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i) PCoA of bacterial β diversity metabarcoding at Tolfa IT  

ii)  α diversity results for functional metagenomic data from Tolfa IT  

iii)  PCoA of bacterial β diversity metabarcoding at Beano IT  

iv)  α diversity results for functional metagenomic data from Beano IT  

 

i) PCoA of fungal β diversity showing differences between time series datasets from 

UK samples  

ii) PCoA of fungal β diversity for UK1Y samples  

 

i) Scatter plot displaying the relationship between measured and modelled efflux data

 

 

i) Sampling regime for each of the plots, showing the plot centre (blue dot) and the 

locations of the sampling points 1.5m around it.  
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Table 2 Fungal phyla and their ecological roles

 

Ascomycota

et al.

Ascomycota

et al. Ascomycota

Ascomycota

et al. Ascomycota

Ascomycota Ascomycota

Basidiomycota

et al.

 

Basidiomycetes

et al.

Ascomycota Basidiomycota



et al. et al. Basidiomycete

et al.

et al. Ascomycota

Basidiomycete 

et al.

Laccaria bicolor Basidiomycete

et al.

et al.

 

Chytridiomycota

et al.

Chytridiomycota

et al.

Ascomycota Basidiomycota

Chytridiomycota et al.

Zygomycota

Ascomycetes

 

Glomeromycota

et al. et al.

Glomeromycota β et al.

Glomeromycota

Glomeromycetes



Glomeromycetes

et al.

et al.

 

et al.

et 

al.

et al.

et al.



 

et al.

et al.

et 

al. et al.

 

 

et al.

et al.

et al.

et al.



 

et al.

et al.

 2 et al.

et al.

 

et al.

et al.

et al.

et al.

 

 

et al.



 

 

et al.

 

 

 Green waste 

 Agricultural 

waste 

(manure, crop 

residues) 

 Sewage 

sludge 



Table 3 Summary of research examining the mean residence time and priming 

effects of biochar

et al.

et al.

et 

al.

et 

al.

et al.

et al.



 

Terra preta 

et al.

et al.

et al.

et al.

et al.

 

et al.

et al. et al.

terra-preta

et al. Terra-preta, 



et al. et al.

et al.

et al.

et al.

et al. et al.

et al.

Trichoderma 

Actinobacteria et al.

et al.

et al. et al.

et al.

et al. et al. et 

al. et al.



et al.

et al.

et al.

et al.

et al. terra-preta

erra-preta 

terra-preta

et al.

 

Actinobacteria Bacteroidetes



Acidobacteria et al.

et al.

et al. et al.

et al.

et al. et al.

et al. et al.

et al.

et al.

et al. et al.

et al.

et al.

et al.

et al.



et al.

et al.

et al. et al.

et al. et al. et al.

et al. et al. et al.

et al.



et al.

et al.



et al.

et al.
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Table 4 A summary of NGS platforms available or in production. This summary is based on work by Shokralla et al (2012)
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Table 5 Environmental DNA studies, their target organisms, platforms and pipelines

Name Aim of study  Sequencing platform Pipeline Approach 

(Andersen et al. 2012) Vertebrates Roche 454 Bespoke Metagenomics and 

metabarcoding 

(Andreote et al. 2012) Bacteria Roche 454 MEGAN and MG-RAST Metagenomics and 

metabarcoding 

(Barberán et al. 2012) Bacteria N/A, downloaded from 

Global Ocean Sample data 

MG-RAST Metagenomics 

(Blaalid et al. 2012) Fungi Roche 454 CLOTU Metabarcoding (ITS1) 

(Buée et al. 2009b) Fungi Roche 454 Blastclust and MEGAN Metabarcoding (ITS1) 

(Degnan & Ochman 2011) Bacteria Illumina Bespoke Metabarcoding (16S) 

(He et al. 2010) Bacteria Roche 454 N/a Metabarcoding (16S) 

(Hiiesalu et al. 2012) Plants Roche 454 Bespoke and BLAST Metabarcoding  (trnL) 

(Jorgensen et al. 2012) Plants Roche 454 OBI-tools  Metabarcoding (trnL) 
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Table 7 MG-RAST IDs of sequence data 
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Table 8 Total reads per sample after QIIME quality control 



 

 

Proteobacteria

Actinobacteria

Acidobacteria
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Proteobacteria

Actinobacteria Acidobacteria
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Table 9





Table 9 Results of t-tests with Monte-Carlo permutations for  diversity in Tolfa 

(drought) for taxonomic results from metabarcoding and metagenomic 

methods. 





Table 10 Breakdown of proportions of SEED functional groups present in drought and control plots for both R1 and R2 reads. 

9.08 9.08 9.03 9.03 9.04 9.03 9.10 9.11 9.05 9.03 9.00 8.99 

8.86 8.86 8.90 8.89 8.87 8.87 8.87 8.85 8.87 8.87 8.86 8.88 

8.64 8.64 8.57 8.54 8.58 8.55 8.59 8.56 8.64 8.62 8.67 8.64 

6.94 6.93 6.85 6.87 6.80 6.82 6.78 6.78 6.85 6.86 6.93 6.91 

6.68 6.67 6.67 6.67 6.67 6.68 6.71 6.70 6.70 6.70 6.68 6.66 

5.67 5.67 5.70 5.71 5.65 5.66 5.65 5.64 5.64 5.63 5.66 5.66 

5.20 5.21 5.33 5.33 5.33 5.34 5.36 5.38 5.30 5.29 5.26 5.27 

5.35 5.36 5.34 5.33 5.38 5.39 5.36 5.35 5.39 5.41 5.38 5.37 

4.10 4.09 4.11 4.11 4.07 4.05 4.08 4.07 4.08 4.08 4.08 4.06 

4.10 4.11 4.10 4.10 4.11 4.13 4.08 4.08 4.08 4.09 4.14 4.13 

4.02 4.01 4.05 4.04 4.05 4.03 4.07 4.06 4.04 4.05 4.01 4.01 

3.95 3.94 3.97 3.97 3.92 3.91 3.88 3.90 3.92 3.92 3.95 3.96 

3.65 3.66 3.66 3.67 3.67 3.68 3.70 3.70 3.67 3.68 3.66 3.67 

3.56 3.56 3.47 3.47 3.48 3.48 3.52 3.52 3.51 3.51 3.48 3.49 

3.26 3.26 3.30 3.29 3.30 3.30 3.27 3.27 3.28 3.27 3.25 3.25 



2.35 2.36 2.34 2.34 2.35 2.35 2.38 2.39 2.34 2.34 2.32 2.33 

2.28 2.28 2.23 2.23 2.26 2.26 2.27 2.28 2.27 2.28 2.26 2.27 

2.17 2.18 2.18 2.19 2.20 2.21 2.19 2.20 2.18 2.20 2.21 2.22 

2.08 2.08 2.07 2.07 2.12 2.13 2.08 2.07 2.09 2.10 2.10 2.11 

1.51 1.52 1.52 1.51 1.53 1.53 1.53 1.53 1.51 1.52 1.51 1.51 

1.42 1.41 1.45 1.44 1.46 1.46 1.45 1.45 1.46 1.45 1.44 1.44 

1.38 1.37 1.41 1.42 1.35 1.35 1.33 1.34 1.35 1.35 1.38 1.39 

1.04 1.04 1.03 1.03 1.05 1.04 1.05 1.05 1.04 1.03 1.03 1.04 

0.93 0.93 0.96 0.96 0.95 0.96 0.95 0.96 0.93 0.93 0.94 0.94 

0.77 0.76 0.75 0.75 0.76 0.76 0.76 0.75 0.77 0.76 0.76 0.75 

0.54 0.54 0.53 0.53 0.53 0.53 0.51 0.51 0.52 0.53 0.54 0.55 

0.35 0.35 0.38 0.38 0.39 0.38 0.37 0.38 0.39 0.39 0.36 0.37 

0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.12 0.12 
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11

Table 11 Results from R1 functional  diversity tests. µ = sample mean, σ= 

standard deviation. 
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Table 12 Results of t-tests with Monte-Carlo permutations for  diversity in 

Beano (Biochar) for taxonomic results from metabarcoding and metagenomic 

methods. 







Table 13 Breakdown of proportions of SEED functional groups present in biochar and control plots for both R1 and R2 reads. 





 

Table 13

Table 14

Table 14 Results from R1 functional  diversity tests. µ = sample mean, = 

standard deviation.
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Table 15 Effects of biochar amendment experiments on soil respiration (SR) and microbial biomass/enzymatic activity 

Study, pyrolysis method 

and feedstock 

Impact on Soil respiration Impact on microbial biomass/ enzyme activity 

Bamminger (2014): 
Hydrochar & pyrochar 
(maize silage at 220°C and 
600°C respectively) 

Short-term increase after soil rewetting. 
Hydrochar 40% treatment showed at 24 hour lag. 
Hydrochar increased basal respiration, but 
pyrochar showed no significant difference. 
 

Significantly increased microbial biomass in hydrochar 
treatment (2-3 times control). No significant effect of 
pyrochar. Hydrochar increased nitrogen cycling, phosphate 
uptake and proteolysis enzymes. Pyrochar little effect, 
increasing activity of some cell wall degradation enzymes 
whilst decreasing others.  

Belyaeva and Haynes (2011): 
Poultry manure at 450°c 
added to coal fly ash 

Biochar not significantly different from other 
treatments (manure, bio solids, compost) at the 
50Mg ha-1 rate. Biochar shows significantly 
higher respiration than control samples. 

Total biomass increased vs control 

Carlsson et al (2012):  
Household charcoal, 
activated carbon and 
charcoal ash 

Activated carbon respiration peaked after 25h, 
while charcoal reduced respiration compared to 
controls. Respiration was no different to controls 
after 8 days. 

N/A 

Case, McNamara et al 
(2012): 
Oak, Cherry and Ash at 
400°c 

No consistent effect on CO2 flux across biochar 
treatments. Increased at low application rates, 
decreased at higher application rates.  

No obvious changes in microbial activity with increased 
biochar application  

Castaldi et al (2011): 
Beech, hazel, oak and birch 
at 500°c 

Respiration significantly increased compared to 
control. Respiration increased with proportion of 
char in lab experiments, although this was short-
lived. 

No change in microbial biomass, or rates of nitrification.  



Dempster et al (2011): 
Eucalyptus at 600°c 

Decrease in CO2 evolved at 5t/ha-1 rate, no 
difference in CO2 evolution at 25t/ha-1 and 
control. 

Decreased biomass, SOM breakdown and N mineralisation 
by soil microbes in biochar treatment.  

Galvez et al (2012): 
Green waste biochar at 
550°c 

No significant increase in CO2 when compared 
with control. No N2O emission increase detected 
in char or control 

No increase in microbial biomass as a result on addition or 
increase in hydrolytic enzymes related to organic matter 
cycling in biochar treatments. 

Kolb et al (2009): 
2:1:1 bull manure, dairy 
manure and pine at 500°c 

77% of increases in basal respiration due to 
charcoal addition. 

Biomass and activity were increased with char addition. 
Increased extractable N and P with time in charcoal 
incubation experiments. 

Liang et al (2014): 
Poultry manure at 400°c 

N/A Increased beta-glucosidase and phosphomonoesterase 
(involved in SOM and P cycling) 

Paz-Ferreiro et al (2011): 
Sewage sludge at 600°c 

4% amendment decreased respiration to 85% of 
the control. 8% reduced it to 49% of the control 

Significant change in biomass in both treatments. Compared 
to control (+320 mg kg in 4%, +349 mg kg in 8%), increased 
dehydrogenase in 8% indicative of greater efficiency of 
microbes.  

Prayogo et al (2013): 
Willow at 470°c 

2% amendment lowered rate of CO2 release from 
soil 

Decreased NH4+ levels, with significant increases in 
immobilisation in 2% biochar treatments with litter present. 
Biochar significantly reduced NO3- mineralisation  

Quilliam et al (2012): 
Ash, Beech and Oak at 450 
°c 

CO2 evolution increased in biochar vs control 
with significantly increased rates in the higher 
application rates. 

Reapplication slightly stimulated bacterial growth, but 
significantly decreased fungal growth. AMF colonisation 
doubled in reapplied plots compared with field aged plots 

Wang et al (2013): 
Bamboo at 600°c 

N/A No change in microbial N emissions in biochar treated 
compost 

Zavalloni et al(2011): 
Commercial from coppiced 
beech, hazel, oak and birch) 
at 500°c 

Increased SR in biochar compared with control. 
Even greater increase in biochar with crop 
residues present, decreasing with time. 

No significant effect on microbial C, although crop residues x 
biochar significantly increase it. Microbial N was significantly 
different after 3 days, but biochar alone showed similarity to 
control at 7 days. 



Table 16 Shifts in microbial communities as a result of biochar amendment experiments 

Study and biochar type Change in microbial community Taxa affected 

Anderson et al (2011): 
Unweathered from Pine 

Few significant changes in comparison with sintered glass 
control, possibly indicating biochar stabilises existing 
microbial communities. Method: TRFLP  

Bradyrhizobiaceae and Hyphomicrobiaceae 
increased relative abundance of 11%. 
Mycobacteriaceae had the highest average relative 
abundance (16%) in treated bulk soil. 

Anders (2013): 
Vineyard prunings at 400°C 
and 525°C, wheat straw at 
525°C and woodchip 
mixture at 525°c 

Gram-positive and Gram-negative PLFA's showed no 
change in the greenhouse experiment, whilst 
Actinomycetes increased at day 170 and 297 samples. 
Saprophytic fungi decreased with time.  In field 
experiments, treatment had no significant effect on 
communities. Method:PLFA 

Actinomycetes and saprophytic fungi 

Chen (2013): 
Straw pyrolysed between 
305-550°c 

Shift to bacterially dominated community. Method: 
TRFLP/DGGE 

Decreased Betaproteobacteria in biochar. Increased 
proportion of Chloroflexi and Nitrospiraceae in 
biochar. Impacts on Fungi included increased 
Agaricomycetes and Sordariomycete species in 
20t/ha-1 treatment and a decrease in a 
Glomeromycetes and a Sordariomycetes species at 
40t/ha-1

 treatment.  

Dempster et al (2011): 
Eucalyptus at 600°c 

No change in ammonia oxidiser community in biochar 
additions alone. Method: TRFLP 

N/A 

Ding (2013): 
Charcoal (unspecified) 
added to artificial soil 

Dramatic shift in several bacterial groups. Method: DGGE Increased relative abundance of Proteobacteria, 
Actinobacteria and Gemmatimonadetes, decreased 
Firmicutes and Bacteroidetes. Significantly increased 
Proteobacteria include: Phenylobacterium, Devosia, 
Rhizobium, Sphingomonas, Cupriavidus, Massilia, 
Luteimonas, Pseudoxanthomonas and Peredibacter. 



Gomez et al (2013): 
Oak pellet pyrolysed at 
550°c 

No significant effect of biochar addition on community at 
final time point.  However, a shift was seen between 0% 
biochar and higher additions. Method: PLFA 

Fungi decreased and Gram-negative bacteria 
increased. 

Graber et al (2010): 
Citrus wood at unknown 
temp 

Trichoderma increased dramatically in biochar treated 
plots. Biochar increased abundance of culturable microbes 
on root surfaces of pepper and tomato plants. Method: 
Culture of pot extract and partial 16S sequencing. 

Trichoderma and Pseudomonas increased, both 
associated with improvements in plant growth and 
resistance.   

Hu et al (2014): 
Forest litter at 400°c 

Bacterial and fungal diversity increased in biochar samples. 
Method: Vector cloning of bacterial and fungal 16S prior to 
sequencing. Total of 169 bacterial and 145 fungal 
sequences studied.  

Bacteroidetes and Firmicutes detected only in 
biochar. Actinobacteria was 5.6% higher in biochar, 
with decrease in proportion of Proteobacteria and 
Planctomycetes. Whilst total proportion of 
Proteobacteria decreased, more taxa within the 
phylum were detected. Basidiomycota increased 
slightly in the fungal survey, and proportion of 
Trichoderma was significantly increased in biochar. 
Paecilomyces however, was increased in the control. 

Jindo et al (2012): 
Japanese oak at 400-600°c 

Decreased Gram-positive and Gram-negative bacterial 
biomass in char treatments. Method: PLFA 

N/A 

Jones and Rousk et al 
(2012): 
Ash, Beech and Oak at 
450 °c 

Shift to bacterially dominated community 
Method: PLFA 

Bacteria and fungi 

Khodadad et al (2011): 
Laurel and oak at 650°c or 
250 °c 

Distinct clustering of populations into burned and 
unburned soils. Unburned soils treated with char showed 
the greatest similarity, with a decrease in species 
abundance. Method: Bacterial cultivations and ARISA 

Gemmatimonadetes and Actinobacteria showed an 
enrichment in burned soils treated with char. 



Kolton et al (2011): 
Citrus wood at unknown 
temp 

Biochar caused a shift in the dominant bacterial group 
present within root communities of pepper plants grown in 
pots in a greenhouse.  Method: 16S pyrosequencing. 

Bacteroidetes elevated in biochar root communities, 
Proteobacteria higher in control root communities. 
No noted change in Actinobacteria. Flavobacterium 
genus showed an increase from 4.2% in control to 
19.6% in root associated biochar treatments, 
explaining much of the increase in Bacteroidetes. 

Pietikäinen et al (2000): 
Crowberry twigs at 450°c, 
forest humus at 450°c or 
activated charcoal 

Distinct difference in PLFA analysis showing different taxa 
present in the communities of Crowberry and activated 
charcoal treated humus vs. forest humus char and pumice. 
Method: PLFA 

N/A 

Prayogo et al (2013): 
Willow at 470°c 

Biochar and litter increased total, Gram-negative and 
Actinobacteria compared with litter alone. No increases 
detected compared with control soils. Fungal PLFAs 
significantly increased in short-term. Method: PLFA 

Actinobacteria, Gram-negative bacteria, fungi 

Quilliam et al (2012): 
Ash, Beech and Oak at 
450 °c 

No consistent effect of biochar on fungi or bacterial 
communities. Fungal root colonisation increased in 
reapplication plots. Method: ARISA 

Arbuscular mycorrhizal fungi colonisation increased. 

Rutigliano (2014): 
Beech, hazel, oak and birch 
at 500°c 

No significant change in richness, or diversity. Method: 
DGGE 

N/A 

Sun (2013): 
Corncob (temperature and 
pyrolysis details not 
specified) 

Majority of DGGE bands present in both biochar and 
adjacent soils, suggesting similarity of organisms present. 
Method: DGGE 

N/A 

Watzinger (2014): 
Wheat and willow biochars 
at 525°c 

Promotion of Gram-negative bacterial groups over Gram-
positive or fungi, reflective of the increased nutrient 
conditions available. Gram-negative bacteria are capable of 
rapidly adapting to the shift, whilst fungi and Gram-
positive bacteria take longer to adjust. Method: PLFA 

Gram-negative and Actinomycetes showed strong 
positive results in Planosol. Chernosem showed 
short-term increases in Gram-negative bacteria and 
fungi, but a significant reduction in Gram-positive 
PLFA's by the end of the experiment. 
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These sites were planned, implemented and managed as part of a wide 

consortium of several PIs and researchers that formed part of the EuroChar 

Project and this thesis contributed to that international scientific effort. 

Specifically, in relation to this PhD, UK, Italian and French sites were designed 

by G. Taylor, F. Miglietta, G. Alberti, C. Rumpel, B. Glaser and G. Tonon. The UK 

site was implemented by Dr Maud Viger and Dr Giorgio Alberti who designed 

the biochar site set up. 
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Table 17 Site location and environmental properties for UK, IT and FR 
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Table 18 Physicochemical properties of AGT biochar applied to all sites 
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Table 19 Results of t-tests for difference in 16S  diversity between treatment 

(BC, biochar, or C, biochar) at each of three sites. Results of sampling in the UK 

at 1 month (UK1M) and 1 year (UK1Y) are shown µ= sample mean, σ  = 

standard deviation. 
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Table 20 Results of t-tests for difference in ITS  diversity between treatment 

(BC, biochar, or C, biochar) at each of three sites. Results of sampling in the UK 

at 1 month (UK1M) and 1 year (UK1Y) are shown. µ = sample mean, 
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All work in this Chapter was undertaken with the collaboration of Dr M. 

Ventura, who advised on the installation of equipment, carried out extraction 

of nutrient leachate and nutrient analysis, Dr G. Alberti who advised on 

installation of the soil respiration systems, the troubleshooting and statistical 

analyses of soil respiration data and Dr F. Fornasier, who carried out enzyme 

activity protocols and analysis. Plot design and layout were implemented by Dr 

Maud Viger and Dr G. Alberti as part of the EuroChar project, and also helped 

to collect data. Some of the soil respiration data in this study (data from June 
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 2012) has been published in (Ventura et al. 2015) 
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Table 22 Total sequences per pooled sample for SRC and grassland 
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Table 23 Results of t-tests with Monte-Carlo permutations (999) for 16SrRNA 
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Table 27 Mean abundances of Phyla by treatment and sites produced by closed reference OTU picking 
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i) PCoA of bacterial β diversity metabarcoding at Tolfa IT 

  



ii)  α diversity results for functional metagenomic data from Tolfa IT 



iii)  PCoA of bacterial β diversity metabarcoding at Beano IT 



iv)  α diversity results for functional metagenomic data from Beano IT 



i) PCoA of fungal β diversity showing differences between time series datasets from UK samples  



ii) PCoA of fungal β diversity for UK1Y samples 



i) Scatter plot displaying the relationship between measured and modelled efflux data 



i) Sampling regime for each of the plots, showing the plot centre (blue dot) and the 

locations of the sampling points 1.5m around it.  
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