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Abstract—In orthogonal frequency division multiplexing re-
lying on subcarrier index modulation (OFDM-SIM), the in-
formation is conveyed by both the indices of the activated
subcarriers and the conventional amplitude-phase modulated
(APM) symbols. It has been shown that OFDM-SIM is capable of
striking a tradeoff between the attainable spectral efficiency (SE)
and energy efficiency (EE). In order to further increase the EE of
the OFDM-SIM system, while potentially increasing its SE, we
propose a compressed sensing (CS) assisted signalling strategy
for the family of OFDM-SIM systems. Correspondingly, we first
consider the joint maximum likelihood (JML) detection of the
CS assisted index-modulated (CSIM) and of the classic APM
symbols, despite its high complexity. Then, we propose a low
complexity detection algorithm, which is termed as the iterative
residual check (IRC) based detector. This is based on the Greedy
Pursuit concept of CS, which makes locally optimal choices at
each step. Finally, both analytical and simulation results are
provided for characterizing the attainable system performance
of our proposed OFDM-CSIM system. We demonstrate that in
comparison to the conventional OFDM-SIM system, the proposed
OFDM-CSIM arrangement is capable of achieving both a higher
SE as well as an increased EE. We also show that the diversity
gain provided by the OFDM-CSIM system is much higher than
that of the OFDM-SIM system. Furthermore, our investigation of
the detection performance shows that the proposed IRC detector
is capable of providing an attractive detection performance at a
low complexity.
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NOTATIONS

(·)T and (·)∗ the transpose and the conjugate, respectively

(·)H and (·)−1 the conjugate transpose and the inverse,
respectively

E[·] the expectation operator

ZN
+ a set of real integers containing {1,2,. . . ,N}

CM×L the set of (M × L)-element matrices
in the complex field

xxx and XXX
vector in boldface lower-case and matrix
in boldface upper-case, respectively

xxx(l) and x(m, l)
lth block of symbols and mth symbol
of lth block, respectively

IIIM the (M ×M)-element identity matrix

IIIi
the (M ×Mi)-element mapping matrix whose
columns are extracted from the IIIM
according to an index set Ii

FFFM
the normalized (M ×M)-element DFT matrix,
which satisfies FFFMFFFH

M = FFFH
MFFFM = IIIM

diag{xxx} the diagonal matrix with elements in xxx on
its diagonal

‖xxx‖p the `p-norm of a vector xxx, where p > 0

‖xxx‖0 the pseudo-`0-norm of a vector xxx, which is
defined as ‖xxx‖0 = Card(Supp(xxx))

{A}\{B} the difference of two sets {A} and {B}
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I. INTRODUCTION

Recently, a paradigm shift took place from the development
of spectrally efficient communication techniques to the con-
ception of both spectral- and energy-efficient communication
techniques, as detailed in [1–6]. Indeed, as pointed out in [1],
striking a compelling compromise between the spectral effi-
ciency (SE) (or the bandwidth efficiency) and energy efficiency
(EE) (or the power efficiency) is essential for the design state-
of-the-art networks. Hence, various joint SE and EE solutions
have been proposed for the different protocol layers [4, 6].
Specifically, in the physical layer, more and more attention is
paid to the SE and EE of communications systems, including
both the digital signal processing and the analog front-end.

As the predominant transmission technique of broad-
band communications, at the time writing [7, 8], orthogonal
frequency-division multiplexing (OFDM) is mainly charac-
terized by its high degree of flexibility and high spectral
efficiency [9]. Generally, a frequency-selective fading chan-
nel can be converted into a number of parallel flat-fading
subchannels with the aid of OFDM, thereby, considerably
reducing the receiver’s complexity as a benefit of using single-
tap frequency-domain (FD) equalization. Moreover, cyclic
prefix (CP)-based OFDM can be employed for avoiding inter-
OFDM-symbol interference. Recently, OFDM has been com-
bined with index modulation (OFDM-IM) [10–12]. In [10, 11],
the subcarrier IM (SIM) concept has been proposed based on a
principle reminiscent of the implicit information conveyed by
the activated antenna index in spatial modulation (SM) based
multiple-input-multiple-output (MIMO) systems [2]. Then, a
generalized IM scheme has been proposed and analyzed in
[12]. Further details on the historical timeline of the SIM can
be found in [13].

The most appealing aspect of SIM is its flexibility in terms
of striking a tradeoff between the SE and EE, as analyzed in
[14, 15]. Hence, SIM has the potential of representing a win-
win alternative in scenarios, such as device-to-device (D2D)
communications, in-vechicle communications [16], sensor net-
works, etc. However, since it is an emerging technique, there
are also some open issues. Apart from the above-mentioned SE
and EE aspects of SIM, we will also consider the associated
diversity and complexity issues, which will also be addressed
in this paper. Generally, the most powerful contributor to
reliable communications over mutipath propagation channels
is diversity, including temporal diversity, frequency diversity
and space diversity, as detailed in [17]. As demonstrated in
[12, 13], OFDM-SIM systems are capable of outperforming
the classic OFDM systems for a low throughput. In [18], a
block interleaver has been employed for achieving a beneficial
time diversity gain. Later in [19], the coordinate interleaved
orthogonal design (CIOD) of [20] has been employed in
OFDM-SIM systems for improving the attainable transmitter
diversity gain. However, the attainable multipath diversity
gain has not been fully exploited by these schemes and no
generalized analytical results are available for the achievable
diversity order of the OFDM-SIM system. The complexity
of SIM has to be separately considered at the transmitter
and receiver side. In [21], a generalized look-up table has

been proposed in order to improve the SE of SIM. However,
in light of the limited SE improvement, the implementation
complexity imposed may be deemed excessive. At the receiver
side, since the information is conveyed in both the amplitude-
phase modulated (APM) symbols and the SIM symbols, it is
quite a challenge to design a detection scheme, which provides
a good detection performance at a low complexity. In [12], the
joint maximum likelihood (JML) detector has been conceived.
As a further development, based on the fact that the FD
symbols are either zero valued or non-zero valued, the authors
of [12] have proposed a log-likelihood ratio (LLR) based
detector, which has been shown to have the same detection
performance as the JML detector, but at a lower complexity
cost. Later, the JML and the LLR detectors have been modified
in [19].

On the other hand, compressed sensing (CS), as an emerging
theory, has attracted considerable research-attention. Initially,
CS has been proposed for recovering vectors in high dimen-
sions from vectors in low dimensions, as detailed in [22].
Then, it has been invoked for solving numerous problems
in communications systems, such as channel estimation [23],
narrowband interference mitigation [24], spectrum sensing
[25], impulsive noise mitigation [26] and so on. However, to
the best of the authors’ knowledge, CS has not been applied
to the family of OFDM-SIM systems. Specifically, when
an OFDM-SIM system is designed for aforementioned EE
communications scenarios, the number of activated subcarriers
should be small. By taking advantage of this condition, each
group of subcarriers can be potentially represented by a sparse
vector. Hence, according to CS, it is also possible to detect
(or recover) the corresponding sparse vector with the aid of
algorithms such as the family of `1-minimization algorithms
[27–29] and Greedy pursuit algorithms [30–32].

To address the aforementioned issues, our contributions of
this paper are summarized as follows.
• We propose a CS-assisted signalling strategy for OFDM-

SIM systems. The general philosophy of our proposed
CS-assisted IM (CSIM) scheme transpires from Fig. 1.
The basic idea of CSIM is that the conventional IM
is implemented in a high-dimensional virtual digital-
domain, and then the high-dimensional IM symbols are
compressed into the low-dimensional subcarriers in the
FD with the aid of CS. In this way, both the SE and
EE of our proposed CSIM becomes higher than that of
conventional SIM.

• We provide both analytical and simulation results for
characterizing the system performance of the OFDM-
CSIM system. We first demonstrate that the attainable
SE of the proposed OFDM-CSIM system is higher than
that of the conventional OFDM-SIM system. Moreover,
for a given SE, our OFDM-CSIM system is capable of
achieving higher EE than the conventional OFDM-SIM
system.

• We characterize the attainable diversity gain of both the
conventional SIM and of our proposed CSIM schemes by
both analytical and simulation results. Our investigations
demonstrate that the OFDM-CSIM system is capable
of achieving the maximum attainable multipath diversity
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Fig. 1: Illustration of the relationships between compressed sensing (CS), subcarrier index modulation (SIM), CS-assisted index
modulation (CSIM) as well as our iterative residual check (IRC) detector.

order, which is verified by our simulation results.
• We first invoke the JML detector for the OFDM-CSIM

system for the sake of performance comparison. Since the
complexity of the JML detector may be deemed excessive
in practice, we propose a low-complexity detector, namely
the iterative residual check (IRC) detector, for our system.
As depicted in Fig. 1, the IRC detector is proposed
based on the Greedy Pursuit concept of CS [33], which
updates its estimates one step at a time by making locally
optimal choices at each step. We demonstrate that an
attractive detection performance can be attained by the
IRC detector using as few as one or two iterations,
yielding a low complexity.

The rest of the paper is organized as follows. In Section II,
both our system model and the proposed CSIM signalling
are detailed. Then, both the JML detector and the proposed
IRC detector are described in Section III. In Section IV,
the performance of the proposed system is analyzed. Our
simulation results are discussed in Section V. Finally, we offer
our conclusions in Section VI.

II. SYSTEM MODEL

A. Description of Transmitter

We assume a multicarrier system employing M subcarriers.
The M subcarriers are divided into G groups, each of which
contains m = M/G subcarriers. Our proposed system is
illustrated in Fig. 2. An Lb-length sequence of i.i.d. data bits is
first split into G groups, each of which contains L = Lb/G =
L1 +L2 bits. In each group, L1 bits are mapped into an index
symbol according to an index mapper µ1: {0, 1}L1 → Z ,
where Z = {Z1, . . . ,ZC} contains C = 2L1 index subsets,
each of which is formed with the aid of K indices chosen
from N available indices, as shown in [12]. Thereby, we have
L1 = log2 C =

⌊
log2

(
N
K

)⌋
. Let the cth index subset of Z

be denoted as Zc = {Zc(0), . . . ,Zc(K − 1)} ⊂ Z , where
Zc(k) ∈ ZN+ for k = 0, . . . ,K − 1. Let us assume that the
gth group of data bits is mapped into the cth candidate in
Z . Then, for the sake of simplicity, let the gth group of the
index symbols be denoted as Ig = Zc ⊂ Z . On the other
hand, the remaining L2 bits are mapped onto K classic APM
symbols according to a rotated Q-ary QAM/PSK constellation
with alphabet Aφ , {a1, . . . , aQ : aq = xejφ, x ∈ A},
where φ denotes the rotated angle and A is the alphabet
of the QAM/PSK scheme. Note that an appropriately rotated
constellation scheme is invoked for ensuring that the signal
space diversity is increased at no cost in terms of either
power or bandwidth [34]. Specifically, let us denote the data
symbols to be transmitted associated with the gth group
as xxxd,g = [xd,g(0), . . . , xd,g(K − 1)]T , where we assume
that E[|xd,g(k)|2] = 1, ∀xd,g(k) ∈ Aφ. Then, in order to
further increase the attainable diversity gain, the CIOD of
[20] is invoked for transforming xxxd,g into xxxCI,g , which can
be expressed as

xxxCI,g = fCI {xxxd,g} , (1)

where xCI,g(k) = <{xd,g(k)}+j={xd,g((k+K/2) mod K)}
for k = 0, . . . ,K−1. Next, as illustrated in Fig. 3, the K data
symbols in xxxCI,g are respectively assigned to the K active
subcarrier indices in Ig , yielding a block of virtual domain
symbols xxxg = [xg(0), xg(1), . . . , xg(N − 1)]T , which can be
expressed as

xxxg =IIIgxxxCI,g, (2)

where IIIg is a (N×K)-element mapping matrix obtained from
an (N ×N)-element identity matrix by choosing the columns
having the column indices given by the indices in Ig . Based
on the above discussion, we can readily show that the symbol
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Fig. 2: Illustration of the OFDM-CSIM system employing CI and a depth-G interleaver Π.

vector of (2) conveys

L = L1 + L2 =

⌊
log2

(
N

K

)⌋
+K log2Q (3)

data bits by each of the G groups. The total number of bits
per symbol is GL. From (2), we can define a vector space V
for the digital virtual domain as V , {vvv1, . . . , vvv2L}, which
is composed by all the legitimate versions of N -dimensional
xxxg vectors with any Ig ⊂ Z and xxxd,g ∈ AKφ . From another
perspective, we can see that the gth group of L data bits is
directly mapped into a symbol vector xxxg ∈ V . Hence, the
vector space V contains a total of 2L candidates, as it is
defined. Here, the signalling relying on SIM using CI proposed
in [19] is shown. Note that, when the CI is not used, the
symbol vector xxxCI,g in (2) can be replaced by xxxd,g , representing
the conventional SIM of [12], which invokes SIM without any
effort to obtain a diversity gain.

As shown in Fig. 3, a measurement matrix AAA ∈ Cm×N is
employed for compressing the N -dimensional vector xxxg in the
virtual digital domain into an m-dimensional vector sssg in the
FD, which can be expressed as

sssg =AAAxxxg, (4)

where each column of AAA is assumed to be of unity length to
yield E[‖sssg‖22] = K. As illustrated in Fig. 3, the dimension
of the symbol vector xxxg is designed to be much higher than
that of the subcarrier symbol vector sssg to be transmitted in
each group. By contrast, in the conventional SIM scheme,
both these dimensions are the same, i.e. we have m = N .
Clearly, more data bits can be transmitted by our proposed
CSIM scheme than by the conventional SIM scheme, for fixed
values of m,K,Q. For example, let m = 8, N = 1024,
K = 2 and Q = 2, which results in 0.75 bits-per-channel-
use for the conventional SIM scheme, while for our CSIM
scheme, it can be readily shown that we have 2.5 bits-per-
channel-use at no cost in terms of either power or bandwidth.

Furthermore, when the symbol vector xxxg is designed for
satisfying K � N , xxxg is a sparse vector associated with
a sparsity level of K. In this case, Eq. (4) represents a
classical mathematic modelling of CS [22], whose recovery
performance (or detection performance in our scenario) is
determined by the specific characteristics of the measurement
matrix AAA, as it will be detailed in Section III.

Next, as seen in Fig. 2, in order to achieve multipath
diversity, the G groups of compressed symbols denoted as
SSS = [sss1, sss2, . . . , sssG] ∈ Cm×G are fed into a depth-G
interleaver Π, yielding the interleaved FD symbols expressed
as sssF = [sF(0), sF(1), . . . , sF(M − 1)]T , where we have
M = mG. Here, as shown in [18], the depth-G interleaver
Π permutes SSS by reading column-by-column and then writing

row-by-row, which can be expressed as sssF =
G∑
g=1

IIIΠgsssg ,

where IIIΠg is the (M ×m)-element mapping matrix based on
the depth-G interleaver Π for the gth group characterized by
sg(i) = sF(g−1+iG) for g = 1, . . . , G and i = 0, 1 . . . ,m−1.
Furthermore, we can also show that IIITΠgIIIΠg = IIIm and
IIITΠgIIIΠ

g
′ = 000 for g

′ 6= g, which can be used for characterizing
the de-interleaving process of Π−1, as it will be detailed in
Section II-B. Then, as shown in Fig. 2, the FD symbols in sssF
are input to the M -point IFFT, yielding the time-domain (TD)
symbols sssT = FFFHMsssF. Finally, after adding a CP of length
Lcp, the transmitted baseband symbols can be expressed as
ssscp = IIITCPsssT, where IIICP = [IIIcp, IIIM ] and IIIcp is a (M × Lcp)-
element mapping matrix obtained from the last Lcp columns
of an identity matrix IIIM .

B. Received Signals

We assume an Lh-tap frequency-selective Rayleigh fading
channel, which has a channel impulse response (CIR) of
hhhT = [hT(0), hT(1), . . . , hT(Lh−1)]T , where we have hT(l) ∼
CN (0, 1/Lh). We assume that Lcp ≥ Lh and that perfect
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Fig. 3: Illustration of the CSIM scheme. The dimension N of
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index, while the blank box represents the in-activated index.

synchronization is achieved at the receiver. Furthermore, the
bandwidth of each subchannel is assumed to be much lower
than the channel’s coherence bandwidth. Then, as shown in
Fig. 2, after removing the CP, the received baseband equivalent
observations yyyT = [yT(0), yT(1), . . . , yT(M − 1)]T can be
formulated as

yyyT = HHHcirsssT +wwwT, (5)

where HHHcir is an (M ×M)-element circulant matrix, which
can be diagonalized by the DFT operations, giving HHHcir =
FFFHMHHHFFFM , where HHH = diag{

√
MFFFMIIIhhhhT} with IIIh being

a (M × Lh)-element mapping matrix formed by the first Lh
columns of an identity matrix IIIM . In (5), wwwT is the additive
white Gaussian noise (AWGN) with a mean of zero and a
variance of N0. As shown in Fig. 2, after the FFT operation
and de-interleaving, the gth group of received FD symbols can
be expressed as

yyyg =IIITΠg (FFFMyyyT)

=IIITΠg (HHHsssF +FFFMwwwT)

=IIITΠgHHH

G∑
g=1

IIIΠgsssg + IIITΠg (FFFMwwwT) (6a)

=IIITΠgHHHIIIΠgsssg + w̄wwg (6b)

=H̄HHgsssg + w̄wwg (6c)

where by definition w̄wwg = IIITΠg (FFFMwwwT) contains the gth group
of de-interleaved FD noise samples. Note that, since HHH is a
diagonal matrix, we can readily show that IIITΠgHHHIIIΠ

g
′ = 000 for

g 6= g
′
, which is applied in (6a) to obtain (6b). In (6c), the

diagonal matrix H̄HHg can be explicitly expressed as

H̄HHg =IIITΠgHHHIIIΠg

=IIITΠgdiag
{√

MFFFMIIIhhhhT

}
IIIΠg

=diag
{√

MIIITΠgFFFMIIIhhhhT

}
=diag

{
FFF h,ΠghhhT

}
= diag{h̄g(0), . . . , h̄g(m− 1)}, (7)

where by definition FFF h,Πg =
√
MIIITΠgFFFMIIIh ∈ Cm×Lh . It can

be shown that h̄g(i) ∼ CN (0, 1) and w̄g(i) ∼ CN (0, N0),
∀g, i. Hence, we can observe from (6c) that yyyg having the

complex Gaussian distribution having the conditioned proba-
bility density function (PDF) of

p (yyyg|sssg) =
1

(πN0)m
exp

{
−‖yyyg − H̄HHgsssg‖22

N0

}
. (8)

Then, as seen in Fig. 2, each group of the de-interleaved
symbols is input into the detector discussed in Section III.

III. DETECTION OF THE OFDM-CSIM SIGNALS

In this section, we first consider the JML detector. Then,
we propose an IRC detector for reducing the potentially
excessive complexity of the JML detector. In our derivation,
we stipulate the idealized simplifying assumption that perfect
channel estimation is achieved at the receiver.

Firstly, upon substituting (4) into (6c), we arrive at

yyyg =H̄HHgAAAxxxg + w̄wwg, (9)

where the measurement matrix AAA ∈ Cm×N is assumed to be
a sub-matrix of an (N ×N)-element orthonormal dictionary.
According to [35, 36], the measurement matrix AAA should
be designed for satisfying the mutual incoherence property
(MIP)1 or the restricted isometry property (RIP)2. However,
since computing the restricted isometry constant of the RIP
has been shown to be NP-hard [37], the MIP is used in this
paper. According to [35], the mutual coherence of AAA should
satisfy µAAA < 1/(2K − 1), which is the sufficient condition of
guaranteeing that there exists at most one K-sparse vector xxxg
such that AAAxxxg = sssg . Thus, in order to provide a guaranteed
detection performance, the measurement matrix AAA ∈ Cm×N
is designed for satisfying√

N −m
m(N − 1)

≤ µAAA <
1

2K − 1
, (10)

where the lower bound at the left hand side is the well-known
Welch bound [38]. Therefore, with the aid of (8) and (10), the
PDF conditioned on xxxg can be expressed as

p (yyyg|xxxg) =
1

(πN0)m
exp

{
−‖yyyg − H̄HHgAAAxxxg‖22

N0

}
. (11)

A. Joint Maximum Likelihood Detector

Typically, the optimum detector is the maximum a poste-
riori (MAP) detector, which solves the optimization problem
of

xxxMAP
g = arg max

vvvi∈V
{p (vvvi|yyyg)} , (12)

where p (vvvi|yyyg) is the a posteriori probability of vvvi given
the receiver’s output of yyyg . Let us assume that both the
SIM symbols in Z and the classic APM symbols in Aφ are
equiprobable and independent. Then, the MAP detector of (12)
becomes the ML detector, which can be described as

xxxML
g = arg min

vvvi∈V

{∥∥yyyg − H̄HHgAAAvvvi
∥∥2

2

}
. (13)

1The MIP is defined as the mutual coherence of a matrix is very small
[35].

2As defined in [36], the RIP is defined as the Kth restricted isometry
constant δK of matrix AAA is the smallest number such that (1− δK)‖xxxg‖22 ≤
‖AAAxxxg‖22 ≤ (1 + δK)‖xxxg‖22 is satisfied for any K-sparse vectors xxxg .
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Furthermore, according to (1) and (2), the ML detector of (13)
is equivalent to the JML detector, which can be written as(
IML
g ,xxxML

d,g

)
= arg min
Zc⊂Z,aaa∈AKφ

{∥∥yyyg − H̄HHgAAAIIIcfCI {aaa}
∥∥2

2

}
, (14)

where IIIc is a mapping matrix based on Zc, as seen in
Section II-A. Explicitly, the JML detector of (14) has the
complexity of O

(
2L1QK

)
, which may become excessive in

practice, when the constellation size Q is large and/or the
dimensions of the measurement matrixAAA ∈ Cm×N are high. In
order to reduce the detection complexity and to glean benefits
from employing the CS principles, below we propose a lower-
complexity IRC detector.

B. Iterative Residual Check Detector

Let us first rewrite (9) as

yyyg =ΦΦΦgxxxg + w̄wwg (15a)
=ΦΦΦgIIIgfCI{xxxd,g}+ w̄wwg

=ΦΦΦg,IgfCI{xxxd,g}+ w̄wwg, (15b)

where by definition we have ΦΦΦg = H̄HHgAAA and ΦΦΦg,Ig = ΦΦΦgIIIg .
In (15a), the N -dimensional symbol vector xxxg ∈ V shown
in Section II-A is exactly K-sparse, which is observed in
the spaces of m dimensions. Hence, according to the CS
principles, it can be recovered by solving the classic `0-
minimization problem described in [39, 40] as

xxx`0g = arg min
vvv∈CN×1

‖vvv‖0, s.t. yyyg −ΦΦΦgvvv ∈ B, (16)

where B is a bounded set associated with the noise vector w̄wwg ,
while vvv is an N -length testing vector chosen from the complex
vector space CN×1.

However, the `0-minimization problem of (16) has been
shown to be NP-hard [41]. For this reason, typically the `1-
minimization based solutions are employed in CS, since they
are tractable to solve. Moreover, under the conditions shown
in [22], the `0-minimization problem of (16) is equivalent to
solving the `1-minimization problem of

xxx`1g = arg min
vvv∈CN×1

‖vvv‖1, s.t. yyyg −ΦΦΦgvvv ∈ B. (17)

Note that the `1-minimization problem is a well-known convex
optimisation problem, which can be solved in polynomial time,
for example, by the interior point method [42]. However, for
our detection problem, the computational cost of solving the
`1-minimization problem may still be excessive. Moreover,
in the OFDM-CSIM system of Section II, the sparsity level
K of the symbol vector xxxg is determined by the number of
activate indices, which is a fixed and known value. In this
case, the lower-complexity family of greedy pursuit algorithms
[30, 43] is preferred. However, the existing greedy algorithms
can only provide relatively good detection performance, when
the SNR is relatively high. Another concern is that for the
existing greedy algorithms, the sparse estimation is operated
without any restrictions on the signal space. Thus, the existing
greedy algorithms cannot be directly invoked for detection in
our scenario.

Based on the philosophy of greedy pursuits [33], which
provides an approximated estimation via making locally opti-
mal choices at each step, we propose a Greedy-like detector,
namely the IRC detector, for detecting both the IM and the
classic APM symbols in the sparse vector xxxg . The proposed
IRC detector has the advantage of not only achieving a low
detection complexity, but also guaranteeing a good detection
performance even in the low to medium SNR regions. Our
IRC detector is divided into two stages, an initialization stage
and an iterative detection stage, as detailed below.

Firstly, at the initialization stage, the IRC detector invokes
the minimum mean square error (MMSE) processing to obtain
an N -dimensional soft estimate of x̂xxg ∈ CN×1 for xxxg from
the m-dimensional observations yyyg seen in (15a), yielding

x̂xxg =

(
ΦΦΦHg ΦΦΦg +

1

γs
IIIN

)−1

ΦΦΦHg yyyg, (18)

where γs = E[‖sssT‖22]/E[‖wwwT‖22] = K/(mN0) is the average
SNR per symbol. In principle, the active elements in xxxg should
generate relatively high magnitudes in x̂xxg with high probabil-
ity. Therefore, we order the elements in x̂xxg in descending order
according to their magnitudes as

|x̂g(i1)|2 ≥ |x̂g(i2)|2 ≥ . . . ≥ |x̂g(iN )|2, (19)

which more or less reflects the reliabilities of the IM detection.
Since the set {i1, i2, . . . , iN} contains K active indices and
(N −K) inactive indices, the leftmost x̂g(i1) has the highest
probability to be one of the active indices, while the rightmost
x̂g(iN ) has the highest probability to be one of the inactive
indices. With the aid of this information, the IRC detector
then proceeds to the second stage, where both the IM and the
classic APM symbols can be detected using the principle of
greedy pursuits, as detailed next.

During the second stage, the IRC detector carries out
iterative detection of both the IM symbols in Ig and the classic
APM symbols in xxxd,g by first identifying a candidate set, and
then testing the candidates based on the likelihood principle
of (14). In detail, during the first iteration, the IRC detector
first derives a candidate set from the index i1 of x̂g(i1), since
it has the highest probability to be an active index. Let this
candidate set be expressed as

Z1 = {Z1
1 ,Z1

2 , . . . ,Z1
C1
} ⊂ Z (20)

where i1 is a member of each of the candidates, i.e., we have⋂C1

c1=1Z1
c1 = i1. Here, we can readily show that the number

of candidates in Z1 of (20) obeys C1 ≤
(
N−1
K−1

)
< C, where

C = 2L1 denotes the total number of subsets of Z , as shown
in Section II-A. Then, for the candidate Z1

c1 , we can obtain
the Moore-Penrose pseudoinverse matrix

ΦΦΦ†g,Z1
c1

=
(
ΦΦΦHg,Z1

c1
ΦΦΦg,Z1

c1

)−1

ΦΦΦHg,Z1
c1
, Z1

c1 ⊂ Z1 ⊂ Z,
(21)

where ΦΦΦg,Z1
c1

= ΦΦΦgIII
1
c1 ∈ Cm×K is of full column-rank when

K < m, while III1
c1 is a (N × K)-element mapping matrix

formed based on Z1
c1 . Then, with the aid of (21) and (15b),
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we can form the estimation of the APM symbols as

x̆xxd,g(c1) =f−1
CI

{
ΦΦΦ†g,Z1

c1

yyyg

}
=f−1

CI

{
ΦΦΦ†g,Z1

c1

ΦΦΦg,IgfCI{xxxd,g}+ ΦΦΦ†g,Z1
c1

w̄wwg

}
=xxxd,g + rrrIg,Z1

c1
+ w̆wwg, (22)

where rrrIg,Z1
c1

is the potential residual interference caused by
the indices in Ig , but not included in Z1

c1 , i.e., Z1
c1 6= Ig .

Otherwise, if Z1
c1 = Ig , i.e., both Ig and Z1

c1 contain the same
set of indices representing a correct detection of the index
symbols, then we have rrrIg,Z1

c1
= 000. In (22), the noise vector

w̆wwg = f−1
CI {ΦΦΦ†g,Z1

c1

w̄wwg} ∈ CK×1 is the linear combination of
Gaussian noise samples, which is also a Gaussian noise vector.
Based on (22), a simple symbol-by-symbol ML detection can
be carried out, yielding

a1(k, c1) = arg min
aq∈Aφ

‖x̆d,g(k, c1)− aq‖2 , k = 0, . . . ,K − 1.

(23)

So far, we have obtained the estimations of the classic APM
symbols aaa1(c1) = [aaa1(0, c1), . . . , aaa1(K − 1, c1)]T from the
candidate set Z1

c1 ∈ Z1. Similarly, we can obtain the estimates
of the classic APM symbols from the other candidates in
Z1 of (20). Based on the estimates, let us define a set
A1 =

{
aaa1(1), . . . , aaa1(C1)

}
⊂ AKφ for all the possible APM

symbols detected using the indices in Z1. Then, the best one
among them after the first iteration can be found by solving
the optimization of(
I [1]
g ,xxx

[1]
d,g

)
= arg min
Z1
c1
∈Z1,aaa1(c1)∈A1

∥∥∥yyyg −ΦΦΦg,Z1
c1
fCI
{
aaa1(c1)

}∥∥∥2

.

(24)

Correspondingly, the residual error ε[1] is given by

ε[1]
g =

∥∥∥yyyg −ΦΦΦ
g,I[1]g

fCI

{
xxx

[1]
d,g

}∥∥∥2

. (25)

Let εTS be a threshold, which is used for terminating the
search process, when the detection is believed to have achieved
the required reliability. Then, if ε[1]

g ≤ εTS, the search process
is completed, and the results given in (24) are taken as the final
estimates of the received IM and the classic APM symbols.
Otherwise, the search process forwards to the next iteration.

Similarly to the first iteration, during the second iteration,
the IRC detector first identifies a candidate set based on the
index i2 of the second largest in magnitude of the variables
given in (19). It can be shown that the number of new
candidates containing i2 as a member satisfies C2 ≤

(
N−1
K−1

)
−(

N−2
K−2

)
=
(
N−2
K−1

)
< C, after excluding those having been

considered in association with the candidates derived from
index i1. Having obtained the candidate set for the second
iteration, the other processes are repeated in the same way as
in the first iteration. In general, when the IRC detector enters
into the tth iteration, the number of new candidates including
it as a member satisfies Ct ≤

(
N−t
K−1

)
< C. Based on the

above-mentioned method, when all the N indices are checked,

we can readily show that
N∑
t=1

Ct = C = 2L1 . This implies that

all the candidates in Z = {Z1, . . .ZC} have been checked by
the IRC detector.

Finally, if the condition of ε[t] ≤ εTS cannot be fulfilled after
the maximum affordable number of iterations, the detection
result giving the minimum number of residual errors is output.
In summary, our proposed IRC detector can be stated as in
Algorithm 1.

The complexity of our proposed algorithm is determined by
the number of iterations as well as the number of candidates
in each iteration. Explicitly, the best case is that the detection
is completed within a single iteration by testing only one can-
didate. In this case, we can readily show that the complexity is
on the order of Obest

IRC(QK). On the other hand, the worst case
is that all the candidates in Z are checked. In this case, the
corresponding complexity is given by Oworst

IRC (2L1QK). Note
that for K > 1 active indices, the probability that i1 seen in
(19) is not an active index is usually very small. Therefore,
in most cases, our IRC detector requires a single iteration for
testing the C1 ≤

(
N−1
K−1

)
< C candidates. In this case, the

detection complexity is given by Ousually
IRC (C1QK). In fact, our

IRC detector can be constrained to simply carry out one or
two iterations, as it will be shown in Section V.

IV. PERFORMANCE ANALYSIS

In this section, the system performance of the OFDM-
CSIM system is analyzed. In our analysis, the JML detector
is assumed. We commence by deriving the SE and EE of the
proposed system. Then, the analytical diversity order of the
OFDM-CSIM system is detailed.

A. Spectral Efficiency and Energy Efficiency

Let us assume that the proposed OFDM-CSIM system is
operated within a frequency band of fB Hertz. The total power
consumed by transmitting the data at a reliable rate of R in
bit-per-second within a symbol duration of Ts is denoted as
PT Watts. We consider the specific case when the total power
consumed is equal to the total power of the transmitted signal,
i.e. we have PT = PTx. Then, the SE of ηSE = R/fB can
be measured in bit-per-second-per-Hertz. Since each group is
independent, the SE of the system shown in Section II can be
expressed in terms of the channel SNR as [44]

fSE(γs) =
R

fB

=

G∑
g=1

I(xxxg;yyyg)

TsfB
=

G∑
g=1

I(xxxg;yyyg)

M
, (26)

where I(xxxg;yyyg) denotes the mutual information [45] asso-
ciated with the transmission of the gth group. Here, the rate
reduction caused by the CP is ignored. Then, upon substituting
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Algorithm 1 IRC Detector

Require: yyyg , ΦΦΦg = H̄HHgAAA, γs, Z , εTS
1: Initialization: Set the maximum number of iterations to
T , a check space of Zcheck = Z , ε0 = ∞, I IRC

g = ∅ and
xxxIRC

d,g = ∅.
2: MMSE detection based on (18), expressed as

x̂xxg =

(
ΦΦΦHg ΦΦΦg +

1

γs
IIIN

)−1

ΦΦΦHg yyyg;

3: Order the elements in x̂xxg in descending order according
to their magnitudes as

|x̂g(i1)|2 ≥ |x̂g(i2)|2 ≥ . . . ≥ |x̂g(iN )|2.
4: for t = 1 to T do
5: Obtain Zt = {Zt1,Zt2, . . . ,ZtCt} from Zcheck, where⋂Ct

ct=1Ztct = it;
6: if Zt = ∅ then
7: else
8: For ct = 1, . . . , Ct, calculate

x̆xxd,g(ct) = f−1
CI

{
ΦΦΦ†g,Ztct

yyyg

}
;

9: Generate the estimates for the APM symbols as-
sociated with the candidates of ct = 1, . . . , Ct according
to (23) as

at(k, ct) = arg min
aq∈Aφ

‖x̆d,g(k, ct)− aq‖2 , k = 0, 1, . . . ,K − 1

10: Find the best estimates according to (24) as(
I [t]
g ,xxx

[t]
d,g

)
= arg min
Ztct∈Z

t,aaat(ct)∈At

∥∥∥yyyg −ΦΦΦg,Ztct fCI
{
aaat(ct)

}∥∥∥2

.

11: Calculate the residual error according to (25) as

ε[t]
g =

∥∥∥yyyg −ΦΦΦ
g,I[t]g

fCI

{
xxx

[t]
d,g

}∥∥∥2

;

12: if ε[t]
g < εTS then

13: Update I IRC
g = I [t]

g and xxxIRC
d,g = xxx

[t]
d,g .

14: exit
15: else if ε[t]

g < ε0 then
16: Update Zcheck = Zcheck\Zt, ε0 = ε

[t]
g , I IRC

g =

I [t]
g and xxxIRC

d,g = xxx
[t]
d,g .

17: else
18: end if
19: end if
20: end for
21: return I IRCD

g and xxxIRCD
d,g .

(A.6) into (26), we have

fSE(γs) =
1

M

G∑
g=1

{
EH̄HHg,w̄wwg [− log2 ε(w̄wwg, H̄HHg, γs)]

−m log2

(
πeK

mγs

)}
=
G

M

{
EH̄HHg,w̄wwg [− log2 ε(w̄wwg, H̄HHg, γs)]

−m log2

(
πeK

mγs

)}
=
EH̄HHg,w̄wwg [− log2 ε(w̄wwg, H̄HHg, γs)]

m
− log2

(
πeK

mγs

)
,

(27)

where ε(w̄wwg, H̄HHg, γs) is the implementation function, as defined
in (A.7). It should be noted that it is not easy to further
simplify (27) to a closed-form expression. Nevertheless, ac-
cording to (A.7), its first term can be evaluated by Monte
Carlo simulations. By contrast, since the second term of (27)
is determined by the SNR per symbol γs, the SE of (27) can
be obtained accordingly, as it will be shown in Section V.
Furthermore, we can readily show with the aid of (A.10) that
the SE of (27) is upper bounded by

fSE(γs) =

G∑
g=1

I(xxxg;yyyg)

M

≤
G∑
g=1

L

M
=
L

m
, (28)

where the upper bound L/m is attainable, when the SNR per
symbol γs is sufficiently high.

On the other hand, the EE can be defined in terms of Joule-
per-bit per noise level [44], or bit-per-Joule [3, 46], or bit-
per-Joule per noise level [1]. In this paper, only the signal’s
transmission power is considered, hence the EE definition of
[1] is adopted. In this case, given the SE value of fSE(γs) =
ηSE, the corresponding EE can be expressed as [1]

ηEE =
ηSE

PT/N0
=

ηSE

PTx/N0

=
ηSE

γs
=

ηSE

f−1
SE (ηSE)

, (29)

where the last equality is arrived at by expressing γs as an
inverse function of the SE ηSE, which gives the SNR per
symbol required for achieving the SE of ηSE. Again, since
it is an open challenge to derive a closed-form expression for
the EE shown in (29), the tradeoff between the SE and EE of
our proposed system is studied by Monte Carlo simulations,
as it will be shown in Section V.

Furthermore, let us define the received SNR per bit (or SNR
per reliable bit) as γRx

b , ERx
b /N0, where ERx

b = PTx/ηSE is
the received energy per bit in Joule-per-bit. Hence, we can
explicitly show that γRx

b can be formulated in terms of the EE
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defined in (29) as

γRx
b =

γs
ηSE

=
f−1

SE (ηSE)

ηSE

=
1

ηEE
, (30)

which can be used for quantifying the minimum received
signal energy per information bit required for reliable com-
munication, as it will be studied by simulation results shown
in Section V.

B. Diversity and Coding Gains

Let us first define the pairwise error event as {xxxc
g → xxxe

g},
where xxxc

g = vvvi is the transmitted symbol vector according
to (2), while xxxe

g = vvvj denotes the corresponding incorrect
detection results of the ML detection shown in (13), i.e. we
have vvvi 6= vvvj for vvvi, vvvj ∈ V . Based on (4), let sssc

g = AAAxxxc
g

and ssse
g = AAAxxxe

g . Then, when the measurement matrix AAA of
the mutual coherence of (10) is used, similar to [47], the
conditional pairwise error probability (PEP) can be expressed
as

P
(
xxxc
g → xxxe

g|H̄HHg

)
=P

(
sssc
g → ssse

g|H̄HHg

)
=Q


√
mγs

∥∥H̄HHg

(
sssc
g − ssse

g

)∥∥2

2K


=

1

π

π
2∫

0

exp

(
−mγsd

2
(
zzzc
g, zzz

e
g

)
4K sin2 θ

)
dθ, (31)

where d2
(
zzzc
g, zzz

e
g

)
=
∥∥zzzc

g − zzze
g

∥∥2
denotes the squared Eu-

clidean distance between zzzc
g = H̄HHgsss

c
g and zzze

g = H̄HHgsss
e
g . With

the aid of (7), we have

d2
(
zzzc
g, zzz

e
g

)
=
∥∥H̄HHg

(
sssc
g − ssse

g

)∥∥2

=
∥∥diag{FFF h,ΠghhhT} (vvvi − vvvj)

∥∥2

=
∥∥diag{FFF h,ΠghhhT}eee

∥∥2

=
∥∥EEEFFF h,ΠghhhT

∥∥2

=hhhHT DDDghhhT, (32)

where we have EEE = diag {eee} ∈ Cm×m with eee ∈ E as defined
in (A.5) and DDDg = FFFHh,ΠgEEE

HEEEFFF h,Πg ∈ CLh×Lh . Furthermore,
let the nonzero eigenvalues of DDDg be denoted as λi for i =
1, . . . , VD, where

VD =rank (DDDg) = rank(FFFHh,ΠgEEE
HEEEFFF h,Πg )

= min
{

rank (EEE) , rank
(
FFF h,Πg

)}
. (33)

We can readily show that we have rank(EEE) = ‖eee‖0 ≤ m and
rank(FFF h,Πg ) = min{m,Lh}, which gives

VD =

{
‖eee‖0 if m < Lh
Lh if m ≥ Lh.

(34)

We should emphasize here that since the measurement matrix
AAA ∈ Cm×N is used in our proposed system, the number of
non-zero elements in eee ∈ E is ‖eee‖0 = m for most cases. As
shown in [19], the maximum diversity order achieved by the

TABLE I: Parameters for All Simulations

K Q φ M Lcp Lh

2 4 π/12 256 16 10

AAA ∈ Cm×N

m N µAAA 1/(2K − 1)

8 15 0.2500

0.333316 31 0.1768

32 61 0.1229

conventional OFDM-SIM system is 2K. By contrast, in our
proposed system, since (10) has to be satisfied for assisting the
detection, it can be readily shown that for a large N , we have
2K <

√
m, resulting in m > (2K)2. Therefore, the diversity

order of our proposed system may be much higher than that of
the conventional OFDM-SIM system, provided that Lh > 2K
is satisfied.

Since hhhT is assumed to be an i.i.d. Gaussian distributed
vector, after integrating the conditional PEP of (31) with
respect to the distribution of the squared Euclidean distance
of d2

(
zzzc
g, zzz

e
g

)
by following the approach shown in [8], the

average PEP can be expressed as

P
(
xxxc
g → xxxe

g

)
=

1

π

π
2∫

0

VD∏
i=1

(
1 +

λimγs

4K sin2 θ

)−1

dθ. (35)

Furthermore, for sufficiently high SNRs, (35) is upper bounded
by [17, 48]

P
(
xxxc
g → xxxe

g

)
≤
(
VC
mγs
4K

)−VD

, (36)

where VD gives the diversity order of the detection, while

VC =

(
VD∏
i=1

λi

)1/VD

is the coding gain of the OFDM-CSIM

transmission scheme. We can see from (36) that the diversity
order VD determines how rapidly the average PEP decreases
with the increase of the SNR, while the coding gain VC
determines the SNR-shift of this PEP curve relative to a
benchmark error rate curve of (γs/4)−VD .

From the above analysis, we can infer the following obser-
vations. Firstly, when m < Lh, the diversity order that can be
achieved by the proposed OFDM-CSIM system is dependent
on the number of non-zero elements in eee ∈ E , which is m
in most cases. Secondly, provided that m ≥ Lh, the diversity
order achieved by the proposed OFDM-CSIM system is Lh,
which is in this case as high as the number of multipath
components. Finally, since L given in (3) is independent of m
in our proposed system, the higher the value of m, the lower
the achievable SE of the system, as shown in (28). Hence, the
diversity order of the proposed system can be increased at the
cost of decreasing the achievable SE of the system.

V. SIMULATION RESULTS

In this section, simulation results are provided for charac-
terizing the achievable performance of the proposed OFDM-
CSIM system. The system setup and the parameters used in
our simulations are summarized in Table I. For all simulations,
a ten-path (i.e. Lh = 10) slow-varying Rayleigh fading channel
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Fig. 4: SE and EE as a function of the SNR in dB for both the
OFDM-SIM and the OFDM-CSIM systems communicating
over an Lh = 10-path Rayleigh fading channel. The system
parameters are given in Table I.

is considered, which is based on Section II-B. We assume an
OFDM system employing M = 256 subcarriers and a CP of
length of Lcp = 16. Moreover, QPSK modulation associated
with a rotated angle of φ = π/12 is used for modulating
the activated subcarriers. For both the OFDM-SIM and our
OFDM-CSIM systems, the number of active indices is chosen
to be K = 2. Specifically, in order to satisfy the condition
of (10), the partial Fourier matrix constructed by the search
algorithm of [26] is employed as the measurement matrix AAA
for the OFDM-CSIM system, as shown in Table I3.

In Fig. 4, both the SE and EE are investigated as a function
of the SNR in dB for both the OFDM-SIM and the OFDM-
CSIM systems, when communicating over Rayleigh fading
channels. In this figure, the unrotated QPSK constellation
(i.e., φ = 0) is assumed, but the CI and the depth-G
interleaver are not employed. Furthermore, both the OFDM-
SIM and the OFDM-CSIM systems employ the JML detector
of Section III-A for the sake of comparison. Firstly, we observe
from Fig. 4 that the achievable SE of the proposed CSIM
scheme is higher than that of the conventional SIM scheme.
This observation can be explained with the aid of the analytical
results of (3) and (28). Explicitly, as shown in (28), when
the value of m is fixed, the achievable SE of both the SIM
and the CSIM schemes depend on the number of data bits
L transmitted by each group. Furthermore, when the values
of K and Q are fixed, more data bits can be transmitted by
the CSIM associated with N > m than by the SIM using
N = m, as exemplified in Section II-A. Thus, the attainable
SE of the CSIM is higher than that of the conventional SIM.
Moreover, we can also show that the corresponding SE is
reduced both for the CSIM and for the SIM, as the value of m
is increased. Secondly, as seen in Fig. 4, for a given SNR, our
proposed CSIM scheme is capable of achieving a higher EE
than the conventional SIM scheme. Meanwhile, the SE of our

3It should be noted that for m = 4,K = 2, the measurement matrix
AAA ∈ Cm×N satisfying (10) does not exist. Hence, the case of m = 4 is not
considered in our simulations
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Fig. 5: CCDF of the number of iterations of the IRC detector
for the CSIM employing CI and a depth-G interleaver operates
at the SNR per bit value of γb = 0 dB, 7 dB or 15 dB,
when communicating over an Lh = 10-path Rayleigh fading
channel.

CSIM scheme is also higher than that of the conventional SIM
scheme. In other words, our proposed CSIM scheme is capable
of striking a more appealing tradeoff between the SE and EE
than the conventional SIM scheme. This observation can be
explained with the aid of the analytical results of (29) and
the numerical SE results shown in this figure. As observed in
Fig. 4, for a given SE, the SNR required by our CSIM scheme
is lower than that of the SIM scheme. Since the EE defined by
(29) is inversely proportional to the SNR for a given SE, the
EE of our CSIM is in turn higher than that of the conventional
SIM. Thirdly, as shown in Fig. 4, the maximum EE that can
be attained by both schemes is about 1/ ln 2 ≈ 1.4427. This
result inferred from (30) represents the minimum energy per
bit required for reliable communication, which is given by
γRx
b,min = ln 2. This confirms the analytical result given in

[44]. As demonstrated in [44], when the SNR is low, the
minimum energy per bit required for reliable communication
is ln 2, which is independent of the fading. Hence, for OFDM
systems having a fixed transmission power, bandwidth and
IFFT/FFT size, our proposed CSIM scheme is capable of
striking a more appealing tradeoff between the SE and EE
than the conventional SIM scheme.

Fig. 5 plots the complementary cumulative distribution
function (CCDF) of the number of iterations for the proposed
IRC detector of our CSIM scheme, when communicating over
an Lh = 10-path Rayleigh fading channel. Generally, the
CCDF is the probability that a random variable X will take a
value higher than x, i.e. we have CCDFX(x) , P (X > x).
In this figure, the OFDM-CSIM system employing CI and
the depth-G interleaver operates at the SNR per bit value of
γb = 0 dB, 7 dB or 15 dB. As seen in Fig. 5, the CCDF
curves first exhibit a sharp decay and then become flat as the
number of iterations increases. This observation implies that
with a near-unity probability, the IRC detector completes the
detection in just a single iteration. Furthermore, when just a
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maximum number of iterations is chosen to be T = 1, . . . , N .

single iteration is considered, the difference of the probabilities
for a given CSIM operating at different SNR per bit values is
unnoticeable. Thus, it can be inferred that the performance of
the IRC detector operating at just one iteration is stable at all
SNR per bit values. Finally, we can also see that as the EE
of the CSIM system increases, the probability of completing
detection in just one iteration increases. It should be noted
that the fewer iterations the IRC detector invokes, the lower
its complexity becomes, as analyzed in Section III-B.

In Fig. 6, we investigate the detection complexity imposed
by detecting each group of symbols, when both the JML and
IRC detectors are employed. In this figure, the IRC detector of
Algorithm 1 relying on T = 1, . . . , N iterations is considered
for our CSIM scheme. We observe that when JML detectors
are used, the detection complexity of the CSIM is higher than
that of the conventional SIM. However, as seen in Fig. 6, the
detection complexity can be significantly reduced by using our
proposed IRC detector, especially when the maximum number
of iterations is set to T = 1 or 2. Furthermore, we can observe
that the detection complexity of our CSIM using the IRC
detector is lower than that of the same scheme using the JML
detector, even for the worst case of the IRC detector. There
are two reasons for this trend. Firstly, each index is uniquely
checked, as shown in Algorithm 1. In this way, the repeated
reliability computations of the same index are avoided. The
other reason can be readily inferred from comparing (23) to
(14), where the APM symbols are detected on a symbol-
by-symbol basis by the IRC detector, while the joint group
detection is carried out by the JML detector. Finally, we can
show with the aid of Fig. 5 that our proposed IRC detector is
an efficient one for the CSIM considered.

The BER performance of the classic OFDM, OFDM-SIM
and OFDM-CSIM systems is compared in Fig. 7, Fig. 8 and
Fig. 9. In these figures, both the OFDM-SIM and the OFDM-
CSIM systems employ CI, the depth-G interleaver as well
as JML detectors. Explicitly, for the OFDM-CSIM systems,
Fig. 7, Fig. 8 and Fig. 9, respectively, are characterized by
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Fig. 7: BER performance of the classic OFDM, OFDM-SIM
and OFDM-CSIM systems communicating over an Lh = 10-
path Rayleigh fading channel. Both the OFDM-SIM and the
OFDM-CSIM systems employ CI, a depth-G interleaver as
well as JML detectors.
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Fig. 8: BER performance of the classic OFDM, OFDM-SIM
and OFDM-CSIM systems communicating over an Lh = 10-
path Rayleigh fading channel. Both the OFDM-SIM and the
OFDM-CSIM systems employ CI, a depth-G interleaver as
well as JML detectors.

m = 8, m = 16 and m = 32, as well as the corresponding
system parameters given in Table I. For the sake of com-
parison, only 160 subcarriers are used for the transmission
of QPSK symbols in the classic OFDM system, yielding a
transmission rate of 1.25 bits/s/Hz. Similarly, the OFDM-SIM
system employs 212 subcarriers for carrying SIM-(m = 4,
K = 2, Q = 4) symbols, giving a transmission rate of 1.2422
bits/s/Hz. Here, we should point out that reducing the number
of transmission subcarriers results in a certain power gain
reduction, rather than in a BER curve slope-change. We can
observe from these figures that the OFDM-CSIM significantly
outperforms both the classic OFDM and the OFDM-SIM.
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Furthermore, in the high-SNR region, the performance gain
of the systems associated with m = 16 (0.75 bits/s/Hz) in
Fig. 8 are similar to those associated with m = 32 (0.4375
bits/s/Hz) in Fig 9, both of which are higher than that of the
systems associated with m = 8 in Fig. 10. For example,
at a BER of 10−3, about 16 dB gain is observed both in
Fig. 8 and Fig. 9 for our OFDM-CSIM systems. By contrast,
about 14 dB gain is observed in Fig. 7. These observations
can be explained with the aid of our analytical results shown
in Section IV-B. As analyzed in Section IV-B, when the
measurement matrix AAA associated with a mutual coherence
satisfying (10) is used, the proposed OFDM-CSIM system
becomes capable of achieving VD-order diversity, where VD
is given in (34). Since the diversity order of the OFDM-CSIM
system is much higher than that of the conventional OFDM-
SIM, a better BER performance can be attained by the OFDM-
CSIM system. Furthermore, as shown in (34), the diversity
order found for the case of m < Lh (Fig. 7) is lower than
that for the case of m ≥ Lh (Fig. 8 and Fig. 9). Hence, a
higher performance gain can be achieved by the OFDM-CSIM
system associated with m = 16, 32 than that with m = 8.
Meanwhile, for the case of m ≥ Lh, the maximum multipath
diversity gain is achieved by the OFDM-CSIM system. Thus,
the performance gains achieved by the OFDM-CSIM system
having m = 16 and m = 32 are the same. Finally, as
inferred from (34) and the above observations, we can show
that for a target throughput higher than 2 bits/s/Hz, our CS-
assisted OFDM-SIM system is capable of attaining a similar
performance gain to that of the classic OFDM systems (as seen
in (34), the maximum attainable diversity order is independent
of the throughput).

In Fig. 10, Fig. 11 and Fig. 12, we investigate the BER per-
formance of both the JML detector and the IRC detector for the
OFDM-CSIM systems communicating over an Lh = 10-path
Rayleigh fading channel. In these figures, the OFDM-CSIM

10
-5

10
-4

10
-3

10
-2

10
-1

1

B
E

R

0 5 10 15 20 25

SNR per bit, b (dB)

♣ ♣
♣

♣
♣

♣
♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

AWGN

Rayleigh

JML Detector

IRC Detector with T=1

IRC Detector with T=2

♣ IRC Detector with T=N

CSIM: 1.25 bits/s/Hz

Fig. 10: BER versus SNR per bit for the OFDM-CSIM using
the JML detector and the IRC detector. The OFDM-CSIM
with (N = 15, m = 8) employs CI and a depth-G interleaver.
For the IRC detector shown in Algorithm 1, the maximum
number of iterations is chosen to be T = 1, 2 or N = 15.

10
-5

10
-4

10
-3

10
-2

10
-1

1

B
E

R

0 2 4 6 8 10 12 14 16 18 20

SNR per bit, b (dB)

♣
♣

♣
♣

♣

♣

♣

♣

♣

♣

♣

♣

♣
AWGN

Rayleigh

JML Detector

IRC Detector with T=1

♣ IRC Detector with T=N

CSIM: 0.75 bits/s/Hz

Fig. 11: BER versus SNR per bit for the OFDM-CSIM using
the JML detector and the IRC detector. The OFDM-CSIM with
(N = 31, m = 16) employs CI and a depth-G interleaver. For
the IRC detector shown in Algorithm 1, the maximum number
of iterations is chosen to be T = 1, or N = 31.

system employs CI and the depth-G interleaver. Explicitly,
Fig. 10, Fig. 11 and Fig. 12 are respectively characterized by
m = 8, m = 16 and m = 32, while the corresponding system
parameters are given in Table I. We observe from the results
of Fig. 10, Fig. 11 and Fig. 12 that the BER performance
of the OFDM-CSIM system using our IRC detector invoking
a single iteration is stable for all SNR per bit values. This
observation verifies our inference obtained from the results of
Fig. 5. Furthermore, as seen in Fig. 10, Fig. 11 and Fig. 12, a
good BER performance is attainable for the IRC detector using
just a single iteration (Fig. 11 and Fig. 12) or two iterations
(Fig. 10). Bearing in mind the complexity results of Fig. 6,
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Fig. 12: BER versus SNR per bit for the OFDM-CSIM using
the JML detector and the IRC detector. The OFDM-CSIM with
(N = 61, m = 32) employs CI and a depth-G interleaver. For
the IRC detector shown in Algorithm 1, the maximum number
of iterations is chosen to be T = 1, or N = 61.

it can be readily shown that the complexity of the proposed
IRC detector can be further reduced by limiting the maximum
number of iterations at the cost of a few dBs performance loss.
Therefore, when the IRC detector is employed by the OFDM-
CSIM system, the maximum number of iterations may be
appropriately adjusted for striking a flexible tradeoff between
the performance gain attained and the complexity imposed.

VI. CONCLUSIONS

In this paper, a CSIM scheme has been proposed. Our
analytical results have shown that in comparison to the con-
ventional SIM, our proposed scheme is capable of achieving
a higher SE, which has also been verified by our simulation
results. Moreover, we have shown that the CSIM is capable
of striking a more appealing tradeoff between the SE and EE
than the conventional SIM. Then, the JML detector has been
considered for our CSIM scheme. Based on the JML detector,
the diversity order of the CSIM has been first analyzed math-
ematically, and then, it was verified by simulations. Both the
analytical and the simulation results show that in comparison
to the SIM system, our proposed system is capable of provid-
ing a significantly higher diversity gain. Finally, the reduced-
complexity IRC detector was proposed for our CSIM scheme.
Simulations results have been provided for investigating its
detection performance. Our investigations demonstrated that
in comparison to the JML detector, the complexity of our IRC
detector is much lower, while its performance is close to that
of the JML detector.

APPENDIX A
DERIVATION OF SE

According to Section III, the channel state information (CSI)
is assumed to be perfectly known at the receiver. Hence, based

on (9), the mutual information I(xxxg;yyyg) can be expressed as
[45]

I (xxxg;yyyg) =EH̄HHg [I(xxxg;yyyg|H̄HHg)]

=EH̄HHg [H(yyyg|H̄HHg)−H(yyyg|xxxg, H̄HHg)]

=EH̄HHg [H(yyyg|H̄HHg)]−H(w̄wwg), (A.1)

where the differential entropy of the m-dimensional complex
Gaussian vector with a mean vector 000 and a covariance matrix
of N0IIIm is given by [45]

H(w̄wwg) = log2(πeN0)m = m log2(πeN0)

=m log2

(
πeK

mγs

)
. (A.2)

On the other hand, the conditional entropy H(yyyg|H̄HHg) can be
formulated as [45]

H(yyyg|H̄HHg) =−
∫
yyyg

p(yyyg|H̄HHg) log2 p(yyyg|H̄HHg)dyyyg

=Eyyyg [− log2 p(yyyg|H̄HHg)]. (A.3)

According to Section II-A, the vector space V is defined so
that each group of L data bits can be regarded as being directly
mapped into a symbol vector in V . Since the input data bits
are i.i.d, it is reasonable to assume that the candidates in V are
equiprobable, i.e. we have p(vvvi) = 1/2L for i = 1, . . . , 2L.
Hence, with the aid of (11) and by invoking Bayes’ rule, the
conditional probability p(yyyg|H̄HHg) can be expressed as

p(yyyg|H̄HHg) =

2L∑
i=1

p(yyyg|vvvi, H̄HHg)p(vvvi) =
1

2L

2L∑
i=1

p(yyyg|vvvi, H̄HHg)

=
1

2L

2L∑
i=1

1

(πN0)m
exp

{
−‖yyyg − H̄HHgAAAvvvi‖22

N0

}

=
1

2L

2L∑
i=1

1

(πN0)m
exp

{
−‖H̄HHgAAA(xxxg − vvvi) + w̄wwg‖22

N0

}
.

(A.4)

Additionally, let us define a set of

E , {eee = AAA(vvvj − vvvi) : vvvi 6= vvvj ,∀vvvi, vvvj ∈ V}. (A.5)

Then, with the aid of (A.5), Eq. (A.4) can be formulated as

p(yyyg|H̄HHg) =
1

2L

(
1

(πN0)m
exp

{
−‖w̄wwg‖

2
2

N0

}
+Eeee

[
1

(πN0)m
exp

{
−‖H̄HHgeee+ w̄wwg‖22

N0

}])
=

1

2L

(mγs
πK

)m(
exp

{
−‖w̄wwg‖

2
2

K
mγs

}
+Eeee

[
exp

{
−‖H̄HHgeee+ w̄wwg‖22

K
mγs

}])
,

(A.6)

which is dependent on w̄wwg given H̄HHg and γs. Hence, for the
sake of convenience, we define the implementation function
of

ε(w̄wwg, H̄HHg, γs) ,p(yyyg|H̄HHg) (A.7)
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to explicitly emphasize the dependence on the channel param-
eters. Then, Eq.(A.3) can be alternatively expressed as

H(yyyg|H̄HHg) =Ew̄wwg [− log2 ε(w̄wwg, H̄HHg, γs)]. (A.8)

Finally, upon substituting (A.2) and (A.8) into (A.1), we arrive
at

I (xxxg;yyyg) =EH̄HHg,w̄wwg [− log2 ε(w̄wwg, H̄HHg, γs)]−m log2

(
πeK

mγs

)
.

(A.9)

It should be noted that the upper bound of I(xxxg;yyyg) in our
scenario can be derived as

I (xxxg;yyyg) =EH̄HHg [I(xxxg;yyyg|H̄HHg)]

=EH̄HHg [H(xxxg|H̄HHg)−H(xxxg|yyyg, H̄HHg)]

=H(xxxg)− EH̄HHg [H(xxxg|yyyg, H̄HHg)]

≤H(xxxg) = −
2L∑
i=1

p(vvvi) log2 p(vvvi)

= −
2L∑
i=1

1

2L
log2

1

2L
= L, (A.10)

where the upper bound is achieved, when γs is sufficiently
high.
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