Alternative splicing of U2AF1 reveals a shared repression mechanism for duplicated exons
Alternative splicing of U2AF1 reveals a shared repression mechanism for duplicated exons
The auxiliary factor of U2 small nuclear ribonucleoprotein (U2AF) facilitates branch point (BP) recognition and formation of lariat introns. The gene for the 35-kD subunit of U2AF gives rise to two protein isoforms (termed U2AF35a and U2AF35b) that are encoded by alternatively spliced exons 3 and Ab, respectively. The splicing recognition sequences of exon 3 are less favorable than exon Ab, yet U2AF35a expression is higher than U2AF35b across tissues. We show that U2AF35b repression is facilitated by weak, closely spaced BPs next to a long polypyrimidine tract of exon Ab. Each BP lacked canonical uridines at position -2 relative to the BP adenines, with efficient U2 base-pairing interactions predicted only for shifted registers reminiscent of programmed ribosomal frameshifting. The BP cluster was compensated by interactions involving unpaired cytosines in an upstream, EvoFold-predicted stem loop (termed ESL) that binds FUBP1/2. Exon Ab inclusion correlated with predicted free energies of mutant ESLs, suggesting that the ESL operates as a conserved rheostat between long inverted repeats upstream of each exon. The isoform-specific U2AF35 expression was U2AF65-dependent, required interactions between the U2AF-homology motif (UHM) and the ?6 helix of U2AF35, and was fine-tuned by exon Ab/3 variants. Finally, we identify tandem homologous exons regulated by U2AF and show that their preferential responses to U2AF65-related proteins and SRSF3 are associated with unpaired pre-mRNA segments upstream of U2AF-repressed 3?ss. These results provide new insights into tissue-specific subfunctionalization of duplicated exons in vertebrate evolution and expand the repertoire of exon repression mechanisms that control alternative splicing.
417-434
Kralovicova, Jana
b3e0c1e7-05ed-445d-b3d9-ace11e3b4878
Vorechovsky, Igor
7245de2f-8c9b-4034-8935-9a451d9b682e
2017
Kralovicova, Jana
b3e0c1e7-05ed-445d-b3d9-ace11e3b4878
Vorechovsky, Igor
7245de2f-8c9b-4034-8935-9a451d9b682e
Kralovicova, Jana and Vorechovsky, Igor
(2017)
Alternative splicing of U2AF1 reveals a shared repression mechanism for duplicated exons.
Nucleic Acids Research, 45 (1), .
(doi:10.1093/nar/gkw733).
(PMID:27566151)
Abstract
The auxiliary factor of U2 small nuclear ribonucleoprotein (U2AF) facilitates branch point (BP) recognition and formation of lariat introns. The gene for the 35-kD subunit of U2AF gives rise to two protein isoforms (termed U2AF35a and U2AF35b) that are encoded by alternatively spliced exons 3 and Ab, respectively. The splicing recognition sequences of exon 3 are less favorable than exon Ab, yet U2AF35a expression is higher than U2AF35b across tissues. We show that U2AF35b repression is facilitated by weak, closely spaced BPs next to a long polypyrimidine tract of exon Ab. Each BP lacked canonical uridines at position -2 relative to the BP adenines, with efficient U2 base-pairing interactions predicted only for shifted registers reminiscent of programmed ribosomal frameshifting. The BP cluster was compensated by interactions involving unpaired cytosines in an upstream, EvoFold-predicted stem loop (termed ESL) that binds FUBP1/2. Exon Ab inclusion correlated with predicted free energies of mutant ESLs, suggesting that the ESL operates as a conserved rheostat between long inverted repeats upstream of each exon. The isoform-specific U2AF35 expression was U2AF65-dependent, required interactions between the U2AF-homology motif (UHM) and the ?6 helix of U2AF35, and was fine-tuned by exon Ab/3 variants. Finally, we identify tandem homologous exons regulated by U2AF and show that their preferential responses to U2AF65-related proteins and SRSF3 are associated with unpaired pre-mRNA segments upstream of U2AF-repressed 3?ss. These results provide new insights into tissue-specific subfunctionalization of duplicated exons in vertebrate evolution and expand the repertoire of exon repression mechanisms that control alternative splicing.
Text
2016 NAR dupl.pdf
- Accepted Manuscript
Text
Nucl. Acids Res.-2016-Kralovicova-nar_gkw733.pdf
- Version of Record
More information
Accepted/In Press date: 11 August 2016
e-pub ahead of print date: 26 August 2016
Published date: 2017
Organisations:
Human Development & Health
Identifiers
Local EPrints ID: 401089
URI: http://eprints.soton.ac.uk/id/eprint/401089
ISSN: 0305-1048
PURE UUID: b32e8f8a-cd14-46a9-9ec7-de73e3f2e198
Catalogue record
Date deposited: 04 Oct 2016 09:05
Last modified: 15 Mar 2024 03:16
Export record
Altmetrics
Contributors
Author:
Jana Kralovicova
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics