower

and upper bounds. We now propose to extract more information from the simulations

through a statistical analysis of the numerical results, constraining the parameters to

intervals with a precise statistical meaning [161].

The SO(10)-inspired models rely on a set of input parameters � ⌘ {m1, ✓ij , �, . . . }, in

which we do not include msol and matm, given the great precision of their measure-

ments. In the simulations that give the scatter plots, the parameters in � are randomly

extracted according to some prior Probability Density Function (PDF) ⇡(�). Given a

set � of parameters, a value ⌘lep,fB of the final asymmetry produced by leptogenesis can be

obtained and compared to the experimental value ⌘CMB
B . Following a bayesian approach,

the comparison of the final produced asymmetry with the experimental value provides

additional information that allows us to update the PDFs of the input parameters to

the so-called posterior functions. These can then be used to obtain credible regions and

intervals in the parameter space.

According to Bayes’ theorem [162–164], the probability density f(� | ⌘lep,fB = ⌘B) of hav-

ing a parameter set �, given that the final produced asymmetry ⌘lep,fB fully explains the
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baryon asymmetry of the Universe ⌘B, is

f(� | ⌘lep,fB = ⌘B) =
f(⌘lep,fB = ⌘B |�) ⇡(�)

R

d� f(⌘lep,fB = ⌘B |�) ⇡(�)
(5.60)

where f(⌘lep,fB = ⌘B |�) is the probability of reproducing the baryon asymmetry of the

Universe ⌘B with the asymmetry produced by leptogenesis with the given input pa-

rameters �. It is possible to rewrite f(⌘lep,fB = ⌘B |�) in a simpler way, assuming the

baryon-to-photon ratio ⌘B of the Universe is normally distributed around the experi-

mental value ⌘CMB
B , so that

f(⌘lep,fB = ⌘B |�) = f⌘(⌘
lep,f
B (�)) ⌘ 1

�⌘

p
2⇡

exp

8

>

<

>

:

�
h

⌘lep,fB (�)� ⌘CMB
B

i2

2�2
⌘

9

>

=

>

;

, (5.61)

where ⌘CMB
B = 6.1 ⇥ 10�10 and �⌘ = 0.1 ⇥ 10�10, as given by eq. (1.11). The posterior

PDF, f(� | ⌘lep,fB = ⌘B), can then be marginalised in order to obtain a PDF for each

parameter �i

f(�i | ⌘lep,fB = ⌘B) =

Z

0

@

Y

j 6=i

d�j

1

A f(� | ⌘lep,fB = ⌘B), (5.62)

which updates the prior PDF ⇡(�i). The function f(� | ⌘lep,fB = ⌘B) and the marginalised

PDFs f(�i | ⌘lep,fB = ⌘B) enclose information about the parameters and show the regions

of the parameter space preferred by the model, together with their likelihood.

In order to obtain a posterior PDF f(� | ⌘lep,fB = ⌘B) it is necessary to specify the priors

of the input parameters.

• Absolute neutrino mass scale. m1 is randomly extracted according to a uni-

form logarithmic distribution on [10�4, 10�1] eV.

• Solar and reactor mixing angles. These two mixing angles are well deter-

mined by the current neutrino global analyses and they are assumed as normally

distributed as in tab. 1.1.

• Atmospheric mixing angle. This angle is still poorly constrained by neutrino

global fits, which are not yet able to pin down the octant. To account for these

large uncertainties we have chosen to uniformly extract ✓23 in its 3� range as in

eq. (5.11). With this flat prior it is also possible to clearly notice the preference

determined by leptogenesis itself.

• CP -violating phases. Given the little knowledge on the Dirac phase �, this is

chosen to be uniformly extracted on its full variability range, i.e. � 2 [�⇡, ⇡).

Similarly, the Majorana phases are uniformly extracted on ⇢, � 2 [0, 2⇡).
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• VL unitary matrix. The VL matrix parameters are uniformly extracted on the

ranges in eq. (5.59).

The input parameter set � is therefore determined according to these priors and the

generated asymmetry ⌘lep,fB (�) is then weighted according to eq. (5.61). In addition, we

shall take ↵2 = 5.

Being particularly interested in the tight constraints originating by imposing successful

strong thermal leptogenesis, and considering the marginal role of the IO case in SO(10)-

inspired models, we shall focus our statistical study to the NO case only.

The results obtained for the di↵erent parameters and in di↵erent setups are shown in the

following paragraphs. Firstly, we shall analyse the SO(10)-inspired and strong thermal

SO(10)-inspired scenarios with VL = 1. We shall then relax this assumption and consider

more general models with 1  VL  VCKM .

5.5.1 Results for VL = 1

Here we describe the results of the statistical analysis of the numerical simulations with

VL = 1. For clearness, we have separately studied the two scenarios: the SO(10)-inspired

successful leptogenesis solution and the successful strong thermal SO(10)-inspired one.

In the former we have not taken into account any pre-existing asymmetry, while in the

latter we have considered the washout of an initial pre-existing asymmetry Np,i
B�L = 10�3.

As expected from our previous discussion, the allowed regions for the parameters are

quite tight for VL = 1. At the same time, they are narrower when the strong thermal

conditions are imposed on the SO(10)-inspired scenario.

5.5.1.1 Successful SO(10)-inspired leptogenesis with VL = 1

Here we summarise the results obtained when only the successful leptogenesis condition

is imposed on the SO(10)-inspired model. We show a set of planes cutting the parameter

space along definite directions and for each 2-dimensional slice we plot the 68% and 95%

credible regions obtained following the procedure described above. The 2-dimensional

plots are shown in fig. 5.9 [161]. The statistical analysis points out the preferred subre-

gions within the allowed ones that were found in [159, 160] and in the previous discussion

[2]. In particular, the top-central panel confirms that VL = 1 SO(10)-inspired successful

leptogenesis introduces a net asymmetry between positive and negative values of the

Dirac CP -violating phase �. Negative values are favoured with respect to positive ones.

The top-right and bottom-left panels, respectively showing ⇢ and � versus m1 confirm

the analytical results discussed in the previous section. The maximal values at low

and high m1 are connected by branches, and we can notice that the lower branches are

dominant. This provides us with a clear confirmation of what was analytically derived



Chapter 5. SO(10)-inspired leptogenesis and neutrino parameters 133

Figure 5.9: 2-dimensional credible regions for di↵erent sections of the parameter
space (first four panels) plus e↵ective 0⌫�� decay mass mee and oscillation bi-
probability plot (bottom centre and right panels) for SO(10)-inspired successful
leptogenesis with ↵2 = 5 and VL = 1, [161]. In dark purple the 68% credible
region, while in light purple the 95% one. The hatched regions are currently
excluded by the experimental observations, in particular, the upper bound on
m1 imposed by cosmology, eq. (1.43).

before, quantitatively showing the preference for particular values of the phases.

From the top-left panel it is not possible to obtain clear information about the atmo-

spheric mixing angle. All values of ✓23 in its 3� range are allowed both at 68% and 95%

probability.

The bottom-right panel shows the oscillation probability P (⌫̄µ ! ⌫̄e) versus the proba-

bility P (⌫µ ! ⌫e). This can be a useful way to compare the predictions of the models

with the next results coming from long-baseline oscillation experiments such as NO⌫A

[43, 165]. These experiments will be able, in the coming future, to place confidence

regions on this plane, which can then be compared with the region shown in the panel of

fig. 5.9, and corresponding to the SO(10)-inspired successful leptogenesis solution, with

VL = 1. To this aim, these probabilities are computed taking into account matter e↵ects
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as [166]

P

✓

(�)
⌫µ !

(�)
⌫e

◆

' sin2(2✓13) sin2✓23
sin2[(A� 1)�]

(A� 1)2

+ 2↵ sin✓13 cos� sin(2✓12) sin(2✓23)
sin(A�)

A

sin[(A� 1)�]

A� 1
cos �

� 2↵ sin✓13 sin� sin(2✓12) sin(2✓23)
sin(A�)

A

sin[(A� 1)�]

A� 1
sin �, (5.63)

where � ⌘ �m2
31

4E
1019L
1.97 with L being the distance in km (for NO⌫A, L = 810 km),

↵ ⌘ �m2
21

�m2
31

and A = ±E/(11 GeV) for NO, with + or � respectively for neutrinos and

antineutrinos and E = 2GeV for NO⌫A.

5.5.1.2 Successful strong thermal SO(10)-inspired leptogenesis with VL = 1

Along the lines of the previous analysis, we show in fig. 5.10 the results obtained when

the strong thermal leptogenesis condition is imposed on the SO(10)-inspired model.

Here we considered an initial pre-existing asymmetry Np,i
B�L = 10�3. We can notice that

the regions are compatible with what found in fig. 5.2 (light blue points). As expected,

the regions are dramatically narrower than in the successful SO(10)-inspired leptoge-

nesis case. Strong thermal SO(10)-inspired leptogenesis with VL = 1 realises the most

predictive scenario, with the tightest bounds on the low-energy neutrino parameters.

From the top-left panel it is possible to notice that the atmospheric mixing angle is con-

strained to a very narrow region in the first octant. Similarly, from the top-central panel

we can see that the Dirac phase � can only take negative values in its fourth quadrant,

i.e. around � = �⇡/4. The top-right and bottom-left panel show that the Majorana

phases are constrained to very small regions, with ⇡ periodicity.

Moreover, in the bottom-centre panel the 0⌫�� decay e↵ective mass is allowed to vary

in a tight region around 15meV.

In the bi-probability plot (bottom-right panel) the region corresponding to the strong

thermal SO(10)-inspired leptogenesis solution, with VL = 1, is quite small, which is a

direct consequence of the predictivity of the model.

For a better understanding of the statistical significance of these intervals, it is conve-

nient to obtain the single parameter PDFs by marginalisation, as in eq. (5.62). The

results are shown in fig. 5.11, where the 68% and 95% intervals are plotted in dark and

light blue respectively. Each parameter shown in fig 5.11 had a flat uniform prior on

the allowed 3� range. As can be seen from the panels, the posterior PDFs are greatly

changed and show pronounced peaks around particular values. From the top-left panel

we can notice that the absolute neutrino mass scale is constrained to a very narrow

range, in particular m1 2 [12, 15] meV with 95% probability. At the same time, the

e↵ective 0⌫�� mass is mee 2 [10, 13] meV with 95% probability. Due to the precise

values assumed by the Majorana phases (see bottom-centre and bottom-right panels)
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Figure 5.10: 2-dimensional credible regions for di↵erent sections of the parame-
ter space (first four panels) plus e↵ective 0⌫�� decay mass mee and oscillation
bi-probability plot (bottom centre and right panels) for SO(10)-inspired success-
ful strong thermal leptogenesis with ↵2 = 5, VL = 1 and Np,i

B�L = 10�3, [161].
In dark blue is the 68% credible region, while in light blue is the 95% one.
The hatched regions are currently excluded by the experimental observations,
in particular, the upper bound on m1 imposed by cosmology, eq. (1.43).

the cancellations in mee are very mild, so that we have mee ⇠ m1.

The top-right panel shows the PDF of the atmospheric mixing angle. As we can see, we

have ✓23  39� with 95% probability and ✓23  40.5� at 99.99994%, corresponding to

5� in a frequentist approach. This clearly shows that strong thermal SO(10)-inspired

leptogenesis, with VL = 1, strongly disfavours maximal atmospheric mixing angle, and

constrains it to the first octant.

In the bottom-left panel the PDF of � is plotted and we have �/⇡ 2 [�0.36, �0.08] with

95% probability. All the � values are negative, and it is also possible to compute the

‘5�’ range: �0.5  �/⇡  �0.01 with 99.99994% probability. This confirms once again

the discussion of the previous section, and we can conclude that VL = 1 strong thermal

SO(10)-inspired leptogenesis strongly favours � in the fourth quadrant, thus implying

sin � < 0 and cos � > 0.
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Figure 5.11: Single parameter posterior PDFs for SO(10)-inspired successful
strong thermal leptogenesis with ↵2 = 5, VL = 1 and Np,i

B�L = 10�3, [161]. In
dark blue the 68% credible region, while in light blue the 95% one. The ranges
of m1 and mee are restricted to the intervals of interest in the first and second
panels. The Majorana phases ⇢ and � show ⇡-periodicity which is not plotted.
The dashed line in the top-right panel marks the maximal solution ✓23 = 45�.

5.5.2 Results for 1  VL  VCKM

We can now statistically analyse the SO(10)-inspired models imposing successful lep-

togenesis and successful strong thermal leptogenesis when the assumption VL = 1 is

relaxed. These models are clearly more general than those analysed so far, therefore we

can regarded the results obtained in this case as the most important ones. Indeed they

provide predictions which are more general, encompassing all the SO(10)- and strong

thermal SO(10)-inspired leptogenesis models. The range of the mixing angle and phases

in VL can be found in eq. (5.59). We shall follow the same guidelines as in the previous

section, dealing with successful leptogenesis first and then adding the strong thermal

condition.

5.5.2.1 Successful SO(10)-inspired leptogenesis with varying VL

The 2-dimensional plots are shown in fig. 5.12. Here we can notice that the statistically

significant regions are almost coinciding with what found in fig. 5.2 (dark blue points),

and it is not possible to improve the bounds already obtained thereby.
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Figure 5.12: 2-dimensional credible regions for SO(10)-inspired successful lep-
togenesis with ↵2 = 5 and 1  VL  VCKM , [161]. Panels and conventions as in
fig. 5.9.

It is possible, however, to notice an asymmetry between positive and negative values of

�, as in the VL = 1 case. Here again, for low values of the lightest neutrino mass, i.e.

m1 . msol, positive values of � are statistically disfavoured, being scarcely included in

the 95% credible region.

Similarly, the Majorana phases keep showing preferences for some branches, as already

pointed out in the VL = 1 case. With varying VL, however, the favourable zones are

larger and slightly less evident.

An analysis of the one-dimensional PDFs does not allow us to obtain any interesting

predictions on the values of the unknown parameters, other than the bounds already

found. In the case of successful SO(10)-inspired leptogenesis with varying VL, there-

fore, the statistical analysis is not particularly powerful in constraining the low-energy

parameters to tight intervals with definite statistical meaning.

5.5.2.2 Successful strong thermal SO(10)-inspired leptogenesis with vary-

ing VL

When imposing the successful strong thermal leptogenesis condition on an SO(10)-

inspired model, the allowed regions in the parameter space are largely reduced. The

statistical analysis performed on this scenario enables us to provide the intervals with a

statistical significance. As before, we have considered an initial pre-existing asymmetry
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Figure 5.13: 2-dimensional credible regions for SO(10)-inspired successful strong
thermal leptogenesis with ↵2 = 5, 1  VL  VCKM and Np,i

B�L = 10�3, [161].
Panels and conventions as in fig. 5.10.

Np,i
B�L = 10�3. In fig. 5.13 we show the 2-dimensional sections of the parameter space.

The allowed regions are much smaller than in the varying VL successful leptogenesis only

case, but larger than the successful strong thermal SO(10)-inspired case with VL = 1.

The comparison between fig. 5.13 and 5.10 shows how much the bounds relax when the

VL = 1 assumption is removed. The most important di↵erences between the two cases

can be found in the top-left and top-central panels. The 95% contour of ✓23 extends up

to 44�, while for � it goes up to about ⇡/2. For a better understanding of the statistical

significance of these intervals, it is convenient to obtain the single parameter PDFs by

marginalisation, as in eq. (5.62). The results are shown in fig. 5.14, where the 68% and

95% intervals are plotted in dark and light blue respectively. As for the VL = 1 case, we

can get precise predictions on the parameters.

In table 5.1, [161], we have summarised the posterior 68% and 95% credible regions for

the free low-energy neutrino parameters, the e↵ective 0⌫�� decay mass mee and the sum

of the neutrino masses
P

i mi. Very precise statements can then be made on the basis

of table 5.1. In particular, the following can be noticed.

• Atmospheric mixing angle. The second octant of ✓23 is highly disfavoured.

More precisely, ✓23  43.7� with 99.99994% probability (corresponding to 5� in a

frequentist approach), which clearly excludes the maximal value ✓23 = 45�.

It must be noticed that the intervals in tab. 5.1 are bounded from below by the
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Figure 5.14: Single parameter posterior PDFs for SO(10)-inspired successful
strong thermal leptogenesis with ↵2 = 5, 1  VL  VCKM and Np,i

B�L = 10�3,
[161]. Panels and conventions as in fig. 5.11.

choice of the prior distribution. This is due to the feature of SO(10)-inspired

models, in which the final asymmetry ⌘lep,fB / sin�4(✓23) as shown in the previous

discussion. Therefore low values of the atmospheric angle are preferred.

We shall comment on the choice of the priors in the following paragraph.

• Dirac CP -violating phase. Negative values of � are preferred, positive values

are marginally allowed, since we have �  0.31 ⇡ with 99.99994% probability (5�).

• Absolute neutrino mass scale. m1 shows preferred values which are not com-

patible with the hierarchic limit (m1 ! 0). More in detail, m1 � 8.78 meV with

99.99994% probability (5�).

Neglecting the errors on msol and matm it is possible to give a credible interval

to the sum of the neutrino masses, which is particularly interesting for cosmology

and reported in the last row of tab. 5.1.

• Majorana phases and mee. The values of the Majorana phases are strongly

constrained to small regions. This implies mild cancellations in the expression of

the e↵ective 0⌫�� decay mass, which falls around 12 meV, a region within the

reach of forthcoming experiments.
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Prior range Posterior ranges
68% 95%

m1 [10�4, 10�1] eV
(log)

[12, 16] meV [11, 21] meV

✓23 [37.7�, 52�] [37.7�, 39�] [37.7�, 40.8�]
� [�1, 1]⇡ [�0.13, �0.031]⇡ [�0.17, �0.038]⇡
⇢ [0, 2]⇡ [0.063, 0.079]⇡ [0.054, 0.089]⇡
� [0, 2]⇡ [0.25, 0.28]⇡ [0.23, 0.29]⇡

mee [11, 13] meV [10, 17] meV
P

i mi [76, 85] meV [75, 97] meV

Table 5.1: Credible intervals at 68% and 95% for the low-energy parameters,
e↵ective 0⌫�� mass mee and sum of the neutrino masses

P

i mi for SO(10)-
inspired successful strong thermal leptogenesis with ↵2 = 5, 1  VL  VCKM

and Np,i
B�L = 10�3, [161]. The Majorana phases ⇢ and � show ⇡-periodicity,

while � has a 2⇡ period.

These considerations build up a very definite pattern of predictions, as shown in tab. 5.1,

which precisely characterises the strong thermal SO(10)-inspired leptogenesis solution,

making it possible to put it to the experimental test, at least in part, in the next future.

5.5.3 Comments and remarks

As in any Bayesian analysis, these results are dependent on the choice of the priors and

this can often be a source of controversy. However, as pointed out in the previous section,

the parameter priors have been chosen on the basis of solid experimental evidences, that

constrain the variability ranges to narrow intervals. When the experimental results are

not well grounded, we have adopted a conservative approach, accounting for the current

uncertainties with flat distributions over 3� ranges, as in the case of ✓23, or the full

variability ranges, as for �, ⇢, and �.

As mentioned in the previous paragraph, the prior of the atmospheric mixing angle can

raise some concern. Indeed, the posterior distribution is bounded from below by the

lower limit of the prior, thus showing a sizeable impact of this on the final result. We

have considered a more generic, though experimentally not supported, case with ✓23

over its full variability range, i.e. ✓23 2 [0�, 90�]. This is shown in fig. 5.15. Here,

all the other input parameters are extracted as described above, while the atmospheric

mixing angle is extracted uniformly over [0�, 90�]. From this figure we can notice that

SO(10)-inspired leptogenesis indeed tends to prefer low values of ✓23. However they do

not saturate the range accumulating around 0�, rather they show a definite peak around

25�. In particular, it is possible to identify the credible intervals ✓23 2 [21.6�, 32�] with

68% probability and ✓23 2 [17.6�, 36�] with 95% probability. It is possible to notice that

the leptogenesis-favoured ✓23 values marginally encompass the experimentally allowed

band, the shadowed region in the figure. In this setup, with wide variability range for
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Figure 5.15: PDF histogram of the atmospheric mixing angle ✓23 with uniform
prior on [0�, 90�], [161]. All the other input parameters have their usual prior
distributions. The shadowed region corresponds to the current 3� experimental
range. The dashed lines marks the maximal solution ✓23 = 45�.

the atmospheric mixing angle, the probability that leptogenesis picks a ✓23 value in the

3� experimental region is about 1%. This is quite small, however it is not su�cient to

rule out the model. It must also be noticed that the Dirac phase � is free to vary on its

entire variability range. Values around � ⇠ �2⇡/3, as hinted by recent best-fits, make

large values of ✓23 much more likely.

We have also studied the strong thermal SO(10)-inspired scenario with a di↵erent choice

of priors. In order to be extremely general, we have considered the case in which all

the mixing angles are randomly extracted from a PDF uniform over the full variability

range [0�, 90�]. For simplicity, we shall refer to this choice of priors as prior ⇡0. We

can thus make comparison with the choice of priors described and used in the previous

paragraphs, and that we shall call base prior ⇡0. Firstly, it is possible to study the global

sensitivity to the prior choice, via standard range analysis, by comparing the outcomes

of the two choices. Focusing on the main parameters m1, ✓13, ✓12 and ✓23 the range

analysis implies a study of the variation of their expectation values from the base prior

⇡0 to ⇡0. In table 5.2 we have reported the expectation values for the two cases. The

m1 (meV) ✓13 (�) ✓12 (�) ✓23 (�)

⇡0 14.5 8.8 33.7 38.8
⇡0 8 37.0 45.5 67.6
R⇡ 0.88 2.04 2.07 1.18

Table 5.2: Range of the expectation values of the parameters in the case of prior
⇡0 and ⇡0. In the last row we show the relative sensitivity.
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priors ⇡0 and ⇡0 do not belong to a continuous class and the di↵erence between them is

rather big (e.g. ✓13 goes from a peaked gaussian distribution to a flat uniform distribu-

tion over a finite range [0, 90�]), therefore we could expect significant variations in the

expected values and so quite a wide range. This is indeed the case in tab. 5.2, where

the comparison between the first two rows shows a large change of the expected values

between ⇡0 and ⇡0. We may conclude that our analysis is sensitive to the prior choice

and, in general, lacks of robustness. Other sensitivity analyses, e.g. the study of relative

sensitivity [167], can be carried out, in general confirming this situation. However, this

high prior sensitivity is not worrying in our case, since we have solid reasons to prefer

the prior ⇡0 to the extreme case ⇡0, so that they are not considered a priori equally

plausible. On the contrary, it can be shown that our analysis is actually robust with

respect to a neighbourhood class of priors around ⇡0.

We can conclude in any case that the priors described in the previous section and em-

ployed in the analysis can be considered as the most reasonable and accurate, therefore

more suitable than other possible prior choices.

Finally, it is possible to reproduce an analysis in the lines of what already carried out in

[160]. We can compute the fraction of the total parameter space that allows successful

strong thermal leptogenesis, in the ⇡0 and ⇡0 setups. We shall consider only the pa-

rameter space related to the mixing angles. Computing the volume ⌦STlep
⇡0 of the region

corresponding to successful strong thermal leptogenesis, its ratio to the total volume

⌦tot
⇡0 is

r⇡0 ⌘ ⌦STlep
⇡0

⌦tot
⇡0

= 93.0%. (5.64)

As for the prior ⇡0, the mixing angles are all uniformly extracted on [0�, 90�], and

computing the ratio of the successful strong thermal leptogenesis volume to the total

volume we get

r⇡0 ⌘ ⌦STlep
⇡0

⌦tot
⇡0

= 5.7%. (5.65)

We can conclude that, considering just the mixing angles and marginalising on the

other free parameters, the probability to have successful strong thermal leptogenesis

from a randomly picked triplet of mixing angles is just 5% in the generic ⇡0 case. This

probability raises up to 93% when the parameter space is restricted to the experimentally

allowed range. It is important to recall that this restriction is made independently of

leptogenesis and only on the basis of current neutrino oscillation experiment. For this

reason, we can conclude that the experimental data from neutrino oscillations are in

good agreement with strong thermal SO(10)-inspired leptogenesis and seem to represent

a valid support.

It must be mentioned that a fully detailed analysis would require the derivation of the

PDFs of the parameters directly from the experimental data, by fitting the relevant

datasets and then marginalising the joint PDF. This would also take correctly into

account the correlations between the di↵erent neutrino parameters. Our aim was to
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provide a first analysis of the numerical leptogenesis results. We have therefore adopted

prior distributions based on the information currently available from global neutrino fits.

In a first approximation, then, we have neglected the correlation between the di↵erent

oscillation parameters. This can be considered su�cient for our goal of showing the

constraining power of the strong thermal solution and providing predictions that can be

used for comparison with the forthcoming experimental measurements.

In this regard, it is important to recall that these results are obtained for an initial pre-

existing asymmetry Np,i
B�L = 10�3. Lower values of Np,i

B�L imply looser bounds, while

higher ones give narrower intervals. The chosen value Np,i
B�L = 10�3 can be regarded

as a good estimation of the large pre-existing asymmetry that can be generated by

di↵erent primordial mechanisms. In general, it is possible to verify the compatibility of

the ranges shown in the previous section with the experimental results, thus allowing to

either support or severely corner the assumptions of the models. However, we can also

reverse the perspective and employ the new experimental data to put an upper bound

on the magnitude of the pre-existing asymmetry that is possible to e�ciently wash

out. Clearly, if the parameter values only allow the washout of negligible pre-existing

asymmetries, the strong thermal condition will lose its interest.





Chapter 6

A supersymmetric extension

We can now consider the supersymmetric extension of the SO(10)-inspired models we

have studied so far. Supersymmetric extensions are important since they o↵er a tradi-

tional way to address naturalness, while at the same time they can help improving the

goodness of fits of lepton and quark parameters in GUTs [168–170]. In this respect, it

is worth noticing that in [170] good fits of the fermion parameters have been obtained

within supersymmetric SO(10) models with hierarchical RH neutrino masses and, in-

terestingly, IO light neutrino masses. Moreover, the found values of mee are well in

the reach of next generation 0⌫�� decay experiments. This can motivate an analysis of

leptogenesis within the supersymmetric framework.

Care must be taken since supersymmetry is typically implemented as a local symmetry,

leading to supergravity. In this case one has to worry whether successful thermal lepto-

genesis can be achieved with values of the reheating temperature TRH compatible with

the upper bound imposed by the solution of the gravitino problem [171–174]. A quite

conservative and model independent upper bound, TRH . 1010 GeV, is obtained in order

to avoid DM over abundance [174], where the DM particle can be either the neutralino

or the gravitino itself or some other hidden sector lighter particle, depending whether the

gravitino is the lightest supersymmetric particle. There exist, however, di↵erent ways

to circumvent this upper bound. For example, considering entropy production diluting

the DM abundance [175] or in models with mixed axion/axino DM [176]. Another pos-

sibility is that the gravitino is heavier than ⇠ 107 GeV so that its lifetime is so short to

decay before neutralino dark matter freeze-out [177].

Here we will extend SO(10)-inspired leptogenesis to the supersymmetric case, studying

how the constraints derived in the non-supersymmetric case (in the previous chapter)

change [3]. We shall also consider with attention the lower bound on TRH.

For what explained in the previous sections, we already know that SO(10)-inspired

models naturally realise the N2-dominated scenario, and this feature is preserved in the

145
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supersymmetric extension. In the following section we shall then analyse how the key in-

gredients of leptogenesis in the N2-dominated scenario are modified by the introduction

of supersymmetry.

6.1 Calculation of the asymmetry within supersymmetric

N2-dominated leptogenesis

In this section we will extend the calculation of the asymmetry in the N2-dominated

scenario, as rising from SO(10)-inspired conditions, to a supersymmetric framework.

The supersymmetric extension of the seesaw lagrangian eq. (2.46) is given by the super-

potential [178, 179]

W`+⌫+N =
X

↵

D`
Y ↵ l↵✏Hd`R↵ + Y↵i l↵ ✏HuNRi +

1

2

X

i

NR
C
i DMi NRi + h.c., (6.1)

where where l↵ and `R↵ are respectively the SU(2) doublets and singlets lepton super-

fields, Hu and Hd are the Higgs superfields and ✏ is the total antisymmetric tensor. After

spontaneous symmetry breaking the two neutral Higgs field VEVs, vu and vd, generate

the Dirac masses for the charged leptons and for the neutrinos, respectively

m` = vd D`
Y and mD = vu Y , (6.2)

with tan � ⌘ vu/vd and v =
q

v2u + v2d ' 174.6 GeV, the usual SM Higgs VEV.

The supersymmetric extension of the model implies modifications in the expression of

the parameters related to leptogenesis, in particular of the decay parameters and of the

CP asymmetries.

The flavoured decay parameters are given by

Ki↵ =
|mD↵i|2

mMSSM
⇤ Mi

, (6.3)

where the equilibrium neutrino mass is [105]

mMSSM
⇤ ⌘ 8⇡5/2

p

gMSSM
⇤

3
p

5

v2u
MPl

=
1

2

s

gMSSM
⇤

g⇤
m⇤ sin2 � ' 0.78⇥ 10�3 sin2 � eV, (6.4)

where m⇤ and g⇤ are the parameters in the SM. This di↵erence is due to the fact that

the number of decay channels into leptons is now double than in the SM and that,

because of the presence of superpartners, the number of relativistic degrees of freedom

is now gMSSM
⇤ = 915/4. We shall assume that gMSSM

⇤ does not change between the N2

production and N1 washout. The overall e↵ect is to reduce the final value of mMSSM
⇤ ,

so that the decay factors are about
p

2 times larger than in the SM.
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The CP asymmetries are di↵erent in the supersymmetric extension, due to the presence

of additional interference terms. We shall focus on N2’s flavoured CP asymmetries,

which are given by [178]

"2↵ =
3

8⇡

M2 matm

v2

X

j 6=2

 

I↵
2j ⇠

�

M2
j /M2

i

�

+
2

3
J ↵
2j

Mj/M2

M2
j /M2

2 � 1

!

, (6.5)

where I↵
2j and J ↵

2j are obtained from eqs. (2.120) and (2.121) respectively, but now

⇠(x) =
x

3



ln

✓

1 + x

x

◆

� 2

1� x

�

. (6.6)

Neglecting here as well the interference with N1, we obtain

"2↵ ' 3

8⇡

M2 matm

v2
I↵
23, (6.7)

which is double compared to the SM case, eq. (3.112).

Finally, also the conversion factor of the B � L asymmetry to the baryon-to-photon

ratio, defined in eq. (2.172), is modified in the supersymmetric extension. Indeed it is

⌘B = dMSSM N lep,f
B�L where, following eq. (2.172) we have [105]

dMSSM = 2 aMSSM
sph

3

4

gs⇤(T0)

(gs⇤(T ))MSSM
' 0.89⇥ 10�2, (6.8)

where aMSSM
sph = 8/23 [180, 181] and (gs⇤)

MSSM = gMSSM
⇤ = 915/4.

With these relations we shall compute the final B � L asymmetry along the lines ex-

plained in the previous chapters. We will neglect again flavour coupling e↵ects, which,

in the supersymmetric extension, must receive a dedicated treatment [182]. We will also

not consider the possibility given by soft leptogenesis, that o↵ers a way to lower the

leptogenesis scale, thus avoiding the gravitino problem [183–186].

The standard high scale leptogenesis scenario we have shown before gets modified when

supersymmetry is introduced and light flavour e↵ects are considered. Due to the struc-

ture of the superpotential eq. (6.1), the charged lepton masses are now given by

m↵ = (D`
Y↵

)MSSMvd, (6.9)

where the VEV vd appears, in place of v as in the SM. Therefore, to ensure the matching

of the charged lepton masses we must have

(D`
Y↵

)MSSM = (D`
Y↵

)SM
1

cos �
. (6.10)

Using this relation in eq. (3.19) and in the discussion of section 3.1.2, we obtain that the

thresholds of the fully-flavoured regimes are modified by a factor (1+ tan2 �) [113, 187].
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Considering, in our case, asymmetry production from the next-to-lightest, N2, the three

fully-flavoured production regimes are now given by

• M2 � 5⇥1011 GeV(1+tan2 �): unflavoured regime. The final asymmetry is given

by eq. (3.57), where the di↵erent terms are computed in their supersymmetric

version.

• 5 ⇥ 1011 GeV(1 + tan2 �) � M2 � 5 ⇥ 108 GeV(1 + tan2 �): two fully-flavoured

regime. The asymmetry is computed from eq. (3.51).

• M2 ⌧ 5 ⇥ 108(1 + tan2 �): three fully-flavoured regime. The asymmetry is com-

puted as

N lep,f
B�L ' "2e(K2e)e

� 3⇡
8 K1e + "2µ(K2µ)e�

3⇡
8 K1µ + "2⌧(K2⌧ )e

� 3⇡
8 K1⌧ . (6.11)

In the SM framework, this case is never realised in N2-dominated leptogenesis,

given the lower bound eq. (3.58). However, in the supersymmetric extension,

large values of tan � can raise the threshold above this lower bound and cause the

asymmetry production to take place in the three fully-flavoured regime.

As already discussed, in the transition regimes around M2 ' 5 ⇥ 1011 GeV(1 + tan2 �)

and M2 ' 5 ⇥ 108 GeV(1 + tan2 �) the asymmetry should be calculated using density

matrix equations. We will not consider these particular regimes and we shall describe the

transitions by switching sharply from one fully-flavoured regime to the other, depending

on the value of M2.

We can also study the evolution of a pre-existing asymmetry in the supersymmetric

extension, taking into consideration the three di↵erent regimes described above.

• If M2 � 5⇥1011 GeV(1+tan2 �) it is impossible to realise successful strong-thermal

leptogenesis, since N2’s washout cannot suppress the pre-existing asymmetry in

any of the three light flavours. The pre-existing asymmetry can then be erased

only by N1’s washout, occurring in the three fully-flavoured regime. However, this

would also washout the produced asymmetry, thus making it impossible to realise

successful leptogenesis.

• If 5 ⇥ 1011 GeV(1 + tan2 �) � M2 � 5 ⇥ 108 GeV(1 + tan2 �) successful strong

thermal leptogenesis can be realised as in the SM case. The final pre-existing

asymmetry is given by eqs. (3.67), (3.68) and (3.69) and can be e�ciently washed

out by imposing the conditions in eq. (3.70).

• If M2 ⌧ 5 ⇥ 108 GeV(1 + tan2 �) N2’s dynamics take place in the three fully-

flavoured regime so that also the washout by N2 occurs along the three light

flavours. Eqs. (3.67), (3.68) and (3.69) are thus modified by the replacements
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K1e ! K1e + K2e and K1µ ! K2µ + K1µ in the exponentials. The conditions in

eq. (3.70) are then modified to

K1e + K2e, K1µ + K2µ & Kst(N
p,i
�e,µ

), K2⌧ & Kst(N
p,i
�⌧

), K1⌧ . 1. (6.12)

Hence, it is possible to have successful strong-thermal leptogenesis also with K1µ . 1,

if K2µ � 1. This way, K2µ will provide the washout of the pre-existing asymme-

try along the µ-flavour, while small values of K1µ will allow the final produced

asymmetry to be dominated by the muon flavour, instead of tauon. Therefore,

in the supersymmetric scenario it is possible to have a µ-dominated successful

strong-thermal leptogenesis scenario.

We can now study how these modifications impact on the results on the low-energy

neutrino parameters that we have derived in the previous chapter.

6.2 Low-energy neutrino parameters

In order to study the constraint imposed by successful leptogenesis and successful strong

thermal leptogenesis on the low-energy parameters in supersymmetric SO(10)-inspired

leptogenesis, we have numerically calculated the asymmetry and produced scatter plots

as in the SM SO(10)-inspired case. Again, we have considered (↵1, ↵2, ↵3) = (1, 5, 1)

and checked that, as in the SM case, the final results do not depend on ↵1 and ↵3. We

also imposed the hierarchy condition M3 > 3M2, eq. (3.1). In the supersymmetric exten-

sion we have to distinguish between “small tan � values”, in which the production takes

place in the two fully-flavoured regime as in the non-supersymmetric case, and “large

tan � values” for which the asymmetry is produced in the three-fully flavoured regime.

Since for successful SO(10)-inspired leptogenesis, barring crossing level solutions, we

typically have M2 & 1011 GeV, and given the threshold M2 ' 5⇥ 108 GeV(1 + tan2 �),

for tan � & 15 the production mainly occurs in the three fully-flavoured regime, while

for tan � . 15 it takes place in the two fully-flavoured one. On the other hand, since

there are no solutions for M2 & 3 ⇥ 1012 GeV, we can conclude that for tan � & 80 all

solutions fall in the three fully-flavoured regime. For definiteness, we considered two

representative cases: tan � = 5, in which the production occurs almost entirely in the

two flavoured regime, and tan � = 50 in which the asymmetry is mainly produced in the

three fully-flavoured regime.

As in the SM case, we also distinguished between NO and IO light neutrino mass spec-

trum, so that we studied 4 cases in total.

All the parameter values were taken as described in the previous chapter for the non-

supersymmetric case.
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6.2.1 Normal ordering

We shall first deal with normally ordered light neutrino masses. As mentioned. we will

separately discuss the tan � = 5 and the tan � = 50 cases.

6.2.1.1 Small tan � values: tan � = 5

The value tan � = 5 gives a threshold between the two-fully flavoured and the three

fully flavoured regimes M2 ' 1010 GeV. This is su�ciently small to ensure that almost

all values of M2 fall in the two fully-flavoured regime. We present the results in fig. 6.1.

As in the non-supersymmetric case, yellow points correspond to successful leptogenesis

with 1  VL  VCKM , while orange points have VL = 1. Here we consider thermal initial

N2 abundance.

Figure 6.1: Scatter plots [3] in the low-energy neutrino parameter space pro-
jected on di↵erent selected planes for NO, in supersymmetric SO(10)-inspired
leptogenesis. Here we have tan =

¯
5, ↵2 = 5 and thermal initial N2 abundance.

The yellow (orange) points realise successful leptogenesis for 1  VL  VCKM

(VL = I). The dark (light) blue points realise successful SO(10)-inspired strong
thermal leptogenesis for 1  VL  VCKM (VL = I) for an initial value of the
pre-existing asymmetry Np,i

B�L = 10�3. The hatched regions indicate either the
cosmological upper bound eq. (1.43), or the values of ✓23 excluded by current
data at 3�, eq. (5.11). The grey points indicate the minimum value of TRH.
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The results for tan � = 5 are similar to those obtained in the non-supersymmetric

case, fig. 5.2. It must be noticed that, even if they are obtained with thermal initial

N2 abundance, they are very little dependent on the initial N2 abundance, since both

for the ⌧ -dominated and the µ-dominated solutions we have K2⌧ � 1 and K2⌧?2
� 1

respectively (except for very few points with K2⌧?2
' 1). In principle, due to the smaller

value of mMSSM
⇤ compared to m⇤, the washout is stronger and therefore it should be

more di�cult to obtain K1⌧ . 1. However, from the analytical expression of K1⌧ ,

eq. (5.9) with VL = 1, we know that K1⌧ . 1 produces conditions on the phases that are

only marginally dependent on mMSSM
⇤ . The overall e↵ect introduced by supersymmetry

is an increase of the asymmetry at the production of a factor ⇠p2, due to the doubling

of the CP asymmetries partly compensated by the stronger washout. This causes the

allowed range of m1 to be slightly larger compared to the non-supersymmetric case. In

particular, the upper bound moves from 0.06 eV to 0.1 eV.

When studying successful strong thermal leptogenesis, we can notice that the most sig-

nificant di↵erence with respect to the non-supersymmetric case is given by the larger ✓23

allowed range. In particular, we now have ✓23 . 46�, more relaxed than the upper bound

derived in the SM. We can understand this relaxation by considering the analytical de-

scription of the VL = 1 case. The upper bound on ✓23 is obtained by plugging the lower

bound on m1 in eq. (5.36). In strong thermal leptogenesis, the lower bound on m1 is

derived from the lower bound on mee, eq. (5.45), which is originated by the requirement

K1e � 1. Since in the supersymmetric case all K1↵ are about
p

2 larger, the condition

on K1e is more easily satisfied, resulting in a relaxation of the lower bounds on mee and

m1. Indeed we now have mee & 6 meV, giving m1 & 7 meV, as can be seen from the

bottom-left panel in fig. 6.1. This in turn implies ✓23 . 46�.

We can also study the dependence of the asymmetry on the value of ↵2. To this aim,

in fig. 6.2 we show the scatter plots of Mi vs. m1 for integer values ↵2 = 1, . . . , 10 and

1  VL  VCKM . Here we also plot the minimum requested value of TRH and highlight

the flavour that dominates the final asymmetry: red, green and blue colours correspond

to electron-, muon- and tauon-domination respectively. It is possible to notice that,

beyond ⌧ - and µ-dominated, also e-dominated solutions appear. At low values, ↵2 = 1, 2,

these are the only solutions found for m1 . 20 meV. As shown in section 3.3.1, for VL = 1

the electron CP asymmetry "2e is many orders of magnitude suppressed compared to "2µ

and, even more, to "2⌧ (see eq. (3.114) and fig. 3.4). However, when VL 6= 1 this strict

hierarchy does not hold anymore. In the non-supersymmetric case electron-dominated

solutions can indeed be found, but are extremely marginal and were not mentioned in

the previous discussion. They are obtained for very special conditions and the maximum

possible asymmetry produced in these solutions is slightly above the observed value. In

the supersymmetric case, since the produced asymmetry is increased by about a factorp
2, these marginal e-dominated solutions can be realised more easily than in the SM

case.
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Figure 6.2: Scatter plots [3] in the plane Mi vs. m1 for NO, tan � = 5,
1  VL  VCKM and for integer ↵2 = [1, 10] from top left to bottom. All points
respect the successful leptogenesis condition. The hatched region marks the
cosmological upper bound, eq. (1.43). The red, green and blue points are such
that the final asymmetry is dominated by the electron, muon and tauon flavour
respectively. The grey points indicate the minimum value of TRH.
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We must notice, however, that these solutions are realised only for K2⌧?2
. 1 and with

thermal initial N2 abundance. Therefore, they are strongly dependent on the initial N2

abundance and disappear for initial vanishing N2 abundance. For these reasons, we can

conclude that these e-dominated solutions do not really open up a new allowed region

in the low-energy parameters.

6.2.1.2 Large tan � values: tan � = 50

For tan � = 50 the threshold between the two-fully flavoured and the three-fully flavoured

regimes is M2 ' 1012 GeV, so that the production occurs mostly in the three fully-

flavoured one. The results are shown in fig. 6.3 and are obtained for the same setup

as in the small tan � regime. It is possible to notice that the constraints are now

Figure 6.3: Scatter plots as in fig. 6.1 for NO but with tan � = 50, [3].

generally more relaxed than in the tan � = 5 case. However, there is still a lower bound

m1 & 1 meV, so that we can conclude that the lower bound on m1 is quite stable,

constituting a general feature of SO(10)-inspired leptogenesis.

Considering strong thermal leptogenesis, the allowed region is more extended as well.

Moreover, we can find successful strong thermal leptogenesis solution also for high values

of the absolute neutrino mass scale m1 & 50 meV.
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Figure 6.4: Scatter plots as in fig. 6.4, but with tan � = 50, [3]. In the second
panel, for ↵2 = 2, the dark red points correspond to e-dominated solutions with
|⌦ij |2 � 3.
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We know that for these values of m1 the solution is µ-dominated and indeed in the SM

case strong thermal leptogenesis could not be realised in this region. However, in the

supersymmetric framework, for tan � = 50, M2 falls in the three fully-flavoured regime,

therefore, as mentioned above, we can have successful leptogenesis with K2µ � 1 and

K1µ . 1, which imply a µ-dominated scenario. Nevertheless, this new µ-dominated

strong thermal leptogenesis solutions are largely excluded by the cosmological upper

bound on m1.

As in the small tan � case, we can study the behaviour of the final asymmetry at di↵erent

values of ↵2. In fig. 6.4 we show the scatter plots of Mi vs. m1 for ↵2 = 1, . . . , 10, high-

lighting the flavour dominating the final asymmetry, as in fig. 6.2. From the bottom-left

panel of fig. 6.3 it can be noticed that for VL 6= 1 (yellow points) the region satisfy-

ing K1e . 1 is enlarged compared to the previous cases. Indeed, from fig. 6.4 it is

clear that electron-dominated solutions are more numerous than before, in the range

2 meV . m1 . 10 meV. Moreover, these solutions are always realised for weak washout,

but now, in the three fully-flavoured regime, K2e . 1 is more easily satisfied than

K2⌧?2
. 1 as for tan � = 5. They can also allow for a relaxation of the reheating tem-

perature TRH . 1010 GeV. In the second panel in fig. 6.4, for ↵2 = 2, we have marked

with a darker red colour those e-dominated solutions that are obtained with a complex

orthogonal matrix such that |⌦ij |2 � 3. As already discussed, models with larger entries

of the orthogonal matrix entail some degree of fine tuning in the seesaw formula. We

can therefore see that those e-dominated solutions that correspond to the lowest values

of TRH are obtained at the expense of some fine tuning. Moreover, it must be recalled

that these solutions exist only for thermal initial abundance of N2. We can conclude

that these electron solutions are quite fine tuned and, in particular, strongly dependent

on the initial conditions.

6.2.2 Inverted ordering

We shall now study the IO case, distinguishing between small tan � and large tan �

values.

6.2.2.1 Small tan � values: tan � = 5

The results for tan � = 5 in the IO case are shown in fig. 6.5. As for NO, for tan � = 5 the

results on the low-energy neutrino parameters are very similar to the non-supersymmetric

case. This allows us to conclude that also in the supersymmetric extension IO is dis-

favoured compared to NO. However, the allowed regions are slightly enlarged compared

to the SM. In particular, there is no lower bound on the atmospheric mixing angle.

Nevertheless, values of ✓23 in the second octant require high values of m1, very close to

the cosmological upper bound.
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Figure 6.5: Scatter plots as in fig. 6.1, with tan � = 5, but for IO, [3].

In fig. 6.6 we show the solutions for various values of ↵2, with the same colour code as in

fig. 6.2 and 6.4. We can now notice that even for thermal N2 initial abundance there are

no e-dominated solutions. Indeed, in IO we have K1e ' mee/mMSSM
⇤ & 70, as can be

noticed from the bottom-left panel of fig. 6.5. This implies that the electron asymmetry

is completely washed out by N1.
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Figure 6.6: Scatter plots as in fig. 6.2, with tan � = 5, but for IO, [3].
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6.2.2.2 Large tan � values: tan � = 50

For large tan � values and imposing successful leptogenesis condition, the situation is

qualitatively similar to the previous case, as one can see from fig. 6.7. The allowed

regions slightly further enlarge: for instance, now we have m1 & 7 meV.

We can find a substantial di↵erence with the non-supersymmetric scenario when suc-

cessful strong thermal leptogenesis is required. In the supersymmetric case we can

Figure 6.7: Scatter plots as in fig. 6.3, with tan � = 50, but for IO, [3].

indeed find solutions realising successful strong thermal leptogenesis both for VL = 1

and VL 6= 1, while in the SM this did not occur. The reason is that for large tan �, as

already mentioned, the condition for the washout of the pre-existing asymmetry is now

K1µ + K2µ � 1 and can be easily satisfied even for low K1µ values.

We can conclude that in all cases supersymmetry helps realising successful strong ther-

mal leptogenesis.

In the panels of fig. 6.8 we show the dominant flavour as in figs. 6.2, 6.4 and 6.6. We

can see that, for the same reason as for small tan �, there are no electron dominated

solutions.



Chapter 6. Supersymmetric extension 159

Figure 6.8: Scatter plots as in fig. 6.4, with tan � = 50, but for IO, [3].
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6.3 Lower bound on the reheating temperature

Our scenario of thermal leptogenesis requires that the initial temperature of the radiation

dominated regime, the reheating temperature TRH within inflation, be high enough for

the heavy neutrinos to be thermally produced before their interactions, in particular

their inverse decays, go out of equilibrium producing the asymmetry. As mentioned

at the beginning of the chapter, in the supersymmetric scenario the lower bound on

TRH imposed by thermal leptogenesis can be in tension with the constraint imposed by

the gravitino problem. The upper bound on the reheating temperature, in order not

to overproduce the gravitino, can be conservatively assumed to be TRH . 1010 GeV.

This clashes with what was found in the non-supersymmetric case, TRH & 1010 GeV

[159], and even in a dedicated analysis of the supersymmetric scenario [188], where it

was concluded that supersymmetric thermal leptogenesis requires TRH & 1011 GeV. For

these reasons it is interesting to study the results on the reheating temperature obtained

within supersymmetric SO(10)-inspired thermal leptogenesis.

As discussed in section 2.2.4, in the strong washout regime a good measure of the scale at

which the asymmetry is produced is provided by the function zL(K), eq. (2.165). When

flavour e↵ects are taken into account, and assuming that the final asymmetry produced

by N2 is dominated by flavour ↵, we can estimate the leptogenesis temperature scale as

TL = M2/zL(K2↵), where ↵ = ⌧, ⌧?
2 in the two fully-flavoured regime or ↵ = e, µ, ⌧ in

the three fully-flavoured regime. Clearly, there could be fine tuned situations in which

the contributions from di↵erent flavours are equivalent. In these cases we should take

TRH above the maximum value out of the relevant flavours. We can, thus, identify a

temperature interval around TL in which the asymmetry is produced [94]

M2

zL(K2↵) + 2
. T . M2

zL(K2↵)� 2
, (6.13)

so that in the strong washout regime we can require the reheating temperature to be

TRH & Tmin
RH (K2↵) ' M2

zL(K2↵)� 2
. (6.14)

In the weak washout regime it is not possible to identify such a sharp interval of tem-

peratures and, moreover, the process of production of the asymmetry depends on the

initial N2 abundance. In this regime we can generally require TRH & M2.

An expression that interpolates quite well between the strong and weak washout regimes

is given by [94]

Tmin
RH (K2↵) ' M2

zL(K2↵)� 2 exp(�3/K2↵)
. (6.15)

This expression gives the minimum of the reheating temperature for each solution with

specific values of K2↵ and M2. The global lower bound on TRH for each ↵2 can then be
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calculated minimising over all the solutions found

Tmin
RH ⌘ min[Tmin

RH (K2↵)]. (6.16)

For each point satisfying successful leptogenesis we computed the corresponding Tmin
RH (K2↵)

value. These are shown with grey points in all plots where also the heavy neutrino masses

are plotted. In particular, in figs. 6.2, 6.4, 6.6 and 6.8, for ↵2 = 1, . . . , 10. We can ex-

pect a non trivial dependence of the reheating temperature on ↵2, since, for decreasing

↵2, one has that M2 decreases, which would lower TRH. However, the final asymmetry

decreases as / ↵2
2, so that there must be a lower bound on ↵2 coming from successful

leptogenesis.

We summarised the dependence of the global lower bound on the reheating temperature

on ↵2 in fig. 6.9. Here Tmin
RH is computed for each value of ↵2 = 1, . . . , 10 minimising

over the models with m1 < 0.07 eV, the cosmological upper bound on m1, eq. (1.43). In

fig. 6.9 we indicated which flavour dominates the final asymmetry with the same colour

code as in in figs. 6.2, 6.4, 6.6 and 6.8.

The results are shown both for initial thermal N2 abundance (thin lines) and for vani-

shing initial N2 abundance (thick lines). Dotted lines correspond to VL = 1 scenarios,

while dashed lines to VL = VCKM . In the left (right) panels we show the results for low

(high) values of tan �, while in the top (bottom) panels the results for NO (IO).

In the case of low tan � values, left panels, one can see how the results do not di↵er much

from those in the non-supersymmetric case [159]. There is actually a ⇠p2 relaxation

due to the increase of the asymmetry at the production.

In the right panels, for large tan � values, we can notice that in the NO case the red

branch, corresponding to the e-dominated solutions, for ↵2 2 [1, 2], allows for tempera-

tures as low as Tmin
RH ' 4 ⇥ 109 GeV, showing that it is possible to go below 1010 GeV.

However, as already mentioned, these e-dominated solutions exhibit two important prob-

lems. Firstly, they exist only for thermal initial N2 abundance. This requires further

justification within larger theoretical models where, for instance, heavy neutrinos are

produced by Z 0 particles of a left-right symmetry left by the breaking of SO(10) [189].

Secondly, these solutions are characterised by large values of |⌦ij |2, thus implying fine-

tuned cancellations in the seesaw formula. For these reasons, these solutions, though

appealing and representing a viable possibility, should not be over-emphasised. We must

then more conservatively consider the values of Tmin
RH given by µ- and ⌧ -dominated so-

lutions which are independent of the initial N2 abundance and not fine tuned. Indeed,

when considering vanishing initial N2 abundance, only these solutions survive, while the

e-dominated ones disappear.

We can therefore conclude that supersymmetric SO(10)-inspired leptogenesis conserva-

tively gives a lower bound on the reheating temperature TRH & 1⇥ 1010 GeV. This is in

line with the conservative, model independent bound posed by the gravitino problem.



Chapter 6. Supersymmetric extension 162

Figure 6.9: Global lower bound on TRH as a function of ↵2, [3]. The blue, green
and red lines correspond to an asymmetry tauon, muon and electron dominated
respectively. Thin lines are for initial thermal N2 abundance. Solid lines are
for 1  VL  VCKM , dotted for VL = 1 and dashed for VL = VCKM . The thick
solid lines are for initial vanishing abundance and 1  VL  VCKM . The top
(bottom) panels are for NO (IO). The left (right) panels are for tan � = 5 (50).

Indeed, for large values of the gravitino mass, m3/2 & 30 TeV, it is possible to reconcile

the lower bound imposed by SO(10)-inspired thermal leptogenesis with the bound im-

posed by the gravitino problem [174]. Clearly, within specific models one should verify

whether the lower bound Tmin
RH ' 1⇥ 1010 GeV can indeed be saturated.

There is, however, another possibility, proposed in [3], that can relax the lower bound

even below 1010 GeV, without the need for fine-tuned solutions.

6.4 A new scenario of N2-dominated leptogenesis

It is typically assumed that the lightest heavy neutrino mass M1 is heavier than the

sphaleron freeze-out scale [82]

M1 & T out
sph ' 100 GeV. (6.17)
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In this case the lightest heavy neutrino washout a↵ects the entire B � L asymmetry

and has to be taken into account. However, if M1 is below T out
sph , then its washout

Figure 6.10: Lower bound on TRH as a function of ↵2 for models with M1 . T out
sph ,

[3]. The top (bottom) panels are for NO (IO). The left (right) panels are for
tan � = 5 (50). The line code is the same as in fig. 6.9.

can only act on the lepton asymmetry, leaving untouched the produced baryon asym-

metry, now frozen. More precisely, N1’s washout acts within the temperature interval

T = [M1/z1, M1/z2] with z2 ' 2/
p

K1↵ [94]. Therefore, more precisely one has to im-

pose M1 . z1 T out
sph .

In any case, conservatively assuming M1 . T out
sph , the final asymmetry is given in the

various regimes by eqs. (3.57), (3.51) and (6.11) without the exponentials encoding the

washout by N1.

We can then repeat the calculation of Tmin
RH in this scenario and the results are shown

in the four panels of fig. 6.10, that correspond to the same cases of fig. 6.9. In this

cases the minimum is always realised within ⌧ -dominated solutions with strong washout

at the production, so that the final asymmetry is independent of the initial N2 abun-

dance. Moreover, these solutions do not imply fine tuning, since we always naturally
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have |⌦ij |2 . 1. It can be seen, remarkably, that values of TRH as low as 109 GeV are

possible. In this case the gravitino overabundance problem can be circumvented for a

wider range of gravitino masses compared to the traditional scenario discussed above.

From eq. (3.90) we can see that this scenario can be realised for values ↵1 . 0.1. This

implies that mD3 ⌧ T out
sph ⇠ 100 GeV in order for the seesaw limit to be valid, therefore

giving ↵3 ⌧ 1 as well. One can wonder whether this can be achieved in some realistic

models. Interestingly, in [170] where fits to realistic SO(10) GUT models are performed,

the found best case is realised for M1 ' 1 TeV corresponding to ↵1 ' 0.3. Since this case

also has a very small �2
min ' 0.6, it can be tempting to think that, with some deviation

from the best fit, M1 . T sph
RH can be obtained, with a still acceptable value of �2

min. In

any case, the specific case found in [170] seems to suggest that this scenario might be

indeed realised within some realistic model.

Finally, in this scenario the low-energy neutrino constraints are not showed because they

basically disappear. As discussed in chapter 5, these constraints exist mainly because of

the presence of N1’s washout. Removing the action of N1 make these bounds vanish. It

is also worth mentioning that, though introduced in a supersymmetric framework, this

scenario might be realised and find applications within a non-supersymmetric framework

as well.

6.5 Comments and remarks

In the study of the supersymmetric extension of SO(10)-inspired leptogenesis we have

made some assumptions that can have some impact on the final results. However, the

e↵ect of the approximations adopted should not be large. The main sources of theoretical

uncertainties are listed below.

• Flavour coupling has been neglected as in the non-supersymmetric scenario. The

treatment of flavour coupling is generally similar to the SM case, however the

presence of supersymmetric particles and additional high-energy symmetries (such

as R and Peccei-Quinn symmetries) require a dedicated and detailed study [182].

As already discussed, the inclusion of flavour coupling can in general open new ways

to avoid N1’s washout. Therefore it is clear that its e↵ect can at most result in

a relaxation of the reheating temperature in the traditional scenario (M1 & T out
sph )

to the minimum value, Tmin
RH ' 1 ⇥ 109 GeV, found in the new scenario with

M1 . T out
sph .

• The regimes around M2 ' 5⇥108 GeV(1+tan2 �) and M2 ' 5⇥ 1011 GeV(1 + tan2 �)

have been described by an instantaneous transition from one fully-flavoured regime

to another. As mentioned, a detailed treatment with density matrices should be

employed.
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• In the supersymmetric extension, especially for large values of tan �, the running of

low-energy neutrino parameters might be important and give some modifications

to the constraints we derived [190–192]. However, this e↵ect does not change our

main results on the lower bound on the reheating temperature.

We must also notice that the results on TRH we obtained for ↵2 = 5, TRH & 1.5⇥1010 GeV

[3], is more than one order of magnitude lower than what is obtained in [188]. Indeed,

there it was found quite a stringent lower bound TRH & 5 ⇥ 1011 GeV, which entailed

that thermal supersymmetric SO(10)-inspired leptogenesis was not compatible with the

gravitino problem. Hence, this motivated the quest for di↵erent, non-thermal, scenarios.

Given the lack of some details about the calculation in [188] (for instance, it is not

explained how the matrix UR is computed) it is not possible to provide an explanation

for this discrepancy. We can just notice that in [188] the ⌧ -dominated solutions we

found are completely absent and the lower bound on TRH obtained thereby relies on

e-dominated solutions. For what shown above, this implies a dependence on the initial

N2 abundance.

It is interesting to notice that our result on the lower bound on the reheating temperature

in the traditional scenario, TRH & 1 ⇥ 1010 GeV, falls in the vicinity of what is needed

in order to produce the DM gravitino abundance, depending on the gluino mass. For

this reason, it may be tempting to relate matter-antimatter asymmetry production in

thermal leptogenesis to gravitino DM production, as done for N1-dominated scenarios

[193]. However, recent LHC results on the lower bound on gluino masses [194, 195] pose

a stringent upper bound on the reheating temperature TRH . 5 ⇥ 109 GeV within the

pMSSM [196]. This would then disfavour this intriguing link between baryon asymmetry

and gravitino DM. As we have seen, the new scenario we proposed, with M1 . T out
sph can

in any case still be compatible with this more stringent constraint.





Chapter 7

Summary and conclusions

In this final part, we shall summarise the previous chapters, highlighting the most im-

portant points that guided the development of this work. For the sake of clarity, we

shall divide this resumé in sections following the chapter structure.

7.1 Two serious problems

Although the Standard Model of particle physics can probably be regarded as the most

successful theory developed so far, several issues remain unsolved. Apart from leaving

aside the gravitational interaction and not contemplating the presence of DM and DE,

the SM fails to explain two other fundamental aspects: the baryon asymmetry of the

Universe and neutrino oscillations.

In section 1.1 we introduced the baryon asymmetry of the Universe. We pursue the

quest for a dynamical mechanism, able to generate this asymmetry from symmetric (and

thus “natural”) initial conditions. Such a mechanism must satisfy the three conditions

pointed out by A. Sakharov, that were thereby explained. Moreover, this mechanism

must be able to produce an amount of asymmetry compatible with the experimental

observations. In order to be more quantitative, we introduced the baryon-to-photon

ratio ⌘B and mentioned how it can be precisely measured via BBN and by the study of

the acoustic peaks in the CMB angular power spectrum.

In section 1.2 we introduced the other problem of the SM we focused on: neutrino

oscillations. Several experiments measuring neutrino fluxes from di↵erent sources have

accumulated striking evidences that neutrinos can change their flavour during their

propagation. We briefly showed that neutrino oscillations can take place only if not all

of the neutrinos are massless, in net contrast with the assumptions of the SM. Neutrino

oscillations can be described with the introduction of the PMNS matrix U , and two mass-

squared di↵erences, �m2
atm and �m2

sol. These parameters can be e�ciently probed by

neutrino oscillations experiments. However, the absolute neutrino masses can only be

167
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measured through other kinds of experimental evidences, such as �-decay, 0⌫�� decay

experiments or cosmological observations. Currently, cosmology can provide us with the

most stringent upper bounds.

Having described these two important shortcomings of the SM, we introduced the idea

of leptogenesis within the seesaw extension of the SM, which provides an explanation to

both problems at the same time. The seesaw mechanism can account for neutrino mixing

and masses in a rather natural way, at the price of introducing additional particles and

free parameters. In turn, these same particles can be responsible for the generation of the

baryon asymmetry in the Early Universe. This establishes a strict link between neutrino

phenomenology and cosmology, thus allowing us to employ cosmological evidences, such

as the baryon asymmetry, to constrain and predict the otherwise free parameters of

the seesaw mechanism. This is the guideline of our work. In order to follow our main

goal, we described in detail the seesaw mechanism and the generation of the baryon

asymmetry via leptogenesis.

7.2 The foundations

In chapter 2 we studied in detail how the SM can be extended in order to provide

neutrinos with a mass term. We focused on the seesaw mechanism by highlighting its

features and the number of additional parameters it introduces.

7.2.1 Neutrino masses

The simplest ways to account for neutrino masses, and hence neutrino mixing, are given

by the introduction in the SM lagrangian of a “Dirac” or a “Majorana” neutrino mass

term, whether neutrinos are Dirac or Majorana fermions. In sections 2.1.1 and 2.1.2

we briefly discussed the main features of these two possibilities. We then turned to the

most interesting case, given by the combination of both. This is the basis of the so

called seesaw mechanism. In its type-I formulation, additional right handed Majorana

neutrinos, singlets under the SM gauge group, are introduced, together with their Ma-

jorana mass term and Yukawa couplings to left handed lepton and Higgs doublets. If

the Majorana mass scale, M , is much larger than the electroweak scale v ' 174 GeV,

the neutrino mass spectrum splits into two sets: a very heavy one, made of neutrino

fields whose RH component is almost coinciding with the introduced RH fields, and a

light set of neutrinos whose LH component mostly coincides with a combination of the

LH fields appearing in the weak interaction lagrangian. The key feature of the seesaw

mechanism is the fact that the light neutrino masses are naturally small, thanks to the

interplay between the electroweak scale and the RH Majorana neutrino mass scale. The

latter can be provided by new high-energy physics beyond the SM, such as in GUTs, so
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that it can be particularly high, M ⇠ 1015 GeV. This way, in type-I seesaw, the light

neutrino mass scale is proportional to v2/M , which is interestingly in accordance with

the mass scales obtained from neutrino oscillation experiments. Considering a minimal

type-I seesaw scenario, with the introduction of three RH Majorana neutrinos, the SM

lagrangian is extended by the addition of 18 new parameters. Adopting the so-called

orthogonal matrix ⌦ parameterisation of the seesaw relation, we can identify the 18 free

seesaw parameters:

• 6 mixing parameters in the PMNS matrix U : 3 mixing angles and 3 phases,

• 3 light neutrino masses mi,

• 3 heavy neutrino masses Mi

• 6 real parameters in the complex orthogonal matrix ⌦.

This parameterisation is rather convenient since we can now identify a set of low-energy

neutrino parameters, given by the mixing parameters and the light neutrino masses, and

a set of high-energy parameters made of the heavy neutrino masses and the parameters

in ⌦. The first set is experimentally accessible, while the second is di�cult, if not

impossible, to directly probe. We shall look for additional requirements to overimpose

on the model in order to constrain and predict both parameter sets. We shall find such

additional conditions by exploiting the leptogenesis mechanism.

7.2.2 Leptogenesis

Within the seesaw framework all three Sakharov’s conditions can be satisfied. In sec-

tion 2.2 we analysed in detail how the seesaw mechanism can fulfil each of them.

1. The seesaw lagrangian violates the lepton number due to the presence of the RH

neutrinos Majorana mass term. Thanks to the network of SM interactions that

are in equilibrium in the Early Universe, and in particular to SM electroweak

sphalerons, lepton number violation implies a violation of B � L and hence a

violation of the baryon number B.

2. The seesaw lagrangian introduces additional CP violation due to the decay of the

heavy neutrinos. For each heavy neutrino Ni it is possible to define CP asymme-

try parameters proportional to the di↵erence between the decay rates of Ni into

particles and antiparticles. These parameters are not zero at 1-loop, thus implying

a net violation of CP .

3. The out-of-equilibrium dynamics is provided by the decays and inverse decays of

the heavy neutrinos into lepton and Higgs (anti)doublets. It is possible to show
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that the inverse decay rate drops out of thermal equilibrium, or is even always out

of equilibrium, during the evolution of the Early Universe. The third Sakharov’s

condition is then naturally satisfied within the seesaw setup by the freeze-out of

heavy neutrinos inverse decays.

We then introduced the actual leptogenesis mechanism, by concentrating on its most

simple realisation. We considered only the lightest heavy neutrino, N1, while neglecting

the dynamics of the other heavy neutrinos and any other interactions a part from N1’s

decays and inverse decays. This rather simplified scenario, often referred to as “vanilla

leptogenesis”, does nonetheless introduce all the key features and formalism of the lep-

togenesis mechanism.

In section 2.2.4 we studied the dynamics of the heavy neutrino decays and inverse de-

cays by introducing the Boltzmann equations for the abundances of N1 and of the B�L

asymmetry. As expected, the final asymmetry is produced thanks to the interplay of

decays and inverse decays, in and out of thermal equilibrium.

As reference value for the final produced asymmetry, we chose the baryon-to-photon ra-

tio obtained from the CMB angular power spectrum, ⌘CMB
B . Any leptogenesis model able

to produce a final asymmetry that, evolved down to the recombination era, is compatible

with ⌘CMB
B , is said to realise successful leptogenesis. This is indeed one of the additional

conditions we were looking for in order to try to constrain the seesaw free parameters.

Even in its most simple realisation, leptogenesis can give interesting information on the

otherwise unattainable high-energy neutrino parameters. It can be shown that vanilla

leptogenesis can be successful for lightest heavy neutrino masses M1 & 3⇥ 109 GeV.

We conclude chapter 2 with a brief comment on subleading corrections to the proposed

scenario. These are given by additional scattering processes, implied by the seesaw

lagrangian, whose impact on leptogenesis can nonetheless be safely neglected. There

are indeed other more important e↵ects that can completely modify this simple vanilla

scenario and that were considered in chapter 3.

7.3 A shift in the paradigm

When the type-I seesaw lagrangian is embedded into a larger theoretical framework,

such as GUTs, the lower bound on M1 obtained by successful vanilla leptogenesis can

become a problem. Indeed, in many of these theories, the lightest heavy neutrino is

typically much lighter than what required by successful vanilla leptogenesis. However,

it is possible to circumvent the lower bound on M1 by considering leptogenesis models

in which the asymmetry is produced by the next-to-lightest heavy neutrino, N2, while

the contributions by N1 and N3 can be neglected. Such a scenario is referred to as N2-

dominated leptogenesis. We always considered a hierarchical spectrum with Mi+1 & 3Mi,

so that the processes related to di↵erent heavy neutrinos do not overlap. This way,
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N2-dominated leptogenesis implies asymmetry production by N2’s decays and inverse

decays, followed by the washout operated by N1’s inverse decays, at lower temperatures.

However, N1’s washout would basically erase any asymmetry, unless crucial e↵ects,

neglected in the vanilla scenario, are taken into account.

7.3.1 Flavour e↵ects

After mentioning the “heavy flavour e↵ects”, in section 3.1.2 we focused on the “light

flavour e↵ects”, which eventually play a very significant role in N2-dominated leptoge-

nesis. While the temperature in the Early Universe drops, the interactions of the lepton

doublets with the charged RH singlets enter thermal equilibrium and become e�cient.

If their rate becomes larger than the heavy neutrinos inverse decay rate, then a lepton

doublet produced by the decay of Ni into the coherent state |lii would, on average,

interact with a charged singlet before inverse-decaying back to a heavy neutrino. For

this reason, the coherence of the lepton state |lii is broken by the charged lepton inter-

action of a certain flavour ↵, in equilibrium. This acts as a quantum measurement of

the flavour composition of |lii, and the flavoured �↵ ⌘ B/3� L↵ asymmetries must be

studied in place of the total B �L one. It is possible to distinguish three di↵erent light

flavour regimes, depending on the mass of the heavy neutrino Ni we are considering

1. Mi & 5 ⇥ 1011 GeV: charged-lepton Yukawa interactions are not in equilibrium,

therefore light flavour e↵ects can be neglected and heavy flavours dominate.

2. 5 ⇥ 108 GeV . Mi . 5 ⇥ 1011 GeV: ⌧ -Yukawa interactions are equilibrium and

e�cient enough to project the coherent states |lii on the ⌧ flavour direction and

on |l⌧?i i, the flavour composition of |lii which is orthogonal to ⌧ . Similar projection

holds for the antilepton states. This is the so-called two fully-flavoured regime.

3. Mi . 5 ⇥ 108 GeV: also µ-Yukawa interactions are equilibrium and able to fully

break the coherence of |lii and |lii. The flavour composition is completely measured

and the (anti)lepton states are projected onto the three light flavour directions

↵ = e, µ, ⌧ . We have the so-called three fully-flavoured regime.

In the transition regions between one fully-flavoured regime and another, a density ma-

trix formalism must be adopted. We decided to avoid this situation and we studied how

the Boltzmann equations of the N2-dominated scenario are modified when flavour e↵ects

are considered in these three fully-flavoured regime. We neglected the so-called flavour

coupling, by assuming that the di↵erent asymmetries �↵ evolve independently. The fi-

nal asymmetry is composed of the sum of the di↵erent asymmetries �↵, along which N1

acts with its exponential washout, respectively ruled by the flavoured decay parameters

K1↵. Hence, it is well possible that a sizeable final asymmetry can survive N1’s washout

in a flavour along which the washout is particularly mild, i.e. K1↵ . 1. This situation
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is quite easily satisfied, so that, thanks to flavour e↵ects, N2-dominated leptogenesis

can indeed be regarded as a viable mechanism to produce the baryon asymmetry of the

Universe.

In the rest of chapter 3 we introduced two main theoretical frameworks that justify

the shift from N1-dominated to N2-dominated leptogenesis: strong thermal leptogenesis

and SO(10)-inspired leptogenesis. These setups also impose additional conditions on the

seesaw model, thus providing us with predictions and constraints on the free parameters,

as desired.

7.3.2 Strong thermal leptogenesis

The initial value of the B � L asymmetry depends, in principle, on the detailed history

of the Early Universe after inflation. Assuming a thermal production of the heavy neu-

trino abundances requires a rather high reheating temperature TRH which, in general,

would allow other mechanisms to e�ciently produce a sizeable asymmetry, called initial

pre-existing asymmetry Np,i
B�L, before the leptogenesis era. The final asymmetry amount

can then be the sum of the contribution produced by leptogenesis, N lep,f
B�L, and of what

remains of the pre-existing asymmetry, Np,f
B�L. In order to correctly employ the exper-

imental information on the baryon asymmetry of the Universe to constrain the seesaw

mechanism, we must require that the pre-existing asymmetry is e�ciently erased by

leptogenesis, while producing the correct final asymmetry. Leptogenesis models that are

able to satisfy this condition are said to realise successful strong thermal leptogenesis.

Considering a hierarchical spectrum of the heavy neutrinos, it was remarkably found

that successful strong thermal leptogenesis can be obtained only within a N2-dominated

scenario in which the final asymmetry is produced in the ⌧ -flavour. This gives the strong

thermal conditions on the flavour decay parameters of N1 and N2: K1e, K1µ, K2⌧ � 1

and K1⌧ . 1. We therefore noticed with great interest how the theoretical request of full

independence of the initial conditions naturally selects a particular leptogenesis setup

that coincides with the N2-dominated scenario. This can be regarded as a first con-

straint on the seesaw parameters (in this case, on the high-energy neutrino parameters)

obtained when imposing this additional condition. In chapter 4 we carefully analysed

the consequences brought about by strong thermal leptogenesis on the low-energy sector.

7.3.3 SO(10)-inspired leptogenesis

The type-I seesaw mechanism can be very elegantly embedded into a larger theoretical

framework such as GUTs based on SO(10) as grand unification gauge group. The three

RH neutrinos naturally fit in the same irreducible representation together with leptons

and quarks. It is therefore interesting to study the type-I seesaw leptogenesis mechanism
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when conditions inspired to those realised in SO(10) GUTs are imposed. We considered

two main conditions that define SO(10)-inspired leptogenesis.

1. Once the Dirac neutrino mass matrix is diagonalised, its entries are assumed to be

proportional to the up-quark masses through coe�cients ↵i = O(0.1 ÷ 10). This

implies that the neutrino Dirac masses mDi track the quark masses hierarchy.

2. The Dirac mass matrix is diagonalised via a bi-unitary transformation involving a

unitary matrix VL that acts on the LH neutrino fields. We assume that the angles

in VL cannot be larger than the corresponding angles in the CKM quark mixing

matrix, so that 1  VL . VCKM .

Imposing these additional conditions on the seesaw lagrangian implies a rich series of

consequences. In particular, avoiding special configurations called “crossing-level solu-

tions”, we obtain that the heavy neutrino spectrum is highly hierarchical, typically

M1 ⌧ 109 GeV, 109 GeV . M2 . 1012 GeV, M3 � 1012 GeV. (7.1)

We could therefore conclude that within SO(10)-inspired leptogenesis the N2-dominated

scenario is once again naturally realised.

Assuming VL = 1, we obtained the analytical expressions of the various quantities

relevant to leptogenesis, directly in terms of the low-energy neutrino parameters. In

particular, with this assumption, also N2’s flavoured CP asymmetries follow a highly

hierarchical pattern "2⌧ � "2µ � "2e. This feature is particularly interesting since it

shows that the tauon N2-dominated scenario required by strong thermal leptogenesis

can indeed be realised within this framework.

7.4 Results from strong thermal leptogenesis

In chapter 4 we studied the implications on low-energy neutrino parameters obtained

when seesaw models are requested to realise strong thermal leptogenesis. We pointed

out that the strong thermal conditions on the flavoured decay parameters can be simul-

taneously realised, without fine-tuning, only for su�ciently high values of the absolute

neutrino mass scale m1.

7.4.1 Normal ordering

For normally ordered light neutrino masses, N1’s electron decay parameter K1e becomes

smaller and smaller with decreasing m1, due to the suppression introduced by the small

atmospheric mixing angle. The request on K1e to be large enough to wash out the

pre-existing asymmetry along the e-flavour, together with the requirement K1⌧ . 1,
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that allows the produced asymmetry to escape washout in the ⌧ -flavour, can be realised

only for su�ciently large values of m1, so that it is possible to place an analytical lower

bound, mlb
1 . This lower bound explicitly depends on the mixing matrix U , on the size

of the pre-existing asymmetry and on the size of the entries of the complex orthogonal

matrix ⌦.

• The presence of matrix U is reflected by the crucial role played by small atmo-

spheric mixing angles: for larger values of ✓13 the electron decay parameter would

not be suppressed anymore, so that no lower bound could be found. Moreover, a

clear dependence on the Dirac phase of mlb
1 is noticeable.

• For very small initial pre-existing asymmetries the lower bound becomes negligible.

We chose to consider rather large values Np,i
B�L = 10�3, 10�2, 10�1.

• For max[|⌦ij |2] ⌘M⌦ & 4, K1e gets enhanced, so that the lower bound disappears.

We chose to adopt ⌦ matrices such that M⌦ ' 1. Indeed, large values of |⌦ij |2
imply sizeable fine-tuned cancellations in the seesaw formula, so that the light

neutrino masses are not anymore obtained by a genuine interplay between the

di↵erent scales involved in the seesaw mechanism.

We also noticed that the analytical lower bound is actually hardly saturated, since it

requires rather special combinations of the parameters. Studying the distribution of m1,

we could obtain that successful strong thermal leptogenesis models tend to prefer higher

values of m1. In particular, for a standard setup with M⌦ = 2 and Np,i
B�L = 10�1, for

NO, 99% of the models show m1 & 10 meV.

7.4.2 Inverted Ordering

In IO, K1µ plays the crucial role of K1e in NO. Indeed, employing the IO expression

of the mixing matrix, K1µ is suppressed by a combination of mixing parameters, so

that now it is the request of e�cient washout of the pre-existing asymmetry along the

µ-flavour that places the lower bound on m1. However, the suppression is now much

milder than in the NO case, so that the bounds obtained in IO are looser. In particular,

we found that there exists an analytical lower bound only for models with M⌦ . 0.9.

Nevertheless, a preference of successful strong thermal leptogenesis for high m1 values

was found in IO as well. In the same standard setup as for NO we got that 99% of

models have m1 & 3 meV.

7.4.3 Flavour coupling and comments

In obtaining the results described above, we neglected flavour coupling. By linking the

di↵erent flavour asymmetries through Higgs and quarks interactions, flavour coupling
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in general opens up new ways for the pre-existing asymmetry to escape the high elec-

tron and muon N1’s washout, by being converted into the ⌧ -flavour, along which the

washout is mild. We therefore studied how the strong thermal leptogenesis scenario

gets modified when flavour coupling is accounted for. We obtained that the successful

strong thermal leptogenesis conditions get strengthened, although the analytical result,

obtained neglecting flavour coupling, still holds. The statistical bounds become stricter,

since strong thermal leptogenesis with flavour coupling is more di�cult to realise.

Finally, we commented on the experimental implications of the obtained results. The

lower bound placed by strong thermal leptogenesis turns out to be particularly interest-

ing in terms of experimental evidences. Future cosmological observations are expected

to be able to measure the sum of neutrino masses with rather high precision, thus po-

tentially putting a definite bound on the absolute neutrino mass scale. In this respect,

successful strong thermal leptogenesis in the NO case will become subject to very in-

teresting tests. Cosmological measurements pointing at small, or vanishing, absolute

neutrino mass scale will severely corner this scenario, which, as mentioned, favours

quasi-degenerate neutrino masses. As for the IO case, the theoretical predictions are

looser, hence experimental tests are unable to provide us with decisive results. For this

reason, it is of the utmost importance that future experiments will determine the order-

ing of light neutrino masses.

The lower bound imposed by strong thermal leptogenesis is then a first example of how

the link established by seesaw and leptogenesis can help providing us with constraints

and predictions on the low-energy neutrino parameters.

7.5 Results from SO(10)-inspired leptogenesis

In chapter 5 we imposed on our setup the conditions inspired to SO(10) GUTs, men-

tioned in chapter 3, in order to look for interesting features in the low-energy neutrino

parameter space obtained when realising successful leptogenesis. On top of that, we also

studied the realisation of successful strong thermal leptogenesis and derived its related

constraints.

Adopting the VL = 1 approximation and avoiding crossing level solutions, we derived a

fully analytical expression for the final asymmetry, directly in terms of low-energy neu-

trino parameters, that we compared to numerical simulations. To this aim, we projected

the parameter space onto di↵erent planes, highlighting the most interesting results. We

obtained that our analytical expression perfectly matches the numerical results, thus re-

presenting a very useful tool for computing the final asymmetry within SO(10)-inspired

type-I seesaw model with VL = 1. Moreover, our results on the RH neutrino mixing

matrix, masses and phases can have di↵erent applications beyond leptogenesis. We also

analytically showed that the final asymmetry only depends on ↵2.

We first focused on the most interesting case provided by NO, distinguishing the results
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obtained from successful leptogenesis and those derived from successful strong thermal

leptogenesis.

7.5.1 Successful leptogenesis

We assumed VL = 1 and a standard setup with ↵2 = 5. We shall summarise here

the most important features obtained when successful leptogenesis is imposed on the

SO(10)-inspired scenario.

• A lower bound on the absolute neutrino mass scale is obtained, m1 & 0.8 meV. In-

deed, the asymmetry tends to vanish for decreasing m1. Therefore, when requiring

it to be compatible with the experimental results, a lower bound on m1 appears.

• Since the CP asymmetries are strongly hierarchical and the final asymmetry is

produced in the tauon flavour, we must require a mild washout by N1 along ⌧ .

This in turn implies, for m1 ⌧ msol, a lower bound on the reactor mixing angle:

✓13 & 3�.

• For quasi-degenerate light neutrino masses, the final asymmetry decreases with

increasing m1, so that by comparing it with the experimental results we can derive

an upper bound on the absolute neutrino mass scale: m1 . 52 meV.

• Two types of solutions, namely ⌧A and ⌧B, exist for m1 . msol and m1 & msol

respectively. They are characterised by di↵erent values of the Majorana phases.

• An upper bound on the atmospheric mixing angle, ✓23 . 65�, is obtained in the ⌧A

solution.

• A very interesting link between the CP -violating phases and the sign of the asym-

metry is derived. The sign of the final asymmetry selects more favourable values

of the phases. In particular, negative values of � are preferred.

7.5.2 Successful strong thermal leptogenesis

When successful strong thermal leptogenesis is imposed, the panorama of the results

becomes richer.

• In the ⌧B solution we always have K1µ . 4, which is too small to e�ciently

wash out the muonic pre-existing asymmetry. Hence, successful strong thermal

leptogenesis cannot be realised by ⌧B solutions.

• The requirement of large K1e implies a lower bound on the e↵ective 0⌫�� decay

mass depending on the size of the initial pre-existing asymmetry.
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• The lower bound on mee implies in turn a strict lower bound on the absolute

neutrino mass scale. This is in perfect agreement with the result obtained inde-

pendently in chapter 4, where strong thermal leptogenesis was studied in general.

• A stricter upper bound on the atmospheric mixing angle appears. The lower bound

on m1 implies that the atmospheric mixing angles is bounded from above and

constrained to the first octant.

• Upper bounds on mee and m1 are derived from the condition K2⌧ � 1.

• A stricter lower bound on the reactor mixing angle is given by the requirement

K1µ � 1

• The Dirac phase varies in the fourth quadrant: �⇡/2 . � . 0. The upper bound

on ✓23 imposed by successful strong thermal leptogenesis, together with the current

experimental lower bound, constrain the Dirac phase to take values, in the fourth

quadrant, thus implying sin � < 0 and cos � > 0.

We therefore noticed that SO(10)-inspired leptogenesis and, even more, strong thermal

SO(10)-inspired leptogenesis imply precise constraints and predictions on the low-energy

neutrino parameters, thus realising definite solutions that can be interestingly tested at

the experiments.

Relaxing the assumption VL = 1, and adopting a varying matrix 1  VL . VCKM ,

slightly modify the bounds analytically obtained. In particular, a new type of solution,

µ-dominated, appears for m1 & msol. This is possible because the strict hierarchy among

the CP asymmetries is now spoilt and muonic solutions are allowed.

7.5.3 Inverted Ordering

We considered also the IO case, noticing that it is actually only marginally allowed,

requiring a very narrow range of values 20 meV . m1 . 40 meV. We analytically derived

the upper and lower bounds on m1. We found a lower bound on the atmospheric mixing

angle ✓23 & 45�, thus constrained in the second octant. Finally, we noticed that in IO

we always have K1µ . 9, so that it is not possible to realise strong thermal leptogenesis.

For these reasons, we concluded that SO(10)-inspired conditions naturally favour the

NO case, able to realise strong thermal leptogenesis as well.

7.5.4 A statistical analysis

In section 5.5 we introduced a first statistical analysis of the numerical results obtained

in successful and successful strong thermal SO(10)-inspired leptogenesis. We employed

a bayesian approach, adopting conservative priors on the mixing angles and phases. We
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separately analysed the VL = 1 and the 1  VL . VCKM cases, studying successful and

successful strong thermal leptogenesis in the NO case.

The most general and interesting case is represented by the varying VL successful

strong thermal leptogenesis, for NO. In this scenario we obtained precise predictions

on the low-energy neutrino parameters, in particular, a more than 5� preference for

the atmospheric mixing angle in the first octant and negative values of the Dirac

phase �. We could also provide a mass window for the absolute neutrino mass scale:

11 meV  m1  21 meV at 95% credibility and for the e↵ective 0⌫�� decay mass:

10 meV  mee  17 meV. This implies a 95% credibility range for the sum of neutrino

masses 75 meV P

i mi  97 meV, which is on the verge of being probed by forthcom-

ing cosmological observations.

We also commented on the strategy followed in carrying out the analysis and on the

choice of priors.

Finally, it was also interestingly pointed out that by randomly extracting the mixing

angles on their full variability range (without employing current experimental results),

successful strong thermal leptogenesis can only be realised in around 6% of the angular

parameter space. This ratio increases to about 93% when the mixing angles are con-

strained by the experimental information.

We could conclude on statistical grounds that the experimental data from neutrino

oscillation experiments are in good agreement with strong thermal SO(10)-inspired lep-

togenesis and seem to provide a valid support.

7.6 A supersymmetric extension

In chapter 6 we have considered the supersymmetric version of the SO(10)-inspired

leptogenesis models previously analysed. The study of this supersymmetric extension

is theoretically well motivated by the solution of the naturalness issues of the SM and

by the improvement in the global fits of lepton and quark parameters. The supersym-

metric framework demands a careful study of the reheating temperature TRH required

in order to realise successful leptogenesis. Indeed, in a rather conservative and model-

independent way, supersymmetry fixes an upper bound TRH . 1010 GeV to avoid DM

overabundance due to the gravitino problem. With this issue in mind, we studied the

supersymmetric extension of SO(10)-inspired leptogenesis, determining how the con-

straints obtained in the non-supersymmetric case get modified and obtaining bounds on

the reheating temperature.

7.6.1 Supersymmetric modifications

Within supersymmetry, several parameters involved in leptogenesis get modified in their

expressions. The larger number of relativistic degrees of freedom in the Early Universe
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and the doubled number of decay channels into leptons increase the flavour decay pa-

rameters by around
p

2, while the CP asymmetries get doubled. Supersymmetry also

implies a very important modification in the ranges of the fully-flavoured regimes. The

thresholds obtained within non-supersymmetric leptogenesis get modified by a factor

(1 + tan2 �), where tan � is the ratio of the supersymmetric Higgs VEVs. Therefore,

within the SO(10)-inspired framework, for tan � . 15 the asymmetry production hap-

pens in the two fully-flavoured regime while for tan � & 80 it takes place in the three

fully-flavoured regime. We analysed in detail two representative cases, tan � = 5 and

tan � = 50 and studied the low-energy neutrino parameter space. We studied these two

cases for both NO and IO.

In our analysis we neglected once again flavour coupling and the running of low-energy

neutrino parameters, that within a supersymmetric framework must both receive a care-

ful treatment. Nevertheless, their impact on our results, especially on the reheating

temperature, should not be significant.

7.6.2 Results for Normal Ordering

We distinguished small and large tan � values: tan � = 5 and tan � = 50 respectively.

• Small tan � values. The results on the low-energy neutrino parameters, for

tan � = 5, are similar to those obtained in the non-supersymmetric scenario. When

imposing strong thermal leptogenesis, we found a relaxation of the upper bound

on the atmospheric mixing angle: ✓23 . 46�. This is due to the enhancement of

K1e and K1µ implied by supersymmetry. We studied in detail the dependence of

the asymmetry on the values of ↵2, in the 1  VL . VCKM case. Beside tauon-

and muon-dominated solutions, also electron-dominated points appear for small

absolute neutrino mass scales, m1 . 20 meV. This is due to the varying VL matrix,

that spoils the strict CP asymmetry hierarchy, and to the overall increase of the

asymmetry at the production because of supersymmetry. We also found that these

e-dominated solutions can be obtained only for thermal initial N2 abundance and

K2⌧2 . 1.

• Large tan � values. For tan � = 50 the results are generally more relaxed than in

the non-supersymmetric case, both for VL = 1 and 1  VL . VCKM . When strong

thermal leptogenesis is considered in the 1  VL . VCKM , a new region appears in

which the final asymmetry is µ-dominated. This is possible because in the super-

symmetric framework, with high tan �, M2 falls in the three fully-flavoured regime,

so that the final washout of the muon asymmetry is provided by K2µ + K1µ. This

allows for K1µ . 1 and hence a final µ-dominated asymmetry.

We could also notice that the e-dominated solutions for low m1 become more nu-

merous. Some of these solutions could allow reheating temperatures TRH . 1010 GeV,

although at the expense of fine-tuning, signalled by |⌦ij |2 & 3.
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7.6.3 Results for Inverted Ordering

• Small tan � values. Also in IO, the results for tan � = 5 do not di↵er significantly

from the non-supersymmetric scenario. We could point out that the lower bound

on the atmospheric mixing angle now disappears. Moreover, no e-dominated solu-

tions appear in IO, since we always have K1e � 1.

• Large tan � values. The most important di↵erence from the non-supersymmetric

case appears when strong thermal leptogenesis is considered. Indeed we now found

that successful strong thermal leptogenesis can be realised also for IO. This is once

again due to the fact that, for large tan �, the production takes place in the three

fully-flavoured regime, so that the pre-existing asymmetry along the µ-flavour can

now be e�ciently washed out by K2µ.

7.6.4 Results on the reheating temperature

In section 6.3 we focused on the lower bound imposed by leptogenesis on the reheating

temperature. We computed the minimum value of the reheating temperature Tmin
RH that

is allowed by supersymmetric successful SO(10)-inspired leptogenesis at di↵erent values

of ↵2, both in NO and in IO and for small and large values of tan �.

We obtained that the overall minimum is realised by e-dominated solution in NO for

tan � = 50. However, as already mentioned, these solutions imply a certain level of

fine-tuning and, moreover, can be obtained only for thermal initial N2 abundance and

weak washout. These solutions are then strongly dependent on the initial conditions

and require further justification for N2’s thermal initial abundance. Considering vani-

shing N2 initial abundance, these e-dominated solutions disappear and the minimum

on the relating temperature is saturated by tauon solutions, with strong washout, that

give Tmin
RH ' 1 ⇥ 1010 GeV. This result implies that supersymmetric SO(10)-inspired

leptogenesis can be reconciled with the gravitino problem, at least for large values of

the gravitino mass. We could quite generally conclude that thermal leptogenesis in

the supersymmetric framework cannot be ruled out because of inconsistencies with the

gravitino problem.

7.6.5 A new scenario

In section 6.4 we introduced a new scenario of N2-dominated leptogenesis that can

greatly reduce the lower bound on the reheating temperature. We proposed that the

lightest heavy neutrino mass M1 could be smaller than the sphaleron freeze-out tempe-

rature, M1 . T out
sph ' 100 GeV. This way, N1’s washout would not modify the frozen

baryon asymmetry produced at earlier stages by N2. This represents a valid possibility
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to avoid N1’s washout and allows for a large relaxation of the lower bound on TRH. In-

deed we found that reheating temperatures as low as TRH ' 109 GeV are now possible.

Remarkably, these are obtained for solutions independent of the initial N2’s abundance

and without fine tuning.

We commented on the viability of seesaw setups with such a heavy neutrino mass spec-

trum, by noticing that recent global fits of SO(10) GUT models tend to favour small

values of M1, thus suggesting that this newly proposed scenario might be realised in some

realistic models. Finally we noticed that by removing N1’s washout the constraints on

low-energy neutrino parameters disappear.

Afterword

In conclusion, this work analysed how two serious problems of the SM, such as neutrino

masses and mixing and the matter/antimatter asymmetry of the Universe, are solved

via leptogenesis and a fertile link between these two aspects can be established. The

same setup that introduces new particles and free parameters to account for neutrino

masses and mixing gives us a very elegant way to constrain and predict them, by ex-

plaining the asymmetry of the Universe. The predictivity of leptogenesis can then be

enhanced by additional theoretical requirements. Firstly, the fundamental request for

full independence of the initial conditions leads to the idea of strong thermal leptogenesis

and to the N2-dominated scenario. Hence an analytical lower bound on the unknown

absolute neutrino mass scale is derived. Secondly, the embedding of the leptogenesis

setup within a larger theoretical framework, such as SO(10) GUT, remarkably leads to

the same scenario, allowing also for a natural realisation of strong thermal leptogenesis.

SO(10)-inspired leptogenesis is thus realised and a rich panorama of constraints on low-

energy parameters is obtained. Successful leptogenesis and strong thermal leptogenesis

are then able to determine a precise set of predictions that can be e�ciently tested at

forthcoming experiments.

By following this path, we provided some evidence of how the intriguing scenario of

leptogenesis can be extremely fruitful and rich of features that may dissolve the haze on

some of the major puzzles of modern physics.
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