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Abstract 

Background: Prostate cancer (PCa) is the most common male cancer in the UK and 

we aimed to identify clinically relevant biomarkers corresponding to stage 

progression of the disease.  

Methods: We used enhanced proteomic profiling of PCa progression using iTRAQ 

3D LC Mass Spectrometry on high-quality serum samples to identify biomarkers of 

prostate cancer. 

Results: We identified >1000 proteins. Following specific inclusion/exclusion criteria 

we targeted seven proteins of which two were validated by ELISA and six potentially 

interacted forming an “interactome” with only a single protein linking each marker. 

This network also includes accepted cancer markers, such as TNF, STAT3, NF�B 

and IL6.  

Conclusion: Our linked and interrelated biomarker network highlights the potential 

utility of six of our seven markers as a panel for diagnosing PCa and critically, in 

determining the stage of the disease. Our validation analysis of the MS identified 

proteins found that SAA alongside KLK3 may improve categorisation of PCa than by 

KLK3 alone, and that TSR1, although not significant in this model, might also be a 

clinically relevant biomarker.  
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Introduction 

The most common male cancer in the UK is prostate cancer (PCa) with 47,300 

diagnoses in 2013 (CRUK, 2014a) and 10,837 deaths in 2012 (CRUK, 2014b) from 

the disease. At disease presentation, ~16% of men in the USA will have locally 

advanced or metastatic disease, despite PSA screening, and of the remainder, 30-

40% will still suffer biochemical recurrence regardless of radical prostatectomy 

(Brawley, 2012). Once PCa has metastasised, life expectancy is generally <5 years. 

Conversely, patients presenting with organ-confined disease have a minimal risk of 

death within 15 years (Brawley, 2012). The USA screening programme is thought to 

have led to >1 million additional men being diagnosed and treated for PCa between 

1986 and 2005. However, a worrying observation is that for every 1 death that is 

averted 20 men are 'over-diagnosed'. Over-diagnosis is a disturbing problem due to 

globally acknowledged treatment-associated side effects (Welch & Albertsen, 2009).  

 

In this context it becomes essential to discover modes for improving diagnosis and 

planning surgical interventions. Novel candidate biomarkers offer potential clinical 

utility in the more accurate identification of patients with an increased risk of 

aggressive PCa prior to invasive treatments.  

 

Proteomic profiling utilising isobaric stable isotope labelling and ultra-performance 

liquid chromatography linked with high-resolution tandem mass spectrometry (LC-

MS) offers extended linear dynamic range in proteome coverage. (Al-Ruwaili et al, 

2010; Zeidan et al, 2009a; Zeidan et al, 2009b; Zeidan & Townsend, 2008) with high 

analytical precision (Garbis et al, 2011; Garbis et al, 2008).  



Such methodological features are particularly important when it comes to the 

analysis of serum samples whose protein content spans a wide dynamic range 

of >12-orders of magnitude with the carrier protein albumin accounting for ~55% of 

total protein content by mass (Anderson & Anderson, 2002; Boylan et al, 2010; 

Garbis et al, 2011; Rehman et al, 2012; Tonack et al, 2013). Such high abundance 

of albumin masks or sequesters the presence of lower abundance proteins. Many 

serum proteomic methods utilise depletion strategies to remove the high abundance 

proteins (primarily albumin and immunoglobulins) to simplify the analysis of the 

proteome, however, this results in the concurrent removal of many other lower 

abundance, potentially valuable, proteins (Yocum et al, 2005).  

 

Building on the success of previous methods (Bouchal et al, 2009; Garbis et al, 

2008), we developed a quantitative version of a whole serum analysis approach to 

investigate gender-mediated factors affecting the obesogenic state in humans (Al-

Daghri et al, 2014). The aim of our current study was to apply this approach to 

identify serum biomarkers of PCa progression. Our study hypothesis is that the 

methodological attributes of the iTRAQ 3-D LC-MS protocol exhibits sufficient 

selectivity, specificity and sensitivity to reveal novel and clinically relevant biomarkers 

that can stage PCa progression. 



Materials and Methods 

Discovery Samples 

For the mass spectrometry (MS) discovery phase, we used serum from a panel of 

patients recruited (using informed consent) through the University of Surrey 

(Professor Pandha SUN study, REC reference 08/H1306/115) categorised as follows: 

(I) Prostate cancer null, <1ng/mL PSA (20 samples in this category), (II) Putative 

benign disease, 4.7-12 ng/mL PSA, includes benign prostatic hyperplasia, prostatitis, 

prostatic intraepithelial neoplasia, inflammation and atrophy (15 samples in this 

category), (III) T1-T2 stage prostate cancer, 3.9-4.8 ng/mL PSA (20 samples in this 

category), (IV) T3-T4 stage prostate cancer (some with metastatic disease), 6.7-

17.65 ng/mL PSA (20 samples in this category). Serum was collected in red-topped 

serum activator tubes (BD Biosciences), inverted five times, left at room temperature 

for 30 minutes, before centrifugation at 3000 rpm for 10 minutes. All samples were 

centrifuged within two hours of collection. After centrifugation, the top clear fraction 

(serum) was removed and aliquoted into cryovials (1 mL per vial) before being stored 

at -80°C.   

 

Validation Samples 

To validate biomarkers by ELISA, we used a separate, independent cohort of 

samples collected through the University of Manchester (Professor Noel Clarke, 

Northern Prostate Cancer Collaborative (ProMPT), MREC/01/4/061). These samples 

were categorised as follows: (I) Prostate cancer null (20 samples), (II) patients with 

BPH (20 samples), (III) T1-T2 stage prostate cancer, 0.7- 31 ng/mL PSA (20 

samples), (IV) T3-T4 stage prostate cancer (some with metastatic disease), 0.5-1400 

ng/mL PSA (20 samples). Blood was collected in Gold-topped BD Vacutainer® SST 



II Plus plastic serum tube (BD Biosciences #367955), inverted five times, left at room 

temperature for a minimum of 30 minutes (up to 2 hours), before centrifugation at 

1000 g for 10 minutes. Serum was removed and aliquoted before storing at -80°C. 

 

LC-MS Proteomics 

All aspects of the LC-MS proteomics method used for this study have been reported 

by the authors (Al Daghri, et al. 2014). The offline HILIC peptide separation has also 

been reported by the authors (Bouchal et al, 2015; Delehouze et al, 2014; Garbis et 

al, 2011). The discovery experiment was executed once. However, technical 

replicates of each group were performed using the same samples. The 

samples were pooled twice and labelled differently to provide these technical 

repeats (Figure 1A). Each pooled serum category was analysed in parallel 

under the same offline tryptic peptide LC-MS conditions. This gave us a high-

degree of analytical precision and the ability to more reliably determine a 

smaller degree of differential analysis not feasible with label-free methods. The 

biological and technical reproducibility of the study method has been reported 

by the authors (Al-Daghri et al, 2014). Specific method details may be found in the 

Supplementary Methods section. The mass spectrometric proteomics data have 

been deposited to the ProteomeXchange Consortium (Vizcaino et al, 2014) via 

the PRIDE partner repository (Vizcaino et al, 2013; Vizcaino et al, 2014; Wang 

et al, 2012) with the dataset identifier PXD004575.  

 

 

 



 

Our protein selection process is depicted in Supplementary Figure S1. For each 

group studied by MS, there were two technical replicates, labelled with a 

different iTRAQ label, resulting in four ratios for each comparison (i.e., 115/113, 

115/114, 116/113, 116/114 for BPH/control). Due to the variability observed 

between replicates, a measure, termed the ‘regulation score’ (Equation 1) was used 

to summarise both the magnitude and consistency of differential abundance across 

multiple derived log2(ratios). For instance, when the mean is high and the SD is low, 

the resulting regulation score is high. The top 40 most consistently regulated, 

significant (p<0.05) proteins were derived from the regulation score values for the 

three conditions. This shortlist was used for the selection of validation markers 

(Figure 2C). 
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From the shortlist we selected proteins that differentiated one disease group from the 

other two, or had a step-wise increase or decrease with progression, and, critically, 

had commercially available validation reagents (Table 1). Due to lack of 

commercial availability, we were unable to study the markers that seemed to 

be specific to early stage PCa. 

 

ELISA validation 

ELISAs were obtained from Antibodies Online and My Biosource, details are shown 

in Supplementary data Table S1.  ELISAs were performed according the 

Equation 1. Calculation of the regulation score



manufacturer’s protocols. More detail can be found in the Supplementary Methods 

section. 

 

Literature and network analysis 

In addition to the ELISA validation of our chosen MS identified biomarkers, a 

literature and network analysis of interacting proteins with the seven markers was 

performed in collaboration with Biorelate (www.biorelate.com).  Details can be found 

in the Supplementary Methods section. 

 

  



Results 

Discovery MS 

Our LC-MS proteomics method (Figure 1A) enabled us to identify a total of 1034 

proteins (Supplementary data Table S2). Our raw data has been uploaded to the 

PRIDE database (Accession: PXD004575). As a proof-of-principle, our method 

allowed the non-targeted relative quantitative analysis of the low-abundant KLK3 

(PSA) protein without the need for mainstream immunodepletion strategies that may 

have otherwise depleted it (Figure 1B). Our KLK3 finding demonstrates its well-

documented limitation to discriminate BPH from early stage PCa at the serum level, 

but does demonstrate its utility as a recurrence marker due to the high levels seen in 

later stage disease.  

 

As a means to assess the absolute abundance range of our quantified proteome we 

compared the total number of Peptide Spectrum Matches (PSMs) for each protein 

across all four segments with published and estimated concentration data from 

PeptideAtlas (Farrah et al, 2011). We found a linear relationship between our MS-

based average counts and the absolute concentrations for more than 350 proteins 

suggesting that approximate absolute abundances for previously unidentified 

proteins can be predicted by the PSMs counts (Supplementary Figure S2).  

 

To identify functional associations between the differentially expressed proteins we 

created a protein-protein interaction network using the Genes2FANs (Dannenfelser 

et al, 2012)  tool (Supplementary Figure S3A) which confirmed that a set of regulated 

proteins is functionally related although not always through direct interactions. Gene 

Ontology analysis (Chen et al, 2013) showed significant enrichment of extracellular 



vesicular exosome proteins (Supplementary Figure S3B) suggesting a potential 

secretion route of the differentially expressed proteins into the blood stream. 

 

A total of 1034 serum proteins were identified with excellent reproducibility 

between technical replicates (Figure 2A). From this total, we shortlisted 40 for 

further study based on the regulation score mentioned previously. The 

distribution of regulation scores for the markers is displayed in Figure 2B and 

the top 40 in Figure 2C. Of these, seven were selected for validation by ELISA 

(Supplementary Table S3) based on their ability to differentiate one group 

(control/benign/T1-T2 PCa/T3-T4 PCa) from another (according to the MS data) and 

the availability of commercial reagents. These seven markers are summarised in 

Table 1. 

 

Literature and Network Analysis 

Using all PubMed abstracts and all PubMed Central (PMC) open access full text 

articles, we performed a comprehensive literature analysis of the seven markers to 

assess their previous relevance with respect to PCa and as biomarkers (Table 2). 

Only VWA5B2 had not been studied in the context of PCa previously, with just three 

publications found in total. Research was limited in PCa for both SGCd and TSR1. 

Of note, Love et al (Love et al, 2009) demonstrated SGCd to have a 14 fold 

increased level of extracellular expression in BPH RNA compared to PCa RNA, 

while Savas et al (Savas et al, 2010) identified single nucleotide polymorphisms 

(SNPs) associated with SGCd and selenium resistance – a dietary trace element 

shown to protect against various cancers including PCa (Meuillet et al, 2004; Neill & 

Fleshner, 2006; Platz & Helzlsouer, 2001). No evidence was found that supported 



TSR1 as a PCa biomarker. The remaining four biomarkers CST3, SRC, SAA1 and 

KLK3, were found to have been intensively studied in PCa biology, with each having 

≥40 PCa biomarker associated publications. CST3 has been shown to be 

downregulated in PCa (Jiborn et al, 2006; Wegiel et al, 2009), in keeping with our 

MS data. SAA1 has been identified as a marker for distinguishing PCa patients with 

bone lesions (Le et al, 2005). SRC has been shown, as it has with many other 

cancers, to be upregulated in PCa, with a large resource of research available. 

KLK3’s existing use as a gold standard marker for PCa is clearly reflected in the 

4908 associated PCa biomarker publications found. 

 

Using each biomarker and their associated publications we then curated any 

documented interactions (both direct and indirect) with other proteins, supplementing 

these with any additional interactions stored in the STRING database. As a result, 

interactions were discerned for all markers except for VWA5B2. These were then 

combined to form a network of interactions between proteins linking each of the six 

markers (Figure 3). Interestingly, these form a coherent graph with SRC, SAA1 and 

KLK3 contributing the most connecting proteins between the markers. An analysis, 

using DAVID (Huang da et al, 2009), of the enriched Gene Ontology (GO) terms 

associated with the six markers and their connecting interactants revealed positive 

regulation of biosynthetic process (p=5.82E-18), positive regulation of cellular 

biosynthetic process (p=8.64E-17) and positive regulation of multicellular organismal 

process (p=2.81E-16) as the most enriched terms (Table 2). Other significantly 

enriched GO terms that may be indicative of this group’s role in PCa include 

regulation of cytokine production (p=1.78E-13) and regulation of cell migration 

(p=2.55E-12). 



  

Biomarker validation by ELISA  

ELISAs, as a clinically accepted diagnostics method, were performed on an 

independent cohort of patients and results compared to the discovery MS data 

(Figure 4A). Kruskal Wallis analysis of the ELISA data demonstrated that SAA and 

KLK3 (PSA) were significantly differentially expressed across the groups (p<0.001). 

Pairwise Mann Whitney U analysis showed significant SAA increases in levels in 

benign and T1/T2 PCa (p=0.037), benign and control (p=0.001), T3/T4 and control 

(p<0.001), and T1/T2 and T3/T4 (p=0.002). KLK3 ELISA concentration was 

consistent with the MS data with T3/T4 being significantly different to the control 

(p<0.001), benign (p<0.001) and T1/T2 (p=0.010) groups. T1/T2 was also found to 

be significantly different to the control group (p=0.009).   

 

TSR1 was found not to be significant by Kruskal Wallis analysis, but differences 

were found by pairwise Mann Whitney U with levels increasing in benign vs control, 

T1/T2 vs control and T3/T4 vs control, though only the T1/T2 vs control was 

significant (p=0.013).  TSR1 was identified as a T3/T4 stage PCa marker according 

to MS yet the ELISA data suggests it to be a marker of ‘cellular change’ as it was 

significantly increased in benign and the two PCa groups compared to the control 

group, yet not differentially expressed between the three disease groups. 

 

 

SGCd, SRC, CST3 and VWA5B2 did not show any significant differences in 

abundance across the disease groups by ELISA. ELISA validation was technically 



difficult as the data imply that the levels of the target proteins largely fall below the 

detection limits of such assays.    

 

To provide further insight into the utility of these markers, we performed 

binary logistic regression to produce predictive models which were then 

analysed by ROC curves (Figure 4B). This analysis showed that KLK3 had an 

AUC of 0.679 significantly different from the null hypothesis of AUC = 0.5 (p = 

0.006). SAA-1 and TSR1 had AUC values of 0.602 and 0.613 respectively. 

However, alone these markers were not considered significantly different from 

the null hypotheses. However, using TSR1 in combination with KLK3 gave an 

AUC value of 0.727 improving on the predictability of KLK3 alone which is 

significantly different form the null hypothesis (p < 0.0005).  

 

Discussion 

The iTRAQ 3D-LC-MS analysis of pooled serum samples yielded many putative 

targets for validation. Of note, KLK3 (PSA) was identified, and its abundance across 

the groups was in-keeping with current literature and clinical experience. High levels 

were observed in late stage PCa but fairly similar levels in the control and benign 

disease groups with a slight increase in the early stage PCa group (not significant). 

There are few other MS studies that have managed to identify KLK3 in serum 

samples from PCa patients, probably due to the use of immunodepletion strategies 

used in those studies (Adam et al, 2002; Rehman et al, 2012). To overcome this, 

studies have been utilising immunoprecipitation (IP) MS to ‘extract’ PSA for 

MS analysis. Utilising stable isotope labelling-multiple reaction monitoring MS 



(SIL/MRM-MS) it has been possible for one group to simultaneously measure 

multiple biomarkers including various PSA forms (Chen et al, 2015). 

We chose several potential biomarkers identified by iTRAQ 3D-LC-MS analysis for 

further analysis in an attempt to find biomarkers that together might allow the 

improved prediction of PCa stage. These ELISAS were used to investigate the 

abundance of these proteins in individual patient samples. Ideally the panel would 

include proteins that showed different patterns of abundance between groups to 

allow additional predictability. The panel thus included proteins that should increase 

abundance in a single patient group as well as proteins that showed progressive 

changes across patient groups. Availability of ELISAs for the early stage PCa 

markers was limited. An ELISA kit for USP24 was obtained, but was unable to 

detect the marker in serum (data not shown) and so this was excluded from 

further analysis. It was noted that the Cancer Genome Atlas Research group 

(2015) identified an amplification of a region which includes XPO4  (13q12.11), 

one of the markers identified in our MS discovery phase as a putative marker 

of early stage disease. 

SAA and KLK3, were found to be significantly differentiated by Kruskal Wallis 

analysis of the ELISA data with very significant agreement between the two 

diagnostic methods. It is unsurprising that there was a lack of further validated 

markers as the stability of serum proteins can be poor (Gislefoss et al, 2009). For 

example, studies of KLK3 (PSA) stability advise caution in any analyses done on 

serum KLK3 after 2 years of storage at -70 °C (Woodrum & York, 1998). As MS by 

its very nature studies proteins by looking at peptide signatures of proteins, it is less 

hindered by this degradation than ELISA for whole proteins would be. 



 

Our literature analysis was useful in providing an improved rigorous understanding of 

PCa with respect to each associated marker. We found that although TSR1 has not 

been strongly associated with PCa previously, it has been suggested to play a 

putative role in the quality control of 18S rRNA precursor production (Tafforeau et al, 

2013). Taking this alongside the importance of ribosome biogenesis in cancer (van 

Sluis & McStay, 2014), it is perhaps unsurprising that a molecule involved in this 

process has implicated in PCa. Additionally, work on tissue has shown TSR1 

RNA expression in prostate tissue, though its highest levels of expression are 

found in the testis (GTExConsortium, 2015).   

 

SRC is a non-receptor protein tyrosine kinase that has a number of roles in cell 

signalling (Wheeler et al, 2009). These interactions are thought to lead to several 

functions such as proliferation, growth differentiation, motility, migration, 

angiogenesis and survival. Hence, it has been implicated in several cancers 

including PCa as it underpins many of the hallmarks of cancer as described by 

Hanahan and Weinberg (Hanahan & Weinberg, 2011). Previous studies utilising an 

SRC inhibitor dasatinib in PCa cell lines suggests that SRC may be a mediator of 

cell growth and migration (Nam et al, 2005). PCa clinical trials with dasatinib (SRC 

family kinase inhibitor) have been promising with a reduction in bone resorption in 

over half of the patients with progressive metastatic prostate cancer (Wheeler et al, 

2009), where bone is the prime metastatic site for PCa. Interestingly, the GTEx 

project database listed prostate as the highest SRC RNA expressing tissue 

(GTExConsortium, 2015) . 



 

CST3 has been shown to be downregulated in PCa and is thought to have a role in 

invasion through the MAPK/ERK and Androgen receptor pathways (Wegiel et al, 

2009). A role for CST3 in neuroendocrine differentiation in PCa has also been 

suggested (Jiborn et al, 2006). Here, CST3 was down-regulated in non-

neuroendocrine tumour tissue and that this down regulation correlated with 

increasing Gleason Grade. In PCa neuroendocrine tumours (a highly aggressive 

subtype), however, the abundance increased with Gleason Grade (Jiborn et al, 

2006). CST3 belongs to a family of cysteine protease inhibitors which prevent 

proteolysis of, for example, the extracellular matrix and basement membrane. 

Downregulation of these inhibitors (and dysregulation of the proteolytic/anti-

proteolytic homeostasis) are associated with malignant progression and shorter 

mean patient survival (Jiborn et al, 2006). Imbalance in these molecules can occur in 

response to inflammatory diseases, which could potentially account for its up-

regulation in the benign disease group which include conditions such as prostatitis. 

CST3 RNA seems to be expressed fairly ubiquitously with higher expression 

seen in the brain, though expression has been observed in prostate tissue 

(GTExConsortium, 2015) , and particularly in PCa (Uhlén et al, 2015). 

 

SAA was identified from MS as being more abundant in late stage disease which 

was supported by ELISA data. Le et al (Le et al, 2005) identified SAA as a marker in 

PCa patients showing increased levels in serum to be indicative of the presence of 

bone metastasis. SAA is an acute phase protein associated with inflammation so, it 



is unlikely to be PCa specific but in conjunction with other PCa biomarkers, could be 

a useful addition to a panel of (companion) biomarkers. 

 

A limitation to the iTRAQ 3-D LC-MS analysis used for our study was the use of 

pooled specimens for each clinical cohort. Essential to the pooled clinical cohorts 

was the implementation of our well-defined inclusion and exclusion criteria which 

minimised confounding factors. Ideally, the proteomic analysis of individual, non-

pooled specimens would have allowed the assessment of heterogeneity between 

individual samples. The lack of validation of some of our candidate markers 

could in part be related to the heterogeneity of PCa itself and the variability 

between the two cohorts. PCa is renowned for its clinical heterogeneity in 

terms of treatment response, speed of growth and overall prognosis, but it is 

also an incredibly complex disease at the molecular level (Boyd et al, 2012). 

This molecular heterogeneity may account for the difficulty of identifying 

commonalities with pooled samples, and also for the low validation rate seen 

between our discovery and validation cohorts, which were taken from distinct 

geographical UK locations. 

 

The inability of ELISA to validate some of the MS identified biomarkers may 

also be attributed to fundamental differences between the LC-MS approach and 

the ELISA technique. ELISAs rely upon an intact interaction between an epitope and 

antigen and are thus dependent on both the integrity of analyte and quality of the 

antibody. Conversely, MS is not limited by these factors and in fact, is reliant upon 

the detection and identification of peptide fragments so is less hampered by epitope 



degradation. The gold standard in verifying the absolute quantitative accuracy 

of our proposed biomarkers is the use of targeted LC-MS approaches using 

such tandem mass spectrometry techniques as multiple reaction monitoring 

(MRM), parallel reaction monitoring (PRM), or selected reaction monitoring 

(SRM). To increase their sensitivity the LC-MS technique can be combined with 

affinity capture and purification of target proteins or their surrogate peptides, 

as reported in the literature (Boja & Rodriguez, 2012) However, such LC-MS 

based approaches require considerable method development and were 

beyond the scope of this proof of concept biomarker discovery study. We 

chose the ELISA assay as a low cost alternative that is in wide commercial use 

for protein measurements. 

Despite difficulties with validating potential biomarkers and a relatively small 

sample size we identified SAA and TSR1 as biomarkers that could potentially 

add to the predictability of KLK3 and successfully validated these via ELISA. 

When analysed using ROC curves TSR1 in particular was able to add to the 

predictability of KLK3 increasing the AUC from 0.679 to 0.737. SAA did little to 

increase the ability of KLK3 to distinguish between cancer and non-cancer but 

Pairwise Mann Whitney U analysis suggested it may have a role in 

distinguishing different stages of cancer and should not be dismissed as a 

potentially useful biomarker in a future biomarker panel.  

In conclusion, as a proof-of-principle study, our serum proteomics discovery 

pipeline allows the discovery of novel serological markers of PCa progression 

of potential clinical utility. Our analysis has identified two potential biomarkers, 

SAA and TSR1, that could be combined with KLK3 to improve its predictive 



capability of disease progression. These proposed biomarkers warrant 

validation across hundreds of samples in a blinded randomised control setting. 

Such a validation process must also include well-curated serum specimens 

derived from diverse populations with well- defined patient information (BMI, 

family history, pharmacological status, etc.). The validation of the proposed 

biomarker panel constitutes a future perspective and is beyond the scope of 

this proof-of-concept study. 
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Titles and legends to figures 

 

Figure 1: (A) Illustration of the multiplex quantitative serum proteomics method used 

for the discovery findings. TR = technical repeat, iTRAQ labels are in bold. The 

method utilises multi-dimensional liquid chromatography, stable isotope labelling of 

surrogate tryptic peptides, and ultra-high resolution/precision tandem mass 

spectrometry using the state-of-the-art FT-Obritrap Elite platform. (B) Annotated 

high-resolution (FTMS) product ion mass spectrum of the tryptic peptide SVILLGR, 

uniquely traceable to PSA with an expanded view of the low-mass region (and a dot 

plot) showing the observed iTRAQ reporter ion intensities, demonstrating the highest 

abundance of the PSA proteotypic peptide occurring for the T3/T4 PCa clinical 

cohorts. 

 

Figure 2. Summary of the reproducible differential serum protein abundance 

observed in BPH, T1-T2 and T3-T4 relative to healthy serum. (A) The reproducibility 

between technical replicates for all proteins, highlighting those considered 

differentially abundant (blue), relative to healthy serum (label 113 and 114). (B) 

Volcano plots highlighting significantly, differentially abundant proteins plotting 

regulation scores (Rs) and –log10(p-values) of the four ratios derived from the 

technical/biological replicates for BPH, T1-T2 and T3-T4 relative to healthy donor 

serum. 72 and 82 proteins demonstrated significant differential abundance (Rs>0.5 

or Rs<-0.5, p<0.05) in at least one of the three conditions, respectively, totalling 151 

distinct differentially abundant proteins. (C) The top 40 significantly (p<0.05) 

overabundant proteins, sorted by regulation score, across the BPH, T1-T2 and T3-



T4 samples relative to healthy serum. Highlighted proteins are the seven selected for 

further validation by ELISA 

 

Figure 3: Network of markers excluding VWA5B2 (for which there were no 

discernible interactions) and proteins that have been shown to interact (directly or 

indirectly) with at least two of these, as identified from the publications associated 

with each marker and from the STRING database. 

 

Figure 4: (A) MS (black dots) and ELISA (blue dots) data for each marker 

detected. Dots represent ratios of the individual value for each case in the 

groups (BPH, T1/T2 and T3/T4) to the mean of the normal group.  The 

abundance of each marker was calculated from a 5PL curve of the intensity 

values from the ELISAs. (B) ROC curve analysis of individual markers and 

binary logistic regression model containing KLK3 and TSR1.  
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Table 2: Literature-informatic analysis for PCa marker proteins. Publications were assigned to each 
protein if they were mentioned in the text. PCa publications are those marker publications filtered 
that also mention PCa-related terms. PCa biomarker publications are those PCa publications further 
filtered for mentions of biomarker related terms. Enrichment p values were calculated using 
Fisher’s exact test (see methods).   

Marker Total 
Publications 

PCa 
Publications 

PCa 
Publications 
Enrichment p 
Value 

PCa Biomarker 
Publications 

PCa Biomarker 
Publications 
Enrichment p 
Value 

SGCD 323 3 0.60 2 0.90 
TSR1 112 2 0.29 0 1.00 
VWA5B2 3 0 1.00 0 1.00 
CST3 4431 60 5.85E-3 50 1.00 
SRC 7805 618 5.28E-342 305 1.19E-1201 
SAA1 3767 58 4.21E-4 48 1.00 
KLK3 44017 19295 1.75E-25391 4908 1.92E-3105 
 










