Piecewise companding transform assisted optical-OFDM systems for indoor visible light communications
Piecewise companding transform assisted optical-OFDM systems for indoor visible light communications
In visible light communications (VLCs) relying on intensity-modulation and direct detection (IM/DD), the conversion from electrical signals to optical signals and the limited dynamic range of the light-emitting diodes (LEDs) constitute the fundamental impediments in the way of high-integrity communications, especially when orthogonal frequency-division multiplexing (OFDM) is employed. In IM/DD VLCs, only real-valued positive signals are used for signal transmission. However, the Fourier transform of OFDM systems is operated in the complex domain. In order to meet the requirements of the IM/DD VLCs, the complex-to-real conversion is achieved at the cost of reducing the bandwidth efficiency. Moreover, OFDM signals experience a high peak-to-average power ratio; hence, typically clipping is used for confining the positive-valued signals within the LED's dynamic range. However, hard clipping leads to the loss of orthogonality for optical OFDM (O-OFDM) signals, generating inter-carrier interference. As a result, the performance of the clipping-based O-OFDM systems may be severely degraded. In this paper, the concept of piecewise companding transform (CT) is introduced into the O-OFDM system advocated, forming the CTO-OFDM arrangement. We first investigate the general principles and design criteria of the piecewise CTO-OFDM. Based on our studies, three types of piecewise companders, namely, the constant probability sub-distribution function, linear PsDF (LPsDF), and the non-LPsDF-based CT, are designed. Furthermore, we investigate the nonlinear effect of hard clipping and of our CT on O-OFDM systems in the context of different scenarios by both analytical and simulation techniques. Our investigations show that the CTO-OFDM constitutes a promising signaling scheme conceived for VLCs, which exhibits a high bandwidth efficiency, high flexibility, high reliability, as well as a high data-rate, despite experiencing nonlinear distortions.
295-311
Zhang, Hongming
ebd930db-9cd8-43ff-8b73-92c1d7f0108b
Yang, Lie-Liang
ae425648-d9a3-4b7d-8abd-b3cfea375bc7
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
25 February 2017
Zhang, Hongming
ebd930db-9cd8-43ff-8b73-92c1d7f0108b
Yang, Lie-Liang
ae425648-d9a3-4b7d-8abd-b3cfea375bc7
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
Zhang, Hongming, Yang, Lie-Liang and Hanzo, Lajos
(2017)
Piecewise companding transform assisted optical-OFDM systems for indoor visible light communications.
IEEE Access, 5, .
(doi:10.1109/ACCESS.2016.2640203).
Abstract
In visible light communications (VLCs) relying on intensity-modulation and direct detection (IM/DD), the conversion from electrical signals to optical signals and the limited dynamic range of the light-emitting diodes (LEDs) constitute the fundamental impediments in the way of high-integrity communications, especially when orthogonal frequency-division multiplexing (OFDM) is employed. In IM/DD VLCs, only real-valued positive signals are used for signal transmission. However, the Fourier transform of OFDM systems is operated in the complex domain. In order to meet the requirements of the IM/DD VLCs, the complex-to-real conversion is achieved at the cost of reducing the bandwidth efficiency. Moreover, OFDM signals experience a high peak-to-average power ratio; hence, typically clipping is used for confining the positive-valued signals within the LED's dynamic range. However, hard clipping leads to the loss of orthogonality for optical OFDM (O-OFDM) signals, generating inter-carrier interference. As a result, the performance of the clipping-based O-OFDM systems may be severely degraded. In this paper, the concept of piecewise companding transform (CT) is introduced into the O-OFDM system advocated, forming the CTO-OFDM arrangement. We first investigate the general principles and design criteria of the piecewise CTO-OFDM. Based on our studies, three types of piecewise companders, namely, the constant probability sub-distribution function, linear PsDF (LPsDF), and the non-LPsDF-based CT, are designed. Furthermore, we investigate the nonlinear effect of hard clipping and of our CT on O-OFDM systems in the context of different scenarios by both analytical and simulation techniques. Our investigations show that the CTO-OFDM constitutes a promising signaling scheme conceived for VLCs, which exhibits a high bandwidth efficiency, high flexibility, high reliability, as well as a high data-rate, despite experiencing nonlinear distortions.
Text
FINAL-Article.pdf
- Accepted Manuscript
Text
07784728
- Version of Record
More information
Accepted/In Press date: 10 December 2016
e-pub ahead of print date: 15 December 2016
Published date: 25 February 2017
Organisations:
Electronics & Computer Science
Identifiers
Local EPrints ID: 401142
URI: http://eprints.soton.ac.uk/id/eprint/401142
PURE UUID: 61b8f8e4-11ea-4dbc-a0da-d3ce27ea488d
Catalogue record
Date deposited: 10 Oct 2016 10:49
Last modified: 18 Mar 2024 02:49
Export record
Altmetrics
Contributors
Author:
Hongming Zhang
Author:
Lie-Liang Yang
Author:
Lajos Hanzo
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics