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Abstract. As the size of parallel computing systems inexorably increases, the proportion of resource consumption (design effort, operating power, communication and calculation latency) absorbed by 'non-computing' tasks (communication and housekeeping) increases disproportionally. The SpiNNaker (Spiking neural net architecture) engine [1,2 and others] sidesteps many of these issues with a novel architectural model: it consists of an isotropic 'mesh' of (ARM9) cores, connected via a hardware communication network. The core topological isotropy allows uniform scalability up to a hard limit of just over a million cores, and the communications network - handling hardware packets of 72 bits - achieves a bisection bandwidth of 5 billion packets/s. The state of the machine is maintained in over 8 TBytes of 32-bit memory, physically distributed throughout the system and close to the subset of cores that has access. There is no central processing 'overseer' or synchronised clock.
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Introduction

SpiNNaker represents (one of the few) base-level fundamental innovations in computer architecture since Turing proposed the canonical fetch-execute technology in the 1940s. The programming model is that of a simple event driven system. Applications relinquish dynamic control of execution flow, defining the topology of the dataflow graph (DFG) in a single initialisation stage. The application programmer provides a set of functions (referred to as callbacks) to be executed on the nodes of the DFG when specific events occur, such as the arrival of a data packet or the lapse of a periodic time interval. The functionality realised by a callback may, of course, include the definition and launch of other packets.

The elemental reorganisation of functional resource (an inevitable consequence of "more and more cores"?) requires a complete redesign of application algorithms. You cannot take an existing algorithm (sequential or parallel) - however elegantly or sympathetically structured - and port it to SpiNNaker. The formulation of SpiNNaker algorithms is very different at a conceptual level; our contention is that the effort required to perform such a complete re-casting can be repaid many times over by the speed and scale offered by SpiNNaker for certain application domains. In this paper we look at a selection of familiar parallel techniques and illustrate how they may be re-cast to capitalise on the capabilities offered by SpiNNaker.

1. Machine architecture
The SpiNNaker engine[1] consists of a 256 x 256 array of nodes, connected in a triangular mesh via six communication links on each node. The mesh itself is 'wrapped' onto the surface of a torus, giving a maximum node-node hop distance of 128. Each node physically contains 128MBytes of SDRAM and 32kBytes of SRAM (node local memory), a hardware routing subsystem, and 18 ARM9 cores, each of which has 96k of core local memory associated with it (Harvard architecture, 32k instructions, 64k data). In a system of this size and complexity, it is unreasonable to expect every node to be completely functional; on power-up, a deliberate hardware asynchronous race organises the cores on each node into one 'monitor' core, and up to sixteen ' workers'. These are allocated identifiers: 0:monitor, 1..n:workers, where n<=16. Thus a perfectly functional node will have one unused spare core, and any node with at least two working cores is considered useful. All this is accomplished entirely by hardware on power-up.

The system is still under construction (the functionality scales almost linearly with size), when fully assembled, it will contain 256x256x18 = 1,179,648 cores.

●
One of the design axioms of the SpiNNaker system from the outset was that computing resources are effectively free; we arbitrarily discard cores, and/or allow duplicate processing with no thought of the compute cost, because we save on the management cost by so doing.

The cores in a node have access to their own local Harvard memory, and also the node-local SDRAM (these resources are memory-mapped for each core). There is no direct access between cores on node A and memory on node B; the only way that the cores can effect inter-core communication is via packets. These are small (72 bit) and hardware mediated. The fixed small size means that the propagation of packets throughout the system is brokered entirely by hardware, and is thus (a) extremely fast and (b) capable of almost arbitrary parallelism (network congestion allowing).

2. Programming model

The compute heart of SpiNNaker is composed of ARM9 processors, one of the most ubiquitous cores in existence. These are fetch-execute von Neumann devices, and as such, can be forced to do almost anything. However, the system was designed with an explicit operational mode in mind, and to exploit and realise the potential power of the system, the cores must be programmed in a very specific way.

SpiNNaker is designed to be an event-driven system. A packet impinges on a core (having been delivered by the hardware routing infrastructure), and causes an interrupt, the immediate effect of which is to cause the packet to be queued. (Recall the entire packet is only 72 bits). Each core polls its incident event queue, reacting to the data encoded in the packet via one of a set of event handlers. These event handlers are (expected to be) small and fast. The design intention is that the event queues spend a lot of time empty, or at their busiest, contain only a handful of entries. (The queues are software managed, and can expand to a size dictated by the software.)

The interrupt handlers themselves are conventional software, written in whatever language the author chooses, and cross-compiled to the ARM instruction set. They can see the entire 32-bit memory map of their host core (private and node-local memory), and have access to a few other (node-local) resources (timers and the routing tables). In the course of their execution, they may launch packets of their own. The timer facility is a coarse (O(ms)) clock, that supports calculations involving the passing of real time. It is not a global synchronising resource.

●
Traditional message passing systems (MPI and the like) permit complicated (dynamically defined) communication patterns and the exchange of large amounts of information, and there is a significant temporal and resource cost to this. SpiNNaker packets contain 72 bits and have a node-node latency of around 0.1us.

2.1. Conventional architecture

From this it follows that SpiNNaker is not 'another parallel machine'. You cannot port existing code from a (super)computer and expect it to behave in a useful way. Fundamental algorithms, not code, have to be substantially re-formulated.

In a conventional multi-processor program, a problem is represented as a set of programs with a certain behaviour. This behaviour is embodied as data structures and algorithms in code, which are compiled, linked and loaded into the memories of a set of processors. The parallel interface presented to the application is a (usually) homogeneous set of processes of arbitrary size; process may talk to process by messages under application software control. This is brokered by MPI or similar, which supports the transmission of messages addressed at runtime from arbitrary process to arbitrary process.

2.2. SpiNNaker architecture

In a SpiNNaker program, a problem is represented as a network of nodes with a certain behaviour. The problem is split into two parts:

1.
An abstract program topology, the connectivity of which is loaded into the routing tables.

2.
The behaviour of each node embodied as an interrupt handler in conventional sequential code. This code is compiled, linked and loaded into each SpiNNaker core.

Messages launched at runtime take a path defined by the routing tables. Interrupt handler code says "send message", but has no control where the output message goes, nor any idea where the message came from that woke it up. Messages are not timed, synchronisable, or even - in extremis - transitive.

It follows from the above that the tool chain associated with preparing problems to run on SpiNNaker is more complex than that associated with conventional software development. Alongside the conventional compilation toolflow, a mapping subsystem is necessary. The responsibilities of this tool exhibit similarities to the IC or PCB place and route tools found in electronic system design, but whereas we can acquire ARM cross-compilers from commercial sources, this component of the tool chain has to be designed and created from first principles.

In precis, the mapping tool must build an internal model of the available SpiNNaker node/core topology (including any user constraints and any fault map); it must build a similar model of the problem graph (that is, the topology of the problem node network outlined above). It must then create a 1:many mapping between the two graphs (sympathetic to the connectivities of both), and then calculate the contents of the routing tables associated with every node in the SpiNNaker system. Finally, of course, all this information must be uploaded (alongside the cross-compiled interrupt handlers) to the relevant nodes in the processor mesh that is SpiNNaker.
3. Atomic computing
With a million cores on a machine, it is possible to begin to think about very fine scale parallel computation, and for many problems there is often a natural limit to the refinement of the granularity of a computation. However, alongside this, the massive parallelism afforded by the SpiNNaker architecture means that problems have to be stripped back to the fundamental algorithmic backplane and reconfigured from a dataflow perspective.

3.1.  Finite difference time marching

Finite difference calculations typically involve massively repetitious calculations performed over a grid-based representation of a physical problem. The calculations themselves are usually simple to the point of trivial, and use only (virtually) local operands, but are repeated millions of times. This makes the field an ideal arena for a SpiNNaker-based implementation.

Finite difference time marching schemes, where the value of a variable at a point on a mesh is updated for the current time step using data from connected points at the previous time, are obvious candidates. The finest granularity in this case derives from treating each point of the mesh as a computational process. In terms of the programming model described above, a point computes its value and reports this value to all the other point processes to which it is connected. The incoming messages trigger an interrupt handler which causes the variable value at the point can be updated. For the canonical thermal diffusion problem the point update rule is 
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, in which the wi are fixed weights for each of the n neighbours (a function of the physical separation and local thermal conductivity) and Ti is the temperature of that neighbour, as in figure 1.

3.1.1. Conventional architecture

On a traditional architecture, there exists - for a sequential machine - a single path of control. On a parallel machine, there exist multiple control paths (threads), and the interplay of these threads, and the transfer of data between them is carefully choreographed by the program developer.

3.1.2. SpiNNaker architecture

On SpiNNaker, the program developer defines the event handlers and the connectivity of the mesh, and the steady-state solution appears as an emergent property of the system: Each point recomputes its state as and when prompted by a packet of data that tells it that a neighbour has changed state (figure 1). Each point does this as fast as it can, and convergence of the overall cohort is indicated by the system-wide flux of packets asymptoting to zero - the problem configuration relaxes to provide the solution.(Strictly, least significant bit oscillation makes detection of convergence challenging for a finite word length machine.)
The solution "trajectory" (using the term extremely loosely) consists of a non-deterministic path bounded by the corresponding Jacobi and Gauss-Seidl trajectories, with the advantage that every atomic update is performed in parallel.

[image: image1.wmf]i

n

i

T

w

å

1

[image: image3.jpg]


Figure 2 shows the canonical temperature gradient example for a square 2-D surface with opposite corners pinned at constant temperatures; figure 3 shows the temperature gradient along the diagonal as a function of wallclock time. The curve is dragged down with time because the temperature is stored as an 8-bit integer and the numeric rounding model is truncating. In short, these figures indicate that the solution is behaving in exactly the same way as when the standard finite difference technique is implemented on a standard architecture.

Figure 4 shows solution wallclock time curves. The problem grid is square, with the total number of grid sites shown on the abscissa. The hardware node array used is a single board of SpiNNaker nodes: 48 nodes, 768 application cores. The system clock may be set at 100, 150 or 200MHz; here we use 150MHz. The system is configured to perform one update of the entire problem grid every tick of the coarse timer clock; curves are shown for the timer tick(TT) set to 150, 100, 50, 30 and 20 ms. (Once one updating iteration has occurred in a timer tick, the rest of the time in the slot is wasted - or available for other tasks, such as detecting convergence.
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The dotted line in figure 4 shows the runtime taken by a conventional sequential version of the algorithm, running on a 2.2GHz desktop machine. Thus SpiNNaker overtakes the desktop machine (running over 15 times faster) as the problem size grows.

3.2. Neural simulation

As the name implies, SpiNNaker was originally conceived as a real-time neural simulator; the design axioms were inspired by the connectivity and functionality of the mammalian nervous system. This function remains the flagship application for the system.

The SpiNNaker architecture design is driven by the quantitative characteristics of the biological neural systems it is designed to model. The human brain comprises in the region of 1011 neurons; the long-range objective of the SpiNNaker work is to model around 1% of this, i.e. about a billion neurons. To a zeroth approximation, a neuron may be thought of as a discrete, self-contained component. It absorbs (effectively integrating) stimulii, and at some point emits an output (spike) of its own. Each neuron in the brain can connect to thousands of other neurons; the mean firing rate of neurons is below 10 Hz, with the peak rate being 100s of Hz. These numerical points of reference can be summarized in the following rough chain of inference:

●
109 neurons with a mean fan in/out 103...


==> 1012 synapses (inter-neuron connections).

●
1012 synapses with ~4 bytes/synapse...



==> 4x106 Mbytes total memory.

●
1012 synapses switching at ~10Hz mean...



==> 1013 connections/s.

●
1013 connections/s, 10-20 instr/connection...



==> 108 MIPS.

●
108 MIPS using ~100MHz ARM cores...



==> 106 ARM cores: thus 109 neurons need 106 cores, whence ....

●
1 ARM at ~100MHz...



==> 103 neurons.

●
1 node with 16 x ARM9 + 80MB...



==> 1.6x104 neurons.

●
216 nodes with 1.6x104 neurons/node...



==> 109 neurons.

The above numbers all assume each neuron has 103 inputs. In practice this number will vary from 1 to O(105), and it is probably most useful to think of each core being able to model 106 synapses, so it can model 100 neurons each with 104 inputs, and so on.

3.2.1. In nature (biological architecture)

In a biological neural system, there is no central overseer process, there is no global synchronisation, and the propagation of information from one part of the brain is brokered by small, discrete packets. These packets travel (by computational standards) extremely slowly, and the communication channels are unreliable (packets are frequently dropped). Messages are not timed, synchronisable, or even transitive.

3.2.2. Conventional architecture
In conventional discrete simulation, an event queue is established, which ensures that events throughout the system are handled in correct temporal order, which in turn maintains simulation causality. Parallel discrete simulation is disproportionally complicated, because the notion of causality must be propagated and maintained over the ensemble of processors performing the simulation. In either case, the notion of simulation time is propagated alongside the simulation data itself.

3.2.3. The SpiNNaker approach

The biological system under simulation has three attributes that SpiNNaker can exploit: (1) everything is extremely slow (by computational standards); (2) everything happens at approximately similar speeds (the system is non-stiff) and (3) the occasional dropped packet does not affect the gross behaviour of the system. These three attributes can be bought together to allow time to model itself.

In a conventional discrete simulation model, timestamped data flows between entities along zero-delay, unidirectional interconnects. The entities act upon the data, and may launch consequent data themselves, the timestamps suitably modified to embody the delays embedded in the entities. To represent a real system, where physical delays are present in both the entities and their interconnect, we may, without loss of modelling accuracy, roll the interconnect delay into the entity model and treat the interconnect as zero-delay.

The physical system under simulation - neural aggregates - consist of an interconnect topology (which, to a zeroth approximation, can be considered a simple delay line), facilitating communication between entities - neurons. The quantum of information is the spike, whose only information content is embedded in its existence, and the time of arrival. Neurons (again, to a zeroth approximation) can be considered as integrate-and-fire devices. Each neuron integrates the pulses incident upon it; when a certain threshold is reached, it resets its internal integrand value and emits a spike of its own. Physical delays are manifest in both the interconnect delay and the reaction time of the neuron.

The SpiNNaker simulation model represents spikes as packets. The neurons are represented as computational models, distributed throughout the processor mesh. Packets are delivered between neurons as fast as the electronics will allow; the delivery latency will depend on the layout of the neural circuit onto its underlying simulation mesh, but typically is will be of the order of uS - the key point being that this is infinitely fast compared to the physical system under simulation. Aside from the neural interconnect, every neuron model is connected to the coarse system wallclock, which is used to model the passing of real (simulated) time.

The behaviour of an individual neural model can now be distilled into two event handlers:

●
On receipt of an incident spike, the internal integrand is incremented.

●
On receipt of a wallclock timer tick, if the integrand is less than threshold, nothing happens (the handler stops). Otherwise, the integrand is reset, and a spike launched from the neuron.
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Figures 5 and 6 depict the kind of problem capture and simulation possible with the machine.

3.3. Pointwise computing

With a million cores on a machine, it is feasible to take the level of primitive compute down to the level of individual matrix elements.

For matrix vector multiplication we can use N2 processes: one for each of the matrix elements and N processes for the vector. A further N processes are needed for the result vector. Consider MX = Y with matrix M and vectors X and Y. We first need to distribute the matrix values to the N2 responsible processors, which takes O(Log(N)) time on a tree. We then need to send the X[i] to the ith column of the M matrix processes, again taking time O(Log(N)). The multiplication is done in time O(1) and the results are collected by the matrix processes of the ith column, which sends the result of the M[i][j]X[j] calculation to the process for Y[i] which sums the results. This summation is sequential and so takes O(N) time. The strict cost complexity of an algorithm is the time taken (here O(N)) multiplied by the number of processes used (here O(N2)), so the overall cost complexity here is O(N3). However, recall our design axiom that cores are a free resource. The cost complexity of the single process sequential algorithm is O(N2), which is the theoretical and practical lowest.

Similarly, sets of linear equations may be solved using the LU decomposition method in O(N) time on N2 processors (which is a cost complexity of O(N3)), the same as for the single process sequential algorithm. Figures 7 and 8 show the task graph of the operations for a solution of linear equations AX = B, by the LU method. In the figures the processes (square boxes) are labeled as the matrix is, that is process (i,j) handles the matrix element A(i,j); the arrows are labeled by the data that is produced and passed on. In the LU figure process (2,2) uses U(1,2) produced after one timestep [u21(1)] and L(2,1) after two timesteps and passes on L(2,1) to process (2,3) and U(2,2) to process (3,2) after the third timestep. The figure shows that U(4,4) is produced after seven cycles. From the figure 8 it can be seen that the back substitution can start on the second cycle and finishes by process (4,4) producing the intermediate vector element Y(4) after the eighth cycle as this step is ready to be done as soon as U(4,4) is produced. After this is completed the back substitution can start, with X(1) being produced after a further seven cycles. Thus in O(4N) cycles we have produced the solution using N2 processes, and the algorithm is cost optimal even when we include pre-loading the data - this takes O(log(N)) time since the multi-cast messages take O(log(N)) time.
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Where next?

SpiNNaker is opening doors far faster than we can explore what lies inside. The neural simulation work is being applied to robotics, modeling of visual and auditory systems, and cognitive disorders. The physics-based applications point towards finite-difference based analyses (computational fluid dynamics, thermal modelling, plasmas, inverse field problems) and discrete simulation in general. Computational chemistry (an area we have yet to enter) is a notorious consumer of computational resources. The field permits the prediction of the emergent properties of chemical systems by the simulation of the behaviour of individual atoms. It has proved spectacularly successful, allowing, for example, the elucidation of the mechanisms by which complex biological molecules may be transmitted across biological membranes[3] and how the membranes themselves can self-assemble to create larger structures[4].

The similarities of the computational aspects of all these areas are clear: many independent, locally interacting units, each with relatively small state data; no overarching control, asynchronous unit interaction.

5. Final comments

SpiNNaker is significantly different from conventional computing engines, in many ways:

●
It is constructed from medium-performance components (~200MHz ARM9 cores).

●
The total development and construction budget to date is around GB£5M (~US$8M).

●
It has no hardware floating point.

●
At ~4,000 MIPS/W (1.1 MIPS/MHz x 200 MHz x 18 at <1W) it is worthy of a place in the Green500 supercomputer rankings[5]. (Compare this with the human brain: 1015 synapses at 10 Hz dissipating 25W => 400M MOPS/W, although a synapse 'operation' is much more complex than a 32-bit machine instruction.)

●
The design principles explicitly disregard three of the most significant axioms of conventional supercomputer engineering: memory coherence, synchronization and determinism.

Designing and supporting software to run on a system as large as this, with no conventional operating system, non-deterministic communications and almost no internal debug or visibility capability requires new techniques and thinking to be developed at numerous levels; this remains a significant challenge.
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Figure 3. Diagonal temperature gradient





Figure 2. 2D temperature gradient





Figure 7. LU decomposition task graph.      Figure 8. Forward elimination and back substitution task graphs.





Figure 1. Simple event handler





void ihr() {


Recv(val,port);              // React to neighbour value change


ghost[port] = val;           // New value WILL BE different


oldtemp = mytemp;            // Store current state


mytemp = fn(ghost);          // Compute new value


if (oldtemp==mytemp) stop;   // If nothing changed, keep quiet


Send(mytemp);                // Broadcast changed state


}





Figure 4. Solution times





Figure 5. Captured neural circuit                                 Figure 6. Simulated waveforms
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