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Abstract. In realistic unified models involving so-called SO(10)-inspired patterns of Dirac
and heavy right-handed (RH) neutrino masses, the lightest right-handed neutrino N1 is too
light to yield successful thermal leptogenesis, barring highly fine tuned solutions, while the
second heaviest right-handed neutrino N2 is typically in the correct mass range. We show
that flavour coupling effects in the Boltzmann equations may be crucial to the success of
such N2 dominated leptogenesis, by helping to ensure that the flavour asymmetries produced
at the N2 scale survive N1 washout. To illustrate these effects we focus on N2 dominated
leptogenesis in an existing model, the A to Z of flavour with Pati-Salam, where the neutrino
Dirac mass matrix may be equal to an up-type quark mass matrix and has a particular
constrained structure. The numerical results, supported by analytical insight, show that in
order to achieve successful N2 leptogenesis, consistent with neutrino phenomenology, requires
a “flavour swap scenario” together with a less hierarchical pattern of RH neutrino masses
than naively expected, at the expense of some mild fine-tuning. In the considered A to Z
model neutrino masses are predicted to be normal ordered, with an atmospheric neutrino
mixing angle well into the second octant and the Dirac phase δ ' 20◦, a set of predictions
that will be tested in the next years in neutrino oscillation experiments. Flavour coupling
effects may be relevant for other SO(10)-inspired unified models where N2 leptogenesis is
necessary.
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1 Introduction

It would be certainly desirable to extend the SM, realising a unified picture able to solve the
flavour problem, explaining masses and mixing parameters of quarks and leptons, and at the
same time to provide solution to the cosmological puzzles. In particular leptogenesis [1] is an
attractive way to explain the matter-antimatter asymmetry of the Universe, that in terms of
the baryon-to-photon number ratio is given by [2]

ηCMB
B = (6.1± 0.1)× 10−10 . (1.1)

Leptogenesis is a cosmological application of the see-saw mechanism, a minimal extension
of the SM able to explain neutrino masses and mixing [3–8]. Despite an intense activity on
various aspects of leptogenesis, there are not many definite realistic unified models that have
been shown to lead to successful leptogenesis while explaining fermion masses, mixing and
CP violation, although in the case of SU(5) it is certainly possible to achieve successful N1

leptogenesis (for a recent example see e.g. [9, 10] which uses the sequential dominance results
for N1 leptogenesis discussed in [11, 12]).

In this paper we are interested in N2 leptogenesis in so-called SO(10)-inspired models
with type I seesaw. For definiteness, we investigate the possibility that the A to Z Pati-Salam
model proposed in [13] (see also [14–17]) can not only describe neutrino masses and mixing
but also attain the correct value of the matter-antimatter asymmetry with leptogenesis.
The right-handed (RH) neutrino mass spectrum in this model is very hierarchical, typical
of SO(10)-inspired models (assuming type I seesaw). In this way the lightest RH neutrino
N1 is too light to generate a sizeable asymmetry [18] while on the other hand the next-to-
lightest RH neutrino is heavy enough to be able potentially to generate the correct asymmetry
realising the so called N2 dominated scenario [19–29] or simply N2 leptogenesis. However
in general it is non-trivial to be able to find a set of values of the parameters of the model
for the lightest RH neutrino wash-out to be negligible, in such a way that the asymmetry
generated by the next-to-lightest neutrinos survives, while at the same time producing values
of the neutrino parameters compatible with the experimental results.

– 1 –
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The non-trivial requirements of N2 leptogenesis may be somewhat relaxed by taking into
account additional flavour coupling effects in the Boltzmann equations, or more generally the
kinetic mixing terms, that may transmit part of the initially produced flavour asymmetry
from one particular flavour to other flavours. This increases the chances that the asym-
metry generated in a particular flavour at the N2 scale may survive the N1 washout. The
additional flavour coupling effects, which are not usually considered in the literature, arise
mainly from the fact that lepton asymmetry produced at the N2 scale into left-handed lepton
doublets is also accompanied by hyper-charge asymmetry into Higgs asymmetry, giving the
dominant effect, baryons asymmetries into quarks and lepton asymmetries into right-handed
charged leptons, which are then transmitted to the other flavours which couple to these par-
ticles [30–34]. This results in new contributions to the total asymmetry that in a traditional
N1-dominated scenario would give just some small corrections (O(10%)) [35]. However, in
a N2-dominated scenario they can become dominant if, contrarily to the usual dominant
terms produced in a flavour that is strongly washed by the lightest RH neutrinos, they are
produced into a flavour that escapes the lightest RH neutrino wash-out. In this way the so
called “flavour swap scenario” is realised [23].

In the A to Z of Flavour with Pati-Salam [13], all of these features are exemplified.
In particular, the N1 scale is too light to generate asymmetries thermally, while the flavour
asymmetry produced at the N2 scale, namely the τ flavour, is effectively washed out at the
N1 scale for all ranges of parameters consistent with the experimentally acceptable neutrino
masses and mixings. In this example, flavour coupling effects come to the rescue, effectively
transmitting part of the τ asymmetry into (a linear combination of) electron and muon
asymmetries at the N2 scale, completely (electron) or partly (muon) surviving washout at
the N1 scale. These features necessarily arise from the rigid structure of the Yukawa and
Majorana matrices enforced by the model, leading to fairly precise predictions for PMNS
parameters which can be compared to experiment. It has been already shown that the model
can simultaneously fit both lepton and quark parameters. Here for simplicity we will focus
on the leptonic sector and consider non-supersymmetric leptogenesis.

The layout of the remainder of the paper is as follows. In section 2 we review neutrino
masses in the A to Z model. In section 3 we fit the neutrino parameters without imposing
successful leptogenesis. In section 4 we show how within a traditional calculation of the
asymmetry ignoring flavour coupling effects one cannot find any good fit both to neutrino
parameters and to the measured value of the asymmetry simultaneously. In section 5 we
show how flavour coupling rescues the model. In section 6 we provide an analytical insight on
the found solution within more general context of SO(10)-inspired leptogenesis highlighting
different aspects both of the specific solution within the A to Z model and more generally of
SO(10)-inspired models. In section 7 we draw our conclusions.

2 Neutrino masses in the A to Z model

The lowest order lepton Yukawa matrices (in LR convention) and heavy Majorana mass
matrix MR are predicted by the model just below the high energy Pati-Salam breaking scale
∼ few ×1016 GeV. The charged lepton Yukawa matrix of the model is diagonal to excellent
approximation, and the neutrino Lagrangian in this basis is given by,

− L = NLY
′νN ′R +N

′T
R M ′RN

′
R + H.c. (2.1)

– 2 –
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with the neutrino Yukawa and Majorana matrices [13],

Y
′ν =

 0 be−i3π/5 0

ae−i3π/5 4be−i3π/5 0

ae−i3π/5 2be−i3π/5 ceiφ

 , M ′R =

M ′11 e
2iξ 0 M ′13 e

iξ

0 M ′22 e
iξ 0

M ′13 e
iξ 0 M ′33

 , (2.2)

where M ′11,M
′
13,M

′
22,M

′
33 are positive and real. Note that for simplicity it was also assumed

in [13] that M ′13 = 0 and φ = 0, while here we shall allow these parameters (generally present
in the model) to take non-zero values. Generally the model predicts M ′11 �M ′22 �M ′33 and
M ′13 ∼M ′22. Without any tuning of parameters, the model predicts the typical values,

M ′11 ∼ 105 GeV, M ′22 ∼M ′13 ∼ 1010 GeV, M ′33 ∼ 1015 GeV, (2.3)

while
a : b : c ∼ mup : mcharm : mtop ∼ 10−6 : 10−3 : 1 . (2.4)

However, successful leptogenesis requires some fine-tuning, leading to a more compressed
spectrum of right-handed neutrino masses, as we shall see. Also ξ is chosen to be one of the
complex fifth roots of unity: ξ = 0,±2π/5,±4π/5. We shall consider all cases.

We perform a unitary transformation UR to the flavour basis where the right-handed
Majorana mass matrix is diagonal with real, positive eigenvalues,

L = NLY
′ν UR U

†
RN

′
R +N

′T
R U∗R U

T
R M

′
R UR U

†
RN

′
R + H.c. (2.5)

= NL Y
ν NR +NT

R MRNR + H.c. (2.6)

where
NR = U †RN

′
R, Y ν = Y

′ν UR, MR = UTR M
′
R UR = diag(M1,M2,M3). (2.7)

We parametrise the unitary matrix, assuming small angle rotations, approximately as

UR =

 1 0 R13e
iφ13

0 1 0
−R13e

−iφ13 0 1

eiφ11 0 0
0 eiφ22 0
0 0 eiφ33

 , (2.8)

where the first matrix factor diagonalises the right-handed neutrino mass matrix and the
second factor ensures that the right-handed neutrino masses Mi are real and positive. Thus
the form of the neutrino Yukawa matrix in the flavour basis is Y ν = Y

′ν UR,

Y ν ≈

 0 be−i3π/5eiφ22 0

ae−i3π/5eiφ11 4be−i3π/5eiφ22 aR13 e
i(φ33−ξ−3π/5)

ae−i3π/5eiφ11 − cR13e
iφei(φ11−φ13) 2be−i3π/5eiφ22 ceiφeiφ33

 . (2.9)

The parameters of UR are determined from the requirement that

MR = UTRM
′
RUR = DM ≡ diag(M1,M2,M3). (2.10)

In particular, the matrix elements of the diagonal MR must satisfy:

(MR)11 = M1 ≈ e2i(φ11−φ13)
(
e2i(ξ+φ13)M ′11 − 2ei(ξ+φ13)M ′13R13 +M ′33R

2
13

)
,

(MR)13 = 0 ≈ ei(φ11−φ13+φ33)
(
e2i(ξ+φ13)M ′11R13 − ei(ξ+φ13)M ′13(R2

13 − 1)−M ′33R13

)
,

(MR)22 = M2 ≈ e2iφ22eiξM ′22 ,

(MR)33 = M3 ≈ e2iφ33

(
M ′33 + e2i(ξ+φ13)M ′11R

2
13 + 2ei(ξ+φ13)M ′13R13

)
. (2.11)

– 3 –
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From these conditions (remembering that Mi are real and positive) we find:

R13 ≈
M ′13

M ′33

, φ13 = −ξ, φ11 = −ξ +
1

2
Arg

[
M ′11 −

M
′2
13

M ′33

]
, φ22 ≈ −ξ/2, φ33 ≈ 0 , (2.12)

leading to:

M1 ≈
∣∣M ′11 − 2M ′13R13 +M ′33R

2
13

∣∣ ≈ ∣∣∣∣∣M ′11 −
M
′2
13

M ′33

∣∣∣∣∣ ,
M2 ≈M ′22 ,

M3 ≈M ′33 +M ′11R
2
13 + 2M ′13R13 . (2.13)

Thus the neutrino Yukawa matrix in the flavour basis is given by,

Y ν ≈

 0 be−i (ξ/2+3π/5) 0

a e−i(ξ+3π/5) 4be−i (ξ/2+3π/5) aR13 e
−i(ξ+3π/5)

a e−i (ξ+3π/5)(1− γ) 2be−i(ξ/2+3π/5) c eiφ

 , (2.14)

where
γ ≈ (c/a)R13e

i(φ+ξ+3π/5) . (2.15)

The Dirac neutrino masses, the eigenvalues of the neutrino Dirac mass matrix mD
ν = v Y ν

LR,
are given by

mD
ν1 ∼ a v/

√
17, mD

ν2 ∼
√

17 b v mD
ν3 ∼ c v , (2.16)

where the approximations are quite precise given the working assumptions leading to the
typical values in eq. (2.4).

For the up-type quark matrix we have two options,

Y u =

 0 be−i3π/5 0

ae−i3π/5 4be−i3π/5 0

ae−i3π/5 2be−i3π/5 c eiφ

 CASE A (2.17)

and

Y u =

 0 1
3 be

−i3π/5 0

ae−i3π/5 4
3 be

−i3π/5 0

ae−i3π/5 2
3 be

−i3π/5 3 ceiφ

 CASE B . (2.18)

These are simply related to the neutrino Yukawa matrix in the original basis, Y
′ν , by Clebsch

relations for CASE B, while we have simply Y u = Y
′ν for CASE A (in the basis of eq. (2.2))

which is just the minimal SO(10)-like expectation that the Dirac neutrino mass matrix is
identically equal to the up-type quark mass matrix. Notice that in the A to Z model there
are “texture zeroes” in the (1,1), (1,3) and (2,3) entries of the Yukawa matrices above that
will play a role in leptogenesis considerations.

The Dirac neutrino masses are simply related to the up-type quark masses, depending
on the choice of model,

mD
ν1 = mup, mD

ν2 = mcharm, mD
ν3 = mtop CASE A (2.19)

– 4 –
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and

mD
ν1 ≈ mup, mD

ν2 ≈ 3mcharm, mD
ν3 ≈

1

3
mtop CASE B . (2.20)

In this way the (real) parameters a, b and c are simply determined from the values of
the up quark masses at the grand-unified scale1 so that the (real) input parameters are:
M ′11,M

′
13,M

′
22,M

′
33 and phase φ. The phase ξ is restricted to be one of the complex fifth

roots of unity: ξ = 0,±2π/5,±4π/5.

Seesaw mechanism in the flavour basis. Using the see-saw formula

mν = −v2 Y νM−1
R Y νT (2.21)

in the flavour basis we find the neutrino mass matrix mν ,

mν ≈ ma e
iφa

0 0 0
0 1 (1− γ)
0 (1− γ) (1− γ)2

+mb e
iφb

1 4 2
4 16 8
2 8 4

+mc e
iφc

0 0 0
0 0 0
0 0 1

 , (2.22)

ma =
a2v2

M1
, mb =

b2v2

M2
, mc =

c2v2

M3
, (2.23)

φa = −2(ξ + 3π/5), φb = −2(ξ/2 + 3π/5), φc = 2φ . (2.24)

From eqs. (2.16), (2.23) and (2.19) or (2.20) we find,

ma ∼ 17
m2

up

M1
, mb ∼ (9)

m2
charm

17M2
, mc ∼

m2
top

(9)M3
, (2.25)

where the factors in brackets apply to CASE B, and these factors are simply unity for
CASE A. Thus the three right-handed neutrino masses M1, M2, M3 may be determined
from ma, mb, mc.

The Majorana neutrino mass matrix mν , defined by Lν = −1
2m

ννLν
c
L + h.c., is diago-

nalised by

UνL m
ν UTνL

=

m1 0 0
0 m2 0
0 0 m3

. (2.26)

The PMNS matrix is then given by

UPMNS = UeLU
†
νL
. (2.27)

We use a standard parameterization UPMNS = R23U13R12P in terms of sij = sin(θij),
cij = cos(θij), the Dirac CP violating phase δl and further Majorana phases contained in

P = diag(ei
β1
2 , ei

β2
2 , 1). The standard PDG parameterization [37] differs slightly due to the

definition of Majorana phases which are by given by PPDG = diag(1, ei
α21

2 , ei
α31

2 ). Evidently
the PDG Majorana phases are related to those in our convention by α21 = βl2 − βl1 and
α31 = −βl1, after an overall unphysical phase is absorbed by UeL .

For example, using the input parameters ξ = 4π/5, φ = γ = 0 and

ma = 0.034 eV, mb = 0.002 eV,mc = 0.002 eV, (2.28)

1We use the values mtop = 100 GeV, mcharm = 400 MeV and mup = 1 MeV [36].

– 5 –
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we find for the CASE A the following values for the physical neutrino masses,

m1 = 0.00034 eV, m2 = 0.0086 eV, m3 = 0.050 eV, (2.29)

and the lepton mixing parameters,

θ12 = 34.0◦, θ13 = 9.1◦, θ23 = 39.7◦, δ = 260◦, β1 = 321◦, β2 = 75◦ . (2.30)

3 Fitting neutrino parameters

In this section we perform a quantitative numerical analysis. We randomly generate a set
of values of the five (continuous) parameters of the model (y ≡ M ′11,M

′
22,M

′
33,M

′
13, φ) for

each of the five choices of the discrete parameter ξ and from these we calculate the nine low
energy neutrino parameters in mν . A recent global analysis [38] finds the values shown below
(with 1σ errors).

The solar mass squared difference:

∆m2
12 ≡ m2

2 −m2
1 = 7.50+0.19

−0.17 × 10−5 eV2. (3.1)

The atmospheric mass squared difference, respectively for normal ordering (NO) and for
inverted ordering (IO):

∆m2
31 ≡ m2

3 −m2
1 = 2.457+0.047

−0.047 × 10−3 eV2 and (3.2)

∆m2
32 ≡ m2

3 −m2
2 = −2.449+0.048

−0.047 × 10−3 eV2 .

The solar mixing angle:

θ12 = 33.48◦+0.78◦

−0.75◦ . (3.3)

The reactor mixing angle:

θ13 = 8.50◦+0.20◦

−0.21◦ . (3.4)

The atmospheric mixing angle, respectively for NO and for IO:

θ23 = 42.3◦+3.0◦

−1.6◦ and θ23 = 49.5◦+1.5◦

−2.2◦ . (3.5)

The Dirac phase, respectively for NO and for IO:

δ = 306◦+39◦

−70◦ and δ = 254◦+63◦

−62◦ . (3.6)

We see that, for the atmospheric mixing angle, within 1σ, there are currently two solutions,
one in the first octant for NO and one in the second octant for IO, though the alternative
choice of octant is in both cases only disfavoured at only ∼ 1.4σ. Note also that, within 3σ,
the Dirac phase δ can have any value.

The four parameters ∆m2
12,∆m

2
23, θ12 and θ13, are measured quite accurately and pre-

cisely and their distributions are very well approximated by Gaussian distributions. On the
other hand the atmospheric mixing angle is not only much less precisely measured and not
Gaussianly distributed, but is also affected by larger systematic uncertainties and in particu-
lar different global analyses exclude maximal mixing with different statistical significance, in
any case below 2σ, so that its determination, and in particular the deviation from maximality,
should be still regarded as quite unstable [38–40].

– 6 –
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We have determined our best fit values minimising the quantity

χ2 ≡
N∑
i=1

p2
i , pi ≡

Xth
i (y)− X̄i

σXi
, (3.7)

where the Xi = X̄i±σXi ’s are the N = 5 experimental parameters that we fit (in next sections
we will include the matter-antimatter asymmetry so that N rises to 6) and Xth

i (y) are their
predicted values depending on the theoretical parameters of the model y = (M ′11,M

′
13,M

′
22,

M ′33, φ; ξ, J) (ξ = 0,±4π/5,±2π/5, J = CASE A, CASE B are discrete parameters). Since the
Dirac phase δ can have any value within 3σ, and has certainly not a Gaussian distribution,
we decided not to include it in the fit not to risk to prematurely exclude potential solutions
but we will comment on how this would change including δ.

For the same reason for the atmospheric mixing angle we use very conservatively θ23 =
45.9◦ ± 3.5◦ both for NO and IO (we have basically taken as a central value the average
between the two minima and as error their halved separation). We could also have performed
the fits distinguishing two different ranges for θ23, one in the lower octant for NO and one in
the higher octant for IO, but these are still too weak hints. Our choice cuts too low or too
high values for θ23, as established by all experiments even singularly taken, but it still treats
the maximal mixing value as perfectly allowed and does not favour any of the two octants
on the other, since, as already discussed, the hint coming from current experimental data is
still too weak and unstable. In this way any emerging possible preference either for lower or
for higher octant, as for maximal mixing, can be uniquely ascribed to the model itself and is
not hidden by still unstable measurements.

Within the approximation that θ23 distribution is also Gaussianly distributed, the de-
fined quantity χ2 has a truly χ2-distribution, being the sum of squares of independent Gaus-
sian variables and the pi’s are the associated pulls.

Notice that the number of (continuous) theoretical parameters is equal to the number
of experimental parameters (five) and, therefore the number of degrees of freedom vanishes.
This implies that the minimisation of χ2 can only provide best fit values (and prediction on
the low energy phases) but cannot be regarded as a goodness of fitness of the model, since even
vanishing χ2 values could be potentially obtained with a fine tuned choice of the theoretical
parameters y independently of the values of the experimental values. However, a preliminary
indication of the goodness of the fitness is given by a comparison of the predicted value of
the Dirac phase with the current best fit value eq. (3.6), though, as we said, we certainly
need a more precise measurement of δ to draw firmer conclusions.

In table 1 and table 2 we summarise the results of our analysis. We indicate the

Majorana phases both in the convention diag(ei
β1
2 , ei

β2
2 , 1) and in the (PDG) convention

diag(1, ei
α21

2 , ei
α31

2 ). The table refers to NO, since we found that the model cannot reproduce
the neutrino mixing parameters for IO. In particular it badly fails in reproducing the neutrino
mass spectrum.

Table 1 refers to CASE A (cf. eq. (2.17)) while table 2 to CASE B (cf. eq. (2.18)). For
both cases we show the results for ξ = ±4π/5 and for ξ = 0 since for ξ = ±2π/5 we could
not find any fit with a value of χ2 < 100 so that they can be basically considered ruled out.

Let us list the main results postponing some comments to the conclusions.

• We do not find any solution for IO, the model is unable to reproduce IO neutrino masses.

• For ξ = ±2π/5 there are no solutions with χ2
min < 100.

– 7 –
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CASE A

ξ +4π/5 0 −4π/5

χ2
min 4.40 22.8 3.63

m1/meV 0.20 0.021 0.022

m2/meV (p∆m2
12

) 8.66 (+0.002) 8.62 (−0.38) 8.69 (+0.25)

m3/meV (p∆m2
13

) 49.9 (+0.76) 48.9 (−1.34) 49.8 (+0.47)

θ12/
◦ (pθ12) 33.5 (+0.04) 35.3 (2.37) 33.0 (−0.66)

θ13/
◦ (pθ13) 8.37 (−0.64) 8.08 (−2.05) 8.42 (−0.37)

θ23/
◦ (pθ23) 39.2 (−1.85) 34.3 (−3.3) 39.9 (−1.66)

δ/◦ 251 180 109

β1/
◦ 225 338 173

β2/
◦ 82 175 279

α21/
◦ 217 197 106

α31/
◦ 135 22 187

M ′11/GeV 6.5× 105 6.6× 105 2.2× 106

M ′22/GeV 5.0× 109 5.1× 109 5.0× 109

M ′33/GeV 7.2× 1015 8.6× 1016 6.8× 1016

M ′13/GeV 3.2× 1010 3.0× 1011 3.4× 1011

M ′13/M
′
22 6.4 59.7 69

φ/π 1.27 1.80 1.64

M1/GeV 5.1× 105 4.2× 105 4.9× 105

M2/GeV 5.0× 109 5.1× 109 5.0× 109

M3/GeV 7.2× 1015 8.6× 1016 6.8× 1016

Table 1. Results for the case A (NO and no leptogenesis).

• Except for the case ξ = 0, the best fit values are obtained for the CASE A.

• The best fit solutions that we obtained for NO, except for the case B with ξ = 0, seem
to point to θ23 ∼ 40◦, certainly in the first octant and even below the current best fit
value eq. (3.5) hinted by current global analyses.

• Taking into account the RH neutrino mixing parameter M ′13 improves all fits and one
finds values of χ2

min(M ′13 6= 0) ' χ2
min(M ′13 = 0)− 2.

• Values of the Dirac phase close to the best fit value from global analyses (cf. eq. (3.6))
are attained for ξ = +4π/5 (both in CASE A and in CASE B). If further experimental
data should further support these values (∼ −90◦), this would be the only surviving
option.
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CASE B

ξ +4π/5 0 −4π/5

χ2
min 7.84 9.32 5.81

m1/meV 0.008 3.0 0.004

m2/meV (p∆m2
12

) 8.58 (−0.81) 9.25 (+0.89) 8.72 (+0.62)

m3/meV (p∆m2
13

) 49.6 (+0.05) 48.8 (−1.85) 50.3 (+1.53)

θ12/
◦ (pθ12) 33.2 (−0.31) 32.3 (−1.49) 33.0 (−0.57)

θ13/
◦ (pθ13) 8.93 (+2.10) 8.84 (+1.66) 8.51 (+0.06)

θ23/
◦ (pθ23) 40.0 (−1.63) 44.55 (−0.33) 39.9 (−1.66)

δ/◦ 253 99 108

β1/
◦ 335 66 170

β2/
◦ 84 325 278

α21/
◦ 108 259 109

α31/
◦ 25 294 190

M ′11/GeV 7.2× 105 2.9× 105 6.6× 106

M ′22/GeV 4.3× 1010 4.2× 1010 4.4× 1010

M ′33/GeV 2.2× 1016 9.7× 1013 4.3× 1016

M ′13/GeV 6.8× 1010 7.5× 109 5.1× 1011

φ/π 1.62 1.23 1.62

M1/GeV 5.1× 105 2.9× 105 4.9× 105

M2/GeV 4.3× 1010 4.2× 1010 4.4× 1010

M3/GeV 2.2× 1016 9.7× 1013 4.3× 1016

Table 2. Results for the CASE B (NO and no leptogenesis).

4 Leptogenesis without flavour coupling

Let us now consider the calculation of the matter-antimatter asymmetry with leptogenesis.
The strongly hierarchical RH neutrino mass spectrum in the A to Z model discussed in the
previous section, with M1 � 109 GeV and 1012 GeV�M2 � 109 GeV, necessarily points to
a N2-dominated leptogenesis scenario [19] since both the lighest and the heaviest RH neutrino
decays produce a negligible asymmetry compared to the observed one. In this case the B−L
asymmetry, in a portion of co-moving volume containing one RH neutrino in ultra-relativistic
thermal equilibrium, can be calculated as [19–26]

N lep,f
B−L '

{[
K2e

K2τ⊥2

ε2τ⊥2
κ(K2τ⊥2

) +

(
ε2e −

K2e

K2τ⊥2

ε2τ⊥2

)
κ(K2τ⊥2

/2)

]
e−

3π
8
K1e+

+

[
K2µ

K2τ⊥2

ε2τ⊥2
κ(K2τ⊥2

) +

(
ε2µ −

K2µ

K2τ⊥2

ε2τ⊥2

)
κ(K2τ⊥2

/2)

]
e−

3π
8
K1µ+

+ ε2τ κ(K2τ ) e−
3π
8
K1τ

}
, (4.1)
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where K2τ⊥2
≡ K2e +K2µ and ε2τ⊥2

≡ ε2e + ε2µ. This expression for the asymmetry neglects

the flavour coupling effects studied in [23]. In the present model only the last term will
survive, as we shall justify shortly, and we may drastically approximate the above expression
to a much simpler one,

N lep,f
B−L ' ε2τ κ(K2τ ) e−

3π
8
K1τ , (4.2)

which says that the only relevant asymmetry is that one produced at the N2 scale in the
tauon flavour, simply given by ε2τ κ(K2τ ) with our normalisation, followed by exponential

washout e−
3π
8
K1τ the N1 scale.2

The flavoured decay parameters Kiα are defined as

Kiα ≡
Γiα + Γiα
H(T = Mi)

=
|mDαi|2

Mim?
, (4.3)

where we introduced the neutrino Dirac mass matrix mD ≡ v Y ν
LR. The Γiα’s and the Γ̄iα’s

can be regarded as the zero temperature limit of the flavoured decay rates into α leptons,
Γ(Ni → φ† lα), and anti-leptons, Γ(Ni → φ l̄α), in a three-flavoured regime, where lepton
quantum states can be treated as an incoherent admixture of the three flavour components.
The efficiency factors at the production can be calculated using [44, 45]

κ(K2α) =
2

zB(K2α)K2α

(
1− e−

K2α zB(K2α)

2

)
, zB(K2α) ' 2 + 4K0.13

2α e
− 2.5
K2α . (4.4)

This expression is valid for an initial thermal abundance but, as we will see in a moment,
since the production will prove to occur in the strong wash-out regime, there is actually
independence of the initial RH neutrino abundance. Moreover in this case the efficiency
factor is well approximated by κ(K2α) ' 0.5/K1.2

2α .
The flavoured CP asymmetries, defined as ε2α ≡ −(Γ2α − Γ2α)/(Γ2α + Γ2α), can be

calculated in general as [46]

ε2α =
3

16π

M2matm

v2

∑
j 6=2

(
Iα2j ξ(M2

j /M
2
2 ) +

2

3
J α2j

Mj/M2

M2
j /M

2
2 − 1

)
, (4.5)

where we defined [47],

Iα2j ≡
Im
[(
m†D
)
iα

(
mD

)
αj

(
m†DmD

)
ij

]
M2Mj m̃2matm

, J α2j ≡
Im
[(
m†D
)
iα

(
mD

)
αj

(
m†DmD

)
ji

]
M2Mj m̃2matm

, (4.6)

with m̃2 ≡ (m†DmD)22/M2, and

ξ(x) =
2

3
x

[
(1 + x) ln

(
1 + x

x

)
− 2− x

1− x

]
. (4.7)

Terms ∝ Iα21 ξ(M
2
1 /M

2
2 ),J α21,J α23 are strongly suppressed in a way that in the N2-dominated

scenario the flavoured CP asymmetries ε2α’s can be approximated by

ε2α '
3

16π

M2matm

v2
Iα23 . (4.8)

2Of course in models with M1 & 109 GeV or realising a crossing level solution [41] with M1 and M2 close
enough to have resonant leptogenesis [42], this contribution must also be considered and the lightest RH
neutrino washout is then not a crucial problem as in the N2-dominated scenario. Examples of realistic SO(10)
models realising this case were discussed in [43].
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This is because the two terms (for j = 1) from the interference with the lightest RH neutrinos
are ∝ M1/M2, while the second term from the interference with the heaviest RH neutrinos
is ∝M2/M3 and, therefore, they are suppressed compared to Iα23.

Let us now calculate Iα23. First of all it is immediate to see that since Y ν
e3 = 0 then

necessarily ε2e = 0. Even though the muon asymmetry does not exactly vanishes as the
electronic one, however, it is suppressed as ε2µ ∝ a b2M ′13/M

′
3 ∼ 10−17 and can be neglected.

This implies that, at least at lower order, the observed asymmetry can only be produced in
the tauon flavour, as in eq. (4.2). The expression for the final asymmetry, expressed in terms
of the baryon-to-photon number ratio, then becomes extremely simple,

ηB ' asph

N f
B−L
N rec
γ

' 0.01 ε2τ κ(K2τ ) e−
3π
8
K1τ , (4.9)

where asph = 28/79 is the fraction of B − L asymmetry that is converted into a baryon
asymmetry by sphaleron processes in equilibrium, κ(K2τ ) is the efficiency factor for the
tauon asymmetry at the end of the N2-production and N rec

γ is the number of photons at
recombination in the given portion of co-moving volume.3

We have first of all to calculate K1τ and check that it is possible to have K1τ . 1. From
the general expression eq. (4.3) one has

K1τ =
|mDτ1|2

M1m?
=

v2 a2

m?M1
|1− γ|2 , (4.10)

showing that the quantity γ, defined in eq. (2.15) and originating from the mixing parameter
M ′13, plays a crucial role. Indeed since v2 a2/(m?M1) ∼ 20 � 1, the possibility to have
K1τ . 1 necessarily relies on having Arg[γ] ' 0 implying φ ∼ −(ξ + 3π/5).

Let us now calculate ε2τ from the eq. (4.8). Considering that m̃2 = 21 v2 b2/M2 and
that Iτ23 ' 4 b2 c2 sin(2φ+ ξ + 6π/5) v4/(M2M3 m̃2matm) , one finds

ε2τ '
c2

28π

M2

M3
sin(2φ+ ξ + 6π/5) . (4.11)

When the condition for K1τ . 1 on φ is imposed one has

ε2τ ' −
c2

28π

M2

M3
sin ξ , (4.12)

showing that out of the five possible values of ξ, only ξ = −2π/5,−4π/5 can lead to the correct
sign of the asymmetry. An order-of-magnitude estimation gives then |ε2τ | ∼ 10−7–10−6.

Finally from the eq. (4.3) we can calculate

K2τ =
|mDτ2|2

M2m?
=

4

(9)

b2 v2

M2m?
∼ 10 , (4.13)

that, plugged into the eq. (4.9) gives ηB ∼ 10−11–10−9, showing that potentially the observed
value of the asymmetry could be reproduced. However when one tries to fit simultaneously
the asymmetry and the mixing parameters one finds that the condition γ ' 1, necessary to
have K1τ . 1, is incompatible with the possibility to reproduce the correct values of the
mixing parameters so that the asymmetry produced at the N2 scale is afterwards completely
washed out at the N1 scale.

3This expression is valid independently of the normalisation of the abundances NX , since the normalization
factor would cancel out in the ratio N f

B−L/N
rec
γ .
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5 Leptogenesis with flavour coupling

As we have just seen the asymmetry is mainly produced by the next-to-lightest RH neutrinos
in the tauon flavour but this asymmetry is fully washed-out by the lightest RH neutrinos since
the condition K1τ . 1 is not compatible with the measured values of the mixing parameters.

However, one has also to consider that part of the asymmetry in the tauon flavour is
transferred to the electron and muon flavours by flavour coupling effects due primarily to
the fact that N2-decays produce in addition to an asymmetry in the tauon lepton doublets
also an (hyper charge) asymmetry in the Higgs bosons. This Higgs asymmetry unavoidably
induces, through the inverse decays, also an asymmetry in the lepton doublets that at the
production are a coherent admixture of electron and muon components. Therefore, in this
case, inverse decays actually produce an asymmetry instead of wash it out as in a traditional
picture. A somehow smaller effect is also due to the asymmetries stored into quarks and into
right handed charged leptons.

The account of flavour coupling effects modifies the usually considered expression for
the asymmetry eq. (4.9) resulting into [23]

ηB '
∑

α=e,µ,τ

η
(α)
B , (5.1)

where in addition to the tauon contribution eq. (4.9) one also has an electron contribution

η
(e)
B ' −0.01 ε2τ κ(K2τ )

K2e

K2e +K2µ
C

(2)

τ⊥τ
e−

3π
8
K1e , (5.2)

and a muon contribution given by

η
(µ)
B ' −0.01 ε2τ κ(K2τ )

(
K2µ

K2e +K2µ
C

(2)

τ⊥τ
− K1µ

K1τ
C(3)
µτ

)
e−

3π
8
K1µ . (5.3)

It should be noticed how the source of the electron and muon asymmetries is in any case
the tauon asymmetry, but part of this induces a muon and an electron asymmetry thanks to

flavour coupling. The flavour coupling coefficients are given by C
(2)

τ⊥τ
= 104/589 and C

(3)
µτ =

142/537. Notice that we are neglecting additional correcting terms containing products of
the flavour coupling coefficients and we are also neglecting terms ∝ ε2τ⊥ since this is always
too small to generate sizeable contributions. Also notice that from eqs. (2.14) and (4.3) one
can see immediately that K1e = 0.

Notice moreover that the second term in the muon contribution comes from flavour
coupling at the lightest RH neutrino wash-out that works in the same way as at the pro-
duction: the lightest RH neutrino wash-out processes acting on muon lepton doublets, in
the presence of a non-vanishing Higgs asymmetry, induce a muon asymmetry. However, this
term is basically much smaller than the first term that gives the dominant contribution to
the total asymmetry, indeed it dominates on the electronic term as well since K2e � K2µ,
and is in the end responsible for the two solutions that we found.

We have indeed performed again a numerical fit for all the different cases and this time
we have found that, both for the case A and for the case B with ξ = +4π/5, there is indeed
a solution, shown in table 3, with an acceptably small χ2 value. We found no other solution
with a χ2 lower than 100 for all the other cases (ξ = 0, ±2π/5,−4π/5) since these tend to
give either a too small θ12 or a too small θ13 or both. In both cases one can see that K1µ . 1.
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CASE A B

ξ +4π/5

χ2
min 5.15 6.1

M ′11/106 GeV 1.30 1.33

M ′22/1010 GeV 0.48 4.35

M ′33/1012 GeV 2.16 1.31

M ′13/1010 GeV 1.81 0.61

M ′13/M
′
22 3.75 0.141

φ/π 0.795 0.788

M1/107 GeV 15 2.7

M2/1010 GeV 0.483 4.35

M3/1012 GeV 2.16 1.31

|γ| 203 38

m1/meV 2.3 2.3

m2/meV (p∆m2
12

) 8.93 (−0.22) 8.94 (−0.25)

m3/meV (p∆m2
13

) 49.7 (+0.17) 49.7 (+0.21)∑
imi/meV 61 61

mee/meV 1.95 1.95

θ12/
◦ (pθ12) 33.0 (−0.58) 33.0 (−0.66)

θ13/
◦ (pθ13) 8.40 (−0.47) 8.40 (−0.49)

θ23/
◦ (pθ23) 53.3 (+2.1) 54.0 (+2.3)

δ/◦ 20.8 23.5

β1/
◦ 118 115

β2/
◦ 281 278

α21/
◦ 163 162

α31/
◦ 242 245

ρ/◦ 279 279

σ/◦ 220 221

ηB/10−10 (pηB ) 6.101 (+0.01) 6.101 (+0.01)

ε2τ −8.1× 10−6 −1.3× 10−5

K1µ 0.11 0.58

K1τ 4341 800

K2τ 7.3 7.3

K2µ 29.2 29.2

K2e 1.8 1.8

|(m̃ν)11|/meV 6.6× 10−6 3.7× 10−5

|(m̃−1
ν )33|/meV−1 0.22 1.2

|(m̃ν)12|/meV 2.6× 10−5 1.5× 10−4

Table 3. Solutions found for flavour coupled leptogenesis with χ2
min < 100 (neutrino masses are NO).
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Figure 1. Scatter plots of points in the plane δ vs. θ23 with χ2 < 10 (leptogenesis included) for the
CASE A (left) and for the CASE B (right) for NO and ξ = +4π/5. The red points correspond to the
best fits solutions in table 3. These predictions are subject to the theoretical uncertainties discussed
in the text.

In this way the flavour coupling induced asymmetry at the production in the muon flavour
can survive the lightest RH neutrino wash out giving the dominant contribution to the final
asymmetry. This is a nice example of the “flavour swap” scenario envisaged in [23].

It should be noticed that both solutions predict the atmospheric angle well in the second
octant, a feature that will be relatively soon tested by new data from neutrino oscillation
experiments. In fact the two solutions give quite similar predictions on δ and θ23. In figure 1
we have plotted, in the plane δ vs. θ23, points corresponding to solutions with χ2 < 10. This
gives an idea of the allowed region in this plane. It can be seen how for the CASE A the
minimum values correspond to (δ, θ23) ∼ (10◦, 51◦) while for the CASE B the whole region
is slightly reduced (indeed χ2

min ' 5 for the CASE A and χ2
min ' 6 for the CASE B) and

shifted to higher values both of δ and θ23 and the minimum values are (δ, θ23) ∼ (14◦, 52◦).
This shows that the CASE A is slightly more favoured compared to CASE B.

It should also be noticed that since now the number of degrees of freedom ν = 1, the
χ2

min can be regarded as an indication of the goodness of fit (g.o.f.), having in mind the
previous discussion on the measurement of θ23. Of course we also had the possibility to
choose the value of the discrete parameter ξ and between CASE A and CASE B and this
somehow made things a bit easier, but it is still intriguing that, despite its reduced number
of parameters, the model can also account for the matter-antimatter of the Universe. It
should also be said that if the current experimental information on δ is taken into account
(cf. eq. (3.6)), one probably would have an additional contribution ∆χ2

δ = p2
δ & 3 so that

the allowed regions shown in figure 1 are marginally compatible with current data on δ,
especially in CASE B while in CASE A the portion around the minimum values for (δ, θ23)
is still allowed at ∼ 2σ.4 However, one should also take into account that we are currently
neglecting corrections from the charge lepton mass matrix that has been approximated to
be diagonal and also uncertainties on the values of the up quark masses at high scale (see
footnote 1). This might help in shifting the allowed regions shown in figure 1 toward more

4However, note that in eq. (3.7) we would then have N = 7 so that the number of degrees of freedom would
be 7-5=2 so that one could say that including δ would actually improve the fit, decreasing χ2/d.o.f, for points
with ∆χ2 . 5. This point is right now quite indicative since the distribution of δ is highly non Gaussian.
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favoured experimental values. In any case the allowed regions shown in figure 1 in the plane
δ vs. θ23, in combination with NO, are quite a strong prediction of the model that will be
certainly tested during next years. Much more difficultly testable predictions, certainly not
in a close future, are the very small value of the neutrinoless double beta decay effective
neutrino mass (mee ' 2 meV) and the small increase (' 3 meV) of the sum of the neutrino
masses from its hierarchial value (

∑
imi|m1=0 ' 58 meV).

A significant feature of the best fit spectrum for both cases A and B in table 3 is the
compressed spectrum of right-handed neutrino masses as compared to the original estimates
in eq. (2.3). This stems from the requirement that successful N2 leptogenesis is proportional
to the ratio M2/M3 in eq. (4.12) which must necessarily be larger than naively expected in
eq. (2.3). M2 cannot change much, since according to sequential dominance and the charm
quark mass relation in eq. (2.25), it sets the solar neutrino mass scale. It follows that the only
possibility is for M3 to decrease which requires the parameter mc to increase (see eq. (2.25))
and hence the third seesaw matrix in eq. (2.22), proportional to diag(0, 0, 1), threatens to
dominate the neutrino mass matrix and pull the atmospheric mixing away from its maximal
value. This threat is averted by noting that, for large γ, the first matrix in eq. (2.22) has
a dominant (3,3) element of order γ2 which may partially cancel the contribution from the
third matrix leaving a resulting (3,3) element of order γ, of the same order as the (2,3) and
(3,2) elements of the first matrix. This requires a fine tuning of one part in γ (tabulated in
table 3). In order to maintain the correct atmospheric neutrino mass, this increase in γ must
be compensated by reducing the parameter ma in proportion to γ which, from eq. (2.25),
requires M1 to increase in proportion to γ. In the next section we obtain further analytic
insight into our results from different perspectives.

6 Analytical insight from general SO(10)-inspired leptogenesis

It is interesting to get some understanding of the numerical results we obtained within the A
to Z model from the more general context of SO(10)-inspired leptogenesis [27–29, 41, 48–51].
In this case the asymmetry can be calculated analytically assuming that the spectrum of the
neutrino Dirac mass matrix is hierarchical (mD

ν1 � mD
ν2 � mD

ν3), an assumption certainly
holding in our case. Here we present a simple generalisation of the results presented in [29]
providing a very good explanation of the numerical results.

The starting point is to write the neutrino Dirac mass matrix in the bi-unitary param-
eterisation (mathematically equivalent to the singular value decomposition of mD

ν ),

mD
ν = Ṽ †L DmDν

ŨR , (6.1)

where we defined DmDν
≡ diag(mD

ν1,m
D
ν2,m

D
ν3). The unitary matrices ṼL and ŨR transform

respectively the LH and RH neutrino fields from the flavour basis to the Yukawa basis. In our
case, from the eq. (2.14) for the neutrino Yukawa matrix and parameterising ṼL analogously
to the leptonic mixing matrix as

ṼL = R23(θL23)R13(θL13)R12(θL12)D(ΦL) , (6.2)

one has tiny θL23, θ
L
13 � 1◦ so that ṼL ' R12(θL12) with θL12 ' 14◦. Notice that this angle would

correspond to the Cabibbo angle θC in the quark sector, that is therefore overestimated
by ∼ 1◦. However, turning on down quark mass matrix (non-diagonal) terms, one can

– 15 –



J
C
A
P
1
0
(
2
0
1
5
)
0
0
8

reproduce the correct value. Similar corrections are expected on the neutrino mixing angles
from analogous charged lepton mass matrix correcting (non-diagonal) terms.

Inserting the eq. (6.1) into the see-saw formula eq. (2.21) written in the flavour basis,
one obtains the following expression for the Majorana mass matrix in the Yukawa basis

M̃R ≡ Ũ?RDM Ũ †R = −DmDν
Ṽ ?
L m

−1
ν Ṽ †L DmDν

, (6.3)

and for its inverse
M̃−1
R ≡ ŨRD−1

M Ũ †R = −D−1
mDν

ṼLmν Ṽ
T
L D−1

mDν
. (6.4)

In the above we have transformed the heavy Majorana mass matrix from the diagonal basis
MR = DM in eq. (2.10) to the basis in eq. (6.1) in which the Dirac neutrino mass matrix is
diagonal. The analytical expressions for the RH neutrino masses obtained in [29] in the ap-
proximation ṼL ' I get extended for a general VL simply replacingmν → m̃ν ≡ ṼLmν Ṽ

T
L [41]

(the light neutrino mass matrix in the Yukawa basis) obtaining for the RH neutrino masses
the following analytical expressions

M1 '
(mD

ν1)2

|(m̃ν)11|
, M2 '

(mD
ν2)2 |(m̃ν)11|

m1m2m3 |(m̃−1
ν )33|

, M3 ' (mD
ν3)2 |(m̃−1

ν )33| . (6.5)

In deriving the first and third equalities above we have used the strong up-type quark mass
hierarchy (equal to the eigenvalues of the neutrino Dirac mass matrix in case A), and for the
second equality we have taken the absolute value of the determinant of the seesaw formula.
Plugging the expressions for M2 and M3 into the eq. (4.11) for ε2τ and in turn this into
the eq. (5.3) for the dominant muonic contribution to ηB and taking into account that
K2µ/(K2µ +K2e) = 16/17, one finds

ηB ' −
0.04 c2

119π

M2

M3
κ(K2τ )C

(2)

τ⊥τ
e−

3π
8
K1µ sin(2φ+ ξ + 6π/5). (6.6)

From the expressions for M2 and M3 in eq. (6.5) and, taking into account the relations (2.16),
(2.19) and (2.20), one can also write

ηB ' −
0.04

119π

m2
charm |(m̃ν)11|

v2m1m2m3 |(m̃−1
ν )33|2

κ(K2τ )C
(2)

τ⊥τ
e−

3π
8
K1µ sin(2φ+ ξ + 6π/5). (6.7)

Finally one also has

K1µ =
|mD

ν21|2

m?M1
' (mD

ν2)2

m?M1
|ŨR21|2 '

|(m̃ν)12|2

m? |(m̃ν)11|
, (6.8)

where we used the approximations sin θC � cos θC ' 1 and the following analytical expression
for ŨR [29, 41]

ŨR '


1 −mDν1

mDν2

m̃?ν12
m̃?ν11

mDν1

mDν3

(m̃−1
ν )?13

(m̃−1
ν )?33

mDν1

mDν2

m̃ν12
m̃ν11

1
mDν2

mDν3

(m̃−1
ν )?23

(m̃−1
ν )?33

mDν1

mDν3

m̃ν13
m̃ν11

−mDν2

mDν3

(m̃−1
ν )23

(m̃−1
ν )33

1


e
−i Φ1

2 0 0

0 e−i
Φ2
2 0

0 0 e−i
Φ3
2

 , (6.9)

that we generalised here to the case when ṼL 6= I and where the expressions for the phases
Φi given in [29] can be also generalised in terms of m̃ν (we do not need them here). From
these expressions for ηB we can now make some considerations that explain some of the
features of the two found numerical solutions for ξ = +4π/5 (see table 3) providing a useful
analytical insight.
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• Inserting the numerical values for M2/M3, K1µ and φ given in table 3 into the eq. (6.6),
the observed value of ηB is indeed reproduced.

• For one of the possible choices of values for ξ, the effective leptogenesis phase is maximal
for φ = 3π/20 − ξ/2 + nπ. For the case ξ = 4π/5 the phase is maximal for φ = 3π/4 + nπ
explaining quite well the best fit values found for φ (see table 3).

• From the eqs. (6.5) we can derive an analytical expression for M2/M3, the other crucial
parameter determining the value of the asymmetry (cf. eq. (6.6)), finding

M2

M3
=

(mD
ν2)2

(mD
ν3)2

|(m̃ν)11|
m1m2m3 |(m̃−1

ν )33|2
. (6.10)

We have verified that indeed, inserting into this equation the measured values for the mixing
angles and for the solar and atmospheric neutrino mass scales, one obtains the correct value
of M2/M3 thanks to a reduction of |(m̃−1

ν )33| to values ∼ 0.1 eV−1 from phase cancellations
(without cancellations one would have |(m̃−1

ν )ττ | ∼ 100 eV−1) and that this is necessarily
accompanied by the reduction of |(m̃ν)11| to values ∼ 10−6 eV (without cancellations one
would have |(m̃ν)11| ∼ 10 meV) when a condition K1µ . 24 is also imposed (it is then
much more general than K1µ . 1). One can see that this is indeed what happens from
table 3, where we also show the best fit values for |(m̃−1

ν )33|, |(m̃ν)11| and |(m̃ν)12|. It is
interesting that this results into a stable value of the next-to-lightest RH neutrino mass
(M2 ' 5 × 109 GeV for the CASE A and M2 ' 2 × 1010 GeV for the case B) the same
we obtained in table 2 without imposing leptogenesis, while the heaviest RH neutrino mass
reduces to values M3 ' 2 × 1012 GeV. Correspondingly the lightest RH neutrino mass,
though it does not play a direct role since the asymmetry is N2-dominated, is necessarily
forced to grow to values M1 ∼ 107÷8 GeV. This is something we have already discussed at
the end of section 5 starting within the model parameterization and that we have now seen
also from a bottom up perspective. Moreover the value of the lightest neutrino mass and of
the neutrinoless double beta decay effective neutrino mass m1 ' mee ' 2 meV, in agreement
with what we obtained fully numerically in table 3.

Therefore, the eqs. (6.5) do explain quite well the obtained results and they also seem to point
to a more general result: given the measured values of the low energy neutrino parameters,
the reduction of M3 generally (the condition K1µ . 24 is quite general) implies an uplift of
M1 while M2 remains stable at a scale ∼ 1010 GeV. In other words the current measurements
are such that the condition for the realisation of the M2 −M3 crossing level (reduction of
|(m̃−1

ν )33|) necessarily implies also the occurrence of the M1 − M2 crossing level solution,
that would lead to a quasi-degenerate RH neutrino mass spectrum in the close vicinity
of the crossing level. We have checked this statement also verifying that if one let θ13

to be free, then this effect occurs only for θ13 ∼ 7◦ ÷ 15◦. In other words, with current
values of the neutrino oscillation parameters, a deviation from a strong hierarchy of the RH
neutrino masses proportional to the squares of the up-quark masses, seems to point, for
K1µ . 24, toward a RH neutrino spectrum where all three RH neutrino masses tend to
get closer. This analytical insight seems to help understanding also recent numerical results
where quark-lepton parameters have been fitted within SO(10)-models either excluding [52]
or including [53–55] leptogenesis and either hierarchical or compact RH neutrino mass spectra
have been found but never crossing level solutions with only two close RH neutrino masses.
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• The best fit values of the flavoured CP asymmetry ε2τ in table 3, the source of the asym-
metry, is well above the upper bound [18, 47, 56]

εI1α .
3

16π

M1matm

v2

√
K1α

K1
' 10−6

(
M1

1010 GeV

) √
K1α

K1
, (6.11)

holding for the term in the lightest RH neutrino CP flavoured asymmetries analogous to the
first term in eq. (4.5). Indeed one has |Iτ23| ' 17 � 1 for the best fits of table 3. This is
possible if the absolute values of the entries of the orthogonal matrix are much larger than
unity. This can be understood considering that the orthogonal matrix [57] in SO(10)-inspired
models is given by (U ≡ UPMNS)

Ω '


−
√
m1 |m̃ν11|
m̃ν11

Ue1

√
m2m3 |(m̃−1

ν )33|
|m̃ν11|

(
U?µ1 − U?τ1

(m̃−1
ν )23

(m̃−1
ν )33

)
U?31√

m1 |(m̃−1
ν )33|

−
√
m2 |m̃ν11|
m̃ν11

Ue2

√
m1m3 |(m̃−1

ν )33|
|m̃ν11|

(
U?µ2 − U?τ2

(m̃−1
ν )23

(m̃−1
ν )33

)
U?32√

m2 |(m̃−1
ν )33|

−
√
m3 |m̃ν11|
m̃ν11

Ue3

√
m1m2 |(m̃−1

ν )33|
|m̃ν11|

(
U?µ3 − U?τ3

(m̃−1
ν )23

(m̃−1
ν )33

)
U?33√

m3 |(m̃−1
ν )33|

 DΦ, (6.12)

where DΦ ≡ diag(e−i
φ1
2 , e−i

φ2
2 , e−i

φ3
2 ), an analytical expression that generalises that one

given in [29] when ṼL 6= I. One can see that for the best fit values of m̃11 and m̃−1
33 one has

that all the absolute values of the Ω entries in the first and third column are much higher
than unity. This is confirmed by the numerical results we find for Ω, corresponding to the
best fits in table 3 for CASE A

Ω(CASEA)'

−4.40016− 15.9889 i 0.0930875− 0.894045 i −16.0396 + 4.38107 i
−15.9446+3.40333 i −1.15394+0.0537137 i 3.40494+15.9553 i
−3.69174+4.35811 i 0.709793+0.204576 i 4.37787+3.64191 i

 , (6.13)

and for CASE B

Ω(CASEB)'

−1.77835− 6.85986 i 0.108413− 0.897431 i −6.97828 + 1.73423 i
−6.87598+1.34103 i −1.15331+0.0386159 i 1.34278+6.90018 i
−1.64314+1.81259 i 0.710523+0.199612 i 1.85785+1.52677 i

 . (6.14)

These specific expressions for Ω should give a clear idea of the involved fine tuned cancellations
and explains why one can have |Iτ23| � 1 (implying ε2τ � (3M2matm/(16π v2)) and more
generally why the flavoured CP asymmetries can be enhanced in the vicinity of crossing level
solutions [41] though RH neutrino masses are still hierarchical and leptogenesis is far from
being resonant. However, our novel solution relying on flavour coupling, represents in this
respect quite a large improvement compared to the commonly considered solutions based on
M1 & 109 GeV, since this requires a further uplift of the lightest RH neutrino mass of at
least two orders of magnitude and, therefore, even higher fine tuned cancellations.

• As we have seen the third important ingredient for the existence of the solution is to have
K1µ . 1. This is crucial in the case A, while in the case B the electron contribution, sixteen
times smaller than the muonic one, would be still sufficient (remember that K1e = 0). The
expression for K1µ eq. (6.8) shows that this condition is realised for |(m̃ν)12|2 . m? |(m̃ν)11|
that is indeed verified for the best fits in table 3.

• We can compare our results to those presented in [27, 28] for ṼL ' VCKM where flavour
coupling was neglected. The values of the Majorana phases in table 3, match with those
in [27, 28] though in a marginal region (for an easier comparison in table 3 we also give
the the Majorana phases in the convention diag(ei ρ, 1, ei σ) as in [27, 28, 41]). The same
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it is true for the values of θ13, θ23, δ. In [27, 28] it can be also seen how the ratio M2/M3

can get reduced around m1 ' 2.5 meV. Moreover in [27, 28] there is a lower bound on
M2 & 5× 1010 GeV that corresponds to α2 ≡ mD

ν2/mcharm & 3, while we find that successful
leptogenesis is obtained for M2 ' 5 × 109 GeV and we have α2 = 1 in the CASE A. This
is because the CP asymmetry, thanks to the condition K1µ that makes possible much lower
values of M2/M3, is greatly enhanced compared to the upper bound eq. (6.11). Moreover
in [27, 28] there are no points with M1 uplift. This is explained since there the solutions
correspond to K1τ . 1 while here with flavour coupling the solutions correspond to K1µ . 1
and so there is an intrinsic difference. This shows that the account of flavour coupling indeed
opens new solutions enlarging the allowed regions in the space of parameters, in particular
making possible a reduction in the scale of leptogenesis set by M2.

7 Conclusions

The A to Z model can not only provide a satisfactory fit to all parameters in the leptonic
mixing matrix but can also reproduce the correct value of the matter-antimatter asymmetry
with N2-dominated leptogenesis. In this respect it is crucial to account for flavour coupling
effects due to the redistribution of the asymmetry in particles that do not participate directly
to the generation of the asymmetry, in primis the Higgs asymmetry. In particular a “flavour
swap” scenario is realised whereby the asymmetry generated in the tauon flavour emerges
as a surviving asymmetry dominantly in the muon flavour. The solution works even in the
simplest case where the neutrino Dirac mass matrix is equal to the up quark mass matrix.

Neutrino masses are predicted to be NO, with an atmospheric neutrino mixing angle well
into the second octant and the Dirac phase δ ' 20◦, a set of predictions that will be tested
in the next years in neutrino oscillation experiments. We expect these values to be slightly
corrected by charged lepton mass matrix corrections and different theoretical uncertainties
(for example in the values of the up quark masses at the high scale). In particular we note
that charged lepton mixing corrections, although small in the A to Z model due to the (1,2)
entry of charged lepton and down quark mass matrices being zero, may yield atmospheric
mixing corrections of order one degree.

In conclusion, the novel solution that we presented involving indispensible flavour cou-
pling, opens new possibilities for successful leptogenesis within realistic SO(10)-inspired mod-
els. Although there is fine tuning given by the parameter γ, the level of fine tuning is mild,
certainly much smaller than in traditional quasi-degenerate solutions. The reason for the
fine tuning is that the spectrum of RH neutrinos, must be compressed as compared to the
“natural” SO(10)-inspired spectrum proportional to the squares of up-type quark masses.
However, whereas models with M1 & 109 GeV, commonly considered in the literature, in-
volve a very compact mass spectrum, approaching degeneracy, the compressed mass spectrum
for the N2-dominated case considered here remains very hierarchical.
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