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Summary. We present a common framework for Bayesian emulation methodologies for multivariate-
output simulators, or computer models, that employ either parametric linear models or nonpara-
metric Gaussian processes. Novel diagnostics suitable for multivariate covariance-separable
emulators are developed and techniques to improve the adequacy of an emulator are discussed
and implemented. A variety of emulators are compared for a humanitarian relief simulator, mod-
elling aid missions to Sicily after a volcanic eruption and earthquake, and a sensitivity analysis
is conducted to determine the sensitivity of the simulator output to changes in the input vari-
ables. The results from parametric and nonparametric emulators are compared in terms of
prediction accuracy, uncertainty quantification and scientific interpretability.

Keywords: Bayesian emulation; Computer experiment; Gaussian process; Lightweight emula-
tor; Nonparametric regression.

1. Introduction

There are many systems in the physical, social and engineering sciences for which physi-
cal experimentation is infeasible or unaffordable. Some examples include investigations on
ecosystems, infectious diseases, climate change, and galaxy formation (see Kennedy et al.,
2006, for a number of case studies). In such situations, it is now common for the scientist
or engineer to develop a simulator, or computer model, that provides an approximation of
the observed response from the physical system. In essence, the simulator is a deterministic
or stochastic mathematical function that maps the inputs of a system to a prediction of its
outputs.

A simulator that has been successfully calibrated and validated, perhaps using physical
data, can be employed for a number of tasks including prediction, optimisation, and sensi-
tivity and uncertainty analyses (Kennedy and O’Hagan, 2001). However, both calibrating
and exploiting the simulator typically requires very many simulator evaluations. For com-
plex problems, the computational expense of the simulator means brute-force approaches to
these problems are infeasible, taking many hours, days or even weeks. Therefore, a funda-
mental step in understanding and using simulators is often the construction of a statistical
emulator, or meta-model, through a computer experiment (Sacks et al., 1989). Here, the
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simulator is run at a carefully selected collection of combinations of the input variables and
the resulting evaluations are treated as data to which a statistical model, the emulator,
is fitted. The emulator can then be used to produce fast predictions of the output of the
simulator for any values of the input variables, along with an associated measure of the
prediction uncertainty. The emulator can then replace and supplement the simulator in
both statistical calibration and scientific investigation. For more on computer experiments,
see Santner et al. (2003), Fang et al. (2006), and Levy and Steinberg (2010).

A Bayesian approach is very natural when constructing statistical emulators (O’Hagan,
2006) with the chosen statistical model treated as a prior distribution on the simulator out-
puts and prediction, with associated uncertainty quantification, via the posterior predictive
distribution (see Section 1.2). Typically, a nonparametric Gaussian process (GP) regression
model (Rasmussen and Williams, 2006) is employed; its advantages include flexibly adapt-
ing to the simulator evaluations and, for deterministic simulators, interpolating between
data points. However, for some simulators, these advantages may be more than offset by
the computational expense of estimating the GP model, and simpler and more computa-
tionally efficient models, such as multivariate linear regression, may be effective and more
interpretable. Whatever statistical approach is taken to constructing the emulator, an im-
portant step is assessing its adequacy through formal statistical diagnostics (Bastos and
O’Hagan, 2009).

Frequently, each run of a simulator outputs a multivariate response, perhaps as a result
of a time series or other dynamic process. The purpose of this paper is to present a Bayesian
framework for covariance-separable emulation of multivariate simulators using parametric
and nonparametric models and to develop novel model diagnostic procedures appropriate
for such emulators. As part of our presentation, we unify the multivariate Gaussian process
emulator of Conti and O’Hagan (2010) and the lightweight emulator of Rougier (2007).
Through an application to a simulator of a humanitarian relief mission, we demonstrate
effective emulation, model selection and model checking for multivariate problems with a
mixture of continuous and categorical input variables.

1.1. A humanitarian relief simulator with multivariate dynamic output
Simulators have a long history of use in military and civilian emergency planning (see,
for example, Ingber et al., 1991). DIAMOND (DIplomatic And Military Operations in a
Non-warfighting Domain; Taylor and Lane, 2004) is an emergency planning simulator for
modelling peace support operations such as humanitarian relief and peace keeping. DIA-
MOND is mission-based, with high-level operational plans deconstructed into missions for
individual units. It is able to model the actions and interactions between a wide range of
agents, including military forces in non-warfighting roles, non-governmental organisations
(NGOs), indigenous forces and civilians. A range of environmental and infrastructure fea-
tures can also be varied.

Our application of DIAMOND provides a deterministic model of a humanitarian relief
mission to Sicily after an earthquake and subsequent eruption of Mount Etna. Etna is an
active stratovolcano on the east coast of Sicily near the cities of Catania and Giarre (see
Figure 1). It has been designated a “Decade Volcano” by the International Association
of Volcanology and Chemistry of the Earth’s Interior and the United Nations due to its
history of large eruptions and proximity to populated areas. Historically, more fatalities
have been caused by earthquakes in the region, such as in 1693 when an earthquake of
estimated magnitude 7.4 on the moment magnitude scale devastated the area and caused
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Fig. 1. Map of Sicily showing the locations of Mount Etna, Giarre, Catania, a possible humanitarian
task-force base, and the capital city Palermo

about 12,000 deaths in Catania (∼ 63% of the population at the time; Guidoboni et al.,
2007).

The simulator models damage to the food supply, hospitals and housing (shelter) in
Giarre and Catania resulting from the earthquake and eruption. An NGO launches a hu-
manitarian relief operation which has two missions:

(a) Food Aid Mission
To supply food to Catania and Giarre by helicopter from the NGO base.

(b) Repair Mission
To transport engineers from the NGO base to Giarre and Catania, where they repair
the food supply infrastructure and/or the shelter.

We consider a scenario designed by the UK Defence Science and Technology Laboratory for
the explicit and sole aim of model-testing; the scenario is not intended to support any real
world decisions. Here, the NGO has four helicopter teams, two engineering teams and a
single food depot. Two helicopter teams are assigned to the food aid mission and the others
to transporting the engineers for the repair mission.

The simulator has p = 13 input variables, which represent the scale of the disaster and
features of the humanitarian relief operation (see Table 1). Eleven of these variables are
continuous, with the other two being categorical with each having two levels. Input variables
x1-x6 determine the impact of the earthquake and eruption on the population of Giarre
and Catania by specifying the capacity of hospitals, shelter and food supply immediately
following the disaster. The specification of these input variables creates a shortfall between
population and shelter and/or food supply, leading to casualties.

The remaining input variables (five continuous, two categorical) control certain features
of the humanitarian relief mission. The continuous input variables are self-explanatory with
the exception of x7: the weighting of the engineer toolbox. This variable controls the relative
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Table 1. Input variables for the humanitarian relief mission simulator. The units of measurement
for helicopter cargo capacity are specific to this simulator. Note that the initial populations in the
simulator of Giarre and Catania are 27,000 and 300,000, respectively. Under normal circumstances,
the simulator only expects 1% of the population per day to require hospital treatment.

Continuous input variables
Name Symbol Range Units

Giarre hospital capacity x1 (135, 270) person/day
Giarre shelter capacity x2 (13500, 27000) person/day
Giarre food supply capacity x3 (13500, 27000) person/day
Catania hospital capacity x4 (2000, 3000) person/day
Catania shelter capacity x5 (200000, 300000) person/day
Catania food supply capacity x6 (200000, 300000) person/day
Weighting of the engineer toolbox x7 (0, 1) N/A
Planning time for the humanitarian mission x8 (36, 60) hrs
Helicopter cruise speed x9 (220, 270) km/hr
Helicopter cargo capacity x10 (7000, 7500) N/A
Engineer ground speed x11 (0, 10) km/hr

Categorical input variables
Name Symbol Levels

Recipient of food aid x12 {Giarre & Catania, Catania only}
Location of NGO base x13 {Continental Europe, Task-force Base}

importance given to repairing shelter and the food supply by the two engineering teams;
x7 = 0 (x7 = 1) corresponds to engineers only repairing the shelter (food supply).

The two levels for categorical variable x12 correspond to, respectively, supplying food
aid to both Giarre and Catania or to Catania alone. Although the second option is perhaps
morally and politically unappealing, it may be practically relevant as there can be a much
greater shortfall between the available and required food in Catania. Simulation modelling
allows investigation of the impact of potentially unattractive options. For x13, the two levels
correspond to the NGO base being (i) in continental Europe or (ii) part of a military task
force located on a fleet of ships in in the Strait of Messina between Italy and Sicily (see
Figure 1).

Each run of the simulator is defined by a setting for x1-x13. The output from each
simulator run is the number of civilian casualties that have occurred on each of days 2,3,4,5
and 6 following the disaster. Therefore, the output for each run is a five dimensional vector.

1.2. Bayesian emulators
A Bayesian approach will be taken to constructing an emulator for the DIAMOND simulator.
Let x = (x1, ..., xp)

T ∈ X ⊂ Rp denote the vector of p input variables, with X the p-
dimensional input space. The simulator is assumed to be a black-box function, f : X →
Y ⊂ Rk, with Y the k-dimensional output space; that is

f(x) = {f1(x), ..., fk(x)}T ,

is the k×1 output vector from the simulator at input combination x. An emulator for f(·) is
a prediction equation that provides a surrogate for f(x0), where x0 is an input combination
at which the simulator has not previously been evaluated.

For a collection of input combinations ζ = {x1, ...,xn}, with xi = (xi1, ..., xip)
T

, the
simulator outputs are collated into an n× k output matrix
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Y =

 f(x1)T

...
f(xn)T

 .

A priori, we assume that Y is a realisation from a probability distribution, specified up to
a d × 1 vector of unknown parameters θ ∈ Θ, with Θ ⊂ Rd the parameter space. After
running the simulator for the input combinations in ζ, the emulator is constructed as the
posterior predictive distribution (see, for example, O’Hagan and Forster 2004, p. 89) of
y0 = f(x0), given by

π(y0|Y ) =

∫
Θ

π(y0|θ, Y )π(θ|Y ) dθ . (1)

Here, π(θ|Y ) is the posterior density function for θ, found using Bayes theorem, and
π(y0|θ, Y ) is the conditional posterior predictive density for y0.

In the remainder of this article, methodology for multivariate Bayesian emulation is
developed and applied. In Section 2, the detailed methodology used to obtain the poste-
rior predictive distribution is described for both multivariate Gaussian processes and linear
models. In Section 3, model selection and diagnostics for multivariate emulators are devel-
oped and discussed. In Section 4, results are presented from applying the methodology to
emulating the DIAMOND simulator. Section 5 gives a brief discussion.

Code to fit the emulators described in this paper and the training and test datasets are
provided as supplementary material.

2. Multivariate emulation via the posterior predictive distribution

In this section, the posterior predictive distribution is derived for a general class of multivari-
ate linear models that includes Gaussian process (GP) models and linear regression models.
As such, the multivariate GP emulator of Conti and O’Hagan (2010) and lightweight em-
ulator of Rougier (2007) are special cases. We also demonstrate how the multivariate GP
emulator can include categorical input variables using the distance metrics of Qian et al.
(2008).

Our basic modelling assumption is that any finite set of multivariate responses has a
joint matrix normal distribution (Dawid, 1981) with mean function a linear combination of
unknown model parameters and a separable covariance structure with, potentially, correla-
tions between outputs from the same run and also between different runs of the simulator.
That is, for n× k response matrix Y

Y |B,Σ, A ∼ MNn,k (HB,Σ, A) , (2)

where HB is the n× k mean matrix and Σ and A are, respectively, k× k and n×n positive
definite column and row scale matrices. Note that

vec(Y )|B,Σ, A ∼ Nnk (vec(HB),Σ⊗A)

is a multivariate normal distribution, where vec(·) denotes the vectorisation function that
stacks columns of a matrix and ⊗ denotes the Kronecker product.

In (2), the matrix H is the n ×m model matrix with ith row given by h(xi)
T , where

h : X → H ⊂ Rm is a known function of the simulator inputs (i = 1, . . . , n). For example, if
h(x) = (1, x1), then the model contains an intercept and a linear term in x1. If some input
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variables are categorical, then we define the appropriate elements of h(xi) through the usual
constraints, for example corner-point or sum-to-zero. The matrix B is an m × k matrix of
unknown regression parameters.

The separability of the covariance structure implied by this matrix normal distribution
results in a common scale matrix Σ for the k multivariate responses at each of the n simulator
runs. An emulator with a separable covariance structure is both easier to implement and
interpret. If diagnostic measures (see Section 3.1) suggest inadequacy of the separable
emulator, alternative methodologies could be employed (see, for example, Fricker et al.,
2013, and references therein).

If homogeneity of variance across the simulator runs is assumed, that is Var {f(xi)} = Σ
for all i = 1, . . . , n, then A can be specified as a correlation matrix. For the multivariate GP
emulator, we define A through a stationary correlation function, and set ijth entry equal
to aij = c(|xi − xj |; r), i.e. the correlation between any two rows of Y depends only on the
distance between xi and xj (i, j = 1, . . . , n) and a vector of unknown correlation parameters
r. The lightweight emulator is defined as a special case with

c(xi,xj ; r) =

{
1 if i = j ,
0 if otherwise .

Thus we can replace conditioning on A in (2) by conditioning on r.
We use the conditionally conjugate (given r) matrix-normal-inverse-Wishart (MNIW)

prior distribution for B and Σ, denoted MNIWm,k (M,Ω, S, δ), where

B|Σ, r ∼ MNm,k (M,Σ,Ω) , (3)

Σ|r ∼ IWk (S, δ) . (4)

Here, IWk denotes the inverse-Wishart distribution for k× k positive-definite matrices, M ,
Ω and S are the m × k, m ×m and k × k matrices of hyperparameters, respectively, and
δ > 0 is the prior degrees of freedom. The corresponding probability density function is
given in Section 1 of the Supplementary Material, up to a normalising constant; see also
Rougier (2007).

Using this prior distribution the conditional posterior distribution, given r, is

B,Σ|Y, r ∼ MNIWm,k

(
M̂, Ω̂, Ŝ, δ̂

)
,

see Section 2 of the Supplementary Material, where

Ω̂ =
(
HTA−1H + Ω−1

)−1
,

M̂ = Ω̂
(
HTA−1Y + Ω−1M

)
,

Ŝ = Y TA−1Y +MTΩ−1M + S − M̂TΩ̂−1M̂ ,

δ̂ = δ + n .

To predict the simulator output Y0 = [f(x01), . . . , f(x0n0)]
T

at a set of n0 test inputs,
ζ0 = {x01, ...,x0n0}, we first define the joint conditional distribution of Y and Y0(

Y
Y0

)∣∣∣∣B,Σ, r ∼ MNn+n0,k

([
H
H0

]
B,Σ,

[
A T
TT A0

])
, (5)
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where H0 is the n0 ×m matrix with uth row h(x0u)T , A0 is the n0 × n0 matrix with uvth
element given by c(x0u,x0v; r), and T is the n × n0 matrix with iuth element given by
c(xi,x0u; r) (u, v = 1, . . . , n0; i = 1, . . . , n).

It can be shown (see Section 3 of the Supplementary Material) that the conditional
distribution of Y0 is

Y0|Y,B,Σ, r ∼ MNn0,k

(
H0B + TTA−1(Y −HB),Σ, A0 − TTA−1T

)
. (6)

From (5) and (6), we can see the fundamental difference between the GP and lightweight
emulators; for the lightweight emulator, the output from different simulator runs is assumed
independent given {B,Σ} and hence the matrix, T , of correlations between the observed
and unobserved simulator runs will be a zero matrix. Hence, conditional on B and Σ, the
distribution of Y0 does not depend on Y . For the GP emulator, with non-zero correlations
between simulator runs, the dependence between Y0 and Y remains even after conditioning
on B and Σ.

To obtain the posterior predictive distribution of Y0, given r, we integrate (6) with respect
to the posterior distribution of B and Σ (see Section 4 of the Supplementary Material):

Y0|Y, r ∼ MTn0,k

(
Q, Ŝ,R, δ̂

)
, (7)

where

Q = H0M̂ + TTA−1
(
Y −HM̂

)
,

R = A0 − TTA−1T +
(
H0 − TTA−1H

)
Ω̂
(
H0 − TTA−1H

)T
,

and MTn0,k(Q, Ŝ,R, δ̂) denotes the matrix t-distribution (Javier and Gupta, 1985) with

location matrix Q, column scale matrix Ŝ, row scale matrix R and degrees of freedom δ̂.
Marginal posterior predictive distributions for the uth simulator run, y0u = f(x0u), and the
sth output, y0,us = fs(x0u) are multivariate and univariate t distributions, respectively:

y0u|Y, r ∼ tk

(
qTu ,

RuuŜ

δ̂
, δ̂

)
;

y0,us|Y, r ∼ t

(
qus,

RuuŜss

δ̂
, δ̂

)
. (8)

Here, qu is the uth row of Q and qus is the usth element of Q, Ruu is the uth diagonal
element of R and Ŝss is the sth diagonal element of Ŝ.

For the lightweight emulator, where A = In, an n × n identity matrix, (7) provides
closed-form posterior predictive distributions. For the multivariate GP emulator, and the
most commonly used correlation functions c(·, ·; r), there does not exist a prior distribution
for r such that a closed-form expression can be obtained for the marginal posterior predictive
distribution of Y0. Typically, one of two approaches is taken: (i) r is replaced by a “plug-in”
estimate r̂, a representative value with respect to the marginal posterior distribution of r;
or (ii) Markov Chain Monte Carlo (MCMC) methods are used to sample from the marginal
posterior distribution of r and then for each sampled value of r, a value is drawn from the
conditional posterior predictive distribution (7).
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The plug-in approach is less computationally expensive than the fully Bayesian approach
and provides a closed-form emulator. We adopt the plug-in approach for prediction using the
marginal posterior mode of r, obtained by maximising the unnormalised marginal posterior
density

π(r|Y ) ∝ πr(r)|A|− k2 |Ω̂| k2 |Ŝ|−
δ̂+k−1

2 ,

where πr(r) is the prior probability density function for r.
The final step in building the multivariate GP emulator is choice of the correlation

function c(·, ·; r). The most commonly used function is the power exponential function,
which was extended by Qian et al. (2008) to incorporate both quantitative and qualitative
variables. Assuming without loss of generality that the variables are ordered, so that the first
p1 variables in x are quantitative and the next p− p1 are qualitative variables, a correlation
function that is exchangeable in the levels of the qualitative variables has the form

c(x1,x2; r) = exp

−
p1∑
l=1

rl|x1l − x2l|gl −
p∑

l=p1+1

rlI(x1l 6= x2l)

 . (9)

Qian et al. (2008) suggested a number of correlation functions for qualitative variables, each
reducing to the common form (9) for two-level qualitative variables. Throughout this paper,
we fix gl = 2 for all l.

3. Emulator diagnostics and improvement

In this section, we address diagnostics for emulator adequacy and methods for improving
emulator performance, including variable selection and the addition of a nugget term for
the multivariate Gaussian process.

3.1. Emulator diagnostics
We start by developing generalisations to multivariate emulators of the diagnostics provided
by Bastos and O’Hagan (2009) for univariate Gaussian process emulators. These diagnos-
tics assess the assumption underlying (2), that the responses conditionally follow a matrix
normal distribution with specified mean and correlation functions. Their evaluation requires
an additional validation set of simulator runs, ζ0 and Y0, to be available.

3.1.1. Individual prediction errors
As suggested by Bastos and O’Hagan (2009), standardised prediction errors can be explored
graphically or used to construct nominal-level predictive probability intervals. If the emula-
tor is an adequate model of the simulator, from (8), the standardised individual prediction
error

DI
us(Y0) =

√
δ̂

RuuŜss
(y0,us − qus)

has a standard t-distribution, conditional on Y with δ̂ degrees of freedom (u = 1, . . . , n0; s =
1, . . . , k). A large number of outlying standardised prediction errors, with respect to the
reference distribution, indicates serious inadequacy of the emulator. Bastos and O’Hagan
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(2009) suggested various graphical methods for identifying patterns in outliers and, sub-
sequently, causes for emulator inadequacy; for example, plots of the individual prediction
errors against each input variable or the predictive mean.

Individual (1− α)× 100% predictive probability intervals for each element of Y0 can be
constructed as

qus ± cα

√
RuuŜss

δ̂
,

where cα is the (1−α/2)th quantile of the standard t-distribution with δ̂ degrees of freedom.
The obtained coverage of these intervals can be compared against 1− α, with low coverage
suggesting the emulator is underestimating the prediction uncertainty.

3.1.2. Omnibus diagnostic
We now develop a summary statistic for overall emulator adequacy, analogous to the Ma-
halanobis distance diagnostic of Bastos and O’Hagan (2009). Define E as the n0×k matrix
of standardised predictions

E = G−1
R (Y0 −Q)G−1

S ,

where R = GRG
T
R and Ŝ = GT

SGS . Following Javier and Gupta (1985), for an adequate
emulator, the conditional posterior distribution of E is

E|Y, r ∼ MTn0,k

(
0n0×k, Ik, In0 , δ̂

)
.

We now define the diagnostic

U = |Ik + ETE|−1 , (10)

with extreme (large or small) values of U , relative to the reference distribution, indicat-
ing emulator inadequacy. Following Dickey (1967), the reference distribution for U is a
Uk,n0,k+δ̂−1 distribution (conditional on Y and r). Anderson (2003, p. 307) showed that
the Uk,n0,k+δ̂−1 distribution has the same distribution as a product of k independent Beta
random variables, i.e.

k∏
s=1

Xs ∼ Uk,n0,k+δ̂−1,

where Xs ∼ Beta
(

(k + δ̂ − s)/2, n0/2
)

. Summaries of this distribution can be calculated

by simulation.
The matrices GR and GS are not unique and depend on the chosen decomposition of R

and Ŝ, respectively; for example, the eigen or Cholesky decomposition. However,

U = |Ik + (G−1
S )T (Y0 −Q)

T
R−1 (Y0 −Q)G−1

S |
−1

= |Ik + Ŝ−1 (Y0 −Q)
T
R−1 (Y0 −Q) |−1 ,

and therefore the value of the diagnostic U is invariant to the choice of decomposition.
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Assuming (2), also note that

cov (vec(E)) =
1

δ̂ − 2
Ikn0 ,

and hence the elements of δ̂
1
2E form an uncorrelated sample from the t-distribution with δ̂

degrees of freedom. Quantile-quantile (QQ) plots of these elements can be used as an addi-
tional check on emulator adequacy. The elements of E are dependent on the decomposition
used to obtain GR and GS . However as noted by Bastos and O’Hagan (2009), any choice
of decomposition method is appropriate for use in a QQ-plot, and we use the Cholesky
decomposition.

For univariate simulator output (k = 1), the omnibus statistic reverts to the Mahalanobis
distance suggested by Bastos and O’Hagan (2009). Now, E is an n0 × 1 vector following a

tn0
(0, (1/δ̂)In0

, δ̂) distribution, ETE is scalar and 1− U ∼ Beta(n0/2, δ̂/2) with

δ̂(1− U)

n0U
=

δ̂

n0
ETE ∼ F

(
n0, δ̂

)
.

The quantity ETE/(δ̂−2) is the Mahalanobis distance and F(a, b) denotes an F distribution
with a and b degrees of freedom.

3.2. Emulator improvement
The diagnostics in Section 3.1 can be used to suggest improvements to a multivariate emu-
lator. For example, graphical assessment of standardised errors may suggest different mean
functions h(x), transformations of inputs, or regions of X where new simulator runs should
be performed; see Bastos and O’Hagan (2009). We focus on selection of an appropriate
mean function and improvement of GP emulators via the addition of a nugget.

3.2.1. Mean function selection via model comparison

It is common in the application of GP emulators to usually assume a simple form for the
mean function such as h(x) = 1 or h(x) = c(1,x) (see, for example, Bayarri et al., 2007).
Clearly, for the lightweight emulator, with uncorrelated errors, such a simple assumption
will usually be inappropriate. We demonstrate in Section 4 that using an overly complex
mean function (i.e. overfitting) can also be detrimental to the accuracy of the emulator
on an independent test data set, as with the more usual applications of the linear model.
This motivates the use of Bayesian model comparison as a vehicle for the selection of an
appropriate mean function.

Let each unique choice of h(x) be indexed by v, i.e. we label mean functions as hv(x),
with v ∈ V and V denoting the set of possible models. Then, following equations (2) and (7),

Y |Bv,Σv, v, rv ∼ MNn,k (HvBv,Σv, Av) ,

and

Y0|Y, v, rv ∼ MTn0,k

(
Qv, Ŝv, Rv, δ̂v

)
, (11)

where
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Qv = Hv,0M̂v + TT
v A
−1
v (Y −HvM̂v) ,

Rv = Av,0 − TT
v A
−1
v Tv + (Hv,0 − TT

v A
−1
v Hv)Ω̂v(Hv,0 − TT

v A
−1
v Hv)

T ,

Ω̂v =
(
HT
v A
−1
v Hv + Ω−1

v

)−1
,

M̂v = Ω̂v
(
HT
v A
−1
v Y + Ω−1

v Mv

)
,

Ŝv = Y TA−1
v Y +MT

v Ω−1
v Mv + Sv − M̂T

v Ω̂−1
v M̂v ,

δ̂v = δv + n ,

Mv, Ωv, Sv and δv are hyperparameters for the vth model, rv holds the correlation param-
eters for the vth model, and Hv,0, Hv, Av, Av,0, Tv and Bv for model v are analogous to
matrices defined in Section 2.

A fully Bayesian approach would average (11) with respect to the posterior distribution
of the correlation parameters, rv, and the posterior model probabilities to provide a model-
averaged posterior predictive distribution. Alternatively, Bayesian model comparison can
be used to identify a model v̂, based on the posterior model probabilities, and Y0|Y, r̂v̂, v̂ can
be employed as an emulator. The obvious choice for v̂ is the posterior modal model with
highest posterior model probability. We adopt this latter approach, both for computational
convenience and also to provide interpretable emulators that aid scientific understanding of
the simulator.

The posterior model probability for model v is given by

π(v|Y ) =
π(v)

∫
π(Y |rv, v)π(rv|v)drv∑

v∈V π(v)
∫
π(Y |rv, v)π(rv|v)drv

,

where π(v) is the prior model probability of v such that
∑
v∈V π(v) = 1,

π(Y |rv, v) =
Γk

(
k+δ̂v−1

2

)
πnk/2Γk

(
k+δv−1

2

)
|Av|k/2

|Ω̂v|k/2

|Ωv|k/2
|Sv|(δ̂v+k−1)/2

|Ŝv|(δ̂v+k−1)/2
,

and Γk(·) is the multivariate gamma function (Javier and Gupta, 1985)

Γk(x) = πk(k−1)/4
k∏
s=1

Γ (x− (s− 1)/2) .

The term
∫
π(Y |rv, v)π(rv|v)drv which features in the posterior model probability is known

as the marginal likelihood. For the GP emulator, the integration required to evaluate the
marginal likelihood will not be analytically tractable. For the lightweight emulator, where
Av = In and does not depend on rv, the marginal likelihood is available in closed form.
However, if the number of models, |V|, is large then calculating the marginal likelihood
for every model will be computationally infeasible. Instead we generate a sample from the
posterior distribution of the model index, v, using MCMC methods. For a GP emulator,
each iteration of the MCMC method has two phases.

Phase 1 uses the MCMC model composition algorithm (Raftery et al., 1997) to update
the model index conditional on the current value of the correlation parameters. Suppose
the current model is v and a move to a model w is proposed with probability ρ(v, w) where
the correlation parameters remain unchanged, i.e. rw = rv. The move is accepted with
probability
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α =
π(Y |rv, w)π(w)

π(Y |rv, v)π(v)

ρ(w, v)

ρ(v, w)
. (12)

Phase 2 updates the correlation parameters, rv, conditional on the current model v using
a suitable MCMC method. We employ a random walk Metropolis-Hastings algorithm.

For the lightweight emulator, phase 2 is not required. After a large number of iterations,
when the chain has reached a stationary distribution, the proportion of iterations that visit
model v provides an approximation to π(v|Y ). We choose ρ(v, w) such that (i) proposed
models can only add or remove a single term from the current model, adhering to marginality,
and (ii) all possible models that obey these conditions are equally likely to be proposed.

3.2.2. Non-zero nugget

Gramacy and Lee (2012) discussed improving the adequacy of univariate GP emulators via
the inclusion of a non-zero nugget parameter, principally to mitigate the effects of incorrect
model assumptions. Use of a nugget changes the (i, j)th element of A,

aij = c(xi,xj ; r) + ηI(i = j) ,

where η ≥ 0 is the nugget parameter and I(i = j) is the indicator function. For pre-
diction, we again adopt a plug-in approach for the nugget parameter, and replace η by a
representative value η̂ (the posterior mode). For model selection, the value of the nugget is
sampled in phase 2 of the MCMC algorithm. The prior for η used in this paper is given by
π(η) = (1+η2)−1, previously used by Conti and O’Hagan (2010) for correlation parameters.

4. Application to the DIAMOND simulator

In this section, the methodology from Sections 2 and 3 is employed to construct and check
multivariate GP and lightweight emulators for the DIAMOND simulator. Recall that the
scenario under investigation has been solely designed for model testing purposes. Hence,
when, for example, we refer to the importance of specific input variables, we do so only
in that context. In particular, we do not intend these observations to be applied to other
situations. For the construction of each emulator, we scale the continuous input variables
to [0, 1] and denote the levels of the categorical variables as {0, 1}.

4.1. Prior information
When constructing individual GP and lightweight emulators, we assume weak prior infor-
mation for the model parameters B, Σ and r, following Conti and O’Hagan (2010):

M = 0m×k ,

Ω−1 = 0m×m ,

S = 0k×k ,

δ = −k + 1 .

The correlation parameters r are assumed independent, with prior distributions specified
using the approach of Linkletter et al. (2006). We rewrite c(x1,x2; r), from (9), as
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c(x1,x2; r) =

p1∏
l=1

ρ
|x1l−x2l|2
l

p∏
l=p1+1

ρ
I(x1l 6=x2l)
l ,

where ρl = exp(−rl) ∈ (0, 1) for rl > 0 (l = 1, . . . , p). We assume a uniform prior dis-
tribution for ρl, leading to the induced prior for rl being an exponential distribution with
E(rl) = 1.

When performing model comparison for the selection of the mean function with only
weak prior information available for the parameters of each model, we adopt prior hyper-
parameters Sv = 0k×k and δv = −k + 1 for Σv, which is present in all models, and unit
information prior distributions for Bv, with Mv = 0p×p and

Ωv = n
(
HT
v A
−1
v Hv

)−1
,

as proposed by Kass and Wasserman (1995). The use of proper prior distributions for
Bv avoids Lindley’s paradox (see Bernardo and Smith, 1994, pg 394) which states that
the posterior model probabilities are sensitive to the scale of the prior variance (see also
O’Hagan and Forster, 2004, pp. 322-324, Raftery et al., 1997 and Fernandez et al., 2001).
We assume the same exponential prior, see above, for each element of rv for each model, i.e.
π(rv|v) = π(rv). A uniform prior over the model space is chosen, i.e. π(v) = |V|−1, where
V is the set of all sub-models of the maximal model that respect marginality. The maximal
model has a mean function consisting of the intercept, all linear, two-way interaction and,
for the continuous inputs, quadratic terms. The resulting model matrix, H, has m = 103
columns.

For this weak prior information, α from (12) reduces to

α = (n+ 1)k(mv−mw)/2 |Ŝv|n/2

|Ŝw|n/2
ρ(w, v)

ρ(v, w)
,

where

Ŝv = Y TA−1
v

(
In −

n

n+ 1
Hv

(
HT
v A
−1
v Hv

)−1
HT
v A
−1
v

)
Y .

4.2. Design of the computer experiment
We employed a space-filling design that would enable the estimation of both the Gaussian
process and lightweight emulators. The most common design used for computer experiments
is the Latin Hypercube (McKay et al., 1979) and its extensions (see, for example, Tang,
1993, and Morris and Mitchell, 1995). Such designs provide low-dimensional uniformity in
the input variables, hence achieving good projection properties, and allow the estimation
of nonparametric regression models. They are also an attractive choice for lightweight
emulation, as the exact form of the emulator will be unknown in advance of the data
collection and a flexible design that allows the fitting of many different parametric models
may be required (see Section 3.2).

The design, ζ = {x1, ...,xn}, for this study needed to combine both continuous and
categorical input variables. We used a sliced space-filling design as proposed by Qian and
Wu (2009) with n = 120 runs. Such a design, constructed from an orthogonal array, has
not only good space-filling properties overall but also for the projection into the continuous
variables for each combination of values of the categorical input variables.
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4.3. Construction of adequate emulators
We constructed both lightweight and multivariate GP emulators for the DIAMOND simu-
lator using the n = 120 simulator runs, each outputting k = 5 responses, from the sliced
space-filling design as training data. For model validation and diagnostics, we use a second
design ζ0 = {x01, ...,x0n0

}, with associated n0 × k simulator output matrix Y0. This design
is also a sliced space-filling design with n0 = 120 runs and was constructed using a different
orthogonal array to that used to construct ζ.

We chose, assessed and compared emulators using the diagnostics from Section 3. We
calculated the root mean squared error (RMSE) for Y0,

RMSE =

[
1

n0k

n0∑
u=1

k∑
s=1

(Y0,us − qus)2

]1/2

,

where Y0,us is the simulator output from the uth validation run for response s. We also
calculated the root relative mean squared error (RRMSE),

RRMSE =

[
1

n0k

n0∑
u=1

k∑
s=1

(Y0,us − γus)2

Y 2
0,us

]1/2

,

where the point estimate γus = E
(
Y −1

0,us|Y, r̂
)
/E
(
Y −2

0,us|Y, r̂
)

minimises the relative squared
error loss function.

4.3.1. Lightweight emulators

Our first lightweight emulator was the maximal model. The value of the omnibus test
statistic, U , and coverage of the 95% predictive probability intervals are given in Table 2.
Note that the reference distribution for U has expected value of 0.030, and 2.5% and 97.5%
quantiles of 0.019 and 0.044, respectively. The diagnostics indicate there is a discrepancy
between the simulator and this emulator, with the observed value of U and the achieved
coverage both being low. Further evidence of this discrepancy is the QQ-plot of the uncorre-
lated errors against a reference t-distribution, Figure 2(a); the points form a line with slope
greater than one, indicating that the variance associated with the emulator predictions has
been underestimated.

To attempt to alleviate the obvious inadequacy of this emulator, alternative mean func-
tions h(x) were compared using Bayesian model comparison (Section 3.2). The posterior
modal model was found from 105 iterations of the MCMC algorithm (discarding the first
10% of iterations as burn in). The algorithm took 2.5 minutes on a computer with a 3.20Ghz
processor and 8Gb RAM, and the average acceptance rate for the proposed moves in Phase
1 was 4.7%, reflecting the concentration of the posterior model probabilities on a small
number of models. Table 3 displays the terms in the posterior modal model, and gives the
associated posterior marginal inclusion probabilities (i.e. the proportion of visited models
that included that term). The model matrix, H, for the posterior modal model has m = 11
columns. The value of U and the coverage for the emulator with this alternative mean
function are shown in Table 2. These values suggest there is no evidence of a discrepancy
between the simulator and the emulator. This conclusion is supported by the QQ-plot
of the uncorrelated errors in Figure 2(b). Also shown in Table 2 are the RMSE and the
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Table 2. Observed values (to 3 decimal places) of the omnibus diagnostic U , coverage of the
95% predictive probability intervals, RMSE and RRMSE for the various emulators considered.
The reference distribution for U has expected value of 0.030, and 2.5% and 97.5% quantiles
of 0.019 and 0.044, respectively

Emulator Mean function Nugget U Coverage RMSE RRMSE

Lightweight Maximal NA 0.000 0.478 2728.791 6.975
Modal NA 0.025 0.953 988.729 0.528

Multivariate GP Intercept Zero 0.001 0.958 415.030 0.457
Linear Zero 0.015 0.965 344.234 0.397
Modal Zero 0.012 0.958 341.859 0.396
Maximal Zero 0.000 0.477 2701.149 6.791

Multivariate GP Intercept Non-zero 0.033 0.975 363.014 0.387
Linear Non-zero 0.019 0.948 1264.094 0.539
Modal Non-zero 0.034 0.963 334.597 0.403
Maximal Non-zero 0.000 0.478 2728.383 6.973
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Fig. 2. QQ-plots of the uncorrelated errors against a reference t-distribution for lightweight emulators:
(a) the maximal model; (b) the modal model

RRMSE of the maximal and modal model emulators. Note how the simpler form of emula-
tor has smaller values for RMSE and RRMSE, indicating the modal model has significantly
improved predictive accuracy.

4.3.2. Multivariate Gaussian process emulators

We construct GP emulators with four different forms for the mean function, h(x): (i)
intercept only (m = 1); (ii) linear terms only (m = 8); (iii) the modal model found by the
model comparison procedure (m = 7; see Table 3); and (iv) the maximal model (m = 103).
We initially fix the nugget at zero. As a comparison with Section 4.3.1, the model comparison
procedure took 30 minutes and had an acceptance rate of 0.5%.

Table 2 shows the values of U and the coverage for these four GP emulators. Figure 3(a-d)
show QQ-plots of the uncorrelated errors for these emulators. Clearly, the values in Table 2
and the QQ-plots show that there exist serious discrepancies between all four emulators and



16 A. M. Overstall and D. C. Woods

Table 3. Marginal posterior probabilities (up to 3 decimal places) of the terms in the modal mean
functions

Terms Lightweight GP GP
(zero (non-zero

nugget) nugget)

Linear Effects
Food capacity (Giarre) x3 0.999 1.000 1.000
Food capacity (Catania) x6 1.000 1.000 1.000
Planning time x8 0.970 1.000 1.000
Recipient of food aid x12 1.000 - -
Location of NGO base x13 1.000 1.000 1.000

Quadratic Effects
Planning time 0.764 0.999 1.000

Interactions
Food capacity (Giarre) × Recipient of food aid 0.811 - -
Food capacity (Catania) × Recipient of food aid 1.000 - -
Food capacity (Catania) × Location of NGO base 1.000 0.983 0.828
Recipient of food aid × Location of NGO base 0.914 - -

the simulator. Similar to the maximal lightweight emulator, the QQ-plot shows that the
variances associated with the GP emulator predictions are underestimated.

To remedy these inadequacies, we included a non-zero nugget in emulators using all four
forms of the mean function. The model comparison algorithm took 30 minutes and had an
acceptance rate of 1.6%. The modal mean function for both types of GP emulator (with and
without nugget) are identical (see Table 3). The values of U and the coverage for the four
non-zero nugget GP emulators are also shown in Table 2. The corresponding QQ-plots are
shown in Figure 3(e-h). There still exist discrepancies between the emulator and simulator
for the maximal and linear forms of the mean function. However, for the intercept and
modal forms, the values in Table 2 and the QQ-plots provide no evidence of inadequacy,
with the diagnostics being highly plausible under their reference distributions. The values
of RMSE and RRMSE for all eight GP emulators are also given in Table 2. Note the high
values of these errors under the maximal models. The intercept and modal GP emulators
(with non-zero nugget) have significantly higher predictive accuracy than the lightweight
emulators. There appears to be little difference between the intercept and modal model for
the GP emulators (with non-zero nugget) in terms of predictive accuracy.

4.4. Sensitivity analysis
An important application of statistical emulators are sensitivity analyses to identify impor-
tant input variables and their impact on the responses. For the lightweight emulator, the
model comparison algorithm in Section 3.2.1 has the advantage of automatically identifying
the most important input variables. When product terms are included in the mean func-
tion, it can also identify important interactions. For the DIAMOND simulator, there are
interactions between the food capacity at Catania and both the location of the NGO base
and the recipient of the food aid. There are also interactions between the food capacity at
Giarre and the recipient of food aid and location of NGO base and recipient of food aid.
There is evidence that planning time has a non-linear effect.

For the multivariate GP emulator, input variables can impact the response through
both the mean function and correlation structure. Hence, the model selection algorithm
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(c) Modal model (zero nugget)
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(d) Maximal model (zero nugget)

Theoretical quantiles

S
am

pl
e 

qu
an

til
es

−3 −2 −1 0 1 2 3

−
2

0
2

4

(e) Intercept model (non−zero nugget)
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(f) Linear model (non−zero nugget)
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(g) Modal model (non−zero nugget)
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Fig. 3. QQ-plots of the uncorrelated errors against a reference t-distribution for the zero nugget GP
emulator with (a) the intercept model, (b) the linear model, (c) the modal model, (d) the maximal
model, and for the non-zero nugget GP emulator with (e) the intercept model, (f) the linear model, (g)
the modal model, (h) the maximal model

in Section 3.2.1 may not identify all the important variables. For an intercept-only GP,
the relative importance of the input variables is only determined by the relative magnitude
of the corresponding correlation parameters, r. In general, the output is more sensitive to
those input variables with large correlation parameters. As calibrating the size of correlation
parameters can be difficult, Linkletter et al. (2006) proposed a more formal variable selection
method for univariate GPs, reference distribution variable selection (RDVS). Values of an
inert input variable, x∗, are randomly generated from the input space X . An MCMC
sample is generated from the marginal posterior distribution of r and r∗, where r∗ is the
correlation parameter of the inert input variable. The above procedure is repeated B times
with different randomly generated values of inert input variables. The posterior median of
each element of r, approximated from the union of the MCMC samples from all randomly
generated sets of inert input variables, is compared to the null reference distribution of the
posterior medians of r∗ (obtained from the B sets of values for the inert input variable).
For more details see Linkletter et al. (2006).

Application of RDVS to multivariate GP emulators is straightforward. Our simulator
has both continuous and categorical input variables, and hence we adapt RDVS by at
each iteration randomly generating values for two inert input variables, x∗1 and x∗2, where
x∗1 ∈ [0, 1] and x∗2 ∈ {0, 1}, with {0, 1} indicating the two levels for a categorical variable.
The posterior median of the elements of r corresponding to continuous input variables is
then compared to the null reference distribution of the posterior medians of r∗1 , and similarly
for the categorical input variables and r∗2 .

We applied RDVS with the GP emulator (with non-zero nugget and the intercept mean
function), using B = 1000. Figure 4 displays the null reference distributions for the cor-
relation parameters (on the log scale) of the (a) continuous and (b) categorical inert input
variables, i.e. the 1000 posterior medians of the correlation parameters, r∗1 and r∗2 , from the
MCMC samples. Also indicated in Figure 4 are the posterior medians of the actual input
variables as vertical lines. Clearly the most important continuous input variables are the
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(b) Categorical input variables
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Fig. 4. Histograms of the null reference distributions from the RDVS method for the correlation
parameters of the (a) continuous and (b) categorical inert input variables. The posterior medians of
the input variables are shown as vertical lines

food capacities at both Giarre and Catania, planning time and helicopter speed. Both of the
categorical input variables are deemed to be important. This agrees with the conclusions
from the modal lightweight emulator, except for the inclusion of helicopter speed.

RDVS with a GP emulator having mean function including only an intercept is unable
to explicitly identify interactions. A probabilistic sensitivity analysis (see, for example,
Santner et al., 2003, ch. 7) can be used to understand and visualise the functional form of
the individual and joint effects of the variables.

The variation in the simulator output induced by variation in the input variables can
be decomposed into main effects and interactions. Assume interest is in the total number
of casualties across days two to six of the disaster, given by g(x) =

∑k
i=1 fi(x). Letting E

denote expectation with respect to an assumed joint distribution for the input variables x,
we can then define the following main effects and first-order interactions:

gi(xi) = E [g(x)|xi]− g0 , (13)

gij(xi, xj) = E [g(x)|xi, xj ]− g0 − gi(xi)− gj(xj) , (14)
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Table 4. Estimated first- and second-order sensitivity indices (multiplied by 1000 and displayed
up to 3 decimal places) of the input variables under the lightweight and multivariate Gaussian
process emulators.

Terms Lightweight Multivariate GP

First-order
Food capacity (Giarre) x3 9.978 7.854
Food capacity (Catania) x6 887.818 895.176
Planning time x8 2.589 1.881
Helicopter speed x9 0.000 0.312
Recipient of food aid x12 2.566 2.264
Location of NGO base x13 63.739 64.067
Sum of Others 0.000 0.023

Second-order
Food capacity (Giarre) × Recipient of food aid 1.184 0.474
Food capacity (Giarre) × Location of NGO base 0.000 0.365
Food capacity (Catania) × Recipient of food aid 1.620 2.121
Food capacity (Catania) × Location of NGO base 3.599 6.750
Planning time × Location of NGO base 0.000 0.572
Planning time × Food capacity (Catania) 0.000 0.173
Recipient of food aid × Location of NGO base 1.099 0.906
Sum of Others 0.000 0.178

where g0 = E [g(x)]. Corresponding partial variances are given by

Vi = E
[
gi(xi)

2
]
,

Vij = E
[
gij(xi, xj)

2
]
, i, j = 1, . . . , p .

Following Oakley and O’Hagan (2004), these variances can be estimated by their expecta-
tion, denoted E∗, with respect to the posterior predictive distribution of g(x), a non-standard
t distribution; see Section 5 of the Supplementary Material. Hence, the following estimated
sensitivity indices can be defined:

Ŝi = E∗(Vi)/E
∗(V ) , (first-order)

Ŝij = E∗(Vij)/E
∗(V ) , (second-order)

where V = Var [g(x)] with respect to the distribution of the input variables. Explicit formu-
lae for E∗(V ), E∗(Vi) and E∗(Vij) can be derived in terms of the expectation with respect
to the distribution of the input variables, and are given in Section 6 of the Supplementary
Material.

We assume that the input variables are independent, that the continuous variables are
uniformly distributed over their corresponding ranges and the categorical input variables
have probability 0.5 on each of their two levels. We compute the estimated sensitivity
indices under both the multivariate GP emulator (intercept mean function and non-zero
nugget) and, for comparison, the lightweight emulator (modal mean function). For the
lightweight emulator, the estimated sensitivity indices are available in closed-form (Rougier,
2007) and can only be non-zero for those main effects and interactions featuring in the,
selected, modal model. Under the multivariate GP emulator, the expectations with respect
to the distribution of the input variables require approximation, achieved here using Monte
Carlo integration.
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Fig. 5. Plots of expected conditional main effects (15) from the multivariate GP emulator (intercept
mean function and non-zero nugget) for four different settings for the food capacity at Catania (x6).
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Table 4 shows the estimated sensitivity indices under both emulators. For the multivari-
ate GP, we present first-order estimated sensitivity indices for each of the variables identified
by the RDVS method. We also present the seven largest second-order sensitivity indices;
four of the corresponding interactions were selected in the modal lightweight emulator. The
dominance of input variable x6, controlling the food capacity at Catania, is clear; variation
in x6 induces nearly 90% of the total output variation for both emulators. However, this
input variable, in common with x1-x5 is essentially a noise variable and clearly could not
be controlled in a real disaster. Hence, of particular interest are the interactions between
x6 and the control variables x7-x13. To graphically investigate these effects for the GP
emulator, in Figure 5 we display the expected conditional main effects

E∗ {E [g(x)|xi, x6 = l]− g0} , (15)

for i = 8, 9, 12, 13 (as identified by RDVS) and l = 0, 1/3, 2/3, 1. For x6 6= 1, there are strong
negative conditional effects for both categorical variables x12 and x13, with lower casualties
resulting from providing food aid only to Catania and, especially, locating the NGO base
with the task force. However, for x6 = 1, variable x13 no longer has a substantive effect and
x12 now has a positive effect (lower casualties result from providing food aid to both cities).
Planning time (x8) always has a positive effect, although the degree of nonlinearity changes
with the value of x6

5. Discussion

Statistical emulation of multivariate simulators is an important problem in a number of
application areas and presents challenging methodological issues. We have presented a uni-
fied Bayesian approach to the construction of both parametric (lightweight, linear model)
and nonparametric (Gaussian process) emulators, including model selection, diagnostics and
sensitivity analyses. Our application, emulating a humanitarian relief simulator applied to
an artificial scenario involving an earthquake and volcanic eruption in Sicily, demonstrated
the utility and versatility of the methodology. We were able to identify the most impor-
tant input variables, and their interactions, using the lightweight emulator. While the GP
emulator was more accurate, the lightweight emulator was more scientifically intuitive and
informative. The technology in this paper provides the capacity for our collaborators to
efficiently explore “what-if” questions and to make faster “in-theatre” decisions.

Extensions of the methodology to allow the construction and model-checking of different
emulators are possible. In Section 4, only weakly informative prior distributions were as-
sumed. If more informative prior information was available, this could be incorporated into
both lightweight and GP emulators, for example via the prior distribution for the regression
parameters B|Σ. It is likely that the use of such information would lead to a smaller dif-
ference in predictive accuracy between the two emulators, provided there was not a conflict
between the prior information and the simulator.

Diagnostics for multivariate emulators were also employed by Fricker et al. (2013) in a
number of case studies using models with a general class of non-separable covariance struc-
ture. These diagnostics were similar in spirit to those of Bastos and O’Hagan (2009) but,
for example, the non-separability prevents analytic marginalisation across any of the scale
parameters when calculating the equivalent to the omnibus statistic (10). An alternative
non-separable model may be constructed as the full posterior distribution under model un-
certainty, see Section 3.2.1. The model-averaged posterior predictive distribution is then a
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mixture of matrix t-distributions; see also Rougier (2007), who proposed a mixture of ma-
trix normal inverse Wishart joint prior distributions for B and Σ. The diagnostics described
in Section 3.1 are straightforward to extend to mixture distributions by averaging over the
components of the mixture using simulation.
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