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Abstract 1 
Background: Mathematical capacity planning methods that can take account of variations in patient 2 

complexity, admission rates and delayed discharges have long been available, but their 3 

implementation in complex pathways such as stroke care remains limited.  Instead simple average 4 

based estimates are commonplace.  These methods often substantially underestimate capacity 5 

requirements.   6 

We analyse the capacity requirements for acute and community stroke services in a pathway with 7 

over 630 admissions per year.  We sought to identify current capacity bottlenecks affecting patient 8 

flow, future capacity requirements in the presence of increased admissions, the impact of co-9 

location and pooling of the acute and rehabilitation units and the impact of patient subgroups on 10 

capacity requirements.  We contrast these results to the often used method of planning by average 11 

occupancy, often with arbitrary uplifts to cater for variability.     12 

Methods: We developed a discrete-event simulation model using aggregate parameter values 13 

derived from routine administrative data on over 2000 anonymised admission and discharge 14 

timestamps.  The model mimicked the flow of stroke, high risk TIA and complex neurological 15 

patients from admission to an acute ward through to community rehab and early supported 16 

discharge, and predicted the probability of admission delays.   17 

Results: An increase from 10 to 14 acute beds reduces the number of patients experiencing a delay 18 

to the acute stroke unit from 1 in every 7 to 1 in 50. Co-location of the acute and rehabilitation units 19 

and pooling eight beds out of a total bed stock of 26 reduce the number of delayed acute admissions 20 

to 1 in every 29 and the number of delayed rehabilitation admissions to 1 in every 20.  Planning by 21 

average occupancy would resulted in delays for 1 in every 5 patients in the acute stroke unit.   22 

Conclusions: Planning by average occupancy fails to provide appropriate reserve capacity to manage 23 

the variations seen in stroke pathways to desired service levels.  An appropriate uplift from the 24 

average cannot be based simply on occupancy figures. Our method draws on long available, 25 
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intuitive, but underused mathematical techniques for capacity planning.  Implementation via 1 

simulation at our study hospital provided valuable decision support for planners to assess future bed 2 

numbers and organisation of the acute and rehabilitation services.   3 

Keywords:  Stroke; Capacity Planning; Simulation; Average Occupancy 4 

Background 5 
 6 
Management of capacity in acute and community pathways is complex.  To analyse these systems 7 

the mathematical sciences have developed a wide range of robust analytical methods focused on 8 

queuing and patient flow, but the uptake and implementation of these methods in routine decision 9 

making remains limited in healthcare compared to other sectors [1-3].  In the absence of these 10 

models, decision makers must make capacity planning decisions based on average occupancy of 11 

wards and, in some cases, aware of the limitations of doing so, apply arbitrary uplifts to these 12 

figures.  Simulation modelling is an intuitive approach to modelling that synthesises a range of data 13 

sources to support decision making for complex problems [4].  For capacity planning problems 14 

simulation modelling offers a way to translate the large knowledge base of relevant mathematical 15 

models to a form accessible and transparent to healthcare professionals and managers.   16 

 17 

The performance of acute and community stroke services typifies the difficulties in capacity planning 18 

decisions.  Suspected stroke patients, actual stroke and mimics, require urgent access to an acute 19 

stroke unit followed by timely transfer to early support discharge services (ESD) or inpatient 20 

rehabilitation in a community hospital.  Indeed in the United Kingdom the performance of stroke 21 

services is measured by the proportion of stroke patients admitted to the stroke unit within four 22 

hours of hospital arrival and the proportion of stroke patients that spend 90% of their hospital stay 23 

on a stroke unit, with large financial penalties for underperforming services.  Performance against 24 

these targets is influenced by three interacting factors [5, 6] – capacity, variation in patient length of 25 

stay and difficulties in discharging patients to the community (so called ‘bed blocking’).  As the 26 
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number of patients suffering a stroke increases, the pressure on acute, ESD and community 1 

rehabilitation services will rise, and accurate capacity planning that delivers a cost-effective service 2 

will become even more critical.  Whilst appropriate capacity planning techniques have been 3 

implemented and used in both cardiothoracic surgery [5] and emergency departments (ED) [7], they 4 

are only outlined and encouraged with respect to stroke services [8, 9]. 5 

 6 

In any financially constrained health service there is a need for accurate capacity planning of stroke 7 

services. The present UK policy for the centralisation of hyperacute stroke services [10-13] makes it 8 

especially relevant as some stroke units will see large increases in the number of patients admitted.  9 

Capacity planning simply using average occupancy, even Bagust et al’s [14] suggested 85% target 10 

bed occupancy, is imprecise and can lead to severe delays within the stroke pathway.  Transfer 11 

delays to rehabilitation negatively affect patient outcomes[15] and may have financial penalties for 12 

hospitals.  Mathematical modelling of the whole pathway provides a rational and robust way to 13 

mitigate against these problems. 14 

Aims 15 
To implement advanced capacity planning techniques within a stroke pathway in a UK hospital, we 16 

developed a discrete-event simulation model based on 46 months of data (n = 2444; average 637 17 

admissions per year) collected between January 2010 and October 2013.  The model mimics the flow 18 

of patients from admission to an acute stroke unit through to community rehabilitation and ESD.   19 

We sought to identify current capacity bottlenecks affecting patient flow; future capacity 20 

requirements in the presence of increased admissions; the impact of co-location and pooling of the 21 

acute and rehabilitation units; and the impact of complex-neurological patients, who are also cared 22 

for on stroke wards, on capacity requirements.  We contrast these results to the often used method 23 

of planning by average occupancy with and without small uplifts (10-40%).    24 
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Methods 1 

Study setting  2 
The stroke wards in our hospital are part of a pathway that admits stroke (n = 1320; 54%), high risk 3 

transient ischemic attack (TIA; n = 158; 6%), complex neurological (n = 456; 19%) and other types of 4 

medical patients (n = 510; 21%).   The acute stroke unit and single community rehab unit are in 5 

separate geographic locations.   ESD is provided to mild to moderate severity stroke patients [16, 17] 6 

(n = 463) from both the acute (n = 300; 63%) or community rehabilitation wards (n = 163; 37%).  The 7 

numbers of beds in the acute and rehabilitation wards are currently 10 and 12 respectively. 8 

Simulation model 9 
Patient arrival rates, flows and occupancies of stroke units are subject to substantial variation due to 10 

patient type and complexity, eligibility for ESD, seasonal (daily and quarterly) effects, and overflow 11 

from other pressured hospital wards.  We constructed a model incorporating these variations using 12 

the simulation software SIMUL8 [18].  The model provided a visual display of patient flows to 13 

facilitate explanation of its logic to clinicians.  The model parameters are included in the online 14 

supplementary material.   15 

 16 

Our model differs from other models of stroke services focusing on thrombolysis [19-26], as it aims 17 

to inform decisions on capacity planning in different parts of the system.  The key premise of our 18 

model that suits its use in capacity planning is that, unlike the real world, it allows patients to flow to 19 

the appropriate ward as soon as that is required, thereby estimating ‘unfettered’ demand[27].  The 20 

model produces a daily audit of the occupancy of each stroke ward or service and over time 21 

constructs the occupancy probability distribution function (PDF).  As the model has no capacity 22 

limits, daily occupancy is Poisson distributed [28]. Figure 1 illustrates a simulated occupancy 23 

distribution with an average of nine beds, along with a clear indication of the variability away from 24 

that average.  Figure 2 illustrates the model’s structure and the average admission rates of patient 25 

subgroups to the stroke wards.   26 
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Outcome measures 6 
The model estimates the probability that a patient cannot be immediately admitted to the acute 7 

unit, community rehabilitation unit or ESD.  We call this estimate the probability of delay or for 8 

shorthand p(delay).  For each scenario investigated we estimate p(delay) for a range of bed numbers 9 

and construct a stepped trade-off curve (see figure 3 for an example).  The reciprocal (1 / p(delay))   10 

provides a quantity that is easily understood by clinicians and managers.  For example, p(delay) = 11 

0.02 means that 1 in every 50 patients will experience some delay in admission or transfer.   12 

We use both the PDF and cumulative probability density function of occupancy to calculate the 13 

probability of delay.  The general form of this calculation, often referred to as the Erlang loss formula 14 

[28], is P(N = n)/P(N ≤ n).  The calculation of the probability of delay in a system where beds are 15 

partially pooled between different types of patient is detailed in the supplementary online material. 16 

 17 

<INSERT FIGURE 3> 
 

 18 

 19 

Data sources 20 
The model was constructed using anonymised administrative data collected routinely by the 21 

healthcare provider in the acute and community settings.  All patients had a recorded primary 22 

diagnosis using ICD-10 coding.  These codes were grouped into a simpler coding scheme of stroke 23 
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(ischemic or haemorrhagic), TIA, complex neurological and other.   The ‘other’ category represents 1 

medical patients who are displaced into the stroke units due to capacity constraints elsewhere in the 2 

hospital. 3 

Statistical Analysis 4 
Variations in arrival of new admissions and length of stay are modelled using probability 5 

distributions.  Exponential distributions are used to model the time between arrivals of new 6 

admissions while lognormal distributions are used to model length of stay.  Each of the four patient 7 

types included in the model had their own admission and length of stay distributions, which also 8 

depended on the ward and on and the patient’s eligibility for ESD.  We assumed no significant 9 

correlation between the length of a patient’s acute stay and rehabilitation stay.  No data were 10 

available for length of stay in ESD.  The model therefore estimates capacity requirements for acute 11 

and rehabilitation beds only. 12 

Scenario comparison 13 
Table 1 lists the 5 scenarios used for capacity planning.  To obtain stable results each scenario has a 14 

run length of five years and was replicated 150 times.  As our model starts with no patients 15 

occupying beds, we also include an additional 3 year warm-up period to allow the model to reach 16 

realistic and steady-state occupancy levels.  This is removed before conducting our analysis to 17 

eliminate the bias caused by the unrealistic starting state. 18 

Model verification and validation 19 
Input data representing patient classification into stroke and other conditions were coded and 20 

checked separately by a clinician and a data analyst working on the project.  Data representing 21 

arrival rates, length of stay, and patient routing were screened and analysed by the authors and then 22 

reviewed by experienced stroke pathway staff.   23 

To estimate arrival and length of stay distributions we followed standard practice in discrete-event 24 

simulation studies [see 29, 30]. Inter-arrival times were modelled using the exponential distribution, 25 

implying random arrivals.  For length of stay we used the software Stat::Fit [31] to provide a list of 26 
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candidate distributions and maximum likelihood estimates of parameters.  We selected the log-1 

normal distribution from this list as it is often used to model process times [29]. 2 

A workshop was held to review the model logic. Face validation was sought from those that worked 3 

in the stroke pathway; in this case a senior ED medic, a senior stroke physician, a senior stroke 4 

nurse, the stroke pathway manager and the hospital’ s data analyst for stroke.   Explanation of the 5 

model logic was aided by an animation of the model illustrating the flow of patients. The workshop 6 

also provided a forum to review data used in the model.  Initial runs of the model with parameter 7 

settings matching recent data gave model predictions consistent with recent observed system 8 

performance. 9 

The programming of the model was verified in two ways.  First, standard testing approaches [32] 10 

were applied, for example extreme value tests for arrival rates for different groups of patients 11 

entering the model and for patient routing probabilities.  Second, the model underwent peer review 12 

by a specialist researcher who had not been involved in programming the model. 13 

Results 14 

Current and future admissions 15 
The scenarios for current and future admission levels with different bed capacities are summarised 16 

in Table 2 with p(delay) reported to 2 decimal places.  Planning by average occupancy of the acute 17 

unit (9 beds) and rehabilitation ward (10 beds) leads 1 in 5 patients experiencing a delay in 18 

admission.  The acute stroke unit currently has 10 beds (average occupancy plus a ~10% uplift) with 19 

a p(delay) of 0.19 (1 in every 7 patients).  Even with a ~30% uplift on average occupancy (12 beds) it 20 

is expected that 1 in every 16 patients experience a delay.   If the number of acute beds is increased 21 
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from 10 to 14 (56% uplift) then p(delay) falls from 0.14 to 0.02 (1 in every 50 patients), with 1 

diminishing returns for each extra bed. 2 

The 12 bedded rehabilitation ward represents a 20% uplift on average occupancy.  Transfers and 3 

admissions to rehabilitation have a p(delay) of 0.11 (1 in every 9 patients).  An increase in 4 

rehabilitation beds to 14 (average occupancy plus a 40% uplift) would reduce p(delay) to 0.05 (1 in 5 

every 20 patients).  A total of 16 rehabilitation beds (60% uplift) are required to achieve a similar 6 

p(delay) to 14 acute beds.   7 

An increase of admissions by 5% in a 14 bed acute stroke unit increases p(delay) from 0.02 to 0.03 ( 8 

1 in every 34 patients).  A 14 bed rehabilitation unit would experience an increase from 0.05 to 0.07 9 

(1 in every 14 patients) while the operation of a 16 bed rehabilitation unit would be relatively 10 

unaffected. 11 

Co-location and bed pooling 12 

We considered two pooling scenarios where the acute and rehabilitation units are co-located.  The 13 

first is complete pooling of the current stock of 22 beds.  In the second we consider the impact of an 14 

additional four beds and the impact of complete pooling versus pooling of a subset of the 26 beds. 15 

Full pooling of the current bed stock reduces p(delay) for both acute and rehabilitation patients to 16 

0.06 (1 in 18 patients).  If an additional four beds were available and pooled the likelihood of delays 17 

drops to 1 in 64 patients.  Table 3 reports this result along with results from scenarios where the 18 

units are co-located, but only a subset of the 26 beds are pooled (range 0 to 9 beds).  This 19 

demonstrates that pooling can be beneficial, but that there is also a trade-off between acute delays 20 

and rehabilitation delays.  As more beds are pooled this trade-off diminishes. 21 

Effect of complex neurological patients on flow 22 

The final scenario analyses the impact of the complex-neurological patients on delays in the stroke 23 

pathway.   Our hospital manages all complex-neurological patients in the acute stoke unit (some 24 
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admitted as suspected stroke) for a short time; however, 11% of complex-neurological patients are 1 

later transferred and managed in the community rehabilitation unit.   These transferred patients 2 

have an effect on the delays experienced accessing rehabilitation in a 12 bed unit: increasing the 3 

number experiencing delay from 1 in every 17 patients to 1 in every 9.  An effect is also seen in the 4 

acute stroke with 10 beds with the number experiencing delay increasing from 1 in every 11 patients 5 

to 1 in every 7.  To achieve a 0.02 probability of a patient experiencing a delay entering the acute 6 

stroke unit 14 beds are needed with complex-neurological patients included and 13 without.  A full 7 

table of results is provided in the supplementary material. 8 

Discussion 9 
We emphasise that our model’s utility is in capacity planning and in particular understanding the 10 

trade-off in the chance of delays under different capacity scenarios.  By design the model is a 11 

simplification of the real world as it allows patients to flow to where they need to go, and hence 12 

estimates ‘unfettered’ demand.  This simplification is at the heart of the models usefulness: it allows 13 

users to understand the actual capacity requirements in different parts of the pathway.   14 

At our study hospital the model demonstrates that an increase from 10 to 14 acute stroke unit beds 15 

reduces the number of patients experiencing delays from 1 in every 7 patients to 1 in every 50.  This 16 

is a substantial improvement in smoothing the flow of patients through the stroke unit and 17 

significantly increases the time clinicians can focus on patient care as opposed to bed management.  18 

Moreover, the model demonstrates that the additional four beds is relatively robust to a 5% increase 19 

in admissions.  The modelling also predicts a capacity shortfall in the inpatient rehabilitation wards.  20 

An increase from 12 to at least 14 beds is again required to smooth the flow and reduce the 21 

likelihood of transfer delays.  Obvious extensions to the study are to use the model to explore the 22 

impact of reductions in rehabilitation length of stay that could result from improved discharge 23 

planning; reduction in the time to set up a community care package (reductions in ‘bed blocking’); or 24 
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extending the capacity of ESD services to care for more severely affected patients – potential greatly 1 

reducing length of stay [16].  2 

The study hospital was also planning to co-locate the acute stroke unit and rehabilitation wards.  3 

Even if bed pooling between the two units is not officially sanctioned, in practice it is likely that some 4 

temporary bed pooling will happen in order to cope with the spontaneous variation in rates of 5 

patient admissions and discharges.  The model therefore provides a prospective way to plan the 6 

implementation of bed pooling and to fully understand the trade-offs when pooling only a subset of 7 

beds. 8 

The model was also used to analyse the impact of complex-neurological patients on flow through 9 

the pathway.  The utility of such information is in the dialog between clinicians and healthcare 10 

commissioners to understand the implications of service provision to different patient subgroups on 11 

overall performance.   12 

There are several further ways in which our model can be used, depending on the issues seen to be 13 

important in different contexts.  For example, it could be used to explore scenarios where stroke 14 

beds are reserved exclusively for patients suffering an acute stroke (so called ‘ring-fencing’), or 15 

‘partial ring-fencing’ in which admissions of other cases is dependent on ward occupancy.  The 16 

unfettered demand approach used in our model is generalizable and hence is applicable to other 17 

relevant wards.  For example, a second use for our model would be to adapt it for other hospital 18 

wards, such as those for the cardiac surgery, where timely admission and discharge are important.  19 

The strengths of our approach to capacity planning are threefold.  First, the model provides a 20 

sophisticated analysis of capacity requirements accounting for the spontaneous and unpredictable 21 

variability in patient arrivals and lengths of stay.  This level of detail is often missing from capacity 22 

calculations.   Planning models that rely on average occupancy only will greatly underestimate bed 23 

requirements as they take insufficient account of variability.  In this study average occupancy of the 24 
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10-bedded acute stroke unit was nine patients, corresponding to delays for 1 in every 5 patients.  1 

Our study provides a scientific methodology for analysing how many beds above average occupancy 2 

are necessary in order to limit the probability of delay.  Second, although sophisticated, the model is 3 

driven by routinely collected data that is readily available from patient administration systems.  Last, 4 

as the planning model has no capacity constraints, it is not necessary to model what happens to 5 

patients when stroke wards are full.  Its independence of these details, which can vary considerably 6 

across hospitals, greatly increases the applicability of the model to other settings.  7 

When adapting our model for similar studies, modellers may face the issue of dealing with the 8 

impact of ‘bed blocking’ increasing the lengths of stay recorded in routinely collected data.  That is, 9 

the length of stay data do not separate treatment duration and transfer/discharge delays.   If 10 

sensitivity analyses show that these discrepancies are likely to cause misleading results, a small 11 

prospective sample of times where patients are fit for transfer to rehabilitation versus when they are 12 

transferred, or a historic sample of lengths of stay during periods of time when beds are not blocked 13 

can be used.  14 

As our model focuses on capacity requirements, a limitation is that it cannot predict the length of a 15 

delay that a patient experiences.  This means that the model cannot be used to investigate 16 

performance metrics such as the UK’s four hour stroke unit target or the proportion of patients that 17 

spend 90% of their stay on a stroke unit.  Although creation of such models is possible the 18 

complexity increases by several orders of magnitude and will inevitably require data that is not 19 

routinely collected – for example regarding the management and repatriation of outlying stroke 20 

patients.  The exclusion of such measures not only reduces our model’s data requirements, but also 21 

makes our approach more general internationally (where targets such as the 90% stay metric do not 22 

apply).  The model is easily adaptable to other acute stroke units which transfer patients to multiple 23 

inpatient rehabilitation wards in the community and could be used to explore the impact of 24 

introducing new cost effective services such as ESD [33].  25 
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The simulation-based method used here was chosen in preference to attempting to derive heuristics 1 

based on queueing theory for calculating the uplifts to associate with different occupancy levels as a 2 

more direct way to incorporate the characteristics of the particular problem. However, the 3 

simulation model development was guided by a knowledge of relevant queueing theories, in the 4 

spirit of complementary use of simulation and queueing theory [34].  5 

Conclusions 6 
Planning by average occupancy plus an arbitrary uplift, even up to 30-40%, fails to provide sufficient 7 

reserve capacity to adequately manage the variation in admission and discharges seen in our stroke 8 

pathway.  Our method draws on long available, intuitive, but underused mathematical techniques 9 

for capacity planning.  Implementation via simulation at our study hospital provided valuable 10 

decision support for planners to assess future bed numbers and organisation of the acute and 11 

rehabilitation services.   12 

In recent years some aspects of stroke services have been modelled using discrete-event simulation 13 

approaches, [8, 19-25] including access to time-sensitive treatments such as thrombolysis.  Our 14 

method, with its focus on capacity, is complementary to these models and will be particularly useful 15 

for cases of stroke service reconfigurations where acute stroke units will face substantially increased 16 

admissions, including patients for whom the final diagnosis is not stroke.    To enable cost-effective 17 

and efficient provision planning decisions in such complex systems requires all of the relevant 18 

information to be considered in a way that is not possible for simple average-based estimates.  Our 19 

method accounts for the variation in admission patterns, length of stay by patient type and eligibility 20 

for ESD, greatly increasing the precision with which services can be planned and the ability to predict 21 

and respond to short and long-term variation in demand for emergency stroke services.  22 
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Figure titles and legends: 1 

Figure 1: Simulation probability density function for occupancy of an acute stroke unit: 2 

Figure 2: Model diagram. 3 

Notes: the arrows illustrate the destinations that patients can flow in the model.   Figures are average time between required admissions. E.g. a stroke patient 4 
requires a bed in the acute stroke unit every 1.2 days. 5 

Figure 3: Simulated trade-off between the probability that a patient is delayed and the no. of acute 6 
beds available 7 

 8 

List of tables. 9 

Table 1: Scenarios used for capacity planning 
Scenario Description 

0. Current admissions Current admission levels; beds are reserved for 
either acute or rehab patients 
 

1. 5% more admissions A 5% increase in admissions across all patient 
subgroups. 
 

2. Pooling of acute and rehab beds The acute and rehab wards are co-located at same 
site.  Beds are pooled and can be used by either 
acute or rehabilitation patients. Pooling of the total 
bed stock of 22 is compared to the pooling of an 
increased bed stock of 26.  
 

3. Partial pooling of acute and rehab beds The acute and rehab wards are co-located at same 
site.  A subset of the 26 beds are pooled and can be 
used by either acute or rehab patients. 
 

4. No complex-neurological cases Complex neurological patients are excluded from 
the pathway in order to assess their impact on bed 
requirements 

 10 
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Table 2: Likelihood of delay.  Current admissions versus 5% more admissions  
 Current admissions 5% more admissions  

No. acute beds p(delay)* 1 in every n 
patients delayed 

p(delay) 1 in every n 
patients delayed 

9† 0.19 5   
10 0.14 7 0.16 6 
11 0.09 11 0.11 9 
12 0.06 16 0.07 13 
13 0.04 28 0.05 21 
14 0.02 50 0.03 34 
     
No. rehab beds     
10† 0.20 5   
12 0.11 9 0.13 8 
13 0.08 13 0.09 11 
14 0.05 20 0.07 15 
15 0.03 35 0.04 25 
16 0.02 57 0.02 42 
*P(delay) shown to 2 decimal places only 
†Average occupancy with current admissions rounded to nearest number of beds 

 1 

 2 

Table 3: Results of pooling of acute and rehab beds 
No. beds P(delay)* 1 in every n patients delays 

Dedicated 
Acute 

Dedicated 
Rehab 

Pooled Acute Rehab Acute Rehab 

0 0 22 0.057                  0.057 18 18 
0 0 26 0.016                  0.016 64 64 
14 12 0 0.020 0.117 50 9 
11 11 4 0.031 0.077 29 13 
11 10 5 0.027 0.080 37 12 
10 10 6 0.033 0.057 30 17 
10 9 7 0.030 0.060 34 17 
9 9 8 0.035 0.049 29 20 
9 8 9 0.034 0.051 30 20 
* P(delay) shown to 3 decimal places 

 3 
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