Continuous cohomology and homology of profinite groups
Continuous cohomology and homology of profinite groups
We develop cohomological and homological theories for a profinite group G with coefficients in the Pontryagin dual categories of pro-discrete and ind-profinite G-modules, respectively. The standard results of group (co)homology hold for this theory: we prove versions of the Universal Coefficient Theorem, the Lyndon-Hochschild-Serre spectral sequence and Shapiro's Lemma.
1-46
Boggi, Marco
7774ed94-1f1f-4ab7-9b0a-a408ce79acc8
Corob Cook, Ged
de8c4e37-ab72-4e7c-ad10-a940066433c5
Boggi, Marco
7774ed94-1f1f-4ab7-9b0a-a408ce79acc8
Corob Cook, Ged
de8c4e37-ab72-4e7c-ad10-a940066433c5
Boggi, Marco and Corob Cook, Ged
(2016)
Continuous cohomology and homology of profinite groups.
Documenta Mathematica, .
(In Press)
Abstract
We develop cohomological and homological theories for a profinite group G with coefficients in the Pontryagin dual categories of pro-discrete and ind-profinite G-modules, respectively. The standard results of group (co)homology hold for this theory: we prove versions of the Universal Coefficient Theorem, the Lyndon-Hochschild-Serre spectral sequence and Shapiro's Lemma.
Text
Continuous cohomology of profinite groups.pdf
- Accepted Manuscript
More information
Accepted/In Press date: 29 September 2016
Organisations:
Pure Mathematics
Identifiers
Local EPrints ID: 401072
URI: http://eprints.soton.ac.uk/id/eprint/401072
ISSN: 1431-0635
PURE UUID: 46787953-4461-4dd9-9a90-99e34be7074e
Catalogue record
Date deposited: 04 Oct 2016 15:13
Last modified: 15 Mar 2024 02:38
Export record
Contributors
Author:
Marco Boggi
Author:
Ged Corob Cook
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics