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ABSTRACT 
 

Hydrodynamic wave loading at structures is a complex phenomenon to quantify. The design of 

structures to resist wave loading has been historically and predominantly achieved through empirical 

and experimental observations. This is due to the challenging understanding and quantification of wave 

impact energy transfer processes with air entrainment at solid structures. This paper investigates wave 

loading on such structures with effects of air entrapment. Specifically, it focuses on predicting the multi-

modal oscillatory wave impact pressure signals which result from transient waves impinging upon a 

solid wall. A large dataset of compressible (and incompressible) numerical modelling scenarios have 

been generated to investigate these processes. The modelling simulation data are verified through a grid 

scaling analysis and validated against previous studies. Air bubble entrapment oscillatory pressure 

response trends are observed in the compressible simulation during wave impact. A frequency domain 

analysis of the impact pressure response is undertaken. The numerical modelling results are found in 

good agreement with theoretical and experimental observation data. These findings provide good 

confidence on the robustness of our numerical model foundations particularly for investigating the air 

bubbles formation, their mechanics and adjusted resonance frequency modes at impact with solid walls. 

 

1. INTRODUCTION 
 

Severe damage can be inflicted on coastal defence structures as a result of high intensity wave forces. 

Many laboratory experiments have been performed to gain an understanding of the physical processes 

which occur at the wave impact interface, see e.g. [1], [2], [3], [4]. The damage sustained by coastal 

defences is often caused by their continuous exposure to transient wave impact pressures which at the 

present time are not fully understood, e.g. [5], [6], [7]. Additionally, pulse-like oscillatory pressure 

signals have been observed in many experimental studies, [8], [9], [10], [11]. These oscillations manifest 

themselves subsequent to the initial wave impact with solid walls and may be a source of much serious 

damage and deterioration to the structural integrity of coastal defences. Experimental studies for the 

validation of these oscillatory impact pressure response results has proven to be very difficult because 

of the highly nonlinear, transient nature of the wave breaking process, [12]. This has led researchers to 
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speculate as to the source of the observed oscillations within the pressure response signal. In this study 

we analyse the impact of a solitary wave with a solid interface while employing a CFD approach.  

Experimental work has shown that incident waves on vertical structures can produce impulse pressures 

which greatly exceed magnitudes of the typical pressures that are expected when employing shallow 

water wave theory methods  for analysis, [10]. The magnitude of these impulse pressures can commonly 

exceed:    

 10𝜌𝑔(ℎ + 𝐻) (1) 

H is the wave height, h is the water depth, 𝜌 the water density and g the acceleration due to gravity.  

These higher magnitude impulse pressures have been attributed to a phenomenon often termed as the 

wave ‘flip-through’ effect, [10]. However, additional highly destructive oscillatory pressure effects have 

been observed in experimental studies. These usually occur when air bubbles are entrained at impact. In 

this instance, the entrapped air bubbles will compress and dilate with a range of specific oscillatory 

frequencies. Further, and according to past theoretical, [13] and experimental studies, [9], the frequency 

range with which these bubbles oscillate will be dependent on the size of the entrained air void during 

their formation.    

In this paper, we briefly introduce the theory of free surface fluid flow; and the numerical methods to 

simulate wave impact at solid structures. We also introduce theories and experiments from the literature 

which show the relationships between formed sizes of air bubbles in fluid flows and their typical 

resonance frequencies of oscillation. We investigate numerical dam-break flow simulations with impact 

at a solid vertical wall and air entrapment. Specifically, the collapsing water column propagates across 

the model domain and impacts a solid interface. The initial simulation case of a two-phase 

incompressible flow is described. Our model is then modified to simulate compressible flow case. A 

large data set of test cases was generated by employing first and second order equation discretisation 

schemes for both the temporal and spatial terms in the fluid flow governing equations. A range of grid 

resolutions were also applied to the model to ensure veracity of results.  

     

2. FREE SURFACE FLOW AND BUBBLE OSCILLATION THEORIES 

 

2.1 Numerical Methods 

The numerical simulations were preformed using the finite volume technique based open source CFD 

code OpenFOAM, [14]. This software is compiled as a collection of C++ libraries with dedicated pre-

programmed solvers which can be used to model various fluid flow simulation scenarios. In this study, 

the incompressible two-phase solver InterFoam was first used to analyse the flow field development. 

Subsequently, the compressibleInterFoam solver was used to examine the effects of air 

entrapment in the fluid phase during wave breaking. Both of these solvers use the phase fraction based 

Volume of Fluid method (VOF), [15], to capture and represent the interface between the two fluids. 

 

2.1.1 Volume of fluid method 

The interaction of the individual fluid phase constituents in the model is important as the pressure 

transfer across the free surface boundary which defines an entrained air bubble is central to this study. 

In the volume of fluid method a function 𝛼(𝑥, 𝑦, 𝑡), is introduced at each grid cell in the model domain. 

The value of this function is defined as unity at any cell which is fully occupied by the fluid; and zero 

at any cell completely devoid of fluid. Cells with intermediate values may contain a droplet, a bubble or 

are located such that the interface between the two fluids intersects that cell. In the VOF method, the 

temporal evolution of the phase fraction function and thus the advection of the flow in two dimensional 

space is governed by the following transport equation: 

 

 
𝜕𝛼

𝜕𝑡
+  𝑢

𝜕𝛼

𝜕𝑥
+  𝑣

𝜕𝛼

𝜕𝑦
= 0  (2) 

Where the phase volume fraction 𝛼 ∈  [0,1], and u and v are the fluid velocities in the x and y direction 

respectively.  By calculating the derivatives of the 𝛼 function at each cell boundary the free surface 

normal can be established, [16]. The normal direction to the free surface is then the direction in which 

the 𝛼 function varies most rapidly (i.e.𝛻𝛼). From the value of the 𝛼 function and the direction of the 
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normal to the fluid interface, a line cutting the cell can be drawn which represents the free surface 

boundary.  

 

2.1.2 Incompressible model governing equations 

The conservation of mass equation for an incompressible fluid is defined as follows: 

 ∇ ∙ 𝑼 = 0 (3) 

And the conservation of mass equation for the volume fraction 𝛼 ∈  [0,1] can be represented as: 

 
𝜕𝛼

𝜕𝑡
+  ∇ ∙ 𝑼𝛼 + ∇ ∙ 𝑼𝑐𝛼(1 − 𝛼)  = 0 (4) 

Where U is the fluid velocity vector, and Uc is the artificial compression velocity vector given by        

𝑼𝑐 = min[𝑼, max(𝑼)]. The final term on the left hand side ensures a sharp interface is maintained 

between the fluid phases. The momentum conservation equation is formulated by summing the averaged 

fluid properties according to their constituent proportion in the boundary cell. For a two phase flow, 

density 𝜌 in the cells is given by: 

 𝜌 = ∑ 𝑟𝛼𝜌𝛼

2

𝛼=1

 (5) 

Where 𝑟𝛼 is the volumetric fraction of each constituent fluid in the free surface boundary cell. 

A single momentum conservation equation for an incompressible fluid can then be defined for the 

homogeneous mixture as: 
 

 
𝜕(𝜌𝑼)

𝜕𝑡
+ ∇ ∙ (𝜌𝑼𝑼) = −∇𝑝ℎ + ∇ ∙ 𝜇(∇𝑼 + ∇𝑼𝑇) + 𝑭𝑠  +  𝜌𝒇𝑖 (6) 

Where 𝜌 is given in Equation (5), 𝑝ℎ is the hydrostatic pressure, 𝜇 is the fluid viscosity and fi is the 

gravitational force. The term Fs represents the surface tension force and is calculated from 𝑭𝑠 =  𝜎𝜅∇𝛼, 

where 𝜎 is the interfacial tension and the interface curvature is given by 𝜅 =  ∇ ∙ (∇𝛼/|∇𝛼|).  

 

2.1.3 Compressible model equations 

To include the effects of compressibility within the model an Equation of State (EOS) must be defined 

for each phase. For the air phase, the ideal gas EOS is specified as follows: 
 

 𝜌𝑎 = 𝑝
1

𝑅𝑎𝑇
 (7) 

Where 𝜌𝑎 is the air density,  𝑅𝑎  is the specific gas constant for air, T is the air temperature and p is the 

pressure. For the water phase the perfect fluid EOS is defined as: 
 

 𝜌𝑊 = 𝑝
1

𝑅𝑊𝑇
+  𝜌𝑊0 (8) 

Where 𝜌𝑊0 represents the density of water at atmospheric pressure conditions. An additional term must 

be incorporated into equation (4) in order to allow for air to be modelled as a compressible medium in 

the interfacial cells.  

 
𝜕𝛼

𝜕𝑡
+  ∇ ∙ 𝑼𝛼 +  ∇ ∙ 𝑼𝑐𝛼(1 − 𝛼) = −

𝛼

𝜌𝑊

D𝜌𝑊

D𝑡
 (9) 

The Euler compressible mass conservation equation is defined as: 

 
𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝑼) = 0 (10) 

The transport equation for the temperature term is derived from the energy conservation equation, [17] 

and is calculated accordingly using equation (11) below: 
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𝜕𝜌𝑇

𝜕𝑡
+ ∇ ∙ (𝜌𝑼𝑇) − ∆(μT)  = − (

𝛼

𝐶𝑤
+  

1 − 𝛼

𝐶𝑎
) (

𝜕𝜌𝑘

𝜕𝑡
+ ∇ ∙ (ρ𝑼𝑘) + ∇ ∙ (𝑼𝑝)) (11) 

𝐶𝑤 and 𝐶𝑎 are the specific heat capacities for water and air respectively, while k is the specific kinetic 

energy. A flow field solution can be obtained by applying the PIMPLE algorithm which is a pressure-

velocity coupling approach derived through combining the PISO and SIMPLE algorithms.   

 

2.2 Resonant Oscillation Frequency of a Single Bubble 

2.2.1 Analytical method  

The behaviour of a single air bubble which is entrained within an infinite water domain has previously 

been studied by Minnaert [13]. An analytic expression describing the resonant frequency of a bubble 

which is subjected to an impulse force is given by:  

 

 𝑓 =  
1

2𝜋𝑟
(

3𝛾𝑝

𝜌
)

0.5

 (12) 

Where r is the bubble radius and, 𝛾 is the polytrophic coefficient of the fluid, and r is the bubble radius. 

 

2.2.2 Laboratory Experimentations 

Hattori et al., [9], have conducted experiments to investigate the influence of air entrainment on impact 

pressures from a wave impinging on a vertical solid wall. By varying the wall location relative to the 

breaking wave they were able to capture and analyse the effects of 4 distinct geometries of the breaking 

wave. High speed video recording at the impact interface was captured, from which still images were 

provided. The first generated wave broke against the wall while exhibiting flip-through behaviour 

without the entrainment of bubbles and thus no oscillatory effects in the time-pressure history plot were 

observed.  

The second wave impacted the wall while having developed a vertically flat wave front. This type of 

breaker yielded a very high impact pressure 𝑝𝑚𝑎𝑥/𝜌𝑔𝐻𝑏 =  109.6 followed by a series of high 

frequency (1 kHz) oscillations which decayed rapidly.  

The third type of breaking wave geometry analysed was that of a plunging breaker with a thin lens of 

air trapped at the interface. Again, high amplitude impulse pressures were recorded,  𝑝𝑚𝑎𝑥/𝜌𝑔𝐻𝑏  =
51.9 with oscillating frequency 250 Hz.  

The final wave profile investigated was that of a plunging breaker with a large trapped air bubble. It was 

found that the increase in the diameter l, of the entrained bubble resulted in a decrease in both the peak 

impulse pressure and an associated decrease in the oscillating pressure frequencies recorded. The 

relationship between the bubble diameter and peak pressure, and also the bubble diameter and pressure 

oscillation frequency was found to vary inversely. Hattori et al., [9], noted that the expression for the 

oscillating pressure frequency is approximated by: 

 𝑓𝑎𝑝 = 180 (2𝑟)−0.5 (13) 

 

3. NUMERICAL MODEL 
 

3.1 Geometry and Boundary Conditions  

The simulation set-up is in the configuration of a dam break flow test case as shown on Figure 1 below. 

The numerical wave tank is 0.3m long and 0.2m high. The tank contains a column of water of width      

0.05715m and height 0.01143m. A no-slip boundary condition is prescribed at the tank base and at the 

vertical walls. As the top of the tank is considered to be open to the atmosphere, the inflow and outflow 

of fluid is permitted across this boundary. Thus, at this edge a combination of boundary conditions are 

specified for the pressure and velocity terms of the fluid flow governing equations to model inflow and 

outflow behaviour whilst maintaining the PIMPLE algorithm stability. In the case of the incompressible 

model a fixedValue boundary condition with a value of zero is specified for the pressure term whilst 

a pressureInletOutletVelocity boundary condition is applied to the velocity term at the top 

edge boundary of the tank. In the case of the compressible simulation, the numerical value of the 
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fixedValue boundary condition is set to atmospheric pressure conditions (101 kPa) across the edge 

which represents the top of the numerical tank. The velocity boundary condition is unchanged from the 

incompressible case. Pressure is sampled at point P1 on the impact interface where the right hand side 

wall meets the tank base, (see Figure 1).  
 

 

Figure 1: Initial CFD OpenFOAM model setup with  

4mm mesh resolution and sampling point P1 indicated. 

 

3.2 Flow Profile and Pressure Field Evolution 
As the flow simulation progresses, the water column collapses and the flow front advances towards the 

right hand side (RHS) of the tank. The flow front impacts the solid RHS wall and is forced vertically 

upwards through the formation of a thin jet. Figure 2(a) and 2(d) present the 𝛼 function and pressure 

distribution respectively as the flow front impacts the wall. This initial impact produces the first pressure 

peak shown on Figure 6(a) in Section 4.3.1 at time t = 0.205. As the jet collapses and converges with 

the fluid below, a bubble is entrained in the flow. This occurs at t = 0.492 seconds and yields the first 

oscillatory cycle local minimum pressure shown on Figure 6(b). The free surface geometry at bubble 

entrainment is displayed on Figure 2(b) with the associated pressure distribution shown on Figure 2(e). 

 

   
a. Free surface profile at t = 0.205 sec              d. Pressure distribution at t = 0.205 sec 

   
b. Free surface profile at t = 0.492 sec              e. Pressure distribution at t = 0.492 sec 

   
 c. Free surface profile at t = 0.610 sec               f. Pressure distribution at t = 0.610 sec 

Figure 2: Free surface evolution and associated pressure contour distributions from second 

order spatial and second order temporal equation discretisation scheme simulation  

P1 
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The amplitude of the oscillating pressure signal decays in an under-damped manner until the oscillations 

become negligible at approximately t = 0.610 seconds as presented on Figure 6(b). Figure 2(c) and 2(f) 

above, display the 𝛼 function and pressure distribution at time t = 0.610 seconds respectively. 

  

3.3 Spatial and Temporal Domain Discretisation 

The spatial domain was initially discretised using a structured 4mm square hexahedral mesh. The mesh 

resolution was refined three times as part of the grid independence study. Table 1 records the grid 

resolutions and associated model properties for this section of the study. 

Initial simulations were conducted using a specified maximum Courant number of 1.0 and time-step 

length of 0.00001 sec. For the first order time and spatial discretisation schemes with low level grid 

resolution this time-step duration was sufficiently short to allow the Courant value to be maintained 

below 1.0, thus ensuring stability. However as the grid was progressively refined and higher order 

temporal and spatial equation discretisation schemes were applied to the model, an adaptive time-step 

control command reduced the time-step duration to ensure convergence of the solution. 

 

Table 1: Grid resolutions 

Grid 
∆x 

[mm] 

∆y 

[mm] 

No. of 

nodes 

No. of nodes 

x direction 

No. of nodes 

y direction 

No. of 

elements 

No. of 

elements in 

x direction 

No. of 

elements in 

y direction 

1 4 4 7752 152 102 3750 75 50 

2 2 2 30502 302 202 15000 150 100 

3 1 1 121002 602 402 60000 300 200 

4 0.5 0.5 482002 1202 802 240000 600 400 

 

4. NUMERICAL SIMULATION RESULTS 
 

4.1 Modelling Scalability Criteria 

The grid independence study was established using the grid resolution data from Table 1. The spatial 

discretisation analysis was performed by calculating the impulse force I, at initial wave impact for each 

level of refinement. The impulse force was obtained for each grid resolution by integrating the maximum 

impact pressure peak over the rise time [10]: 

 

 𝐼(𝑥) =  ∫ 𝑝(𝑥, 𝑡)𝑑𝑡
𝑅𝑡

 (14) 

 

The duration of impact, which for this study is recorded as the peak rise time measured from a baseline 

time of 0.19 seconds was determined for each of the four levels of mesh discretisation as shown on 

Figure 3(a). The impulse force results were then compared to verify that progressive mesh refinement 

produced a solution trending towards convergence as shown in Figure 3(b). Table 2 records the results 

from the grid independence study. 

 

                 
(a) Pressure peak rise time                     (b) Grid  convergence 

Figure 3: Model verification (a) pressure peak rise time, (b) grid convergence.   
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Table 2: Grid independence criteria 

Grid Rise time 

[Rt] 

[s] 

Non-Dim. Rise 

time [Rtnd] 

Peak pressure 

[pmax] 

[pa] 

Non-Dim. Peak 

pressure [pmaxnd] 

Non-Dim. impact 

pressure impulse [pipnd] 

1 0.0233 0.8634 2484.8 2.2160 0.3276 

2 0.0170 0.6300 3105.9 2.7700 0.1283 

3 0.0169 0.6263 4259.7 3.7990 0.0852 

4 0.0163 0.6040 6402.7 5.7102 0.0717 

 
4.2 Model Validation 

4.2.1 Collapsing fluid column leading edge position 

Numerical model validation was achieved through comparison of the time varying leading edge position 

of the collapsing fluid column with experimental results from a study performed by Martin and Moyce, 

[18]. The surge front location for the numerical simulation was plotted for each of the four levels of grid 

resolution. The results are shown on Figure 4. The flow front position shows good agreement between 

the different mesh resolution models. The 4mm grid spacing simulation reaches the impact interface 

later than the higher resolution grid simulations (indicated by a sharp change in derivative of the graphs). 

This is supported by the rise time data presented in Table 2. Also included on Figure 4 is a plot of the 

flow front leading edge position sampled during experiment 5 conducted by Martin and Moyce, [18]. 

The numerical simulation shows good agreement with the experimental results. 

 

 
Figure 4: Model validation, flow front position 

 

4.2.2 Transient pressure response comparison  

The CFD model is further validated through comparison of the simulation pressure signal results with 

data from an experimental dam-break study published by Kleefsman et al., [19]. 

  

 
Figure 5: Model validation, transient pressure comparison with experimental results 
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column. This obstacle measured 0.16 metres wide and 0.16 meter high. By non-dimensionalising the 

time and pressure response values from the numerical study a direct comparison with the experimental 

pressure history plots could be made. Figure 5 above, displays a plot of the experimental time pressure 
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history results from the study published by Kleefsman et al., [19], versus both the incompressible and 

the compressible numerical simulation results. The pressure signal trend shows good agreement between 

the experimental and numerical results. 

 

4.3 Simulation Pressure Response Results 

The series of simulations performed can be classified according to those in which air compressibility 

effects were neglected and those in which air was considered as a compressible fluid and also according 

to the temporal and spatial equation discretisation schemes employed. The second order temporal and 

spatial scheme results are discussed in Section 4.3.1. Some further discussion on the first order temporal 

and spatial discretisation results for the 1 mm square grid size resolution for both incompressible and 

compressible simulations follows in Section 4.3.2.    

 

4.3.1 Second order temporal second order spatial equation discretisation scheme 

Figure 2 (Section 3.2) displays the 𝛼 function and pressure distribution as the flow develops during the 

simulation. The pressure variation as a function of time for both the incompressible air phase simulation 

and the compressible air phase simulation is shown on Figure 6 below.  

  

   
(a) Full pressure response signal            (b) Bubble formation phase 

Figure 6: Pressure response signal at P1: (a) Full simulation,  

(b) Oscillation due to air entrainment  

  

It can be observed that between t = 0.492 and t = 0.610 a high amplitude, high frequency, resonant 

oscillation is recorded in the compressible simulation pressure response at point P1. This is due to the 

entrapment of a large air bubble which occurs as the vertical jet collapses. The initial entrained air bubble 

has a cross sectional area of approximately 1324.5 mm2 which results in an equivalent spherical bubble 

of approximate radius 20 mm. As the simulation progresses this bubble fragments several times to form 

smaller bubbles. From Figure 6(b) the pressure signal recorded at P1 can be seen to oscillate with a 

regular frequency.  By applying a Fast Fourier Transform (FFT) to the signal, five principal oscillating 

frequencies of 150, 180, 200, 219 and 252 Hz were computed. Table 3 summarises the formation of the 

first 5 bubbles observed during the simulation together with the main oscillatory frequencies. 

Table 3: Entrained bubble evolvement and associated frequencies 

Bubble Area 

[mm]2 

Equivalent 

radius 

[mm] 

Time which 

bubble forms 

[sec] 

Time which bubble 

size is modified 

[sec] 

Lifespan 

of bubble 

[sec] 

Oscillation 

frequency 

[Hz] 

1 1324.5 20 0.492 0.5045 0.0125 150 

2 787 15.8 0.5045 0.5131 0.0086 180 

3 474 12.3 0.5045 0.5231 0.0126 200 

4 483 12.4 0.5131 0.5341 0.0210 219 

5 489 12.5 0.5231 0.5431 0.0260 252 

 

These frequencies can be compared with the adiabatic Minnaert resonant frequency [13], given by 

Equation (12) and also with the experimentally derived relationship observed by Hattori et al., [9], 

(Equation (13)). These results are presented on Figure 8. 
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(a) Pressure signal FFT                  (b) Principal Frequencies 

Figure 7:  FFT Analysis of pressure oscillation. 

 

Figure 8: Analytic & Experimental bubble oscillatory frequencies  

versus numerical model frequency predictions 
 

4.3.2 First order temporal, first order spatial equation discretisation scheme 

To further ascertain that the resonant pressure signal oscillations observed at P1 originate from the 

pulsation of the entrained bubble, analysis was performed on the pressures sampled at a point within the 

entrapped air bubble.  

 
Figure 9: Pressure oscillations at the entrained air bubble vs pressure oscillations at P1 

 

Figure 9 shows the pressure signal inside the air bubble and at position P1 obtained employing the first 

order temporal and spatial equation discretisation schemes on a 1mm square grid resolution from 0.5 to 

0.6 seconds elapsed simulation time. The amplitude of the oscillating pressure signal sampled within 

the bubble is consistently larger than the pressure recorded at P1. This would imply that the resonant 

contraction and expansion action of the entrapped bubble is the source of the pressure oscillation. The 

reduced amplitude of the pressure signal at P1 may be due to energy loss through the free surface and 

energy loss due to viscous effects within the liquid phase. The pressure oscillation within the bubble 

also persists for some time after the oscillations at P1 are damped, further supporting the argument that 

the oscillations emanate from the entrained bubble.   

 

5. CONCLUSIONS AND FUTURE DEVEOPMENTS 
 

The origins of the oscillatory nature of impact pressures at solid walls have been investigated. There is- 
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clear evidence that the oscillation of the impact pressure at a solid wall is generated from entrapped 

oscillating air bubbles within the flow. A good size range of entrapped bubbles at the interface with the 

solid is numerically revealed together with their respective resonant frequencies. The evidenced bubbles 

respective life spans are found to be finite. One therefore expects the range of bubbles oscillatory 

frequencies to vary in time as the overall energy of the flow and impact pressures at the wall recede.  

Further studies of these effects are currently in progress while being applied to complex porous 

structures. The aim is to quantify the response of the flow at impact at such porous structures together 

with the manifested oscillatory frequencies of entrapped bubbles as a result.   
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