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UNIVERSITY OF SOUTHAMPTON 
 

ABSTRACT 
FACULTY OF MEDICINE 

Clinical and Experimental Sciences 
 

Doctor of Philosophy 

BLOOD-BASED BIOMARKERS IN PSYCHIATRIC DISEASES 

by Michael S. Breen 

Identification of blood-based biomarkers for psychiatric disease risk and development has 

emerged as an important area of translational research in medicine, offering a means to 

supplement or replace current interview-based methods for psychiatric diagnosis. The aim of 

this thesis is to assess the utility of genome-wide blood transcriptome profiling for the 

prediction, diagnosis and treatment of patients with psychiatric diseases. Some parts of this 

work are of a more methodological nature and geared towards the discovery of blood-based 

biomarkers and gene networks, while others consider mechanistic and translational 

implications. Overall, this work contributes to understanding the pathophysiology of major 

psychiatric diseases and to the development of new biomarkers and treatments. 

 

Part I discusses the current transition from interview-based psychiatric diagnostics towards 

genomic-based interventions (Chapter 1) prior to introducing experimental methodologies 

(Chapter 2) and statistical approaches (Chapter 3) that may provide favorable translational 

avenues for blood biomarker discovery in psychiatry. 

 

Part II contains four investigations (summarized in Chapter 4) that apply genome-wide 

transcriptome profiling of patient blood samples in pursuit of blood-based biomarkers and 

gene networks implicated in posttraumatic stress disorder (Chapter 5), acute psychological 

stress (Chapter 6), methamphetamine-associated psychosis (Chapter 7) and treatment 

response in bipolar disorder (Chapter 8).   

 

Part III proposes a set of rules or postulates for accelerating the identification of reliable and 

accurate blood-based biomarkers in patients with psychiatric diseases (Chapter 9).  
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Chapter 1 

Biomarkers in Psychiatry 

 
1.1. The Global Burden of Psychiatric Disorders 
 
Mental and behavioural disorders are the most debilitating illnesses worldwide. The 

Global Burden of Disease (GBD) 2010 study identified mental and behavioural disorders 

as the leading cause of global disability, with an estimated 22.2% of all years lived with 

disability being attributable to these disorders (Murray et al., 2013). Mood and anxiety 

disorders, and substance abuse and drug dependence are among the top twenty 

conditions that result in the greatest burden of disability (Prince et al., 2007; Murray et al., 

2013). Disability associated with these conditions exceeds the burden associated with 

other non-communicable diseases such as cancer, diabetes, and cardiovascular disease, 

as well as HIV/AIDS, neurological diseases (i.e. stroke, seizures), war and injuries 

(Murray et al., 2013). As many mental disorders emerge in adolescence and persist into 

adulthood, the disability associated with mental disorders has a particularly profound 

impact, given that these developmental years would otherwise typically be the most 

productive educationally, professionally and economically. Indeed, mental and 

behavioural disorders account for the greatest percentage of disability between ages 10 

to 44 years, and this trend is comparable across low to high income countries (Grandes 

et al, 2011).  

 
Mental and behavioural disorders, particularly depression, schizophrenia and bipolar 

disorder, are associated with increased rates of all-cause mortality risk (Craig, 2013). 

These disorders are also significantly associated with increased risk for suicide, which 

accounts for approximately 10-15% of deaths for individuals with bipolar disorder and 

schizophrenia: and mental disorders are a factor in approximately 90% of all completed 

suicides (Gvion & Apter, 2012). These data are likely to be an underestimate of the true 

increase in all-cause mortality associated with mental and behavioural disorders as in 

many cases the mental disorder serves as the longer term condition that increases risk 
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for a more proximal cause of death. For example, impulsivity and substance abuse are 

associated with death by accidental injury (e.g., vehicular accidents), which would not 

necessarily be attributed to mental and behavioural disorders (Murray et al., 2013). 

Suicide reporting is sub-optimal in many countries, which results in underestimates of 

mortality risk associated with mental and behavioural disorders. Moreover, the 

relationship between mental and behavioural disorders and other health conditions is 

complex: mental disorders are closely associated with other health conditions that carry 

their own burden of disease, and comorbid mental illness incrementally increases the 

morbidity and mortality risk for chronic diseases such as angina, arthritis, asthma, and 

diabetes (Moussavi et al., 2007), cancer (Miovic & Block, 2007), and cardiovascular 

disease (Celano & Huffman, 2011). 

 

1.2. The ICD and DSM Classification Systems 
 
Improved classification of psychiatric disease is the most basic building block for 

advancing our understanding and treatment of mental and behavioural disorders. 

Without an internationally standardized and clinically useful classification system, 

progress in the development and distribution of evidence-based treatments would be 

heavily constricted. Currently, both the Diagnostic and Statistical Manual of Mental 

Disorders (DSM) and the International Classification of Diseases and Related Health 

Problems (ICD) are being re-evaluated alongside the development of an orthogonally 

designed system focused on dimensions and presumed underlying neurobiological 

mechanisms of psychiatric pathology, known as the Research Domain Criteria (RDoC).  

 

1.2.1. The Purpose of Classification 

 

The primary purpose of contemporary psychiatric classification systems (DSM and ICD) 

is three fold (modified from Sivkumar, 2009): (1) to provide nomenclature and descriptive 

information regarding patient entities that is essential for communication; (2) to guide 

better treatment and prevention and; (3) to provide comprehensive classification or 

understanding of the causes of psychiatric disorders and the processes involved in their 

development and maintenance.  
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1.2.2. The Difficulties of Classification 

 

However, there are several difficulties amongst conventional interview-based diagnostic 

systems (modified from Tyrer, 2014). First, there is an uncertain threshold of psychiatric 

diagnosis. That is, when a clinician makes a decision about a clinical diagnosis there is 

little guidance in deciding on the cut-off point between disease and wellness, when this 

depends on a subjective report of symptoms and a clinician’s observations of patient 

behaviours. Second, many of the existing schemes have proved to have low inter-rater 

reliability (assessments by different clinicians at the same point in time) and low 

temporal reliability (assessments carried out at different time points). Third, a reliable 

classification scheme is not necessarily a valid one. While there is limited empirical 

support for the clinical validity of most major psychiatric disorders, classification can be 

an ‘all or none’ concept. This is also problematic because symptoms are highly 

nonspecific and quite unstable over time. Finally, psychiatric disorders lack an objective 

biological basis that confirms clinical impressions of disease, unlike many other medical 

disorders (e.g. blood sugar in diabetes or blood pressure in hypertension). There are to 

date no objective clinical laboratory tests for psychiatric disease. 

 

1.2.3. The Evolution of Classification 

 

The ICD is the official world classification of disease and was first introduced in 1900 

following the first International Conference for the Revision of the International List of 

Causes of Death in Paris. It has undergone ten revisions, with the most recent revision 

being the ICD-10 (WHO, 1992). By contrast, DSM is the official classification in the USA 

and was first introduced in 1952 following the Korean War, when the US military decided 

to create a classification of mental disorders. The DSM has undergone successive 

revisions in 1980, 1987, 1994, 2000, and most recently, in May of 2013 with the DSM-5 

being the latest to be published (APA, 2013). In spite of differences between these two 

major systems (Table 1.1), there is much convergence between the two, and it is 

possible to ‘convert’ the diagnoses of one system into those of the other.  
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Table 1.1. Main Differences between ICD and DSM classification systems. 
ICD DSM 

Official world classification USA classification system (also used 
world-wide) 

Intended for use by all health practitioners Used mainly by psychiatrists 
Special attention to primary care and low-
income countries 

Focused mainly on secondary 
psychiatric care in high-income 
countries 

Major focus on clinical utility with 
reduction of number of diagnoses 

Tends to increase the number of 
diagnoses with each revision 

Provides diagnostic descriptions and 
guidance but does not use operational 
criteria 

Diagnosis depends on operational 
criteria using a polythetic system for 
most conditions 

Abbreviations; ICD, international classification of disease; DSM, diagnostic and 
statistical manual. Grey shading is for visualization purposes only.  

 

The creation of each edition of ICD of DSM of psychiatry has proven enormously 

controversial. One consequence of the recent revisions is that there is an even higher 

level of symptom profile heterogeneity. A prime example of expanded symptom 

heterogeneity has been highlighted following the latest DSM revision (DSM-5), which 

permits an eight-fold expansion of the total number of possible symptom combinations 

for the diagnosis of posttraumatic stress disorder (PTSD) from 79,794 symptoms to 

636,120 symptoms (Galatzer-Levy & Bryant, 2013): in other words, current DSM-5 

criteria permit 636,120 combinations of patient symptoms for the diagnosis of PTSD. 

 

1.3. Research Domain Criteria (RDoC): A New Paradigm 

for Psychiatry 
 

Recent controversies regarding the DSM-5 reached a pinnacle with an announcement 

from the National Institute of Mental Health (NIMH) which would shift their efforts and 

funding to the development of their own psychiatric nosology, the Research Domain 

Criteria (RDoC) (Cuthbert & Insel, 2013). The aim of the RDoC is to identify brain 

mechanisms, and related biomarkers, that can explain the etiology and pathophysiology 

of psychiatric disorders, provide earlier and more accurate diagnosis, and predict 

treatment responses and outcomes (Casey et al., 2013). It incorporates genetics and 

behavioural science, including the influence of the environment on neurodevelopment, 
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into a broad neuroscientific paradigm of psychiatry. By exploring the causes of mental 

illnesses and how these can inform interventions to modulate neural pathways, the 

circuit-based RDoC should offer a more satisfactory account of these illnesses than the 

symptom-cluster based ICD and DSM. The RDoC initiative seems to be structured 

around the concern that the only way to find objectivity in the classification of psychiatric 

disorders in psychiatry is to begin with biology and work back to symptoms.  

 

1.4. Biological Marker Strategy  

An interview-based diagnostic approach for psychiatric disorders is deficient in sensitivity 

and specificity, and has significant limitations for predicting diagnosis, onset, course of 

illness and response to treatment. The field of objective biomarkers has made 

tremendous recent progress, and in some instances have become well-accepted tools in 

guiding medical practice as in the diagnosis of myocardial infarction (Ahmad, 2012) and 

management of heart failure (Gaggin & Januzzi, 2013). To accelerate the identification of 

biomarkers for mental disorders the NIMH Strategic Plan (modified from NIMH, 2007) 

proposes that it will be important to: 

1. Support the development of integrated profiles/panels of biomarkers and behavioural 

indicators (e.g. genes, proteins, brain images, clinical measurements, or a 

combination of these), creating ‘biosignatures’ of disorders. A single biomarker is not 

likely to be sufficient to indicate the presence of a disorder, but a configuration or 

combination of biomarkers and behavioural indicators of small effect might do so.  

2. Support studies to identify biomarkers and behavioural indicators for different stages 

of illness and recovery (e.g., biomarkers for onset versus relapse, biomarkers 

indicating risk versus resilience).  

3. Support research that examines biomarkers which may be common to mental 

disorders and other medical disorders (e.g., inflammatory markers of heart disease) 

in order to identify shared molecular pathways that contribute to development of 

mental disorders.   

Although there is no widely accepted definition of what constitutes an actual biomarker, 

the NIH Biomarkers Definitions Working Group defined a ‘biomarker’ as a characteristic 
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that is objectively measured and evaluated as an indicator of normal biological 

processes, pathogenic processes, or pharmacological responses to a therapeutic 

intervention (Atkinson, 2001). A biomarker is an indicator of the presence or extent of a 

biological process that is directly linked to the clinical manifestations and outcome of a 

particular disease. Mueller et al. (2008) considered a biomarker to be a protein or other 

macromolecules that are associated with a biological process or regulatory mechanism. 

In this context, measurement of blood-based biomarkers might provide quantitative 

information that could be clinically helpful regarding such a mechanism. 

Depending on the clinical application, there are different sorts of biomarkers: 

• Antecedent markers for indicating risk of disease occurrence.  

• Screening markers for early detection of disease. 

• Diagnostic markers for revealing an existence of disease.  

• Staging markers for defining the stage and severity of a disease. 

• Prognostic makers to predict the course of disease, including treatment response. 

• Stratification markers that predict treatment response. 

• Biomarker signatures are indicators of a disease state that are usually linked to an 

ongoing pathophysiology and thus may also provide information and insights into the 

underlying molecular mechanisms of disease. 

In order for a diagnostic biomarker to be useful, certain criteria need to be met (modified 

from Sunderland et al, 2005; Henley et al, 2005): 

1. The biomarker should reflect some basic pathophysiological process, and detect a 

fundamental feature of the disease.  

2. The biomarker should be specific for the disease compared with related disorders. 

3. The biomarker can be measured repeatedly over time and should be reproducible.  

4. The biomarker should be measured in noninvasive and easy-to-perform tests that 

can be done at the bedside or in the outpatient setting (i.e. blood tests). 

5. The biomarker should not cause harm to the patient being tested. 

6. The biomarker should be cost effective.  
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Many new concepts have arisen in the field of biomarker research (Table 1.2). For 

example, the concept of ‘state’ and ‘trait’ have enjoyed wide usage in personality 

psychology and in other areas of psychology (Alston, 1974; Zuckerman 1976). A trait 

biomarker is used for revealing properties of the behavioural, neuropsychological and 

biological processes which often play an antecedent role in the pathophysiology of the 

psychiatric disorder. Terms closely related to trait biomarker include elementary 

phenotype, intermediate phenotype, risk indicator, risk marker and vulnerability marker 

(Adler et al, 1999; Agarwal, 2001; Gould & Manji, 2004). A state biomarker is in essence, 

a diagnostic marker that reflects the current status of clinical manifestations in patients.  

Table 1.2. Overview of some definitions used in the field of biomarker research1. 

Biological Marker 
Measurable and quantifiable biological parameters which 
serve as indices for health – and physiology related 
assessments. 

Clinical Endpoint 
A characteristic or variable that reflects how a patient 
feels, functions or survives. 

Surrogate biomarker 

A laboratory measurement or physical sign that is used in 
therapeutic trials as a substitute for a clinically meaningful 
endpoint that is a direct measure of how a patient, feels, 
functions or survives and is expected to predict the effect 
of the therapy. Generally biochemical markers which are 
easy and quick to measure, predictive in nature (e.g. 
peripheral blood). 

Validation 

The process of assessing the assay or measurement 
performance characteristics and qualification is 
evidentiary process of linking a biomarker with biology 
and clinical endpoints. 

Genetic marker 
A single gene (DNA) for which a mutation, deletion, single 
nucleotide polymorphism (SNP) or some other feature 
provides predictive value. 

Epigenetic marker Measurable chemical modifications to DNA or histones. 

Transcriptomic marker 
A measurable RNA molecule that is an indicator of normal 
biologic processes, pathogenic processes, and/or 
response to therapeutic or other interventions. 

Proteomic marker 
A protein expression pattern which is able to discriminate 
or predict. 

Metabolomic marker 
A pattern of metabolites which is able to discriminate or 
predict. 

Physiological marker 
Endocrine or autonomic measurements indicative of 
physiological responses to disease. 

Neuroimaging marker 
A non-invasive diagnostic tool for depicting brain 
chemistry, function or structure. 

1Based on: Biomarkers Definition Working Group 1998; Biomarkers Definition Working Group 
2001; Russel, 2004; Wagner & Merck, 2004. Grey shading is for visualization purposes only. 
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1.5. Advances in Genome Technology 

Recent successes in psychiatric genomics are the result of a confluence of several 

factors, some of which were set in motion decades ago, which suggest a considerably 

brighter future for our ability to delineate the ‘genetic architecture’ of mental disorders. 

The Human Genome Project (1990-2003) and accompanying advances in technology 

and population genetics included a shift from targeted association studies based on 

candidate genes to hypothesis-free genome-wide analytical approaches. In parallel, new 

approaches in bioinformatics and statistics, such as high-efficiency analysis pipelines 

and imputation, have made possible increasingly powerful and efficient study designs 

and analyses of genome-wide data of neuropsychiatric disorders (McKenna et al, 2010). 

These advances provide an opportunity for discovery of biological markers for 

psychiatric diseases that is starting to bear fruit. The search for psychiatric biomarkers 

has encompassed several technological and methodological areas of research, including 

studies of genetic (DNA), epigenetic (methylation), transcriptomic (RNA) and proteomic 

(protein) factors (Table 1.3). It is anticipated that such biomarkers will, in the hands of 

clinical investigators, provide a dynamic and powerful approach to understanding the 

spectrum of psychiatric disease with obv ious applications in clinical trials and disease 

prevention, diagnosis, and disease management.  

 

 
 

Table 1.3. Commonly used genome-wide technologies, platforms and applications. 
Tool Technology Applications 

 
Genomics 

Genome-wide association 
study (GWAS) 

Single Nucleotide Polymorphisms 
(SNP) 

DNA Microarray Copy number variants (CNV) 
Whole Exome Sequencing Rare and de novo variants 

Epigenomics Bisulfite Sequencing Quantification of methylation 
patterns  Methylation Array 

Transcriptomics Microarray Quantification of gene expression 
RNA-Sequencing 

Proteomics Mass Spectrometry Quantification of protein expression 
Grey shading is for visualization purposes only. 



11 

1.6. The Value of Transcriptome Biomarkers 
 
Given the high heritability of many psychiatric diseases (i.e. autistic spectrum disorder 

and schizophrenia), the discovery of genetic polymorphisms has rightfully encouraged 

much attention into their role as putative biomarkers. Results from recent genome-wide 

association studies (GWAS), copy number variation (CNV) and whole-exome 

sequencing (WES) studies are enabling, for the first time, empirical assessment of 

fundamental questions about the genetic architecture of psychiatric disorders (Gratten et 

al, 2015). However, referring back to the definition, a biomarker should be sufficiently 

dynamic to reflect changes in the processes it intends to index; DNA sequence 

variations, as ‘static elements’ do not necessarily satisfy this criterion. This is why 

psychiatric biomarker research tends to focus on more dynamic downstream readouts of 

the genome, such as the transcriptome (i.e. the RNAs transcribed from an individual’s 

genome) (Mirnics et al., 2006). The transcriptome has some fixed features, such as its 

variety of RNA sequences as dictated by the fixed DNA sequences it transcribes, but the 

transcriptome also has dynamic aspects, such as the amounts and combinations of 

RNAs expressed (i.e. gene expression) at various times within a cell in response to 

genetic, biological, and environmental cues. This includes different phases of the cell 

cycle, drug treatment, stress, aging, and diseases, all of which must be considered at 

the time of their determination. It is this property that makes the transcriptome a practical 

tool for the discovery of gene function and as a suitable molecular signature in 

psychiatric research.  

 

1.7. Trade-offs Between Brain and Blood Gene 
Expression Biomarkers in Psychiatric Disease 
 
As described in Table 1.2, a transcriptomic biomarker is a measurable RNA molecule 

that is an indicator of normal biologic processes, pathogenic processes, and/or response 

to therapeutic or other interventions. But just, ‘what’ constitutes a transcriptomic 

biomarker and ‘how’ are these biomarkers derived? Discovery begins with the extraction 

and isolation of total RNA from a target patient sample prior to experimental procedures 

for measuring the transcriptome (discussed in Chapter 2) and statistical applications for 

identification and validation of candidate biomarkers (discussed in Chapter 3). In 
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molecular psychiatric research, RNA is commonly extracted from either patient post-

mortem brain samples or peripheral blood samples, with considerable trade-offs 

between the two.  

 

1.7.1. Post-Mortem Brain Gene Expression  

 

The benefit of post-mortem brain gene expression is that it provides a mechanistic basis 

for directly understanding disease etiology: however several precautions need to be 

considered. For example, cellular diversity between and across various brain regions 

constitutes a serious problem for brain gene expression studies (Mirnics, Levitt et al., 

2006). For most studies, the proportion of brain cell types (i.e. neurons and glia) that 

make up the final constituent cells for RNA extraction remains completely unknown. As 

gene expression between neurons and glial cells is likely to be different and related to 

their various functional roles, differential sampling of cells in postmortem investigations 

would lead to gene expression differences arising from the various proportions of cells 

present. Laser capture microdissection presents a potential way around this obstacle by 

cutting out individual cell types in order to analyze their gene expression separately 

(Mirnics et al., 2006). However, the use of this technology to harvest a significant 

number of cells for this purpose is labour intensive. Furthermore, dissection of individual 

cells from brain tissue will lead to sampling of some of the neuropil, which may also 

confound findings. Alternatively, in silico computational methods aim to deconvolve the 

frequencies of differing cell types by working backwards to estimate specific cell type 

contributions from the observed gene expression picture. Other challenges faced by 

brain gene expression studies include (1) variability introduced by genetic diversity, (2) 

effects of disease treatment on gene expression, (3) differential diagnoses, (4) 

comorbidity with other disorders, (5) variation in age, pH, and drug abuse between 

groups in a cohort, (6) limited sample sizes with a small number of samples yielding 

high-quality RNA for investigation, and (7) variability in platform types and methods for 

hybridization, (8) difficulty in obtaining a sufficient number of well-preserved brain 

samples (Mirnics, Levitt et al., 2006). (9) Perhaps the most obvious limitation of brain 

gene expression as a putative biomarker of disease etiology is the relative inaccessibility 

of the brain and thus the inability to sample and re-sample gene expression in an effort 
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to monitor disease status or drug effects over extended periods of time. Thus, analysis of 

patient blood profiles (as presented in Chapters 5-7) offers an alternative means to 

investigate mechanisms relevant to psychiatric disease, providing a basis for discovery 

of clinically relevant biomarker signatures as a potential non-invasive surrogate of brain 

gene expression and function. 

1.7.2. Peripheral Blood Gene Expression  

Blood-based gene expression could similarly suffer from brain-based limitations (1), (2), 

and (3). In addition, lifestyle factors also significantly impact blood gene expression: diet, 

exercise, smoking, and time of last meal can all affect gene expression in the blood and 

hence matching and normalization for these factors where possible should be a standard 

consideration along with the other factors mentioned earlier when designing such studies 

(Demeaux et al., 2010). However, these variables can be controlled by the researcher 

(i.e. patients could be asked to give a fasting blood sample first thing in the morning). 

Additional questionnaires pertaining to the patient’s lifestyle can be administered to 

glean as much information as possible regarding potential influences on gene 

expression changes. Importantly, blood collection by venipuncture is relatively non-

invasive and can be performed as often as required in patients.  

Blood contains several different cell types as its constituent components. These cell 

types fall primarily into three categories: erythrocytes, leukocytes and thrombocytes 

(Jankowsky et al., 2015). With leukocytes making up the immune component of blood, 

focus has been cast on assessing gene expression changes within this subcategory of 

blood cells. However, even within this category, several cell types exist: neutrophils, 

eosinophils, basophils, lymphocytes, monocytes, and macrophages. This inherent 

variability and difference in the functional roles of leukocytes is no doubt reflected in 

differences in their gene expression profiles. Furthermore, based on the immune status 

of an individual, different proportions of these cell types may be present. Isolation of 

specific lymphocyte types may be achievable through techniques such as flow cytometry 

analysis and immunolabeling with magnetic beads conjugated to antibodies for specific 

cell-surface markers followed by separation through electromagnetic columns. However, 

such techniques are relatively inefficient ways of yielding sufficient numbers of cells for a 

representative microarray investigation and place further ‘stress’ on the cells, so altering 
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gene expression patterns (Beliakova-Bethell et al., 2013). In an attempt to 

circumnavigate problems with cell variability in blood samples, some researchers have 

chosen to use skin fibroblast cultures or to transduce and culture B-lymphocytes into 

lymphoblastoid cell lines using Epstein Barr virus prior to analysis (as presented in 

Chapter 8). These studies have the advantage of assessing gene expression effects in a 

relatively homogenous cell population free from the temporal state of individuals, but 

effects of exposure to virus and chromosomal alterations during culture may be 

considered as a confounder of these results (Iwamoto and Kato, 2006). 

1.7.3. Correspondence Between Brain and Blood Gene Expression  

The role of peripheral blood gene expression as a non-invasive surrogate for brain gene 

expression has been questioned due to the presumed indirect nature of communication 

between blood and brain cells. However, several lines of evidence suggest that both 

brain and blood cells respond to environmental stimuli at the transcriptomic level, and 

that this response is to some extent concordant between both tissue types. Research 

into the correspondence of gene expression across blood and brain compartments 

reveals that 35% - 80% of known transcripts are believed to be present in both tissues, 

with relatively low correlations (r < 0.65) (Tylee et al., 2013). However, the expression of 

a biomarker in the blood may not need to resemble the expression of the same analyte 

in the brain. An increasing body of literature emphasizes the fine-tuned communication 

between many seemingly distant bodily systems. For example, the discovery of a 

lymphatic vasculature reaching the meningeal linings of the brain highlights the potential 

role of peripheral mechanisms in brain disease etiology (Louveau et al., 2015). Results 

from recent blood-based gene expression studies are enabling empirical assessment of 

fundamental questions regarding functional genomic aspects underlying psychiatric 

disorders. To date, 144 publications have indicated dysregulation of immune-related 

genes in the periphery associated with the pathophysiology of psychiatric conditions 

using genome-wide transcriptome tools (Breen et al., 2016 under review). It could further 

be reasoned that because RNA expression can be influenced by both heritable (genetic 

and epigenetic) and non-heritable factors, measurements of the transcriptome in 

peripheral blood therefore might reflect common pathways in which untoward effects of 

risk genes and detrimental environmental risk factors converge. Therefore, a number of 
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studies presented in this body of work (Chapters 5-8) evaluated the transcriptome in the 

blood compartment. 

1.8. Measuring the Transcriptome  
Once RNA has been isolated from a target patient sample, the next step is measuring 

the transcriptome, which consists of profiling RNA abundance on genome-wide scales. 

Analytical techniques for measuring the transcriptome include microarray and next 

generation RNA-Sequencing.  

 

1.8.1. Microarray Technology 
 

Microarray technology provides a powerful genome-wide approach allowing the 

simultaneous study of the expression of thousands of genes or their RNA products, 

giving an accurate picture of gene expression in the cell or the sample at the time of the 

study (Mirnics et al., 2006). The starting point for a microarray is the hybridization of total 

cellular RNA (e.g. RNA extracted from patient samples) to hundreds of thousands of 

short oligonucleotide probes representing genomic DNA. A typical modern microarray 

consists of patches of such probes complementary to the transcripts whose presence is 

to be investigated, bound to a solid substrate. As the design, chemistry and kinetics of 

microarrays advances, this technology earned its place when aiming for biomarker 

discovery, provided the results are independently reproducible and the findings are 

critically evaluated with reference to other data (often post hoc). Although there have 

been many efforts to identify gene expression biomarkers for psychiatric diseases using 

microarray technology, the identified genes seldom overlap across studies, and attempts 

to replicate previous findings in different cohorts have generally yielded disappointing 

results (Yao et al, 2008). Much of these discrepancies may be due to differences in RNA 

isolation, library preparation and technological platforms (discussed in Chapter 2). 

However, several computational approaches exist that can be used to find reproducible 

signatures across independent studies by focusing attention on groups of genes with 

similar functionality, cellular compartments, or correlation patterns (discussed in Chapter 

3).  
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1.8.2. RNA-Sequencing Technology 
 
In recent years, researchers have turned towards direct high-throughput RNA-

Sequencing (RNA-Seq), which has considerable advantages over microarrays for the 

study of gene expression (Wang et al, 2009). The sequencing framework of RNA-Seq 

enables the investigation at high resolution of all the RNAs present in a sample, 

characterizing their sequences and quantifying their abundances at the same time 

(discussed in Chapter 2). In practice, millions of short strings, called ‘reads’, are 

sequenced from random positions of the input RNAs: these reads can then be 

computationally mapped on a reference genome to reveal a transcriptional repertoire for 

a particular sample, where the number of reads aligned to each gene gives a measure of 

its level of expression. With RNA-Seq, it is possible to determine the absolute quantity of 

every RNA molecule in a cell, and directly compare results between experiments (Wang 

et al., 2009). RNA-Seq has been a rich platform for deriving functional interpretation of 

molecular mechanisms underlying disease pathology and in providing putative predictive 

and diagnostic biomarkers in psychiatric disease: moreover, it has also been useful in 

identifying convergence across disorders (Breen et al., 2016). However, using huge and 

complex RNA-Seq datasets to generate biologically meaningful findings is not a trivial 

exercise and requires sophisticated computational strategies (discussed in Chapter 3). 

 

1.9. Shapes and Forms of Transcriptome Biomarkers 
 
In a statistical sense, once the transcriptome has been measured, it is possible to 

conceptualize three different levels of biomarker discovery (discussed in Chapter 3). 

First, for development of an objective test for psychiatric disease prediction and 

diagnosis, all clinical, biological and statistical aspects converge on the construction of a 

gene expression ‘classifier’: a classifier being a unique panel of cross-validated gene 

expression measurements (i.e. biomarkers) capable of differentiating between 

psychiatric conditions of interest. Second, in a strictly conventional sense a 

transcriptomic biomarker could also refer to a group of differentially regulated genes with 

sufficient statistical support. That is, when considering a two-group experimental design 

(e.g. PTSD versus controls) it is often of interest to consider which transcripts are 

significantly differentially regulated between these groups, while accounting for potential 

confounding factors (i.e. age, smoking, gender, therapy etc..). Third, the blood 



17 

transcriptome itself is fluid and dynamic, and made of many interacting molecules and 

cells. Recent statistical approaches aim to capture this dynamic by identifying gene 

networks, or groups of coordinately expressed transcripts, which comprise functional 

biomarkers of disease.  

At present, a consideration of the potential to derive clinical utility from gene expression 

should lead to reflection on the benefit, feasibility, and reproducibility, and scope for a 

putative prospective trial (Guest & Bahn, 2011). Benefit refers to the initial assessment 

of whether a predictive or diagnostic gene expression classifier is likely to improve on 

the accuracy or reduce the cost of any tool that may already exist for the disease. The 

feasibility of a classifier refers to its initial discovery and establishing its utility on a pilot 

study of interest. From here, a larger number of patients from the same cohort used in 

the pilot study should then be analyzed in the interval validation step, and once 

developed, needs external replication using an unrelated cohort of patients. Finally, a 

prospective trial should be initiated to evaluate the potential clinical utility of a gene 

expression classifier using prospective longitudinal studies.  

1.10.  Summary 
 
In summary, peripheral blood is an ideal surrogate tissue since it is readily obtainable, 

provides a large RNA pool in the form of gene transcripts, and response to changes in 

the macro- and micro-environments is detectable as alterations in the levels of these 

gene transcripts. However, before blood-based gene expression biomarkers can be 

detected, several measures must be considered. First, experimental methodologies 

focused on RNA treatment and library preparation, as well as microarray hybridization or 

RNA-Sequencing need to be considered (discussed in Chapter 2). Next, statistical 

methodologies and the use of computational pipelines are required to derive potential 

clinical and biological significance (discussed in Chapter 3). The utility of these 

techniques demonstrated in a series of exploratory studies to PTSD (Chapter 5), acute 

psychological stress (Chapter 6), methamphetamine-associated psychosis (Chapter 7) 

and bipolar disorder (Chapter 8). Finally, future avenues that will accelerate the 

development of accurate and objective blood-based tests in psychiatry are discussed 

(Chapter 9). 
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Chapter 2 

Experimental Methodologies in Blood 
Transcriptomics  

The discovery of blood-based biomarkers could greatly advance psychiatry, however the 

realization of this may take some time. One reason for this is that a ‘gold-standard’ 

approach for generating gene expression measurements is challenged by the existence 

of different experimental techniques and strategies. The typical workflow for blood-based 

gene expression studies includes several steps (Figure 2.1), each with diverse parts for 

addressing specific experimental aims. This chapter summarises these technical 

aspects and dissects each into its respective sub-components. First, I discuss the 

importance of performing power analysis and experimental design strategies prior to 

reviewing transcriptome RNA diversity. Then I address RNA isolation and preparation 

methods from patient blood samples and consider technological platforms for generating 

blood-based gene expression. Finally, I describe techniques for optimizing RNA-Seq 

platforms, which are important for the discovery of blood-based biomarkers in psychiatric 

diseases. 
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Figure 2.1. A typical gene expression work-flow. Power analysis indicates the optimal number of replicates 
and whether there is sufficient power to detect a biological effect. Following these estimates, venipuncture is 
performed and RNA is isolated, quality checked and prepared for either microarray hybridization or RNA-
Sequencing.  

2.1. Experimental Design 

Blood transcriptome studies are often complex, generate large amounts of data, and 

warrant careful planning. Many such studies begin with questions such as, “What is an 

ideal population size for discovery?” and “How can I ensure that my findings are 

meaningful and can be advanced upon?”. The most obvious criterion that can add power 

to any gene expression study is the number of patients available for investigation. 

Determining adequate sample sizes able that will achieve the experimental goals is an 

important first step. To better understand the relationship between sample size and the 

sensitivity and specificity of a gene expression biomarker, Dobbin et al (2008) developed 



21 

a power calculator specifically for gene expression studies. This tool, and ones alike, use 

the number of probes on the microarray platform, the likely proportion of samples in each 

class (i.e., PTSD vs. controls), and an estimate of the standardized fold change between 

classes based on the gene exhibiting the greatest difference. In addition to ensuring that 

enough samples are analyzed, it is best to have a balanced study design in which similar 

numbers of psychiatric ‘cases’ and controls are compared (Dupuy and Simon, 2007). 

Gene expression studies also generally contain two levels or replicates: first, technical 

replicates which provide measurement-level error estimates, and second, biological 

replicates that provide estimates of population-level variability. With stabilizing 

technological platforms, common practice is positioned towards measuring more 

biological replicates rather than technical replicates. It is also desired that all clinical and 

socio-demographic variables are balanced between the two groups being compared 

(e.g. equal number of males and females per group) to mitigate against confounding 

factors. Finally, to best evaluate the specificity of a biomarker, it is important to consider 

more complex experimental designs beyond the standard two group comparison. For 

example, if the study focus is on discovery of blood biomarkers for classifying PTSD, it 

may be useful to also consider the specificity of this biomarker panel relative to 

symptomatically similar phenotypes such as major depressive disorder, obsessive-

compulsive disorder and acute stress disorder. 

 

2.2. Transcriptome RNA Diversity: Implications for 

Biomarker Discovery 

Blood-based biomarker discovery is mainly focused on the expression levels of 

messenger RNA (mRNAs). This is useful because one can derive putative protein-level 

implications from mRNA expression levels (i.e. DNA  mRNA  protein). Non-coding 

RNA (ncRNA) transcripts were traditionally believed to be ‘by-products’ derived from 

mRNA degradation or nonspecific polymerase activity, and therefore termed 

‘transcriptional noise’. However, it is now clear that ncRNAs, such as microRNA (miRNA) 

and long non-coding RNAs (lncRNAs), are responsible for many aspects of gene 

regulation including regulation of translation, of mRNA transcription, and self-regulated 

transcription (Jankowsky et al., 2015). Hence it is important to appreciate the range of 
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RNA species across the transcriptome in order to exploit this diversity in the search for 

putative biomarkers (Figure 2.2).  

Figure 2.2. For each class of RNA, approximate length, number of different species and abundance are 
indicated. Nt; nucleotide. Figure adapted from (Jankowsky et al., 2015). 

The primary division of total RNA in the transcriptome is between protein-coding (mRNA) 

and ncRNAs. Human cells generally contain ~20,000-25,000 different mRNAs, 

comprising ~4% of total RNA (Jankowsky et al., 2015). mRNA diversity is further 

increased by alternative splicing (Nilsen et al., 2010) and by chemical modifications (Liu 

et al., 2013). In addition to mRNAs, cells can also express thousands of species of 

lncRNAs and hundreds miRNAs, transfer RNAs (tRNAs) and small nucleolar RNAs 

(snoRNAs). Conversely, there are only a few ribosomal RNA (rRNA) and small nuclear 

RNA (snRNA) species. Despite this, rRNAs account for approximately 80–85% of the 

cellular RNA mass, followed by tRNAs (~10%): mRNAs comprise only ~4% of total RNA, 

and all other RNAs together account for less than 2% of the mass. Another factor 

contributing to the disparity in cellular RNA mass is that RNAs vary greatly in length, 

from more than 10,000 nucleotides (mRNAs and lncRNAs) to only 22 nucleotides 

(miRNAs). 

Each RNA class has a functional role: 

• rRNAs carry out protein synthesis.

• tRNAs carry amino acids to the ribosome and ensure that amino acids are linked

together in the order specified by the nucleotide sequence of the mRNA that is being

translated.
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• mRNAs transport genetic information from DNA to the ribosome, where they specify 

amino acid sequence of the protein products of gene expression. 

• snoRNAs guide chemical modification of rRNAs and tRNAs. 

• snRNAs are mainly involved in splicing. 

• miRNAs regulate the expression of individual genes. 

• lncRNAs are important regulators of transcription and translation but have additional 

only partly defined roles. 

 

2.3. RNA Isolation from Patient Blood Samples 

Following blood collection via venipuncture, the first experimental step for blood 

transcriptome biomarker discovery involves isolating and purifying cellular RNA. RNA is 

more labile than DNA, and the moment blood is drawn cells begin to die and RNA begins 

to be degraded. If RNA isolation is not done immediately it is advisable that blood 

samples are frozen (e.g. liquid nitrogen or -80°C) with a RNA stabilizer, such as 

RNAstable® (Biomatrica) or RNAlater® (Qiagen). Blood-based RNA isolation systems 

are typically aimed at isolating total RNA. PAXgene Blood RNA tubes and LeukoLOCKTM 

Filters are commonly used methods for mRNA extraction from whole blood. 

2.3.1. PAXgene RNA Extraction and Globin mRNA Depletion 

• Cell Lysis. As specified by the PAXgene RNA kit (Qiagen, CA, USA), whole blood 

samples (2.5ml) are concentrated by centrifugation. The pellet is then washed with 

4ml RNase-free water, re-suspended with 350μl re-suspension buffer and incubated 

in buffers containing 300μl binding buffer and 40μl Proteinase K for protein digestion.   

• RNA isolation. Another centrifugation step is done to remove residual cell debris.  

After the addition of 350μl ethanol, the lysate is applied to a silica-gel 

membrane/column. Upon centrifugation, RNA that remains bound to the membrane 

and contaminants is removed by three washes using washing buffer PBS (700μl, 

500μl and 500μl respectively).  The total extracted RNA is then eluted using 40μl 

elution buffer, incubated at 65°C for 5 minutes, then immediately chilled on ice.  
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• Removal of Globin mRNA. Here, RNA is extracted from whole blood and thus will 

be affected by globin interference, which includes >95% of globin mRNA. Globin 

mRNA is commonly expressed at high levels in red blood cells (RBCs) and 

reticulocytes. Therefore, globin mRNA is depleted from blood samples using the 

GLOBINclear - Human Kit (Life Technologies, USA), by mixing total RNA with the 

biotinylated Capture Oligo Mix that is specific for human globin mRNA.  The mixture 

is incubated (15 min) to allow biotinylated oligonucleotides to hybridize with globin 

mRNA. Streptavidin magnetic beads are then added, and the mixture is incubated for 

30 min, before capturing the beads on the side of the tube using a magnet stand. 

Total RNA (depleted of the globin mRNA) is transferred to another tube followed by 

RNA purification using a rapid magnetic bead based purification method. This 

consists of adding a bead re-suspension mix buffer to the RNA sample. The 

magnetic beads are captured, washed and GLOBINclear RNA is eluted.  

2.3.2. LeukoLOCKTM RNA Extraction 

• Sample Collection and Capture of Leukocytes. As specified by the LeukoLOCKTM 

RNA kit (Qiagen, CA, USA), whole blood samples (10ml) are collected into an EDTA-

coated collection. Blood is passed over a LeukoLOCKTM filter using an evacuated 

tube as a vacuum source, which is flushed with PBS and then fully saturated with 

3mL of RNAlater®. Where as PAXgene tubes require a globin depletion step, the 

LeukoLOCKTM filter is a filter-based leukocyte-depletion step aimed to isolate 

leukocytes from whole blood and RNAlater® solution and to stabilize the cells on the 

filter, thereby avoiding a globin depletion step. At this point, if cell lysis and RNA is 

not ready to be performed the filters may be stored at -80°C for up to 50 months.  

• Filter Processing and Cell Lysis. Subsequently, filters are flushed with 2.5mL cell 

lysis solution and incubated for 5 minutes in buffers containing 2.5ml nuclease-free 

water and 25μl Proteinase K for protein digestion.  

• RNA Isolation. Following, 50μl RNA binding beads are added along with 2.5ml 

isopropanol and incubated at room temperature for 5 minutes prior to recovering to 

centrifugation and discarding supernatant. Upon centrifugation, RNA binding beads 

are recovered and washed three times with PBS wash buffer (1.2ml, 750μl, 750μl, 
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respectively) and left to air dry on the third wash. Finally, the total extracted RNA is 

eluted using 50μl elution buffer.   

2.3.3. RNA Quality Check 

RNA concentration and purity can be measured using a spectrophotometer. RNA 

concentration is measured at absorbance of 260nm (A260) adjusting the (A260) 

measurement for turbidity (measured by absorbance at 320nm), multiplying by the 

dilution factor, and by 40, because 1.0 unit of A260 correlate with 40μg/ml of pure RNA 

(Formula 2.1).  

 

RNA concentration (μg/ml) = (A260 – A320) × dilution factor × 40μg/ml 

            

        (Formula 2.1) 

 

The RNA purity is estimated from the A260/A280 ratio, between 1.7 and 2.0 generally 

represents a high quality RNA sample. The ratio could be calculated after correcting for 

turbidity (absorbance at 320nm) (Formula 2) 

 

RNA purity (A260/A320) = (A260 – A320) / (A280 – A320) 

            

        (Formula 2.2) 

 

Following, the integrity of the total RNA can be assessed for signs of degradation by 

running the Agilent 2100 Bioanalyzer (Agilent; CA, USA) per manufacturer’s 

recommendation. This produces an RNA integrity number (RIN) ranging from 1 (totally 

degraded) to 10 (good-quality RNA). A general rule of thumb is to only proceed with 

gene expression generation with samples that have a RIN of 7 or higher (Guest & Bahn, 

2011). It is sometimes necessary to digest DNA using DNase I in the event of DNA 

contamination.  
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2.3.4. RNA Target Enrichment 

Total RNA recovered from PAXgene and LeukoLOCK methods consists of >80% 

ribosomal RNA (rRNA) (Raz et al. 2011). If this portion of RNA is not removed from the 

sample the majority of final sequenced reads would be enriched for rRNA and this would 

provide a major limitation to transcriptomic exploration. Therefore, it is often necessary to 

further enrich the total RNA sample for RNA targets of interest. Two target enrichment 

methods applied to experiments in the context of this thesis include: 

Selection of target RNAs via hybridization. During RNA processing, a poly-

adenylated (poly-A) tail (i.e. a long chain of adenine nucleotides) is added to mature 

mRNAs to increase the stability of the molecule. The method of target RNA selection via 

hybridization uses oligo-dT primers to selectively fish out mature mRNAs by duplexing 

their poly-A tails. At the same time, the proportions of RNA classes that do not have long 

poly-A stretches will be reduced. As this method only recovers poly-A+ RNAs it is useful 

for characterizing the levels of mature mRNAs, but other RNAs such as immature 

mRNAs and poly-A- ncRNAs will be lost. Moreover, some mitochondrial mRNAs are also 

poly-adenylated and will be enriched by oligo-dT. 

Removal of ribosomal sequences via hybridization. This step is used to selectively 

remove rRNA from total RNA samples. In contrast to poly-A enrichment, this approach 

preserves poly-A- RNAs allowing investigation of broader classes of RNAs including 

immature mRNAs and poly-A- ncRNAs. This technique uses oligos that are 

complementary to highly conserved rRNA sequences to bind and remove rRNA from 

solution via binding beads. Different commercial kits use different technologies to 

capture the bound complex, however all kits are capable of removing the majority of 

rRNA from a total RNA sample. The oligos in the Ribominus (Invitrogen/Life 

Technologies) and Ribo-Zero (Epicentre/Illumina) kits have a biotin tag that can be 

captured using streptavidin coated magnetic beads. Moreover, since these kits rely upon 

a limited number of oligos they only work well if the input RNA is not degraded.  

Additional target enrichment methods, not used in the context of this thesis, have also 

gained popularity and deserve attention: 
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Copy-number normalization via duplex-specific nuclease digestion (DSN). DSN-

normalization is a technique that partially normalizes the concentrations of each mRNA 

by selectively removing many of the most abundant transcripts, which effectively 

increases the relative concentration of low abundance transcripts (Zhulidov 2004 and 

Zhulidov 2005). The concentration of specific mRNAs varies dramatically within a cell. 

Some transcripts may be present at relatively high concentrations (>10,000 copies per 

cell) while for others there may be only a few copies. Therefore much deeper 

sequencing is required to interrogate the low abundance transcripts. DSN can therefore 

be very useful for RNA-Seq experiments that have annotative goals such as gene-

discovery and characterization of transcript architectures (Ekblom et al. 2012).  

Target enrichment via size-selection. This method is generally reserved for 

enrichment of small ncRNAs such as miRNA and siRNA. Since these RNAs are much 

smaller than mRNA and rRNA they can be separated by electrophoresis of the total RNA 

through an agarose or acrylamide gel and then by cutting out the region that 

corresponds to the size of interest. Although effective, this method is laborious and 

recoveries can be low. Several companies now offer small RNA purification kits that are 

based on this solid phase extraction approach.  

2.4. Steps Required for a Microarray Experiment 

Microarrays are analog, hybridization-based, high-throughput assays that can measure a 

complete set of transcripts in a given biological sample (i.e. the blood transcriptome). 

Microarrays consist of an orderly arrangement of oligonucleotide probes bound to a 

glass or silicon slide (i.e. gene chip) that are complementary to fluorescently labeled 

cDNA. In this way, microarrays provide supervised detection of hundreds of thousands 

of probes for genes per array. 

 

Figure 2.3 represents the experimental protocol to generate microarray gene expression 

data. Two different conditional groups are being tested (psychiatric cases and healthy 

controls). Sample preparation starts by isolating and purifying RNA containing mRNA 

that ideally represents a quantitative copy of genes expressed at the time of sample 

collection (as discussed above). Subsequently, mRNA is converted into cDNA using a 

reverse-transcriptase enzyme. This step also requires a short primer to initiate cDNA 
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synthesis. Next, each cDNA is labeled with a different tracking molecule, often red and 

green fluorescent cyanine dyes (i.e. Cy3 and Cy5). The labeled cDNA (psychiatric and 

healthy conditions) are then mixed together, and purified to remove contaminates using 

the Quaquick from Qiagen. After purification, the mixed/labeled cDNA is hybridized to 

probes fixed on the surface of the microarray chip. Each gene target will bind to a probe 

on the array that contains its complementary DNA sequence. A laser scanner (special 

for red and green dyes) is used to read the fluorescent intensity off each probe and the 

intensities represent the relative abundance of targets for each probe. The raw data from 

a microarray experiment is therefore an image (.CEL file). For example, in Figure 2.3, if 

the psychiatric condition for a particular gene was in lesser abundance than the healthy 

condition, one would find the spot to be green. If it was the other way around, the spot 

would be red or if the green was in similar abundance it would be yellow.   

Figure 2.3. Scheme depicting generation of gene expression by microarray. In short, mRNA is isolated, 
reverse transcribed, hybridized, excited with laser technology and the final image stored as a .CEL file. 
Figure adapted from Babu (2006). 
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2.4.1. Microarray Platforms 

Some of the results described within this thesis (Chapter 5-6) have been generated by 

the Affymetrix Human Gene 1.0ST Array and the Illumina HumanHT12 v4 BeadChip 

Array and therefore a short comparison between these two platforms is presented here. 

The latest Affymetrix Human Gene 1.0ST Array provides coverage for 32,020 coding 

transcripts and 2,967 non-coding transcripts, and further covers 466 lncRNA transcripts 

(RefSeq annotated). The Illumina HumanHT12 v4 BeadChip Array covers 31,000 

annotated protein-coding genes using > 47,000 probes (RefSeq annotated), permitting 

up to 12 samples to be run on one chip. For the Affymetrix gene chip, probes are defined 

as gene-specific ~25mer oligonucleotides, whereas the Illumina BeadChips utilize 50mer 

probe sets which are can be more sensitive for detecting mRNA signal. Affymetrix 

arrays, however, also contain perfect match and mismatch probe pairs which can be 

used to help eliminate background noise and interpretation of down-stream results 

(discussed in Chapter 3).  

2.4.2.  Strengths and Weaknesses of Microarray 

Microarray hybridization-based approaches are high-throughput and relatively 

inexpensive. Methodological limitations include: (1) reliance upon existing knowledge 

about genome sequences; (2) high background levels owing to cross-hybridization (i.e. 

hybridization between sequences that are not strictly complementary); (3) and a limited 

dynamic range of detection owing to both background and saturation of signal. 

Moreover, (4) comparing expression levels across independent experiments is often 

difficult and can require complicated normalization methods.  

2.5. Steps Required for an RNA-Seq Experiment 

RNA-Seq workflows include 3 basic steps: (1) RNA-Seq Library Preparation, (2) Cluster 

Generation and (3) Sequencing. Unlike different microarray technologies, different RNA-

Seq platforms necessitate special RNA library preparations, sequencing techniques and 

initial data pre-processing steps. Some of the results presented within this thesis have 

been generated by the Illumina Hi-Seq 2000 (Chapters 5 and 7) and the Ion Torrent  
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(Chapter 8) sequencing platforms and therefore details for both of these technologies 

are presented.  

2.5.1  RNA-Seq Library Preparation 

A typical RNA-Seq library preparation is described in the following Figure 2.4. Following 

RNA isolation and target enrichment the RNA is first fragmented. Unlike short RNAs, 

mRNAs are typically fragmented to smaller pieces of RNA to enable sequencing. 

Protocols differ as to when the fragmentation is performed (i.e. fragmenting before 

converting RNA into cDNA) but regardless of which method is used, it is important that 

the shearing is random and produces a fairly tight symmetrical size distribution (~200-

300bp) depending on experimental goals.  

Figure 2.4. A typical RNA-Seq library preparation. 

Library Preparation by Illumina. Following fragmentation, first and second strand 

cDNA is reverse transcribed from fragmented RNA using random hexamers or oligo-dT 

primers followed by a adapter ligation step. The 5’ and 3’ ends of cDNA are repaired and 

adapters (containing unique sequences to allow hybridization to a sequencing flow cell) 

are ligated.  Then libraries are enriched for correctly ligated cDNA fragments and 

amplified by PCR to add any remaining sequencing primer sequences.  

Library Preparation by Ion Torrent. Following fragmentation, partly degenerate guide 

adapters hybridize the fragmented target RNA to allow splint ligation of 5’ and 3’ adapter 

with defined sequences. Next, cDNA is synthesized and amplified by PCR to add 

additional required sequences followed by emulsion PCR on microbeads. 

2.5.2. RNA-Seq Cluster Generation 

Cluster Generation by Illumina. For cluster generation, once libraries have been 

prepared they are loaded into a flow cell where fragments are captured on a ‘lawn’ of 
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surface-bound oligos complementary to the library adapters. Once hybridized, the 

captured oligonucleotide primes DNA polymerase extension activity resulting in a 

covalently bound full-length complementary copy of the cDNA fragment that is subjected 

to several rounds of ‘solid-phase’ PCR amplification, composed of two basic steps: (1) 

initial priming and extending of the single-stranded, single-molecules template and (2) 

bridge amplification of the immobilized template with immediate adjacent primers to form 

clusters. When cluster generation is complete, the templates are ready for sequencing.  

 

Cluster Generation by Ion Torrent. Unlike Illumina, the standard Ion Torrent library 

protocol is strand-specific by default. Moreover, instead of relying on solid-phase PCR 

amplification, Ion Torrent uses ‘emulsion PCR’ to prepare fragmented RNA sequencing 

templates in a cell-free system. First, beads with complementary oligonucleotides are 

mixed with PCR reagents and a dilute solution of cDNA library and oil added to make an 

emulsion. Ideally, each micro-droplet of emulsion will contain one bead and one cDNA 

fragment along with PCR reagents to allow for clonal amplification. Following 16-18 

cycles of PCR the emulsion is then broken by organic extraction, beads purified and 

loaded on to a disposable semiconductor sequencing chip.  

2.5.3. Sequencing 

Sequencing by Illumina. Illumina employs a sequencing by synthesis technology and 

utilizes a reversible terminator-based method which detects single bases as they are 

incorporated into DNA template strands (Figure 2.5A). Sequence reagents, including 

fluorescently labeled nucleotides, are added and the first base is incorporated. The flow 

cell is imaged and the emission from each cluster is recorded. The emission wavelength 

and intensity are used to identify the base. This cycle is repeated ‘y’ times to create a 

read length of ‘z’ bases. The result is highly accurate base by-base sequencing. 

Sequencing by Ion Torrent. Unlike Illumina’s fluorescence-based sequencing by 

synthesis, Ion Torrent determines sequence identity by detecting pH alterations due to 

hydrogen ion release following nucleotide incorporation (Figure 2.5B). Since the dNTPs 

are not differentially labeled by a fluorophore, they must be added successively so that 

ion release can be associated with a particular nucleotide. However, whereas Illumina 

utilizes reversible terminator chemistry to restrict dNTP incorporation to once per cycle 
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and sequence through homopolymers, Ion Torrent relies on the number of hydrogen ions 

released as being proportional to the number of dNTPs incorporated. 

2.6. RNA-Seq Optimization  

2.6.1. Single-End and Paired-End Sequencing 

In single-end sequencing, the sequencer reads an RNA fragment from one end of the 

fragment to the other, generating a sequence of base pairs. In paired-end sequencing, 

the sequencer starts at one read end, finishes this direction at the specified read length 

(e.g. 50bp or 100bp), and then starts another round of reading at the opposite end of the 

fragment (Corney, 2013). Sequencing both ends of the fragmented read is a more 

efficient use of the cDNA library and having pairs of reads improves read alignment by 

improving the ability to resolve chromosomal rearrangements such as insertions, 

         A. Illumina      B. Ion Torrent

 

Figure 2.5. Sequence detection 
methods of Illumina and Ion Torrent. 
(A) Illumina detection is fluorescence-
based using reversible terminator 
dNTPs, resulting in one nucleotide 
incorporation per cycle. cDNA 
fragments are covalently linked to a 
flow cell and fluorescence detected with 
addition of each nucleotide. (B) Ion 
Torrent sequence by synthesis relies 
on detection of hydrogen ions for base 
calling. Each pH detector well contains 
one clonally amplified cDNA fragments 
on a micro-bead. Nucleotides are 
added sequentially. 
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deletions and inversions. Paired-end reads can also be particularly useful for the 

identification of alternatively spliced isoforms and viral integration sites. The information 

about the expected distance of the reads sequenced from these two ends, is estimated 

from the distribution of fragment lengths and can be exploited to increase mapping or 

assembly accuracy.  

2.6.2. Sequence Depth and Coverage 

 

In RNA-Seq, sequencing ‘depth’, or the number of times a transcriptome has been 

sequenced during the sequencing process, has direct implications for coverage and 

costs (Wang et al., 2009). Sequence coverage is expected to be a function of the 

prevalence of the transcript in the sample and of the depth of sequencing. Higher 

sequence coverage necessitates more sequencing depth, and to identify rare transcripts 

(or variants) considerable depth is needed. By increasing or decreasing the number of 

sequencing reads, researchers can tune the sensitivity of an experiment to 

accommodate various study objectives, also called dynamic range. The dynamic range 

is adjustable and nearly unlimited, permitting detection of subtle gene expression 

changes with high sensitivity. 

 

2.6.3. Multiplexing 

 

Multiplexing allows large numbers of libraries to be pooled and sequenced 

simultaneously during a single sequencing run. Unique index sequences are attached to 

each cDNA library (i.e. each sample), during the library preparation phase. 

Subsequently, all libraries are pooled and lowed into the same flow cell lane. Then, 

libraries are sequences together during a single instrument run. All sequences are 

exported together. Finally a ‘de’-multiplexing algorithm sorts the unique index sequences 

into different files according to indexes (Corney, 2013).  

 

2.6.4.  Strengths and Weaknesses of RNA-Seq 

RNA-Seq has shown strong potential to replace microarrays for whole-genome 

transcriptome profiling. Contrary to microarrays, RNA-Seq: (1) is not limited to detecting 



34 

transcripts that correspond to existing genomic sequences (i.e. unsupervised); (2) 

provides information regarding novel transcripts, splicing events and sequence 

variations (although bioinformatic pipelines for these analyses need large improvement); 

(3) a low background signal indicates that there is no upper limit for quantification and 

thus a large dynamic range of expression (i.e. highly quantitative). Importantly (4), RNA-

Seq has an improved ability to compare transcription levels across different genes, 

samples, experiments, time points and platforms. 

2.7. Cross-Platform Variability  

2.7.1. Technical Assessment of Microarrays 
 

A potential problem with microarrays lies in cross-platform variability, and even more so 

in the variability in analytic tools used by investigators (discussed in Chapter 3). Recent 

technological advances have attempted to converge techniques to find better correlation 

between platforms, but even a subtle ~5-10% divergence can lead to differences in 

~1,250-2,500 genes between platforms. Linked with this drift between platforms is the 

major concern of cross-hybridization on microarrays and the relative inability to detect 

gene expression changes present at low abundance. For example, if Gene A is 

expressed at 10 copies/cell, and Gene B is expressed at 1000 copies/cell, at 2% cross-

hybridization of Gene B to microarray target A, 65% of the observed target A signal will 

originate from Gene B. In these cases, even if Gene A is differentially expressed, due to 

the obliteration of the specific signal, the assay may not be sufficiently sensitive to 

uncover it (Mirnics et al, 2006). This example illustrates the need for validation of 

microarray results by techniques such as Real-time quantitative PCR (RT-qPCR). 

However, the ability to detect subtle changes in transcripts of low abundance will also 

depend on the length of the oligonucleotide probes present on microarray chips. This is 

a potential consideration in RNA extraction methodology as well as in choosing a 

platform for analysis, as some, such as Codelink, use longer 60–70mer probes as 

opposed to Affymetrix who uses shorter 20–30mer probes on their chips. 
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2.7.2. Technical Assessment of RNA-Sequencing 

 

Studies benchmarking RNA-Seq results using various NGS platforms and utilizing similar 

RNA isolation and technological optimization steps, indicate a high correlation of gene 

expression variation generated by the same technologies amongst different laboratory 

sites (correlation coefficient > 0.86) as well as high correlations across different 

technologies in laboratory different sites (correlation coefficient > 0.83) (Sheng et al., 

2010). Read depth also represents a limiting factor when experimental goals include 

detection of lowly expressed genes and coverage of introns. This is because standard 

read depth (i.e. 10X-30X) is insufficiently sensitive to detect differences amongst low 

abundance transcripts and splice junctions (Sheng et al., 2010). This is somewhat 

problematic because deep sampling is not currently cost-effective with long-read 

platforms. Despite this, short-read platforms could circumvent this obstacle as they are 

able to cover a wider dynamic range and thereby generate more reads per sample.  

 

2.8. Summary 

 

Following venipuncture, a number of RNA isolation and optimization techniques as well 

as gene expression quantification protocols may be used. In the context of this thesis, 

RNA isolation from whole blood was performed using LuekoLOCKTM RNA isolation 

(Chapters 5,6 and 8) and PAXgene RNA tubes (Chapter 7). Gene expression was 

quantified using RNA-Seq methods Illumina (Chapters 5 and 7) and Ion Torrent (Chapter 

8) as well as Microarray methods Affymetrix GeneChips (Chapter 5) and Illumina 

BeadChips (Chapter 6). 
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Statistical and methodological clarity and rigor in terms of biomarker discovery, validation 

and testing are critical steps for realizing blood-based markers in psychiatric disease. 

Computational work-flows for deriving clinical and biological significance from a blood-

based gene expression study are multifaceted (Figure 3.1) and commonly seek to 

address one of three main objectives: (1) construction of a gene expression classifier 

(i.e. a unique panel of cross-validated biomarkers) for disease prediction or diagnosis; 

(2) characterization of molecular factors involved in disease pathology; (3) identification 

of gene networks as functional biomarkers of disease. The following chapter reviews 

statistical aspects that are relevant in realizing these aims.  

Microarray and RNA-Seq represent core technologies in biomarker discovery but before 

these technologies can be used reliably in clinical practice and regulatory decision-

making, standards and quality measures need to be developed. The MicroArray Quality 

Control (MAQC) and Sequencing Quality Control (SEQC) projects are helping improve 

microarray and RNA-Seq technologies and foster their proper applications in discovery 

and development for FDA rated tests (i.e. accurate blood tests). The MAQC project, 

focused on microarray technologies, has undergone three main phases 

(www.fda.gov/MicroArrayQC): MAQC-I (2006) to establish QC metrics and guidelines for 

data analysis; MAQC-II (2010) to assess the capabilities and limitations of various data 

analysis methods in developing and validating predictive models and genotyping for 

personalized medicine; and MAQC-III and SEQC-I (2014) to examine latest tools for 

measuring gene activity and establish best practice for reproducibility across different 

technologies and laboratory sites. It is important to emphasize that RNA-Seq is not a 

‘mature’ technology but is undergoing rapid evolution in biochemistry of sample 

preparation, of sequencing platforms of multiple RNA-Seq computational pipelines and 
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of subsequent analysis methods that include statistical treatments and transcript model 

building, evaluated here. Collectively, these points make standard guidelines and best 

practices for RNA-Seq data complex.  

Figure 3.1. A workflow of data pre-processing, normalization, non-specific filtering, quality control and down-
stream data analysis options for microarray and RNA-Seq gene expression. Abbreviations; .CEL, raw 
microarray data; .fastq, raw RNA-Seq data; .fasta, human genome assembly; .gtf, human genome 
annotations. 
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3.2. Microarray Data Pre-Processing 
 

After the image is taken, probe intensities are generally used as raw data for 

microarrays. However, these data contain ‘noise’ from many sources and initial data pre-

processing and quality control is compulsory.  

 

3.2.1. Microarray Background Adjustment 

 
The desired reading on each probe is the amount of fluorescence from molecules that 

are complementary to the probe (i.e. the intended RNA target). However, the 

hybridization sample consists of a mixture of nucleotide molecules, and non-

complementary sequences also bind to the probes. This phenomenon is referred to as 

non-specific binding and is a major reason for background noise in microarray data 

(Olson, 2006). Optical noise is another source of background noise, but is usually 

smaller than non-specific binding and appears not to be probe specific. As a result, the 

observed probe intensity is a sum of the above components. The relative quantity of the 

target RNA across samples can be seriously biased if background is not accounted for. 

One way to tackle background noise when using Affymetrix microarray is by using 

perfect match (PM) and mismatch (MM) probes (Figure 3.2) (Olson, 2006). The PM 

probe has a sequence exactly complimentary to the particular gene and thus measures 

the expression of the gene. The MM probe differs from the perfect match probe by a 

single base substitution at the center base position, disturbing the binding of the target 

gene transcript. This helps to determine the background and non-specific hybridization 

that contributes to the signal measured for the PM oligo. These direct measurements are 

subtracted from the PM intensities to adjust for the additive background in several 

generations of preprocessing methods provided by Affymetrix. Other approaches, which 

do not include such direct measurement, involve more complicated statistical analysis 

using an empirical Bayes approach to borrow information across probes on the same 

array. This step shrinks the background estimate for either the entire sample or probes 

sharing a similar sequence structures (Silver, 2009). 
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3.2.2. Microarray Summarization 

For some platforms multiple probes are used to quantify the same genomic target. For 

example, Affymetrix GeneChips use a set of 11-20 probes to measure expression levels 

of a gene and on average 4 probes for an exon. Illumina arrays use one probe for each 

gene but include technical replicates (approximately 30) of the same probe. After 

preprocessing, a summary of these multiple probe-level measurements are combined 

into individual gene expression values (i.e. mean or median expression) (Herber, 2013). 

This reduces the number of expression measurements across many probes, and 

multiple comparisons which differential expression will deal with in further analysis.  

3.2.3. Microarray Normalization 

In addition to background noise, other sources of technical variation can affect the 

observed intensities that are not themselves of biological interest. For example, arrays 

on one scanner could in general give higher readings than those from another scanner. 

Degree of similarity, array scanning dates, changes in RNA isolation reagents and 

calibration of equipment can all induce technical variation and should be removed 

through normalization. Most normalization methods equalize some summary statistics of 

the distribution of measurements across arrays. The simplest ones, such as MAS 5.0, 

scale the arrays so that each array has the same mean or median intensity (Affymetrix, 

2002): this scaling normalization implicitly assumes that biological variations of interest 

may affect a number of measurements but should not change the mean or mode of the 

distribution of intensities on each array. Since non-linear relationships between arrays 

are common, normalization methods that use a non-linear smooth curve have also been 

X X X X X 

mRNA Reference 5’ 3’ 

CCCGGGACAGAAGTGCGGACAGTAG  

          GGGACAGAAGTGGGGACAG  MM       
          GGGACAGAAGTGCGGACAG  PM         

Figure 3.2. For Affymetrix GeneChips, each 
gene is represented on the array by two 
different probes – a perfect match (PM) and 
mismatch (MM) probe pair. These are used 
to help determine the extent of background 
noise on the array prior to down-stream 
analysis. 
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introduced. Using a baseline array, a smooth normalization curve can be estimated from 

the scatter plot of two arrays (Li & Wong, 2001). Without it, one could use all arrays 

available in a dataset, and iterate over pairwise combinations of arrays so that all arrays 

are normalized to an ‘average’ array. The cyclic loess normalization (Dudoit et al., 

2002) is a good example of this approach. 

 

The most popular and well-established normalization methods seek quantile 

normalization (Amaratunga et al., 2001), which makes all arrays have the same 

empirical distribution of intensities after normalization. A baseline array can be used for 

the reference distribution, or all arrays used to generate an average distribution for 

reference. Quantile normalization is used in robust multichip average (RMA) (Bolstad, 

2002) and GC robust multichip average (GCRMA) normalization (Wu, 2014). RMA 

normalization performs background adjustment, quantile normalization and 

summarization of these data all in one. The GCRMA function uses the same 

normalization and summarization methods as RMA however utilizing information 

obtained from the MM probes to estimate probe affinity to non-specific binding. Because 

GC-rich probes seem to have higher non-specific signal, GCRMA models GC content 

over the probes which dictate the binding affinity to target.  

 

3.2.4. Microarray Non-Specific Filtering 
 
Following normalization, the next step of the microarray data pre-process, before 

statistical analysis, is the non-specific filtering of probe intensities. With tens of 

thousands of genes represented on an array, and with one or more hypotheses being 

tested for each gene, a multiple testing adjustment is certainly warranted. The aim of 

non-specific filtering is to reduce the number of multiple comparisons by filtering out 

lowly expressed probes and probes with low variation which are assumed to be unable 

to achieve statistical significance in down-stream analyses. Two common hard-threshold 

filtering methods are routinely applied to the global gene expression picture while 

ignoring group labels (Hackstadt & Hess, 2009). (1) Filtering by coefficient of variation 

(i.e. relative standard deviation) which is the removal of genes with low variance across 

all available samples. The rationale is that expression for equally expressed genes 

should not differ greatly between treatment groups, hence leading to small overall 
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variance. (2) Filtering by average expression which is the removal of genes with low 

average expression across all available samples.  

3.3. RNA-Seq Data Pre-Processing 

RNA-Seq pre-processing involves several computational steps not found in microarray 

data handling (Figure 3.3), including; (1) determining the quality of raw RNA-Seq reads, 

(2) trimming and filtering reads, (3) read alignment to a reference genome, and (4) 

counting mapped reads to determine overall measure of gene expression.  

Figure 3.3. Computational pipeline for RNA-Seq data pre-processing. All steps (right) and tools (left) for 
generating a matrix of RNA-Seq gene expression measurements. Fastqc is a quality assessment tool for 
RNA-Seq raw .fastq files; trimmomatic is a tool for filtering poor quality reads and read trimming; TopHat and 
TMAP are tools for mapping fragmented reads to the transcriptome; HT-Seq is a tool for counting 
(quanitifying) expression of genes mapped to the genome; TMM and VOOM are normalization tools for 
removing differences in library effect sizes. All citations found below. Abbreviations: QC, quality control; 
TMM, trimmed median values; M, million.  
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3.3.1. Quality Check of Raw RNA-Seq Reads 

RNA-Seq reads and the corresponding base call qualities (i.e. the probability of a correct 

call) are typically delivered to the user as a FASTQ file (extension .fastq or .fq). FASTQ 

files contain a four-line record for each read, including its nucleotide sequence, a "+" sign 

separator (optionally with the read identifier repeated), and a corresponding ASCII string 

of quality characters. Each ASCII character corresponds to an integer i ranging from -5 

to 41 (depending on the version of software used for base-calling), and may be 

translated to p, the probability that a given base is incorrectly called, using the Phred 

scale (Formula 3.1). 

i = -10 × log10(p) 

          (Formula 3.1) 

Base calling error rate is highest during the final cycles of sequencing and it is not 

uncommon for per base quality score to be low. The FastQC command-line tool 

(Andrews, 2010), and similar tools, use the raw sequences provided in FASTQ format 

and display basic statistics to allow the quick evaluation of whether sequences are as 

expected. Outputted parameters include number of reads and GC percentage, per base 

sequence quality score (a measure of confidence of correct base calling), per base 

sequence content (a representation of each nucleotide at each base position to visualize 

position/sequence bias), per base N content (a plot of uncalled nucleotides at each base 

position), duplicate reads (typically a result of PCR over-amplification during library 

preparation) and overrepresented sequences and K-mers. It is important to evaluate the 

report in the context of the anticipated results, since QC programmes assume 

sequencing of a random and diverse library, which may not be the case depending on 

experimental design and library preparation.  

3.3.2.  RNA-Seq Read Trimming and Filtering Low Quality Reads 

Following an initial quality check, the first step of RNA-Seq data pre-processing is read 

trimming and filtering. During the sequencing process, considerable amounts of RNA-

Seq reads are generated, a process which typically encompasses some errors. Artefact 

sequences and low quality reads make up a minority proportion of sequences in the 
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FASTQ file and including these in the mapping stage will introduce mapping errors and 

in some instances creates artificial indels. An easy way to improve mapping of 

sequenced reads is by confirming the sequence quality of raw reads by evaluating base 

quality, the GC content distribution and the duplication rate (Guo 2013, Patel and Jain 

2012). Many end users also elect to discard reads suspected to contain sequencing 

errors or low quality Phred scores. Reads likely to contain multiple sequencing errors 

provide less biological information and are expected to hinder alignment. Reads 

generated using Illumina Stranded Kits are known to have a higher error rate towards 

the 3′-end of the read, so if a reduction in quality is detected within the read, it is normal 

to trim off the rest of the read. Absolute minimum, average, and sliding-window-average 

quality scores are commonly used as criteria for discarding and/or trimming reads. 

These steps are achievable through use of command line tools Trimmomatic (Bolger et 

al., 2014)and Fastx-Toolkit (Patel & Jain, 2012).  

3.3.3.  RNA-Seq Read Alignment to Reference Genome 

 

Following read trimming and filtering, the second step of RNA-Seq data pre-processing 

is the alignment (mapping) of high quality trimmed short reads to a reference genome. 

Read alignment to a reference genome generates a dictionary of the genomic features 

represented in each RNA-Seq sample. That is, aligned reads become annotated, and 

the highly fragmented data is thus connected to the gene families, individual transcripts, 

small RNAs, or individual exons encompassed by the original tissue sample (i.e. blood). 

Read mapping generally requires two basic steps: the reference genome (.fasta) is first 

converted to an indexed reference to allow fast read mapping, which is the second step. 

There are two commonly used annotated backbone reference genomes for homo 

sapiens; hg19 (also known as GRCh37) and hg38 (also known as CRCh38) (Team TBD) 

annotation provided by UCSC genome. The latest release (hg38) provides a 

comprehensive gene annotation for all protein-coding transcript sequences as well as 

lncRNAs and pseudo-genes.  

 

Features of the reference genome such as repetitive regions, assembly errors, and 

missing information can render alignment impossible (un-mappable) for a subset of the 

newly generated reads (< 2%). Likewise, sequencing errors, polymorphisms, and limited 
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complexity within the short reads can also act as obstacles. Alignment algorithms must 

therefore be flexible and allow for approximate matches when applying mapping criteria. 

Just how approximate the matches are depend on the features of the aligner, which is 

generally defined through user-specified parameters. For example, the number of 

allowed mis-matches and minimal score of match obtained from the RNA target to 

reference genome can all have an effect on mapping. Similarly, treatment of multiple 

mapping reads and establishing a cap on the number of genomic coordinates to which 

multiple reads were distributed (e.g. only loci < 10 reads are reported) also has an effect. 

For ‘split-reads’, establishing constraints regarding the location of the splits (i.e. within 

the same chromosome; within a certain genomic interval) and regarding the sequences 

at the split (allowed only at the conical junctions etc.) is also an important parameter for 

mapping. Indicating paired-end sequences and stranded information, when available, 

aids the alignment process. The powerful TopHat and TMAP (designed for Ion Torrent 

reads) short read mapping algorithms require these pieces of information for accurate 

and precise mapping (Trapnell et al., 2009; Caboche et al., 2014). Both tools output 

aligned reads in the format of a .bam file (binary form of .sam), which generally need 

converting to a .sam file prior to counting mapped reads. Alignment parameter settings 

that are extremely stringent will result in only a small subset of reads being mapped; 

whereas liberal settings will result in lost specificity, and many reads will map to multiple 

features of the reference. It therefore takes some experimentation to achieve the optimal 

balance of sensitivity and specificity for a given data set.  

 

3.3.4.  RNA-Seq Counting Aligned Reads to Measure Gene Expression 

 

After mapping, the third step of RNA-Seq data pre-processing is counting the number of 

reads that have been aligned (i.e. mapped) uniquely to each genomic coordinate – exon, 

transcript or gene level. Given a sorted SAM file with aligned sequencing reads and a list 

of genomic features (.gtf file), a common task is to count how many reads map to each 

feature. Here, a feature can be an interval (i.e. range of positions) on a chromosome or 

the union of such intervals. The most used approach for computing counts considers the 

total number of reads overlapping the exons of a gene, in which features are typically 

genes, where each gene is considered the union of all its exons. However, even in well-
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annotated organisms, a fraction of reads map outside the boundaries of known exons 

(Pickrell et al., 2010). Thus, an alternative strategy considers the whole length of a gene, 

also counting reads from introns. Moreover, if correctly handled in the mapping phase, 

spliced reads can be used to model the abundance of different splicing isoforms of a 

gene (Trapnell et al., 2010). Particular attention should be paid to genes with overlapping 

sequences. HT-Seq count, which is a user-friendly Python package (Anders et al., 

2014), implements a flexible approach permitting the user to select the direct model for 

read counting in the presence of overlapping features for both Illumina and Ion Torrent 

aligned reads.   

 

3.3.5. RNA-Seq Non-Specific Filtering 

 

Unlike microarray data, RNA-Seq gene expression data undergo non-specific filtering 

prior-to normalization. This is because RNA-Seq read counts represent a quantitative 

measure of gene expression and some genes may not contain any counts due to the 

level of sequencing depth and breath of coverage. As a result, the inclusion of hundreds 

of gene measurements with very low to absent gene expression values would skew 

normalization and down-stream analysis. Similar filtering strategies by the coefficient of 

variation and average expression can be applied to RNA-Seq data. Additionally, to take 

advantage of missing gene expression calls, an alternative filtering strategy for RNA-Seq 

data include removal of lowly expressed genes using a combined count and sample 

threshold (i.e. any genes < 20 counts in at least a third of the samples).  

 

3.3.6. RNA-Seq Normalization 

 

Similar to microarray, RNA-Seq data require normalization to remove unwanted non-

biological variation between samples. The first bias to be taken into account is variation 

in sequencing depth across samples, here defined as the total number of mapped reads. 

Consider a hypothetical sample A and B, two RNA-Seq experiments with no differentially 

regulated genes. If experiment A generates ten times as many reads as experiment B 

(as in Figure 3.3), it is likely that the counts from experiment A will also be doubled. 

Hence, a common practice is that of scaling counts in each experiment j by the 
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sequencing depth dj estimated for that sample, where dj was computed by counting the 

total number of reads mapped in sample j (i.e. global scaling) (Marioni et al., 2008). 

Other applications consider counts depending on the whole RNA population of the 

sequenced sample. If there is a set of highly expressed genes in a sample, they will 

inevitably ‘consume’ the total sequenced reads, and the expression level of the 

remaining genes will be largely underestimated. A similar issue may result from the 

presence of contaminates. Bullard et al (2010) suggest a quantile normalize similar to 

that used for microarray data, and an alternative global scaling that adjusts counts 

distributions with respect to their third quartile, so to reduce the effects of genes with 

high-counts. Another popular approach is the proposed Trimmed Mean of M-values 

(TMM) normalization to account for differences in library composition between samples 

(Robinson & Oshlack, 2010). To reduce bias due to high-count genes, TMM is computed 

removing the 30% of genes that are characters by the most extreme M-value (i.e. log-

fold changes) for the compared samples. This normalization factor is then used to 

correct for differences in library sizes. VOOM normalization, a variance stabilization 

transformation method has also gained popularity in its ability to transform negative 

binomial distributed data into a normal distribution (Anders et al., 2014). Interestingly, 

studies benchmarking the effects of normalization approaches have demonstrated the 

potential for different approaches to produce varying end results. In the context of this 

thesis, VOOM normalization was used as the appropriate normalization method. 

 

RNA-Seq counts also show a gene length bias: the expected number of reads mapped 

to a gene is proportional to both the abundance and length of the isoforms transcribed 

from that gene. Longer genes produce more reads than shorter ones, resulting in higher 

power for detection. To tackle this problem RPKM (reads per kilobase of transcript per 

million mapped reads) and FPKM (fragments per kilobase of transcript per million 

mapped reads) are widely used normalization metrics, the latter often used for paired-

end sequencing (Mortazavi, 2008). However, most recent comparative normalization 

approaches have demonstrated that RPKM normalization may not be the most 

appropriate normalization technique due its simplistic nature to normalize read counts by 

gene length and the total number of mapped reads in the sample (Dillies, 2013). It is 

advisable to test a number of different normalization techniques and continue them 
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through down stream analyses in order to best assess the normalization approach that is 

best suited for an independent study.  

3.4. Microarray and RNA-Seq Quality Control  
 
The identification of outlying samples can bias down-stream analysis and therefore 

should be discarded using biological and statistical reasoning. The search for outlying 

samples should occur before and after data normalization, as the inclusion of outlying 

samples may heavily bias normalization. For these purposes, visualization of the data in 

every way, shape and form is critical (Figure 3.4). Qualitative visualization plots such as 

boxplots and histograms of raw and normalized data are routine. MA-plots are used to 

plot of the distribution of the red/green intensity ratio (‘M’) plotted by the average 

intensity (‘A’), which attempt to visualize the intra and inter array spread of the data on a 

sample-to-sample basis. The underlying assumption is that most genes are not 

differentially expressed and therefore the majority of M values (i.e. difference of log-

ratios) should be located at 0. Relative log expression (RLE) and normalized un-scaled 

standard error (NUSE) plots are also useful for identifying outlying samples in a similar 

fashion. Principal Component Analysis (PCA) works to reduce the dimensionality of the 

thousands of gene expression measurements into two or three main components using 

a linear scale. Hierarchical clustering dendrograms (Euclidean and Pearson’s correlation 

coefficients) are also ways to visualize pairwise distance between samples. A heuristic 

for these approaches is that if the median PCA or hierarchal clustering coefficient of a 

sample is beyond a given number of standard deviations from the average, it may be 

removed from the analysis. Another point of interest focuses on non-biological 

experimental variation, or batch effects, which are commonly observed across multiple 

batches of microarray or RNA-Seq data, which makes combining batches a difficult task. 

Combat is a method whereby a flexible empirical Bayes framework is used to adjust for 

additive, multiplicative and exponential batch effects (or standardize across expression 

measurements) and is also robust to outliers in small and large sample size (Johnson, 

2006). 
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Figure 3.4. Quality control methods and procedures. (A) Normalized boxplots for 30 samples where the y-
axis represents normalized expression values and the x-axis represents each sample. (B) Histograms of the 
same 30 samples where the x-axis represents normalized expression and the y-axis represents density (or 
frequency).  (C) PCA analysis colored to delineate three experimental groups being tested in this example 
rotated for complete visualization and investigated by placing 2 standard deviations around the centre of all 
samples. (D) Correlation matrix plot and (E) hierarchical clustering to demonstrate pairwise sample-to-
sample relationships using Euclidean (Euc.) coefficients and wards distance metric. Here, 12286 reflect the 
number of genes post-filtering. 

3.5. Data Analysis: Transcriptome Exploration from Low- to 

High-Order  

Proper data pre-processing and quality control should be done prior to statistical 

analyses. The aims of gene expression studies vary from experiment to experiment but 

can broadly be categorized in terms of transcriptomic exploration, i.e. the amount of 

transcriptomic activity that is characterised and defined by the data analysis. Broadly 
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speaking, there are three generally aims when it comes to analysing blood transcriptome 

data, each with varying degrees of transcriptomic exploration. The first, and smallest 

order of transcriptomic exploration, is supervised machine-learning (ML). ML is a 

powerful tool for constructing gene expression classifiers for disease prediction and 

diagnosis. While this approach is most feasible for the eventual development of a blood-

based test, ML ‘cares’ little about the higher-order functionality of the features which it 

uses for prediction as long as they perform well across experimental groups. The next 

highest level of transcriptome exploration is differential expression analysis. This 

approach has little regard for gene-gene relationships which is a considerable pitfall 

when attempting to model complex clinical phenotypes using a heterogonous tissue 

source. Nonetheless, this approach is often able to provide more mechanistic insights 

than ML approaches by mapping genes onto gene ontology categories and protein-

interaction networks. The highest order of transcriptomic exploration is that provided by 

network-based approaches. Weighted gene co-expression network analysis (WGCNA) 

is a correlation network based approach suitable for modeling complex systems (i.e. 

blood transcriptome) and phenotypes (i.e. psychiatric diseases). Moreover, it allows for 

multi-modal data integration interfacing with differentially expressed genes, protein-

interaction information, clinical traits and other sources of high-throughput biology (e.g. 

proteomics, methylation etc…). The following section presents a detailed account of 

these three broad statistical applications, based on transcriptomic exploration (low-to-

high order), to give a better understanding of how they may be used in the context of 

psychiatric biomarker discovery. 

 

3.6. Supervised Machine-Learning and Classifier Construction 
 
In a disease context, supervised machine-learning (ML) is concerned with identifying a 

small panel of biomarkers with maximum accuracy able to either ‘predict’ disease status 

or treatment outcomes (i.e. prognostic classifier), or to ‘diagnose’ a disease status (i.e. 

diagnostic classifier). BRB-Array Tools (Simon et al., 2007) is a useful package for the 

construction of gene expression classifiers and uses methods of class prediction: a 

supervised approach that incorporates the sample labels to identify the genes whose 

expression can be used to predict which group of a blinded sample belongs to. ML 

employs numerous statistical and optimization techniques permitting algorithms to ‘learn’ 
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based on presented data from past examples, and to detect hard-to-discern patterns 

from large complex data-sets, such as transcriptomic data. ML must first ‘learn’ the data 

using information (i.e. expression measurements) presented from a training set to 

develop a classifier, and subsequently evaluate classifier accuracy to predict blinded 

samples on a withheld test set. ML applications consist of four essential steps: 

(1) Data filtering: ML is used to identify the most important features in a gene expression 

data-set that are able to accurately discriminate between two or more experimental 

groups. It is often a good first step to subset the data by removing less informative 

features and retaining the more informative ones using p-value, log-fold change or 

standard deviation thresholds. However, the eventual predictor may be less biologically 

interpretable and clinically applicable, if fewer genes are included. The main aim of this 

step is to cast a wide net to gather all informative genes while false-positives will be 

pared off in subsequent feature selection and ML optimization steps. 

(2) Feature Selection: The criteria for feature selection are based on the concept that 

predictive accuracy is important, and not necessarily the statistical significance of 

features. Feature selection is performed to remove ‘noise’ features via filtering based on 

gene rank accordingly to differential expression, thereby reducing thousands of genes 

down to hundreds. Recursive feature elimination (RFE) (Simon et al., 2007) provides a 

more statistically involved filter where genes are assigned weights and the number of 

genes desired within a classifier may be selected a priori to evaluate predictive 

accuracies across classifiers containing different numbers of features (i.e. accuracy of a 

classifier including 20 genes versus one including 50 genes). This is a powerful 

approach for identifying the smallest number of features needed to make accurate 

predictions. 

 

 (3) Select Machine-Learning Algorithm: The utility of RFE can be assessed by 

numerous multivariate classification methods including support vector machines (SVM), 

diagonal linear discriminate analysis (DLDA), nearest centroid (NC) and three-nearest 

neighbors (3-NN). Additional algorithms that excel in multi-class comparisons (2 or > 

groups) include decision trees, random forest and neural networks. SVM represents the 

‘start of the art’ approach for gene expression prediction problems. The simplest type of 
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SVM is linear classification, which tries to draw a straight lines (also called hyperplanes) 

that separates data with two dimensions (Figure 3.5). Many linear classifiers are able to 

separate data but only one achieves maximum separation. Vapnik and Lerner (1963) 

proposed a linear classifier as an original optimal hyperplane algorithm. The 

replacement of dot product by a non-linear kernel function allows the algorithm to fit the 

maximum-margin hyperplane in the transformed feature space. SVM finds a linear 

separating hyperplane with the maximal margin in this higher dimensional space. 

Figure 3.5. Example of linearly separable data:. (A) Three possible hyperplanes to linearly separate data, 
(B) Centered line demonstrates the optimal hyperplane with maximum margin from two classes. 

(4) Estimating Prediction Accuracy: To evaluate classifier performance, a 2x2 

contingency table needs to be populated so that the numbers of true positives (TP), true 

negatives (TN), and false positives (FP), and false negatives (FN) may be estimated in 

order to calculate classifier accuracy, sensitivity and specificity (Figure 3.6). There are 

various internal cross-validation methods for estimating prediction accuracy, and these 

are arguably the most important aspects of ML. Internal cross-validation can be divided 

into two categories; split-sample (i.e. hold-out) validation and leave-one-out cross-

validation (LOOCV) (Simon et al., 2007). Split-sample validation (Figure 3.6A) splits the 

data into a training set where ranked features are selected, an ML algorithm is chosen 

and parameters and cut-off thresholds are determined. Here, the test set is withheld until 

a single clinical classifier is fully specified using the training set and then applied to 

samples in the test set to predict group status. LOOCV (Figure 3.6B) divides data into 

training and test sets where the test set contains only one withheld sample and a 

classifier is constructed on the training and predicts the class of the left out sample. This 
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process is repeated until every sample has been left out at least once and the 

predictions of each sample are used to populate a 2x2 contingency table. Alternatively, 

this process can leave a tenth or a fifth out (10-fold, 5-fold) for cross-validating classifier 

accuracies. 

Figure 3.6. Cross-validating prediction accuracies of gene expression classifiers. (A) Split-sample 
classification randomly splits data into training and test sets. (B) LOOCV implemented with nested cross-
validation where the inner-loop evaluates the efficacy of the classifier on each sample and the outer loop 
tests the classifier on the withheld sample. Feature selection and the ML algorithm are cross-validated in 
each loop. (C) 2x2 contingency tables containing the true positives (TP), true negatives (TN), false positives 
(FP) and false negatives (FN) are used to assess the true positive rates, (sensitivity) true negative rates 
(specificity) and final classifier accuracy. 

3.6.1. Statistical and Translational Implications for Gene Classifiers  

The following statistical and translational observations for implementing ML and applying 

the results into clinical settings may be useful. First, the fit of a model to the same data 

used to develop a classifier is not evidence of prediction accuracy for independent data. 

In other words, cross-validation is only valid if the test set is not used in the development 

of the model. Using the complete set of samples to select features violates this 

assumption and so invalidates cross-validation. In fact, an ideal test set is a truly 

separate, independent cohort of patients. Second, ‘over-fitting’ occurs when a ML 
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algorithm is trained on too few features and becomes specific to the training set resulting 

in poor classification on independent test data. Alternatively, as the number of features 

increases, more training data is required to ensure there are enough training instances 

with each combination of the feature values. Third, for small sample sizes (n < 50) 

LOOCV is less biased than split-sample whereas for moderate sample sizes 10-fold or 

split-sample validation is preferred. In either case, nested cross-validation should be 

considered as this avoids optimistically biased prediction accuracies by further dividing 

training data into an outer-loop (optimization of feature selection) and an inner-loop 

(specificity of the model is fit prior to applying to the withheld test set) (Cawley and 

Talbot, 2010). Fourth, longitudinal experimental designs are critical in fully elucidating 

mechanistic trends as well as in the prediction of disease onset, relapse or response to 

treatment strategies. Finally, ML is confounded by the heterogeneity of a biological 

tissue whereby assuming that all genes within a biological system (blood transcriptome) 

are independent from each other and identically distributed. To overcome tissue 

complexity, various statistical approaches have been recommended, focusing on 

integrating physical protein-protein interaction information or summarizing gene-sets to 

predict pathway level to obtain a higher-order understanding of the relationships 

between and amongst the final biomarker panel.  

3.7. Differential Gene Expression Analysis 
 
Standard differential gene expression analysis, or class comparison, is one of the most 

widely used approaches to gain a snapshot of transcriptional activity across two or more 

biological conditions. The aim of differential gene expression analysis is to quantify the 

relative change of each gene between two or more groups with a p-value, to adjust these 

p-values for multiple comparisons using a false-discovery rate (FDR) and subsequently 

to choose an appropriate cut-off to create a candidate list of differentially expressed 

genes. To elaborate, given that microarrays and RNA-Seq often are comparing the 

expression of thousands of genes at once, some genes may exhibit significant 

differences in gene expression by chance. This is called the FDR (Benjamin and 

Hochberg 1995) and may result through experimental bias, testing of multiple 

hypotheses, inadequate sample-size, and improper use of statistical analyses (Pawitan 
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et al. 2005; Broadhurst and Kell 2006). Therefore, a cut-off is generally established 

based on overall change threshold (i.e. fold-change) and FDR adjusted p-value.  

 

It is important to use both biological and statistical reasoning when defining cut-offs 

based on candidate lists of differentially expressed genes. For example, suppose that 

one selects a significance level of p-value < 0.001 for including genes in the gene list. If 

there are 8000 normalized genes in the experiment, then by chance 8 genes on the 

gene list could be false positives. If one obtains 24 genes on the gene list, then about 

one-third of them may be false positives. If one obtain 80 genes on the gene list, then 

about one-tenth of them may be false positives, and so on. Traditional multiple 

comparison corrections used in statistical analyses are more stringent, usually requiring 

that the chance of any false positives be very small, but for most gene expression 

studies, such conservatism is not appropriate. However, gene lists will not be a useful 

basis for further experimentation if they are heavily populated by false positives. The 

presence of false positives also makes interpretation or planning confirmatory 

experiments very problematic. Using a biological and statistical justified p-value criteria 

is important. There are many differential expression methodologies for modeling RNA-

Seq and microarray data, based on differing conceptual positions. In their most basic 

form, moderated t-tests (i.e. limma, edgeR and DESeq) and permutation-tests (i.e. SAM, 

SAMSeq, PoissonSeq) are able to compare gene expression levels with sufficient data 

between two or more groups.  

3.7.1. Moderated t test  
 
The core component of a moderated t test is the ability to fit gene-wise linear models to 

gene expression measurement to assess differential expression. As in limma (suitable 

for RNA-Seq and microarray), p-values are computed by adjusting the standard error 

through employing an empirical Bayes framework to borrow information across all genes 

to improve inference on any single gene and by modifying degrees of freedom, adjusting 

a term that represents the a priori number of degrees of freedom for the model (Ritchie 

et al., 2015). The method is sufficiently flexible to fit almost any experimental design: 

including experiments with two or more groups, factorial and time-course designs. 

Where appropriate, ‘nuisance variables’ such as batch and dye effects can also be 
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modeled as continuous covariates within the linear regression. Once a linear model is 

fitted, forming a contrast matrix allows for making a series of comparisons between 

groups. The fitted model object and contrast matrix are used to compute log2-fold-

changes and t statistics for the comparisons of interest, allowing all possible pairwise 

comparisons between treatments to be made (Ritchie et al., 2015). 

EdgeR (Robinson, 2009) is a closely analogous procedure to limma, but is 

mathematically more complex, takes RNA-Seq count data as input and then employs an 

overdispersed Negative Binomial model (since count data follows a Poisson / Negative 

Binomal distribution), before using an empirical Bayes procedure similar to  limma to 

moderate the degree of ‘overdispersions’ across genes. To clarify what overdispersions 

mean, a negative binomial model is for RNA-Seq data because there is typically more 

variation in these data than can be accounted for by using a Poisson model, and this is 

termed overdispersion. EdgeR estimates the mean (mu) of the counts for each gene, 

which corresponds to the abundance of that gene in the RNA sample. EdgeR models the 

mean for a gene as the (library size × concentration). This model has a second 

parameter, called the dispersion parameter. This parameter is very important, as it 

determines how to model the variance for each gene using a variance function (Formula 

3.2), where each gene has a distinct value for mu. Under the common dispersion model 

the same value for the dispersion is used when modeling the variance for each gene. 

Under a tagwise dispersion model a different value for the dispersion is used for each 

gene (Robinson, 2009).  

V = mu (1 + dispersion × mu) 

          (Formula 3.2) 

3.7.2. Permutation-based Testing  

Multivariate permutation-tests are another powerful approach for differential gene 

expression and are based on random permutation, or re-sampling, of the group labels 

(Ritchie et al., 2015). For each permutation, either parametric or nonparametric tests are 

averaged over several re-samplings of the data using sample permutation strategy to 

estimate a FDR, desirable for moderately sized two group comparisons. Yet, 

permutation testing has drawbacks: for example, when applied to small sample sizes (N 

< 7), permutation testing often results in low power to detect differences and is also 
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inappropriate for multi-level experimental designs (i.e. > 2 group comparisons). 

Permutation also assumes that all samples are independent and identically distributed, 

which is perhaps unrealistic. Moreover, when samples are correlated, permutation 

testing may be misleading. Nonetheless, both statistical approaches, (moderated t tests 

and permutation testing) have been criticized for ignoring biological knowledge regarding 

the higher-order relationships of how genes work together.  

3.7.3. Functional Annotation and Enrichment Analyses 
 
Gene-set enrichment proposes to incorporate biological insight to a list of candidate 

genes by utilizing a priori defined functional gene-sets. Gene-sets are formed by 

grouping genes that are parts of the same cellular components, biological processes or 

molecular factors (i.e. GO terms), or more important biological pathways (i.e KEGG, 

Reactome). Recent advances also permit the grouping of genes that are coordinately 

expressed in specific cell types or those which have been linked to therapeutic drug 

treatments. There are two major techniques for performing gene-set enrichment (Fig 

3.8).  

Over-representation gene-set analyses are traditionally based on calculating the over-

representation of candidate genes (i.e. differentially expressed genes) within a list of 

genes assigned to a particular functional vocabulary, such as a GO-term or KEGG 

pathway (Chen et al., 2009). This is commonly done by performing either a one-tailed 

hyper-geometric test, Fishers exact test, or the chi-squared test as a statistical measure 

of significance for over-representation. In some instances, it may be suggested to 

perform enrichment analysis of gene-sets for up- and down-regulated genes 

independently. Whilst this is a simple approach requiring very little computational time, it 

ignores genes which lie outside the candidate gene list, so is highly dependent on user-

defined cut-offs when identifying differentially expressed genes.  

Functional class scoring gene-set analysis considers an entire data set belonging to two 

groups as input. All genes are ranked based on correlation between their expression and 

group status using a suitable rank metric. Subsequently, the method computes an 

enrichment score based on whether gene members of an a priori defined gene-set are 

randomly distributed throughout the ranked dataset or primarily located towards the 
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extremes, irrespective of whether they are differentially expressed (i.e. GSEA) 

(Subramanian et al., 2005). Significance of this score is based on permutation of sample 

labels and adjusted for multiple comparisons. A sub-grouping of these methods aim to 

correct this ranked test for inter-gene correlations, given that expression measurements 

of individual genes in a gene-set are almost always correlated, which take into 

consideration both extent and directional fold-change information (i.e. CAMERA, Qu-

SAGE) (Ritchie et al., 2015; Yaarie et al., 2013). 

 
Figure 3.7 Two common approaches to gene-set enrichment analysis based on a hypothetical candidate list 
of 200 differentially expressed genes (DEG). (A) Over-representation tests for a significant over-
representation of differentially expressed genes in a prior defined genes lists representing biological 
processes, KEGG pathways or cell-type specificity. Numbers in venn diagram indicate the overlap of DEG 
onto genes annotated as neuron development, long-term potentiation and monocyte specific markers. (B) 
Functional class scoring first uses a rank metric (RM) to correlate global expression to group status and then 
computes an enrichment score (ES) by ranking the entire dataset from high-to-low expression and testing for 
enrichment of a priori defined gene-sets towards the extremes of the list. 

3.7.3.1. Semantic Similarity of Ontology Terms 

Semantic similarity modularization integration (SSIM) is used to make sense of large lists 

of significant over-represented gene-sets generated from a list of differentially expressed 

genes, by organizing lists of biological vocabularies based on GO semantic similarity 

revealing structured biological processes involved in disease processes. A composite 

set of over-represented gene-sets is often used to create gene-set pairwise similarity 

matrices based on GO semantic similarities between gene pairs using GoSemSim (Yu et 

al., 2010). The similarity matrix can be subjected to hierarchical clustering analysis (i.e. 

Euclidean or Pearson correlation coefficients) to reveal ‘mini’ modules (i.e. groups of 

genes) with essential biological functions able to discriminate between groups. 
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3.7.4. Protein-Interaction Networks 

While genes within gene-sets interact in some shape or form, especially at the pathway 

level, researchers are often left to interpret the potential implications of these molecular 

profiles using their knowledge regarding the biology of the functionally enriched 

vocabularies. The physical mappings of complex biological networks provide a 

conceptual framework to interpret candidate gene lists as interactome network maps. 

This effort has resulted in the creation of open source protein-protein interaction (PPI) 

repositories which provide user-friendly ways to extract physical protein-protein 

interaction information for a list of candidate genes (i.e. STRING) (Franceschini et al., 

2012). Mapping PPIs onto gene expression data provides a useful framework to 

understand functional implications of novel genes and gene-sets and discovering 

physical links between biologically meaningful genes and gene-sets. This is especially 

the case when a candidate gene list is composed of differentially expressed genes 

because such genes generally co-function in specific biological processes and 

pathways. Integration and visualization of PPI and gene expression data is routinely 

accomplished with the open source software CytoScape (Shannon et al., 2003).  

PPI repositories are validated in a variety of ways ranging from meta-mining literature to 

computational predictions based on physical/biochemical interactions and extending to a 

range of in vitro (i.e. protein microarrays, affinity chromatography) and in silico (i.e. gene 

fusion, phylogenetics, gene expression) methods. Unfortunately, there is poor overlap in 

PPIs across databases despite overlapping proteins, as well as large differences in PPI 

annotations through the use of alternative vocabulary terms across repositories 

(Mathivanan et al., 2006). Given the poor consistency across databases it is 

recommended to make sure that core PPI network findings can be validated across 

independent PPI databases. 

 

3.8. Weighted Gene Co-expression Network Analysis  
 
Contrary to supervised ML and differential expression analysis, weighted gene co-

expression network analysis (WGCNA) provides a means to move beyond single gene 

approaches and provide a systems-biology perspective for understanding biological 

disturbances underlying disease etiology. WGCNA is able to aggregate gene expression 
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measurements from across the entire blood transcriptome in an unbiased fashion, to 

focus analysis on discrete groups of genes with highly correlated expression patterns 

(i.e. co-expression modules) (Langfelder, 2008a). The probability for multiple transcripts 

to follow a complex pattern of expression across dozens or even hundreds of samples 

only by chance is low and such sets of genes should therefore constitute coherent and 

biologically meaningful transcriptional modules. Because of the large number of 

comparisons (usually >10,000) within conventional approaches (e.g. differential 

expression), these results are far less permissive to ‘noise’, so enhancing biomarker 

discovery and interpretation. Transcriptional modules can be annotated for specific 

molecular functions, peripheral blood cell type specificity and can be further be 

associated to disease status, clinical measurements and external biological data. 

Modules with likely biological origins and direct clinical associations reflect gene 

regulatory networks of the blood transcriptome and act as functional biomarkers of 

disease rather than a panel of unique blood-based biomarkers (i.e. ML). Basic principles 

of WGCNA are outlined in Figure 3.9, from constructing a global co-expression network, 

to the identification of sub-networks (i.e. co-expression modules), external data 

integration, the study of co-expression module relationships and identification of network 

hub genes.  
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3.8.1. Constructing a Global Weighted Gene Co-expression Network 

Deriving a gene network from a matrix of gene expression measurements constitutes a 

multi-step analytical process. First, expression data is filtered by coefficient of variation and 

normalized across all experimental groups and samples. Second, gene co-expression is 

measured with a correlation coefficient across all possible gene pairs. This is done with a 

Pearsons correlation for sample sizes greater than 20. For smaller sample sizes it is 

advisable to use a bi-midweight coefficient as a more robust means to measure correlations 

across small sample sizes. The end goal is to create a correlation matrix, aij, a symmetric n 

× n matrix with entries in [0, 1] whose component aij encodes the network connection 

strength between nodes i and j. Subsequently, an adjaceny matrix is computed by defining 

a co-expression similarity sij  as the absolute value of the correlation coefficient between the 

profiles of genes i and j (Formula 3.3) 

sij = |cor(xi, xj)| 

(Formula 3.3) 
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Figure 3.8 Basic principles behind 
weighted gene co-expression 
network analysis (WGCNA). First a 
pairwise correlation matrix is drawn 
and raised to some power Beta. 
Following, modules are detected with 
hierarchical clustering and 
implementing a dynamic branch cut 
algorithm to identify discrete groups 
of co-regulated genes (modules). 
Modules are subsequently 
interrogated for associations to 
clinical traits, enrichment of 
differentially expressed genes as 
well as functional annotation. 
Modules can also be used 
associated to each other and key 
hub genes driving the formation 
(clustering) of such co-expressed 
modules can be identified and 
labeled as therapeutic or putative 
biomarkers depending on the 
experimental context. 
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Third, WGCNA takes the absolute value of the correlations and raises them to the power ß, 

in order to emphasize strong correlations and punish weak correlations on an exponential 

scale. This is because un-weighted networks do not reflect the continuous nature of the 

underlying co-expression information and consequently produce a loss of information. 

Moreover, while expression data can be noisy and the number of samples is often small, 

this step is useful for both consolidating and removing transcriptional noise (i.e. technical 

and non-biological variation) (Formula 3.4). 

aij = sij 
ß 

          (Formula 3.4) 

 

There is a trade-off between maximizing the scale-free topology model fit (scale free fitting 

parameter R2) and maintaining a high mean number of connections (Figure 3.10). That is, 

high values of ß often lead to higher values of R2, but the higher power of ß, the lower is the 

mean connectivity of the network. Consequently, a good rule of thumb is to consider those 

powers that lead to a network satisfying scale-free topology at least approximately (e.g. R2 

> 0.80) so the mean connectivity is high and the network contains enough information (i.e. 

module detection).  

 
Figure 3.9 How to create a weighted co-expression network and choose a proper ß for your dataset.  The 
higher the ß, the better the scale free-topology (SFT) (left). However, the higher the ß also causes depletion of 
network connectivity (right). As a rule of thumb, ß values with a SFT higher than 0.8 are optimal. 

 

3.8.2. Identification of Sub-networks from the Global Network 

Once a global weighted gene co-expression network is created, the next step is the 

identification of sub-networks from the global weighted network. These sub-networks, or 
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gene co-expression modules, are discrete groups of genes with highly correlated 

expression patterns. In WGNCA, there are many options in module identification. One of 

the more robust and powerful approaches is hierarchical clustering using the standard R 

function hclust (Langfelder, 2008a) (Figure 3.11); branches of the hierarchical clustering 

dendrogram correspond to modules and can be identified using one of a number of 

available branch cutting methods, for example the constant-height cut or two Dynamic 

Branch Cut methods (Langfelder, 2008b). Although the height and shape parameters of the 

Dynamic Tree Cut method provide improved flexibility for branch cutting and module 

detection, it remains uncertain how to choose optimal cutting parameters or how to 

estimate the number of clusters in the data set.  

 

 
Figure 3.10. A cluster dendrogram of 28 identified modules in a network. Each hanging line represents a gene 
(leaf) on the tree and each group of genes (branch) represents a group of co-expressed genes. Numerous 
discrete modules have been identified in the colour band below the tree where the grey colour reflects genes 
which do not correlate well with densely interconnected genes.  

 

As aforementioned, clusters of coordinately expressed genes may reflect biological signal 

such as GO terms, KEGG pathways, or cell type specific signatures (or even batch effects 

or contamination). When interpreting co-expression networks, it is therefore helpful to focus 

on modules with likely biological origins instead of those which may be associated to 

technical effects. To test whether the identified modules are biologically meaningful, 

functional enrichment analysis can be used on each module independently. If a significant 

proportion of genes within a co-expression module relate to functional or cellular properties 

(i.e. over-representation gene-set enrichment) via ‘guilt-by-association’, the remaining 

genes in a module are expected to be of that function.  
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3.8.3. Module Preservation and Module Differential Expression Analyses 

 

The identification of disease-related gene co-expression networks are commonly identified 

in one of two ways. First, in network applications, one is often interested in studying 

whether modules are preserved across multiple networks. For example, to determine 

whether a pathway of genes is perturbed in cases relative to healthy controls, one can 

study whether its connectivity pattern is no longer preserved in one group compared to the 

other. Non-preserved modules can either be biologically uninteresting (e.g., reflecting data 

outliers) or interesting (e.g., reflecting fundamental co-regulatory differences). Here, the 

creation or disruptions of co-expression patterns within modules are examined transitioning 

from a healthy to disease state through ‘module preservation statistics’. There are both 

internal and external indexes of module preservation including density, connectivity and 

cross-tabulation based module preservation statistics. However, based on a global view of 

modular structure, it may be advantageous to aggregate multiple module statists into 

‘summary preservation’ statistics based on a permutation testing implemented in the 

modulePreservation R function (Langfelder et al., 2011). The modulePreservation function 

in R implements a permutation test involving several powerful network based statistics for 

evaluating module preservation. These statistics are summarized into the composite 

preservation called Zsummary. For each module in one dataset (a disease dataset), the 

function calculates the Zsummary statistic in the second dataset (a control dataset). For a 

given module, Zsummary > 10 indicates strong evidence for preservation in the test data 

set. Zsummary < 2 indicates no evidence of module preservation. An advantage of the 

preservation Z statistic is that it makes few assumptions regarding module definition and 

module properties. 

Since biologists are often more familiar with p-values as opposed to Z statistics, this R 

function also calculates empirical p–values (Psummary). The smaller the p-value, the stronger 

the evidence that the module is preserved. It is important to note that module preservation 

and module disruption are related and complementary concepts and they can both hold for 

a given module. Even though modules might be highly preserved across biological 

conditions, this does not preclude the emergence of subtle changes in network structure 

that are not enough to render the module non-preserved, but nevertheless are statistically 

significant and, potentially, biologically meaningful. 
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Thus, alternatively, networks can be constructed of case and control data collectively and 

the resulting network modules subjected to statistical testing. This represents a test of 

‘module significance’, and is an approach which is able to complement standard gene 

differential expression analysis, at the gene network level (Langfelder, 2008a). For 

example, if a gene co-expression network is identified across two experimental groups (i.e. 

disease vs. control) let GS (gene significance) represent the –log10 p-value for every gene 

following a conventional differential expression analysis between disease and control group 

labels, as a measure of strength of differential expression (Formula 3.5).  

GS = -log10 p-value 

(Formula 3.5) 

Let MS be calculated as the average GS within each module (Formula 3.6). This test will 

allow for the identification of co-expressed modules that are enriched for a large number of 

differentially expressed genes (Figure 3.12).  

MS = uGS 

(Formula 3.6) 

 
Figure 3.11. Integrating differential expression analysis into co-expression analysis through module significance 
measures. A total of 28 modules were identified. MS values averaged across three group-wise testing 
(Disease1, Disease2 and Controls) on the y-axis. This plot shows an enrichment of differentially expressed 
genes within the green and tan colored modules.   

While the direction of change (i.e. up- or down-regulation) in one group relative to the other 

with Figure 3.12 is left to interpretation, it is often wise to investigate these matters further. 



66 

Once a module of interest has been identified it can be summarized down to its first 

principal component termed the module eigengene (ME). The ME summarizes the main 

trend of gene expression across samples for a particular module of interest. ME values for 

all identified modules can be subjected to differential module expression analysis, 

correcting p-values for multiple comparisons and visualized in a boxplot (Figure 3.13). Now 

the direction of fold-change can be interpreted across the green and tan modules and 

subjected to statistical testing. This approach drastically reduces the multiple comparison 

problems from thousands of genes to tens of modules. 

 

 
Figure 3.12. Summarizing module ME values for differential module expression. Here green and tan colored 
modules from Figures 3.11 and 3.12 are displayed across Disease 1 (far left), Disease 2 (middle), Control (left) 
groups. 
 

3.8.4 Integration of Multi-Modal Data 

 

Co-expression networks also provide a statistically sound framework for data integration of 

external clinical traits, PPI information and multiple omic data-types. The identification of 

clinical trait-related co-expression modules adds another layer of information to each 

module, bringing module discovery closer to phenotypic alterations and recorded clinical 

manifestations. When diagnosing psychiatric illness numerous clinical findings and 

laboratory measurements may be collected, but only infrequently incorporated into the 

analysis. ME values can be associated to external data-types (Figure 3.14). In this case, 

these data can be correlated, through Pearson’s or Euclidean’s correlation coefficients, to 

ME values and significance is drawn with a students asymptotic P-value for significance. 

This provides a sophisticated approach for identifying gene co-expression networks which 

may be associated to potential confounding factors (e.g. age, smoking, gender etc..). 
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3.8.5 Hub Genes 

A key aspect of WGCNA is the ability to find centrally located intramodular hub genes. 

Genes with the highest correlation to other genes within a module, i.e. those that are highly 

connected, are labeled hub genes and are predicted to be of essential function to the co-

expression module. Hub genes are explained simply with the following equation where xi  is 

the profile of gene i and E(q) is the module eigengene of module q (Langfelder, 2008b). If for 

example, a hub gene and a clinical trait are both highly correlated to a ME (of a particular 

function), this hub may represent a putative marker with putative implications and 

association to the trait being measured (Formula 3.7) 

Kcor, i = cor(xi, E
(q)) 

(Formula 3.7) 
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3.8.6 Statistical and Translational Implications for Gene Networks 

 

Moving from an unsupervised gene-network approach to clinical utility requires a multi-

step process. First, the biology underlying disease etiology should be fully explored: 

comprehensive molecular characterizations at the systems-level only enhance and guide 

future prognostic and diagnostic hypotheses.  For example, ML often fails to place blood-

based biomarkers into a coherent biological framework making it difficult to derive 

practical and mechanistic insights of ML derived single gene biomarkers. Systems 

approaches permit the placing of single biomarkers into an empirically derived gene-

network with likely biological origins. Second, reproducibility is a necessity in genetic and 

biomarker testing. While there is a need to increase the likelihood that findings will prove 

reproducible and have predictive power in independent cohorts, a key advantage of 

systems-level analyses is that they are often more robust and reproducible compared to 

ML (Chaussabel, 2015). Repeated studies, which follow up functional characterization of 

prioritized candidates through network models are needed, ideally capitalizing on 

emerging systems-immunology technologies. Third, network analyses are particularly 

useful in pharmacogenomics: for example, the identification of a co-expression module 

differentiating cases from controls before symptom development may represent a 

feasible drug target for limiting disease development. Alternatively, the identification of 

drug-induced co-expression modules may be able to predict novel gene functions and 

provide new insights regarding drug-induced mechanisms and provide leads for drug 

repositioning. Moreover, when drug-induced responses are placed into the context of 

specialized immune subsets, opportunities to understand pharmacological and 

toxicological chemical properties may unfold. Fourth, systems-level analyses permit the 

integration of genetic variants, neuroimaging findings, and clinical measurements with 

blood transcriptome data. Integrating such data across multiple scales could lead to 

more informed decisions for personalized, predictive and preventive medicine. Finally, 

the inclusion of multiple disease-types is a key step towards placing results into a 

broader context. Determining how gene networks interact and converge across 

psychiatric diseases supports the discovery of gene networks which might drive critical 

neurobiological processes involved in the pathophysiology of many psychiatric disorders.  
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3.9. Summary 

Following initial pre-processing, quality control and normalization of gene expression 

data, three broad analytical themes have emerged to address specific clinical and 

biological aims. First, the identification of a unique panel of biomarkers with putative 

prognostic or diagnostic clinical value – this is a supervised machine-learning 

classification problem and is applied in Chapters 5 and 7. Second, the identification of 

differentially expressed genes and the mapping of these genes on to dysregulated 

pathways and PPI information – this accords with a conventional bioinformatics pipeline 

and varying aspects of these approaches are applied throughout Chapters 5-8. Third, 

the identification of functional biomarkers (i.e. gene networks) of disease and treatment 

response – this analytical challenge aligns with more holistic WGCNA applications and is 

used throughout Chapter 5-8.  
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Chapter 4 

Aims 

The central purpose of this work is to evaluate the utility of genome-wide blood-based 

gene expression measurements for the prediction, diagnostics and treatment of patients 

diagnosed with psychiatric diseases. This is particularly relevant given that blood-based 

transcriptome gene expression biomarkers sufficiently reflect changes in the amounts 

and combinations of RNAs expressed at various times in response to gene-environment 

interplay, health-to-disease transitions and mechanisms underlying therapeutic 

treatment. Here, I present a summary of the specific intentions of each primary research 

chapter and specific author contributions below.  

 

4.1. PART II – Application of Blood Transcriptomics in 

Psychiatric Diseases 
 

4.1.1. Chapter 5: Candidate Blood Biomarkers and Gene Networks of 

Posttraumatic Stress Disorder 

 

Chapter 5 contains the generation and subsequent analysis of blood-based RNA-Seq 

gene expression measurements collected from U.S. Marines (N=188) prior-to and 

following deployment to conflict zones (i.e. Iraq and Afghanistan). The collected sample 

size was enriched for U.S. Marines whom developed posttraumatic stress disorder 

(PTSD) following deployment. The aim of this study was to identify blood-based gene 

networks and biomarkers capable of characterizing PTSD risk (at pre-deployment) and 

PTSD development (at post-deployment). I further sought to reproduce relevant gene 

signatures in an independent cohort of U.S. Marines for which blood-based microarray 

gene expression measurements were generated (N=96). 

 

This chapter is predominately my work with significant input from Dr. Christopher H. 

Woelk and Dr. Caroline Nievergelt at the University of California San Diego (UCSD). As 
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first and corresponding author I was responsible for RNA isolation from whole blood, 

RNA quality check, design and application of appropriate statistical analyses, data 

interpretation, manuscript write-up, submission and handling of reviewer comments.  

 

4.1.2. Chapter 6: Immediate Molecular and Cellular Response to Acute 

Psychological Stress 

 

Chapter 6 consists of analyzing blood-based microarray gene expression data and 

integration with physiological measurements (endocrine and autonomic) throughout the 

sequence of events leading up to, during and following a first-time tandem skydive in 

otherwise healthy participants (N=13). Gene expression results were compared to a 

second cohort of healthy participants (N=26) for which peripheral blood was subjected to 

flow-cytometry. The aim of this work was to describe the molecular and cellular response 

of the human innate and acquired immune system in reaction to physical danger.  

 

As first and corresponding author of this work my contribution was design and 

application of appropriate statistical analyses, data interpretation, manuscript write-up, 

submission and handling of reviewer comments. Dr. Nadia Beliakova-Bethell (UCSD) 

was responsible for RNA isolation from whole blood and RNA quality check and Drs. 

Christopher H. Woelk and  Brinda Rana (UCSD) provided significant input. 

 

4.1.3. Chapter 7: Candidate Blood Biomarkers and Gene Networks of 

Methamphetamine-Associated Psychosis 

 

Chapter 7 contains the analysis of blood-based of RNA-Seq gene expression data and 

integration with subcortical brain structural volumes and numerous clinical parameters of 

subjects diagnosed with methamphetamine-associated psychosis (MAP) (N=30). The 

clinical presentation, course and treatment of MAP are similar to that observed in 

schizophrenia (SCZ) and subsequently MAP has been hypothesized as a 

pharmacological and environmental model of SCZ. The central aim of this work was to 

accurately identify and characterize MAP with the given data and to validate the MAP 

model as an exemplar for SCZ biomarker discovery.  
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As first and corresponding author of this work my contribution was design and 

application of appropriate statistical analyses to all data, data interpretation, manuscript 

write-up, submission and handling of reviewer comments with significant input from Dr. 

Dan Stein at the University of Cape Town (UCT). Dr. Christiane Nday (UCT) was 

responsible for RNA isolation and quality check and Dr. Anne Uhlmann was responsible 

for brain scanning.  

 

4.1.4. Chapter 8: Candidate Lithium Responsive Genes and Gene Networks 

in Bipolar Disorder Lymphoblastoid Cell Lines 

 

Chapter 8 contains an analysis of RNA-Seq expression profiles of bipolar disorder (BD) 

patient primary cell transformed lymphoblastoid cell lines prior-to and following lithium 

treatment using three experimental groups; (1) BD patients that respond to lithium 

treatment (responders) (N=8); (2) BD patients that do not respond to lithium treatment 

(non-responders) (N=8); (3) healthy controls (N=8).The intent of this study was to 

explore the mechanism of action and heterogeneity in clinical response to lithium 

treatment in BD.  

 

For this work, as first and corresponding author my contribution was design and 

application of appropriate statistical analyses to all data, data interpretation, manuscript 

write-up, submission and handling of reviewer comments with significant input from Drs. 

Christopher H. Woelk and John Kelsoe (UCSD). Ms. Tantyana Shekhtman was 

responsible for cell culture work. 

 

4.2. Part III – Moving Biomarkers Forward in Psychiatry 

 

4.2.1. Chapter 9: Moving Biomarkers Forward in Psychiatry 

 

Finally, Chapter 9 extends new ideas and postulates for what constitutes a good 

biomarker and guidelines towards achieving accurate and objective blood-based 

biomarkers for psychiatric disease.  
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Chapter 5 

Candidate Blood Biomarkers and Gene 
Networks of Posttraumatic Stress 
Disorder 

5.1. Background 
There is much scope for studying molecular factors that determine risk and 

subsequent development of post-traumatic stress disorder (PTSD). Significant 

numbers of men and women exposed to severe emotional trauma and loss 

emerge from these events with persistent PTSD symptoms, such as intrusive 

imagery, avoidance and hyperarousal, as well as other long-term physical 

health problems. PTSD affects 7-8% of the general United States (US) 

population, and is more common among troops recently returned from military 

service in Iraq and Afghanistan, with estimates of prevalence as high as 20% 

(Ramchand et al., 2010). Annual health care costs associated with PTSD in the 

US have been estimated to be 180 million dollars (Heinzelmann & Gill, 2013). 

Heterogeneity in susceptibility to PTSD suggests that differences at the 

molecular level (i.e. gene-expression level) may influence an individual’s 

physiological and psychological response to trauma and thus the development 

of PTSD. A clear understanding of the molecular mechanisms underlying this 

response to trauma is required to reduce the substantial morbidity and mortality 

associated with this disorder. 

 

A number of studies have analyzed blood gene expression and glucocorticoid 

activity to build more effective models for identifying molecular factors 

associated with PTSD (Ziker et al., 2007; Yehuda et al., 2009; Neylan et al., 

2011; Sarpas et al., 2011; Mehta et al., 2011; Pace et al., 2012; van Zuiden et 

al., 2012a; van Zuiden et al., 2012b; Matić et al., 2013; Glatt et al., 2013). These 

studies were recently reviewed by Heinzlemann and Gill (2013), who 

summarized that the increased expression of inflammatory genes and 

decreased expression of genes that regulate inflammation contribute to the 

onset of PTSD. Specifically, when considering the overlap in results from 

transcriptomic studies, decreased expression of FKBP5 and STAT5B, which 
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both regulate inflammation, is evident (Yehuda et al., 2009; Sarpas et al., 2011; 

Mehta et al., 2011; van Zuiden et al., 2012a).  While suggestive, the majority of 

these reviewed studies centered transcriptomic analysis on pre-determined 

targets (contrary to genome-wide applications) in subjects already diagnosed 

with PTSD, and thus lacked a prospective study design. Consequently, the 

identification of gene networks and blood biomarkers that confer risk to and 

resilience against PTSD remains an inadequately researched area. 

 

In the current investigation, RNA-Seq and microarray gene expression profiling 

was applied to peripheral blood taken from two independent cohorts of U.S. 

Marines (N=188, N=96), both before and after deployment to conflict zones 

(Iraq and Afghanistan). These rare samples provide an opportunity to better 

understand the molecular factors involved in the pathophysiology of PTSD and 

to identify blood-based biomarkers and gene networks implicated in PTSD risk 

and development. To do so, four main aims were tested. Aim1: First, to 

determine whether large changes in the underlying gene-gene connectivity (i.e. 

co-expression) in peripheral blood provide a basis for the pathology of PTSD. 

This aim included searching for gene co-expression networks (i.e. modules) that 

were either created or disrupted in PTSD cases relative to controls, and vice 

versa, by testing for module preservation. Aim 2: Second, to determine whether 

subtle changes in the underlying gene-gene co-expression patterns in 

peripheral blood provide a basis for PTSD pathology. This aim included 

searching for modules using a combination of PTSD cases and controls and 

testing them for association with PTSD. Aim 3: Third, focusing analysis on the 

individual gene level to identify differentially expressed genes between PTSD 

cases and controls cross-sectionally at pre- and then post-deployment, and 

subsequently testing longitudinally between time-points. Aim 4: Finally, to 

construct gene expression classifiers (unique panels of biomarkers) for 

predicting the PTSD development at pre-deployment and for classifying PTSD 

at post-deployment, while cross-validating prediction accuracies using an 

independent withheld test dataset.  
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5.2. Materials and Methods 

 
5.2.1. Subject Selection and PTSD Diagnosis
 
All subjects were male and participants in the Marine Resilience Study (MRS), a 

prospective study of well-characterized U.S. Marines scheduled for combat 

deployment to Iraq or Afghanistan, with longitudinal follow-up to track the effect 

of combat stress.  At the time of each blood draw, PTSD symptoms were 

assessed using a structured diagnostic interview, the Clinician Administered 

PTSD Scale (CAPS) (Blake et al., 1995; King et al., 1998; Weathers et al., 

2001). Using criteria from the Diagnostic and Statistical Manual of Mental 

Disorders, fourth edition (2000) (APA, 2000), diagnosis for partial or full PTSD 

was defined as a threat to life, injury, or physical integrity (Criterion A1) and the 

presence of at least one re-experiencing symptom and either three avoidance 

symptoms or two hyperarousal symptoms, or two avoidance symptoms plus two 

hyperarousal symptoms (Blanchard et al., 1995a; Blanchard et al., 1995b; 

Blanchard et al., 1996). Symptoms must have occurred at least once within the 

past month (frequency ≥ 1) and caused a moderate amount of distress (intensity 

≥ 2). PTSD co-morbidities (e.g. depression, acute stress disorder, agoraphobia) 

according to MINI International Neuropsychiatric Interview (MINI) criteria were 

not recorded for these participants. 

 

A subset of MRS study participants, enriched for PTSD post-deployment, were 

pre-selected for gene expression analysis. Participants had to meet the 

following criteria.  First, at pre-deployment, all participants had to be symptom 

free, with no PTSD diagnosis and a CAPS score ≤ 25.  Second, at post-

deployment, participants who fulfilled criteria for partial or full PTSD diagnosis 

were designated the PTSD group. Third, participants with post-deployment 

CAPS score ≤ 25 that matched the post-deployment PTSD group on variables 

of combat exposure, age and ethnicity were designated the ’control‘ group.  

Under these criteria, all paired subjects were stratified into two groups based 

upon CAPS scores at 3-months post-deployment. If a participant developed 

PTSD following trauma-exposure at 3-months post-deployment, their pre-

deployment sample would be included in the ‘PTSD-risk’ group. Likewise, if a 
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subject avoided PTSD symptoms at 3 months post-deployment their sample at 

pre-deployment was included in the ‘control’ group. 

 

5.2.2. RNA Isolation and Generation of Gene Expression 
 

Dataset 1: Whole blood was obtained from 124 U.S. Marines who served a 7- 

month deployment. Blood was drawn one month prior to deployment and again 

at 3-months post-deployment for each participant. Each blood sample (10ml) 

was collected into an EDTA-coated collection tube, RNA was isolated from 

peripheral blood using LeukoLOCK Total RNA Isolation Kit and all samples 

passed a RNA integrity number (RIN) >7. mRNA was subject to Poly-A 

enrichment and libraries were prepared for sequencing using standard Illumina 

Tru-Seq protocols and subjected to 50bp paired-end sequencing on the Illumina 

Hi-Seq 2000. RNA-Sequenced reads were trimmed for adaptor sequence, and 

masked for low-complexity or low quality sequence, then mapped to hg19 

RefSeq Human Genome using RSEM and counted using HT-Seq count. 

Dataset 2: For external validation, data were compared to an independently 

generated gene expression data-set from a separate, non-overlapping, group of 

50 MRS Marine participants (Glatt et al., 2013, previously published pre-

deployment data). Similarly, whole blood was obtained from U.S. Marines who 

served a 7-month deployment at both one month prior to deployment and again 

at 3-months post-deployment. RNA samples were treated in an identical fashion 

as described above, however final RNA was hybridized to the Affymetrix Hu-

Gene 1.0 ST Array. 

 
5.2.3. Data Pre-Processing 
 

Dataset 1: Quality control metrics were used to identify poor quality mRNA 

reads and potential outliers which may bias downstream analysis. First, GT 

content and library sizes were compared across samples to identify samples 

with large sequencing error. Second, genes with low read counts were filtered in 

a non-specific manner using edgeR. Genes having > 20 counts per million in at 

least 50% of the samples were retained. Third, resulting count data was 

normalized using the edgeR VOOM function (Robinson et al., 2010) and 

subjected to clustering analysis and principal component analysis (PCA) to 

identify outliers beyond 2 standard deviations from the average. From a total of 
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124 participants (52 with PTSD and 72 without PTSD) outlier analysis identified 

10 outliers (5 with PTSD and 5 without PTSD), so yielding a total of 47 with 

PTSD and 67 without PTSD. Subsequently, we sought to obtain a balanced 

experimental design by matching subjects at baseline by CAPS scores. Our 

final cohort consisted of 47 participants with PTSD and 47 without PTSD, 

matched for baseline anxiety-like symptoms, sampled both prior to and following 

deployment to conflict zones (Table 5.1). 
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Dataset 2: Microarray files (.CEL) were read using library affy (Gautier et al., 2004) and 

background adjusted, normalized and summarized to the probe level using RMA 

normalization (Irizarry et al., 2003). If two or more probes mapped to the same gene 

identifier, one was selected on the basis of having higher average expression across all 

samples. Non-specific filtering by average expression removed the lower 10% of all 

probes on the array. Outliers were identified in an identical fashion (as above) producing 

a final cohort of 24 participants with PTSD and 24 without PTSD, at pre- and post-

deployment (Table 5.2).  

 

  

 

To compare findings from RNA-Seq data in Dataset 1 to microarray data in Dataset 2, 

normalized gene expression measurements found across both platforms (N=10,184) 

passed into the subsequent analysis. 

 

5.2.4. Weighted Gene Co-expression Network Analysis 

 

5.2.4.1. Individual Network Construction and Module Preservation 

 

WGCNA (Langfelder & Horvath, 2008) was used to create global gene co-expression 

networks for cases and controls independently at pre-deployment and post-deployment 

for Dataset 1, comprising a total of four co-expression networks. The ß power of 12 was 

reached for all four networks. The dynamic tree-cut algorithm was used to identify sub-

networks (i.e. co-expression modules) from each global network, setting minimum 

module size and the minimum height for merging modules to 60 and 0.2. Subsequently, 

for each co-expression module in each network, the extent of co-expression preservation 

Table 5.2. Recorded clinical parameters from U.S. Marines assessed at pre- and post-deployment for Dataset 2.
Time Point Pre-Deployment Post-Deployment

PTSD Cases Controls
P-Value

PTSD Cases Controls
P-Value

(N=24)  (N=24) (N=24) (N=24)
Age 22.52 ± 3.16 22.01 ± 3.19 0.58 - - -
CAPs 22.63 ± 12.02 13.33 ± 8.92 0 64 ± 18.42 10.75 ± 9.57 1.80E-16
PCL 24.58 ± 6.43 22.75 ± 3.34 0.22 49.25 ± 12.55 21.38 ± 5.33 3.80E-13
Prior Deployment 12 12 1
CES - - - 18.04 ± 13.24 19.25 ± 15.09 0.77
BPE - - - 7.35 ± 4.59 7.96 ± 4.03 0.63
CES injured - - - 9 2 0.04
TBI - - - 11 4 0.06
Caucasian 17 18 1 - - -
African American 4 2 0.67 - - -
Native American 2 3 1 - - -
Asian Other 1 1 1 - - -
Grey shading is for visualization only. For abbreviations and p-value calculations see Table 5.1.
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between cases and controls was assessed using a permutation-based preservation 

statistic, Zsummary , implemented within WGCNA with 1000 random permutations of the 

data. Zsummary is used as a connectivity-based preservation-statistic able to determine 

whether the connectivity pattern between genes in a reference network is similar to that 

in a test network (Langfelder et al., 2011). A Zsummary score < 2 indicates no evidence of 

preservation, 2< Zsummary  <10 implies weak preservation and Zsummary  > 10 suggests 

strong preservation. It is important to note that module preservation and module 

disruption are related and complementary concepts and they can both hold for a given 

module.  

 

5.2.4.2. Combined Network Construction and Module Differential Analysis 

 

Global gene co-expression networks were created with a combination of cases and 

controls at pre-deployment and post-deployment for Dataset 1 and Dataset 2, 

comprising 4 global co-expression networks in total. Similarly, the power of 12 was 

reached for both networks in Dataset 1 and the power of 30 was reached for both 

networks in Dataset 2. Network connectivity in the microarray data was less than that of 

the RNA-Sequencing data and a higher ß value was used to reach a more satisfactory 

scale-free topology for the networks. Similarity, the dynamic tree-cut algorithm was used 

to identify sub-networks (i.e. co-expression modules) from each global network, setting 

minimum module size and the minimum height for merging modules to 60 and 0.2. Here, 

module eigengenes (ME) for all modules were correlated to clinical parameters such as 

PTSD-risk status, control status, age, alcohol consumption, tobacco usage, CAPS 

scores and criteria, traumatic brain injury (TBI) and ethnicity which provides a 

complementary assessment of these potential confounders to that performed in standard 

differential expression analysis. For each gene in a module, module membership (kME) 

was defined as the correlation between gene expression values and ME expression. 

Genes with high kME inside co-expression modules are labeled as hub genes 

(Langfelder & Horvath, 2008). GS was calculated as the –log10 of the p-value generated 

for each gene within a particular module using a moderated t test and is a measure of 

the strength of differential gene expression between PTSD cases and controls. MS was 

calculated as the average GS within each module. 
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5.2.5. Functional and Cellular Enrichment Analyses  

 

Module enrichment was assessed by over-representation analyses. First, broad over-

arching module functions were determined using GO biological processes from the 

DAVID database (Huang et al., 2009) (http://david.abcc.ncifcrf.gov/). Second, more 

precise and exact module functions were determined using Reactome NCBI Biosystems 

pathways and terms (Geer et al., 2010). Finally, since co-expression patterns may also 

represent specific cell-types from a larger heterogeneous population (i.e. peripheral 

blood leukocytes), we undertook cell-type module enrichment using the highly 

expressed, cell specific (HECS) gene expression database compiled by Shoemaker et 

al. (2012). All module genes were used for enrichment analyses using a FDR corrected 

p-value < 0.05 as significant.  

 

5.2.6. Differential Gene Expression Analyses  

 

Differentially expressed genes were assessed using the moderated t-test in edgeR 

(Robinson et al., 2010) and LIMMA (Smyth et al., 2005) packages for RNA-Seq and 

microarray data, respectively. Our multi-level experimental design permitted us to test 

gene differential expression in three main ways. First, a cross-sectional analysis 

compared PTSD cases to controls at post-deployment. Second, a cross-sectional 

analysis compared PTSD risk cases to controls pre-deployment. Third, a longitudinal 

contrast analysis was performed utilizing the paired nature of these data searching for 

genes responding differently within one group across time-points, from pre- to post-

deployment. The significance threshold for theses analyses was set to a nominal p-value 

< 0.05. A nominally significant p-value was used to yield a reasonable number of genes 

to include within network analyses.  

 

5.2.7. Supervised Machine-Learning Classification  

 

BRB-Array Tools (Simon et al., 2007) supervised multivariate classification methods 

were used to construct gene expression classifiers at pre-deployment (to predict PTSD 

development) and post-deployment (to diagnose PTSD). Each model consisted of three 

steps. First, all genes with P < 0.05 (comparing PTSD cases to controls) from Dataset 1 

were subjected to classifier construction. These criteria were used to cast a wide net to 
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catch all potentially informative genes, while false-positives could be discarded by 

subsequent optimization and cross-validation steps. Second, classifiers composed of 

different numbers of genes were constructed by recursive feature elimination (RFE). 

RFE provided feature selection, model fitting and performance evaluation via identifying 

the optimal number of features with maximum predictive accuracy. Third, the ability for 

RFE to predict group outcome was assessed by different multivariate classification 

methods including diagonal linear discriminant analysis (DLDA), support vector machine 

(SVM), nearest centroid (NC) and three-nearest neighbors (3NN). Prediction accuracies 

were cross-validated using a leave-one-out cross-validation (LOOCV) approach using 

Dataset 1 and subsequently performing external cross-validation of prediction accuracies 

on Dataset 2.  

 

5.2.8. Batch (Technology) Correction  

 

Despite applying similar supervised multivariate classification algorithms to construct 

gene expression classifiers from Dataset 1 (RNA-Seq) and Dataset 2 (Microarray), the 

ability to cross-validate classification accuracies using external data (i.e. Dataset 2) is 

hampered by the use of different technological platforms. Prior to classifier construction it 

is necessary to find means to merge these two different data distributions into one 

common distribution. To do so, normalized gene expression measurements from 

Dataset 1 and Dataset 2 were subjected to ‘Combat correction’ (Johnson & Rabinovic, 

2007), a gene standardization approach, using the two datasets as independent batches 

for correction (Supplementary Figure 5.1). We could then proceed to classifier 

construction.   

 



 
87 

5.3. Results 

5.3.1. No Large Differences in Module Preservation  

WGCNA was used in Dataset 1 to assess module preservation between PTSD cases 

(N=47) and controls (N=47) for the pre- and then the post-deployment time point. These 

analyses aim to identify large differences in gene co-regulatory patterns, as being 

disrupted or created in PTSD cases relative to controls, or vice versa. However, 

following 1000 random permutations of co-expression modules, we observed strong 

preservation statistics (Zsummary  > 10) for all modules at pre and post-deployment for 

PTSD cases and controls (Table 5.3). This indicates similar fundamental gene co-

regulation within PTSD cases and controls, suggesting that major changes in the 

underlying gene-gene connectivity are unlikely to be the basis for the pathology of this 

disorder. However, even though modules might be highly preserved across PTSD cases 

and controls, this does not preclude the emergence of subtle changes in gene network 

structure that are not strong enough to render the module fully non-preserved, but still 

may differ in gene expressions that are statistically significant and, potentially, 

biologically meaningful.  

 

 

 

 

 

 

 

 

 

 



 
88 

 

Table 5.3. Preservation statistics at pre- and post-deployment within Dataset 1. 

a) Pre-Deployment : Case (reference) to 
Control 

b) Pre-Deployment : Control (reference) to 
Case 

Module Module Size Zsummary  Module Module Size Zsummary  
1 407 95.84 1 743 94.35 
2 338 95.83 2 654 79.21 
3 818 57.39 3 1000 49.3 
4 225 37.11 4 233 40.55 
5 95 34.87 5 119 34.89 
6 171 33.05 6 524 31.06 
7 168 31.77 7 1000 30.54 
8 259 30.11 8 237 28.75 
9 122 30.1 9 116 24.33 

10 1000 29.29 10 150 23.81 
11 79 22.27 11 254 21.59 
12 481 22.22 12 281 17.59 
13 114 19.13 13 399 17.09 
14 73 18.66 14 164 16.47 
15 213 17.55 15 100 11.13 
16 79 16.53 16 118 10.2 
17 70 13.21 - - - 
18 157 12.63 - - - 
19 105 11.48 - - - 
20 100 10.38 - - - 
21 196 10.69 - - - 

c) Post-Deployment : Case (reference) to 
Control 

d) Post-Deployment : Control (reference)  to 
Case 

Module Module Size Zsummary Module Module Size Zsummary 

1 487 52.67 1 1000 44.3 
2 1000 47.61 2 191 43.56 
3 106 41.41 3 122 33.47 
4 1000 27.42 4 198 32.84 
5 119 26.18 5 125 29.84 
6 68 20.9 6 1000 29.46 
7 87 17.48 7 91 17.27 
8 201 13.47 8 158 16.55 
9 122 12.95 9 100 11.73 

10 100 11.26 10 151 11.14 
Gene network modules were constructed from Dataset 1 pre-deployment PTSD risk cases and 
assessed for preservation within a control network (a) and vise versa (b). The same test was performed 
within Dataset 1 post-deployment PTSD cases and assessed for preservation within controls (c) and 
vise versa (d). Zsummary is the summary preservation statistic, using either the PTSD modules or control 
modules as reference. The preservation statistic describes the preservation of the corresponding 
module as compared to the reference. Zsummary < 2 implies no evidence for module preservation, 2 < 
Zsummary < 10 implies weak evidence of preservation and Zsummary >10 implies strong evidence for 
module preservation. Zsummary was assessed using 200 permutations of the data. Zsummary scores are 
ranked high to low. Grey shading is for visualization purposes only. 
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5.3.2. Differential Module Expression Post-Deployment in Dataset 1   

WGCNA was used to construct a global gene co-expression network from a combination 

of PTSD cases (N = 47) and controls (N = 47) at post-deployment using RNA-Seq 

expression data from Dataset 1 (Figure 5.1). This analysis identified nine modules which 

were further examined for enrichment of differentially expressed genes and subjected to 

clinical and functional annotation.  

 

 

 

Figure 5.1. Hierarchical cluster tree (dendrogram) of the combine post-deployment network of PTSD cases 
(N=47) and controls (N=47) comprising 10,184 genes. Each line represents a gene (leaf) and each low-
hanging cluster represents a group of co-expressed genes with similar network connections (branch) on the 
tree. The first band underneath the tree indicates the nine detected network modules.  

 

 

 

 

 



90 

Two modules (M1A and M1B) were enriched for genes identified as differentially 

expressed between PTSD cases and controls, reflected by an elevated module 

significance (MS) value (Figure 5.2A). To determine if the overall expression of modules 

M1A and M1B were significantly associated with PTSD group status, we calculated 

differences in module expression using module eigengene (ME) values. Consistent with 

results using MS, expression of module M1B was significantly higher in the PTSD 

resilient control group (p=0.004 and Figure 5.2B), meanwhile expression of module M1A 

was significantly higher in the PTSD group (p=0.02, Figure 5.2B).  

 

 

 

Figure 5.2.  Module significance (MS) and module eigengene (ME) expression boxplots. (a) MS was 
measured across all post-deployment modules in Dataset 1. Here, a Kruskal-Wallis p-value was used only 
for descriptive purposes and not inferential. (b) Significant differences in ME expression were observed in 
post-deployment modules M1B and M1A. Differences in ME expression were measured using a two-tailed 
student’s t test on and a p-value < 0.05 is considered significant.  

 

 

 

 

 

 

 

 

a� M1B M1A

Dataset 1 Post−Deployment Modules
 p = 1.8e−137

M
S

 (−
lo

g1
0 

P
−v

al
ue

)

0.0

0.5

1.0

1.5

PTSD
Group�

Control
Group�

PTSD
Group�

Control
Group�

b�
−0.2

−0.1

0.0

0.1

0.2

M1B
p = 0.004

M
E

 E
xp

re
ss

io
n

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

M1A
p = 0.019

M
E

 E
xp

re
ss

io
n

a b 



 
91 

Subsequently, ME values for each module were subjected to clinical annotation to 

determine module-trait relationships (Table 5.4). The ME for module M1B was 

significantly correlated to post-deployment resilient controls (r=0.29, p=0.005), negatively 

correlated to post-deployment CAPS and PCL (CAPs, r =-0.27, p =0.009; PCL r=-0.28, 

p=0.007) and negatively correlated with other measures of CAPS (Table 5.4) but not 

correlated to any other measured clinical variable, suggesting that differential gene 

expression in M1B was not confounded by recorded measurements such as body-mass-

index, smoking, or alcohol consumption. Conversely, the ME for module M1A was 

significantly correlated to PTSD cases (r = 0.23, p = 0.03), post-deployment CAPs 

criteria of avoidance (CAPSCA, r = 0.32, p = 0.002) and post-deployment CAPs criteria 

of re-experiencing (CAPSBs, r=0.2, p=0.05) but to no other variables (Table 5.4). 

Genes in M1B were expressed to a greater extent in resilient controls (Figure 5.2B) 

while enrichment analysis revealed a significant association to terms including 

hemostasis, platelet activation and wound healing (Figure 5.3A). Further, enrichment for 

cell-type specificity revealed an over-representation of erythroid expression markers 

(blood platelets). Hub genes are those most strongly correlated to the ME value for a 

particular module and represent possible disease associated markers13, in this case 

putative PTSD-resiliency markers. The top 5 hub genes in M1B (C6orf25, CTDSPL, 

ITGB3, PRKAR2B and TUBB1) were are all associated with hemostasis and in 

particular, with platelet regulation and function (Zarbock et al., 2007; Beck et al., 2014; 

Daly, 2010; Raslova et al., 2007) (Figure 5.3B). Additionally, enrichment analysis for 

M1B revealed a significant association with immune response as exemplified by innate 

responses mediated by interferon (IFN) signaling (Figure 5.3C), as well as with 

monocyte specific markers. The top 5 hub genes in M1A included IFI35, IFIH1, PARP14, 

RSAD2 and UBE2L6; all well described interferon stimulated genes (Rusinova et al., 

2013) and here considered putative PTSD-associated markers (Figure 5.3D).  
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Table 5.4. Complete network characterisation of post-deployment modules within Dataset 1. 

Module Genes(n): 
Top Significant Top 

Significant 
Top 

Significant 
Significant ME Correlations 

Biological 
Process Pathway Cell-Type Condition or Trait (R, P-value) 

M1A 
115  
(*69) 

Immune 
Response 

Interferon 
Signalling 

CD14+ 
Monocytes 

PTSD Group (0.23, 0.03) 

 CAPsBs (0.2, 0.05) 

CAPsSCAs (0.32, 0.002) 

M1B 
118  
(*74) 

Coagulation Hemostasis 

(Blood 
Platelets) 

CD71+ Early 
Erythroid 

Control Group (0.29, 0.005) 

PCL (-0.28, 0.007) 

CAPs (-0.27, 0.009) 

CAPsBs (-0.24, 0.02) 

CAPsSCN1 (-0.23, 0.02) 

CAPsDs (-0.23, 0.03) 

CAPsCs (-0.25, 0.01) 

3 146 (*3) - - - CES PBE   (0.29, 0.005) 

4 80 (*1) M Phase Cell Cycle 

(Blood 
Platelets) 

CD71+ Early 
Erythroid 

- - 

5 85 (*1) 
B cell 

activation 
- 

CD19+ B 
Cells 

Tobacco (-0.22, 0.03) 

CES (-0.21, 0.04) 

6 217 
Cellular 
Defence 

Response 
- 

CD56+ NK 
Cells 

Tobacco (-0.2, 0.05) 

Prior 
Deployment 

(0.25, 0.01) 

Ethnicity (C) (-0.25, 0.02) 

7 283 
Translation 
Elongation 

Eurkaryotic 
CD4+ T cells 

Prior 
Deployment 

(0.2, 0.05) Translation 
Elongation 

8 146 (*2) - - 
CD14+ 

Monocytes 

Alcohol (0.26, 0.01) 

Ethnicity (AA) (-0.26, 0.01) 

9 
4090 
(*60) 

Intracellular 
Signalling by 
Interleukins 

CD33+ 
Myeloid 

Prior 
Deployment 

(-0.26, 0.01) Signalling 
Cascade 

The first column represents the identified modules. The second column represents the number of genes within 
each module and numbers denoted as (*) reflect the number of significantly differentially expressed genes within 
each particular module. The third, fourth and fifth column represent significantly overrepresented biological 
processes (annotated with DAVID), pathways (annotated with REACTOME) and cell-types (annotated with CTen) 
for each module, respectively. All significant terms were not included as to reduce redundancy. In the sixth column, 
ME values were correlated to clinical parameters, and only the significant correlations (p < 0.05) are reported. 
Abbreviations: Ethnicity (C) = Caucasian, Ethnicity (AA) = African American; Ethnicity (AM) = American Mexican; 
Ethnicity (A) = Asian. All other abbreviations found in Table 1. Grey shading is for visualisation purposes only. 
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5.3.3. Differential Module Expression Pre-deployment in Dataset 1   

It is unclear whether the modules identified post-deployment are involved in causing PTSD 

development or are simply a consequence of the disorder. To determine if any post-

deployment modules could be re-identified and thus denoted as causal modules, we 

constructed a gene co-expression network combining RNA-Seq gene expression data from 

PTSD-risk cases (N = 47) and controls (N = 47) pre-deployment in Dataset 1. Twenty-two 

pre-deployment modules were identified, examined for enrichment of differentially expressed 

genes and then subjected to functional and clinical annotation (Supplementary Table 5.1). 

A single module (M2A) was enriched for differentially expressed genes between PTSD-risk 

participants and controls as reflected by an elevated MS value (Figure 5.4A). Along the 

same lines, M2A module expression was significantly higher in the PTSD risk group 

(p=0.001 and Figure 5.4B). Module M2A ME was significantly correlated to one variable, 

PTSD-risk (r=0.32, p=0.002). Similar to module M1A that was identified post-deployment, 

enrichment analysis of genes in M2A revealed a significant association with innate immune 

responses, IFN signalling and monocyte specificity (Figure 5.3E). The top 5 hub genes 

were again associated with IFN signalling (DTX3L, IFIH1, IFIT3, PARP14 and STAT2) 

(Figure 5.3F). Gene-set overlap analysis compared all of the genes in M2A pre-deployment 

(n=245) to those in M1A post-deployment (n=115) to reveal a significant overlap (∩ = 108, p 

= 6.7e-181). 

Figure 5.4.  Module significance (MS) and module eigengene (ME) expression boxplots. (a) MS was measured 
across all pre-deployment modules in Dataset 1. Here, a Kruskal-Wallis p-value was used only for descriptive 
purposes and not inferential. (b) Significant differences in ME expression were observed in pre-deployment 
module M2A. Differences in ME expression were measured using a two-tailed student’s t test on and a p-value < 
0.05 is considered significant.  
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5.3.4. External Validation of Post-Deployment Modules in Dataset 2 

To validate post-deployment findings in Dataset 1 we assessed Dataset 2 for similar network 

properties in a combined network analysis of PTSD cases (N = 24) and controls (N = 24) 

post-deployment. Out of 8 modules (full characterisation Supplementary Table 5.2), a 

single module (M3A) contained an enrichment of differentially expressed genes (Figure 

5.5A) demonstrating a modest, yet insignificant, increase in module expression within the 

PTSD group (p = 0.1, Figure 5.5B). The ME was significantly correlated to post battle 

experience (r = 0.4, p = 0.004) and post-deployment CAPS (r=0.32, p=0.03) but weakly 

correlated to PTSD caseness (r = 0.21, p = 0.1). The genes in this module were over-

expressed in PTSD cases relative to controls (Figure 5.5B) and enrichment analysis 

revealed a significant association with innate immune responses, IFN signalling and 

monocytes (Figure 5.7A). The top 5 hub genes (DDX58, IFI35, IFIT5, PARP9 and ZBP1) 

were again all associated with IFN signalling (Figure 5.7B). A highly significant overlap in 

post-deployment module genes across M1A (n=115) in Dataset 1 and M3A (n=83) in 

Dataset 2 (∩ = 63, p = 2.0E-105) confirmed the identification of a dysregulated innate 

immune module related to PTSD cases across two independent datasets. 

Figure 5.5.  Module significance (MS) and module eigengene (ME) expression boxplots. (a) MS was measured 
across all post-deployment modules in Dataset 2. Here, a Kruskal-Wallis p-value was used only for descriptive 
purposes and not inferential. (b) Significant differences in ME expression were observed in post-deployment 
module M3A. Differences in ME expression were measured using a two-tailed student’s t test on and a p-value < 
0.05 is considered significant.  
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5.3.5. External Validation of Pre-Deployment Modules in Dataset 2 

To re-confirm pre-deployment findings from Dataset 1, PTSD-risk cases (N=24) and controls 

(N=24) pre-deployment were combined from Dataset 2 and subjected to network analysis 

which identified 11 modules (full characterisation in Supplementary Table 5.3). A single 

module (M4A) was enriched for differentially expressed genes between PTSD-risk cases 

and controls (Figure 5.6A). The PTSD-risk group displayed a significant over-expression of 

module expression (p = 0.01, Figure 5.6B). The ME for M4A was significantly correlated to 

PTSD-risk (r = 0.36, p = 0.01) and CAPs (r=0.44, p=0.002). Moreover, enrichment analysis 

of M4A revealed a significant association with innate immune responses, IFN signaling and 

monocytes (Figure 5.7C), and the top 5 hub genes (PARP9, UBE2L6, STAT2, TRIM22 and

GBP1) were again all associated with IFN signaling (Figure 5.7D). All pairwise gene-set 

overlap analyses across modules M1A, M2A, M3A and M4A revealed a highly significant 

overlap (Figure 5.8) and hub gene expression for these modules showed elevated 

expression in PTSD groups when compared to controls both pre- and post-deployment 

across both datasets. These results demonstrate the association of a dysregulated innate 

immune module, related to IFN signaling, which appears to define at least part of the 

pathophysiology of PTSD through causal association to PTSD development. 

Figure 5.6.  Module significance (MS) and module eigengene (ME) expression boxplots. (a) MS was measured 
across all pre-deployment modules in Dataset 2. Here, a Kruskal-Wallis p-value was used only for descriptive 
purposes and not inferential. (b) Significant differences in ME expression were observed in pre-deployment 
module M4A. Differences in ME expression were measured using a two-tailed student’s t test on and a p-value < 
0.05 is considered significant.  
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Figure 5.8.  Venn Diagram of Innate Immune Co-expression Modules across Dataset 1 and Dataset 2. Venn 
Diagram (a) depicting significant overlap in genes belonging to modules M1A post-deployment and M2A pre-
deployment in Dataset 1 as well as modules M3A post-deployment and M4A pre-deployment in Dataset 2. Gene 
overlap (∩) with associated hypergeometric p-value, in italics, are depicted for all pairwise comparisons of 
module genes (b). The overlap identified 51 genes found across all four analyses (c) which are displayed in the 
table along with the corresponding kME rank (i.e. rank of connectivity) for each gene within a particular module. 
A high rank indicates hub gene status (i.e. PTSD risk and PTSD associated markers). Numbers in bold outline 
the top 10 hub genes across each module, respectively. Genes are ordered accordingly to M2A kME. 
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IFIH1� 3 1 12� 7
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IFIT3� 10 5 8 10
IFI35� 2 6 4 52�

UBE2L6� 1 7 18� 2
PARP9� 47� 8 2 1
TRIM22� 31� 9 14� 4
DDX58� 36� 10 3 26�
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Continued…
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5.3.6. Cross-Sectional and Longitudinal Differential Gene Expression 

Differential gene expression analyses revealed that most changes were observed cross-

sectionally at pre-deployment and post-deployment, rather than occurring across time-points 

in a longitudinal fashion (Figure 5.9). These genes were also subjected to functional 

annotation and the top three most significant terms are reported based on over- and under-

expressed genes for each time-point. As anticipated, all functional ontology terms overlap 

with findings from differential module expression analyses (Aim 2).  

Figure 5.9. Differential gene expression analyses were performed using a moderated t statistic within Dataset 1
and Dataset 2. A cross-sectional analysis compared PTSD cases to controls post-deployment in Dataset 1 (47 
PTSD cases vs. 47 controls) and subsequently in Dataset 2 (24 PTSD cases vs. 24 controls) to reveal 294 and 
61 differentially expressed genes, respectively, with a significant overlap (a). The top 3 most significant biological 
processes (annotated with DAVID) based on over-expressed and under-expressed genes identified from Dataset 
1 are reported (b). Subsequently, the same paired data were analyzed pre-deployment for Dataset 1 and Dataset 
2  revealing 662 and 178 differentially expressed genes, respectively, with a significant overlap (c). The top 3 
most significant biological processes from Dataset 1 are reported (d). Utilizing, the paired structure of the data, a 
longitudinal contrast analysis was applied to identify genes behaving differently across time within the PTSD and 
control groups. This analysis revealed a total of 177 genes in Dataset 1 and 110 genes in Dataset 2, with 
minimal overlap (e) and no significant functional annotation (f). Up and down symbols are relative to the PTSD 
group. Significance threshold for genes was set to a nominal p < 0.05 where as we used a more strict threshold 
for functional annotations with a Bonferroni corrected p-value < 0.05. 
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5.3.7. Putative Diagnostic PTSD Gene Expression Classifier  

To identify a panel of biomarkers capable of confirming PTSD at post-deployment, we used 

four different supervised multivariate classification algorithms using a LOOCV on Dataset 1 

(N=94) and subsequently externally cross-validated prediction accuracies on a left out test-

set, Dataset 2 (N=48). Classification accuracies reached 85% when the expression of 45 

genes was used with SVM multivariate classification method using LOOCV on Dataset 1 

(Figure 5.10A&B, Supplementary Table 5.4). Classification accuracies for the 45 gene 

classifier were subjected to external validation on Dataset 2 where classification accuracies 

only reached 45% (Figure 5.10C). A total of 5 genes from the 45 gene classifier overlapped 

with post-deployment module M1A. 

 

Figure 5.10. Diagnostic gene expression classifier construction on dataset 1 post-deployment participants. (a) 
Four different multivariate classification algorithms were used with RFE feature selection and (b) accuracies were 
evaluated with a LOOCV and subsequently (c) using a left out test set, Dataset 2. Abbreviations; PPV, positive 
predictive value; NPV, negative predictive value; DLDA, diagonal linear discriminate analysis; 3NN, three nearest 
neighbors; NC, nearest centroid; SVM, support vector machines.  
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5.3.8. Putative Predictive PTSD Gene Expression Classifier 

Similarity, we sought to identify a unique panel of biomarkers capable of predicting the 

eventual development of PTSD at pre-deployment using the same methodologies as at post-

deployment. Classification accuracies reached 85% when the expression of 85 genes was 

used with SVM multivariate classification method and LOOCV on Dataset 1 (Figure 

5.11A&B). Classification accuracies for the 85 gene classifier were subjected to external 

validation on Dataset 2 where classification accuracies reached 70% (Figure 5.11C, 

Supplementary Table 5.5). A total of 34 genes from the 85 gene classifier overlapped with 

pre-deployment module M2A, more than expected by chance (p=0.005).  

 

Figure 5.11. Predictive gene expression classifier construction on dataset 1 pre-deployment participants. (a) 
Four different multivariate classification algorithms were used with RFE feature selection and (b) accuracies were 
evaluated with a LOOCV and subsequently (c) using a left out test set, Dataset 2. Abbreviations; PPV, positive 
predictive value; NPV, negative predictive value; DLDA, diagonal linear discriminate analysis; 3NN, three nearest 
neighbors; NC, nearest centroid; SVM, support vector machines.   
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A. 

Predictive Gene Expression Classifier 



 102 

 

5.4. Discussion 
Gene expression data were generated by RNA-Seq (Dataset 1 N=188) and microarray 

(Dataset 2 N=96) using peripheral blood samples isolated from U.S. Marines pre- and post-

deployment to conflict zones (Iraq and Afghanistan). Our prospective experimental design 

allowed for the identification of candidate PTSD biomarkers, and permitted the re-

confirmation of findings in an independent dataset.  Our methodological aims focused our 

genome-wide analysis at the higher-order gene network level, with further investigation of 

differences at the individual gene level. We were able to rule out large changes in the 

underlying gene-gene connectivity within peripheral blood as a basis for the pathology of 

PTSD however subtle changes in the expressions of gene networks may provide a useful 

indicator for PTSD risk and development. More specifically, these tests revealed, for the first 

time, the identification of dysregulated modules specific for innate immunity capable of 

characterizing causal and consequential molecular signatures of PTSD, and then further 

replicated these findings across independent datasets.  

 

 
5.4.1. Gene Networks Specific for Innate Immunity in PTSD  

Our central finding was the identification of a dysregulated innate immune module 

associated with the development of PTSD (Figures 5.2-5.6, Supplementary Figure 5.2), 

illuminated by the replication of modules post-deployment (M1A and M3A) and those pre-

deployment (M2A and M4A) that could be associated with PTSD. These findings suggest 

that differences in innate immunity modules were not simply a consequence of the PTSD 

state  after deployment but also have causal relevance for PTSD development and may 

therefore at least partly explain the pathophysiology of the disorder, exemplified by their 

identification pre-deployment. These results highlight our differential expression analyses 

(Figure 5.9) and our previous reports of C-reactive protein (CRP), a general marker of 

immune activation and inflammation, and 5’-oligoadenylate synthetase genes (i.e. OAS1, 

OAS2, OAS3) as markers of the antiviral interferon response, that were associated with an 

increased risk of developing PTSD (Eraly et al., 2014; Glatt et al., 2013). However, our 

current findings dramatically extend these results by showing that the IFN response is being 

modulated to a much greater extent than previously thought pre- and post-deployment. A 
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number of single case studies have reported that treatment of PTSD subjects infected with 

hepatitis C virus (HCV) with recombinant interferon (IFN- α2b) worsened  PTSD symptoms 

(Maunder et al., 1998; Dieperink et al., 2008). In our study, where subjects were not 

receiving IFN therapy, it is unclear what is stimulating the IFN response.  

 
5.4.2. Predictive and Diagnostic Gene Expression Classifiers 

Both a predictive and a diagnostic biomarker panel were identified through supervised 

multivariate classification methods. Overall classifier accuracies for a diagnostic classifier for 

Dataset 1 at post-deployment were high using SVM (85%), but external cross-validation on 

Dataset 2 were sub-optimal with 48% accuracy. Predictive classifier accuracies for Dataset 

1 at pre-deployment were also high using SVM (85%), while external cross-validation on 

Dataset 2 were better than expected by chance at 70% - where the translational value of 

preventing PTSD development before onset is relevant. Pre-deployment results also re-

affirm genes specific to innate immunity that were identified from our network analyses. 

Indeed, a total of 34 genes from a unique panel of 85 putative predictive genes overlapped 

with pre-deployment module M2A, more than expected by chance (p=0.005). However 

immune-gene dysregulation may be only one piece of the biological puzzle of PTSD 

susceptibility, as many genes comprising the best-performing PTSD-predictive and –

diagnostic classifiers were not immune-system genes (Supplementary Tables 5.4-5.5). 

Additionally, because of the heavy amount of statistical analysis prior to biomarker 

discovery, these results should be interpreted cautiously as a fair amount of technical 

variation exists between Dataset 1 (RNA-Seq) and Dataset 2 (Microarray) and needed to be 

accounted for prior to classifier construction (Supplementary Figure 5.1). Furthermore, 

classifiers constructed of both clinical and molecular for predictive and diagnostic purposes 

may provide interesting future avenues. For example, PCL scores differed significantly 

between eventual PTSD and controls at pre-deployment (p=0.001) in Dataset 1, and this 

may yield clinically relevant sensitivity for a putative classifier. 

 
5.4.3. Interpreting Blood-based Innate Immune Signatures in PTSD 

Our observations lead to several questions and some potential answers. First, how does 

one interpret the over-expression of innate immunity genes found prior-to trauma? One 

possible explanation is that both acute and severe stress, predictors in their own right for 

PTSD, are also associated with hyper-activation of the immune system and subsequent 
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inflammation (Butcher et al., 2004; Clark et al., 2014). An alternative hypothesis is that 

stress, pathogens and/or high viral loads may ‘prime’ the immune system, driving the IFN 

response, altering a subsequent response to trauma. Studies focusing on the gut-brain 

barrier have shown that intestinal mucosal dysfunction, defined as increased translocation of 

gram-negative bacteria (‘leaky gut’), plays a role in the inflammatory pathophysiology of 

depression suggesting that differences in gut flora may stimulate an IFN response (Maes et 

al., 2008). Second, does a dysregulated innate immune module pre-deployment hold 

predictive value? Previous work constructing a prognostic classifier from Dataset 2 pre-

deployment participants (Glatt etl al., 2013) suggests that immune-related genes hold 

predictive value  although these results have not yet been replicated across larger datasets 

using machine-learning methods. Inferring the prognostic relevance of network-based 

applications remains challenging. However, cross-referencing our findings with this previous 

work suggests that network statistics, and our innate immune modules, have predictive 

potential. Third, out of the entire network of pairwise correlations between genes across the 

transcriptome, are the most informative genes interconnected within similar modules or 

spread out across numerous modules? A possible limitation of this study was that by 

analyzing co-regulated modules of genes we may have missed individual genes which do 

not correlate within our modules of interest although are of  functional relevance to PTSD. 

For example, previous reports specifically target FKBP5 and STAT5B as differentially 

expressed biomarkers (Ziker et al., 2007; Yehuda et al., 2009; Neylan et al., 2011; Sarpas et 

al., 2011; Mehta et al., 2011; Pace et al., 2012) although they were not assigned to co-

expressed modules nor found to be significantly differentially expressed between PTSD 

cases and controls. Finally, of what relevance is PBL gene expression for a disorder 

primarily associated with the brain? In this study we identify innate immunity and IFN 

signaling genes whose expression was elevated in PBLs both before and after the 

development of PTSD. Although the recruitment of such signaling could be triggered by 

various factors, they ultimately release toxic compounds including degradative enzymes and 

reactive oxygen species that can impair cellular processes (Aiboshi et al., 2001; Veldhuis et 

al., 2003; Bhatia et al., 2004). It could be hypothesized that the accumulation of these 

compounds in the blood prior-to-deployment may be detrimental to the brain if the integrity of 

the blood-brain-barrier (BBB) was compromised by injury.  An increasing body of evidence 

indicates that changes in the blood may seed pathology in the brain across various 

disorders. Investigation in multiple sclerosis (Minagar and Alexander, 2003) of the 
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association of INF with the BBB suggests that IFN-γ and other proinflammatory cytokines 

(TNF-α and IL-1β) disrupt the BBB through a variety of mechanisms. Further, Alzheimer’s 

disease models suggest that breaches in the BBB can lead to ‘leakage’ into the brain 

of blood-borne molecules that are toxic to neurons and cause neurodegenerative changes 

(Carmeliet & Strooper, 2012).  Future studies investigating the role of the BBB in PTSD may 

provide a detailed explanation for a specific course of PTSD development. 

5.4.4. The Hemostatic Response to PTSD Development  

A novel finding was the identification that modules related to hemostasis and wound 

responsiveness were expressed to a greater extent post-deployment in US Marines who did 

not develop PTSD (Figure 5.2), as in module M1B (Figure 5.3A&B). Interestingly, the three 

other network analyses also detected modules related to hemostasis and wound response 

with significant overlap (M16 pre-deployment Dataset 1; M7 and M6 indented post- and pre-

deployment in Dataset 2; Supplementary Figure 5.3). These other modules revealed 

patterns of heterogeneous gene expression irrespective of group status and time-point 

suggesting that these modules and corresponding processes may infer wound resilience in 

only a sub-set of individuals. It has been well documented that different degrees of stress 

will elicit different stress responses (Pacak, 2001), and in particular, a response involving 

blood platelets has been shown to be a critical biomarker of hemostatic, thrombotic, and 

inflammatory challenges to an organism and a key player in cardiovascular disease and 

chronic stress, as in PTSD (Bray et al., 2013; Austin et al., 2013). Moreover, in a review of a 

large number of studies examining various tissue types, it was found that different types of 

psychological stress were associated with impaired wound healing (Walburn et al., 2009). A 

meta-analysis found an inverse correlation (r = -0.42) between psychological stress and 

wound healing (Goulin et al., 2011) supporting the positive association between wound 

healing and resilience against PTSD (r =0.29, p =0.005) found in this study. This suggests 

that high levels of stress may hinder proper wound healing during/after battlefield trauma, 

although the degree of such stress appears to be a key factor for establishing associations 

with the hemostatic system.  
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5.4.5. Strengths and Limitations 

A main strength of this study is the longitudinal and multi-level (two independent cohorts) 

experimental design which permitted the testing of numerous hypothesizes. Additionally, our 

cohorts were comprised of well-defined groups and equally balanced for pre-deployment 

CAPs scores. Although there were limitations. First, gene significance was low for a 

genome-wide study. Most genes we call ‘statistically significant’ pass only a nominally 

significant p < 0.05. Despite, analysis of higher-order gene co-expression modules permitted 

for the identification of reproducible small collective changes in modules specific to innate 

immunity. Second, our putative gene expression classifiers at pre- and post-deployment 

should be interpreted cautiously due to necessary statistical adjustments made in order to 

merge the two datasets, which took place prior to classifier construction. Third, we were 

unable to rule out the possibility of PTSD co-morbidities (e.g. depression, agoraphobia, 

etc…) contributing to the observed gene expression results. Future studies should focus on 

obtaining a more clinically heterogeneous cohort, or recording clinically relevant co-

morbidities, which may permit for a biomarker to discriminate between lesser/greater 

degrees of illness and relative co-morbidities.  

 
5.4.6. Concluding Remarks 

Our data provide a broad framework for previously unknown molecular aspects of PTSD and 

provide a new context concerning the complex nature of PTSD development. Specifically, 

modules of co-expressed genes associated with the innate immune response and IFN 

signaling appear to be implicated in the development of PTSD and persist once the disorder 

is established. Modules associated with hemostasis and wound healing may contribute to 

resilience against developing PTSD. This study may encourage further work examining 

differences in innate immune factors for the development of PTSD and the potential role of 

platelets in the stress response. This could in turn allow for advanced PTSD prevention and 

detection, by identifying susceptible service members prior to deployment to conflict zones, 

by removing the causal path (i.e. trauma exposure), or through implementation of novel 

targeted therapies to modulate the interferon signature.  

Contributions. These results are predominately my own work. I was fully responsible for all 
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blood handling, RNA treatment, statistical design, data analysis, data interpretation and 

writing.  
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Chapter 6 

Immediate Molecular and Cellular Response to 
Acute Psychological Stress 

6.1. Background 
While chronic stress-related effects upon the immune system are deleterious, acute stress 

appears to have both protective and adverse effects. For example, acute stress can 

enhance the acquisition and expression of immunoprotection by activation of bodily 

defences prior to wounding or infection (Ackerman et al., 2002; Amkraut et al., 1971; 

Carney, 2004; Dhabhar, 2009), or alternatively induce immunopathology via exacerbating 

autoimmune inflammation, with respiratory and cardiovascular consequences (Al’Abadie et 

al, 1994; Black, 2006; Bosch et al., 2003; Dhabhar et al., 1995; Garg et al., 2001). A more 

detailed understanding of immunomodulation throughout acute stress in humans is 

necessary not only to clinically reduce immunopathology, but also to harness stress-related 

immunoprotective effects. 

 

One primary mechanism by which acute psychological stress induces an immune response 

is through rapid changes in leukocyte distributions in the peripheral circulation (Bosch et al., 

2008). Studies investigating acute short-term stressors in humans, such as public speaking, 

have reported brief increases of natural killer (NK) cell numbers and other leukocyte subtype 

cell numbers, a reduction in lymphocyte proliferation, an increase in pro-inflammatory 

cytokine production, and reduced healing capacity of the skin (Altemus et al., 2001; 

Segerstrom and Miller, 2004). Studies of acute (psychological) stress due to physical danger 

have used first-time tandem skydive (Schedlowski et al., 1993), as this challenge has the 

advantage of representing real risk and eliciting reliable effects, yet permitting a high degree 

of experimental control. Studies using this paradigm have found transient increases of T 

cells and NK cells in the blood, as well as a parallel increase in NK cell cytotoxic activity. 

This suggests that changes in leukocyte numbers may be an important mediator of apparent 

changes in leukocyte activity. Comparably, an equivalent study of bungee jumping reported 

increases in neutrophils, pro-inflammatory monocytes, and CD8+ T cell numbers following 

the jump (van Westerloo et al., 2001). While these studies are suggestive, one important 
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limitation has been the lack of molecular and computational approaches for large-scale 

immune system monitoring. As a result, the molecular and cellular response underlying the 

rapid adaption to the immune system to an acute stressor is still incompletely defined.  

 

To this end, this exploratory study examined the detailed molecular and cellular response of 

the immune system throughout the sequence of events leading up to, during, and after 

short-term exposure to physical danger in humans. Peripheral blood-based microarray 

transcriptome profiles were analysed and integrated with physiological measurements 

(endocrine and autonomic) collected longitudinally from 13 healthy participants (7 male, 6 

female) at four different time-points throughout a first-time tandem skydive; (1) baseline, (2) 

pre-boarding, (3) post-landing, and (4) one-hour post-landing. These changes were 

compared to a second cohort of 26 healthy participants (17 male, 9 female) for which blood 

was collected and subjected to a detailed flow-cytometry analysis. This comprehensive and 

prospective experimental design allowed four main aims to be tested. Aim 1: First, to 

identify acute stress responsive genes (i.e. differentially expressed genes) in peripheral 

blood at pre-boarding, post-landing, and one-hour after the acute stress response relative to 

baseline measurements. Aim 2: Second, to identify patterns of co-expression in peripheral 

blood throughout these sequence of events and to determine their relationships with 

physiological measurements. Aim 3: Third, to assess gender-specific stress response 

differences at the molecular, cellular and physiological levels. Aim 4: Finally, to provide a 

comprehensive characterization of acute stress responsive peripheral blood leukocyte (PBL) 

cell types.  

 

6.2. Materials and Methods 
 

6.2.1. Ethical Approval  

 

State University of New York at Stony Brook and the University of California San Diego 

Institutional Review Boards approved this study.  Thirty-nine skydivers participated in this 

study consisting of 13 subjects for RNA expression profiles (7 male, 6 female) and 26 

subjects for flow cytometry (17 male, 9 female). All skydivers provided written consent prior 

to participation. Participants were recruited from individuals who independently contacted an 
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area skydiving school (Skydive Long Island, Calverton, NY) to schedule their first-time 

tandem skydive. Skydivers were healthy adult subjects with no history of cardiac or mental 

illness, as determined by physical examination, medical history, and screening using the 

Structured Clinical Interview for DSM-IV.  

6.2.2. Subject Selection and Sample Collection Schedule 

The study protocol adhered to a strict timeline for sample and data collection. Baseline blood 

samples were collected at 9:15 am within one week prior to or after the day of the skydive 

during a hospitalized testing that was time-locked to data collection during the skydive day  

and therefore served as a baseline and control. On the skydive day, all skydivers awoke at 

6:30 am and arrived at Stony Brook University Hospital at 7:30 am. “Pre-boarding” samples 

were collected at 9:15 am, one hour before take-off. Take-off occurred at 10:15 am, and the 

jump occurred at 10:30 am when the airplane reached an altitude of 11,500 feet (3,505.2 

meters). Skydivers landed at about 10:35 am and “post-landing” samples were collected at 

10:45 am. Skydivers were immediately transported to Stony Brook University Hospital for a 

final blood draw at 11:30 am (“one hour post-landing” sample). Saliva was collected every 

15 minutes from 9:15 am to 11:30 am on both the skydive and baseline hospital day.  

6.2.3. RNA Isolation and Microarray Hybridization 

Whole blood was obtained for 13 participants at baseline, pre-boarding, post-landing and 

one-hour post-landing. In total, 52 blood samples were collected across all time-points (i.e. 

13 participants across 4 time-points). Each blood sample (10ml) was collected into an 

EDTA-coated collection tube, RNA was isolated from peripheral blood using LeukoLOCK 

Total RNA Isolation Kit and all samples passed a RNA integrity number (RIN) >  6. 

Synthesis of cDNA and biotinylated cRNA and hybridization of cRNA to Illumina 

HumanHT12 v4 BeadChips (47,231 probes). Because the integrity of RNA was of low 

quality for 2 samples (1 sample at pre-boarding and 1 sample at one-hour post-landing), 

these data were discarded and partially paired data were analyzed (50 samples total).  
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6.2.4. Data Pre-Processing 

Quality control of microarray data, variance-stabilizing transformation (vst) normalization and 

removal of genes not expressed in any of the samples was performed in the R statistical 

computing environment version 2.8.0, using the Bioconductor package lumi (Du et al., 

2008). Probes lacking gene symbol annotations were removed while probes with duplicate 

gene symbols were selected on the basis of having a higher average expression across all 

samples. This final filtering step left a total of 18,129 probes that passed into our subsequent 

analyses. We used two methods to identify outlier samples (2.5 standard deviations + mean) 

for quality control: clustering analysis based on Pearson correlation and average distance 

metric and principal component analysis (PCA) using the first three components. In total, 5 

outliers were identified; 3 baseline, 1 pre-boarding, and 1 one-hour post-landing. This 

reduced our sample size from 50 samples to a total of 45 subjects (Supplementary Table 

1). The resulting quality-control treated data were used as input for differential expression 

and WGCNA analyses. 

6.2.5. Differential Gene Expression Analyses 

We measured differential expression with respect to gene expression at baseline for each 

time point using 18,129 probes, correcting for gender differences. Differentially expressed 

genes were assessed using the moderated t-test in LIMMA (Smyth, 2005), and unless 

otherwise specified, a highly statistically significant threshold of p-value < 0.01 was used. To 

ensure that genes which were found to be significantly differentially expressed post-landing 

were not solely a consequence of increased proportion of NK cells, we used a multivariate 

linear model to regress individual gene expression levels against NK-cell specific marker 

genes. The criteria for classification as a NK-cell marker were that the genes must be these 

particular genes needed to be: 1) identified in multiple publications linking them to the NK-

cell type; and 2) found intersecting across three independent cell type specific expression 

databases [CTen (Shoemaker et al., 2010), IRIS (Abbas et al., 2005), and HaemAtlas 

(Watkins et al., 2009)]. Like others whom have made similar corrections (Miller et al., 2013), 

we note that the model is fairly robust to choice of marker genes for cell type.  
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6.2.6. Real-time Quantitative Reverse Transcription (RT-q PCR) 

Twenty-two targets were chosen for RT-qPCR confirmation of gene expression. To rule out 

false positives, 15 components of NK cell-mediated cytotoxicity pathway were selected:  (1) 

killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 1 (KIR3DL1); 

(2,3) killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 1 and 4 

(KIR2DL1 and 4); (4) killer cell lectin-like receptor subfamily D, member 1 (KLRD1); (5) killer 

cell lectin-like receptor subfamily C, member 2 (KLRC2); (6) natural cytotoxicity triggering 

receptor 3 (NCR3); (7) Fas ligand (FASLG); (8) perforin 1 (PRF1); (9) granzyme B (GZMB); 

(10) lymphocyte-specific protein tyrosine kinase (LCK); (11) zeta-chain (TCR) associated 

protein kinase 70kDa (ZAP70); (12) linker for activation of T cells (LAT); (13) SH2 domain 

containing 1B (SH2D1B); (14) interferon gamma (IFNG); (15) CD247 molecule (CD247). An 

additional 3 transcription factors were also selected to rule out false positives: (1) runt-

related transcription factor 3 (RUNX3); (2) FBJ murine osteosarcoma viral oncogene 

homolog (FOS); (3) interferon regulatory factor 1 (IRF1). To rule out false negatives, 3 

targets were selected: (1) killer cell lectin-like receptor subfamily K, member 1 (KLRK1); (2) 

cathepsin C (CTSC); (3) transcription factor T-box 21(TBX21, also known as T-bet).  

One gene not detected by microarray was selected to test possibility of the presence of 

faulty probes – natural cytotoxicity triggering receptor 1 (NCR1). When available, TaqMan® 

Gene Expression Assays (Applied Biosystems by Life Technologies, Carlsbad, CA) were 

selected that matched the region of the RNA targeted by the corresponding Illumina probe 

as closely as possible; otherwise, custom assays were designed and ordered from 

Integrated DNA Technologies, Inc. (Corallville, IA). Reverse transcription reactions were 

performed using qScriptTM cDNA SuperMix (Quanta Biosciences, Inc., Gaithersburg, MD). 

GAPDH control assay was used as a normalizer. Fold changes were obtained using 

DataAssist software version 3.01 (Applied Biosystems by Life Technologies, Carlsbad, CA) 

using the 2-ΔΔCT method. To determine significance, a paired t-test or Wilcoxon test 

(depending on the normality of the distribution as assessed by Shapiro test) was performed 

using normalized Ct values (target Ct - GAPDH Ct) between the time point of interest and 

baseline samples.  
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6.2.7. Weighted Gene Co-expression Network Analysis 

The process of identifying discrete groups of co-regulated genes can be divided into two 

steps. First, a signed global co-expression network was built with weighted gene co-

expression network analysis (WGCNA) in R using normalized expression data of 18,129 

probes. In this study, we found that our microarray data needed a ß of 9 to reach a scale-

free fit. Second, the adjacency matrix was used to calculate the topological overlap measure 

(TOM), representing the overlap in shared neighbors and hybrid tree-cut algorithm was used 

to identify sub-networks (i.e. co-expression modules) from the global network (Figure 6.6) 

(Langfelder and Horvath, 2008). With minimal module size set to 15 probes and merging 

threshold set to 0.1, 20 modules were detected.  

To integrate physiological measurements with these co-expression modules, we ran singular 

value decomposition of each module’s expression matrix and used the resulting module 

eigengene (ME), equivalent to the first principal component, to represent the overall 

expression profiles for each module. Subsequently, MEs for all modules were correlated to 

recorded clinical and physiological parameters such as nerve growth factor, epinephrine, 

norepinephrine, beta endorphin, heart rate, state anxiety trait and cortisol levels which 

provide a complementary assessment of these potential confounders to that performed in 

standard differential expression analysis. Further, a Bayes ANOVA (parameters: conf=12, 

bayes=1, winSize=5)  (Kayala and Baldi, 2012) was used to compare ME expression values 

for modules of interest across time-points while taking into account gender differences. 

Similarly as previously described, each gene in a module, intramodular membership (kME) 

was defined as the correlation between gene expression values and ME expression. Genes 

with high kME inside co-expression modules are labeled as hub genes and are predicted to 

be essential to the function of the module.  
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6.2.8. Functional and Cellular Enrichment Analyses 

All differentially expressed genes passing a p-value < 0.01 and all network modules with 

genes passing a kME > 0.50 were subjected to functional annotation. First, the ToppFunn 

module of ToppGene Suite software (Division of Biomedical informatics) (Chen et al., 2009) 

was used to assess enrichment of GO ontology terms associated with relevant biological 

processes and pathways based on a one-tailed hyper geometric distribution with a 

Bonferroni correction. Second, to predict the involvement of key cell types we utilized the cell 

specific (HECS) gene expression database from the cell type enrichment (CTen) analysis 

web-based tool compiled by Shoemaker et al., 2011 for a broad characterization of cell type 

specific expression. For each gene list supplied, the significance of cell type specific 

expression is determined using the one-tailed hyper-geometric distribution with a Bonferroni 

correction across all cell/tissue types.  

6.2.9. Protein-Interaction Networks 

Protein-protein and protein-DNA interactions for products of differentially expressed genes at 

pre-boarding, post-landing and one hour post-landing were determined using the direct 

interactions algorithm in MetaCoreTM (GeneGo, St. Joseph, MI). The interactions 

documented in MetaCoreTM have been manually curated and supported by the literature. 

When protein networks are constructed, they often reveal hub  genes which represent 

transcription factors that control the regulation of multiple target genes. Visualization of a 

direct protein interaction network was facilitated by use of Cytoscape (Shannon et al., 2003). 

6.2.10. Flow-Cytometry 

Two blood samples were collected from an additional cohort of 26 first-time tandem 

skydivers for flow cytometry analysis (one for complete blood counts and a second tube for 

flow cytometry data analysis). Aliquots from each blood sample were placed into 8 tubes 

(panels) and incubated with the mAb combinations using the manufacture’s recommended 

procedures. After incubation, sample processing for the flow cytometry analysis followed the 

manufacture’s instruction using red blood cell (RBC’s) lysing solution (Becton Dickinson, 
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San Jose, CA). After lysing the RBC’s, the white blood cells were washed in phosphate 

buffered saline (PBS) and re-suspended in PBS buffer and analyzed using a FACS Caliber 

4-colour flow cytometer (Becton Dickinson, San Jose, CA). Expression of cell-surface 

proteins labeled with R-Phycoerythin (PE) was quantified using the geometric means of the 

mean florescence intensity (MFI) (Shapiro, 2003). All mAb’s were purchased from BD 

Biosciences Pharmingen (San Diego, CA). 

 

6.3. Results 
 

In this exploratory study, we induced ‘real-world’ acute psychological stress in response to a 

first-time tandem skydive. Subjects reached altitude in fifteen minutes, jumped at 13,000 feet 

(4km), fell at terminal velocity for one minute, and parachuted for another four minutes prior 

to landing. PBL samples and circulating hormone measurements from thirteen participants 

(7 male and 6 female) were collected at baseline (9:15 am one week before/after the skydive 

day), pre-boarding (9:15 a.m. skydive day), post-landing (10:45 a.m. skydive day, 

immediately after landing) and one hour post-landing (11:45 a.m. skydive day) (Figure 

6.1A).  
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Figure 6.1. Physiological changes observed throughout the sequence of events leading up to, during, and after a 
first time tandem skydive jump. (A) The skydiving paradigm and relevant time-points. (B). Heart rate 
measurements (bpm) were obtained throughout the course of both baseline and skydive days. (C) Salivary 
cortisol (pg/ml) was collected every 15 minutes from 9:15 am until 11:45 am on both baseline and skydive days. 
(D) Norepinephrine (pg/ml) and (E) epinephrine (pg/ml) were measured in duplicate and averaged at the 
corresponding four time points. Dark blue represents baseline day and light-blue represents skydive day. Error 
bars represent 95% confidence interval and (*) indicates p-value < 0.05 based on non-parametric Mann-Whitney 
U test. 



118 

6.3.1. Acute Stress Induced Physiological Responses 

 

Testosterone, norepinephrine, epinephrine, beta-endorphin, nerve growth factor (NGF), 

salivary cortisol and heart rate were monitored throughout both the baseline and skydive 

days as well-established biomarkers for HPA-axis activation consequent to acute 

psychological stress. Heart rates were elevated on the skydive day relative to baseline as 

early as pre-boarding the airplane (09:45-09:55) and remained elevated until 30 minutes 

post-landing (10:30-11:00), peaking immediately before exiting the airplane (10:25-10:30, 

p=6.04E-05) (Figure 6.1B). Salivary cortisol measurements were taken every 15 minutes, 

starting pre-boarding (09:15) to one hour post-landing (11:35) at both the baseline and 

skydive days. On the skydive day, a significant increase in salivary cortisol was observed 

immediately before exiting the plane (10:15, p=8.0E-03) and peaked between jumping and 

one hour post-landing (10:30 p=5.0E-04; 10:45, p=5.0E-03; 11:00, p=2.0E-02) (Figure 

6.1C) compared to the same time-points at baseline. Moderate, yet insignificant, increases 

in circulating testosterone, beta-endorphin and NFG were observed from baseline to post-

landing (Supplementary Table 6.1). Circulating levels of norepinephrine and epinephrine 

increased post-landing relative to baseline (p=4.0E-02, p=3.0E-02) (Figure 6.1D&E). Heart 

rate, salivary cortisol and catecholamine levels returned to baseline levels one-hour post-

landing. These patterns support stress-induced HPA activation that occurred in response to 

the stress of skydive. Therefore, gene expression signatures that closely followed changes 

in these physiological responses were expected. 

 

6.3.2. Candidate Acute Stress Responsive Genes  

 

To identify stress response genes that were non-gender specific, PBL gene expression 

profiles were corrected for gender differences at pre-boarding, post-landing and one-hour 

post-landing relative to baseline. Differentially expressed genes (all p < 0.01) were identified 

pre-boarding (N=94), post-landing (N=373) and one-hour post-landing (N=121) relative to 

baseline (Figure 6.2 A-B). The majority of gene expression differences were detected at 

post-landing and visualized on a heatmap to compare expression levels of these genes at 

other time-points (Figure 6.2C). Genes modulated pre-boarding and one-hour post-landing 
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displayed no functional characteristics or leukocyte cell type specificity. However, of the 373 

differentially expressed genes identified from baseline to post-landing, genes relating to NK 

cell cytotoxicity and IL-12 signalling, including IFN-γ, were up-regulated (Figure 6.2D). 

Genes related to MyD88-dependent toll-like receptor (TLR) signalling tended to show 

decreased expression. Additionally, cell type enrichment analysis revealed a significant 

enrichment of up-regulated genes post-landing specific to CD56+ NK cells, and to a lesser 

extent CD8+ T cells. 

Figure 6.2. Comprehensive depiction of gender corrected differentially expressed genes (all p < 0.01) leading up 
to and following acute psychological stress. (A) Volcano plots for differentially expressed genes display extent of 
log fold-change compared to the –log10 p-value significance at pre-boarding, post-landing and one-hour post-
landing respective to baseline. (B) Overlap of down-regulated and up-regulated genes across time-points. (C) All 
differentially expressed genes identified from baseline to post-landing. (D) Functional annotation of differentially 
expressed genes identified baseline to post-landing performed separately for up- and down-regulated genes. The 
top 4 most significant annotations (all p < 0.05 Bonferroni corrected) are shown for categories of biological 
processes and pathways (annotated with ToppGene) and cell types (annotated with CTen). Genes involved in IL-
12 signalling and MyD88-dependent pathway are displayed for quick referencing. 

Key genes, including those encoding transcription factors, involved in mediating stress-

immune interactions were discovered through interactome analysis of all differentially 

expressed genes, utilizing validated direct protein-protein interaction (PPI) information from 

MetaCoreTM (Figure 6.3). This analysis revealed the up-regulation of transcription factors 
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RUNX3, FOS, JUN of the innate immune system, and cyclin-dependent kinase inhibitor 1A 

(CDKN1A) and zeta-chain (TCR) associated protein kinase 70kDa (ZAP70) of the acquired 

immune system. Mitogen-activated protein kinase 3 (MAPK3), malic enzyme 2 (ME2) and 

guanine nucleotide binding protein (GNAI) mediating innate immune events were down-

regulated.  

Figure 6.3. Protein interaction network (PIN) of differentially expressed genes. This PIN reflects differentially 
expressed genes pre-boarding, post-landing, and one-hour post-landing as delineated by the pie chart. Large 
node sizes reflect key transcription factors with more than 10 validated interactions. Red, up-regulation; blue, 
down-regulation, on the scale presented by the colour bar; white, no change. Purple circle, genes related to 
innate immunity and green circle, genes related to acquired immunity. 

6.3.3. RT-q PCR Validation of Selective NK Cytotoxicity Response 

A set of independent RT-qPCR assays was used to verify differentially expressed genes 

(from microarray data) post-landing. The RT-qPCR analysis was conducted on 22 of the 

differentially expressed genes that play a key role in the NK cell cytotoxicity response 
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(Figure 6.4). These genes include those that encode inhibitory receptors (KIR2DL1, 

KIR3DL1) and activating receptors (KIR2DL4, KLRC2, KLRD1, NCR3), classical MHC class 

1 molecules (HLA-C, B, E, G) which bind to the receptors, adapter molecules for activating 

receptors (SH2D1B, CD247), signal transduction molecules (LAT, LCK, ZAP70) important 

for NK and T cell activation, cytolytic granules (PRF1, GZMB), and transcription factors 

(RUNX3, FOS). Based on previous reports of NK cell mobilization into blood in response to 

acute stress, it was probable that a significant number of genes would map to NK cell 

mediated cytotoxicity pathway (Altemus et al., 2001; Schedlowski et al., 1993). However, not 

all well characterized NK cell related molecules, pro- and anti-inflammatory cytokines, 

receptors and transcription factors were differentially expressed (Table 6.1). For example, 

activating receptors NCR1 and KLRK1, cytolytic granule CTSC and transcription factor 

TBX21 were not dysregulated;  gene expression was confirmed by RT-qPCR (Figure 6.4). 

These results suggest a precise and selective regulation of NK cell molecules and 

inflammatory properties of the innate and acquired immune system during acute stress, 

which are not accounted solely by an influx of NK cells into the periphery.  
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Table 6.1. Selective regulation of NK cell cytotoxic genes at post-
landing 

Function Modulated   Non-modulated 

Inhibitory NK receptors 

KIR2DL3 ↑ LILRB1 
KIR3DL1 ↑ TIGIT 
KIR3DL3 ↑ LAIR-1 
KLRG1 ↑ CEACAM-1 

KIR2DL1 ↑  KLRC1 
 KIR3DL2 
KIR2DL5A 

    KIR2DL5B 

Activating NK receptors 

KIR2DL4 ↑ Ly9 
KLRF1 ↑ KIR2DS1 
KLRC2 ↑ KIR2DS2 
KLRD1 ↑ KIR2DS5 
NCR3 ↑ KLRK1 

    FCGR3A (CD16) 

Adaptor molecules for 
activating NK receptors  

CD247 ↑  HCST     (DAP10) 
SH2D1A ↑ TYROBP (DAP12) 
SH2D1B ↑   

Components of cytolytic 
granules 

PRF1 ↑ CALR 
GZMB ↑ CTSC 
GZMA ↑ SRGN 
GZMH ↑   
 GLNY ↑   
CTSW ↑   

Chemotactic receptors S1PR5 ↑ 

CCR2 
CCR7 

 CXCR1 
CXCR4 
 CXCR6 
CX3CR1 

Table 6.1 Continued... 
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Table 6.1 Continued... 

Function Modulated   Non-modulated 

Pro-inflammatory Cytokines 
and Receptors 

IFNGR1  ↓ CCL3 
IFNAR1 ↓ IL-1 

TNF ↓ IL1B 
TNFAIP8L2 ↓ IL-2 

IL-6 
IFN-g ↑ IL-8 

IL12RB1  ↑ IL-12 
IL2RB ↑ IL12RB2 
IL21R  ↑ IL-14 

IL18BP ↑ IL-21 
TNFa 
lLR2 

 IL2RA 
     Il2RG 

Anti-Inflammatory Cytokines 
and Receptors 

CCL4L2 ↑ IL-4 
IL10RA ↑ IL-10 
IL10RB ↑ TGF-beta 
IL5RA ↓   

Transcription factors 

RUNX3 ↑ TBX21 (T-bet) 
EOMES ↑ STAT4 

JUND ↑ STAT1 

FOS ↑   
GATA3 ↑   

ME2 ↓   

MAPK3 ↓   
Modulation is according to post-landing significance with a p < 0.01. Arrows 
indicate direction of change. Grey shading indicates genes modulated at post-
landing. 
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6.3.4. Candidate Acute Stress Responsive Genes Underlying Cell Subset 

Fluctuations 

To account for NK cell type differences underlying differential gene expression changes from 

baseline to post-landing, a linear regression model was created taking into account 

expression of major NK cell markers. Four NK cell markers were selected that were 

consistently found across three different cell type-specific expression databases (Abbas et 

al., 2005; Shoemaker et al., 2010; Watkins et al., 2009): CLIC3, KLRF1, KIR2DL3 and 

KIR3DL1. Accounting for NK cell type composition at post-landing indicate that ~15% of the 

previously identified differentially expressed genes remained significant. Genes encoding for 

FOS and GZMB were among the most up-regulated genes surviving this correction, 

whereas CLC and PAPSS1 were among the most down-regulated. Functional enrichment 

analysis revealed that genes corresponding to NK cell mediated cytotoxicity and graft-vs.-

host pathways were no longer significant. However, a significant up-regulation of genes 

enriched for IL-12 mediated signalling (FOS, RELB, CD247, GZMB, IL2RB), cytotoxic T-

lymphocyte (CTL) mediated immune response (CD247, PRF1, GZMB) and downstream 

signalling in naive CD8+ T cells remained significant albeit to a lesser extent. A most 

interesting finding resulting from this correction was a significant enrichment of genes 

specific to the adrenal cortex, a key mediator of the stress response (Figure 6.5).  
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6.3.5. Identification and Annotation of Gene Co-expression Modules

To identify coordinately expressed genes (modules) involved in the short-term variable 

immune response to acute stress, unsupervised WGCNA was performed. The analysis 

identified 19 distinct co-expression modules and 1 module representing all background 

genes that could not be clustered into any module (Figure 6.6), each with a distinct 

expression pattern across all four time-points. Subsequently, all modules were functionally 

annotated using the top significant biological process, pathway and cell type for each 

individual module (all Bonferroni p < 0.05) (Supplementary Table 6.2).  

Figure 6.6. Identification and organization of gene co-expression modules. WGCNA cluster dendrogram and 
network modules with corresponding information bars. The network was raised to the beta power of 9 to satisfy 
scale-free topology. The bar represents the identified modules (as denoted by colours), the grey module 
corresponds to genes which do not cluster into any other module. Each line represents a gene (leaf), and 
multiple genes clustered together represent a group of co-regulated genes (low hanging branches) on the cluster 
dendrogram (tree). The y-axis corresponds to distance determined by the extent of topological overlap measure 
(1-TOM).  
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6.3.6.Correlating Gene Modules with Physiological Measurements 

Next, we sought to determine the relationships between the 20 modules identified above and 

the observed physiological and hormonal fluctuations throughout the stress response. To 

integrate these multi-scale data types, module eigengene (ME) values were correlated to 

each time-point and all recorded subjective and physiological traits (Figure 6.7). Briefly, ME 

value is the first PC of module expression and summarizes the main trend of expression 

within a module. Among the modules with high association with time-points and 

physiological traits, the ME of a module specific for ‘Cytokine Production’ was negatively 

correlated to post-landing (r = -0.29, p = 0.05) as well as fluctuations in circulating 

norepinephrine (r = -0.32, p = 0.03). The ME of modules associated to ‘T Cell Receptor 

(TCR) Signalling Pathway’ and ‘NK Cell Mediated Cytotoxicity’ were positively correlated to 

post-landing (r = 0.28, p = 0.06; r = 0.57, p = 4E-05 respectively). Moreover, the ‘NK Cell 

Mediated Cytotoxicity’ module was positively correlated to norepinephrine (r = 0.39, p = 

0.007) which was expected given elevated norepinephrine and NK cell specific gene 

expression peak post-landing and return to baseline levels one hour later (Figure 6.1D & 

Figure 6.2C). The expression pattern of each marker gene used in our linear model to 

correct differential gene expression analysis (CLIC3, KLRF1, KIR2DL3 and KIR3DL1) 

showed a strong correlation to the ME of this particular module, confirming that the genes 

for our linear model were appropriately chosen. The ME of a ‘Hemostasis’ module showed a 

gradual change from negative to positive correlation from baseline to one-hour post-landing 

and was significantly correlated to beta-endorphin fluctuations (r = 0.32 p = 0.03). 

Additionally, the ME for a module involved in ‘Oxygen Uptake and Carbon Dioxide Release’ 

was positively correlated to both heart rate (r=0.38, p=0.01) and salivary cortisol levels 

(r=0.43, p=0.003), highlighting the interaction between the cardiovascular and respiratory 

systems. Most interestingly, including gender as a discrete measure revealed that many 

modules were either positively or negatively correlated to gender differences (Figure 6.7) 

suggesting gender-specific expression patterns within each of these modules. 
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6.3.7. Determining Gender-specific Immune Responses  

The extent of co-expression differences was visualized throughout the stress response 

considering gender, averaging ME values for seven males and six females at each time-

point. A Bayes ANOVA was used to compare ME expression values for modules of interest 

across time-points while taking into account gender differences (Figure 6.8). The ‘NK cell 

mediated cytotoxicity’ and ‘Ribosome Biogenesis’ modules showed intensified expression 

post-landing in males relative to females (Figure 6.8A-B), whereas the expression of the 

‘TCR Signalling Pathway’ module was highest one-hour post-landing in males relative to 

females (Figure 6.8C). Co-regulated genes specific to ‘Hemostasis’, which includes genes 

for blood coagulation, showed a gradual increase in expression (Figure 6.8D) for both 

males and females peaking one-hour post-landing relative to baseline. Strikingly, four 

modules specific to ‘Immune/Defense Response’, ‘Response to Wounding’, ‘Cytokine 

Production’ and ‘Interferon Signalling’ (Figure 6.8E-H) were down-regulated in males post-

landing and one-hour post-landing relative to females, while ME expression either increased 

or remained unchanged.  
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6.3.8. Acute Stress Responsive Leukocytes 

Acute stress has been shown to cause a redistribution of leukocytes throughout the 

periphery (Dhabhar, 2009). To fully characterize changes in peripheral leukocyte and 

lymphocyte subsets throughout acute psychological stress in this study, a second cohort 

consisting of 26 participants (17 male and 9 female) was recruited under the same 

matching experimental design as the gene expression cohort. Subsequent blood 

samples were subjected to flow cytometry analysis. These quantitative cell-type data 

were also used to better understand the extent of which gene expression results may be 

affected by migrating cell types. Changes within leukocyte and lymphocyte subsets were 

measured and displayed as both percentages and absolute cell counts combined across 

both males and females (Figure 6.9), as there were no strong differences in cell type 

fluctuations between genders (Supplementary Table 6.3).  

Total leukocytes significantly increased from baseline to pre-boarding and post-landing, 

returning to baseline levels one-hour post-landing. There was a marked increase in the 

proportion and absolute count of neutrophils pre-boarding, while the post-landing 

proportion (albeit significantly greater than baseline) was significantly smaller than pre-

boarding. Eosinophil proportion and absolute count reduced pre-boarding and remained 

low post-landing and one-hour post-landing relative to baseline. Monocytes and total 

lymphocytes showed similar patterns with the lowest proportion and absolute cell counts 

pre-boarding.  

Changes in lymphocyte subsets were also investigated (Figure 6.9). The percentage of 

CD19+ B lymphocytes and absolute B cell numbers were significantly reduced post-

landing. Conversely, NK cells (defined as CD3-CD16+CD56+) were significantly 

increased pre-boarding and post-landing. The percentage of CD3+ T lymphocytes were 

significantly reduced post-landing while absolute number of T lymphocytes was 

significantly decreased pre-boarding compared to baseline. Of the CD3+ lymphocytes, 

CD8+ and CD4+ T cell absolute counts significantly increased post-landing relative pre-

boarding, while CD4+ T cell proportions decreased post-landing.  
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Figure 6.9. A quantitative measurement of the PBL cell lineage via flow cytometry. The analysis used a 
gating strategy based on the forward scatter/side characteristics of immune cells from total leukocytes; 
granulocytes (CD45+), monocytes (CD14+), T cells (CD3+, CD4+, CD8+), B lymphocytes (CD19+) and NK 
cells (CD3-CD56+CD16+). The raw flow data is presented as a percentage of gated cells (as indicated by the 
bar plots). To determine the absolute immune cell counts (as indicated by the line), leukocyte differential 
counts from the complete blood counts results were used to produce estimates of the actual number of 
immune cells in the peripheral blood samples. Statistical analysis was based on a Dunnet’s Test multiple 
comparison of means was used, comparing measurements back to baseline.  

6.4. Discussion 

This study describes the molecular and cellular response of the human innate and 

acquired immune system in reaction to physical danger.  A first-time tandem skydive 

was used as a short-term longitudinal design to induce acute psychological stress in a 

controlled environment; the stressor induces a severe form of emotional response 

aligned with distress related to fear (Carter and Goldstein, 2011). This exploratory study 

took a dual approach. First, comparative analysis of PBL gene expression profiles 

between time-points identified that most gene expression changes occurred 

during/immediately after the stress response. Immediate immunomodulation is observed 
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as a selective up-regulation of NK cytotoxicity genes, further validated with RT-qPCR 

assays. Correcting for changes in NK cells post-stressor revealed a molecular signature 

specific to the adrenal cortex. Second, focusing analysis on co-expressed modules 

revealed gender-specific peripheral immune activation evident by hundreds of co-

regulated genes within several biologically annotated modules whose expression 

differed between males and females. These findings provide a useful characterization of 

acute stress-induced immune system alterations with implications for the understanding 

and treatment of stress-related disorders and gender vulnerability to stress-induced 

pathologies. Major changes in blood-based gene expression were confirmed in a second 

cohort where blood was subjected to a detailed flow-cytometry analysis. 

6.4.1. Selective NK Cell Stress Susceptibility Genes 
 
Although our flow cytometry data showed significant changes in leukocyte subtypes in 

the course of the stressor, we also showed that changes in observed gene expression 

profiles could not be explained solely by the fluctuation of different leukocyte subsets. 

For example, peripheral neutrophils were elevated and peripheral eosinophils were 

reduced in the periphery pre-boarding in anticipation of the stressor. The changes in cell 

composition were paralleled by the up-regulation of 48 genes and the down-regulation of 

46 genes, which were not associated to any functional annotations or leukocyte cell type 

specificity. 

 

One unexpected finding of our study is the selective up-regulation of only a subset of NK 

cell genes post-landing (confirmed by RT-qPCR Figure 6.4), despite a pronounced 2.5 

fold increase of NK cells in the periphery (Figure 6.9). This result may be explained 

through four phenomena. First, it is possible that a subset of NK genes that displayed no 

change in expression, were down-regulated in individual NK cells: NK cell activity may 

be regulated post-transcriptionally, including increases in translation and redistribution of 

receptors to the cell surface, which is a likely mechanism due to a fast nature of the 

response. Second, it is also possible that a specialized, characterized (e.g. CD56Lo 

(Bosch et al., 2005)) or not-yet characterized subset of NK cells, expressing only a 

subset of specific markers is mobilized into the periphery in response to stress. Third, 

since gene expression was profiled from the mixture of cells, contribution of other 
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leukocyte subsets that express overlapping sets of genes cannot be ruled out. In 

particular, gene expression markers for CD8+ T cells were slightly elevated post-landing 

compared to baseline despite no change in CD8+ T cell frequency in blood (Figure 6.9). 

Even though NK cell-related genes are also expressed at lower levels in these cells, a 

large change in their expression in T cells can contribute to their expression change in 

total leukocytes. Finally, although differential gene expression analyses were gender 

corrected, it could be that that the NK cell response is modulated to differing degrees 

between males and females as suggested by WGCNA observed gender-specific 

differences (Figure 6.8).   

 

While only ~15% of the originally identified differentially expressed genes were found to 

be dysregulated after correcting for NK cells, the consistent up-regulation of cell toxicity 

transcript GZMB and transcription factor FOS was evident. Proteolytic granzymes, such 

as GZMB, and granulysin delivered from cytotoxic cells via granule exocytosis cause 

activation of caspase-dependent apoptosis in stressed or pathogenic target cells 

(Bernard et al., 1999), which helps to explain functional annotations such as CTL 

mediated immune response and apoptosis following the correction. The up-regulation of 

FOS, an early immediate gene which is expressed in the brain (Bernard et al., 1999), 

blood (Torres and Lotfi, 2007) and adrenal cortex and mediates physiological 

adrenocorticotropic hormone-induced responses in adrenal cortical cells (Rui et al., 

2014; Verstrepen et al., 2008), is consistent with the enrichment of differentially 

expressed genes following NK cell correction associated with the adrenal cortex and the 

production of cortisol (Figure 6.5). This important observation may have been difficult to 

detect if gene expression was measured for each cell type isolated independently.  

6.4.2. Putative Roles of IL-12 Signalling and TLRs  

The most pronounced effect following multivariate linear regression to adjust for an influx 

of NK cells into the periphery post-landing, was the consistent up-regulation of genes 

involved in IL-12 mediated signalling (CD247, FOS, GZMB, IL2RB), and the minor 

production of IFN-γ. The IL-12 signalling pathway determines the type and duration of 

innate and adaptive immune response in part by promoting NK cell cytoxicity as well as 
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the differentiation of naive CD4+ T cells into T helper 1 (Th1) cells via the production of 

IFN-γ. Up-regulation of IL-12 signalling may indicate priming of the pro-inflammatory arm 

of the immune system. Such immunomodulation creates an advantage during events 

such as vaccination since a primed pro-inflammatory state is important for vaccine-

mediated T cell immune responses, which are induced by most anti-bacterial and anti-

viral vaccination strategies (Dhabhar, 2009). These data suggest a more focused 

adaptive immune response which under further emotional distress or antigen 

presentation may provide a cytokine environment favorable for Th1 polarization of the 

immune system.   

These data also show the down-regulation of MyD88-dependent pathway including 

signalling molecules MAPK3, CHUK (i.e. IKK-α) and toll-like receptors (TLRs) 2, 6 and 

10. In homeostatic conditions, TLRs lead to NFkB activation and production of pro-

inflammatory cytokines IL1β, IL6 and TNFα, all involved in different pathways for innate 

immune activation and defense (Rui et al., 2014; Verstrepen et al., 2008). Down-

regulation of TLRs is consistent with previous reports suggesting that increased cortisol 

levels during acute stress may inhibit the NFkB, JAK-STAT and MAPK signalling 

pathways (Kadmiel and Cidlowski, 2013; Reichardt et al., 2002; Rui et al., 2014; Webster 

et al., 2002). Under repeated bouts of acute stress or chronic exposure to psychosocial 

stress (and continued emotional activation), the response of HPA axis to sustained 

stress is diminished and subsequently the effectiveness of glucocorticoids (e.g. cortisol) 

to regulate the inflammatory response is altered as immune cells become insensitive to 

its regulatory effects (Cohen et al., 2012). Consequently, inflammatory pathways may 

become activated and initiate a negative feedback loop driving inflammation and 

promoting the development of many diseases. 

6.4.3. Gender-Specificity of the Acute Stress Response and Implications 
for Stress-induced Pathologies 

Another unexpected result stemming from our exploratory gene co-expression approach 

was the gender-specific immune response to acute stress (Figure 6.8) despite similar 

cellular and hormonal alterations (Supplementary Table 6.1, 6.3), which may have 
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relevant translational avenues. While gender-specific differences in the psychobiological 

stress response have not been clearly identified, they may provide an insight towards 

understanding the differential cardiovascular risk in men and women. Processes 

associated with cardiovascular disease, such as TCR signalling, defense response, 

response to wounding, cytokine production and interferon signalling (Mehra et al., 2005) 

were differently regulated by acute stress in males and females in our study (Figure 

6.8). These findings may help to explain gender-specific predisposition to CVD and 

emphasize these genes and pathways as potential tools which may be able to measure 

an entire facet of CVD risk, the impact of maladaptive molecular response to 

psychological stress in both sexes and among women in particular. Moreover, since 

many inflammatory disorders that are more common in women, such as many 

autoimmune conditions, are also exacerbated by psychological stress (Whitacre, 1999), 

gender differences in cytokine response to stress (Figure 6.8G) could mark an important 

underlying mechanism.  

Women, more frequently than men, suffer from chronic forms of stress such as post-

traumatic stress disorder (PTSD) (Becker et al., 2007), but the reasons for this disparity 

are not entirely clear. It has been proposed that these differences are not explained 

solely on the basis of exposure type and/or severity (Sherin and Nemeroff, 2011) and 

that modulation of sex steroids such as estrogen and progesterone may exert effects on 

neurotransmitter systems involved in the stress response. Factors other than exposure 

may play a role in the development of an intermediate state in which gender may 

determine vulnerability to PTSD, and these may include transcriptomic level differences.  

 

6.4.4. Putative Biomarkers for Discriminating Anxiety-based Stress from 
Neuropsychiatric and Central Nervous System (CNS) Disorders 

An important task for studies investigating peripheral mechanisms of CNS disorders 

(multiple sclerosis, stroke and seizure) as well as panic attacks, myocardial ischemia, 

and related rodent models of such disease (Achiron et al., 2004; Kim et al., 2014; Samad 

et al., 2014; Yang et al., 2005; Yang et al, 2001), is the ability to disentangle molecular 

mechanisms which are most closely associated with the clinical presentation of disease. 
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For example, there is a need for biomarkers for discriminating between ‘psychogenic’, 

non-epileptic seizures and true epilepsy is needed (Testa et al., 2012). In our study the 

most down-regulated gene post-stressor and one-hour post-stressor was IMAP2, and 

the most down-regulated transcription factor post-stressor was ME2, as indicated by 

interactome analysis (Figure 6.3). Interestingly, in genome-wide association studies, 

both genes IMPA2 and ME2 have been reported as susceptibility genes in febrile 

seizures and idiopathic generalized epilepsy (Arai et al., 2007; Greenberg et al., 2005; 

Mas et al., 2004; Prasad et al., 2013). However, gene expression studies report the lack 

of IMPA2 and ME2 dysregulation in the blood of humans (Piro et al., 2011; Yang et al., 

2005; Yang et al, 2001) as well as in the brains of rodents post-seizure (Harald et al., 

2001). While these results should be interpreted cautiously, the general inconsistencies 

between these studies of epilepsy and the results presented here describe IMPA2 and 

ME2 as genes warranting further investigation as putative biomarkers discriminating 

psychogenic from non-psychogenic seizures.  

6.4.5. Hypoxia does not Contribute to Gene Expression Differences 

Studies using an exaggerated 12 hours sustained poikilocapnic hypoxic model system 

have noted the dysregulation of mRNA expression specific to hypoxia-inducible factor 1 

(HIF1A), GAPDH, EPO, and VEG within the first two-hours (Pialoux et al., 2009). Thus, 

there was a slight possibility that factors attributable to a short-term exposure (i.e. 20 

minutes) to high altitude (i.e. 13,000 ft.), such as hypobaric hypoxia, could influence 

gene expression in subjects during the skydive. Therefore, the expression of these 

mRNA species was investigated. HIF1A was measured on the microarrays by three 

probes: none of these probes were detected as significant in our differential gene 

expression analysis (all p > 0.1). None of the probes for other genes associated with 

hypoxic conditions such as GAPDH, EPO or VEG (Pialoux et al., 2009; Zhong et al., 

1999) were dysregulated. We observed the differential expression of HIPK2 among the 

identified anticipatory genes at pre-boarding, known to suppress HIF1A in hypoxia-

mimicking conditions (Nardinocchi et al., 2009). The early activation of HIPK2 may 

reflect increased anticipatory heart rate and early rapid breathing in anticipation to the 

skydive which may be working to suppress ‘hypoxia-mimicking’ conditions in the PBL 

microenvironment.  
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6.4.6. Strengths and Limitations  

A strength of this study was the prospective longitudinal design. However several 

limitations remained. For example, while we adjusted for cell type changes affecting 

global gene expression, clear limitations are the lack of transcriptomic investigation on 

individual cell types and the ability to perform transcriptomic analysis and flow cytometric 

data analysis on the same cohort of individuals. Additionally, while gender specific 

differences were observed across a small number of samples, the evidence of hundreds 

of co-expressed functional modules throughout the skydive is significantly robust. An 

important future direction would be to extend and replicate this exploratory study using a 

larger cohort of participants. Another putative psychological variable to consider while 

interpreting gender-specific stress responses is that the tandem skydive master was 

always male, which may provide a different environment for male and female 

participants.  

 

6.4.7. Concluding Remarks 

This exploratory study profiled the PBL transcriptome throughout a first-time tandem 

skydive, as a measure of intense acute psycho- logical stress, to reveal a detailed 

response to acute stress at the molecular level. A novel finding of the study is the degree 

of specificity of the immune response with respect to up-regulation of a subset of NK cell 

genes that cannot be solely attributed to the influx of NK cells into the periphery in 

response to stress parallel by increases in cortisol and catecholamines. Correcting 

differential gene expression analysis post-stressor revealed a molecular signature 

specific to the adrenal cortex. Network analysis stratified by gender identified hundreds 

of genes within several functional co- expression modules responding to stress in a 

gender-specific manner. These findings have potential implications for future research 

aimed at identifying therapeutic targets of stress-related disorders, and underscore the 

importance of gender-specific molecular profiles which could be used to better 

understand patterns of gender vulnerability to stress-induced disease. 

Contributions. These results are an effect of a large team effort. I played a role in the 
experimental design by incorporating a second cohort for which PBL samples were 
subjected to flow-cytometry. I was fully responsible for statistical design, data analysis, 
data interpretation and writing.  
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Chapter 7 

Candidate Blood Biomarkers and Gene 
Networks of Methamphetamine-Associated 
Psychosis 

7.1.  Background 
Methamphetamine (METH) is a N-methyl derivative of amphetamine and a highly 

addictive psychostimulant (Yang et al., 2008). METH use is at epidemic levels in several 

areas of the world and its global prevalence is estimated at 15-16 million people with 

several pockets of increased use in the USA, Europe and Africa (UNO, 2004; Kapp, 

2008). Recent evidence ranked METH fourth out of 20 of the most harmful drugs due to 

self-harm to the user (Nutt et al., 2010). One reason for this is that METH provokes 

psychotic reactions in 72-100% of all abusers (Srisurapanont et al., 2003; Smith et al., 

2009).  

 

Methamphetamine-associated psychosis (MAP) has been considered a pharmacological 

and environmental ‘model’ of schizophrenia (SCZ) due to similarities in clinical 

presentation (i.e. paranoia, hallucinations, disorganized speech and negative 

symptoms), response to treatment (neuroleptics), and presumed neuromechanisms 

(central dopaminergic neurotransmission) (Bousman et al., 2009; Hsieh et al., 2014; 

Srisurapanont et al., 2011). Better understanding of the molecular mechanisms 

underlying SCZ may be achieved through examination of human models with similarities 

to the disease. In this context, the MAP model could quicken the discovery of risk 

biomarkers, screening for sub-clinical disease, prognostics, diagnostics, or disease 

staging. However, several challenges currently exist in terms of accurately diagnosing 

MAP on a molecular and cognitive level before the MAP model could contribute to the 

discovery of SCZ biomarkers.  

 

Genome-wide blood transcriptome profiling coupled with network analyses provide a 

platform for identifying functionally relevant biological markers of disease, permitting 
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multi-scale data integration. This is a critical point as acute and chronic effects of METH 

use are widespread across the body and an integrative technique determining 

relationships of biological markers with magnetic resonance imaging (MRI), life events 

(i.e. stress, culture) and psychometric measurements could provide key insights into 

cognitive and molecular mechanisms of MAP, and into the versatility of the MAP model 

in molecular psychiatry research. Complimentary machine-learning provides a useful tool 

for in silico prediction of candidate biomarkers, and confirmation and validation of these 

biomarkers may be accomplished by utilizing convergent functional genomics (CFG) 

evidence. The CFG approach has proven highly successful for reducing false-positives 

and false-negatives moderately sized psychiatric cohorts by drawing on multiple 

disparate yet ‘convergent’ sources of external functional genomic information across 

independent human studies (Niculescu et al., 2000; Ogden et al., 2004; Patel et al., 

2010; Le-Niculescu et al., 2009; Rodd et al., 2007; Le-Niculescu et al., 2011; Ayalew et 

al., 2012; Le-Niculescu et al., 2013; Kurian et al., 2009). Collectively, these techniques 

hold great promise for the prioritization and validation of candidate biomarkers for MAP 

and its relatedness to SCZ. 

 

In the current investigation, we present a preliminary integrative RNA-Sequencing report 

exploring peripheral blood gene expression amongst subjects diagnosed with METH-

associated psychosis (MAP) (N=10), METH-dependency without psychotic symptoms 

(MA) (N=10), and healthy control subjects (N=10). Additionally, subcortical brain 

structural volumes (sMRI) and a battery of self-reported psychometric measurements 

were collected for each subject. The primary objective of this study was to assess sMRI 

and clinical parameters of MAP within the framework of an integrative genome-wide 

RNA-Seq blood transcriptome analysis. Our cross-sectional experimental design allowed 

us to test three principal aims. Aim 1: First, to identify gene co-expression networks 

associated with MAP, later subjected to functional annotation and multi-modal data 

integration collected from the same subjects. Aim 2: Second, to perform supervised 

machine-learning classification based on differentially expressed genes to identify 

candidate blood-based  biomarkers able to differentiate between MA, MAP and healthy 

control subjects. Aim 3: Finally, to validate the role of candidate blood biomarkers and 

gene networks in the pathophysiology of MAP using CFG information, and to confirm 

their shared association to psychotic disorders and SCZ in independent studies with the 
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absence of METH.  

 

7.2. Materials and Methods 

 

7.2.1. Subject Selection 

 

A total of 10 MAP subjects, 10 subjects with METH dependence (MA) without psychotic 

symptoms, and 10 healthy control subjects were enrolled in this study. Gender (male) 

and age matched (25.8 ± 6 years) right-handed subjects were recruited from drug 

rehabilitation facilities, hospitals and communities in Cape Town, South Africa where all 

subjects received detailed study information and provided written consent. Each subject 

underwent two assessment sessions. The first session consisted of a detailed 

psychiatric interview and demographic and substance variables were recorded. During 

the second session, approximately one week later, patients were asked to fast and 

refrain from smoking overnight, before blood was collected between 9:00-11:00. This 

was followed by a brain scan. Clinical assessment was performed using the Structured 

Diagnostic Interview for DSM-IV Axis I Disorders (SCID-Ι) (First et al., 2001), which 

classifies MAP based on the following criteria; (i) onset of psychosis within 1 month of 

last use and (ii) 1 month maximum duration of psychosis. All patients also completed a 

battery of self-report questionnaires including the Life Events Questionnaire (Brugha et 

al., 1990), Kessler Psychological Distress Scale (K10) (Kessler at al., 2002), Beck 

Depression Inventory (BDI-II) (Beck et al., 1996), Behavioural Inhibition 

System/Behavioural Activation System (BIS/BAS) scale (Carver et al., 1994), Eysenck 

Personality Questionnaire – Revised short scale (EPQR-S) (Eysenck et al., 1985). 

Positive and negative symptoms within the MAP group were rated using the Positive and 

Negative Syndrome Scale (PANSS) (Kay et al., 1987); PANSS positive subscale (14.5 ± 

6.1), negative subscale (22.0 ± 11.5) and total score (66.8 ± 26.1).  

  

Exclusion criteria comprised: 1) additional substance dependencies other than nicotine 

and METH for the MA and MAP groups, and any substance dependence other than 

nicotine in the control group; 2) lifetime and current diagnosis of any psychiatric disorder 

(other than MA dependence and MAP in the MA and MAP groups); 3) a history of 
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psychosis prior to MA abuse; 4) a medical or neurological illness or head trauma; 5) a 

seropositive test for HIV; 6) MRI incompatibilities or known claustrophobia. All 

participants in the MAP group were receiving treatment with antipsychotic medication 

(haloperidol) at the time of testing. Polysubstance use was allowed to facilitate 

participant recruitment including nicotine, cannabis, and alcohol for all study groups. This 

study was approved (HREC REF 340/2009) by the University of Cape Town Faculty of 

Health Sciences Human Research Ethics Committee. 

 

7.2.2. sMRI Acquisition and Image Processing 

 

Subjects in this study form part of a larger project investigating fronto-temporal cortical 

and subcortical gray matter structures in MA and MAP. Images were acquired on a 3T 

Magnetom Allegra scanner (Siemens, Erlangen, Germany) at the Cape Universities 

Brain Imaging Centre (CUBIC). A high-resolution, T1-weighted, 3D-multi-echo MPRAGE 

sequence (scan parameters: TR=2530ms; graded TE=1.53, 3.21, 4.89, 6.57ms; flip 

angle=7°; FOV=256mm) produced 160 sagittal images of 1mm thickness. By acquiring 

four separate structural scans with graded TEs and averaging those into a final high 

contrast image (van der Kouwe et al., 2008), the MEMPRAGE method creates structural 

images with low distortion and high signal-to-noise ratio.  

 

MRI scans were analysed using the FreeSurfer software package v5.1 

(http://surfer.nmr.mgh.harvard.edu/). Regional estimates of subcortical volumes were 

assessed with a specialized surface-based reconstruction and automatic labelling tool, 

described in detail elsewhere (Fischl et al., 2004). FreeSurfer processing includes 

motion correction, skull-stripping, Talairach transformation, segmentation of subcortical 

white matter and deep gray matter volumetric structures, intensity normalization, 

tessellation of the gray matter/ white matter boundary, automated topology correction, 

and surface deformation.  

 

7.2.3. RNA Isolation and RNA-Seq Library Preparation 

 

Blood was collected using PAXgene RNA tubes (Qiagen, CA, USA) and total RNA was 
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extracted and purified in accordance with the PAX gene RNA kit per manufacturer’s 

instructions. Globin mRNA was depleted from samples using the GLOBINclear – Human 

Kit (Life Technologies, USA). Subsequently, the quantity of all purified RNA samples was 

measured on a nanodrop (56.6 ± 16.7ng/μl) and the quality and integrity measured with 

the Agilent 2100 Bioanalyzer (Agilent; CA, USA). All RNA passed integrity numbers > 7 

(8.4 ± 0.7).  

 

The Illumina TruSeq Stranded Total RNA kit (Ilumina, Inc.) was used for library 

preparation accordingly to manufacturer instructions without any modifications. The 30 

indexed RNA libraries were pooled and sequenced using long paired-end chemistry 

(2x93 bp) on 7 lanes using the Illumina HiSeq2500. All replicates were run for 2x40 

million reads per sample and all reads were primary processed using Casava v1.8.2 to 

transform primary base call files into fastq files. 

 

7.2.4. Read Trimming, Mapping and Quantification of Expression 

 

All fragmented RNA-Seq reads were trimmed to 90 bp and low quality reads were 

discarded using Trimmomatic (Bolger et al., 2014) options SLIDINGWINDOW:90:10 

MINLEN:90 CROP:90. Subsequently, all high quality trimmed reads were mapped to 

UCSC Homo sapiens reference genome (build hg19) using TopHat v2.0.0 (Trapnell et 

al., 2009). I used the estimated mean inner distance and standard deviation between 

mate paired-ends as the -r and --mate-std-dev parameters, respectively. TopHat calls 

Bowtie v1.1.1 (Langmead et al., 2009) to perform alignment with no more than two 

mismatches. I used the pre-built index files of UCSC H. sapiens hg19, downloaded from 

the TopHat homepage (https://ccb.jhu.edu/software/tophat/igenomes.shtml). Samtools 

(Li et al., 2009) was used to convert bamfiles to samfiles and HTseq v0.6.0 (Anders et 

al., 2015) was used to count all of the mapped reads by htseq-count using parameters –

stranded=reverse –q.  

 

7.2.5. Data Pre-Processing 

 

Raw count data measured 23,345 transcripts across 30 subjects. Unspecific filtering 
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removed lowly expressed genes which did not meet the requirement of a minimum of 20 

reads in at least 10 subjects. A total of 12,281 transcripts were retained, then subjected 

to edgeR VOOM normalization (Law et al., 2013), a variance-stabilization transformation 

method. Normalized data were inspected for outlying samples using unsupervised 

hierarchical clustering of subjects (based on Pearson coefficient and average distance 

metric) and principal component analysis to identify potential outliers outside two 

standard deviations from these averages. No outliers were present in these data and 

resulting normalised values were used as input for down-stream analyses.  

 

7.2.6. Weighted Gene Co-expression Network Analyses  

 

Signed co-expression networks were built using weighted gene co-expression network 

analysis (WGCNA) (Langfelder & Horvath, 2008) in R, as previously described. A total of 

12,281 transcripts were used to construct a global network of all 30 subjects. To 

construct a network, the absolute values of Pearson correlation coefficients were 

calculated for all possible gene pairs and resulting values were transformed using a ß 

power of 9 so that the final correlation matrix followed an approximate scale-free 

topology. The WGCNA cut-tree hybrid algorithm was used to detect sub-networks, or co-

expression modules, within the global network optimizing minimum module size to 15, 

deep split of 2, and a tree-cut height of 0.2 in order to merge neighbouring network 

modules with similar expression profiles. For each identified module, we ran singular 

value decomposition of each module’s expression matrix and used the resulting module 

eigengene (ME), equivalent to the first principal component, to represent the overall 

expression profiles for each module. Differential expression of MEs was performed using 

a Bayes ANOVA (Kayala & Baldi et al., 2012) (parameters: conf=12, bayes=1, 

winSize=5) testing between groups, and P values were corrected for multiple 

comparisons (post-hoc Tukey correction). Subsequently, to determine which modules 

were most associated with clinical parameters and potential confounding variables, MEs 

for all modules were correlated to external subjective and objective data using a Pearson 

correlation and a Student’s asymptotic P value for significance. MEs were also used to 

determine module membership (kME) values for each gene in a specified module, 

defined as the correlation between gene expression values and ME expression. Genes 
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with the highest intramodular kME were labelled hub genes and predicted to be essential 

to the function of the module.  

 

7.2.7. Differential Gene Expression Analyses 

 

A moderated t test, implemented through the limma (Smyth, 2005) package, assessed 

differential gene expression between the three groups in a group-wise fashion across 

12,281 transcripts. Significance threshold was set to a nominal P value < 0.01 to permit 

sufficient genes to move forward with functional characterization and supervised 

classification methods. Differentially expressed genes corresponding to WGCNA 

modules which were significantly associated with polysubstance abuse were excluded 

and removed from functional annotation and supervised classification methods, as a 

robust and complimentary strategy of adjusting for confounding factors. 

 

7.2.8. Functional and Cellular Enrichment Analyses 

 

All differentially expressed genes passing a P value < 0.01 and all network modules with 

genes passing a kME > 0.50 were subjected to functional annotation. First, the 

ToppFunn module of ToppGene Suite software (Chen et al., 2009) 

(https://toppgene.cchmc.org/) was used to assess enrichment of GO ontology terms 

relevant to cellular components, molecular factors, biological processes, metabolic 

pathways and well annotated drug-compounds from the comparative toxicogenomics 

database (Davis et al., 2015) (CTD), using a one-tailed hyper geometric distribution with 

a Bonferroni correction. A minimum of a two gene overlap per gene-set was necessary 

to be allowed for testing. The human cell specific (HECS) gene expression database 

from the cell type enrichment (CTen) (Shoemaker et al., 2011) analysis web-based tool 

was used to predict the involvement of key cell types within candidate gene lists. For 

each supplied gene list, the significance of cell type specific expression are determined 

using the one-tailed Fishers-exact test with a Bonferroni correction across all available 

cell/tissue types.  

 

7.2.9. Supervised Machine-Learning Classification 
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BRB-Array Tools (Simon et al., 2007) supervised classification methods were used to 

construct gene expression classifiers. Two models were specified: (1) controls vs. METH 

dependents and (2) MA vs. MAP subjects. Each model consisted of three steps. First, all 

genes with P < 0.01 were subjected to classifier construction. These criteria were used 

to cast a wide net to catch all potentially informative genes, while false-positives could be 

discarded by subsequent optimization and cross-validation steps. Second, classifiers 

composed of different numbers of genes were constructed by recursive feature 

elimination (RFE). RFE provided feature selection, model fitting and performance 

evaluation via identifying the optimal number of features with maximum predictive 

accuracy. Third, the ability for RFE to predict group outcome was assessed by diagonal 

linear discriminant analysis (DLDA) and compared to three different multivariate 

classification methods (i.e. support vector machine (SVM), nearest centroid (NC), three-

nearest neighbors (3NN)) in a leave-one-out cross-validation (LOOCV) approach. 

Additionally, a permutation P value, based on 1000 random permutations, for the cross-

validated misclassification error rate for each classification method was implemented. 

This P value indicates the proportion of the random permutations that gave as small a 

cross-validated misclassification rate as was obtained with the real class labels.  

 

7.2.10. Convergent Functional Genomic (CFG) Scoring 

 

Convergent functional genomics (CFG) represents a translational methodology that 

integrates multiple lines of external evidence from human and animal model studies in a 

Bayesian-like fashion. This approach increases the ability to distinguish signal from 

noise in limited size cohorts and is routinely applied to support the identification of blood 

biomarkers across neuropsychiatric disorders (Niculescu et al., 2000; Ogden et al., 

2004; Patel et al., 2010; Le-Niculescu et al., 2009; Rodd et al., 2007; Le-Niculescu et al., 

2011; Ayalew et al., 2012; Le-Niculescu et al., 2013; Kurian et al., 2009). The principal 

aim of the CFG approach is to increase the likelihood that findings will prove 

reproducible and have predictive power in independent cohorts. Our CFG scoring 

paradigm for prioritization of MAP biomarkers is an adaptation of previous techniques, 

representing a two-step process (Supplementary Figure 7.1): 
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Internal lines of evidence: All genes assigned a P value < 0.05 were included in the CFG 

scoring. These liberal criteria were used to cast a wide net to find all potentially 

informative genes which may be involved in the pathophysiology of MAP, while false-

positives would be pared off by subsequent CFG scoring and optimization steps. Each 

gene was given 3 P values (based on 3 group-wise differential expression analyses). 

Subsequently, a score of 1 was given to genes passing P < 0.001, a score of 0.5 was 

given to genes passing 0.001 > P < 0.01, and a score of 0.2 was given for genes 

passing 0.01 > P < 0.05, permitting a maximum score of 3 and a minimum score of 0.2. 

A bonus point of 0.5 was awarded for genes passing P < 0.01 occurring in both MAP vs. 

controls and MAP vs. MA comparisons as well as genes found to be members of MAP 

associated modules. Thus, a max score of 4 is attainable (3 + 0.5 + 0.5). 

 

External lines of evidence: CFG evidence was scored for a gene if there were published 

reports of human data including post-mortem brain expression, peripheral blood 

expression and/or genetic evidence (association and linkage) utilizing two large 

databases. The first database represents a recently built in-house database specific to 

human blood transcriptome studies using PubMed (http://www.ncbi.nlm.nih.gov/pubmed) 

search queries and combinations of key words (e.g. blood transcriptomics AND 

psychosis) (Breen et al., 2016 under revision). To do so, we performed the following 

PubMed queries: 

 (blood OR PBMC OR PBMCs OR PBL OR PBLs OR peripheral blood leukocytes OR peripheral 

blood OR leukocytes OR blood-based OR blood-based biomarker) AND (transcriptome OR 

transcriptomics OR RNA-Sequencing OR RNA-Seq OR RNAseq OR RNASeq OR RNA 

Sequencing OR microarray OR microarrays OR blood gene expression OR peripheral blood gene 

expression OR leukocyte gene expression) AND (“disease term x”) 

A total of 4 independent queries were performed in which terms ‘psychosis’, 

‘schizophrenia’, ‘depression’ and ‘neurocognitive impairment’ were substituted with the 

above-stated “disease term x” and results were pooled. The search was limited to 

human studies published in the last 10 years (up to August 2015). Studies using 

transcriptomic platforms to profile miRNA, mRNA or lnRNA were included while studies 

using qualitative real-time PCR (RT-qPCR) as a means to investigate a targeted panel of 
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candidate genes were removed. We excluded studies investigating molecular 

mechanisms in lymphoblastoid cell lines derived primary cells and skin fibroblast 

cultures in order to retain true peripheral blood signatures. Review papers and 

secondary data integration analyses were not included. Publications were grouped 

based on disease type.  

Second, we sought to consider functional support across divergent technological 

platforms and human post-mortem brain samples. To do so, we accessed DisGenNet 

(Piñero et al., 2015), a comprehensive database of human gene-disease associations 

from various expert curated databases and text-mining derived associations. These 

database searches included gene-disease relationships focusing specifically on 

psychosis, SCZ, depression/stress and neurocognitive impairment, in order to consider 

comorbidity in MAP in our study. Studies containing a METH component were excluded 

in order to validate MAP biomarkers in drug-free (METH) models. For the CFG analysis 

and scoring, external cross-validating lines of evidence were weighted such that findings 

in human peripheral blood specific to psychosis were given an additional 1 point. A 

maximum of 5 external lines of evidence were allowed. Thus, the total maximum CFG 

score that a candidate biomarker gene could have was 10 (4 for threshold + 5 for 

external evidence + 1 blood presence in psychosis). Like other studies using this 

approach, there are other ways of scoring blood biomarkers based on CFG which may 

give slightly different results in terms of prioritization. Given the past utility of this 

approach, this empirical scoring system allows for advantageous separation of genes 

based on our focus for identifying human MAP blood biomarker and by default, 

biomarkers of psychosis and SCZ. 

7.3. Results 
We conducted a preliminary integrative RNA-Sequencing study profiling peripheral blood 

gene expression from a primary cohort of 10 MA, 10 MAP and 10 healthy controls 

(Table 7.1). To identify and prioritize diagnostic blood biomarkers of MAP, a multimodal 

translational approach was used (Figure 7.1). A global gene co-expression network was 

first constructed using all available subjects and identified 24 co-expression modules, 

which were functionally annotated to molecular factors, biological processes, cellular 
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compartments, metabolic pathways, well characterized drug compounds and cell type 

specificity (Supplementary Table 7.1). 

Table 7.1. Recorded clinical characteristics from all subjects (N=30).

��
Healthy Controls   

(N=10)�
MA    

 (N=10)�
MAP 

(N=10)� ANOVA� Post-Hoc Significance �
�� Mean ± SD Mean ± SD Mean ± SD X2 (df=2) P value Bonferroni  P value
Age 25.5 ± 5.8 24.8 ± 3.9 27.2 ± 8.3 0.040 0.980
Education Level 12.2 ±1.2 10.7 ± 2.1 9.3 ± 1.7 10.788 0.005 Contol > MAP
METH Age Started Using - 18.6 ± 3.9 18.8 ± 6.8 0.191 0.662
METH Abstinence (days) - 53.1 ± 82.9 45.5 ± 36.2 0.593 0.441
METH Duration of use (years) - 5.8 ± 2.3 7.1 ± 3.0 0.688 0.407
Nicotene Use Last 30 Days 5 6 9 2.400 0.121
Cannabis Use Last 30 Days 2 2 1 0.529 0.467
Alcohol Use Last 30 Days 3 4 2 1.347 0.246
EPQRS-Psychoticism 2.3 ± 1.7 1.6 ± 1.2 3 ± 2.1 1.880 0.391
EPQRS-Extraversion 10.3 ± 2.5 8.2 ± 3.5 6.6 ± 2.5 7.039 0.030 Contol > MAP
EPQRS-Neuroticism 2.6 ± 1.8 4.6 ± 2.9 5.6 ± 3.2 4.624 0.099
EPQRS-Lie 5.6 ± 2.3 4 ± 1.9 5.1 ± 3.3 1.902 0.386
EPQRS Total Score 20.8 ± 5.3 18.5 ± 2.3 20.4 ± 4.7 1.876 0.391
BIS 15.1 ± 1.5 15.8 ± 3.1 13.1 ± 3.6 3.018 0.221
BAS Drive 7.4 ± 2.5 8.3 ± 2.6 6.5 ± 1.3 2.267 0.322
BAS Fun Seeking 7.1 ± 1.5 8.1 ± 1.6 6 ± 1.2 7.014 0.030 MA > MAP
BAS Reward Responsiveness 7.7 ± 1.9 7.2 ± 1.8 6.2 ± 1.7 3.859 0.145
BIS-BAS Total Score 44.8 ± 5.8 47 ± 7.9 38.4 ± 5.6 6.269 0.044

BDI Total Score 4.3 ± 3.0 17.3 ± 10.3 16.6 ± 12.5 10.363 0.006
Control > MAP; Control > 

MA
K10 Total Score 14 ± 3.8 18.2 ± 7.7 23.5 ± 8.2 7.944 0.019 Control > MAP
LEQ - Sum of life events (< 6 months) 2.6 ± 1.7 4.4 ± 2.0 4.7 ± 1.6 5.663 0.059
LEQ - Sum of life events (> 6 months) 2.2 ± 2.2 4.2 ± 3.5 4.1 ± 2.0 3.643 0.162
Abbreviations; MA, Methamphetamine dependent subjects with no psychiotic events; MAP, Methamphetamine-associated psychosis; EPQR-S, Eysenck Personality 
Questionnaire; BIS/BAS,Behavioural Inhibition System/Behavioural Activation System,BDI, Beck Depression Inventory; K10, Kessler Psychological Distress Scale; LEQ,Life 
Events Questionnaire; PANSS, Positive and Negative Syndrome Scale. Shapiro wilk test was used to assess normality of  variables and either a one-way ANOVA or 
KRUSKAL-Wallis ANOVA  with post-hoc Bonferroni correction was implemented accordingly. Grey shading is for visualization purposes only.
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Figure 7.1. A multi-step translational work-flow for identifying MAP biomarkers. First, WGCNA analysis built 
a global co-expression network and identified 24 co-expression modules. On the hierarchical cluster tree 
each line represents a gene (leaf) and each group of lines represents a discrete group of co-regulated 
genes, or gene modules (branch) on the clustering gene tree. Each gene module is indicated by the colour 
bar below the dendrogram, and subsequently functionally annotated then integrated with recorded clinical 
and biological data to identify candidate gene modules representing functional biomarkers of MAP. Second, 
differential gene expression and class prediction methods identified 20 candidate MAP biomarkers (14 were 
recycled from the second split on the tree). A Bayesian-like convergent functional genomic (CFG) approach 
prioritized our panel of biomarkers specific to MAP and biomarkers were placed within an empirically derived 
biological framework.  
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7.3.1. Differential Analysis of Modules and Brain Volumes 

All ME values were subjected to a Bayes ANOVA32 testing to compare the extent of 

module expression between groups and P values were correcting for multiple 

comparisons. MAP associated findings included significant decreases of ME expression 

in modules specific to ‘ubiquitin-mediated proteolysis’ (767 genes) and ‘RNA 

degradation’ (1156 genes) in MAP subjects compared to controls (P=0.01, P=0.03, 

respectively), and MA subjects compared to controls (P=0.07, P=0.055, respectively) 

(Figure 7.2A-B). Further, an increase of ME expression in a module annotated as 

‘circadian clock’ (332 genes) was observed in MAP compared to controls (P=0.04) 

(Figure 7.2C). MA associated findings included the increase of ME expression in 

modules specific to ‘chloride transporter activity’ (106 genes), ‘interferon signalling’ (263 

genes), and ‘cytokine signalling’ (186 genes), and a decrease of ME expression in 

modules associated with ‘generic transcription’ (48 genes), and ‘ribosome pathway’ (281 

genes) in MA subjects relative to healthy controls (Figure 7.3). The same methodology 

was extended to compare brain structural volumes (mm3) across the three groups, 

which revealed bilaterally reduced hippocampus volumes in MAP subjects (left, P=0.04; 

right, P=0.02) (Table 2).  

UB-MEDIATED PROTEOLYSIS
767 genes (34∩137, P=7.5E-6)�

RNA DEGRADATION
1156 genes (176∩1568, P=1.6E-15)�
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Figure 7.2. Significant MAP findings from differential analysis of module 
eigengene (ME) values and brains structural volumes (mm3) across 
controls (white), MA subjects (light grey) and MAP subjects (dark grey).  
Modules specific to MAP include (A) ubiquitin(UB)-mediated proteolysis, 
(B) RNA degradation and (C) circadian clock. Indicated for each module 
are, number of overlapping genes from the module ∩ out of total genes in 
the term. Enrichment P values are Bonferroni corrected for multiple 
comparisons. A Bayes ANOVA (parameters: conf=12, bayes=1, 
winSize=5) was used on ME values to test for significance between 
groups and P values were corrected multiple comparisons where (*) 
implies post-hoc corrected p-value significance < 0.05 and (+) indicates p-
value significance < 0.05 without post-hoc correction.  
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Figure 7.3. Module eigengene (ME) differential expression analysis across controls (white), MA dependent 
subjects (light grey) and MAP subjects (dark grey). (A) ME expression values over-expressed in MA 
subjects relative to controls include modules enriched for chloride transporter activity, interferon signalling 
and cytokine signalling. (B) ME expression values under-expressed in MA subjects relative to controls 
include modules enriched for generic transcription and ribosome pathway. A Bayes ANOVA (parameters: 
conf=12, bayes=1, winSize=5) was used on ME values to test for significance between groups and corrected 
for multiple comparisons where (*) implies post-hoc corrected p-value significance < 0.05 and (+) indicates p-
value significance < 0.05 without post-hoc correction.  

7.3.2. Phenotypic Characterisation of MAP Modules 

ME values for MAP specific modules were correlated with all phenotypic traits in this 

study (brain structural volumes, life history and psychometric measures) to gain insight 

into the role that each module may play in the pathophysiology of the disorder (Figure 

7.4). P values < 0.002 pass the most conservative multiple comparison correction 
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Table 7.2. Brain structural volumes (mm3) from all subjects (N=30).

Brain Region
Healthy Controls 

(N=10)�
MA                     

(N=10)�
MAP                   

(N=10)� Bayes ANOVA�
Post-Hoc 

Significance�
Mean ± SD Mean ± SD Mean ± SD F (df=2) P value

L. Hippocampus 3950.11 ± 463.71 3790 ± 297.51 3521.71 ± 173.43 3.538 0.041 Control > MAP
R. Hippocampus 4067.56 ± 414.08 4005.43 ± 196.29 3645.29 ± 189.97 4.261 0.029 Control > MAP
L. Accumbens 690.56 ± 80.38 689.14 ± 128.15 651.57 ± 99.24 0.343 0.714
R. Accumbens 669.33 ± 100.54 673.00 ± 199.23 694.71 ± 91.48 0.076 0.927
L. Caudate 4116.89 ± 340.84 4078.57 ± 293.78 3906.71 ± 177.23 1.149 0.337
R. Caudate 4211.22 ± 251.11 4283.86 ± 314.36 4119 ± 163.64 0.760 0.481
L. Putamen 6606.78 ± 408.97 6633.14 ± 667.17 6718.57 ± 661.5 0.078 0.925
R. Putamen 6313.33 ± 371.03 6274.43 ± 596.45 6506.71 ± 672.14 0.373 0.694
L. Ventral DC 4551.33 ± 247.16 4295.71 ± 273.56 4323.71 ± 204.25 2.715 0.091
R. Ventral DC 4473.44 ± 377.34 4340.43 ± 78.7 4369.86 ± 278.58 0.485 0.623
CC Anterior 938.78 ± 125.96 1056.14 ± 194.83 1016.57 ± 100.31 1.389 0.272
CC Posterior 966.00 ± 191.65 912.29 ± 139.86 956.29 ± 135.16 0.236 0.792
Bayes ANOVA parameters: conf=12, bayes=1, winSize=5. P values corrected for multiple comparisons. Abbreviations:L., left; R., right; DC,  
diencephalon; CC, corpus callosum. Grey shading is for visualization purposes only.
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(Bonferroni). The ME of a ‘ubiquitin-mediated proteolysis’ module was negatively 

associated with MAP status (r=-0.45, P=0.01) as well as K10 total score (r=-0.43, 

P=0.02). Interestingly, this module was also negatively associated with brain structure 

volumes in areas of the anterior corpus callosum (CC) (r=-0.55, P=0.002), right 

accumbens area (r=-0.40, P=0.03) and positively associated with areas in the left 

caudate (r=0.37, P=0.04) and left ventral DC (r=0.48, P=0.007). The ‘RNA degradation’ 

module was negatively associated with the CC anterior (r=-0.48, P=0.008) and left 

accumbens (r=0.50, P=0.005), while positively associated with the left ventral DC 

(r=0.37, P=0.04). The ‘circadian clock’ module, was positively correlated with EPQRS 

measure of psychoticism (r=0.43, P=0.02) and negatively associated to extraversion (r=-

0.36, P=0.04). 

7.3.3. Phenotypic Characterisation of MA Modules 

A similar strategy was chosen to characterise MA specific modules (Figure 7.4). The ME 

of the ‘interferon signalling’ module was positively associated with MA status (r=0.40, 

P=0.03), BDI total score (r=0.40, P=0.03) and with structural information from both left 

(r=0.54, P=0.002) and right putamen areas (r=0.41, P=0.03). This module was 

negatively associated to EPQRS measure of extraversion (r=-0.38, P=0.04) and EPQRS 

total score (r=-0.38, P=0.04). Further, the ME of the ‘chloride transporter activity’ module 

was positively associated with both MA status (r=0.36, P=0.05) and METH dependency 

(r=0.39, P=0.03), in addition to BDI total score (r=0.39, P=0.03) and brain volume in the 

left putamen (r=0.53, P=0.003). This module was also negatively associated with control 

status (r=-0.39, P=0.03) and the left ventral diencephalon (DC) (r=-0.40, P=0.03). The 

‘ribosome pathway’ module was negatively associated with MA status (r=-0.37, P=0.04) 

and positively associated with EPQRS total score (r=0.38, P=0.04), and K10 total score 

(r=0.44, P=0.02). The ‘cytokine signalling’ module was positively associated with both 

left accumbens (r=0.37, P=0.04) and right accumbens (r=0.55, P=0.002), while the 

‘generic transcription’ module was negatively associated with these areas (r=-0.49, 

P=0.006; r=-0.60, P=5e-04, respectively).  
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7.3.4.  Putative Diagnostic Blood Biomarker for MAP 

Supervised class prediction methods were used to identify any single important gene(s) 

which may have been over-looked in our network analysis. First, differentially expressed 

genes (all P < 0.01) were identified between control and MA subjects (N=197), control 

and MAP subjects (N=409) and between MA and MAP subjects (N=79) (Figures 7.5A-

D). To control for confounding factors, genes corresponding to WGCNA modules 

significantly associated with polysubstance abuse were excluded. Gene lists were 

annotated for functionality at the pathway level and cross-referenced with drug-induced 

gene signatures from the CTD database (Figure 7.5E-F). 

Subsequently, differentially expressed genes (P < 0.01) were pooled from across the 

three candidate gene lists and subjected to RFE feature selection and different 

multivariate classification methods in a LOOCV approach. Two models were built for 

separating classes. First, when separating healthy controls from METH dependents (MA 

and MAP subjects) classification accuracy reached 87% when the expression of 25 

genes was used with DLDA multivariate classification method (Figure 7.6A-B & Table 

7.3). Second, when separating MA from MAP, classification accuracy reached 95% 

when the expression of 20 genes (recycling 14 genes from the first model) was used 

with DLDA (Figure 7.6C-D & Table 7.4). 
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Figure 7.5. Differential gene expression analyses. (A) The total number of over- and under-expressed 
genes (P < 0.01) are shown for each pair-wise group comparison and subsequently (B) the overlap of all 
identified genes are displayed. (C) Log fold-change (logFC) of all genes between controls and MAP subjects 
were associated with logFC values for genes between controls and MA subjects, MAP or MA specific genes 
are labelled. (D) Volcano plot (logFC vs. log p-value) of dysregulated genes between MA and MAP subjects, 
P values coloured by significance. (E) The top 5 most significantly enriched pathways and (F) drug-
compounds for each pair-wise comparison (Bonferroni p < 0.05). 



159

Figure 7.6. Two separate models were used to predict group outcomes. (A) Gene expression classifier 
accuracies achieved when discriminating between healthy control and METH dependent subjects (MA + 
MAP groups) and (B) results of the top performing model containing 25 genes are displayed. (C) Gene 
expression classifier accuracies achieved when discriminating between MA subjects from MAP subjects and 
(D) results of the top performing model containing 20 genes are displayed. In each case supervised class 
prediction was performed using different combinations of genes with Recursive Feature Elimination and 
evaluated with four different multivariate classification methods. Abbreviations; P-value *, result of 1000 
random permutations to class labels; AUC, overall balanced accuracy; CI, confidence interval; NC, nearest 
centroid; 3NN, three-nearest neighbors; SVM, support vector machine; DLDA, diagonal linear discriminate 
analysis.  

To understand the biology represented by these MAP biomarkers and to derive 

mechanistic insights, our multi-step approach permitted taking each biomarker and 

returning to our network analysis to retrieve guilt-by-association biological information 

from empirically derived functional gene modules. The majority of these genes were 

found in a module annotated to ‘RNA degradation’ (CLN3, FBP1, TBC1D2, ZNF821, 

ADAM15, ARL6, FBN1 and MTHFSD) (Table 7.3 & 7.4). However, two top scoring 

biomarkers were found to be implicated in ‘circadian clock’ dysfunction (ELK3 and 

SINA3) and three other top scoring biomarkers were found in the module annotated to 

‘ubiquitin-mediated proteolysis’ (PIGF,UHMK1 and C7orf11).  
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7.3.5. CFG Prioritization of Biomarkers  

 

Biomarkers were prioritized using a Bayesian-like CFG approach (Supplementary Figure 

5.1) integrating previously published human evidence based on genetics (e.g. GWAS, copy 

number variants), post-mortem brain gene expression and peripheral blood gene expression 

specific to psychosis, SCZ, depression/stress as well as neurocognitive impairment (August 

2015). This is a way of validating relevant blood transcriptome biomarkers from moderately 

sized datasets, extracting generalizable signal out of potential cohort-specific noise. Using 

the CFG approach, we first focused attention on the ‘ubiquitin-mediated proteolysis’ 

annotated module, which in this study represents a functional biomarker of MAP. This 

module was enriched with 61 genes having CFG evidence (P=4.8E-10), including those 

found to be dysregulated in the blood of patients with a psychotic disorder (∩=29) as well as 

in the blood and/or post-mortem brain of SCZ patients (∩=32) across independent human 

studies (Supplementary Table 7.2). Notably, of the 29 CFG genes found in the blood of a 

psychotic disorder, 21 pertained to one single study (Lee et al., 2012). We found a significant 

enrichment of 39 genes holding CFG evidence (P=7.0E-12) within the module annotated as 

‘circadian clock’ (Supplementary Table 7.3). Similarly, these genes were also previously 

associated with psychosis and/or SCZ in independent studies. Two genes within the 

‘ubiquitin-mediated proteolysis’ annotated module (TMEM106B and SCAMP1) and one 

within the ‘circadian clock’ annotated module (DCTN1) overlap with a previous study which 

had used CFG based approach to validate blood biomarkers for delusions, a core symptom 

of psychotic disorders (Kurian et al., 2009). An additional gene (RAB18) within the ‘ubiquitin-

mediated proteolysis’ module was also validated as a SCZ biomarker using the CFG 

approach (Ayalew et al., 2012).  
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Applying the CFG approach to our panel of 31 discriminative biomarkers confirmed 8 

candidate biomarkers for MAP (Table 7.3 & 7.4) which had a CFG score of 3 or above, 

meaning either maximal score from the p-value threshold cut-offs or at least two other lines 

of prior independent evidence (Figure 7.7A). Indeed, CFG evidence for 8 out of 31 

discriminatory biomarkers is a significant overlap (P=0.01), beyond what would be expected 

by chance. Of these validated MAP biomarkers, four were previously reported to predict 

psychosis in an independent human blood transcriptome investigation (FBP1, ZNF821, 

TBC1D2 and SIN3A), one of which was previously labelled a genetic variant for SCZ risk 

(FBP1). In addition, one other biomarker had been implicated in SCZ risk across two 

independent studies (UHMK1). Subsequently, a gene-disease network was built using all 

CFG validated biomarkers, either in the form of a functional biomarker (gene modules) or 

single biomarkers, to visualize unique gene signatures of MAP and consensus signatures of 

MAP, psychosis and SCZ (Figure 7.7B). In this study, we found that MAP shares 69 genes 

with SCZ, 39 genes with other psychotic disorders and six genes are shared across all three 

conditions. Importantly, cross-referencing all candidate MAP genes onto possible 

haloperidol gene expression signatures from the CMap and CDT provided preliminary 

evidence for the lack of neuroleptic-associations across our candidate findings (Figure 

7.7B). 
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7.4. Discussion 
 

This preliminary report describes gene networks and blood biomarkers of MAP, further 

validating the MAP model as an exemplar for discovery of biomarkers related to SCZ 

susceptibility and clinical course. In essence, this pharmacogenomics approach is a tool 

for identifying genes that contain pathophysiological relevance to psychotic disorders 

and SCZ. Considering the variable environmental component of MAP, it is possible that 

not all subjects would show changes in all biomarker genes. Hence, our approach 

incorporated blood gene expression, clinical assessment, psychometric measures and 

structural MRI data revealing several mechanistic insights regarding the pathophysiology 

of MAP and its overlapping mechanistic nature with psychotic disorders and SCZ. First, 

we identified a functional biomarker of MAP in the form of a co-expression module 

annotated to ubiquitin-mediated proteolysis, further enriched with 61 genes containing 

CFG evidence. We also revealed a psychoticism associated module implicated in the 

circadian clock, enriched with 39 genes containing CFG evidence. Second, we identified 

25 genes that were able to distinguish healthy controls from METH dependents with high 

accuracy, while only 20 genes (recycling 14 genes from the previous split) were able to 

differentiate between MA and MAP subjects. A significant proportion of these single 

blood biomarkers also contained CFG evidence. Further, cross-referencing these results 

onto haloperidol-specific gene expression signatures reduced the likelihood of these 

genes being neuroleptic-related. These high overlaps suggest similar biological 

mechanisms detectable in peripheral blood underlying the pathophysiology of psychosis, 

regardless of substance abuse. These findings also suggest new avenues for exploring 

the utility of the MAP model in SCZ research.  

7.4.1. Ubiquitin Proteasome System (UPS) Dysregulation 

 

A central finding from the network analysis was the identification of a functional 

biomarker (gene module) annotated to ubiquitin-mediated proteolysis expressed to a 

lesser extent in MAP subjects (Figure 7.2). The ubiquitin proteasome system (UPS) is a 

highly complex and tightly regulated process that plays major roles in a variety of basic 

cellular processes, specifically degradation of intracellular proteins and modulation of 
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cellular responses to inflammation and oxidative stress (Ciechanover et al., 2000). The 

UPS has been identified in genetic reports as a major pathway associated with 

psychosis (Bousman et al., 2010a; Lee et al., 2012), SCZ and bipolar disorder (Bousman 

et al., 2010b; Vawter et al., 2001; Vawter et al., 2002; Middleton et al., 2002; Altar et al., 

2005; Konradi et al., 2004), as well as with neurodegenerative conditions including 

Alzheimer’s disease (Lam et al., 2000) and Parkinson’s disease (Shimura et al., 2000). 

Studies using post-mortem brain gene expression to investigate mechanisms of 

psychosis and SCZ provide consistent evidence for the down-regulation of UPS-related 

genes in these conditions (Vawter et al., 2002; Middleton et al., 2002; Altar et al., 2005). 

It was also recently shown that UPS abnormalities disrupt expression at the protein-level 

in SCZ (Ikeda et al., 2013). Studies using peripheral blood gene expression have also 

found that the UPS pathway was consistently dysregulated across bipolar, SCZ and 

psychosis patient groups (Bousman et al., 2010a). A later study used a targeted 

approach associating blood expression measurements of UPS pathway gene members 

with Scales for Assessment of Positive and Negative Symptoms (SAPS-SANS) and 

determined UBE2K (also a gene member of our ‘ubiquitin-mediated proteolysis’ module), 

was 1 of 3 genes most significantly associated with positive symptoms of psychosis 

(Bousman et al., 2010b). Another independent report built a diagnostic blood-based 

classifier able to distinguish first-episode psychosis from controls with 400 genes (Lee et 

al., 2012), 21 of which were found within our UPS annotated module (Supplementary 

Table 7.2). It is interesting that genes with a well-established role in brain functioning 

also show changes in peripheral blood in relationship to psychiatric symptom states, and 

moreover that the direction of change should be concordant with that reported in human 

post-mortem brain studies. As a consequence of the overlapping nature of UPS 

dysfunction found across mental diseases, the proteasome system has emerged as a 

putative candidate highlighting both mRNA and protein-level changes in psychosis and 

SCZ.  

 

7.4.2. UPS and Circadian Clock Associations to sMRI Data 

 

In determining relationships between blood gene expression and structural MRI data, we 

revealed a significant association of the ubiquitin-mediated proteolysis module with the 
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anterior corpus callosum (CC) (r=-0.55, P=0.002) (Figure 7.4). Conversely, the circadian 

clock module, expressed to a greater extent in MAP subjects (Figure 7.2), was 

significantly associated with the EPQRS measure of ‘psychoticism’ (i.e. aggression, 

egocentrism and impulsiveness) (r=0.43, P=0.02) and the posterior CC (r=0.39, P=0.03) 

(Figure 7.4). There is considerable evidence suggesting that global white matter 

abnormalities (i.e. disruptions in connectivity in intra- and interhemispheric pathways) 

play a role in the pathophysiology of psychiatric disorders (White et al., 2008). The CC is 

the largest white matter tract containing highly packed neuronal fibres, and abnormalities 

in this structure have frequently been reported in patients with SCZ (Whitford et al., 

2010), including first-episode SCZ and psychosis patients (Price et al., 2007), often 

relating to the severity of psychotic symptoms. It has been hypothesised that less 

efficient connectivity and resulting aberrant signal transmission between brain regions 

may be a pivotal factor in the manifestation of psychotic symptoms, including delusions 

and hallucinations, and of cognitive dysfunctions (Friston & Frith, 1995; Kubicki et al., 

2007). However, these disturbances have not been fully elucidated in the context of MAP 

nor in its relationship to blood gene expression differences. But we also observed 

significantly lower bilateral hippocampal volumes in MAP subjects (Table 7.2). While 

correlates of blood gene expression to hippocampal volumes relate mainly to processes 

of protein ubiquitination (r=0.37, P=0.05), reductions in hippocampal volumes are 

consistent with previous reports of pathological hippocampus changes in MAP (Orikabe 

et al., 2011), in first episode and chronic schizophrenia (Velakoulis et al., 2006), and in 

individuals at high risk for psychosis (Fusar-Poli et al., 2009). Taken together, these 

findings suggest that changes in the blood occur in parallel to structural changes in the 

brain of MAP subjects and that they are also most likely involved in the pathophysiology 

of psychotic disorders and SCZ in the absence of METH. 

 

7.4.3. Putative MAP-related Gene Hunting Tools  

 

Interrogation of the comparative toxicogenomics database (CTD) (Davis et al., 2015) 

with a signature query composed of the genes in our ‘ubiquitin-mediated proteolysis’ 

annotated module revealed an enrichment of sodium arsenate gene signatures 

(Supplementary Table 7.1). Sodium arsenate is one of the most toxic metals derived 
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from the natural environment, but has been used as a therapeutic medication in acute 

promylocytic leukaemia based on its mechanism to induce apoptotic effects via release 

of apoptosis-inducing factor (AIF) (Schenk & Stolk, 1967). However, arsenic is mainly a 

contaminant and interestingly is known to cause clinical features such as psychosis, 

toxic cardiomyopathy, and seizures (Lebrun et al., 2010). This exploratory result 

suggests arsenic, and chemically similar compounds, may be a useful gene-hunting tool 

for investigating future mechanisms of psychosis in either primary or patient-derived 

lymphoblast cell lines to elucidate further these effects in search for more verifiable 

biomarkers.  

 

7.4.4. Candidate Blood-based Diagnostic Biomarkers of MAP 

 

Topping our list of candidate MAP biomarkers we found 8 genes involved in RNA 

degradation (CLN3, FBP1, TBC1D2, ZNF821, ADAM15, ARL6, FBN1 and MTHFSD), 

two which are specific to circadian rhythm (ELK3 and SINA3) and three involved in 

ubiquitin-mediated proteolysis (PIGF,UHMK1 and C7orf11) (Table  7.3 & 7.4). Some of 

the gene expression changes detected in this moderately sized cohort (N=30) may 

represent biological or technical artefacts, butto minimize such effects, our candidate 

MAP biomarkers were selected based on having a line of evidence (CFG) score of two 

or higher (Figure 7.7A). Proper cross-validation both in silico and across-literature 

(CFG), minimised the likelihood of having identified false positives while increasing 

sensitivity and specificity in the ability to distinguish true signal (biomarkers) from noise 

through a fit-to-disease Bayesian-like methodology (Niculescu et al., 2000; Ogden et al., 

2004; Patel et al., 2010; Le-Niculescu et al., 2009; Rodd et al., 2007; Le-Niculescu et al., 

2011; Ayalew et al., 2012; Le-Niculescu et al., 2013; Kurian et al., 2009).  

 

CLN3 (Ceroid-Lipofuscinosis, Neuronal 3) was the top scoring gene in our study and is 

involved in lysosome function. Mutations in this gene are well-known to cause 

neurodegenerative diseases such as Batten disease (Lebrun et al., 2010; Mitchison et 

al., 1994), which impairs mental and motor development during childhood, causing 

difficulty with walking, speaking and intellectual functioning. Patients with a CLN3 

mutation are also prone to recurrent seizures, epilepsies, visual impairment, and 
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occasionally psychosis. It is hypothesised that mutations in CLN3 disrupt lysosome 

function resulting in build-up of lipopigments, which may induce apoptotic effects in brain 

neurons. This gene has not yet been discussed in the context of psychosis, but may 

represent a putative biomarker of MAP. Additionally, variants in the gene FBP1 

(fructose-1,6-bisphosphatase 1) have previously provided genetic support for the view 

that alterations in glucose metabolism are intrinsic to SCZ pathology (Olsen et al., 2008). 

However, in our study this gene was found co-expressed in the ‘RNA degradation’ 

module. Other top scoring genes included genes annotated to a circadian clock module 

(Supplementary Table 7.3), which are involved in sleep-wake cycles and previously 

identified as risk factors for psychosis (Niculescu et al., 2000), anxiety disorders (Le-

Niculescu et al., 2011), suicidality (Le-Niculescu et al., 2013) and mood disorders (Le-

Niculescu et al., 2007). ELK3 (ETS-Domain Protein (SRF Accessory Protein 2)) encodes 

a transcriptional factor that may switch from activator to repressor in the presence of Ras 

whereas SIN3A (SIN3 Transcription Regulator Family Member A) encodes a 

transcriptional repressor with known roles in circadian clock negative feedback (Duong 

et al., 2011). While SIN3A has well known association to circadian clock function, an 

advantage of our approach was to be able to derive guilt-by-association co-expression 

interpretation of biomarkers, such as ELK3, by indicating module membership status. 

Dysregulation of circadian clock genes in post-mortem brain of SCZ patients have 

previously been observed (Monti et al., 2013). 

 

7.4.5. Candidate MA and METH Dependency Genes 

 

The MA associated findings also allow us to speculate on molecular mechanisms of 

psychosis. MA discoveries mainly included elevated expression in modules specific to 

interferon and cytokine signalling. While cytokine signalling was positively associated 

with METH-dependency (i.e. MA and MAP subjects) (r=0.39, P=0.03), a module specific 

to ‘interferon signalling’ was significantly over-expressed in the blood of MA subjects 

relative to controls, rather than MAP subjects relative to controls (Figure 7.3). Previous 

work has highlighted a weak or absent immune stress response, specific to HPA axis 

activation (van Venrooji et al., 2012) and cortisol measurements (Mondelli et al., 2015), 

in medication-naive first-onset psychosis patients. Our results are consistent with these 
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findings suggesting a potentially diminished defence and innate immune response 

involved in the pathophysiology of psychosis, which may not necessarily be due to 

environmental variables or METH abuse. In addition to the cytokine signalling module, 

modules specific to IL-5 signalling, actin cytoskeleton and ATPase activity all showed a 

strong association to both the left and right accumbens area (Figure 7.4). Due to high 

levels of dopaminergic innervations, the nucleus accumbens, together with other 

subcortical structures, plays a pivotal role in several neurocircuits involved in reward, 

motivation, drug-reinforcement and drug seeking behaviour, mood regulation, and sleep 

wake cycles (Le Moal & Koob, 2007; Qiu et al., 2012). Such neurocircuit functions are 

similarly affected by drug exposure as well as by stressors, life events, or social 

pressure, with increased dopamine release in the nucleus accumbens triggered by the 

stimulant in addiction and by glucocorticoid hormones in stress (Le Moal & Koob, 2007). 

Furthermore, there is emerging evidence that cytokines circulating in blood may target 

subcortical dopamine function, with potential implications on behaviour, sleep patterns, 

and the progression of psychiatric disorders, such as depression (Felger et al., 2012). 

 

7.4.6. Strengths and Limitations 

 

While it appears that the identification of blood-based biomarkers may be accomplished 

by systems-level and machine-learning approaches, it remains uncertain which 

approach provides the most favourable translational avenue. A strength of this study is 

the identification of gene networks which were subjected to multi-modal data integration, 

and later enriched for CFG evidence. Additionally, a significant proportion of MAP single 

gene biomarkers identified by machine-learning were also validated by CFG evidence. 

Another strength of the computational approach is the ability to place single-gene 

biomarkers into a coherent biological framework in order to derive mechanistic insights. 

Limitations of our study include its small sample size, cross-sectional (lack of 

longitudinal) experimental design and the lack of a disease control group. For example, 

to emphasize the MAP model as an exemplar for SCZ biomarker discovery it would be 

useful to incorporate a SCZ diagnosed group into the experimental design.  
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7.4.7. Concluding Remarks 

 

Overall, our results support the MAP model for identification of biomarkers involved in 

psychosis and SCZ. Our findings suggest that genes involved in UPS and circadian 

clock dysregulation are potential players in psychosis and are reflected in both peripheral 

blood and post-mortem brain profiles. Specifically, UPS abnormalities have emerged as 

a common denominator across a variety of independent studies investigating psychosis, 

SCZ and bipolar disorder. Our results shed light on biological mechanisms of psychosis, 

regardless of polysubstance abuse, medication or other confounding factors and further 

emphasize the value of moving towards comprehensive empirical profiling. These results 

also suggest empirical avenues for future field trials, clinical testing and validation in 

various at-risk populations.  

 

Contributions. I was solely responsible for all statistical design, data analysis, data 
interpretation and writing.  
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Chapter 8 

Candidate Lithium Responsive Genes and 
Gene Networks in Bipolar Disorder 
Lymphoblastoid Cell Lines 

8.1. Background 

 
Bipolar disorder (BD) is a common psychiatric illness affecting 1-4% of the population 

worldwide (Merikangas et al., 2011). Its pathophysiology is still largely unknown. BD is 

characterized by recurrence of depressive, hypomanic, or manic episodes with 

intervening intervals of partial or full remission (Garnham et al., 2007). Lithium (Li) 

treatment is the mainstay medication in the long-term treatment for BD and is one of only 

two medications known to reduce risk of suicide (Garnham et al., 2007; Baldessarini & 

Tondo, 2000; Lewitzka et al., 2015). However, clinical response to Li is variable and the 

mechanisms by which this drug stabilizes mood are multifaceted. 

 

Previous research has identified predictive factors such as clinical presentation and 

family history (Kleindienst et al; 2005), DNA polymorphisms (Serretti et al., 1999; Turecki 

et al., 1998; Rybakowski et al., 2005; Serretti et al., 2001; Masui et al., 2006), or 

common genetic variants through genome-wide association studies (Perlis et al., 2009) 

to identify subsets of BD patients who might respond more or less favorably to Li 

treatment. However, to date no single factor has been fully reproduced nor able to 

accurately predict treatment response. Much effort has been focused upon obtaining 

more information on underlying neurobiological processes associated with Li response, 

as well as the mechanisms that influence gene expression and molecular pathways. 

Evidence from both in vitro and in vivo studies demonstrates that Li exerts multiple 

effects on ion transport, signal transduction cascades, neurotransmitter/receptor 

mediated signaling, hormonal and circadian regulation and greatly alters gene 

expression patterns (Lenox et al., 2003). Actions on the phosphoinositide pathway and 
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on glycogen synthase kinase-3 represent two of the many Li-responsive biological 

processes (Klein & Melton, 1996; Berridge et al., 1989). In addition to these 

mechanisms, transcriptomic reports have shown Li up-regulates anti-apoptotic genes 

and down-regulates pro-apoptotic genes in Li responders relative to Li non-responders 

(Lowthert et al., 2012; Beech et al.., 2013). These results suggest differential changes in 

the balance of pro- and anti-apoptotic gene expression may partly explain the 

heterogeneity in clinical response to treatment. Overall, it is clear that the processes that 

underpin the therapeutic actions of Li are complex and most likely inter-related. 

Accordingly, it is hypothesized that a gene network approach should be well-suited to 

identify subsets of genes underlying therapeutic and nontherapeutic actions of Li (Lenox 

et al., 2003) and model changes in the expressions of genes which differ based on 

treatment outcome occurring after treatment initiation.  

 

As BD is thought to be a brain disorder, access to live human brain tissue is unlikely, so 

a model system is necessary. In this study we chose to study human cells, rather than 

using animal models for BD and treatment response, which have some limitations 

(Overstreet, 2012; Harro, 2013). In our case, we are investigating the response to Li in 

BD in a peripheral cell line, namely lymphoblast cell lines (LCLs), because unlike 

PBMCs, they more closely mimic neuronal cells in their gene expressions and regulation 

(Abe et al., 1991; Gutekunst et al., 1995; Kobayashi et al., 2003; Koide et al., 1999). 

Moreover, neuronal cells from live patients are also difficult to acquire, while LCLs are 

readily available and also produce a resource that can be used in follow-on studies. 

While transformation of peripheral B lymphocytes by EBV is the method of choice for 

generating LCLs, it is expected that there will be changes in gene expression caused by 

the virus and culturing. However, comparing the biological effects of Li on paired 

samples (i.e. untreated vs. Li-treated LCLs) should eliminate most biases. As such, we, 

and others (McEachin et al., 2010; Hunsberger et al., 2015), believe that LCLs represent 

the most appropriate model for this work.  

 

The current investigation aimed to study Li responsive genes and gene networks using a 

genome-wide transcriptomic approach, rather than examining changes in expression 

levels of presumed relevant targets. We compared human cell lines from BD patients 

classified as responders or non-responders to Li treatment, together with healthy control 



 175

donors. Using RNA-Sequencing, we profiled the expression of mRNA of human 

lymphoblastoid cell lines (LCLs) exposed to a therapeutic course of Li. In this study, 

three main aims were established. Aim 1: First, to identify gene networks which were 

either induced or repressed with Li treatment, which may reveal new targets for the 

molecular mechanisms underlying Li action. Aim 2: Second, to better understand the 

relationship of gene expression signatures of Li identified in our study with other gene 

expression perturbations caused by similar small bioactive drugs/compounds. Aim 3: 

Finally, to identify individual genes that differ in their response to Li between BD patients 

that demonstrate relapse and non-relapse symptoms, providing a mechanistic basis for 

therapeutic heterogeneity.  

 

8.2.  Materials and Methods 

8.2.1. Subject Selection 
 
A total sample of 125 BD patients participated in a prospective relapse prevention trial of 

Li. From here, a subset of age-matched 8 BD Li responders (22.62 ± 8.01 yrs.), 8 BD Li 

non-responders (22.87 ± 6.57 yrs.) and 7 healthy controls (22.53 ± 7.23 yrs.) were 

enrolled in this study. All participants were Caucasian males and recruited from the San 

Diego Veterans Affairs Medical Center. Participants diagnosed by a psychiatrist or 

clinical psychologist with a DSM-III or DSM-IV diagnosis of BD were included in this 

study. After screening for eligibility and initial assessment, patients entered a multi-

phase clinical design to determine BD Li responders from  BD Li non-responders (for 

detailed experimental design see Supplementary Figure 8.1). First, patients were 

started on Li and entered the first phase (that is, stabilization phase). The goal in this 

phase was to stabilize patients within three months on Li monotherapy. Following, 

patients entered the second phase (that is, observation phase) and were observed for 

one month to assure stabilization after discontinuation of other medications. Finally, 

patients then entered the final phase (that is, maintenance phase) and were followed at 

two to four month intervals for two years. Positive Li response (i.e. non-relapse) was 

defined as reaching the end of the maintenance phase of the study without relapse of 

BD symptoms and Li re-administration. In this context, patients classified as BD Li 

responders denote non-relapse patients and patients classified as BD Li non-responders 
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denote relapse patients. Average number of weeks in the study for BD patients 

characterized as BD responders and non-responders was 69 and 11 weeks, 

respectively. 

8.2.2. Cell Culture 

Blood samples from all patients were obtained at the beginning of the trial, before the 

initiation of Li treatment, and subsequently transformed by infecting buffy coat with 

Epstein-Barr virus (EBV). A total of 23 lymphoblastoid cell lines (LCLs) of low passage 

were revived and cultured in RPMI 1640 supplemented with 10% fetal bovine serum and 

1X antibiotics to reach density of 1M cells/mL and split in half. Subsequently, each half 

was then placed in the continuous presence of 1mM Li chloride in the vehicle (i.e. Li 

treated) or vehicle alone (i.e. untreated) for seven days, which is considered to closely 

mimic chronic exposure and treatment concentrations of Li in patients' brains (Asai et al., 

2013; Cruceanu et al., 2012; Sugawara et al., 2010). 

 

8.2.3. RNA Isolation and RNA-Seq Library Preparation 

Total RNA was extracted from 2-5x106 cells of each treated and untreated (vehicle-

treated) cell suspensions using QIAamp RNA blood mini kit (Qiagen, CA, USA) 

accordingly to the manufacturer’s protocol. Quality and quantity of obtained RNA was 

assessed by NanoDrop and Agilent 2100 Bioanalyzer using RNA 6000 Labchip (RNA 

Integrity Numbers: 9.7 ± 0.3). Subsequently, to isolate the mRNA transcriptome, the 

Dynabeads® mRNA DIRECT™ Micro Purification Kit (Life Technologies, USA) was 

modified for lower total RNA input. This step utilizes RNase inhibitors in the lysis/binding 

buffer, combined with stringent hybridization and washing steps to isolate intact mRNA 

and to deplete ribosomal and small RNA molecules. Only polyadenylated RNA species 

are captured, resulting in cleaner preparations and more sensitive results. 

Libraries were prepared using the Ion Torrent RNA Seq Kit V2 with ERCC control RNA 

according to the manufacturer’s user guide (publication 447286 Rev D). Each subject’s 

Li and vehicle-treated paired samples were barcoded (Ion Xpress RNA-Seq barcode 01-

16 Kit) and run together on 318 chips.  Data was available as aligned BAM and raw fastq 

files (average 5.6 ± 0.3 million reads/chip). For data availability (in raw fastq format) 
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contact corresponding authors. 

8.2.4. Read Trimming, Mapping and Quantification of Expression 

Raw reads from the Thermo Fisher Scientific's Ion PGM sequencer were filtered using 

the Fastx-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html) developed by the 

Hannon lab (Pearson et al., 1997).  All reads less than 12 base pairs in length were 

removed due to their propensity to map to multiple locations by chance.  Due to read 

quality degradation near the end of the reads, they were trimmed to 100 base pairs and 

filtered for artifact reads composing only 3 total base pairs. The reads were mapped 

against the hg19 genome using TMAP version 3.0.1, a Smith-Waterman alignment 

optimization (Li et al., 2010). TMAP was specifically designed for the Ion Torrent data 

and has shown more robust results. TMAP was run in mapall mode with the map1, 

map2, and map 3 functions and their default settings.  The map1 function is well suited 

for short reads whereas the map2 and map3 settings are more well designed for longer 

reads. These settings allowed for the mapping of reads ranging from 12 to 100 base 

pairs with varying levels of mismatches based upon the size of the read.  Reads were 

then counted against the hg19 genome using HTSeq version 0.6.1p2 with the default 

settings (Anders et al., 2014).  

 

8.2.5. Data Pre-Processing 

Raw count data measured 23,349 transcripts across all patients before and after Li 

treatment (i.e. 8 BD Li responders, 8 BD Li non-responders and 7 healthy controls). Non-

specific filtering requiring more than 10 counts per million in at least 5 subjects retained 

9,128 transcripts subjected to VOOM normalization in EdgeR (Law et al., 2013), a 

variance-stabilization transformation method. Normalized data were inspected for 

outlying samples using unsupervised hierarchical clustering of subjects (based on 

Pearson coefficient and average distance metric) and principal component analysis to 

identify potential outliers outside two standard deviations from these averages. Three 

outliers were present in these data (1 control subject prior to Li treatment, 1 control 

subject following Li treatment, 1 BD Li non-relapse subject following Li treatment) and 

resulting normalized values were used as input for WGCNA, differential gene expression 

and drug-gene activity analyses.  
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8.2.6. Weighted Gene Co-expression Network Analyses  
 
Signed co-expression networks were built using weighted gene co-expression network 

analysis (WGCNA) (Langfelder & Horvath, 2008) in R. A total of 9,128 transcripts were 

used to construct a global network of all 43 subjects. To construct a global weighted 

gene co-expression network, the absolute values of Pearson correlation coefficients 

were calculated for all possible gene pairs and resulting values were transformed using a 

ß power of 13 so that the final correlation matrix followed an approximate scale-free 

topology. Subsequently, to identify sub-networks from the global network (i.e. co-

expression modules), the WGCNA cut-tree hybrid algorithm was used optimizing 

minimum module size to 15, deep split of 3, and a tree-cut height of 0.35 in order to 

merge neighboring network modules with similar expression profiles. Once individual 

modules were identified, we sought to perform module differential expression to 

determine which modules were most affected by Li treatment. We ran singular value 

decomposition of each module’s expression matrix and used the resulting module 

eigengene (ME), equivalent to the first principal component, to represent the overall 

expression profiles for each module. As previously described, differential expression of 

MEs was performed using a Bayes ANOVA (Kayla & Baldi et al., 2012) (parameters: 

conf=12, bayes=1, winSize=5), comparing between healthy controls, non-responders 

and responders, correcting P values for multiple comparisons with post-hoc Tukey tests. 

MEs are also used to determine module membership (kME) values for each gene in a 

specified module, defined as the correlation between gene expression values and ME 

expression. Genes with the highest intramodular kME are labeled hub genes and are 

predicted to be essential to the function of the module. Gene significance (GS) was 

calculated as the –log10 of the P value generated for each gene within a particular 

module using a moderated t test, and is a measure of the strength of differential 

expression between vehicle and Li treatment. Module significance (MS) was calculated 

as the average GS within each module, to identify modules enriched with differentially 

expressed genes.  

 

8.2.7. Differential Gene Expression Analyses 
 
Differentially expressed genes were assessed between groups using a moderated t-test 
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in the limma package (Smyth et al., 2005). The multi-level experimental design permitted 

the testing of multiple hypothesizes. First, we sought to explore the effect of Li on gene 

expression, relative to vehicle treatment: longitudinal group-wise comparisons were 

made considering differences between vehicle and Li treatment by testing non-

responders, responders and controls each independently. Subsequently, the effects of Li 

on gene expression was analyzed by pooling all subjects relative to treatments (i.e. 

comparing vehicle to Li). P-value significance was set to a FDR P < 0.05 due. Second, 

we sought to explore standing variation in gene expression profiles prior-to and following 

Li treatment, independently: cross-sectional group-wise comparisons were made at 

vehicle treatment and again separately at Li treatment. P-value significance was set to a 

nominal P < 0.01 to permit sufficient enough information to carry on with down-stream 

functional enrichment. Third, we sought to identify genes whose expression differed 

between vehicle and Li treatment between BD responders and non-responders: we 

performed a mixed linear contrast analysis with significance set to a nominal P < 0.05.  

Similarity, this assumption was relaxed to cast a wide net to permit for down-stream 

functional interpretation of the candidate gene-list.  

 

8.2.8 Functional Annotation and Drug Gene-Set Testing 
 
All identified network modules and differentially expressed genes were subjected to 

functional annotation. The ToppFunn module of ToppGene Suite software (Chen et al., 

2009) (Division of Biomedical Informatics) was used to assess enrichment of GO 

ontology terms specific to biological processes and molecular factors using a one-tailed 

hyper geometric distribution with a Bonferroni correction. Because differentially 

expressed genes identified from our mixed contrast analysis produced a large amount of 

enriched GO terms, GO semantic similarity analysis was used using G-Sesame (Du et 

al., 2009) semantic similarity metrics and default semantic contribution factors (“is_a” 

relationship: 0.8 and “part_of” relationship: 0.6). This analysis results in a symmetric 

matrix in which each value represents a score for similarity between GO term pairs. 

Then, we undertook hierarchical clustering based on semantic similarity matrix to group 

together all GO terms with common GO ‘parent’. Finally, to identify drug activated gene 

expression signatures from cultured human cells which are most similar to those of Li 

identified in our study, we utilized the Drug Signatures Database (DSigDB) (Yoo et al., 
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2015), a resource linking gene expressions with > 20K drugs/compounds for 

translational research. The QuSage software (Yaari et al., 2013) (version 1.9.0) was 

used to perform drug gene-set testing to identify drugs/compounds eliciting similar up- 

and down-regulated gene expression profiles. 

 

8.2.9. Protein Interaction Networks 
 
When protein interaction networks are constructed from candidate gene-lists, they can 

reveal key genes and transcription factors that control the regulation of multiple target 

genes. Protein-protein interactions (PPI) were obtained from the STRING (Mering et al., 

2003) database with a signature query of differentially expressed genes identified from 

our mixed contrast analysis with a combined STRING score higher than 0.4. For 

visualization, the STRING network was imported into CytoScape (Shannon et al., 2003). 

8.3. Results 
We conducted an exploratory RNA-Sequencing study profiling LCLs before and after Li 

exposure from a primary cohort of BD Li responders, BD Li non-responders, and healthy 

controls. To compliment this multi-level experimental design and to identify candidate Li 

responsive genes and gene networks, a multi-step analytical approach was used (Figure 

8.1). An unsupervised global gene co-expression network was first constructed using all 

available subjects to identify groups of coordinately expressed genes (i.e. co-expression 

modules) involved in the overall molecular response to Li. This analysis identified 22 co-

expression modules, which were functionally annotated to GO molecular factors and GO 

biological processes (Supplementary Table 8.1).  
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Figure 8.1. A multi-step analytical work-flow was used for identifying candidate Li responsive genes and 
gene networks. Quality control identified three outliers (1 control subject prior to Li treatment, 1 control 
subject following Li treatment, 1 BD Li non-relapse subject following Li treatment). First, WGCNA analysis 
built a global co-expression network and identified 22 co-expression modules. On the hierarchical cluster 
tree each line represents a gene (leaf) and each group of lines represents a discrete group of co-regulated 
genes, or gene modules (branch) on the clustering gene tree. Each gene module is indicated by the colour 
bar below the dendrogram, and subsequently functionally annotated using GO biological processes and 
molecular factors. Second, drug-gene signatures of Li were compared to those of other small molecule 
compounds to identify similar mechanisms of action. Third, a series differential gene expression analyses 
were used to identify single gene(s) involved in Li’s therapeutic effects. Finally, candidate genes were 
prioritized using external lines of transcriptome-based evidence. For each step the corresponding figure 
and/or table is listed providing a quick reference. Abbreviations: NR, non-responders; R, responders; C, 
healthy controls; DEG, differentially expressed genes. 
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8.3.1. Differential Analysis of Module Eigengene Values and Drug-Gene Set 
Enrichment 

Next, modules were examined for over-representation of genes identified as significantly 

differentially expressed between vehicle and Li treatment. These gene-based results 

were analogous across groups and exhibited a high degree of overlap, and as a result, 

modules were specifically enriched for differentially expressed genes identified from 

pooling all groups together at vehicle and then at Li treatment (Figure 8.2). 

Figure 8.2. Longitudinal differential gene expression analysis. (A) Within group differential expression 
analysis between vehicle and Li treatment identified gene expression signatures from healthy controls, 
responders, non-responders, and when all groups were pooled at both treatments. (B) Overlap analysis 
determined that most of these genes were found in relation to Li treatment and did not exhibit group 
specificity. 

We identified seven modules containing an over-representation of differentially 

expressed genes between vehicle and Li treatment, as reflected by an elevated module 

significance (MS) value (Figure 8.3A). To determine the extent and significance of fold-

change, this enrichment was further quantified by assessing differential expression of 



183

ME values using Bayes ANOVA testing and correcting P values for multiple comparisons 

(Figure 8.3B&C). ME expression was significantly up-regulated with Li treatment in 

modules annotated to immune response (M2), apoptosis signaling (M3), defense 

response to virus (M7) and response to ER stress (M12). This analysis identified ME 

expression significantly down-regulated with Li treatment in modules annotated to ER 

(M5), translation initiation (M22), and one module of unknown function (M11), as well as 

a module showing a distinct expression pattern implicated  to phophatidylserine 

metabolism (M17).  
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 Figure 8.3. Module significance and 
module eigengene (ME) expression 
boxplots. (A) MS was measured across 
all 22 modules. The y-axis indicates MS 
by calculating the average –log10 P 
values generated by a moderate t 
statistic for each gene within a particular 
module, when assessing differential 
expression between vehicle and Li 
treatment.  (B) ME values for modules 
induced with Li treatment (C) and those 
repressed with Li treatment. For each 
module the total number of genes 
including the overlap (∩) of module 
genes onto respective ontology terms 
and the putative ontology term (i.e 
function) are displayed above each 
boxplot. A Bayes ANOVA (parameters: 
conf=12, bayes=1, winSize=5)  was used 
on ME values to test for significance 
between treatments and conditions, (**) 
indicates P < 0.05 Bonferroni multiple 
test corrected implying strong Li effects.  
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We next sought to map Li gene expression effects that we observed in our study onto 

gene expression perturbations elicited by other small molecule drug/compounds with 

physiochemical properties that can be effectively administered to patients. To do so, we 

interrogated DSigDB with the QuSage software using a signature query composed of Li 

gene expression changes (by pooling all groups at vehicle and then at Li). This test 

revealed significant associations of up- and down-regulated genes similar to those that 

were observed in our study with several different treatments including clonidine, 

isoprenaline and colchicine treatment (Figure 8.4). However, under closer inspection, 

genes both induced and repressed by clonidine treatment were most similar to those 

observed of Li treatment in this study (Figure 8.5).  

Figure 8.4. QuSage analysis of Li gene expression signatures comparable to those in DSigDB. Summary of 
drug gene set activity and corresponding mean and 95% confidence intervals plotted and colored-coded 
according to their False discovery rate (FDR)-corrected P values when compared to zero. Drug gene set 
activity passing a mean fold change of 0.2 are displayed. Asterisks indicate drug signatures overlapping with 
both up- and down-regulated Li signatures.  
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Figure 8.5. A clonidine treatment gene expression signature is compared to genes both (A) induced and (B) 
repressed Li treatment. Differential expression probability density functions (comparing vehicle to Li 
treatment) are shown for genes (thin curves color-coded by standard deviation), along with aggregated 
estimate the clonidine signature after taking into account gene-gene correlation (thick black curve). The 
mean differential expression for individual genes in the set are indicated as line barcodes below each panel.   
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8.3.2. Longitudinal Contrast Differential Gene Expression Analysis 
 

Following, we re-focused our analyses on the individual gene level. A fundamental 

question to ask is whether any single gene(s) differ in their expression patterns between 

responders and non-responders over the course of Li (i.e. before and after Li treatment) 

and thus could be used as potential surrogate markers to explain heterogeneity in 

clinical response to treatment.  A linear mix contrast approach was used to address this 

aim (See Materials and Methods for more details) (P < 0.01) and identified 28 genes 

down-regulated in BD non-responders compared to responders following Li treatment 

including genes HSPE1, LYPLAL1, ORC3, GAR1, LSM5 and PEX13. This analysis also 

revealed 10 genes up-regulated in BD non-responders compared to responders 

including genes ZNF48, ILVBL, GBA, TBC1D10A and SLC50A1. Yet, to permit for 

sufficient enough information to move onto functional enrichment and protein interaction 

analyses, we relaxed our assumption of significance to P < 0.05.  Subsequent functional 

annotation of these genes revealed processes associated with cell-cycle, nucleotide-

excision (DNA) repair, protein deacylation, cellular response to stress, CoA thioesterase 

activity and cellular localization specific to the nucleoplasm (Figure 8.6A). We also 

analyzed whether these candidate genes that are dysregulated together also interact 

with each other at the protein level using the STRING database (Figure 8.6B). This 

analysis revealed differential regulation of hub genes RANBP2, RBBP7, UTY, HDAC2, 

POLR3B, UMPS and ERCC2; all of which have a putative role in mediating Li 

responsive effects differing between non-responders and responders. In total, 206 

interactions were observed between 244 genes, more than expected by chance 

(P=4.6E-6). 
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8.3.3. Cross-Sectional Differential Gene Expression Analyses 

Cross-sectional analyses at vehicle treatment revealed an overlap of 51 differentially 

expressed genes (P < 0.01) found in common between responders and controls and non-

responders and controls (Figure 8.7A). This baseline BD signature was more specifically 

characterized by the down-regulation of MHC II protein complex genes including HLA-DMA, 

HLA-DPB1 and HLA-DRA (Figure 8.7B). Interestingly, the same cross-sectional analyses 

following Li treatment revealed a consistent down-regulation of MHC II protein complex 

genes in BD relative to healthy controls (Figure 8.7C&D), further including genes HLA-DMB, 

HLA-DOA and HLA-DRB1.  

Figure 8.7. Cross-sectional differential gene expression analysis. Group-wise differential expression analysis 
identified unique gene expression signatures to non-responders, responders and controls among both (A) 
vehicle treated samples and (C) Li treated samples. Most significant GO biological process, molecular factor and 
cellular compartment are reported for each group-wise comparison among (B) vehicle treated samples and (D) Li 
treated samples. Bonferroni corrected P values for gene sets identified between non-responders compared to 
controls (light grey), responders compared to controls (dark grey), and non-responders compared to responders 
(black) are displayed with bar-plots. Gene-overlaps are broken down into over-expressed (top number) and 
under-expressed (bottom number) in each Venn-diagram.  
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8.3.4. Prioritization of Lithium Responsive Genes by Cross-Tabulating 
Independent Transcriptome-based Evidence 
 
Longitudinal differential gene expression analyses (before and after Li treatment) revealed 

2803 differentially regulated genes (FDR P < 0.05) (Figure 8.2A). Therefore, to 

contextualize these individual targets, genes modulated upon treatment with Li in our study 

were overlapped with Li responsive gene expression signatures in peripheral blood and 

LCLs from previous transcriptomic reports (Lowthert et al., 2012; Beech et al., 2013; 

McEachin et al., 2010; Hunsberger et al., 2015; Wantanabe et al., 2014). This curation of 

literature resulted in six studies and an overlap of 48 Li responsive genes (15 down-

regulated, 33 up-regulated) were identified within two or more studies (Supplementary 

Table 8.2). Among the most down-regulated genes on this candidate gene list included 

genes STC2, HADH, GAMT, MAT2A, and HSP90AA1, while those most up-regulated 

included genes CRIP1, CKB, FOS, LAX1, and RSAD2. We also sought to characterize Li 

responsive gene expression signatures accordingly to Li responder and non-responder 

specificity by cross-referencing our results with an independent LCL study (Hunsberger et 

al., 2015).. This approach identified an overlap of 9 Li-responsive genes (7 down-regulated, 

2 up-regulated) specific to BD Li responders including genes FANCE, STOML1 and 

SLC37A4 and 14 genes (11 down-regulated, 3 up-regulated) specific to BD Li non-

responders including genes DNAJC2, KLHL5, and NREP (Table 8.1).  
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8.4. Discussion 

 
In this exploratory study we compared the effects of Li using LCLs derived from BD and 

healthy control donors to further elucidate the mechanism of action of lithium. We were 

able to identify several recurring themes regarding its mode of action and provide further 

insight into gene expression patterns differing between BD Li responders and non-

responders. First, we identified several gene networks whose expression changed 

differentially upon treatment with Li, indicating widespread effects of Li on diverse 

cellular signaling systems including apoptotic signaling. Second, we identified genes 

differing in expression between responders and non-responders upon treatment of Li 

involved in the cell-cycle, nucleotide-excision repair, cellular response to stress CoA 

thioesterase activity and cellular localization specific to the nucleoplasm. These 

processes may explain at least part of the heterogeneity in clinical response to 

treatment. Third, comparing Li gene expression signatures identified in our study to other 

small molecule perturbations observed in cultured human cell lines revealed a strong 

enrichment for changes produced by clonidine (an anti-hypertensive drug) treatment. 

Finally, we were able to identify high overlaps of Li-regulated gene expression found in 

our study with previously published transcriptomic reports and further refine genes 

specific to Li responders and non-responders. These results represent a step towards 

better understanding the mechanisms underlying Li treatment in BD and identification of 

key genes involved Li’s therapeutic action.  

8.4.1. Gene Networks Induced by Lithium Treatment  
 

The most striking observations from this study were the discovery of several Li induced 

and repressed gene modules stemming from our network analysis (Figure 8.1). The 

identification of a module specific to apoptosis signaling (M3: 324 genes) up-regulated 

with Li treatment appears to be a common denominator across many studies 

investigating therapeutic effects of Li (Lowthert et al., 2012; Beech et al., 2013; Zhang et 

al., 2005). Li has been reported to influence apoptosis in several cell types and previous 

reports demonstrate that Li up-regulates anti-apoptotic genes and down-regulates pro-

apoptotic genes in Li responders relative to Li non-responders (Lowthert et al., 2012; 

Beech et al., 2013). Interestingly, module M3 was significantly enriched for BCL-2 family 
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proteins (P=2.8E-03), which included both pro-apoptotic members (e.g. BAD, BAX, 

BAK1, BMF) and anti-apoptotic (e.g. BCL2L1 and MCL1) proteins members. Further, 

regulatory effects of Li on apoptosis-controlling proteins occur in both the mitochondria 

and the ER, while ER stress is known to result in apoptosis (Ghribi et al., 2002; Yeste et 

al., 2006; Hiroi et al., 2005), supporting the identification of a module up-regulated by Li 

implicating response to ER stress (M12: 157 genes). Indeed, impairment of ER function 

has also been linked to the neuropathology of a variety of neurodegenerative diseases 

that involve neuronal apoptosis, such as cerebral ischemia and Alzheimer’s disease 

(Mattson et al., 2001; Sherman & Goldberg, 2001; Paschen, 2003). Additionally, the up-

regulated modules involved in immune response (M2: 45 genes) and defense response 

to virus (M7: 192 genes) following Li treatment provide further support for genes 

underlying cell proliferation and immune response. These findings may point to specific 

pathways via which Li acts to produce granulocytosis and lymphopenia while activating 

both phagocytic cells and lymphocytes (Lenox et al., 2003).  

 

8.4.2. Gene Networks Repressed by Lithium Treatment  
 

The identification of Li repressed gene modules include the down-regulation of two 

modules specific to protein targeting to the ER (M5: 313 genes) and translational 

initiation (M22: 188 genes), which may reflect the mechanism by which Li affects protein 

synthesis, reducing translation. This is consistent with previous reports indicating Li’s 

effect in lowering the protein translation. Indeed, Li can promote proteasome-mediated 

degradation (Jing et al., 2013) and influence components of the translational machinery 

(Bosetti et al., 2002; Karyo et al., 2010) consequently interfering with protein turnover 

and thus affecting neurological function. However, in this context it has been proposed 

that Li may have therapeutic benefits for neurodegenerative disorders that are caused by 

over-expression of proteins (e.g. alpha-synuclein in Parkinson’s disease). Further, we 

observed the down-regulation of a module, which was unable to be functionally 

annotated (M11: 156 genes). However, top hub genes for this module included K(lysine) 

acetyltransferase 2A (KAT2A), known to regulate hippocampal gene expression linked to 

memory formation (Stilling et a., 2014) as well as FK506 binding protein (FKBP5), 

involved in regulating glucocorticoid receptor sensitivity (Semba et al., 2000). 

Hyperactivity of the stress hormone system that is consistently found in chronically 
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depressed and manic patients may be linked to an impaired negative feedback 

regulation of the HPA axis through the glucocorticoid receptor (Semba et al., 2000). 

Protein kinase 3 (PKC3), also representing a down-regulated hub gene, is implicated in 

the regulation of neurotransmitter release, neuron excitability and long-term changes in 

PCK-regulated protein function (Manji et al., 1994). An important cofactor for PKC is 

phosphatidylserine (PS) (Vance & Steenbergen, 2005), which was found in a module 

(M17: 17 genes) consistently up-regulated in BD patients relative to healthy controls in 

both vehicle and Li treatments. The exposure of PS on the outside surface of cells is 

widely believed to play a key role in the removal of apoptotic cells (Vance & 

Steenbergen, 2005).  

 

8.4.3. Lithium and Clonidine Treatment: A Shared Mechanism of Action 
 

The interrogation of DSigDB with a signature query composed of our Li gene expression 

signature revealed that clonidine treatment elicits the most similar effects of up- and 

down-regulated gene expression as the effects of Li identified in our study (Figure 8.4). 

Clonidine, as monotherapy or adjunctive therapy, is reported to be efficacious in treating 

attention deficit hyperactivity disorder (ADHD) symptoms and anxiety disorders in 

children and adolescents with or without comorbid disorders45. Clonidine treatment has 

been attributed with improvements in inattention, impulsivity and hyperactivity (Ming et 

al., 2011; Jaselskis et al., 1992). It has been reported that that clonidine treatment, 

rather than Li, is associated with symptomatic development of hypotension and 

depression (Zubenko et al., 1984). These results suggest clonidine, and chemically 

similar compounds, as a putatively useful gene-hunting tool for elucidating mechanistic 

mood stabilizing affects in either primary or lymphoblast derived cell lines to further 

elucidate these effects in search for more verifiable biomarkers.  

 
8.4.4. Heterogeneity in Lithium Response  
 

Genes identified as being differentially regulated with Li treatment between responders 

and non-responders included genes encoding cell-cycle and nucleotide-excision repair 

(Figure 8.3). A recent report investigating interaction networks of Li and valproate (an 

alternative medication for treating BD) revealed that valproate (but not Li) induced a 
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highly enhanced recruitment of nuclear lumen processes enriched for the cell cycle, 

nucleotide excision repair and DNA replication pathways (Gupta et al., 2011). 

Conversely, our results suggest that subtle differences in these processes between Li 

responders and non-responders may explain part of the heterogeneity in clinical 

response to treatment. RAN binding protein 2 (RANBP2) in particular displayed a large 

difference in response between treatment groups and constitutes a key hub gene 

controlling a network enriched for cell cycle and related processes.   

 

8.4.5. Strengths and Limitations 
 
An obvious strength of our study is the hypothesis-free nature of genome-wide 

expression studies. Moreover, we examined mRNA expression in LCLs across 

haplotype matched BD Li responders, non-responders and healthy control donors, so 

that confounders caused by the presence of unique polymorphic DNA sequence alleles 

are unlikely to contribute to our observations. The inclusion of these three groups 

measured before and after Li treatment represents an important experimental design 

strategy in an attempt to elucidate Li’s mechanism of action and to better understand its 

therapeutic effects. While the exact and precise mechanisms of Li’s effects still remain 

clouded, we revealed several novel candidate Li responsive gene networks and 

displayed their differences across all treatment groups. Moreover, we were also able to 

confirm 48 candidate Li responsive genes (Supplementary Table 8.2), 9 genes specific 

to responders and 14 specific to non-responders (Table 8.1) found in our study which 

were also present in independent transcriptomic reports. Administration of Li 

monotherapy allowed us to rule out alternative concurrent medications affecting gene 

expression.  

 

Our exploratory study has some limitations. First, it was apparent that the general effects 

of Li on gene expression were analogous across responders, non-responders and 

healthy controls (Figure 8.2). Indeed, while 1mM exposure of Li represents a true 

clinical dosage, future studies may benefit from measuring the effects of Li on gene 

expression patterns in a dose-response manner. Second, we utilized LCLs from BD and 

healthy unrelated donors to study the transcriptional effects of therapeutic Li exposure. 

While LCLs have been instrumental in pharmacogenomics discovery due to their ability 
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to capture the natural variation of the human genome and by reducing environmental 

influences and cell type heterogeneity which may affect gene expression results 

(Wheeler & Dolan, 2012; Shim et al., 2012; Sie et al., 2009), there are limitations. One 

has to keep in mind that transcriptomic drug effects may differ in the primary cells 

compared to EBV transformed cell lines. In particular, transforming and culturing LCLs 

under laboratory conditions may not represent natural gene expression in vivo due to a 

large percentage of pauciclonality and widespread monoallelic expression (Min et al., 

2010). Moreover, comparative studies between primary B lymphocytes and LCLs on the 

same subjects have found disagreeing changes at both the gene expression and DNA 

methylation levels (Caliskan et al., 2011). Additionally, despite the ability of Li to induce 

apoptotic signalling in our study (Figure 8.3B), EBV transformation has also been 

demonstrated to alter processes of apoptosis in response to certain drugs, which should 

be considered when LCLs are used in pharmacogenomics studies (Liu, 2004). This 

should also be considered when interpreting Li-induced apoptotic signalling found in our 

LCL samples, as well as in other studies (Lowthert et al., 2012; Beech et al., 2013). 

While a model system is clearly needed, future studies using patient-derived neuronal 

cultures differentiated from induced pluripotent stem cells may represent a more 

disease-relevant cell type. Third, the results from this early exploratory study can not yet 

be used to full understand the mode of action of Li nor its therapeutic variability and 

require validation in a larger cohort of BD patients. Finally, as a result of our modest 

sample size, the statistical significance of gene expression changes is low for a genome-

wide transcriptome study. Apart from the comparison of vehicle to Li treated samples, 

cross-sectional and longitudinal contrast differential gene expression analyses revealed 

few genes passing an FDR corrected P-value of significance. As a result, we used 

varying P-value cut-offs to gather sufficient enough information for down-stream 

functional enrichment and interaction analyses. In spite of this, our exploratory approach 

was able to characterize putative direct PPI occurring within these candidate genes and 

found a network strongly enriched with physical interactions (Figure 8.6B), supporting 

these relaxed assumptions of significance.  
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8.4.6. Concluding Remarks 
 
This explorative study used RNA-Seq gene expression of LCLs derived from BD 

responders, non-responders and healthy donors to investigate the expression levels of 

genes under the influence of Li treatment compared to vehicle. Li treatment was 

associated with the induction and repression of several cellular signaling pathways. 

These pronounced gene module differences are most likely to be a consequence of Li 

treatment and represent non-therapeutic cellular reprogramming of gene expression, 

rather than representing putative pathways differing between treatment groups. 

However, focusing analysis on individual genes differing in expression between BD 

responders and non-responders following Li treatment identified differential 

dysregulation of genes encoding for cell-cycle, nucleotide-excision repair and cellular 

response to stress. The implications of the genes reported here for the etiology and 

treatment of BD should ideally be examined with the blood samples of large cohorts of 

BD patients, before and after several weeks of treatment with Li. Comparing such 

transcriptomic changes between good and poor Li responders may contribute to the 

personalized treatment of BD.  

 

Contributions. I was solely responsible for all statistical design, data analysis, data 
interpretation and writing.  
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Chapter 9 

Moving Biomarkers Forward in Psychiatry 

The preceding four chapters depict the potential for genome-wide transcriptome profiling of 

patient blood samples for biomarker discovery in psychiatry. First, the identification of blood-

based gene networks capable of characterizing PTSD risk (at pre-deployment) and PTSD 

development (at post-deployment) implicating innate immunity were replicated across two 

independent cohorts of U.S. Marines (Chapter 5). Second, identification of a selective 

regulation of NK cell cytotoxicity events and gender-specific transcriptional responses at the 

gene network level portrayed the molecular response to short-term acute psychological 

stress (Chapter 6). Third, in application to MAP, blood-based gene networks and single 

gene biomarkers implicated in ubiquitin-mediated proteasome and circadian clock 

dysfunction were identified, and results were supported by CFG evidence (Chapter 7). 

Finally, in application in BD patient derived LCLs, a putative mechanism of action for lithium 

treatment was delineated along with several surrogate markers differing in response to 

lithium between BD responders and non-responders (Chapter 8). Overall, the results from 

these applications indicate a promising role for genome-wide blood transcriptome tools for 

biomarker discovery in psychiatry spanning prognostics, diagnostics and treatment 

responses to therapeutic interventions.  

Such early developmental and exploratory blood-based biomarker research is useful as long 

as it is understood that intriguing preliminary insights may not accurately predict the eventual 

utility of the marker in clinical practice. If the putative biomarker demonstrates potential, the 

hypotheses generated in this early developmental phase should then be evaluated in a 

series of subsequent validation studies, each with increasing methodological rigor. Thus, 

building on results and insights gained from previous Chapters 5-8, it seems reasonable to 

outline a set of conditions for the further evaluation of blood-based biomarkers in patients 

with psychiatric disease. 
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9.1. Working on the Right Problem 

It is important to be clear about the population which is being accessed for discovery 

research; for which well-defined phenotype, in what clinical diagnostic group, of what 

gender, the biomarker(s) have been identified. Any error in diagnosis or other means of 

categorizing participants is a form of measurement error and can invalidate or lead to 

inconsistent results across studies. As within Chapters 5-8, when defining the target 

population, it is useful to characterise the patient’s diagnosis, stage of illness, age, gender 

and other features which are through to be relevant to the research question. In many 

instances, we were able to gather detailed clinical data (Chapter 5),  physiological 

measurements (Chapter 6) and neurocognitive data (Chapter 7) which allowed us to gleam 

as much information as possible about the target populations being tested. It further 

permitted for correlating clinical data with molecular data (e.g. Table 5.4, Figure 6.7, Figure 

7.4), accelerating new basic discoveries and the translation of research results in clinical 

practice. Long-term benefits of such multi-modal approaches may include improved 

diagnosis, reduced costs and the avoidance of jumping to premature negative and/or 

positive conclusions. 

 

On the other hand, while reducing sample heterogeneity may increase the likelihood of 

finding an effect, it may also reduce the potential generalizability of the biomarker. That is, 

fractionizing disease states into more numerous and homogenous categories, without a 

priori biological validation, could make it harder to find specific biomedical tests that might 

diagnose or predict the disorder (Kapur et al., 2012). For example, considering and 

accounting for disease-relevant co-morbidities of a target population could reduce sample 

heterogeneity. For instance, if a significant fraction of PTSD participants from Chapter 5 had 

also been diagnosed with depression, this co-morbidity information may reduce the sensitive 

of a putative classifier to generalize across the entire PTSD cohort. On the other hand, this 

information may present a useful strategy to inform between finer gradients of the illness. 

This concept also carries over to patients in Chapter 7 diagnosed with MAP, a condition 

were patients may also show symptoms of hypomania, depression or schizophrenia. 

Despite, the concept of clear categories of psychiatric disorders as long been questioned 

and a dimensional spectrum may provide a better representation of clinical reality (Helzer et 
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al., 2006).  

9.2. The Right Measure of Statistical Significance and 

Effect Size  

A recurring theme in Chapters 5-8 is the execution and interpretation of a measure of 

statistical significance between cases and controls based on clinical, molecular and/or 

neurocognitive data. Thus, it could be thought that strong statistical significance indicates 

high clinical utility, since any putative biomarker of clinical interest must demonstrate a 

strong degree of significance. However, many biological findings in psychiatry are of only 

small or moderate effect size, even though many of them meet the “P < 0.05” test of 

statistical significance. It has been argued that most initial reports are statistically significant 

but of small-effect size and have never been substantiated (Ioannidis, 2005); in findings 

which have been replicated, effect sizes are often lower than originally thought (Ioannidis, 

2008). Given that efforts to replicate an initial finding usually involve a different clinical 

setting, a different participant selection and slightly different methods, the chance of 

replication after an original finding with a P < 0.05 is often low (Cumming, 2008; Miller, 

2009). Most studies in the field of molecular psychiatry tend to be underpowered in statistical 

terms (Rothpearl et al., 1981; Allen et al., 2009). Similarly, despite measures of statistical 

significance, sample numbers from the exploratory investigations in Chapters 5-8 are also 

underpowered, and results should be interpreted cautiously. 

This problem is analogous with that of ‘approximate’ replications of candidate findings 

(Maxwell, 2004). An initial underpowered study is often followed by another study of a 

similar size but with some additional measures and variables to give it some novelty and 

distinction. These subsequent studies usually have only modest statistical power to 

definitively confirm or refute the original findings, but have sufficient new measures to 

generate another significant finding – even though not precisely the one observed in the first 

study. For example, decades of research have attempted to better understand the 

mechanism of action of Li (as in Chapter 8). Analogous to our study (Chapter 8), a recent 

study profiled the transcriptome of LCLs derived from BD patients classified as responders 

and non-responders (Hunsberger et al., 2015). However, our results were distinct due to the 
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inclusion of healthy control patients and comparing drug treatments with similar mechanism 

of action of Li using public databases. However, there can also be advantages to 

‘approximate’ replications and repeated studies. In this case, we were able to cross-

reference our results with this previous independent study to further refine large candidate 

gene-lists (e.g. Table 8.1).  

9.3.  Making the Right Comparisons  

Another methodological issue is the inability to transfer a putative biomarker into clinical 

practice, when it was derived from making an extreme-type of comparison. Studies in 

biological psychiatry often assess the utility of a biomarker in a cohort with a uniform 

diagnosis by comparing it to healthy controls with no psychiatric or neurological history. 

While this approach is useful for detecting an effect or a relationship, a diagnostic test 

validated in this manner may be impractical when the time comes to apply it in wider clinical 

samples. Experimental designs implemented in Chapter 7 and Chapter 8 accounted for 

extreme-type of comparisons to some extent. For example, Chapter 7 included two-levels of 

biological controls for the identification of MAP biomarkers: healthy control and MA patients. 

Similarly, Chapter 8 also contained two-levels of controls for determining genes specific to 

BD Li responders; healthy controls and BD Li non-responder patients. This level of 

information provides further disease-related sensitivity and specificity, which could renderer 

the biomarker able to discriminate between lesser degrees of illness in the general patient 

population. Studies that fail to provide a description of their population or the test examined 

most likely lead to inflated estimates of accuracy.  

9.4. Using the Right Approach 
 

9.4.1. Experimental Designs 
 

Prospective cohort studies in which individuals begin free of the outcome at baseline and 

followed longitudinally, are most useful in studies of prognostic markers. Again, a primary 

example of such an experimental design is found in Chapter 5. By profiling paired blood 

samples of U.S. Marines both before and after exposure to conflict zones we were able to 

identify prognostic signatures (Figure 5.3, Figure 5.11) capable of predicting the eventual 
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development of PTSD at pre-deployment. Prospective study designs can also be used to 

better understand the physiological responses to disease, and when followed over extended 

periods of time may permit for discovery of disease biomarkers that are associated with 

disease screening and staging. However, repeated measures on the same group over 

extended periods can be costly and difficult. In such cases, special attention needs to be 

focused on reducing technical variation from initial venesection to RNA preparation and 

sequencing, as these steps could involve differing reagents across different dates and sites. 

When appropriate, short-term longitudinal studies, as in Chapter 7, may alleviate technical 

variation observed in longer-term studies. By contrast, retrospective cohort studies select 

patients based on previously recorded exposures (or measurements) and assess outcomes 

in the present. The case-control study can be a retrospective study design where the 

recruitment starting point for cases is the current presence of a desired outcome. These 

studies are frequently used to assess biomarkers as diagnostic tests, and are often are 

unable to provide information regarding causality. For example, the cross-sectional study 

design in Chapter 7 permitted for the identification of candidate blood biomarkers and gene 

networks of MAP that represent diagnostic markers, and causality was unable to be 

determined.  

 

9.4.2. Alternative Next Generation Sequencing Technologies 

 

Another aspect of the right approach for biomarker discovery is determining which 

biological/neurobiological entity deserves measuring. All of the primary research performed 

in the context of this thesis (Chapters 5-8) was done at the transcriptome level, however 

optimization of alternative technologies may also provide favorable biomarkers for 

psychiatric diseases. For example, a bottom-up approach to understanding and treating 

mental disorders could begin at the DNA level and the associated genetics. Genome-wide 

association studies (GWAS) and copy number variation (CNV) analysis usually contrast the 

frequencies of genetic variants between cases and controls for a large set of genetic 

markers (usually 500K-1M) distributed across the genome. A genetic contribution to 

psychiatric disorders has been established from both clinical (Kendler & Gardner, 1997) and 

epidemiological (Lichtenstein et al., 2010) studies, showing increased risk of disorders in 
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relatives of affected individuals. Moreover, patterns of epigenetic modifications (e.g. DNA 

methylation) serve as epigenetic biomarkers to represent gene activity and expression as 

well as chromatin state (Heinkoff et al., 1997). Similar to the transcriptome, the epigenome is 

more dynamic than its DNA sequence, and may be altered environment, stochastic events 

and genetic background (Weaver et al., 2004). Whole-genome bisulfite sequencing and 

methylation-based arrays have revealed DNA methylation patterns implicated in various 

neural processes, from learning and memory to seizures and neurogenesis, and to suicide 

(Labonte et al., 2012), depression (Perroud et al, 2011) and chronic stress (Tyrka et al, 

2012). Furthermore, several additional advances in mass spectrometry are giving promise to 

genome-wide proteome and metabolome profiling. Pineaar and collogues (2008), portray 

‘neuroproteomics’ as an emerging tool to establish disease-associated protein profiles, while 

also generating a greater understanding as to how these proteins interact at the post-

translational level. Metabolome profiling aims to quantitatively measure all small molecule 

metabolites found within a cell and use this information to understand the response to 

pathophysiological stimuli or genetic modification. Advantages of metabolomics include the 

relatively small number of biomarkers (~2,500-3,000) to be profiled, which is cost-effective. 

Overall, it remains unclear as to which NGS approach may provide the most favorable 

outcomes for biomarker discovery. Metabolomics might be more direct (albeit more limited) 

than proteomics, which in turn, if used in an unbiased discovery fashion, may be more 

powerful than gene expression, which in turn is more powerful than genetics, as thousands 

of single-nucleotide polymorphisms can converge in the regulation of expression of a gene.  

 

Future studies may also consider optimizing transcriptomic procedures in order to measure 

the entire landscape of RNA species. For example, based on the significant dysregulation of 

genes encoded for RNA degradation and ubiquitin-mediated proteolysis in the context of 

MAP (Chapter 7), future studies of MAP may benefit by investigating the miRNA fraction of 

the transcriptome. Such an approach could identify candidate miRNAs responsible for 

directing mRNAs towards a pathway of degradation.  
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9.4.3. Neuroimaging  

 

Many forms of neuroimaging have the potential to be used as biomarkers in psychiatric 

illness. Positron emission tomography (PET) can be used to (i) characterize resting-state 

metabolic signatures; or (ii) to measure the density of neurotransmitter receptors or 

transporters for which a radioligand exists. Magnetic resonance imaging (MRI) can be used 

to measure: (i) subcortical brain structural volumes (sMRI) as in Chapter 7; (ii) white matter 

integrity and density [diffusion tensor imaging (DTI)]; or (iii) functional metabolic activity 

patterns (fMRI), either in the resting state or in response to a certain challenge or task. fMRI 

patterns reflect states of brain metabolic activity (Mayberg, 2014). Greater metabolic activity 

in a brain region is accompanied by increases in blood flow, which is detected as alterations 

within the magnetic field of the MRI scanner. Furthermore, fMRI may be used to examine 

activity in single brain regions or in coordinated temporal patterns of activity across multiple 

regions (functional connectivity MRI [fcMRI] (Fox et al., 2007)). Although neuroimaging 

methods have yielded important research findings about psychiatric disorders, the routine 

use of these methods is not yet justifiable in the diagnostic evaluation of individual patients 

(First et al., 2012). Future avenues of research may benefit by combining blood-based 

measurements with brain-based measurements, as in Chapter 7. In this context we were 

able to identify candidate blood-based predictors of brain function and permit for mechanistic 

implications to be made based purely on blood-based gene dysregulation. Building off of this 

work, measuring the entire transcriptome (e.g. mRNAs, miRNAs, lncRNAs etc…) and 

several brain-based measurements (e.g. sMRI, fRMI, DTI etc…) may provide a useful 

strategy for identifying blood-based predictors of brain structure, function and/or chemistry.  

 

9.4.4. Integrating Panels of Bio-signatures  

 

As psychiatric disorders are complex illnesses, it could be argued that it is unlikely that any 

single biomarker could accurately predict outcomes in individual patients. Rather, a 

combination or an integrated panel of the biomarkers could provide sufficient information 

(Schunemann et al., 2008), as mentioned above when considering blood predictors of brain 

status. Similar to what was achieved in Chapter 7, a range of potential ‘readouts’ could be 

combined, including biochemical, cognitive, electrophysiological, genetic and neuroimaging 
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markers. However, some important factors should be taken into account when considering 

the generation of such ‘multi-marker’ tests based on the use of a composite of several 

biomarkers (measured in parallel) for predicting disease risk and patient outcomes. One 

factors is ‘multi-collinearity’, or the inherent correlation between biomarkers which track the 

same process in one individual. If the correlation between two markers is very high, then 

measuring one of them is sufficient to capture an event. Another factor is ascertaining the 

incremental utility of adding a new biomarker to a panel; at some point, including and  

measuring additional factors will not improve diagnosis accuracy or change patient 

management or clinical outcome. 

 

9.4.5. Systems-level Diversity 

 

It does not inevitably follow that a biological tests for psychiatric illnesses would provide the 

most informative or effective methods for identifying them. If we consider a biological root of 

disease, we have to consider the complexity of a system and that genes, pathways, cells, 

and neuronal circuits have to work via dozens of mechanistic levels. For gene expression 

studies, co-expression network analysis (as performed in Chapters 5-8) leverages the fact 

that gene expression reflects the stat of the cellular or tissue system that is being analysed. 

It is also unlikely that a single biological alteration will have a dominant one-to-one mapping 

with a DSM- or ICD-defined mental disorder. Most psychiatric diseases are likely to be 

associated with perturbations in complex neurobiological networks spanning a hierarchy of 

different molecular levels (genome, epigenome, transcriptome, proteome). An alternative 

explanation for why biological psychiatry findings have proven difficult to reproduce and 

hence to translate into novel therapies is because the complexity of the system being 

measured has been under-appreciated. Complex systems, such as the human immune 

system, are generally democratized into their individual parts in biomedical research to allow 

for a more detailed understanding of limited aspects of the system and to describe 

mechanistic detail (Brodin, 2013).  

 

9.4.6. Statistical Design 

 

Choice of the appropriate statistical tests for analysis of biomarkers depends on the purpose 
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of the study, as well as the variables under examination. For transcriptome-based studies, 

while it appears that the identification of biomarkers may be accomplished by gene network 

approaches (Chapters 5-8) and machine-learning approaches (Chapters 5&7), it remains 

uncertain which approach provides the most favorable translational avenues. Statistical 

approaches that consider system complexity (e.g. WGCNA) are particularly useful in 

providing comprehensive characterizations of the molecular factors in a given disease state 

and for multi-scale data integration, and are statistically robust in terms of reproducibility 

(Langfelder & Horvath, 2008). Machine-learning applications, while often fit-to-cohort, rank 

genes by importance producing a unique predictive or diagnostic panel of biomarkers 

(Simon et al., 2007). Machine-learning applications are unable to provide a systems-level 

picture of molecular mechanisms underpinning disease pathology, but they represent a 

useful step forward in the construction and validation of a multi-marker signature (i.e. 

biosignatures) for psychiatric illness. It would be useful for future studies to provide 

comprehensive empirical evaluations of novel data. As data is passed through these various 

tools (i.e. gene networks, differential expression, machine-learning) it may also be useful to 

establish a user-friendly interface capable of storing each set of results in a simple and 

retrievable format. This would ensure that each independent study uses the same, yet 

diverse, sets of methodologies and that the subsequent results are formatted in a manner 

that allow for quick cross-referencing. The convergent functional genomic (CFG) approach, 

as in Chapter 7, represents a positive interim step in this direction. For example, the CFG 

approach permitted for identifying relevant blood-based biomarkers of MAP which had been 

validated in independent genetic and genomic reports of psychosis and schizophrenia.  

9.5. Demonstrating Reproducibility in the Right Way 

 

If a biomarker(s) appear(s) to be linked to an outcome of interest, technical details and 

feasibility are commonly assessed during the developmental and exploratory phases. 

Research at this stage can be useful as long as it is understood that it does not accurately 

reflect the usefulness of the marker in clinical practice. If the putative biomarker 

demonstrates potential, the hypotheses generated in this early developmental phase should 

be evaluated in a series of succeeding rigorous validation studies. Subsequently, external 

validation of the a priori selected biomarker(s) in a completely independent cohort is a 
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requirement before making any sustainable claims. Various strategies for achieving 

reproducibility have been performed in the context of this thesis; the CFG approach (Chapter 

7) and cross-referencing results with previous studies (Chapter 8). Perhaps the most 

straightforward interpretation of biomarker reproducibility was achieved using supervised 

multivariate machine-learning methods to develop a prognostic classifier on a training-set 

(Dataset 1) and cross-validating prediction accuracies using a completely independent test-

set (Dataset 2) as in Chapter 5. In this context, if a PTSD a biomarker demonstrates 

adequate sensitivity, specificity and predictive value in the validation stage (as through 

machine-learning approaches), its usefulness in practice can then be assessed; ideally 

within a randomized controlled trial where a group of patients is randomized to either 

undergo the biomarker test or not, and its effect on diagnostic or prognostic outcomes and 

patient and societal implications are assessed.  

To accelerate reproducible biomarker signatures across independent cohorts, international 

research efforts collecting biological samples across independent cohorts sent for joint 

technical processing may bypass technical biases. Since the sample sizes needed for 

discovery and replication are beyond the reach of single groups, multiple consortia have 

emerged to foster scientific discovery. A good example of this are the ongoing research 

efforts of the Psychiatric Genomic Consortium (PGC) comprised of approximately 300 

investigators and more than 75,000 patients with GWAS data under analysis (PGC, 2009). 

 

9.6. The Right Use of Biomarkers 

 
When deciding on whether or not to use a biomarker test, it is important to consider whether 

the patient will be better off having had the test than they would be if they had not undergone 

it. This requires consideration of whether the sample and setting in which the biomarker has 

been tested is sufficiently similar to the situation of interest in the clinic to justify applying it. If 

the test is unlikely to apply to your patient, it is not worth performing. Alternatively, if the 

prognostic or diagnostic test is associated with a mental illness currently lacking solid 

evidence-based treatments, the test may be unfit. Outcomes such as quality of life and 

peace of mind of the patient should also be considered. Unfortunately, the quality and type 

of data required to make decisions based on biomarker tests is often not available for most, 
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if not all, psychiatric biomarkers. Demonstrating that the biomarkers have predictive ability 

for future clinical course is necessary for the field before adopting and incorporating them 

into clinical practice. 

 

9.7. Summary 

 
Naturally, as evidence evolves, any biomarker strategy will evolve accordingly. The delay of 

accurate and objective biomarker tests in psychiatry is expected given a later start than in 

other areas of medicine, the inherent neurobiological complexity, and the changing nature of 

psychiatric nosology. Optimistically, the opportunity allowed by the substantial progress in 

NGS and neuroimaging combined with advances in computer science, mathematics and 

systems-biology are unprecedented and may deliver useful clinical tests in the not too 

distant future. These tests could identify homogenous populations for whom targeted new 

therapeutics could be developed, thereby realizing a vision of a new stratified or 

personalized practice in psychiatry to either replace or supplement current diagnostic 

criteria. 
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Appendix A Supplementary Data 

A.1. Supplementary Data for Chapter 5 

 
Supplementary Figure 5.1. Combat adjustment controlling for technical variation in Dataset 1 (red) and Dataset 
2 (black). Filtered and normalized data are visualized by boxplot and histogram both (a & b) before and (c & d) 
after the adjustment and merging of data distributions.  



246 

Supplementary Table 5.1. Characterization of Pre-Deployment Modules in Dataset 1 

 

Characterisation of Pre-Deployment Modules in Dataset 1�

Module�Genes (n):�
Top Significant

Biological Process�
Top Significant

 Pathway�
Top Significant 

Cell-Type�
         Significant ME Correlations

     Condition or Trait          (r-value, p-value)�

1� 488�
Intracellular 

Signalling Cascade� Signalling by Rho GTPase� CD14+ Monocytes�
Caucasian Eth.

 CAPSBs�
(0.22, 0.03)
(-0.22, 0.04)�

M2A�
245

(*177)� Response to Virus� Interferon Signalling� CD14+ Monocytes� PTSD risk� (0.21, 0.002)�
3� 555� Transcription� mRNA 3'-end processing� CD8+ T cells� Caucasian� (-0.24, 0.02)�
4� 132� B cell activation� Collagen biosynthesis� CD19+ B cells� -� -�
5� 65� -� -� CD8+ T cells� -� -�

6
�

51�
�

Defense Response
 to Bacterium

�

Activation of 
Matrix Metalloproteinase

�
-
�

Audit Combined
 BMI

WC adj
Asian Eth.�

(0.29, 0.005)
(0.25, 0.01)
(0.26,.01)

(-0.22, 0.03)�
7� 70� -� -� -� -� -�
8� 58� -� RAF Activation� CD33+ Myeloid� -� -�

9
�

277
�

Regulation of Natural Killer 
Cell Mediated Cytotoxicity

�

Natural Killer 
cell mediated cytotoxicity

�
CD56+ NK cells

�

Tobacco
Caucasian Eth. 

American Mexican Eth. 
CAPsBs�

(-0.25, 0.01)
(-0.34, 8E-04)
(0.28,0.007)
(0.22, 0.04)�

10� 238�
Negative regulation of 

cellular protein metabolic process� Regulation of Apoptosis� 721 B lymphoblasts� CAPsBs� (0.29, 0.004)�
11� 92� -� -� -� Audit Combined� (0.23, 0.03)�
12� 187� RNA processing� -� -� -� -�

13
�

73
�

M Phase
�

Cell Cycle
�

(Blood Platelets)
CD71+ Early Eythroid

�

Caucasian Eth. 
African American Eth.

CAPsBs�

(-0.22, 0.03)
(0.2,0.05)

(0.26,0.01)�

14
�

163
�

-�
�

-�
�

-
�

CAPs_tots
CAPsBs
CAPsDs�

(-0.2, 0.0)
( -0.22, 0.04)
(-0.22, 0.03)�

15� 163� Transcription�
Activation of AP-1 family 
of transcription factors� -� American Mexican Eth.� (0.2, 0.05)�

16� 156� Blood Coagulation� Platelet Degranulation�
(Blood Platelets)

CD71+ Early Eythroid� -� -�
17� 270� Translation Elongation� Eukaryotic Translation Termination� CD4+ T cells� African American Eth.� (0.21, 0.05)�
18� 139� NA� -� CD4+ T cells� -� -�

19� 145� Protein Transport�
Signalling by TGF-beta 

Receptor Complex in Cancer� -� CAPsBs� (-0.24, 0.02)�

20� 741�
Intracellular 

Signalling Cascade� Signalling by Interleukins�  CD33+ Myeloid� -� -�

21� 334� Endocytosis�
MHC Class II 

antigen presentation� CD14+ Monocytes�
Caucasian Eth.

African American Eth.�
(0.22, 0.03)
(-0.22, 0.04)�
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Supplementary Table 5.2. Characterization of Post-Deployment Modules in Dataset 2 

 

Characterisation of Post-Deployment Modules Dataset 2�

Module� Genes (n):�
Top Significant

Biological Process�
Top Significant

 Pathway�
Top Significant 

Cell-Type�
    Significant ME Correlations 

Condition or Trait  (r-value, p-value)�

1� 187� Cell adhesion� Collagen formation� -�

Age
CES
BPE�

(-0.28, 0.05)
(-0.29, 0.05)

(-0.56, 3E-05)�

2
�

861
�

Protein transport
�

Membrane trafficking
�

CD33+ Myeloid
�

Age
CES
BPE�

(0.42, 0.003)
(0.34, 0.02)

(0.54, 8E-05)�

M3A
�

83
(*13)�

Response to virus
�

Interferon signalling
�

CD14+ Monocytes
�

CAPs
PCL
BPE�

(0.32, 0.03)
(0.33, 0.02)
(0.4, 0.004)�

4� 766�
Intracellular 

signalling cascade� Attenuation phase� CD33+ Myeloid� BPE� (0.49, 5E-04)�

5� 294� Chromatin modification� -� CD8+ T cells�

Age
CES
BPE�

(0.28, 0.05)
(0.29, 0.05)

(0.57, 2E-05)�

6� 230�
regulation of 

gene expression� --� CD4+ T cells�

Age
CES
BPE�

(0.42, 0.003)
(0.34, 0.02)

(0.54, 2E-05)�

7
�

2243
�

rNA processing
�

Mitochondrial 
translation initiation�

721 B lymphoblast
�

Age
CES
BPE�

(0.36, 0.01)
(0.32, 0.02)

(0.57, 3E-05)�

8� 362� Cell adhesion�
Degradation of the
 extracellular matrix� -�

Age
BPE�

(-0.4, 0.005)
(-0.45, 0.001)�



248 

Supplementary Table 5.3. Characterization of Pre-Deployment Modules in Dataset 2

 

Characterisation Pre-Deployment Modules Dataset 2�

Module�Genes (n):�
Top Significant

Biological Process�
Top Significant 

Pathway�
Top Significant 

Cell-Type�
      Significant ME Correlations

Condition or Trait  (r-value, p-value)�
1� 658� RNA processing� Gene expression (generic)� CD8+ T Cells� CAPS� (0.3, 0.04)�

2� 800� Protein transport� -� CD56+ NK Cells�
CAPS
PCL�

(0.32, 0.03)
(0.36, 0.01)�

3� 209� Cell adhesion� Collagen degradation� NA�
CAPS
PCL�

(-0.43, 0.003)
(-0.35, 0.01)�

M4A�
82

(*49)� Immune response� Interferon signalling� CD14+ Monocytes�
PTSD Risk Group

CAPS�
(0.36, 0.01)

(0.43, 0.002)�

5� 121� T cell activation�
Repression of WNT target 

genes� CD8+ T cells� -� -�
6� 70� Blood coagulation� Hemostasis� -� -� -�
7� 135� Transcription� -� CD4+ T cells� -� -�
8� 101� Cell adhesion� -� -� -� -�

9� 1020�
Intracellular 

signalling cascade� Signalling by interluekins� CD14+ Monocytes�
PCL

Caucasian�
(0.32, 0.02)
(0.31, 0.03)�

10� 218� Aerobic respiration� Citric acid cycle� -� -� -�
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Supplementary Table 5.4. Diagnostic PTSD 45 Gene 
Expression Classifier at Post-Deployment 

Gene 
Symbol 

Parametric 
p-value 

Log Fold-
change 

 

% CV 
support 

CCDC134 0.0431 0.93 55 
NDFIP1 0.0236 1.06 57 
EXOC5 0.0248 0.94 62 

NOTCH4 0.0054 0.89 63 
EHD3 0.0274 1.12 63 
MBD5 0.0047 0.93 69 

OTUD6B 0.0311 0.93 71 
CLEC12B 0.0148 0.76 74 
CD300A 0.0137 0.9 77 

POLR2J2 0.0357 0.81 79 
NUDT1 0.0266 1.07 80 

NGFRAP1 0.0033 1.16 80 
VAMP5 0.0169 0.9 82 
COQ2 0.0207 0.93 82 

METTL21B 0.0232 1.13 83 
GIPC3 0.0005 1.23 83 

POLR2I 0.0207 1.09 84 
C2orf49 0.0044 0.92 89 

SLC35B3 0.0024 0.93 90 
TSPAN4 0.0343 1.11 90 
ZNF347 0.0332 1.1 90 
TM2D2 0.0485 0.93 91 

PSMD10 0.0276 0.94 95 
PAXIP1 0.0316 0.94 95 
MAP7 0.0529 1.12 96 
PDK1 0.044 1.07 96 

DHX32 0.011 1.1 96 
NUDT7 0.0218 1.15 97 

TRAPPC4 0.0481 0.92 98 
AHI1 0.0542 0.87 98 

PPP2R2D 0.044 1.06 98 
MYBL2 0.0222 1.26 98 
S1PR2 0.0179 1.07 98 
LEPR 0.0021 1.15 98 

TMEM45B 0.0061 0.77 100 
RSRC1 0.014 0.92 100 
BFAR 0.0164 0.93 100 

EFCAB4A 0.0293 1.2 100 
ATP9A 0.0285 1.18 100 
ZNF738 0.0212 1.08 100 
SNX15 0.0185 1.06 100 
TRPM3 0.0096 1.11 100 
KCNN4 0.0064 1.15 100 
COPS3 0.0057 1.11 100 
HPCAL4 0.0007 1.31 100 

Abbreviations: CV, cross-validation. 
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Supplementary Table 5.5. Predictive PTSD 85 Gene 
Expression Classifier at Pre-Deployment 
Gene Symbol Parametric  

p-value 
Log Fold-
change 

% CV  
support 

SFXN4 0.0115 0.9 43 
H2AFX 0.0217 1.08 43 

RETSAT 0.0309 1.06 44 
ISG15 0.0009 0.69 57 

DYNC1H1 0.0389 1.07 59 
IRF7 0.0232 0.88 62 

NOD2 0.0036 0.84 64 
UACA 0.011 0.86 64 

TMEM60 0.0414 0.93 64 
SOX12 0.0202 1.1 64 

METTL21B 0.0129 1.15 67 
RBM43 0.0079 0.89 68 
ALKBH5 0.0378 1.05 69 

ZKSCAN5 0.0101 0.94 70 
SIGLEC16 0.029 0.87 72 

HARBI1 0.0207 0.92 74 
TFB2M 0.0481 0.93 74 
ZNF100 0.0503 0.9 74 

LOC338799 0.0357 1.08 74 
RAB39A 0.0277 0.88 76 
PAOX 0.0118 1.1 77 
COX18 0.0314 0.95 81 
VPS13D 0.0265 1.06 81 
LCN10 0.0184 1.19 82 

PDZD11 0.0067 0.92 83 
ZNF595 0.0041 1.22 85 

TTF2 0.0104 0.92 86 
TADA2A 0.0186 0.92 86 
RPP14 0.0161 0.92 87 

EFCAB4A 0.0057 1.21 87 
TSFM 0.0105 0.94 88 

C11orf95 0.0475 1.08 88 
TUFM 0.0083 1.08 88 

DPAGT1 0.0222 0.93 89 
AHI1 0.0544 0.87 89 

CLEC12A 0.011 0.73 93 
ITM2A 0.014 1.16 93 
FMNL2 0.0016 0.83 95 
SGSM1 0.018 1.09 95 
INTS4 0.0178 0.93 96 

GTF2H5 0.0199 0.93 96 
UBR4 0.0042 1.08 96 
FPR3 0.0128 0.79 96 

KIAA1279 0.0063 0.92 97 
HMGN4 0.0204 0.94 97 
ACYP1 0.0298 1.09 97 
HIPK2 0.0111 1.08 97 

Supplementary Table 5.5. Continued… 
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AMFR 0.002 1.1 97 
ENPP2 0.0036 0.85 98 

FRMD4B 0.0064 0.88 98 
IFT52 0.0149 0.92 98 

TMEM45B 0.0463 0.83 98 
CECR1 0.0497 0.91 98 
LTBP2 0.018 1.1 98 

ZNF273 0.0112 1.06 98 
XRCC2 0.0241 0.92 99 
MYH7B 0.0331 0.92 99 
INSIG1 0.0364 0.93 99 

PMS2P1 0.0476 0.93 99 
AGAP4 0.0529 1.36 99 

FAM19A2 0.0499 1.21 99 
COPS3 0.0439 1.07 99 
TWSG1 0.0363 1.07 99 

FAM86C1 0.0071 1.14 99 
EHHADH 0.0007 0.84 100 
PCBD1 0.0012 0.87 100 
NOP16 0.0043 0.92 100 

SLC35E2 0.008 0.85 100 
ZNF584 0.0109 0.92 100 

TNFSF12 0.0165 0.61 100 
ZNF485 0.0186 0.92 100 
TAGLN 0.0188 0.82 100 

FAM86DP 0.0261 0.89 100 
CRYBB2P1 0.0292 0.94 100 

MTHFD2 0.0345 0.92 100 
CD86 0.0377 0.89 100 

COL8A2 0.0432 0.88 100 
PEX10 0.0434 0.93 100 
MLF1IP 0.0456 0.89 100 
LEPR 0.0415 1.1 100 
PDCL 0.0374 1.08 100 

CEP192 0.0304 1.1 100 
WASH3P 0.0107 1.13 100 
FGFR1 0.0089 1.15 100 

HPCAL4 0.0007 1.28 100 
Abbreviations: CV, cross-validation. 
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Supplementary Figure 5.2. Heatmaps representation of the 51 overlapping genes from module M1A, M2A, 
M3A, and M4A. Heatmaps are divided into four main parts. Dataset 1 modules (a), M1A on the top row and M2A 
on the bottom row, are split into PTSD cases (left column) and controls (right column). Dataset 2 modules (b), 
M3A on the top row and M4A on the bottom row, are split into PTSD cases (left column) and controls (right 
column). All subjects have been sorted in an identical fashion in order to properly visualize differences in 
expression as occurring within each individual sample across the two time-points (i.e. Subject 1 post-deployment 
is directly above Subject 1 pre-deployment). Red represents over-expression, green represents under-
expression and black represents the mean.  
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Supplementary Figure 5.3. Venn Diagram (a) depicting significant overlap in hemostasis and blood coagulation 
genes belonging to modules M1B post-deployment and Module 16 pre-deployment in Dataset 1 as well as 
modules Module X post-deployment and Module 6 pre-deployment in Dataset 2. The overlap identified 46 genes 
found across all four analyses which are displayed in table format (b)  along with the corresponding kME rank 
(i.e. rank of connectivity) for each gene within a particular module. Higher rank indicates hub gene status, the top 
10 genes for each module are in bold. Heatmaps representing these 46 genes are shown across both datasets 
and are divided into four main parts. Dataset 1 modules (c), M1B on the top row and Module 16 on the bottom 
row, are split into PTSD cases (left column) and controls (right column). Dataset 2 modules (d), Module X on the 
top row and Module 6 on the bottom row, are split into PTSD cases (left column) and controls (right column). All 
subjects have been sorted in an identical fashion in order to properly visualize differences in expression as 
occurring within each individual sample across the two time-points (i.e. Subject 1 post-deployment is directly 
above Subject 1 pre-deployment). Red represents over-expression, green represents under-expression and 
black represents the mean according to the scale bar.  
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A.2    Supplementary Data for Chapter 6 

Supplementary Table 6.2. A comprehensive functional characterization for all identified WGCNA 
modules 

Supplementary Table 6.1A. Physiological and hormonal measurements of all participants. (average + standard deviation)
Baseline Pre-Boarding Post-Landing One-Hour Post-Landing

Pooled Male Female Pooled Male Female Pooled Male Female Pooled Male Female
Subjects n: 10 5 5 11 6 5 13 7 6 11 5 6
Age 23.1 + 4.61 24.6 + 5.98 21.6 + 2.51 22.27 + 4.45 23.17 + 2.77 21.2 + 2.77 22.31 + 4.42 23 + 5.26 21.2 + 2.77 21.09 + 2.63 21.2 + 3.03 21 + 2.53
BMI 22.86 + 1.18 23 + 1.13 22.72 + 1.35 24.17 + 3.99 25.62 + 2.51 22.44 + 2.51 23.18 + 1.97 23.65 + 1.55 22.44 + 2.51 23.23 + 2.09 23.94 + 1.78 22.63 + 2.3
Weight 149.68 + 14.73 158.68 + 14.92 140.68 + 7.94 159.05 + 25.45 177 + 18.15 137.52 + 18.15 152.81 + 18.32 162.36 + 10.77 137.52 + 18.15 153.11 + 23.61 170.92 + 18.26 138.27 + 16.34
Height 5.66 + 0.27 5.72 + 0.37 5.6 + 0.12 5.66 + 0.39 5.75 + 0.18 5.56 + 0.18 5.63 + 0.31 5.68 + 0.38 5.56 + 0.18 5.66 + 0.32 5.8 + 0.43 5.55 + 0.16
TraitAnxiety 8.5 + 1.96 9 + 2.55 8 + 1.22 8.82 + 2.86 8.17 + 3.21 9.6 + 3.21 10.46 + 3.57 10.88 + 4.29 9.8 + 2.28 7.64 + 2.42 6.2 + 0.45 8.83 + 2.79
HeartRate 73.23 + 10.45 64.94 + 7.41 81.51 + 4.1 88.17 + 9.38 85.17 + 8.48 90.57 + 8.48 108.66 + 18.08 106.06 + 10.05 111.78 + 25.85 77.81 + 9.68 76.82 + 6.68 78.61 + 12.33
Cortisol 14.65 + 7.55 13.91 + 7.47 15.39 + 8.42 13.61 + 4.93 11.28 + 6.09 16.4 + 6.09 18.24 + 7.62 16.93 + 5.25 20.86 + 11.61 13.24 + 9.2 12.46 + 10.14 14.01 + 9.29
Testosterone 254.5 + 240.93 477.2 + 80.17 31.8 + 13.68 281.45 + 247.68 490.5 + 10.76 30.6 + 10.76 316.77 + 239.39 494 + 69.74 33.2 + 8.53 219.91 + 224.58 446 + 93.99 31.5 + 9.38
BetaEndorphin 12.84 + 5.38 15.52 + 5.19 10.16 + 4.52 12.41 + 4.41 14.39 + 0.93 10.03 + 0.93 17.34 + 6.19 17.26 + 4.68 17.47 + 8.77 16.18 + 6.83 12.12 + 2.85 21.26 + 7.19
NGF 38.14 + 27.91 54.85 + 31.5 24.78 + 17.67 25.63 + 17.18 27.8 + 21.87 23.03 + 21.87 23.23 + 15.28 22.5 + 17.5 24.34 + 13.69 127.71 + 134.26 31.21 + 29.71 192.04 + 139.65
Norepinephrine1 303.72 + 138.2 293.5 + 165.27 313.94 + 124.08 273.08 + 133.03 320.93 + 59.58 215.66 + 59.58 490.67 + 254.57 570.55 + 296.43 362.86 + 86.38 281.18 + 120.54 298.2 + 148.54 267 + 104.31
Norepinephrine2 298.13 + 154.9 299.44 + 194.01 296.82 + 127.82 276.4 + 138.74 325.77 + 69.34 217.16 + 69.34 496.07 + 283.44 578.21 + 336.19 364.64 + 90.17 204.42 + 186.15 320.36 + 162.14 107.8 + 153.72
Epinephrine1 41.23 + 53.63 27.98 + 16.28 54.48 + 75.95 42.63 + 31 40.62 + 38.57 45.04 + 38.57 75.66 + 52 96.38 + 53.14 42.52 + 30.62 45.65 + 41.09 42.42 + 23.61 48.35 + 53.96
Epinephrine2 37.75 + 54.65 23.78 + 10.11 51.72 + 78.29 45.42 + 32.42 43.1 + 40.34 48.2 + 40.34 70.23 + 55.33 93.84 + 59.23 32.46 + 12.05 48.14 + 41.95 47.22 + 29.06 48.9 + 53.31
Supplementary Table 6.1B. Non-Parametric Mann-Whitney U test used for comparisons from Baseline to Pre-Boarding, Post-Landing and One-Hour Post-Landing.   P < 0.05 was considered significant.

P-Values Relative To Baseline
Pre-Boarding Post-Landing One-Hour Post-Landing

Pooled Male Female Pooled Male Female Pooled Male Female
TraitAnxiety 1 0.6435 0.4606 0.179 0.5549 0.1127 0.216 0.05735 0.7808
HeartRate 0.01522 0.02857 0.01587 0.0001058 0.009524 0.01587 0.5414 0.1143 0.9048
Cortisol 0.8094 0.7922 0.8413 0.1802 0.2844 0.4127 0.5288 0.5476 1
Testosterone 0.8047 0.7922 1 0.7327 0.9416 0.6723 0.7512 0.6905 1
BetaEndorphin 0.9159 0.6473 0.6905 0.1151 0.6216 0.2222 0.2428 0.2222 0.01587
NGF 0.3702 0.1714 0.8413 0.211 0.06667 0.9048 0.2428 0.3429 0.01732
Norepinephrine1 0.7564 0.9307 0.3095 0.03584 0.04507 0.5476 0.7564 1 0.5368
Norepinephrine2 0.9177 0.9307 0.4206 0.05746 0.1709 0.5476 0.1734 1 0.08225
Epinephrine1 0.5116 0.5368 0.8413 0.02136 0.01088 0.4206 0.3867 0.3095 0.5368
Epinephrine2 0.1734 0.4286 0.3095 0.02552 0.02953 0.3095 0.1734 0.3095 0.4286

 Abbreviations; NGF, nerve growth factor.
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  Genes (n) in: Characterization 
Module 
Color 

Module  kME > 
0.5 

Biological Process Pathway Cell Type 

Black 258 258 Ribosome Biogenesis Ribosome Biogenesis in 
Eukaryotes 

- 

Pink 239 239 Translational 
elongation 

Ribosome - 

Salmon 131 131 Translational 
termination 

Cytoplasmic Ribosomal 
Proteins 

- 

Royal-
blue 

24 24 - Formation of the ternary 
comple and 43S complex 

- 

Green-
yellow 

159 159 Immune Response NK cell mediated 
cytotoxicity 

NK Cells 

Brown 578 578 T-cell receptor 
signaling 

T cell receptor signaling 
pathway 

CD8 T Cells 

Red 274 274 RNA processing G2/M Transition CD4 T Cells 

Yellow 314 314 Immune response Thrombin signaling  CD14 Monocytes 

Cyan 118 118 Cytokine production 
in immune response 

- CD14 Monocytes 

Green 313 313 Innate Immune 
Response 

Interferon Signaling CD14 Monocytes 

Blue 443 348 Blood Coagulation Hemostasis Blood Platelets 

Light 
yellow 

32 32 - Uptake of Oxygen and 
Release 

Blood Platelets 

Midnight 
blue 

113 90 Oxygen transporter 
activity 

- CD71 Early 
Erythroid 

Grey60 103 103 Respiratory electron 
transport chain 

Parkinson's disease - 

Light 
cyan 

109 109 Respiratory electron 
transport chain 

Respiratory electron 
transport 

- 

Purple 164 164 Respiratory electron 
transport chain 

Electron Transport Chain - 

Light 
green 

87 87 Regulation of actin  
filament 

polymerization 

Role of PI3K subunit p85 
in regulation of  

Actin Organization  

CD14 Monocytes 

Magenta 228 228 Regulation of 
intracellular  

signal transduction 

RORA Activates  
Circadian Expression 

CD33 Myeloid 

Turquoise 1289 1152 Protein Ubiquitination Signaling by NOTCH - 
Grey 13,152 748 Response to 

Wounding 
IL-5 Signaling Pathway - 

The top most significant functional annotations of all co-expression modules. Listed in the table are the 
total number of genes corresponding to each module, the total number of genes with a kME > 0.5 used 
for enrichment analyses, the top most significant biological process and pathway (as indicated by 
ToppGene(65)) and cell type (as indicated by CTen (18)) for each corresponding module. kME specifies 
the strength of association of a gene to its corresponding ME value. Only genes with kME > 0.05 were 
used for enrichment analyses. All annotations must have passed a Bonferroni correction p < 0.05. Grey 
shading is for visualization purposes only. 
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Supplementary Table 6.3A. Flow cytometry data from 26 participants (17 Male and 9 Female) on peripheral blood luekocyte subsets. (average + standard deviation)
Baseline Pre-Boarding Post-Landing One-hour Post-Landing

Cell Types POOLED MALE FEMALE POOLED MALE FEMALE POOLED MALE FEMALE POOLED MALE FEMALE
LEUK 5.625 + 1.271 6.008 + 1.247 4.914 + 1.048 6.814 + 1.341 7.171 + 1.341 6.1 + 1.098 7.438 + 1.603 7.643 + 1.765 7.029 + 1.235 6.052 + 1.411 6.371 + 1.466 5.414 + 1.123
NEUT 52.629 + 5.132 53.877 + 5.331 50.6 + 4.352 67.4 + 9.757 70.507 + 10.574 61.963 + 4.984 60.727 + 9.018 63.129 + 9.287 56.525 + 7.215 56.459 + 9.03 59.586 + 9.591 50.988 + 4.474
EOS 3.606 + 1.85 3.854 + 2.115 2.96 + 0.631 1.55 + 1.703 1.714 + 1.985 1.167 + 0.723 1.66 + 1.622 1.807 + 1.873 1.317 + 0.816 2.4 + 1.974 2.429 + 2.296 2.333 + 1.048
MONO 8.816 + 1.384 9.208 + 1.322 8.30 + 1.198 6.206 + 1.357 6.321 + 1.317 5.8 + 1.623 7.444 + 1.901 7.679 + 1.881 6.625 + 1.996 8.106 + 1.84 8.307 + 1.963 7.4 + 1.278
TOTAL 
LYMPH 34.042 + 6.566 32.638 + 6.123 37.083 + 7 22.33 + 8.57 20.971 + 8.737 26.833 + 5.354 28.525 + 8.96 27.471 + 8.757 30.983 + 9.766 31.255 + 8.234 28.579 + 7.281 37.5 + 7.275
B LYMPH 13.515 + 3.912 12.472 + 3.438 15.9 + 4.126 11.525 + 3.769 10.418 + 2.829 13.185 + 4.553 9.875 + 3.102 9.31 + 2.154 10.721 + 4.179 13.46 + 3.374 13.238 + 3.068 13.793 + 3.987
NK 8.434 + 4.631 8.606 + 3.412 8.069 + 6.833 14.248 + 6.718 15.658 + 5.858 11.026 + 7.892 22.34 + 9.296 22.901 + 8.627 20.977 + 11.389 8.585 + 4.299 8.918 + 3.991 7.779 + 5.226
CD3 LYMPH 72.233 + 5.846 73.363 + 5.164 69.81 + 6.883 69.646 + 8.316 70.638 + 6.532 67.663 + 11.583 64.295 + 8.797 65.623 + 7.476 61.418 + 11.398 72.206 + 6.72 72.728 + 5.808 71.075 + 8.909
CD4 LYMPH 43.456 + 6.159 42.461 + 5.214 45.942 + 8.077 39.339 + 7.643 37.083 + 6.36 44.494 + 8.275 33.267 + 7.025 32.082 + 6.713 36.144 + 7.44 43.433 + 6.164 42.878 + 5.781 44.78 + 7.316
CD8 LYMPH 61.41 + 13.341 63.121 + 12.444 57.132 + 15.734 61.7 + 13.12 61.071 + 13.017 63.14 + 14.287 59.546 + 12.886 59.926 + 12.027 58.621 + 15.791 60.157 + 11.889 60.03 + 11.583 60.464 + 13.561
Supplementary Table 6.3 B. A Dunnett Test for simulaneous comparison of means was used to compare pre-boarding, post-landing and one-hour post-landing flow cytometry data from Supp. Table 5A back to 
baseline. 

Pre-Boarding Post-Landing One-hour Post-Landing
Cell Types POOLED MALE FEMALE POOLED MALE FEMALE POOLED MALE FEMALE
LEUK 0.023 0.112 0.148 0.001 0.016 0.005 0.646 0.855 0.746
NEUT 0.001 0.001 0.001 0.007 0.027 0.061 0.319 0.242 0.998
EOS 0.002 0.027 0.005 0.004 0.035 0.010 0.104 0.190 0.461
MONO 0.001 0.001 0.060 0.020 0.052 0.421 0.302 0.359 0.898
TOTAL LYMPH 0.001 0.001 0.063 0.084 0.217 0.380 0.542 0.397 0.999
B LYMPH 0.188 0.177 0.508 0.003 0.016 0.056 1.000 0.855 0.659
NK 0.008 0.003 0.828 0.001 0.000 0.014 1.000 0.997 1.000
CD3 LYMPH 0.585 0.608 0.959 0.000 0.006 0.024 1.000 0.996 0.991
CD4 LYMPH 0.124 0.041 0.987 0.001 0.001 0.084 1.000 0.998 0.991
CD8 LYMPH 0.999 0.934 0.778 0.925 0.782 0.993 0.973 0.799 0.951
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A.3    Supplementary Data for Chapter 7 

 
Supplementary Figure 7.1. Convergent Functional Genomic (CFG) scoring scheme. First, each gene received 
a score based on p-value threshold. A score of 1 was given for P < 0.001, a score of 0.5 for 0.001 > P < 0.01 and 
a score of 0.2 for 0.01 > P < 0.05. A gene was given an additional score of 0.5 if P < 0.01 between MAP and 
controls subjects as well as MAP and MA subjects. A bonus 0.5 point was given if this gene was found in a 
functional module associated to MAP or psychosis (i.e. ubiquitin-mediated proteolysis or circadian rhythm 
modules). Thus, the maximum score based on this first series of thresholds is 4 (3(differential expression 
analyses) + 0.5 + 0.5). Second, we used CFG evidence as identified from two databases; (i) an in-house blood 
transcriptomic database and (ii) DisGenNet database. We only used gene-disease relationships for the following 
diseases: schizophrenia, psychosis, depression/stress and neurocognitive impairment. A maximum of 5 external 
lines of evidence were allowed. A bonus point of 1 was granted if present in the blood of previous psychosis 
studies. Thus, the maximum score attainable is 6 (5 lines of evidence + 1) and the top score possible for each 
gene considering all possible combinations of points is 10 (4 + 6). 
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Supplementary Table 7.1. Annotation of co-expression modules including GO functional components, KEGG and Reactome pathways, and CTD drug compounds as well as cell type specificity. 
Consensus Function 
(Module Name)

Total # 
Genes

kME > 
0.5 GO: Molecular Factor GO: Biological Process

GO: Cellular 
Compartment

KEGG and Reactome 
Pathways CTD Drug Response C-Ten Cell type specificity

Protein Heterodimerization 56 56
protein heterodimerization 

activity nucleosome assembly chromosome Alcoholism Lucanthone CD71+ Early Erythroid

Ribosome Pathway 281 281
structural constituent of 

ribosome translational termination ribosomal subunit Ribosome
guanosine 5'-diphosphate 

disodium salt -

Oxidoreductase activity 937 937

oxidoreductase activity, 
acting on peroxide as 

acceptor
proteasomal protein catabolic 

process mitochondrial part

Senescence-Associated 
Secretory Phenotype 

(SASP) Selenium CD71+ Early Erythroid
Natural Killer cell mediated 
cytoxicity 165 165 tubulin binding

immune response (T Cell 
activation) membrane raft

Natural killer cell 
mediated cytotoxicity abrine CD56+ NK cells

Hemostasis 192 192 fibrinogen binding blood coagulation platelet alpha granule Hemostasis U46619 Cardiac Myocytes
Chloride transporter 
Activity 106 106

chloride transmembrane 
transporter activity

regulation of phosphate 
metabolic process lytic vacuole - Dietary Carbohydrates CD14+ Monocytes

RNA binding / Resp. 
electron trans. Chain 995 995 RNA binding ncRNA metabolic process nucleolus

The citric acid (TCA) 
cycle and respiratory 

electron transport Selenium -
Circadian Clock 332 332 chromatin binding chromatin modification nucleoplasm part Circadian Clock - -

Cytokine Signalling 186 186 enzyme binding defense response cortical cytoskeleton
Cytokine Signaling in 

Immune system Selenium CD14+ Monocytes
IL-5 Signalling 659 659 kinase activity response to wounding focal adhesion IL-5 Signaling Pathway Aspirin Whole Blood

Actine cytoskeleton 93 93 -
single-organism organelle 

organization actin cytoskeleton - Selenium -

ATPase activity 26 26

proton-transporting 
ATPase activity, rotational 

mechanism
interspecies interaction 

between organisms - Viral carcinogenesis - -
- 74 74 - - - - - -
Histrone demethylase 
activity 16 16

histone demethylase 
activity histone lysine demethylation - - Chromium -

B cell activation 106 106
MHC class II protein 

complex binding B cell activation
external side of plasma 

membrane
B Cell Receptor Signaling 

Pathway
Chloroprene /  Dextran 

Sulfate CD19+ B cells

Generic Transcription 880 880 - - -
Generic Transcription 

Pathway - -
Centrosome maturation 699 669 adenyl nucleotide binding - nucleolus Centrosome maturation beta-methylcholine -

Protein ubiquination 175 175
ubiquitin-protein 

transferase activity protein ubiquitination endosome membrane
Translocation of GLUT4 

to the Plasma Membrane
Chlorodiphenyl (54% 

Chlorine) Whole Blood
Ubiquitin mediated 
proteolysis 767 767 RNA binding

ER to Golgi vesicle-mediated 
transport catalytic complex

Ubiquitin mediated 
proteolysis sodium arsenate -

Generic Transcription 48 48

sequence-specific DNA 
binding transcription factor 

activity - -
Generic Transcription 

Pathway Clorgyline -

G-coupled protein receptor 
activity 90 93

G-protein coupled 
pyrimidinergic nucleotide 

receptor activity - -
Nucleotide-like 

(purinergic) receptors - -
- 43 43 - - - - - -

Interferon Signalling 263 263
double-stranded RNA 

binding
defense response to virus 
(innate immune response) host Interferon Signaling Zidovudine CD14+ Monocytes

RNA degradation 5094 1159 RNA binding RNA degradation nucleolus Gene Expression potassium chromate(VI) -
The top most significant functional annotations of all co-expression modules. Listed in the table are the total number of genes corresponding to each module, the total number of genes with kME > 0.5 used for 
enrichment analyses, the consensus function (i.e. Module Name), the top most significant GO terms and Pathways (as indicated by ToppGene), drug compound (as indicated by CTD) and cell type (as indicated by 
CTen) for each corresponding module.  All annotations must have passed a Bonferroni correction p < 0.05. Abbreviations: (-) signifies no enchriment. Modules are ordered as they are presented in Supplementary 
Figure 1.



259 

Supplementary Table 7.2. Converging Evidence of Ubiquitin-Proteasome System Dysfunction in 
Psychosis and SCZ (61 genes) across 2 or more studies 
Gene Symbol (Gene Name) 

 
 

kME Rank 
 
 

Controls 
compared to 

MAP 
subjects      
(P-Value) 

MA dep. 
compared to 

MAP 
subjects      
(P-Value) 

SLC35A5 (solute carrier family 35, member A5)* 402 0.005036068 0.009066804 

TMEM135 (transmembrane protein 135)* 541 0.004280073 0.02070815 

SRSF1 (serine/arginine-rich splicing factor 1)* 130 0.020365344 0.027750422 

KRAS (Kirsten rat sarcoma viral oncogene homolog)* 748 0.005468547 0.035304303 

CBR4 (carbonyl reductase 4)* 297 0.011896041 0.03795962 

ATXN3 (ataxin 3)*  248 0.005862784 0.038045436 

SCAMP1 (secretory carrier membrane protein 1)* 50 0.009233944 0.046212855 

PDE12 (phosphodiesterase 12)* 189 0.003623366 0.049340743 

UHMK1 (U2AF homology motif (UHM) kinase 1) 122 0.000770142 0.050781828 

PI4K2B (phosphatidylinositol 4-kinase type 2 beta) 471 0.070296417 0.052068539 

SLC12A2 (solute carrier family 12 
(sodium/potassium/chloride transporter), member 2) 

397 0.002913315 0.053049548 

PIK3C2A (phosphatidylinositol-4-phosphate 3-kinase, 
catalytic subunit type 2 alpha) 

515 0.016284186 0.05371985 

CREB1 (cAMP responsive element binding protein 1) 705 0.05103424 0.055487382 

TMX1 (thioredoxin-related transmembrane protein 1) 126 0.041730028 0.072693538 

TMED2 (transmembrane emp24 domain trafficking 
protein 2) 

304 0.013018731 0.076380753 

SRSF6 (serine/arginine-rich splicing factor 6) 661 0.014962981 0.081968547 

INSIG2 (insulin induced gene 2) 521 0.023312974 0.097937444 

GLS (glutaminase)  52 0.00345909 0.111942995 

PPP4R3B (protein phosphatase 4, regulatory subunit 
3B) 

153 0.006801293 0.115199044 

TMEM106B (transmembrane protein 106B) 23 0.00791962 0.121807757 

ZMPSTE24 (zinc metallopeptidase STE24) 664 0.045687915 0.126663613 

CD47 (CD47 molecule) 127 0.021245395 0.127631979 

SMAD4 (SMAD family member 4) 428 0.01431481 0.143685381 

TRIM33 (tripartite motif containing 33) 704 0.064622229 0.14606847 

SPAST (spastin) 637 0.03563803 0.149721331 

FMR1 (fragile X mental retardation 1) 710 0.211420859 0.150840516 

CUL5 (cullin 5) 42 0.009944088 0.167495521 

UBE3A (ubiquitin protein ligase E3A) 234 0.018753135 0.174383469 

PPP1R2 (protein phosphatase 1, regulatory (inhibitor) 
subunit 2) 

138 0.012123043 0.18965167 

SMARCAD1 (SWI/SNF-related, matrix-associated 
actin-dependent regulator of chromatin, subfamily a, 
containing DEAD/H box 1) 

395 0.002426846 0.191423652 
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Supplementary Table 7.2 Continued… 

KBTBD8 (kelch repeat and BTB (POZ) domain 
containing 8) 

450 0.045333109 0.195495324 

CGGBP1 (CGG triplet repeat binding protein 1) 27 0.015986201 0.210443621 

GABPA (GA binding protein transcription factor, alpha 
subunit 60kDa) 

167 0.056065324 0.211705588 

UBE2K (ubiquitin-conjugating enzyme E2K) 148 0.009114176 0.213537693 

TSNAX (translin-associated factor X) 168 0.054280285 0.214208409 

TMEM64 (transmembrane protein 64) 298 0.012574054 0.219020364 

PURA (purine-rich element binding protein A) 351 0.022901138 0.219326715 

ABCE1 (ATP-binding cassette, sub-family E (OABP), 
member 1) 

131 0.006996746 0.222064969 

PPAT (phosphoribosyl pyrophosphate 
amidotransferase) 

671 0.049250888 0.227668205 

CCNT2 (cyclin T2) 337 0.07940372 0.236109857 

USP37 (ubiquitin specific peptidase 37) 463 0.008354336 0.236890265 

ARL6IP5 (ADP-ribosylation factor-like 6 interacting 
protein 5) 

751 0.085090314 0.259326929 

RORA (RAR-related orphan receptor A) 550 0.004138795 0.26325037 

ATPBD4 (ATP-Binding Domain-Containing Protein 4) 640 0.134404836 0.268554194 

RBM12B (RNA binding motif protein 12B) 292 0.024960346 0.281060893 

MBNL1 (muscleblind-like splicing regulator 1) 139 0.022403533 0.282922302 

FBXO45 (F-box protein 45) 507 0.039659814 0.319519337 

CDC42SE2 (CDC42 small effector 2) 611 0.01752612 0.353651265 

FOPNL (FGFR1OP N-terminal like) 655 0.010828004 0.365110172 

PNPLA8 (patatin-like phospholipase domain 
containing 8) 

701 0.038406574 0.386508032 

CCDC117 (coiled-coil domain containing 117) 288 0.016813123 0.390250961 

CPOX (coproporphyrinogen oxidase) 626 0.059787423 0.395058907 

SLC38A2 (solute carrier family 38, member 2) 374 0.011860001 0.480423705 

PRKAA1 (protein kinase, AMP-activated, alpha 1 
catalytic subunit) 

523 0.111568576 0.508335014 

ANKRD46 (ankyrin repeat domain 46) 687 0.005836655 0.526368714 

C5orf30 (chromosome 5 open reading frame 30) 745 0.229324132 0.534481255 

NUCKS1 (nuclear casein kinase and cyclin-
dependent kinase substrate 1) 

454 0.064902255 0.619381343 

SP4 (Sp4 transcription factor) 546 0.071196324 0.69576249 

PDIK1L (PDLIM1 interacting kinase 1 like) 442 0.042933639 0.827291808 

RAB18 (RAB18, member RAS oncogene family)* 758 0.022318388 0.046208386 

KPNA3 (karyopherin alpha 3 (importin alpha 4)) 474 0.122081291 0.876145255 

Abbreviations; kME, intramodule connectivity – lower values indicated more connections. 
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Supplementary Table 7.3. Converging Evidence of Circadian Clock Dysfunction in Psychosis and 
SCZ (39 genes) across 2 or more studies. 
Gene Symbol (Gene Name) kME 

Rank   
Controls 

compared to 
MAP subjects    

(P-Value) 

MA dep. 
compared to 
MAP subjects    

(P-Value) 
ELK3 (ELK3, ETS-domain protein (SRF accessory 
protein 2))* 

279 0.000373891 0.002799746 

SIN3A (SIN3 transcription regulator family member A) 269 0.056621475 0.000960396 

NCOA6 (nuclear receptor coactivator 6) 15 0.00819083 0.065782976 

HSPA5 (heat shock 70kDa protein 5 (glucose-
regulated protein, 78kDa)) 

161 0.019425242 0.038156813 

LRSAM1 (leucine rich repeat and sterile alpha motif 
containing 1) 

282 0.028265776 0.624673386 

NDE1 (nudE neurodevelopment protein 1) 83 0.038033941 0.124204979 

DCTN1 (dynactin 1) 224 0.049859396 0.712786026 

CHERP (calcium homeostasis endoplasmic reticulum 
protein) 

184 0.074477147 0.387195703 

CHD4 (chromodomain helicase DNA binding protein 
4) 

163 0.077288498 0.193406776 

MYO9B (myosin IXB) 70 0.082222837 0.560870768 

SRRM2 (serine/arginine repetitive matrix 2) 31 0.082936525 0.041678231 
MINK1 (misshapen-like kinase 1) 182 0.086827984 0.288562178 
SMARCC1 (SWI/SNF related, matrix associated, actin 
dependent regulator of chromatin, subfamily c, 
member 1) 

271 0.094353099 0.219343362 

SMARCA2 (SWI/SNF related, matrix associated, actin 
dependent regulator of chromatin, subfamily a, 
member 2) 

202 0.107412613 0.037344599 

MED15 (mediator complex subunit 15) 54 0.111453087 0.181283044 

SAFB (scaffold attachment factor B) 230 0.133032076 0.66423428 

MAP3K14 (mitogen-activated protein kinase kinase 
kinase 14) 

199 0.133291767 0.482811868 

VAMP2 (vesicle-associated membrane protein 2 
(synaptobrevin 2)) 

187 0.16882053 0.154038143 

RERE (arginine-glutamic acid dipeptide (RE) repeats) 111 0.186683998 0.389227155 

MED12 (mediator complex subunit 12) 27 0.194281831 0.340704704 

ATP2B4 (ATPase, Ca++ transporting, plasma 
membrane 4) 

126 0.206310855 0.180437354 

GNAO1 (guanine nucleotide binding protein (G 
protein), alpha activating activity polypeptide O) 

232 0.246287946 0.055338767 

PLCB2 (phospholipase C, beta 2) 101 0.258614082 0.920323146 

NBEAL2 (neurobeachin-like 2) 32 0.296695445 0.756020353 

CSNK1D (casein kinase 1, delta) 130 0.313725274 0.59197451 

MECP2 (methyl CpG binding protein 2) 110 0.329054985 0.030184796 
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TSC1 (tuberous sclerosis 1) 128 0.370942204 0.3112294 

IGF1R (insulin-like growth factor 1 receptor) 173 0.383151949 0.209443873 

VAMP1 (vesicle-associated membrane protein 1 
(synaptobrevin 1)) 

269 0.398909388 0.607844156 

MYH9 (myosin, heavy chain 9, non-muscle) 209 0.406930252 0.720077891 

ABCA7 (ATP-binding cassette, sub-family A (ABC1), 
member 7) 

154 0.423083402 0.907774563 

MBD1 (methyl-CpG binding domain protein 1) 250 0.438154677 0.817735487 

ANKRD11 (ankyrin repeat domain 11) 36 0.528331631 0.73245932 

USP7 (ubiquitin specific peptidase 7 (herpes virus-
associated)) 

201 0.565622579 0.468172617 

HDAC10 (histone deacetylase 10) 332 0.606352092 0.458737712 

C21orf62 (chromosome 21 open reading frame 62) 200 0.751897518 0.834000846 

DGKZ (diacylglycerol kinase, zeta) 252 0.765018474 0.278595433 

RXRB (retinoid X receptor, beta) 139 0.782877301 0.665337942 

HERC1 (HECT and RLD domain containing E3 
ubiquitin protein ligase family member 1) 

236 0.790071043 0.157318358 

Abbreviations; kME, intramodule connectivity – lower values indicated more connections. 
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A.4    Supplementary Data for Chapter 8 
 

Supplementary Table 8.1. Functional Enrichment of WGCNA Modules using ToppGene 

Module Number 
of Genes 

GO: Biological Process GO: Molecular Function 

M1 49 RNA-Splicing NA 

M2 45 Immune Response Hydrolase Acticity 

M3 324 Apoptotic Process Rho GTPase Activity 

M4 60 Viral Transcription NADH Dehydrogenase 

M5 313 Protein Targeting to ER RNA Binding 

M6 266 RNA Binding Membrane Organization 

M7 192 Defense Response to 
Virus 

Double-Stranded RNA Binding 

M8 182 NA NA 

M9 93 Pyruvate Metabolism Monosaccharide Binding 

M10 212 Organelle Organization Zinc Ion Binding 

M11 156 NA NA 

M12 157 Response to ER Stress Protein Disulfide Isomerase 

M13 16 NA Dynein Light Chain Binding 

M14 6030 NA NA 

M15 352 Cell Cycle NA 

M16 18 Response to Unfolded 
Protein 

Unfolded Protein Binding 

M17 17 Phosphatidylserine 
Metabolism 

Protein Kinase C Binding 

M18 17 Cellular Amino Acid 
Metabolism 

Aminoacyl-tRNA ligase Activity 

M19 85 Axonal Growth 
Stimulation 

Poly(A) RNA Binding 

M20 15 Signal Attenuation NA 

M21 341 RNA processing RNA Binding 

M22 188 Translational Initiation RNA Binding 

All reported  GO terms pass Bonferroni Corrected P-value < 0.05. Grey shading is for 
visualization purposes only. 
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Supplementary Table 8.2. Lithium responsive genes (48 genes) found across two or more 
transcriptome-based studies 

Gene Symbol (Gene Name) Log Fold-Change FDR P-Value 

STC2 (stanniocalcin 2) -0.787642412 0.004431163 
HADH (hydroxyacyl-CoA dehydrogenase) -0.742905941 5.43E-08 
GAMT (guanidinoacetate N-methyltransferase) -0.741196314 0.000765779 
MAT2A (methionine adenosyltransferase II, alpha) -0.480038186 0.000706098 

HSP90AA1 (heat shock protein 90kDa alpha 
(cytosolic), class A member 1) -0.473267319 5.85E-05 
SERPINH1 (serpin peptidase inhibitor, clade H (heat 
shock protein 47), member 1, (collagen binding 
protein 1)) -0.469304794 0.015807785 
SAMD1 (sterile alpha motif domain containing 1) -0.401903954 0.004792479 
UBE2O (ubiquitin-conjugating enzyme E2O) -0.370350649 4.93E-05 
RCL1 (RNA terminal phosphate cyclase-like 1) -0.350496614 0.015438112 
CD274 (CD274 molecule) -0.340682942 0.021924838 
RBM3 (RNA binding motif (RNP1, RRM) protein 3) -0.33533595 0.001021757 
WDR74 (WD repeat domain 74) -0.328864046 0.002098612 
PTGES3 (prostaglandin E synthase 3 (cytosolic)) -0.30906055 0.004631893 
PRPF19 (pre-mRNA processing factor 19) -0.244685246 0.010914539 
SF3A1 (splicing factor 3a, subunit 1, 120kDa) -0.150228772 0.042112352 
GPBP1 (GC-rich promoter binding protein 1) 0.215204406 0.045129837 
GSK3B (glycogen synthase kinase 3 beta) 0.223931229 0.020924478 
ZMAT2 (zinc finger, matrin-type 2) 0.246070174 0.002962116 
RNF10 (ring finger protein 10) 0.247009827 0.001067108 
OAS1 (2'-5'-oligoadenylate synthetase 1, 40/46kDa) 0.318289165 0.010329817 
LY6E (lymphocyte antigen 6 complex, locus E) 0.343537333 0.000739946 
OAS3 (2'-5'-oligoadenylate synthetase 3, 100kDa) 0.346065696 0.011863165 
ICMT (isoprenylcysteine carboxyl methyltransferase) 0.346234993 0.002864987 
ZCCHC2 (zinc finger, CCHC domain containing 2) 0.365761581 0.013891424 
RSU1 (Ras suppressor protein 1) 0.398498594 0.001268264 
SPAG9 (sperm associated antigen 9) 0.420805708 0.000393742 
OAS2 (2'-5'-oligoadenylate synthetase 2, 69/71kDa) 0.424841647 8.22E-05 
IFIT1 (interferon-induced protein with 
tetratricopeptide repeats 1) 0.432200676 0.047500448 
TARSL2 (threonyl-tRNA synthetase-like 2) 0.460413488 0.019991193 
ATF4 (activating transcription factor 4) 0.477965693 1.73E-06 
KLF6 (Kruppel-like factor 6) 0.485935959 6.22E-05 
PCYOX1 (prenylcysteine oxidase 1) 0.488646586 0.002532514 

 
Supplementary Table 8.2 Continued… 
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MAP2K3 (mitogen-activated protein kinase kinase 3) 0.576294946 0.000141255 
BAK1 (BCL2-antagonist/killer 1) 0.641622163 1.13E-05 
BMF (Bcl2 modifying factor) 0.650090637 4.35E-08 
IFI6 (interferon, alpha-inducible protein 6) 0.654402152 0.00030134 
EPSTI1 (epithelial stromal interaction 1 (breast)) 0.682009503 3.34E-05 
ETHE1 (ethylmalonic encephalopathy 1) 0.687180204 5.53E-06 
BCL2L1 (BCL2-like 1) 0.716512969 6.24E-07 
APOL6 (apolipoprotein L, 6) 0.817789836 2.06E-05 
RGS2 (regulator of G-protein signaling 2) 0.826971027 0.049235509 
ACP5 (acid phosphatase 5, tartrate resistant) 0.925079439 8.79E-05 
ETV7 (ets variant 7) 1.06684254 0.004754349 
RSAD2 (radical S-adenosyl methionine domain 
containing 2) 1.190676058 3.18E-05 
LAX1 (lymphocyte transmembrane adaptor 1) 1.223269007 0.002584398 
FOS (FBJ murine osteosarcoma viral oncogene 
homolog) 1.297603269 1.70E-06 
CKB (creatine kinase, brain) 2.275784906 2.67E-10 

CRIP1 (cysteine-rich protein 1 (intestinal)) 2.46875341 4.60E-13 
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Supplementary Figure 8.1. Clinical design used to determine BD Li responders (i.e. non-relapse) and BD Li 
non-responders (i.e. relapse). First, blood samples were taken and following, Li monotherapy was administered 
to each patient for 3 months (stabilization phase). Second, Li was discontinued and BD patients were followed for 
1 month to determine whether symptoms were stable (observation phase). Third, BD patients were followed for 2 
years at 2-4 month intervals to determine potential relapse of BD symptoms (i.e. non-responders). Li response 
(i.e. relapse status) was determined by the patients ability to reach the end of the 2 year follow-up without 
relapse of BD symptoms and Li administration (maintenance phase).  
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ORIGINAL ARTICLE

Gene networks specific for innate immunity define
post-traumatic stress disorder
MS Breen1, AX Maihofer2, SJ Glatt3, DS Tylee3, SD Chandler2, MT Tsuang2,4,5,6,7, VB Risbrough2,4, DG Baker2,4, DT O’Connor6,8,
CM Nievergelt2,4,9 and CH Woelk1,9

The molecular factors involved in the development of Post-Traumatic Stress Disorder (PTSD) remain poorly understood. Previous
transcriptomic studies investigating the mechanisms of PTSD apply targeted approaches to identify individual genes under a cross-
sectional framework lack a holistic view of the behaviours and properties of these genes at the system-level. Here we sought to
apply an unsupervised gene-network based approach to a prospective experimental design using whole-transcriptome RNA-Seq
gene expression from peripheral blood leukocytes of U.S. Marines (N= 188), obtained both pre- and post-deployment to conflict
zones. We identified discrete groups of co-regulated genes (i.e., co-expression modules) and tested them for association to PTSD.
We identified one module at both pre- and post-deployment containing putative causal signatures for PTSD development
displaying an over-expression of genes enriched for functions of innate-immune response and interferon signalling (Type-I and
Type-II). Importantly, these results were replicated in a second non-overlapping independent dataset of U.S. Marines (N= 96),
further outlining the role of innate immune and interferon signalling genes within co-expression modules to explain at least part of
the causal pathophysiology for PTSD development. A second module, consequential of trauma exposure, contained PTSD resiliency
signatures and an over-expression of genes involved in hemostasis and wound responsiveness suggesting that chronic levels of
stress impair proper wound healing during/after exposure to the battlefield while highlighting the role of the hemostatic system as
a clinical indicator of chronic-based stress. These findings provide novel insights for early preventative measures and advanced
PTSD detection, which may lead to interventions that delay or perhaps abrogate the development of PTSD.

Molecular Psychiatry (2015) 00, 000–000. doi:10.1038/mp.2015.9

INTRODUCTION
The study of the molecular factors that determine risk and
subsequent development of Post-traumatic stress disorder (PTSD)
are at the forefront of molecular psychiatric research. A significant
number of men and women exposed to severe emotional trauma
and loss emerge from these events with persistent PTSD
symptoms, such as intrusive imagery, avoidance and hyperarousal,
as well as other long-term physical health problems. PTSD affects
7–8% of the general United States (US) population, and is
higher among troops recently returned from the wars in Iraq
and Afghanistan, with estimates of prevalence as high as 20%.1

Annual health care costs associated with PTSD in the US have
been estimated to be 180 million dollars.2 Heterogeneity in
susceptibility to PTSD suggests that differences at the molecular
level (i.e. gene-expression level) may influence an individual’s
physiological and psychological response to trauma and thus the
development of PTSD. A clear understanding of the molecular
mechanisms underlying this aberrant response to trauma is
required to reduce the substantial morbidity and mortality
associated with this disorder.

A number of studies have analyzed blood gene expression and
glucocorticoid activity to build more effective models for
identifying molecular factors associated to PTSD.3–12 These studies
were recently reviewed by Heinzlemann and Gill,2 who summar-
ized that the increased expression of inflammatory genes and
decreased expression of the genes that regulate inflammation
contribute to the onset of PTSD. Specifically, when considering the
overlap in results from transcriptomic studies, the decreased
expression of FKBP5 and STAT5B, which regulate inflammation, is
evident.4,6,7,9 The majority of these reviewed studies3–8,11,12

centered transcriptomic analyses on subjects already diagnosed
with PTSD, and thus lacked a prospective study design, as well as
independent datasets for validation purposes. These studies
employ gene expression analysis on pre-determined targets,
focusing analyses on the individual gene-level and the putative
clinical utilities of the resulting gene-list, without studying the
connectivity of these genes at the system-level.
Recent gene-expression network analyses, such as weighted

gene co-expression network analysis (WGCNA), aim to integrate
expression data across thousands of genes into a higher-order
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system-level context to identify groups of genes within a network
whose expressions are highly correlated (i.e. co-expression
modules).13 In doing so, WGCNA provides a powerful unsuper-
vised approach to tackle the molecular complexity that occurs in
neurodevelopmental and psychophysiological disorders,14–19

although has never before been applied to PTSD.
We applied WGCNA to RNA-Seq and microarray peripheral

blood leukocyte (PBL) gene expression taken from two indepen-
dent groups of U.S. Marines, both pre- and post-deployment to
conflict zones. The primary goal of this analysis was to best
characterise the prognostic and diagnostic molecular signatures
defining both ‘PTSD risk’ and ‘PTSD’ states, while demonstrating
the robustness and reproducibility of WGCNA findings across
datasets. Instead of identifying differentially expressed genes on a
gene-by-gene basis, we constructed unsupervised gene co-
expression networks from a combination of case and control data
and identified gene co-expression modules within these networks.
Modules were first assessed for containing differentially expressed
genes, tested for their association with PTSD, and finally subjected
to functional enrichment analysis. In this manner, we then
assessed whether the PTSD-associated modules were detected
in our second non-overlapping dataset of U.S. Marines to demon-
strate a significant and consistent association of our findings. We
conclude that prospectively profiling the transcriptome of U.S.
Marines pre- and post-deployment to conflict zones, using a co-
expression analysis approach is a promising strategy for identify-
ing and studying the functions of causal and consequential
molecular factors in PTSD development, with particular value in
reproducing results across independent datasets of U.S. Marines.

SUBJECTS AND METHODS
Sample collection and datasets
All subjects were male and participants in the Marine Resilience Study
(MRS), a prospective study of well-characterized U.S. Marines scheduled for
combat deployment to Iraq or Afghanistan, with longitudinal follow-up to
track the effect of combat stress.

Dataset 1—Whole blood was obtained from 124 U.S. Marines who
served a seven month deployment. Blood was drawn 1-month prior to
deployment and again at 3-months post-deployment for each participant.
Each blood sample (10ml) was collected into an EDTA-coated collection
tube, RNA was isolated from peripheral blood leukocytes using LeukoLOCK
Total RNA isolation and sequenced using the Illumina Hi-Seq 2000.
Dataset 2—For validation, data were compared to an independently

generated gene expression data-set from a separate, non-overlapping,
group of 50 MRS Marine participants (Glatt et al. 2013, previously published
pre-deployment data12). Blood samples were treated in an identical
fashion as described above, however final RNA was hybridized to the
Affymetrix Hu-Gene 1.0 ST Array.

PTSD diagnosis
At the time of each blood draw, PTSD symptoms were assessed using a
structured diagnostic interview, the Clinician Administered PTSD Scale
(CAPS).20–23 Using the criteria from the Diagnostic and Statistical Manual of
Mental Disorders, fourth edition (2000),24 diagnosis for partial or full PTSD
was defined as a threat to life, injury, or physical integrity (Criterion A1) and
the presence of at least one re-experiencing symptom and either three
avoidance symptoms or two hyperarousal symptoms, or two avoidance
symptoms plus two hyperarousal symptom.25–27 Symptoms must have
occurred at least once within the past month (frequency⩾ 1) and caused a
moderate amount of distress (intensity⩾ 2).

Subject selection
A subset of MRS study participants were pre-selected for RNA-Seq analysis.
First, at pre-deployment, all participants had to be symptom free, with no
PTSD diagnosis and a CAPS⩽ 25. Second, at post-deployment, participants
who fulfilled criteria for partial or full PTSD diagnosis were designated the
PTSD group. Third, participants with post-deployment CAPS⩽ 25 that
matched the post-deployment PTSD group on variables of combat expo-
sure, age and ethnicity were designated the ‘control’ group. Under these
criteria, all paired subjects were stratified into two groups based upon
CAPS scores at 3-months post-deployment (Table 1, Supplementary Table
1). If a Marine participant developed PTSD following trauma-exposure at
3-months post-deployment, their pre-deployment sample would be
included in the ‘PTSD-risk’ group. Likewise, if a subject avoided PTSD
symptoms at 3 months post-deployment their sample at pre-deployment
was included in the ‘control’ group.

Table 1. Recorded clinical parameters from U.S. Marines assessed at pre- and post-deployment for Dataset 1

Time point Pre-Deployment Post-Deployment

PTSD Cases (N=47) Controls (N= 47) P-value PTSD Cases (N= 47) Controls (N=47) P-value

Age 22.15± 2.53 22.42± 3.92 0.682 23.14± 2.52 23.42± 3.92 0.685
Alcohol 2.08± 1.55 1.62± 1.33 0.124 1.79± 1.32 1.54± 1.11 0.318
Tobacco 1.75± 1.62 0.97± 1.51 0.02 1.69± 1.69 1.02± 1.47 0.042
WC adj. 1.65± 0.13 1.72± 0.13 0.015 1.68± 0.14 1.75± 0.12 0.012
PCL 21.29± 4.72 18.33± 2.27 0.0001 42.38± 11.09 20.94± 3.87 5.37E-22
CAPS total 11.39± 7.23 6.75± 6.90 0.002 53.17± 15.08 10.04± 7.26 5.99E-32
CAPSBs 1.00± 1.91 0.54± 1.92 0.245 14.9± 7.25 1.54± 2.37 6.29E-21
CAPSCAs 0.54± 1.11 0.10± 0.51 0.015 5.31± 4.57 0.85± 2.08 1.88E-08
CAPSCN1s 1.10± 2.23 0.97± 2.88 0.813 9.17± 5.32 1.19± 2.87 1.21E-14
CAPSDs 8.39± 5.66 4.58± 4.98 0.001 22.6± 6.7 6.42± 4.79 5.97E-24
CAPSCs 2.00± 2.73 1.62± 3.66 0.571 15.67± 7.23 2.08± 3.66 7.15E-20
Prior Deployment 19 16 0.6699 — — —

TBI — — — 30 21 0.097
CES PBE mean — — — 0.63± 0.25 0.53± 0.12 0.02
Caucasian 26 26 1 — — —

African American 4 4 1 — — —

Native American Mexican 13 15 0.822 — — —

Asian & Other 5 3 0.714 — — —

Abbreviations: Alcohol, alcohol consumption; CAPS total, CAPS total score; CAPSBs, re-experiencing subscale; CAPSCAs, symptoms of avoidance;
CAPSCN1s, symptoms of numbing; CAPSCs, subtotal C subscale; CAPSDs, hyper-arousal subscale; CES, combat exposure scale; PBE, post battle experience;
PCL, PTSD symptom check list; TBI, traumatic brain injury; Tobacco, tobacco use; WC adj., waist circumference was adjusted for height; -, not applicable.
Significance was assessed with a Student’s two-tailed t test for continuous variables and fishers exact test of proportions for binary variables.
(Average± standard deviation).
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Data pre-processing
All data were pre-processed by normalization, filtering genes with low
expression values, and removing any outliers which may bias down-stream
analysis. Final subject numbers resulted in 94-paired subjects (47 paired
cases and 47 paired controls) in Dataset 1 and 48 paired subjects (24 paired
cases and 24 paired controls) in Dataset 2. To compare findings from RNA-
Seq data in Dataset 1 to microarray data in Dataset 2, genes found only on
both platforms (N=10 184) passed into our subsequent analysis (see
Supplementary File for more detailed information).

Differential gene expression analyses
Differentially expressed genes were assessed using the moderated t-test in
edgeR28 and LIMMA29 packages for RNA-Seq and microarray data,
respectively, and unless otherwise specified, the significance threshold
was a nominal P-valueo0.05. A nominally significant P-value was used to
yield a reasonable number of genes to include within network analyses.
Differential expression analyses were performed on 10 184 genes between
pre-deployment PTSD case and control groups, and again between post-
deployment PTSD case and control groups (see Supplementary File for
more detailed information).

Gene network construction and module detection
Signed co-expression networks were built using weighted gene co-
expression network analysis (WGCNA)13 in R. A total of 10 184 genes were
used to construct each network. To construct the networks, the absolute
values of Pearson correlation coefficients were calculated for all possible
gene pairs and resulting values were transformed so that the final matrix
followed an approximate scale-free topology (see Supplementary File for
detailed information). The WGCNA dynamic tree-cut algorithm was used to
detect network modules. In order to determine which modules, and
corresponding processes were most associated to PTSD related states, we
ran singular value decomposition on each module’s expression matrix and
used the resulting module eigengene (ME), which is equivalent to the first
principal component,13 to represent the overall expression profiles for each
module. For each gene in a module, module membership (kME) was
defined as the correlation between gene expression values and ME expres-
sion. Genes with high kME inside co-expression modules are labeled as hub
genes.13 GS was calculated as the –log10 of the P-value generated for each
gene within a particular module using a moderated t test and is a measure
of the strength of differential gene expression between PTSD cases and
controls. MS was calculated as the average GS within each module (see
Supplementary File for more information).

Statistical analyses
All gene-set overlap analyses were performed by assessing the cumulative
hypergeometric probability using the phyper function in R.

Enrichment analyses
Module enrichment was assessed three ways. First, general module
enrichment categories were obtained using gene ontology biological pro-
cesses from the DAVID database30 (http://david.abcc.ncifcrf.gov/). Second,
specific module enrichment categories were obtained using the WGCNA
function userlistEnrichment31 using modules as input-lists and curated
Reactome NCBI Biosystems pathways and terms32 as user-defined lists.
Finally, we downloaded the highly expressed, cell specific (HECS) gene
expression database compiled by Shoemaker et al.33 to assess cell-type
specific enrichment results, here cell-type marker lists were used as a user-
defined lists. All module genes were used for enrichment analyses using a
FDR corrected P-valueo0.05 as significant.

Data availability
RNA-Sequencing and microarray gene expression data for Dataset 1 and
Dataset 2 are freely available at the Gene Expression Omnibus. (http://
www.ncbi.nlm.nih.gov/geo/). RNA-Seq gene expression data from Dataset
1 can be found under accession number GSEXXXX and microarray gene
expression data from Dataset 2 can be found under accession number
GSEXXXX.
Full Methods and any associated references are available in

Supplementary Methods.

RESULTS
We analyzed two different gene expression datasets generated
from RNA-Seq (Dataset 1, Table 1) and microarray (Dataset 2,
Supplementary Table 1) using peripheral blood leukocyte (PBL)
samples taken from U.S. Marines pre- and post-deployment. We
aimed to characterise the prognostic and diagnostic molecular
signatures of PTSD by studying transcriptional differences at the
systems-level at pre-deployment and post-deployment separately.
Initially, WGCNA was used in Dataset 1 to assess module
preservation between PTSD cases (N= 47) and controls (N= 47)
for the pre- and then the post-deployment time point (see
Supplementary File for complete description). This analysis
identifies large differences in gene co-regulatory patterns, as
being disrupted or created in PTSD cases relative to controls, or
vis-versa. However, we observed strong preservation statistics
between the two groups indicating similar fundamental gene co-
regulation within PTSD cases and controls, suggesting that major
changes in the underlying gene-gene connectivity are not a basis
for the pathology of this disorder (Supplementary Table 2). As a
result we used the higher confidence and completeness of a
combined network of case and control data.

Differential module expression post-deployment in Dataset 1
We constructed a gene co-expression network from a combina-
tion of PTSD cases (N= 47) and controls (N= 47) post-deployment
using RNA-Seq expression data from Dataset 1 (Figure 1). This
analysis identified nine modules (fully characterised in Supple-
mentary Table 3) that were first examined for enrichment of
differentially expressed genes. Two modules (M1A and M1B) were
enriched for genes identified as differentially expressed between
PTSD cases and controls, reflected by an elevated module
significance (MS) value (Figure 2a). To determine if the overall
expression of modules M1A and M1B were significantly associated
with PTSD group status, we calculated differences in module
expression using module eigengene (ME) values (See Materials and
Methods for complete description of ME). Consistent with results
using MS, expression of module M1B was significantly higher in
the PTSD resilient control group (P= 0.004 and Figure 2b)
suggesting a positive correlation to PTSD resiliency, meanwhile
expression of module M1A was significantly higher in the PTSD
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Figure 1. Hierarchical cluster tree and post-deployment module
structure in Dataset 1. Hierarchical cluster tree (dendrogram) of the
combine post-deployment network of PTSD cases (N= 47) and
controls (N= 47) comprising 10 184 genes. Each line represents a
gene (leaf ) and each low-hanging cluster represents a group of co-
expressed genes with similar network connections (branch) on the
tree. The first band underneath the tree indicates the nine detected,
and subsequently analyzed, network modules. Genes shaded in grey
were not assigned to a particular module and represent background
noise. For a comprehensive functional annotation of each module
and calculation of all significant module-trait relationships see
Supplementary Table 3.
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group (P = 0.02, Figure 2b). Subsequently, ME values for each
module were correlated to all clinical parameters, found in Table 1,
to determine module-trait relationships. The ME for module M1B
was significantly correlated to post-deployment PTSD resilient
controls (r= 0.29, P= 0.005), negatively correlated to post-deploy-
ment CAPs and PCL (CAPs, r =− 0.27, P = 0.009; PCL r =− 0.28,
P= 0.007) and negatively correlated other measures of CAPS
(Supplementary Table 3) but not correlated to any other measured
clinical variable, suggesting that differential gene expression in
M1B was not confounded by recorded measurements such as
body-mass-index, smoking, or alcohol consumption. Genes in M1B
were expressed to a greater extent in PTSD resilient controls
(Figure 2b) while enrichment analysis revealed a significant asso-
ciation with hemostasis, platelet activation and wound healing
(Figure 3a). Further, enrichment for cell-type specificity revealed
on over-representation of erythroid expression markers (blood
platelets). Hub genes are those most strongly correlated to the ME
value for a particular module and represent possible disease asso-
ciated markers,13 in this case putative PTSD-resiliency markers. The
top 5 hub genes in M1B (C6orf25, CTDSPL, ITGB3, PRKAR2B and
TUBB1) were are all associated with hemostasis and in particular,
with platelet regulation and function34–37 (Figure 3b).

The ME for module M1A was significantly correlated to PTSD
cases (r= 0.23, P= 0.03), post-deployment CAPs criteria of avoid-
ance (CAPSCA, r= 0.32, P= 0.002) and post-deployment CAPs
criteria of re-experiencing (CAPSBs, r= 0.2, P= 0.05) but to no other
variables (Supplementary Table 3). Genes in M1A were over-
expressed in PTSD cases (Figure 2b) while enrichment analysis
revealed a significant association with immune response as exem-
plified by innate responses mediated by interferon (IFN) signalling
(Figure 3c), as well as with monocyte specific markers. The top 5
hub genes in M1A included IFI35, IFIH1, PARP14, RSAD2 and
UBE2L6; all well described interferon stimulated genes38 and here
considered putative PTSD-associated markers (Figure 3d).

Differential module expression pre-deployment in Dataset 1
It is unclear whether the modules identified post-deployment are
causal of PTSD development or are simply a consequence of the
disorder. To determine if any post-deployment modules could be
re-identified and thus associated as causal modules, we con-
structed a gene co-expression network combining RNA-Seq gene
expression data from PTSD-risk cases (N= 47) and controls (N= 47)
pre-deployment in Dataset 1. Twenty-two pre-deployment
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Figure 2. Module significance (MS) and module eigengene (ME) expression boxplots. MS was measured across all pre- and post-deployment
modules in Dataset 1. WGCNA detected ten modules post-deployment from a combination of PTSD cases and control (a) and twenty-two
modules at pre-deployment from a combination of PTSD risk cases and controls (c). The y-axis indicates MS by calculating the average –log10
P-values, generated by a moderated t test, for each gene within a particular module, when assessing differential expression between PTSD
cases and controls. Here, a kruskal-wallis P-value was used only for descriptive purposes and not inferential. Modules denoted with an asterisk
(*) have ME values significantly correlated to conditional states (i.e. PTSD cases or controls). Representative modules with high MS at post-
deployment and pre-deployment were investigated for module expression differences. Differences in ME expression were measured using a
two-tailed student’s t test on and a P-valueo0.05 is considered significant. Boxplots are displayed for each main group. Significant differences
in ME expression were observed in post-deployment modules M1B and M1A (b) and in pre-deployment module M2A (d).
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modules were identified (fully characterised in Supplementary
Table 4) whereby a single module (M2A) was enriched for
differentially expressed genes between PTSD-risk participants and
controls as reflected by an elevated MS value (Figure 2c). Along
the same lines, M2A module expression was significantly higher in
the PTSD risk group (P= 0.001 and Figure 2d). Module M2A ME
was significantly correlated to one variable, PTSD-risk (r= 0.32,
P= 0.002, Supplementary Table 4). Similar to module M1A that was
identified post-deployment, enrichment analysis of genes in M2A
revealed a significant association with innate immune responses,
IFN signalling and monocyte specificity (Figure 3e). The top 5 hub
genes were again associated with IFN signalling (DTX3L, IFIH1,
IFIT3, PARP14 and STAT2) (Figure 3f). Gene-set overlap analysis
compared all of the genes in M2A pre-deployment (n= 245) to
those in M1A post-deployment (n = 115) to reveal a significant
overlap (\= 108, P= 6.7e-181, Figure 4).

Validation of differential module expression post-deployment in
Dataset 2
To validate post-deployment findings in Dataset 1 we assessed
Dataset 2 for similar network properties in a combined network
analysis of PTSD cases (N= 24) and controls (N= 24) post-deploy-
ment. Out of 8 modules (full characterisation Supplementary Table
5), a single module (M3A) contained an enrichment of differen-
tially expressed genes (Supplementary Figure 2A) demonstrating a
modest, yet insignificant, increase in module expression within the
PTSD group (P= 0.1, Supplementary Figure 2B). The ME was
significantly correlated to post battle experience (r= 0.4, P= 0.004),
post-deployment CAPS (r= 0.32, P= 0.03) and weakly correlated to
a PTSD cases (r= 0.21, P= 0.1, Supplementary Table 5). The genes
in this module were over-expressed in PTSD cases relative to
controls (Supplementary Figure 2B) and enrichment analysis
revealed a significant association with innate immune responses,
IFN signalling and monocytes (Supplementary Figure 3A). The top

5 hub genes (DDX58, IFI35, IFIT5, PARP9 and ZBP1) were again all
associated with IFN signalling (Supplementary Figure 3B). A highly
significant overlap in post-deployment module genes across M1A
(n= 115) in Dataset 1 and M3A (n= 83) in Dataset 2 (\= 63,
P= 2.0E-105, Figure 4b) confirmed the identification of a
dysregulated innate immune module related to PTSD cases across
two independent datasets.

Validation of differential module expression pre-deployment in
Dataset 2
To re-confirm pre-deployment findings from Dataset 1, PTSD-risk
cases (N= 24) and controls (N= 24) pre-deployment were com-
bined from Dataset 2 and subjected to network analysis which
identified 11 modules (full characterisation in Supplementary
Table 6). A single module (M4A) was enriched for differentially
expressed genes between PTSD-risk cases and controls (Supple-
mentary Figure 2C). The PTSD-risk group displayed a significant
over-expression of module expression (P= 0.01, Supplementary
Figure 2D). The ME for M4A was significantly correlated to PTSD-
risk (r= 0.36, P= 0.01) and CAPs (r= 0.44, P= 0.002, Supplementary
Table 6). Moreover, enrichment analysis of M4A revealed a
significant association with innate immune responses, IFN signall-
ing and monocytes (Supplementary Figure 3C), and the top 5 hub
genes (PARP9, UBE2L6, STAT2, TRIM22 and GBP1) were again all
associated with IFN signalling (Supplementary Figure 3D). All
pairwise gene-set overlap analyses across modules M1A, M2A,
M3A and M4A revealed a highly significant overlap (Figure 4b) and
hub gene expression for these modules showed elevated
expression in PTSD groups when compared to controls both
pre- and post-deployment across both datasets (Supplementary
Figure 4). These results demonstrate the association of a
dysregulated innate immune module, related to IFN signalling,
which appears to define at least part of the pathophysiology of
PTSD through causal association to PTSD development.

Figure 3. Module characterization for Dataset 1. Enrichment analysis and correlation networks for modules M1B (a & b) and M1A
(c & d) identified post-deployment, and module M2A (e & f) identified pre-deployment in Dataset 1. Enrichment analysis was used to identify
the top 6 REACTOME ontology terms (black bars), the top 6 DAVID ontology terms (grey bars) and the most significant cell-type signature
(white bar) over-represented in the list of genes within each module. All terms were deemed significant as assessed by a hypergeometric test
FDR corrected P-value o0.05 displayed as a white line. The total number of genes within each significant term is denoted within the brackets
associated with that term. Gene-networks were constructed selecting the top 150 most significant connections ranked by kME. Nodes
represent genes and edges represent correlations. The top 5 hub genes, those most correlated to ME values, are shown in larger sizes.
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DISCUSSION
We investigated the high-order system-level properties of PTSD
using an unsupervised network-based approach (WGCNA) to
identify differences at the gene co-expression level, rather than

investigating at the individual gene level. Gene expression data
were generated by RNA-Seq (Dataset 1) and microarray (Dataset 2)
using PBL samples isolated from U.S. Marines pre- and post-
deployment to conflict zones (i.e. Iraq and Afghanistan). Our
comprehensive and prospective experimental design allowed the
investigation of both biological processes that define PTSD and
those driving the development of this disorder, and further,
allowed the re-confirmation of findings in an independent dataset.
This is the first time dysregulated gene networks specific for
innate immunity have been used to characterise causal and
consequential molecular signatures of PTSD and then to further
replicated these findings across independent datasets.
A novel finding from our network analyses was the identifica-

tion of modules related to hemostasis and wound responsiveness
expressed to a greater extent post-deployment in US Marines who
did not develop PTSD (Figure 2b), as in module M1B (Figure 3a).
Interestingly, the three other network analyses also detected
modules related to hemostasis and wound response with
significant overlap (M16 pre-deployment Dataset 1; M7 and M6
indented post- and pre-deployment in Dataset 2; Supplementary
Figure 5, Supplementary Tables 4). These other modules revealed
patterns of heterogeneous gene expression irrespective of group
status and time-point suggesting that these modules and
corresponding processes may infer wound resilience in only a
small subset of individuals. Along these lines, it has been well
documented that different degrees of stress will elicit different
stress responses (review39), and in particular, a response involving
blood platelets, has been shown to be a critical biomarker of
hemostatic, thrombotic, and inflammatory challenges to an
organism and a key player in cardiovascular disease and chronic
based stress, as in PTSD.40,41 Moreover, in a review of a large
number of studies examining various tissue types, it was found
that different types of psychological stress were associated with
impaired wound healing.42 A meta-analysis found an inverse
correlation (r=−0.42) between psychological stress and wound
healing43 supporting the positive association between wound
healing and PTSD resilience (r = 0.29, P= 0.005) found in this
study. This suggests that high levels of stress may hinder proper
wound healing during/after battlefield trauma, although the
degree of such stress appears to be a key factor for establishing
associations with the hemostatic system. Our central finding was
the identification of a dysregulated innate immune module
associated with the development of PTSD (Figures 2 and 3,
Supplementary Figure 3), illuminated by the replication of
modules post-deployment (M1A and M3A) and those pre-
deployment (M2A and M4A) that could be associated with PTSD.
These findings suggest that differences in innate immunity
modules were not simply a consequence of the PTSD state post-
deployment but also have causal relevance for PTSD development
and explain at least part of the pathophysiology of the disorder,
exemplified by their identification pre-deployment. These results
highlight our differential expression analyses (Supplementary
Figure 1) and our previous reports of C-reactive protein (CRP), a
general marker of immune activation and inflammation, and 5’-
oligoadenylate synthetase genes (i.e. OAS1, OAS2, OAS3) as
markers of the antiviral interferon response, that were associated
with an increased risk of developing PTSD.44,12 However, our
current findings dramatically extend these results by showing that
the IFN response is being modulated to a much greater extent
than previously thought pre- and post-deployment. Notably, a
number of single case studies have reported that treatment of
hepatitis C virus (HCV) infected PTSD subjects with recombinant
interferon (IFN- α2b) precipitated PTSD symptoms.45,46 In our
study, where subjects were not receiving IFN therapy, it is unclear
what is stimulating the IFN response.
Our observations lead to several fundamental questions and

some putative solutions. First, how does one interpret the over-
expression of innate immunity genes found prior-to trauma? One
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Figure 4. Venn Diagram of Innate Immune Modules across Dataset 1
and Dataset 2. Venn Diagram (a) depicting significant overlap in
genes belonging to modules M1A post-deployment and M2A pre-
deployment in Dataset 1 as well as modules M3A post-deployment
and M4A pre-deployment in Dataset 2. Gene overlap (∩ ) with
associated hypergeometric P-value, in italics, are depicted for all
pairwise comparisons of module genes (b). The overlap identified 51
genes found across all four analyses (c) which are displayed in the
table along with the corresponding kME rank (i.e. rank of
connectivity) for each gene within a particular module. A high rank
indicates hub gene status (i.e. PTSD risk and PTSD associated
markers). Numbers in bold outline the top 10 hub genes across each
module, respectively. Genes are ordered accordingly to M2A kME.
All 51 genes are displayed via heatmap in Supplementary Figure 4.
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possible explanation is that both acute and severe stress,
predictors in their own right for PTSD, are also associated with
the hyper-activation of the immune system and subsequent
inflammation.47,48 An alternative hypothesis is that stress, patho-
gens and/or high viral loads may ‘prime’ the immune system,
driving the IFN response, altering a subsequent response to
trauma. Along these lines, studies focusing on the gut-brain
barrier have shown that intestinal mucosal dysfunction, defined as
increased translocation of gram-negative bacteria (leaky gut),
plays a role in the inflammatory pathophysiology of depression
suggesting that differences in gut flora may stimulate an IFN
response.49 Second, does a dysregulated innate immune module
pre-deployment hold predictive value? Our previous work
constructing a prognostic classifier from Dataset 2 pre-
deployment participants12 suggests that immune-related genes
do hold predictive value although these results have not yet been
replicated across larger datasets using machine-learning methods.
Inferring the prognostic relevance of network-based applications
remains challenging. However, cross-referencing our findings with
this previous work suggests that network statistics, and our innate
immune modules, do have potential to contain predictive value.
Third, out of the entire network of pairwise correlations between
genes across the transcriptome, are the most informative genes
interconnected within similar modules or spread out across
numerous modules? A possible limitation of this study was that
by analyzing co-regulated modules of genes we may have missed
individual genes, which do not correlate within our modules of
interest although are of functional relevance to PTSD. For
example, previous reports specifically target FKBP5 and STAT5B
as differentially expressed biomarkers3–8,11,12 although they were
not assigned to co-expressed modules nor found to be
significantly differentially expressed between PTSD cases and
controls. Finally, of what relevance is PBL gene expression for a
disorder primarily associated with the brain? In this study we
identify innate immunity and IFN signalling genes whose
expression was elevated in PBLs both before and after the
development of PTSD (Figure 2 and Supplementary Figure 4).
Although the recruitment of such signalling could be triggered by
various factors, they ultimately release toxic compounds including
degradative enzymes and reactive oxygen species that can impair
cellular processes.50–53 It could be hypothesized that the
accumulation of these compounds in the blood prior-to-deploy-
ment may be detrimental to the brain if the integrity of the blood-
brain-barrier (BBB) was then compromised by injury (e.g. TBI). An
increasing body of evidence indicates that changes in the blood
may seed pathology in the brain across various disorders. In a
recent Multiple Sclerosis study, Minagar and Alexander54 investi-
gate the association of INF with the BBB suggesting that IFN-γ and
other proinflammatory cytokines (TNF-α and IL-1β) disrupt the BBB
through a variety of mechanisms. Further, Alzheimer’s disease
models suggest that breaches in the BBB lead to leakage into the
brain of blood-borne molecules that are toxic to neurons and
cause neurodegenerative changes.55 Future studies investigating
the role of the BBB in PTSD may provide a detailed explanation for
a specific course of PTSD development. In summary, our data
provide a global framework for previously unknown molecular
aspects of PTSD and describe a new context concerning the
complex pathophysiological nature of PTSD development. Speci-
fically, modules of co-expressed genes associated with the innate
immune response and IFN signalling appear to be implicated in
the development of PTSD and continue to persist once the
disorder is established. Modules associated with hemostasis and
wound healing may contribute to resilience against developing
PTSD. It is hoped that this study will lead to future work
confirming the importance of differences in innate immune
factors to the development of PTSD and the role of platelets in the
stress response. Ideally, these findings will allow for advanced
PTSD detection, which could delay or abrogate PTSD development

by identifying susceptible service members prior to deployment
to conflict zones by either removing the causal path (i.e. trauma
exposure) or through early intervention of new therapies to
modulate the interferon signature.
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a b s t r a c t

In spite of advances in understanding the cross-talk between the peripheral immune system and the
brain, the molecular mechanisms underlying the rapid adaptation of the immune system to an acute
psychological stressor remain largely unknown. Conventional approaches to classify molecular factors
mediating these responses have targeted relatively few biological measurements or explored cross-
sectional study designs, and therefore have restricted characterization of stress–immune interactions.
This exploratory study analyzed transcriptional profiles and flow cytometric data of peripheral blood
leukocytes with physiological (endocrine, autonomic) measurements collected throughout the sequence
of events leading up to, during, and after short-term exposure to physical danger in humans. Immediate
immunomodulation to acute psychological stress was defined as a short-term selective up-regulation of
natural killer (NK) cell-associated cytotoxic and IL-12 mediated signaling genes that correlated with
increased cortisol, catecholamines and NK cells into the periphery. In parallel, we observed down-
regulation of innate immune toll-like receptor genes and genes of the MyD88-dependent signaling
pathway. Correcting gene expression for an influx of NK cells revealed a molecular signature specific
to the adrenal cortex. Subsequently, focusing analyses on discrete groups of coordinately expressed genes
(modules) throughout the time-series revealed immune stress responses in modules associated to
immune/defense response, response to wounding, cytokine production, TCR signaling and NK cell
cytotoxicity which differed between males and females. These results offer a spring-board for future
research towards improved treatment of stress-related disease including the impact of stress on cardio-
vascular and autoimmune disorders, and identifies an immune mechanism by which vulnerabilities to
these diseases may be gender-specific.

� 2015 Published by Elsevier Inc.

1. Introduction

Chronic psychosocial and emotional distress impact immune
function which leads to increased risk for disease. Current
estimates forecast that by year 2030, stress-related pathologies

will lead as the most debilitating and widespread health disorders
(Mathers et al., 2008). At the same time, while chronic stress-
related effects upon the immune system are uniformly deleterious,
acute stress appears to have both protective and adverse effects.
For example, acute stress can enhance the acquisition and expres-
sion of immunoprotection by activation of bodily defences prior to
wounding or infection (Ackerman et al., 2002; Amkraut et al.,
1971; Charney, 2004; Dhabhar, 2009), or alternatively induce
immunopathology via exacerbating autoimmune inflammation,
with respiratory and cardiovascular consequences (Al’Abadie
et al., 1994; Black, 2006; Bosch et al., 2003; Dhabhar et al., 1995;
Garg et al., 2001). The dissociation between excitatory and inhibi-
tory molecular mechanisms remains incomplete. A more detailed
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understanding of immunomodulation throughout acute stress in
humans is necessary not only to clinically reduce immunopathol-
ogy, but also to harness stress-related immunoprotective effects.

One primary mechanism by which acute psychological stress
induces immune response is through rapid changes in leukocyte
distributions in the peripheral circulation (Bosch et al., 2005).
Studies investigating acute short-term stressors in humans, such
as public speaking, have reported brief increases of natural killer
(NK) cell numbers and other leukocyte subtype cell numbers, a
reduction in lymphocyte proliferation, an increase in pro-
inflammatory cytokine production, and reduced healing capacity
of the skin (Altemus et al., 2001; Segerstrom and Miller, 2004).
Studies of acute (psychological) stress due to physical danger have
used first-time tandem skydive (Mujica-Parodi et al., 2014;
Schedlowski et al., 1993), as this challenge has the advantage of
representing real risk, eliciting reliable effects, and yet permitting
a high degree of experimental control. Studies using this paradigm
report transient increases of T cells and NK cells in the blood, as
well as a parallel increase in NK cell cytotoxic activity. This sug-
gests that changes in leukocyte numbers may be an important
mediator of apparent changes in leukocyte activity. Comparably,
an equivalent study of bungee jumping reported increases in neu-
trophils, pro-inflammatory monocytes, and CD8+ T cell numbers
following the jump (van Westerloo et al., 2001).

While these studies are suggestive, one important limitation
until recently has been the lack of computational and molecular
approaches for large-scale immune system monitoring. Microarray
analysis of blood transcriptional profiles offers a means to investi-
gate immunological mechanisms relevant to acute psychological
stress on a genome-wide scale. To complement these data, net-
work analyses have been used in the field of immunology to iden-
tify the groups of coordinately expressed transcripts (modules)
that are involved in the response of immune cells to immunomod-
ulatory factors (i.e. acute stress). Indeed, the probability for multi-
ple transcripts to follow a complex pattern of expression across
dozens of participants throughout a time-series only by chance is
low, and such sets of genes should therefore constitute coherent
biologically meaningful transcriptional modules.

To exploit these capabilities, we performed a detailed molecular
and cellular analysis upon two cohorts of participants undergoing
their first-time tandem skydives. We first applied a comparative
analysis of peripheral blood leukocyte (PBL) gene expression
profiles between the four time-points (i) baseline, (ii) leading up
to, (iii) during, and (iv) after each skydive to identify a unique panel
of candidate stress responsive genes, which were validated by
RT-qPCR assays. An unsupervised network analysis was then used
to identify coordinately expressed genes (modules) involved in the
short-term variable immune response to acute stress while
considering gender-specific effects. Finally, the implications of
gene expression analysis with respect to cell subset changes were
validated by flow cytometry on a second cohort of participants.

2. Materials and methods

2.1. Ethical approval

State University of New York at Stony Brook and the University
of California San Diego Institutional Review Boards approved this
study. Thirty-nine skydivers participated in this study consisting
of 13 subjects for RNA expression profiles (7 male, 6 female) and
26 subjects for flow cytometry (17 male, 9 female). All skydivers
provided written consent prior to participation. Participants were
recruited from individuals who independently contacted an area
skydiving school (Skydive Long Island, Calverton, NY) to schedule
their first-time tandem skydive. Skydivers were healthy adult
subjects with no history of cardiac or mental illness, as determined

by physical examination, medical history, and screening using the
Structured Clinical Interview for DSM-IV.

2.2. Subjects and sample collection schedule

The study protocol adhered to a strict timeline for sample and
data collection. Baseline blood samples were collected at 9:15 am
within one week prior to or after the day of the skydive during a
hospitalized testing that was time-locked to data collection during
the skydive day and therefore served as a baseline and control. On
the skydive day, all skydivers awoke at 6:30 am and arrived at
Stony Brook University Hospital at 7:30 am. ‘‘Pre-boarding” sam-
ples were collected at 9:15 am, 1 h before take-off. Take-off
occurred at 10:15 am, and the jump occurred at 10:30 am when
the airplane reached an altitude of 11,500 feet (3,505.2 m).
Skydivers landed at about 10:35 am and ‘‘post-landing” samples
were collected at 10:45 am. Skydivers were immediately
transported to Stony Brook University Hospital for a final blood
draw at 11:30 am (‘‘1 h post-landing” sample). Saliva was collected
every 15 min from 9:15 am to 11:30 am on both the skydive and
baseline hospital day.

2.3. RNA isolation and microarray gene expression analysis

Ten milliliters of blood were collected for each blood draw in an
EDTA coated vacutainer blood collection tube and leukocytes were
fractionated by passing the blood through LeukoLOCK filters. RNA
isolation was performed using the LeukoLOCK Total RNA Isolation
Kit and 100 ng of total RNA were used as starting material.
RNA with a 260/280 ratio >1.7 and a RIN >6 was considered suit-
able for microarray analysis. Synthesis of cDNA and biotinylated
cRNA and hybridization of cRNA to Illumina HumanHT12 v4
BeadChips (47,231 probes). Because the integrity of RNA was of
low quality for three subjects, partially paired data was analyzed
(Table S1).

2.4. Data pre-processing

Quality control of microarray data, variance-stabilizing
transformation (vst), robust-spline normalization and removal of
genes not expressed in any of the samples was performed in the
R statistical computing environment version 2.8.0, using the
Bioconductor package lumi (Du et al., 2008). Probes lacking gene
symbol annotations were removed while probes with duplicate
gene symbols were selected on the basis of having a higher average
expression across all samples. This final filtering step left a total of
18,129 probes that passed into our subsequent analyses. We used
two methods to identify outlier samples (2.5 standard
deviations ± mean) for quality control: clustering analysis based
on Pearson correlation and average distance metric and principal
component analysis (PCA) using the first three components.
This reduced our sample size from 50 subjects to a total 45 sub-
jects (Table S1). The resulting quality-control treated data were
used as input for differential expression and WGCNA analyses.

2.5. Differential gene expression analysis

We measured differential expression with respect to gene
expression at baseline for each time point using 18,129 probes,
correcting for gender differences. Differentially expressed genes
were assessed using the moderated t-test in LIMMA (Smyth,
2005), and unless otherwise specified, a highly statistically signif-
icant threshold of p-value <0.01 was used. To ensure that genes
found significantly differentially expressed post-landing were not
solely a consequence of increased proportion of NK cells, we used
a multivariate linear model to regress individual gene expression
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levels against NK-cell specific marker genes. The criteria for classi-
fication as a NK-cell marker were that genes needed to be: (1) iden-
tified in multiple publications linking them to the NK-cell type;
and (2) found intersecting across three independent cell type
specific expression databases [CTen (Shoemaker et al., 2011), IRIS
(Abbas et al., 2005), and HaemAtlas (Watkins et al., 2009)]. Like
others who have made similar corrections (Miller et al., 2013),
we note that the model is fairly robust to choice of marker genes
for cell type.

2.6. Weighted gene co-expression network analysis and module
characterization

The process of identifying discrete groups of co-regulated genes
can be divided into two steps. First, a signed global co-expression
network was built with weighted gene co-expression network
analysis (WGCNA) in R using normalized expression data of
18,129 probes. For each set of probes, a pair-wise correlation
matrix was computed using the Pearson correlation. WGCNA
weights the Pearson ‘correlation matrix’ by taking their absolute
value and raising them to the power b, producing an ‘adjacency
matrix’ (Langfelder and Horvath, 2008). This step emphasizes
strong correlations and punishes weak correlations on an exponen-
tial scale. We only consider those powers that lead to a network
satisfying scale-free topology at least approximately (R2 > 0.80)
so the mean connectivity is high and the network contains enough
information (e.g. for module detection). We found that our
microarray data needed a b of 9 to reach a scale-free fit. Second,
the adjacency matrix was used to calculate the topological overlap
measure (TOM), representing the overlap in shared neighbors. The
dissimilarity TOM was used as input for the gene dendrogram (i.e.
gene tree of closest pairwise neighbors), and co-expression mod-
ules were detected as branches of the gene dendrogram using
the hybrid tree-cut algorithm (Fig. S4) (Langfelder and Horvath,
2008). With minimal module size set to 15 probes and merging
threshold set to 0.1, 20 modules were detected.

To integrate physiological measurements with these
co-expression modules, we ran singular value decomposition of
each module’s expression matrix and used the resulting module
eigengene (ME), equivalent to the first principal component, to
represent the overall expression profiles for each module. Subse-
quently, MEs for all modules were correlated to recorded clinical
and physiological parameters such as nerve growth factor, epi-
nephrine, norepinephrine, beta endorphin, heart rate, state anxiety
trait and cortisol levels which provide a complementary assess-
ment of these potential confounders to that performed in standard
differential expression analysis. MEs are also useful for decreasing
the amount of sample space tested in terms of reducing the
number of multiple comparisons. A Bayes ANOVA (parameters:
conf = 12, bayes = 1, winSize = 5) (Kayala and Baldi, 2012) was used
to compare ME expression values for modules of interest across
time-points while taking into account gender differences. For each
gene in a module, intramodular membership (kME) was defined as
the correlation between gene expression values and ME
expression. Genes with high kME inside co-expression modules
are labeled as hub genes and are predicted to be of essential to
the function of the module.

2.7. Gene enrichment analyses

All differentially expressed genes passing a p-value <0.01 and
all 20 network modules with genes passing a kME >0.50 were
subjected to functional annotation. First, the ToppFunn module of
ToppGene Suite software (Division of Biomedical Informatics)
(Chen et al., 2009) was used to assess enrichment of GO ontology

terms associated to relevant biological processes and pathways
based on a one-tailed hyper geometric distribution with a Bonfer-
roni correction. All annotations must have contained at least two
genes to be allowed for testing. Second, to predict the involvement
of key cell types we utilized the cell specific (HECS) gene
expression database from the cell type enrichment (CTen) analysis
web-based tool compiled by Shoemaker et al. (2011) for a broad
characterization of cell type specific expression. For each gene list
supplied, the significance of cell type specific expression is deter-
mined using the one-tailed hyper-geometric distribution with a
Bonferroni correction across all cell/tissue types.

2.8. Protein interaction networks

Protein–protein and protein–DNA interactions for products of
differentially expressed genes at pre-boarding, post-landing and
1 h post-landing were determined using the direct interactions
algorithm in MetaCoreTM (GeneGo, St. Joseph, MI). The interactions
documented in MetaCoreTM have been manually curated and are
supported by citations in the literature record. When protein net-
works are constructed, they often reveal hub genes which repre-
sent transcription factors that control the regulation of multiple
target genes. Visualization of a direct protein interaction network
was facilitated by use of Cytoscape (Shannon et al., 2003).

2.9. Real time RT-qPCR

Twenty-two targets were chosen for RT-qPCR confirmation of
gene expression. To rule out false positives, 15 components of NK
cell-mediated cytotoxicity pathway and 3 transcription factors
were selected: killer cell immunoglobulin-like receptor, three
domains, long cytoplasmic tail, 1 (KIR3DL1), killer cell
immunoglobulin-like receptor, two domains, long cytoplasmic tail,
1 and 4 (KIR2DL1 and 4), killer cell lectin-like receptor subfamily D,
member 1 (KLRD1), killer cell lectin-like receptor subfamily C,
member 2 (KLRC2), natural cytotoxicity triggering receptor 3
(NCR3), Fas ligand (FASLG), perforin 1 (PRF1), granzyme B (GZMB),
lymphocyte-specific protein tyrosine kinase (LCK), zeta-chain
(TCR) associated protein kinase 70 kDa (ZAP70), linker for activa-
tion of T cells (LAT), SH2 domain containing 1B (SH2D1B), inter-
feron gamma (IFNG), CD247 molecule (CD247), runt-related
transcription factor 3 (RUNX3), FBJ murine osteosarcoma viral
oncogene homolog (FOS), interferon regulatory factor 1 (IRF1). To
rule out false negatives, 3 targets were selected: killer cell lectin-
like receptor subfamily K, member 1 (KLRK1), cathepsin C (CTSC)
and transcription factor T-box 21(TBX21, also known as T-bet).
One gene not detected by microarray was selected to test possibil-
ity of the presence of faulty probes – natural cytotoxicity triggering
receptor 1 (NCR1). When available, TaqMan� Gene Expression
Assays (Applied Biosystems by Life Technologies, Carlsbad, CA)
were selected that matched the region of the RNA targeted by
the corresponding Illumina probe as closely as possible; otherwise,
custom assays were designed and ordered from Integrated DNA
Technologies, Inc. (Corallville, IA). Reverse transcription reactions
were performed using qScriptTM cDNA SuperMix (Quanta Bio-
sciences, Inc., Gaithersburg, MD). GAPDH control assay was used
as a normalizer. Fold changes were obtained using DataAssist
software version 3.01 (Applied Biosystems by Life Technologies,
Carlsbad, CA) using the 2�DDCT method. To determine significance,
a paired t-test or Wilcoxon test (depending on the normality of the
distribution as assessed by Shapiro test) was performed using nor-
malized Ct values (target Ct – GAPDH Ct) between the time point of
interest and baseline samples. Genes with p-values <0.05 were
considered significant.

M.S. Breen et al. / Brain, Behavior, and Immunity xxx (2015) xxx–xxx 3

Please cite this article in press as: Breen, M.S., et al. Acute psychological stress induces short-term variable immune response. Brain Behav. Immun. (2015),
http://dx.doi.org/10.1016/j.bbi.2015.10.008



2.10. Flow cytometry

Two blood samples were collected from an additional cohort of
26 first-time tandem skydivers for flow cytometry analysis (one for
complete blood counts and a second tube for flow cytometry data
analysis). Aliquots from each blood sample were placed into 8
tubes (panels) and incubated with the mAb combinations using
the manufacture’s recommended procedures. After incubation,
sample processing for the flow cytometry analysis followed the
manufacture’s instruction using red blood cell (RBC’s) lysing solu-
tion (Becton Dickinson, San Jose, CA). After lysing the RBC’s, the
white blood cells were washed in phosphate buffered saline
(PBS), re-suspended in PBS buffer and analyzed using a FACS Cal-
iber 4-color flow cytometer (Becton Dickinson, San Jose, CA).
Expression of cell-surface proteins labeled with R-Phycoerythin
(PE) was quantified using the geometric means of the mean
florescence intensity (MFI). All mAb’s were purchased from BD
Biosciences Pharmingen (San Diego, CA).

3. Results

In this exploratory study, we induced ‘real-world’ acute psycho-
logical stress in response to a first-time tandem skydive. Subjects
reached altitude in fifteen minutes, jumped at 13,000 feet (4 km),
fell at terminal velocity for one minute, and parachuted for another
four minutes prior to landing. PBL samples and circulating hor-
mone measurements from thirteen participants (7 male and 6
female) were collected at baseline (9:15 am one week before/after
the skydive day), pre-boarding (9:15 am skydive day), post-landing
(10:45 am skydive day, immediately after landing) and 1 h post-
landing (11:45 am skydive day) (Fig. 1A).

3.1. Fluctuations in endocrine and autonomic measurements in
response to acute stress

Testosterone, norepinephrine, epinephrine, beta-endorphin,
nerve growth factor (NGF), salivary cortisol and heart rate were
monitored throughout both the baseline and skydive days as well-
established biomarkers for HPA-axis activation consequent to acute
psychological stress. Heart rates were elevated on the skydive day
relative to baseline as early as pre-boarding the airplane
(09:45–09:55) and remained elevated until 30 min post-landing
(10:30–11:00), peaking immediately before existing the airplane
(10:25–10:30, p = 6.04E�05) (Fig. 1B). Salivary cortisol measure-
ments were taken every 15 min, starting pre-boarding (09:15) to
1 h post-landing (11:35) at both the baseline and skydive days. On
the skydive day, a significant increase in salivary cortisol was
observed immediately before exiting the plane (10:15,
p = 8.0E�03) and peaked between jumping and 1 h post-landing
(10:30 p = 5.0E�04; 10:45, p = 5.0E�03; 11:00, p = 2.0E�02)
(Fig. 1C) compared to the same time-points at baseline. Amoderate,
yet insignificant, increase of circulating testosterone, beta-
endorphin and NFG was observed from baseline to post-landing
(Table S1). Circulating levels of norepinephrine and epinephrine
increased post-landing relative to baseline (p = 4.0E�02,
p = 3.0E�02) (Fig. 1D–E). Heart rate, salivary cortisol and
catecholamine levels returned to baseline levels one-hour post-
landing. These patterns support stress-induced HPA activation that
occurred in response to the stress of skydive. Therefore, gene
expression signatures that closely followed changes in these
physiological responses were expected.

3.2. Identification of candidate acute stress responsive genes

To identify stress response genes that were non-gender specific,
PBL gene expression profiles were corrected for gender differences

at pre-boarding, post-landing and one-hour post-landing relative to
baseline. Differentially expressed genes (all p < 0.01) were identi-
fied pre-boarding (N = 94), post-landing (N = 373) and one-hour
post-landing (N = 121) relative to baseline (Fig. 2A and B; for lists
of differentially expressed genes see Table S2). The majority of gene
expression differences were detected at post-landing and visual-
ized on a heatmap to compare expression levels of these genes at
other time-points (Fig. 2C). Genes modulated pre-boarding and
one-hour post-landing displayed no functional characteristics or
leukocyte cell type specificity. However, of the 373 differentially
expressed genes identified from baseline to post-landing, NK cell
cytotoxicity and IL-12 signaling genes, including IFN-c, were up-
regulated (Fig. 2D). Genes related to MyD88-dependent toll-like
receptor (TLR) signaling tended to show decreased expression.
Additionally, cell type enrichment analysis revealed a significant
enrichment of up-regulated genes post-landing specific to CD56+

NK cells, and to a lesser extent CD8+ T cells (Fig. S3A).
Key genes, including those encoding transcription factors,

involved in mediating stress–immune interactions were discov-
ered through interactome analysis of all differentially expressed
genes, utilizing validated direct protein–protein interaction (PPI)
information from MetaCoreTM (Fig. S1). This analysis revealed the
up-regulation of transcription factors RUNX3, FOS, JUN of the innate
immune system and cyclin-dependent kinase inhibitor 1A
(CDKN1A) and zeta-chain (TCR) associated protein kinase 70 kDa
(ZAP70) of the acquired immune system. Mitogen-activated
protein kinase 3 (MAPK3), malic enzyme 2 (ME2) and guanine
nucleotide binding protein (GNAI) mediating innate immune
events were down-regulated.

3.3. RT-qPCR validation of selective NK cell cytoxocity response

A set of independent RT-qPCR assays were used to verify differ-
entially expressed genes (from microarray data) post-landing. The
RT-qPCR analysis was conducted on 22 of the differentially
expressed genes that play a key role in the NK cell cytotoxicity
response (Fig. S2). These genes include those that encode inhibi-
tory receptors (KIR2DL1, KIR3DL1) and activating receptors
(KIR2DL4, KLRC2, KLRD1, NCR3), classical MHC class 1 molecules
(HLA-C, B, E, G) which bind to the receptors, adapter molecules
for activating receptors (SH2D1B, CD247), signal transduction
molecules (LAT, LCK, ZAP70) important for NK and T cell activation,
cytolytic granules (PRF1, GZMB), and transcription factors (RUNX3,
FOS). Based on previous reports of NK cell mobilization into blood
in response to acute stress, it was probable that a significant num-
ber of genes would map to NK cell mediated cytotoxicity pathway
(Altemus et al., 2001; Schedlowski et al., 1993). However, not all
well characterized NK cell related molecules, pro- and anti-
inflammatory cytokines, receptors and transcription factors were
differentially expressed (Table S3). For example, activating recep-
tors NCR1 and KLRK1, cytolytic granule CTSC and transcription fac-
tor TBX21 were not dysregulated; gene expression was confirmed
by RT-qPCR (Fig. S2). These results suggest a precise and selective
regulation of NK cell molecules and inflammatory properties of the
innate and acquired immune system during acute stress, which are
not accounted solely by an influx of NK cells into the periphery.

3.4. Identification of molecular alterations beyond NK cell subset
differences post-landing

To account for NK cell type differences underlying differential
gene expression changes from baseline to post-landing, a linear
regression model was created taking into account expression of
major NK cell markers. In total, four NK cell markers were selected
that were consistently found across three different cell type-
specific expression databases (Abbas et al., 2005; Shoemaker
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et al., 2011; Watkins et al., 2009): CLIC3, KLRF1, KIR2DL3 and
KIR3DL1. Accounting for NK cell type composition at post-landing
revealed �15% of the previously identified differentially expressed
genes remained significant. Genes encoding for FOS and GZMB
were among the most up-regulated genes surviving this correction,
whereas CLC and PAPSS1 were among the most down-regulated
(Table S2). Functional enrichment analysis revealed that genes cor-
responding to NK cell mediated cytotoxicity and graft-vs.-host
pathways were no longer significant. However, a significant
up-regulation of genes enriched for IL-12 mediated signaling
(FOS, RELB, CD247, GZMB, IL2RB), cytotoxic T-lymphocyte (CTL)
mediated immune response (CD247, PRF1, GZMB) and downstream
signaling in naive CD8+ T cells remained significant albeit to a les-
ser extent (Table S2E). A most interesting finding resulting from
this correction was a significant enrichment of genes specific to
the adrenal cortex, a key mediator of the stress response (Fig. S3).

3.5. Identification and functional annotation of gene co-expression
modules

To identify coordinately expressed genes (modules) involved in
the short-term variable immune response to acute stress, unsuper-
vised WGCNA was performed. The analysis identified 19 distinct

co-expression modules and 1 module representing all background
genes that could not be clustered into any module (Fig. S4), each
with a distinct expression pattern across all four time-points. Sub-
sequently, all modules were functionally annotated using the top
significant biological process, pathway and cell type for each indi-
vidual module (all Bonferroni p < 0.05) (Table S4).

3.6. Functional gene co-expression modules correlate with stress
induced changes in stress hormones

Next, we sought to determine the relationships between the 20
modules identified above and the observed physiological and hor-
monal fluctuations throughout the stress response. To integrate
these multi-scale data types, module eigengene (ME) values were
correlated to each time-point and all recorded subjective and phys-
iological traits (Fig. S5). Briefly, ME value is the first PC of module
expression and summarizes the main trend of expression within a
module. Among the modules with high association with time-
points and physiological traits, the ME of a module specific for
‘Cytokine Production’ was negatively correlated to post-landing
(r = �0.29, p = 0.05) as well as fluctuations in circulating nore-
pinephrine (r = �0.32, p = 0.03). The ME of modules associated to
‘T Cell Receptor (TCR) Signaling Pathway’ and ‘NK Cell Mediated
Cytotoxicity’ were positively correlated to post-landing (r = 0.28,
p = 0.06; r = 0.57, p = 4E�05 respectively). Moreover, the ‘NK Cell
Mediated Cytotoxicity’ module was positively correlated to
norepinephrine (r = 0.39, p = 0.007) which was expected given
elevated norepinephrine and NK cell specific gene expression
peak post-landing and return to baseline levels one-hour later
(Figs. 1D and 2C). Of interest, the expression pattern of each
marker gene used in our linear model to correct differential gene
expression analysis (CLIC3, KLRF1, KIR2DL3 and KIR3DL1) showed
strong correlation to the ME of this particular module, confirming
that the genes for our linear model were appropriately chosen. The
ME of a ‘Hemostasis’ module showed gradual change from nega-
tive to positive correlation from baseline to one-hour post-
landing and was significantly correlated to beta-endorphin fluctu-
ations (r = 0.32 p = 0.03). Additionally, the ME for a module
involved in ‘Oxygen Uptake and Carbon Dioxide Release’ was pos-
itively correlated to heart rate (r = 0.38, p = 0.01) and salivary cor-
tisol levels (r = 0.43, p = 0.003), highlighting the interaction
between the cardiovascular and respiratory systems. Most inter-
estingly, including gender as a discrete measure revealed that
many modules were either positively or negatively correlated to
gender differences (Fig. S5) suggesting gender-specific expression
patterns within each of these modules.

3.7. Gender-specific peripheral immune activation evident by
divergent expression profiles within functional co-expression modules

The extent of co-expression differences was visualized through-
out the stress response considering gender, averaging ME values
for seven males and six females at each time-point. A Bayes ANOVA
was used to compare ME expression values for modules of interest
across time-points while taking into account gender differences
(Fig. 3). The ‘NK cell mediated cytotoxicity’ and ‘Ribosome Biogen-
esis’ modules showed intensified expression post-landing in males
relative to females (Fig. 3A and B), whereas the expression of the
‘TCR Signaling Pathway’ module was highest one-hour post-
landing in males relative to females (Fig. 3C). Co-regulated genes
specific to ‘Hemostasis’, which includes genes for blood coagula-
tion, showed a gradual increase in expression (Fig. 3D) for both
males and females peaking one-hour post-landing relative to base-
line. Strikingly, four modules specific to ‘Immune/Defense
Response’, ‘Response to Wounding’, ‘Cytokine Production’ and
‘Interferon Signaling’ (Fig. 3E–H) were down-regulated in males
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Fig. 1. Physiological changes observed throughout the sequence of events leading
up to, during, and after a first time tandem skydive jump. (A) The skydiving
paradigm and relevant time-points. (B). Heart rate measurements (bpm) were
obtained throughout the course of both baseline and skydive days. (C) Salivary
cortisol (pg/ml) was collected every 15 min from 9:15 am until 11:45 am on both
baseline and skydive days. (D) Norepinephrine (pg/ml) and (E) epinephrine (pg/ml)
were measured in duplicate and averaged at the corresponding four time points.
Black represents baseline day and grey represents skydive day. Error bars represent
95% confidence interval and (⁄) indicates p-value <0.05 based on non-parametric
Mann–Whitney U test. All p-values are reported in Table S1.
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post-landing and one-hour post-landing relative to females, while
ME expression either increased or remained unchanged.

3.8. Stress induces changes in leukocyte and lymphocyte subset
differential counts

Acute stress has been shown to cause a redistribution of leuko-
cytes throughout the periphery (Dhabhar, 2009). To fully charac-
terize changes in peripheral leukocyte and lymphocyte subsets
throughout acute psychological stress in the present study, a sec-
ond cohort consisting of 26 participants (17 male and 9 female)
was recruited under the same matching experimental design as
the gene expression cohort. Subsequent blood samples were sub-
jected to flow cytometry analysis. These quantitative cell-type data
were also used to better understand the extent of which gene
expression results may be affected by migrating cell types. Changes
within leukocyte and lymphocyte subsets were measured and dis-
played as both percentages and absolute cell counts combined
across both males and females (Fig. 4), as there were no strong dif-
ferences in cell type fluctuations between genders (Table S5).

Total leukocytes significantly increased from baseline to pre-
boarding and post-landing, returning to baseline levels one-hour
post-landing. There was a marked increase in the proportion and
absolute count of neutrophils pre-boarding, while the post-
landing proportion, albeit significantly greater than baseline, was
significantly smaller than pre-boarding. Eosinophil proportion
and absolute count reduced pre-boarding and remained low
post-landing and one-hour post-landing relative to baseline.

Monocytes and total lymphocytes showed similar patterns with
the lowest proportion and absolute cell counts pre-boarding.

Changes in lymphocyte subsets were also investigated (Fig. 4
and Table S5). The percentage of CD19+ B lymphocytes and abso-
lute B cell numbers were significantly reduced post-landing. Con-
versely, NK cells (defined as CD3�CD16+CD56+) were significantly
increased pre-boarding and post-landing. The percentage of CD3+

T lymphocytes were significantly reduced post-landing while abso-
lute number of T lymphocytes was significantly decreased pre-
boarding compared to baseline. Of the CD3+ lymphocytes, CD8+

and CD4+ T cell absolute counts significantly increased post-
landing relative pre-boarding, while CD4+ T cell proportions
decreased post-landing.

4. Discussion

This study describes the molecular and cellular response of the
human innate and acquired immune system in reaction to physical
danger. A first-time tandem skydive was used as a short-term lon-
gitudinal design to simulate acute psychological stress in a con-
trolled environment; the stressor induces a severe form of
emotional response aligned with distress related to fear (Carter
and Goldstein, 2011). Our exploratory study took a dual approach.
First, comparative analysis of PBL gene expression profiles between
time-points identified that most gene expression changes occurred
during/immediately after the stress response. Here, immediate
immunomodulation is observed as a selective up-regulation of
NK cytotoxicity genes, further validated with RT-qPCR assays. Cor-
recting for changes in NK cells post-stressor revealed a molecular

Fig. 2. Comprehensive depiction of gender corrected differentially expressed genes (all p < 0.01) leading up to and following acute psychological stress. (A) Volcano plots for
differentially expressed genes display extent of log fold-change compared to the –log10 p-value significance at pre-boarding, post-landing and one-hour post-landing
respective to baseline. (B) Overlap of down-regulated and up-regulated genes across time-points. (C) All differentially expressed genes identified from baseline to post-
landing. (D) Functional annotation of differentially expressed genes identified baseline to post-landing performed separately for up- and down-regulated genes. The top 4
most significant annotations (all p < 0.05 Bonferroni corrected) are shown for categories of biological processes and pathways (annotated with ToppGene) and cell types
(annotated with CTen). Genes involved in IL-12 signaling and MyD88-dependent pathway are displayed for quick referencing.
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signature specific to the adrenal cortex. Second, focusing our anal-
ysis on co-expressed modules revealed gender-specific peripheral
immune activation evident by hundreds of co-regulated genes
within several biologically annotated modules whose expression
differed between males and females. These discoveries provide a
useful characterization of acute stress–induced immune system
alterations with implications for the understanding and treatment
of stress-related disorders and gender vulnerability to stress-
induced pathologies.

4.1. NK cell stress susceptibility and selective regulation of NK cell
cytotoxic signaling

Although our flow cytometry data showed significant changes
in leukocyte subtypes in the course of the stressor, we also showed
that changes in observed gene expression profiles cannot be
explained solely by the fluctuation of different leukocyte subsets.
For example, peripheral neutrophils were elevated and peripheral
eosinophils were reduced in the periphery pre-boarding in antici-
pation of the stressor. The changes in cell composition were paral-
leled by the up-regulation of 48 genes and the down-regulation of
46 genes, which were not associated to any functional annotations
or leukocyte cell type specificity.

One unexpected finding of our study is the selective
up-regulation of only a subset of NK cell genes post-landing
(confirmed by RT-qPCR Fig. S2), despite a pronounced 2.5-fold

increase of NK cells in the periphery (Fig. 4). The possible implica-
tions of this result may be explained through four phenomena.
First, it is possible that a subset of NK genes that displayed no
change in expression, were down-regulated in individual NK cells.
NK cell activity may be regulated post-transcriptionally, including
increases in translation and redistribution of receptors to the cell
surface, which is a likely mechanism due to a fast nature of the
response. Second, it is also possible that a specialized, character-
ized (e.g. CD56Lo (Bosch et al., 2005)) or not-yet characterized sub-
set of NK cells, expressing only a subset of specific markers is
mobilized into the periphery in response to stress. Third, since
gene expression was profiled from the mixture of cells, contribu-
tion of other leukocyte subsets that express overlapping sets of
genes cannot be ruled out. In particular, gene expression markers
for CD8+ T cells were slightly elevated post-landing compared to
baseline despite no change in CD8+ T cell frequency in blood
(Fig. 4). Even though NK cell-related genes are also expressed at
lower levels in these cells, a large change in their expression in T
cells can contribute to their expression change in total leukocytes.
Finally, although differential gene expression analyses were gender
corrected, it could be that the NK cell response is modulated to dif-
fering degrees between males and females as suggested by
WGCNA observed gender-specific differences (Fig. 3A).

While only �15% of the originally identified differentially
expressed genes were found to be dysregulated after correcting
for NK cells, the consistent up-regulation of cell toxicity transcript

Fig. 3. Gender specific differences in functional gene co-expression modules. ME values for modules of interest are evaluated across the four time-points comparing males
and females. Modules specific to (A) NK cell cytoxicity, (B) ribosome biogenesis, (C) TCR signaling pathway, (D) hemostasis, (E) immune/defense response, (F) response to
wounding, (G) cytokine production (H), interferon/cytokine signaling are displayed. Heatmaps display the extent to which expression profiles of the top 10 functional hub
genes, for each corresponding module, change in males and females across different time-points. White line spacers in heatmaps indicate the four time-points. The functional
annotation and number of genes within each module are displayed above the boxplots. A Bayes ANOVA was used on ME values to test for significance between males and
females, (⁄⁄) indicates p < 0.001 implying strong gender-specific differences throughout course of the stress response.
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GZMB and transcription factor FOS was evident. Proteolytic gran-
zymes, such as GZMB, and granulysin delivered from cytotoxic cells
via granule exocytosis cause activation of caspase-dependent
apoptosis in stressed or pathogenic target cells (Bernard et al.,
1999), which helps to explain functional annotations such as CTL
mediated immune response and apoptosis following the correc-
tion. The up-regulation of FOS, an early immediate gene which is
turned on in brain (Bernard et al., 1999), blood (Torres and Lotfi,
2007) and adrenal cortex and mediates physiological adrenocorti-
cotropic hormone-induced responses in adrenal cortical cells (Rui
Tian et al., 2014; Verstrepen et al., 2008), is consistent with the
enrichment of differentially expressed genes following NK cell cor-
rection associated with the adrenal cortex and the production of
cortisol (Fig. S3). This is an important observation and one that
may have been difficult to detect if gene expression was measured
for each cell type isolated independently.

4.2. Potential roles of IL-12 signaling and TLRs in response to acute
stress

The most pronounced effect following multivariate linear
regression to adjust for an influx of NK cells into the periphery
post-landing, was the consistent up-regulation of genes involved
in IL-12 mediated signaling (CD247, FOS, GZMB, IL2RB), and the
minor production of IFN-c. The IL-12 signaling pathway determi-
nes the type and duration of innate and adaptive immune response

in part by promoting NK cell cytoxicity as well as the differentia-
tion of naive CD4+ T cells into T helper 1 (Th1) cells via the produc-
tion of IFN-c. Here, up-regulation of IL-12 signaling may indicate
priming of the pro-inflammatory arm of the immune system. Such
immunomodulation creates an advantage during events such as
vaccination since a primed pro-inflammatory state is important
for vaccine-mediated T cell immune responses, which are induced
by most anti-bacterial and anti-viral vaccination strategies
(Dhabhar, 2009). Thus, these data suggest a more focused adaptive
immune response which under further emotional distress or anti-
gen presentation may provide a cytokine environment favorable
for Th1 polarization of the immune system.

These data also show the down-regulation of MyD88-
dependent pathway including signaling molecules MAPK3, CHUK
(i.e. IKK-a) and toll-like receptors (TLRs) 2, 6 and 10. In homeostatic
conditions, TLRs lead to NFjB activation and production of pro-
inflammatory cytokines IL1b, IL6 and TNFa, all involved in differ-
ent pathways for innate immune activation and defense (Rui Tian
et al., 2014; Verstrepen et al., 2008). Down-regulation of TLRs is
consistent with previous reports suggesting that increased cortisol
levels during acute stress may inhibit the NFjB, JAK-STAT and
MAPK signaling pathways (Kadmiel and Cidlowski, 2013;
Reichardt et al., 2002; Rui Tian et al., 2014; Webster et al., 2002).
Under repeated bouts of acute stress or chronic exposure to psy-
chosocial stress (and continued emotional activation), the response
of HPA axis to sustained stress is diminished and subsequently the
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Fig. 4. A quantitative measurement of the PBL cell lineage via flow cytometry. The analysis used a gating strategy based on the forward scatter/side characteristics of immune
cells from total leukocytes; granulocytes (CD45+), monocytes (CD14+), T cells (CD3+, CD4+, CD8+), B lymphocytes (CD19+) and NK cells (CD3-CD56+CD16+). The raw flow data is
presented as a percentage of gated cells (as indicated by the bar plots). To determine the absolute immune cell counts (as indicated by the line), leukocyte differential counts
from the complete blood counts results were used to produce estimates of the actual number of immune cells in the peripheral blood samples. Statistical analysis was based
on a Dunnet’s test multiple comparison of means, comparing measurements back to baseline. All corresponding p-values are presented in Table S5.
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effectiveness of glucocorticoids (e.g. cortisol) to regulate the
inflammatory response is altered as immune cells become insensi-
tive to its regulatory effects (Cohen et al., 2012). Consequently,
inflammatory pathways may become activated and initiate a neg-
ative feedback loop driving inflammation and promoting the devel-
opment of many diseases.

4.3. Gender-specificity of the acute stress response at the
transcriptional level and implications for stress-induced pathologies
more frequent in women

Another unexpected result stemming from our exploratory
gene co-expression approach was the gender-specific immune
response to acute stress (Fig. 3) despite similar cellular and hor-
monal alterations (Tables S1 and S5), which may have relevant
translational avenues. For example, it is widely accepted that
among individuals experiencing chronic mental stress, cardiovas-
cular disease (CVD) affects women more than men and gender-
specific effects of mental stress on the heart is a main component
of this disparity (Samad et al., 2014). While gender-specific differ-
ences in the psychobiological stress response have not been clearly
identified, they may provide valuable insight towards understand-
ing the differential cardiovascular risk in men and women. Pro-
cesses associated to CVD, such as TCR signaling, defense
response, response to wounding, cytokine production and inter-
feron signaling (Mehra et al., 2005) were differently regulated by
acute stress in males and females in our study (Fig. 3). These find-
ings may help to explain gender-specific predisposition to CVD and
emphasize these genes and pathways as potential tools which may
be able to measure an entire facet of CVD risk, the impact of mal-
adaptive molecular response to psychological stress in both sexes
and among women in particular. Moreover, since many inflamma-
tory disorders that are most common in women, such as autoim-
munity, are also exacerbated by psychological stress (Whitacre,
1999), gender differences in cytokine response to stress (Fig. 3G)
could mark an important underlying mechanism.

It is widely accepted that women suffer from chronic forms of
stress such as post-traumatic stress disorder (PTSD) (Becker
et al., 2007) more frequently than men, yet the reasons for this dis-
parity are not entirely clear. It has been proposed that these differ-
ences are not explained solely on the basis of exposure type and/or
severity (Sherin and Nemeroff, 2011) and that modulation of sex
steroids such as estrogen and progestoreone have implicated
changes in neurotransmitter systems involved in the stress
response. However, factors other than exposure must play a role
in the development of the disorder that might determine gender
vulnerability to PTSD, and these may include transcriptomic level
differences. While personalized medicine for such ubiquitous
pathologies confronts numerous biomedical and financial chal-
lenges, gender-based medicine may provide a more appropriate
medical platform, at the least for evaluating gender vulnerability
to stress-induced pathologies.

4.4. Putative blood-based biomarkers for discriminating anxiety-based
stress from related neuropsychiatric and central nervous system (CNS)
disorders

An important task for studies investigating peripheral mecha-
nisms of CNS disorders (multiple sclerosis, stroke and seizure) as
well as panic attacks, myocardial ischemia, and related rodent
models of such disease (Achiron et al., 2004; Kim et al., 2014;
Samad et al., 2014; Yang et al., 2001, 2005), is the ability to disen-
tangle molecular mechanisms more closely associated with the
clinical presentation of disease rather than differences which are
psychogenic in nature. For example, in our study the most down-
regulated gene post-stressor and one-hour post-stressor was

IMAP2, and the most down-regulated transcription factor post-
stressor was ME2, as indicated by interactome analysis (Fig. S1).
In genome-wide studies, both genes IMPA2 and ME2 have been
reported as susceptibility genes in febrile seizures and idiopathic
generalized epilepsy (Arai et al., 2007; Greenberg et al., 2005;
Mas et al., 2004; Prasad et al., 2013). Recently, seizures have been
reported to occur following acute emotional stress (i.e. psy-
chogenic non-epileptic seizures) rather than the result of abnormal
electrical activity in the brain, as with epilepsy (Testa et al., 2012).
However, baseline human blood gene expression signatures of epi-
lepsy prior to drug treatment do not include dysregulation of
IMPA2 or ME2 (Piro et al., 2011; Yang et al., 2001, 2005). Moreover,
dysregulation of these genes was not observed in the brains of
rodents post-seizure (Harald et al., 2001). While these results
should be interpreted cautiously, the general inconsistencies
between these studies and the results presented here may provide
evidence for a role of IMPA2 and ME2 in differentiating between
psychogenic non-epileptic seizures from true epileptic seizures.

4.5. Hypoxia does not contribute to observed gene expression profiles

Studies using an exaggerated 12 h sustained poikilocapnic
hypoxic model system have noted the dysregulation of mRNA
expression specific to hypoxia-inducible factor 1 (HIF1A), GAPDH,
EPO, and VEGwithin the first two-hours (Pialoux et al., 2009). Thus,
there was a slight possibility that factors attributable to a short-
term exposure (i.e. 20 min) to high altitude (i.e. 13,000 ft.), such
as hypobaric hypoxia, could influence gene expression in subjects
during the skydive. Therefore, the expression of these mRNA spe-
cies was investigated. HIF1A was measured on the microarrays by
three probes: none of these probes were detected as significant in
our differential gene expression analysis (all p > 0.1). None of the
probes for other genes associated with hypoxic conditions such as
GAPDH, EPO or VEG (Pialoux et al., 2009; Zhong and Simons, 1999)
were dysregulated. We did observe the differential expression of
HIPK2 among the identified anticipatory genes at pre-boarding,
known to suppress HIF1A in hypoxia-mimicking conditions
(Nardinocchi et al., 2009). The early activation of HIPK2 may reflect
increased anticipatory heart rate and early rapid breathing in antic-
ipation to the skydive which may be working to suppress ‘hypoxia-
mimicking’ conditions in the PBL microenvironment.

4.6. Limitations and future direction

While we adjusted for cell type changes affecting global gene
expression, clear limitations of this study are the lack of transcrip-
tomic investigation on individual cell types and the ability to per-
form transcriptomic analysis and flow cytometric data analysis on
the same cohort of individuals. While gender specific differences
were observed across a small number of samples, the evidence of
hundreds of co-expressed functional modules throughout the sky-
dive is significantly robust. However, one important future direc-
tion would be to extend and replicate this exploratory study
using a larger cohort of participants.

4.7. Conclusion

Molecular mechanisms underlying the rapid adaptation of the
immune system to an acute stressor are still incompletely defined.
Our exploratory study profiled the PBL transcriptome throughout a
first-time tandem skydive, as a measure of intense acute psycho-
logical stress, to reveal a detailed response to acute stress at the
molecular level. A novel finding of the study is the degree of speci-
ficity of the immune response with respect to upregulation of a
subset of NK cell genes that cannot be solely attributed to the
influx of NK cells into the periphery in response to stress parallel
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by increases in cortisol and catecholamines. Correcting differential
gene expression analysis post-stressor revealed a molecular signa-
ture specific to the adrenal cortex. Network analysis stratified by
gender identified hundreds of genes within several functional co-
expression modules responding to stress in a gender-specific man-
ner. These results offer a spring-board for future research aimed
towards identifying therapeutic targets of stress-related disorders,
while underscoring the importance of gender-specific molecular
profiles which could be used to better understand gender vulnera-
bility to stress-induced disease.
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Candidate gene networks and blood biomarkers of
methamphetamine-associated psychosis: an integrative
RNA-sequencing report
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The clinical presentation, course and treatment of methamphetamine (METH)-associated psychosis (MAP) are similar to that
observed in schizophrenia (SCZ) and subsequently MAP has been hypothesized as a pharmacological and environmental model of
SCZ. However, several challenges currently exist in diagnosing MAP accurately at the molecular and neurocognitive level before the
MAP model can contribute to the discovery of SCZ biomarkers. We directly assessed subcortical brain structural volumes and
clinical parameters of MAP within the framework of an integrative genome-wide RNA-Seq blood transcriptome analysis of subjects
diagnosed with MAP (N= 10), METH dependency without psychosis (MA; N= 10) and healthy controls (N= 10). First, we identified
discrete groups of co-expressed genes (that is, modules) and tested them for functional annotation and phenotypic relationships to
brain structure volumes, life events and psychometric measurements. We discovered one MAP-associated module involved in
ubiquitin-mediated proteolysis downregulation, enriched with 61 genes previously found implicated in psychosis and SCZ
across independent blood and post-mortem brain studies using convergent functional genomic (CFG) evidence. This module
demonstrated significant relationships with subcortical brain structure volumes including the anterior corpus callosum (CC) and the
nucleus accumbens. Furthermore, a second MAP and psychoticism-associated module involved in circadian clock upregulation was
also enriched with 39 CFG genes, further associated with the CC. Subsequently, a machine-learning analysis of differentially
expressed genes identified single blood-based biomarkers able to differentiate controls from methamphetamine dependents with
87% accuracy and MAP from MA subjects with 95% accuracy. CFG evidence validated a significant proportion of these putative
MAP biomarkers in independent studies including CLN3, FBP1, TBC1D2 and ZNF821 (RNA degradation), ELK3 and SINA3 (circadian
clock) and PIGF and UHMK1 (ubiquitin-mediated proteolysis). Finally, focusing analysis on brain structure volumes revealed
significantly lower bilateral hippocampal volumes in MAP subjects. Overall, these results suggest similar molecular and
neurocognitive mechanisms underlying the pathophysiology of psychosis and SCZ regardless of substance abuse and provide
preliminary evidence supporting the MAP paradigm as an exemplar for SCZ biomarker discovery.

Translational Psychiatry (2016) 6, e●●; doi:10.1038/tp.2016.67; published online xx xxx 2016

INTRODUCTION
Methamphetamine (METH) is an N-methyl derivative of amphe-
tamine and a highly addictive psychostimulant severely affecting
the central nervous system.1 METH use is at epidemic levels in
several areas of the world and its global prevalence is estimated at
15–16 million people with several pockets of increased use in the
USA, Europe and Africa.2,3 Recent evidence ranked METH fourth
out of 20 of the most harmful drugs due to self-harm to the user.4

One reason for this is that METH provokes psychotic reactions in
an estimated 72–100% of all abusers.5,6

Methamphetamine-associated psychosis (MAP) has been con-
sidered a pharmacological and environmental model of schizo-
phrenia (SCZ) due to similarities in clinical presentation (that is,
paranoia, hallucinations, disorganized speech and negative
symptoms), response to treatment (neuroleptics) and presumed

neuromechanisms (central dopaminergic neurotransmission).7–9 It
is hypothesized that a better understanding of the molecular
mechanisms underlying SCZ may be accelerated via examination
of human models related to the disease. In this context, the MAP
model could quicken the discovery of risk biomarkers, screening
for subclinical disease, prognostics, diagnostics or disease staging.
However, several challenges currently exist in terms of accurately
diagnosing MAP on a molecular and cognitive level before the
MAP model can contribute to the discovery of SCZ biomarkers.
Genome-wide blood transcriptome profiling coupled with

network analyses provide a platform for identifying functionally
relevant biological markers of disease, permitting multi-scale data
integration.10 This is a critical point as acute and chronic effects of
MAP are widespread across the body and an integrative technique
determining relationships of biological markers with magnetic
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resonance imaging (MRI), life events (that is, stress, culture) and
psychometric measurements could provide key insights towards
cognitive and molecular mechanisms of MAP, and the versatility of
the MAP model in molecular psychiatry research. Complimentary,
machine learning provides a useful tool for in silico prediction of
candidate biomarkers.11 Further confirmation and validation of
these biomarkers may be accomplished by utilizing convergent
functional genomics (CFG) evidence. The CFG approach has
proven highly successful for moderately sized psychiatric cohorts
in reducing false positives and false negatives by drawing on
multiple disparate yet ‘convergent’ sources of external functional
genomic information across independent human studies.12–20

Collectively, these techniques hold great promise for the
prioritization and validation of candidate genes for MAP and their
relatedness to SCZ.
We present a preliminary integrative RNA-sequencing report

exploring peripheral blood gene expression among subjects
diagnosed with METH-associated psychosis (MAP), METH depen-
dency without psychotic symptoms (MA) and healthy control
subjects. The primary goal of this analysis was to best characterize
the molecular signatures defining MAP at the systems level and
again at the individual gene level to reveal a novel panel of MAP
blood biomarkers. An unbiased weighted gene co-expression
network analysis (WGCNA) was first used to identify co-expression
modules that were subjected to functional annotation and multi-
scale data integration collected from the same subjects. Subse-
quently, a multi-class machine-learning approach was used to
identify candidate blood biomarkers able to differentiate between
MA, MAP and healthy control subjects. CFG information was used
to validate the role of candidate gene networks and blood
biomarkers in the pathophysiology of MAP and confirm their
shared association to psychotic disorders and SCZ in independent
studies with the absence of METH.

MATERIALS AND METHODS
Participants
A total of 10 MAP subjects, 10 subjects with METH dependence without
developing psychotic symptoms (MA), and 10 healthy control subjects
were enrolled in this study. Gender (male) and age-matched (25.8 ± 6
years) right-handed subjects were recruited from drug rehabilitation
facilities, hospitals and communities in Cape Town, South Africa where all
the subjects were provided detailed study information and gave written
consent. Each subject underwent two assessment sessions. The first
session consisted of a detailed psychiatric interview and demographic and
substance variables were recorded. During the second session, approxi-
mately 1 week later, the patients were asked to fast and refrain from
smoking overnight, before blood was collected between 0900 and 1100 h.
This was followed by a brain scan. Clinical assessment was performed
using the Structured Diagnostic Interview for DSM-IV Axis I Disorders21 and
the patients completed a battery of self-report questionnaires including
the Life Events Questionnaire,22 Kessler Psychological Distress Scale
(K10),23 the Beck Depression Inventory,24 behavioural inhibition system/
behavioural activation system scale,25 Eysenck Personality Questionnaire—
Revised short scale26 (For detailed information regarding each of these
measures, see Supplementary File). Positive and negative symptoms within
the MAP group were rated using the PANSS (Positive and Negative
Syndrome Scale):27 PANSS positive subscale (14.5 ± 6.1), negative subscale
(22.0 ± 11.5) and total score (66.8 ± 26.1). Exclusion criteria comprised the
following: (1) additional substance dependencies other than nicotine and
METH for the MA and MAP groups, and any substance dependence other
than nicotine in the control group; (2) lifetime and current diagnosis of any
psychiatric disorders (other than MA dependence and MAP in the MA and
MAP groups); (3) a history of psychosis before MA abuse; (4) a medical or
neurological illness or head trauma; (5) a seropositive test for HIV; (6) MRI
incompatibilities or known claustrophobia. All the participants in the MAP
group were on treatment with neuroleptic medication (haloperidol) at the
time of testing. Polysubstance use was allowed to facilitate participant
recruitment including nicotine, cannabis and alcohol for all the study
groups. This study was approved (HREC REF 340/2009) by the University of
Cape Town Faculty of Health Sciences Human Research Ethics Committee.

MRI acquisition and image processing
The subjects in this study form part of a larger project investigating fronto-
temporal cortical and subcortical grey matter structures in MA and MAP.
The images were acquired on a 3 T Magnetom Allegra scanner (Siemens,
Erlangen, Germany) at the Cape Universities Brain Imaging Centre. A high-
resolution, T1-weighted, three-dimensional multi-echo MPRAGE sequence
(scan parameters: repetition time=2530 ms; graded echo time=1.53, 3.21,
4.89, 6.57 ms; flip angle = 7°; field of view=256 mm) produced 160 sagittal
images of 1 mm thickness. By acquiring four separate structural scans with
graded echo times and averaging those into a final high contrast image,28

the MEMPRAGE method creates structural images with low distortion and
high signal-to-noise ratio.
The MRI scans were analysed using the FreeSurfer software package v5.1

(http://surfer.nmr.mgh.harvard.edu/). Regional estimates of subcortical
volumes were assessed with a specialized surface-based reconstruction
and automatic labelling tool, which is described in detail elsewhere.29 In
summary, FreeSurfer processing includes motion correction, skull-strip-
ping, Talairach transformation, segmentation of subcortical white matter
and deep grey matter volumetric structures, intensity normalization,
tessellation of the grey matter/white matter boundary, automated
topology correction and surface deformation.

RNA isolation, library preparation and data availability
Blood was collected using PAXgene RNA tubes (Qiagen, Valencia, CA, USA)
and total RNA was extracted and purified in accordance with the PAX gene
RNA kit per manufacturer’s instructions. Globin mRNA was depleted from
samples using the GLOBINclear—Human Kit (Life Technologies, Carlsbad,
CA, USA). Subsequently, the quantity of all purified RNA samples was
measured on a nanodrop (56.6 ± 16.7 ng μl− 1) and the quality and
integrity measured with the Agilent 2100 Bioanalyzer (Agilent, Santa Clara,
CA, USA). All RNA integrity numbers were greater than 7 (8.4 ± 0.7).
The Illumina TruSeq Stranded Total RNA kit (Ilumina, San Diego, CA, USA)

was used for library preparation accordingly to manufacturer instructions
without any modifications. The 30 indexed RNA libraries were pooled and
sequenced using long paired-end chemistry (2x93 bp) on seven lanes
using the Illumina HiSeq2500. All the replicates were run for 2 × 40 million
reads per sample and all the reads were primary processed using Casava
v1.8.2 to transform primary base call files into fastq files. These raw RNA-
sequencing fastq data have been submitted to Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE74737.

Read trimming, mapping and quantification of gene expression
All the fragmented RNA-Seq reads were trimmed to 90 bp and low quality
reads were discarded using Trimmomatic30 options SLIDINGWIN-
DOW:90:10 MINLEN:90 CROP:90. Subsequently, all high-quality trimmed
reads were mapped to UCSC Homo sapiens reference genome (build hg19)
using TopHat v2.0.0.31 We used the estimated mean inner distance and
standard deviation between mate paired-ends as the -r and --mate-std-dev
parameters, respectively. TopHat calls Bowtie v1.1.132 to perform align-
ment with no more than two mismatches. We used the pre-built index files
of UCSC H. sapiens hg19, downloaded from the TopHat homepage (https://
ccb.jhu.edu/software/tophat/igenomes.shtml). Samtools33 was used to
convert bamfiles to samfiles and HTseq v0.6.034 was used to count all of
the mapped reads by htseq-count using parameters –stranded= reverse –q.

Data pre-processing
Raw count data measured 23 345 transcripts across 30 subjects. Unspecific
filtering removed lowly expressed genes that did not meet the
requirement of a minimum of 20 reads in at least 10 subjects. A total of
12 281 transcripts were retained, then subjected to edgeR VOOM
normalization,35 a variance-stabilization transformation method. Normal-
ized data were inspected for outlying samples using unsupervised
hierarchical clustering of subjects (based on Pearson coefficient and
average distance metric) and principal component analysis to identify
potential outliers outside two standard deviations from these averages. No
outliers were present in these data and resulting normalized values were
used as input for downstream analyses.

Gene co-expression network construction and module detection
Signed co-expression networks were built using WGCNA10 in R, as
previously described.36,37 A total of 12 281 transcripts were used to
construct a global network of all 30 subjects. To construct a network, the
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absolute values of Pearson correlation coefficients were calculated for all
the possible gene pairs and resulting values were transformed using a β-
power of 9 so that the final correlation matrix followed an approximate
scale-free topology.10 The WGCNA cut-tree hybrid algorithm was used to
detect sub-networks, or co-expression modules, within the global network
optimizing minimum module size to 15, deep split of 2 and a tree-cut
height of 0.2 to merge neighbouring network modules with similar
expression profiles. For each identified module, we ran singular value
decomposition of each module’s expression matrix and used the resulting
module eigengene (ME), equivalent to the first principal component, to
represent the overall expression profiles for each module. Differential
expression of MEs was performed using a Bayes analysis of variance38

(parameters: conf = 12, bayes = 1, winSize = 5) testing between groups and
P-values were corrected for multiple comparisons (post hoc Tukey
correction). Subsequently, to determine which modules were most
associated to recorded clinical parameters and potential confounding
variables in this study, MEs for all modules were correlated to external
subjective and objective data using a Pearson correlation and a Student’s
asymptotic P-value for significance. MEs were also used to determine
module membership (kME) values for each gene in a specified module,
defined as the correlation between gene expression values and ME
expression. Genes with the highest intramodular kME were labelled as hub
genes and predicted to be essential to the function of the module.

Differential gene expression analyses
A moderated t-test, implemented through the limma39 package, assessed
differential gene expression between the three groups in a group-wise
manner across 12 281 transcripts. Significance threshold was set to a
nominal P-value o0.01 to permit sufficient enough genes to move
forward with functional characterization and supervised classification
methods. Differentially expressed genes corresponding to WGCNA
modules which were significantly associated with polysubstance abuse
were excluded and removed from functional annotation and supervised
classification methods, as a robust and complimentary strategy of
adjusting for confounding factors.

Functional enrichment analyses
All differentially expressed genes passing a P-value o0.01 and all network
modules with genes passing a kME40.50 were subjected to functional
annotation. First, the ToppFunn module of ToppGene Suite software40

(https://toppgene.cchmc.org/) was used to assess enrichment of GO
ontology terms relevant to cellular components, molecular factors,
biological processes, metabolic pathways and well-annotated drug
compounds from the comparative toxicogenomics database41 using a
one-tailed hyper-geometric distribution with a Bonferroni correction.
A minimum of a two-gene overlap per gene-set was necessary to be
allowed for testing. The human cell-specific gene expression database
from the cell type enrichment42 analysis web-based tool was used to
predict the involvement of key cell types within candidate gene lists.
For each supplied gene list, the significance of cell type-specific
expression are determined using the one-tailed Fisher’s exact test with a
Bonferroni correction across all the available cell/tissue types. For
information pertaining to curating haloperidol gene signatures, see
Supplementary File.

Construction of diagnostic blood classifier for MAP
BRB-Array Tools11-supervised classification methods were used to con-
struct gene expression classifiers. Two models were specified: (1) controls
vs METH dependents and (2) MA vs MAP subjects. Each model consisted of
three steps. First, to ensure a fair comparison and to decrease
computational time, all genes with Po0.01 were subjected to classifier
construction. This heuristic rule of thumb approach was used to cast a
wide net to catch all potentially informative genes, while false positives
would be pared off by subsequent optimization and cross-validation steps.
Second, classifiers composed of different numbers of genes were
constructed by recursive feature elimination. Recursive feature elimination
provided feature selection, model fitting and performance evaluation via
identifying the optimal number of features with maximum predictive
accuracy. Third, the ability for recursive feature elimination to predict
group outcome was assessed by diagonal linear discriminant analysis and
compared with three different multivariate classification methods (that is,
support vector machine, nearest centroid, three-nearest neighbours)
in a leave-one-out cross-validation approach. In addition, a permutation

P-value, based on 1000 random permutations, for the cross-validated
misclassification error rate for each classification method was implemen-
ted. This P-value indicates the proportion of the random permutations that
gave as small a cross-validated misclassification rate as was obtained with
the real class labels.

Converging functional genomic scoring
CFG represents a translational methodology that integrates multiple lines
of external evidence from human and animal model studies in a Bayesian-
like manner. This approach increases the ability to distinguish signal from
noise in limited size cohorts and is routinely applied to support the
identification of blood biomarkers across neuropsychiatric disorders.12–20

The principal aim of the CFG approach is to increase the likelihood that
findings will prove reproducible and have predictive power in independent
cohorts. Our CFG scoring paradigm for prioritization of MAP biomarkers is
an adaptation of previous techniques, representing a two-step process
(Supplementary Figure 6) as given below.
Internal lines of evidence: All genes assigned a P-value o0.05 were

included in the CFG scoring. These liberal criteria were used to cast a wide
net of all potentially informative genes, which may be involved in the
pathophysiology of MAP, while false positives would be pared off by
subsequent CFG scoring and optimization steps. Each gene was given
three P-values (based on three group-wise differential expression analyses).
Subsequently, a score of 1 was given to genes passing Po0.001, a score of
0.5 was given to genes passing 0.0014Po0.01, and a score of 0.2 was
given for genes passing 0.014Po0.05, permitting a maximum score of 3
and a minimum score of 0.2. A bonus point of 0.5 was awarded for genes
passing Po0.01 occurring in both MAP vs controls and MAP vs MA
comparisons, as well as genes found to be members of MAP-associated
modules. Thus, a max score of 4 is attainable (3+0.5+0.5).
External lines of evidence: CFG evidence was scored for a gene if there

were published reports of human data including post-mortem brain
expression, peripheral blood expression and/or genetic evidence (associa-
tion and linkage) utilizing two large databases. One database represents a
recently built in-house database specific to human blood transcriptome
studies using PubMed (http://www.ncbi.nlm.nih.gov/pubmed) search
queries and combinations of key words (e.g. blood transcriptome and
psychosis).43 To consider functional support across divergent technological
platforms and human post-mortem brain samples, we accessed
DisGenNet,44 a comprehensive database of human gene–disease associa-
tions from various expert curated databases and text-mining-derived
associations. These database searches included gene–disease relationships
focusing specifically on psychosis, SCZ, depression/stress and neurocog-
nitive impairment to consider comorbid effects of MAP in our study.
Importantly, studies containing a METH component were excluded in
order to validate MAP biomarkers in drug-free (METH) models. For the CFG
analysis and scoring, external cross-validating lines of evidence were
weighted such that findings in human peripheral blood specific to
psychosis were given an additional 1 point. A maximum of five external
lines of evidence were allowed. Thus, the total maximum CFG score that a
candidate biomarker gene could have was 10 (4 for threshold+5 for
external evidence+1 blood presence in psychosis). Like other studies using
this approach,12–20 we appreciate there are other ways of scoring blood
biomarkers based on CFG which may give slightly different results in terms
of prioritization.12–20 Given the past utility of this approach, we and others
believe that this empirical scoring system allows for advantageous
separation of genes based on our focus for identifying human MAP blood
biomarker and by default, biomarkers of psychosis and SCZ.

RESULTS
We conducted a preliminary integrative RNA-sequencing study
profiling peripheral blood gene expression from a primary cohort
of 10 MA, 10 MAP and 10 healthy controls (Table 1 and
Supplementary Figure 1). To identify and prioritize diagnostic
blood biomarkers of MAP, a multimodal translational approach
was used (Figure 1). A global gene co-expression network was first
constructed using all the available subjects and identified 24
co-expression modules, which were functionally annotated to
molecular factors, biological processes, cellular compartments,
metabolic pathways, well-characterized drug compounds and cell
type specificity (Supplementary Table 1).
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Differential analysis of ME values and brain structure volumes
To reduce the number of multiple testing corrections and false
positives arising from standard differential gene expression
analyses, we calculated differences in module expression using
ME values (See Materials and methods for complete description of
ME). All the ME values were subjected to a Bayes analysis of
variance32 testing to compare the extent of module expression
between the groups and the P-values were corrected for multiple
comparisons. MAP-associated findings included significant
decreases of ME expression in modules specific to ‘ubiquitin-
mediated proteolysis’ (767 genes) and ‘RNA degradation’ (1156
genes) in MAP subjects compared with controls (P= 0.01, P= 0.03,
respectively; Figures 2a and b). Further, an increase of ME
expression in a module annotated as ‘circadian clock’ (332 genes)
was observed in MAP compared with controls (P= 0.04; Figure 2c).
MA-associated findings included the increase of ME expression in
modules specific to ‘chloride transporter activity’ (106 genes),
‘interferon signalling’ (263 genes) and ‘cytokine signalling’ (186
genes), and a decrease of ME expression in modules associated to
‘generic transcription’ (48 genes) and ‘ribosome pathway’ (281
genes) in MA subjects relative to healthy controls (Supplementary
Figure 2). The same methodology was extended to compare the
brain structural volumes (mm3) across the three groups, which
revealed bilaterally reduced hippocampus volumes in MAP
subjects (left, P= 0.04; right, P= 0.02; Table 2).

Phenotypic characterization of MAP modules
The ME values for MAP-specific modules were correlated with all
phenotypic traits in this study (brain structural volumes, life history
and psychometric measures) to gain insight into the role that each
module may have in the pathophysiology of the disorder
(Supplementary Figure 3). The P-values o0.002 pass the most
conservative multiple comparison correction (Bonferroni). The ME

of a ‘ubiquitin-mediated proteolysis’ module was negatively
associated to MAP status (r=− 0.45, P= 0.01) as well as K10 total
score (r=− 0.43, P= 0.02). Interestingly, this module was also
negatively associated with brain structure volumes in areas of the
anterior CC (r=− 0.55, P= 0.002), right accumbens area (r=− 0.40,
P= 0.03) and positively associated to areas in the left caudate
(r= 0.37, P= 0.04) and left ventral diencephalon (DC, r= 0.48,
P= 0.007). The ‘RNA degradation’ module was negatively asso-
ciated with the CC anterior (r=− 0.48, P= 0.008) and left
accumbens (r= 0.50, P= 0.005), while positively associated with
the left ventral DC (r= 0.37, P= 0.04). The ‘circadian clock’ module,
was positively correlated with EPQRS measure of psychoticism
(r= 0.43, P= 0.02) and negatively associated to extraversion
(r=− 0.36, P= 0.04).

Phenotypic characterization of MA modules
A similar strategy was chosen to characterize MA-specific modules
(Supplementary Figure 3). The ME of the ‘interferon signalling’
module was positively associated to MA status (r= 0.40, P= 0.03),
BDI total score (r= 0.40, P= 0.03), as well as structural information
from both left (r= 0.54, P= 0.002) and right putamen areas
(r= 0.41, P= 0.03). This module was negatively associated to
EPQRS measure of extraversion (r=− 0.38, P= 0.04) and EPQRS
total score (r=− 0.38, P= 0.04). Further, the ME of the ‘chloride
transporter activity’ module was positively associated with both
MA status (r= 0.36, P= 0.05) and METH dependency (r= 0.39,
P= 0.03), in addition to BDI total score (r= 0.39, P= 0.03) and brain
volume in the left putamen (r= 0.53, P= 0.003). This module was
also negatively associated to control status (r=− 0.39, P= 0.03)
and the left ventral DC (r=− 0.40, P= 0.03). The ‘ribosome
pathway’ module was negatively associated to MA status
(r=− 0.37, P= 0.04) and positively associated to EPQRS total score
(r= 0.38, P= 0.04) and K10 total score (r= 0.44, P= 0.02). The

Table 1. Recorded clinical characteristics from all subjects (N= 30)

Healthy controls
(N=10)

MA
(N= 10)

MAP
(N= 10)

ANOVA Post hoc significance

Mean± s.d. Mean± s.d. Mean± s.d. X2(df = 2) P-value Bonferroni P-value

Age 25.5± 5.8 24.8± 3.9 27.2± 8.3 0.040 0.980
Education level 12.2± 1.2 10.7± 2.1 9.3± 1.7 10.788 0.005 Contol 4 MAP
METH age started using — 18.6± 3.9 18.8± 6.8 0.191 0.662
METH abstinence (days) — 53.1± 82.9 45.5± 36.2 0.593 0.441
METH duration of use (years) — 5.8± 2.3 7.1± 3.0 0.688 0.407
Nicotene use last 30 days 5 6 9 2.400 0.121
Cannabis use last 30 days 2 2 1 0.529 0.467
Alcohol use last 30 days 3 4 2 1.347 0.246
EPQRS psychoticism 2.3± 1.7 1.6± 1.2 3± 2.1 1.880 0.391
EPQRS extraversion 10.3± 2.5 8.2± 3.5 6.6± 2.5 7.039 0.030 Contol 4 MAP
EPQRS neuroticism 2.6± 1.8 4.6± 2.9 5.6± 3.2 4.624 0.099
EPQRS lie 5.6± 2.3 4± 1.9 5.1± 3.3 1.902 0.386
EPQRS total score 20.8± 5.3 18.5± 2.3 20.4± 4.7 1.876 0.391
BIS 15.1± 1.5 15.8± 3.1 13.1± 3.6 3.018 0.221
BAS drive 7.4± 2.5 8.3± 2.6 6.5± 1.3 2.267 0.322
BAS fun seeking 7.1± 1.5 8.1± 1.6 6± 1.2 7.014 0.030 MA 4 MAP
BAS reward responsiveness 7.7± 1.9 7.2± 1.8 6.2± 1.7 3.859 0.145
BIS/BAS total score 44.8± 5.8 47± 7.9 38.4± 5.6 6.269 0.044
BDI total score 4.3± 3.0 17.3± 10.3 16.6± 12.5 10.363 0.006 Control 4 MAP; Control 4 MA
K10 total score 14± 3.8 18.2± 7.7 23.5± 8.2 7.944 0.019 Control 4 MAP
LEQ—sum of life events (⩽6 months) 2.6± 1.7 4.4± 2.0 4.7± 1.6 5.663 0.059
LEQ—sum of life events (46 months ago) 2.2± 2.2 4.2± 3.5 4.1± 2.0 3.643 0.162

Abbreviations: BDI, Beck Depression Inventory; BIS/BAS, behavioural inhibition system/behavioural activation system; EPQRS, Eysenck Personality
Questionnaire; K10, Kessler Psychological Distress Scale; LEQ, Life Events Questionnaire; MA, methamphetamine-dependent subjects with no psychotic
events; MAP, methamphetamine-associated psychosis; PANSS, Positive and Negative Syndrome Scale. Shapiro wilk test was used to assess normality of
variables and either a one-way analysis of variance (ANOVA) or KRUSKAL–Wallis ANOVA with post hoc Bonferroni correction was implemented accordingly.
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‘cytokine signalling’ module was positively associated with both
left accumbens (r= 0.37, P= 0.04) and right accumbens (r= 0.55,
P= 0.002), whereas the ‘generic transcription’ module was
negatively associated to these areas (r=− 0.49, P= 0.006; r=− 0.60,
P= 5e-04, respectively).

Putative diagnostic blood biomarker for MAP
Supervised class prediction methods were used to identify any
single important gene(s) that may have been over-looked in our
network analysis. First, differentially expressed genes (all Po0.01)
were identified between the control and MA subjects (N= 197),
control and MAP subjects (N= 409) and between the MA and MAP
subjects (N= 79; Supplementary Table 2, Supplementary Figures
4A–D). To control for confounding factors, genes corresponding to
WGCNA modules significantly associated to polysubstance abuse

Figure 1. A multi-step translational work-flow for identifying
methamphetamine-associated psychosis (MAP) biomarkers. First,
weighted gene co-expression network analysis (WGCNA) analysis
built a global co-expression network and identified 24 co-expression
modules. On the hierarchical cluster tree, each line represents a
gene (leaf ) and each group of lines represents a discrete group of
co-regulated genes or gene modules (branch) on the clustering
gene tree. Each gene module is indicated by the colour bar below
the dendrogram, and subsequently functionally annotated then
integrated with recorded clinical and biological data to identify
candidate gene modules representing functional biomarkers of
MAP. Second, differential gene expression and class prediction
methods identified 20 candidate MAP biomarkers (14 were recycled
from the second split on the tree). A Bayesian-like convergent
functional genomic (CFG) approach prioritized our panel of
biomarkers specific to MAP and biomarkers were placed within an
empirically derived biological framework. For each step, the
corresponding figure and/or table is listed providing a quick
reference. LOOCV, leave-one-out cross-validation; MA Dep., MA,
methamphetamine-dependency without psychotic symptom; RFE,
recursive feature elimination.
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Figure 2. Significant methamphetamine-associated psychosis (MAP)
findings from differential analysis of module eigengene (ME) values
across controls (white), MA subjects (light grey) and MAP subjects
(dark grey). Modules specific to MAP include (a) ubiquitin (UB)-
mediated proteolysis, (b) RNA degradation and (c) circadian clock.
Indicated for each module are number of overlapping genes from
the module ∩ out of total genes in the term. Enrichment P-values
are Bonferroni corrected for multiple comparisons. A Bayes analysis
of variance (parameters: conf= 12, bayes= 1, winSize= 5) was used
on the ME values to test for significance between the groups and P-
values were corrected for multiple comparisons where (*) implies
post hoc-corrected P-value significance o0.05 and (+) indicates P-
value significance o0.05 without post hoc correction. MA,
methamphetamine-dependency without psychotic symptom.
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were excluded. Gene lists were annotated for functionality at the
pathway level and cross-referenced with drug-induced gene
signatures from the comparative toxicogenomics database
(Supplementary Figure 4E and F; See Supplementary File for
detailed information).
Subsequently, differentially expressed genes (Po0.01) were

pooled from across the three candidate gene lists and subjected
to recursive feature elimination feature selection and different
multivariate classification methods in a leave-one-out cross-
validation approach (See Materials and Methods for complete
description). Two models were built for separating classes. First,
when separating healthy controls form METH dependents (MA
and MAP subjects) classification accuracy reached 87% when the
expression of 25 genes was used with diagonal linear discriminant
analysis multivariate classification method (Supplementary Figures
5a and b). Second, when separating MA from MAP, classification
accuracy reached 95% when the expression of 20 genes (recycling
14 genes from the first model) was used with diagonal linear
discriminant analysis (Supplementary Figures 5c and d).
We next sought to understand the biology represented by

these MAP biomarkers and derive mechanistic insights. Our multi-
step approach permitted taking each single biomarker and
returning to our network analysis to retrieve guilt-by-association
biological information from our empirically derived functional
gene modules. Majority of these genes were found in a module
annotated to ‘RNA degradation’ (CLN3, FBP1, TBC1D2, ZNF821,
ADAM15, ARL6, FBN1 and MTHFSD; Table 3). However, two top-
scoring biomarkers were found to be implicated in ‘circadian
clock’ dysfunction (ELK3 and SINA3) and three other top-scoring
biomarkers were found in the module annotated to ‘ubiquitin-
mediated proteolysis’ (PIGF,UHMK1 and C7orf11).

Prioritization and biological interpretation of blood biomarkers
Biomarkers were prioritized using a Bayesian-like CFG approach
(Supplementary Figure 6) integrating previously published human
evidence based on genetics (for example, GWAS, copy number
variants), post-mortem brain gene expression and peripheral
blood gene expression specific to psychosis, SCZ, depression/
stress as well as neurocognitive impairment at the time of our
analysis (August 2015). This is a way of validating relevant blood
transcriptome biomarkers from moderately sized data sets,
extracting generalizable signal out of potential cohort-specific
noise.12–20 Using the CFG approach, we first focused our attention

on the ‘ubiquitin-mediated proteolysis’ annotated module, which
in this study represents a functional biomarker of MAP. This
module was enriched with 61 genes having CFG evidence
(P= 4.8E− 10), including those found to be dysregulated in the
blood of a psychotic disorder (n= 29) as well as in the blood
and/or post-mortem brain of SCZ patients (n= 32) across indepen-
dent human studies (Supplementary Table 3A). Notably, of the 29
CFG genes found in the blood of a psychotic disorder, 21
pertained to one single study.45 We further found a significant
enrichment of 39 genes holding CFG evidence (P= 7.0E−12)
within the module annotated as ‘circadian clock’ (Supplementary
Table 3B). Similarly, these genes were also previously associated to
psychosis and/or SCZ in independent studies. Of interest, two
genes within the ‘ubiquitin-mediated proteolysis’ annotated
module (TMEM106B and SCAMP1) and one within the ‘circadian
clock’ annotated module (DCTN1) overlap with a previous study
that had used CFG-based approach to validate blood biomarkers
for delusions, a core symptom of psychotic disorders.20 An
additional gene (RAB18) within the ‘ubiquitin-mediated proteo-
lysis’ module was also validated as a SCZ biomarker using the CFG
approach.18

Applying the CFG approach to our panel of 31 discriminative
biomarkers confirmed 8 candidate biomarkers for MAP (Table 3)
which had a CFG score of 3 or above, meaning either maximal
score from the P-value threshold cut-offs or at least two other lines
of prior independent evidence (Figure 3a). Indeed, CFG evidence
for 8 out of 31 discriminatory biomarkers is a significant overlap
(P= 0.01), beyond what would be expected by chance. Of these
validated MAP biomarkers, four were previously reported to
predict psychosis in an independent human blood transcriptome
investigation (FBP1, ZNF821, TBC1D2 and SIN3A), one of which was
previously labelled a genetic variant for SCZ risk (FBP1). In
addition, one other biomarker had been implicated in SCZ risk
across two independent studies (UHMK1). Subsequently, a gene–
disease network was built using all the CFG-validated biomarkers,
either in the form of a functional biomarker (gene modules) or
single biomarkers, to visualize unique gene signatures of MAP and
consensus signatures of MAP, psychosis and SCZ (Figure 3b). In
this study, we found that MAP shares 69 genes with SCZ, 39 genes
with other psychotic disorders and six genes are shared across all
the three conditions. Importantly, cross-referencing all the
candidate MAP genes onto query haloperidol gene expression
signatures from the CMap and CDT provided preliminary evidence

Table 2. Brain structural volumes (mm3) from all the subjects (N= 30)

Brain region Healthy controls
(N= 10)

MA
(N=10)

MAP
(N= 10)

Bayes
ANOVA

Post hoc significance

Mean± s.d. Mean± s.d. Mean± s.d. X2 (df = 2) P-value Bonferroni P-value

L hippocampus 3950.11± 463.71 3790± 297.51 3521.71± 173.43 3.538 0.041 Control 4 MAP
R hippocampus 4067.56± 414.08 4005.43± 196.29 3645.29± 189.97 4.261 0.029 Control 4 MAP
L accumbens 690.56± 80.38 689.14± 128.15 651.57± 99.24 0.343 0.714
R accumbens 669.33± 100.54 673.00± 199.23 694.71± 91.48 0.076 0.927
L caudate 4116.89± 340.84 4078.57± 293.78 3906.71± 177.23 1.149 0.337
R caudate 4211.22± 251.11 4283.86± 314.36 4119± 163.64 0.760 0.481
L putamen 6606.78± 408.97 6633.14± 667.17 6718.57± 661.5 0.078 0.925
R putamen 6313.33± 371.03 6274.43± 596.45 6506.71± 672.14 0.373 0.694
L ventral DC 4551.33± 247.16 4295.71± 273.56 4323.71± 204.25 2.715 0.091
R ventral DC 4473.44± 377.34 4340.43± 78.7 4369.86± 278.58 0.485 0.623
CC anterior 938.78± 125.96 1056.14± 194.83 1016.57± 100.31 1.389 0.272
CC posterior 966.00± 191.65 912.29± 139.86 956.29± 135.16 0.236 0.792

Abbreviations: CC, corpus callosum; DC, diencephalon; L, left; R, right. Bayes analysis of variance (ANOVA) parameters: conf= 12, Bayes= 1, winSize= 5.
P-values corrected for multiple comparisons.
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Table 3. Top informative features for separating controls from METH subjects (25 genes) and MA from MAP subjects (20 genes)

Gene
symbol

Parametric
P-value

%CV
support

Module
correspondence

Significant positive
correlations

Significant negative
correlations

Top 25 informative features separating controls from METH subjects
ELK3† 0.0175377 97 Circadian clock EPQRS psychoticism (r= 0.43, P= 0.02)

CC posterior (r= 0.39, P= 0.03)
EPQRS extraversion (r=− 0.38, P= 0.04)

CRTAM 0.03485 97 Generic transcription EPQRS neuroticisim (r= 0.41, P= 0.02)
EPQRS total (r= 0.37, P= 0.05)

Left accumbens (r=− 0.49, P= 0.0006)
Right accumbens (r =− 0.6, P= 0.00005)

MAGEE1 0.0158379 100 Generic transcription

RNF138P1 0.0078459 87 RNA degradation Control status (r= 0.38, P= 0.04)
Left ventral DC (r= 0.37, P= 0.04)

CC anterior (r=− 0.48, P= 0.008)
Right accumbens (r=− 0.5, P= 0.005)

MFN1 0.0070206 87 RNA degradation
TBC1D2* 0.000805 90 RNA degradation
ZNF286B 0.000065 90 RNA degradation
MRPL50 0.0001267 93 RNA degradation
ADAM15† 0.000731 97 RNA degradation
DDRGK1 0.0055266 97 RNA degradation
MTHFSD 0.0612426 97 RNA degradation
ARL6 0.0037554 97 RNA degradation
GKAP1 0.0009407 97 RNA degradation
FAM169A 0.0008839 97 RNA degradation
KBTBD6 0.0003548 97 RNA degradation
ZSCAN5A 0.0012892 100 RNA degradation
FBN1†,* 0.0168567 100 RNA degradation
ZNF821 0.0193724 100 RNA degradation
FBP1† 0.6900462 100 RNA degradation
CDK7 0.0054503 100 RNA degradation

CDYL2 0.0000834 93 RNA-binding K10 total (r= 0.42, P= 0.02) Right ventral DC (r=− 0.42, P= 0.02)
TOMM34 0.0019291 100 RNA-binding

C7orf11 0.0587445 80 Ubiquitin-mediated proteolysis Control status (r= 0.4, P= 0.03)
Left caudate (r= 0.37, P= 0.04)
Left ventral DC (r= 0.48, P= 0.0007)

Control status (r= 0.4, P= 0.03)
Left caudate (r= 0.37, P= 0.04)
Left ventral DC (r= 0.48, P= 0.0007)

UHMK1† 0.6057577 97 Ubiquitin-mediated proteolysis
PHLDB2 0.0007613 100 Ubiquitin-mediated proteolysis

Top 20 informative features separating MA from MAP subjects
SIN3A* 0.0926295 70 Circadian clock EPQRS psychoticism (r= 0.43, P= 0.02)

CC posterior (r= 0.39, P= 0.03)
EPQRS extraversion (r=− 0.38, P= 0.04)

ELK3† 0.0002902 90 Circadian clock

MAGEE1 0.0001558 100 Generic transcription EPQRS neuroticisim (r= 0.41, P= 0.02)
EPQRS total (r= 0.37, P= 0.05)

Left accumbens (r=− 0.49, P= 0.0006)
Right accumbens (r=− 0.6, P= 0.00005)

MFSD7 0.0440767 85 Interferon signalling MA dep. status (r= 0.4, P= 0.03) BDI total
(r= 0.4, P= 0.03) Left putamen (r= 0.54,
P= 0.002) Right putamen (r= 0.41, P= 0.03)

EPQRS extraversion (r=− 0.43, P= 0.02)
EPQRS total (r=− 0.43, P= 0.02)
CC posterior (r=− 0.43, P= 0.02)

SLC41A3 0.0018933 100 Ribosome pathway EPQRS total (r= 0.38, P= 0.04)
BDI total (r= 0.44, P= 0.02)

MA status (r=− 0.37, P= 0.04)

MTHFSD 0.0002405 90 RNA degradation Control status (r= 0.38, P= 0.04)
Left ventral DC (r= 0.37, P= 0.04)

CC anterior (r=− 0.48, P= 0.008)
Right accumbens (r=− 0.5, P= 0.005)

ZNF821* 0.11798 90 RNA degradation
FBP1* 0.3549855 90 RNA degradation
RNF138P1 0.0195014 90 RNA degradation
ARL6 0.0317958 95 RNA degradation
ETFA 0.0235683 95 RNA degradation
TBC1D2* 0.157939 100 RNA degradation
FAM169A 0.0132909 100 RNA degradation
ZSCAN5A 0.0112376 100 RNA degradation
CLN3 0.0087815 100 RNA degradation
DDRGK1 0.0082958 100 RNA degradation
FBN1†,* 0.0070075 100 RNA degradation

PIGF 0.1818898 90 Ubiquitin-mediated proteolysis Control status (r= 0.4, P= 0.03)
Left caudate (r= 0.37, P= 0.04)
Left ventral DC (r= 0.48, P= 0.0007)

Control status (r= 0.4, P= 0.03)
Left caudate (r= 0.37, P= 0.04)
Left ventral DC (r= 0.48, P= 0.0007)

C7orf11 0.0028377 90 Ubiquitin-mediated proteolysis
PHLDB2 0.1302545 95 Ubiquitin-mediated proteolysis

Abbreviations: BDI, Beck Depression Inventory; CC, corpus callosum; DC, diencephalon; EPQRS, Eysenck Personality Questionnaire. Parametric P-value indicates
significance in a strict sense following 1000 random permutations to group labels using small N. %CV support denotes the number of correctly passed cross-
validations for each gene. Module correspondence is the module membership of each gene and the subsequent significant correlations for each module are
depicted. Genes in bold are those that were used in classification for nodes 1 and 2 (14 genes total). (*) indicates genes found dysregulated in the blood of
psychosis studies; (†) indicates genes found as genetic variants in SCZ studies.
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for the lack of neuroleptic-associations across our candidate
findings (Figure 3b).

DISCUSSION
This preliminary report describes gene networks and blood
biomarkers of MAP, further validating the MAP model as an
exemplar for discovery of biomarkers related to SCZ susceptibility
and clinical course. In essence, this pharmacogenomics approach
is a tool for identifying genes that contain pathophysiological
relevance to psychotic disorders and SCZ. Considering the variable
environmental component of MAP, it is possible that not all
subjects would show changes in all the biomarker genes. Hence,
our multimodal approach incorporated blood gene expression,
clinical assessment of life history, psychometric measures and
structural MRI data revealing several mechanistic insights regard-
ing the pathophysiology of MAP and its overlapping mechanistic
nature with psychotic disorders and SCZ. First, we identified a
functional biomarker of MAP in the form of a co-expression
module annotated to ubiquitin-mediated proteolysis, further
enriched with 61 genes containing CFG evidence. We also
revealed a psychoticism-associated module implicated in circadian
clock, enriched with 39 genes containing CFG evidence. Second,
we identified 25 genes that were able to distinguish healthy
controls from METH dependents with high accuracy, while only 20
genes (recycling 14 genes from the previous split) were able to
differentiate between MA and MAP subjects. A significant
proportion of these single blood biomarkers also contained CFG
evidence. Further, cross-referencing these results onto haloperidol
specific gene expression signatures reduced the likelihood of
these genes being neuroleptic-related. These high overlaps
suggest similar biological mechanisms detectable in peripheral
blood underlying the pathophysiology of psychosis, regardless of
substance abuse. These findings also outline new avenues
regarding how the MAP model may function in SCZ research.
A central finding from our network analysis was the identifica-

tion of a functional biomarker (gene module) annotated to
ubiquitin-mediated proteolysis expressed to a lesser extent in
MAP subjects (Figure 2a). The ubiquitin proteasome system (UPS)
is a highly complex and tightly regulated process that has major
roles in a variety of basic cellular processes, specifically

degradation of intracellular proteins and modulation of cellular
responses to inflammation and oxidative stress.46 The UPS has
been identified in genetic reports as a canonical pathway
associated to psychosis,45,47 SCZ,48–52 bipolar disorder,48,53 as well
as neurodegenerative diseases such as Alzheimer’s54 and
Parkinson’s.55 Studies using post-mortem brain gene expression
to investigate mechanisms of psychosis and SCZ provide
consistent evidence for the downregulation of UPS-related genes
in these conditions.50–52 It was also recently shown that UPS
abnormalities disrupt expression at the protein level in SCZ.56

Interestingly, studies using peripheral blood gene expression also
found that the UPS pathway was consistently dysregulated across
bipolar, SCZ and psychosis patient groups.48 A later study used a
targeted approach associating blood expression measurements of
UPS pathway gene members with Scales for Assessment of
Positive and Negative Symptoms and determined UBE2K (also a
gene member of our ‘ubiquitin-mediated proteolysis’ module),
was one of three genes most significantly associated to positive
symptoms of psychosis.47 Another independent report built a
diagnostic blood-based classifier able to distinguish first-episode
psychosis from controls with 400 genes,45 21 of which were found
within our UPS annotated module (Supplementary Table 3A).
Indeed, it is interesting that genes that have a well-established
role in brain functioning should also show changes in peripheral
blood in relationship to psychiatric symptom states, and moreover
that the direction of change should be concordant with that
reported in human post-mortem brain studies. As a consequence
of the overlapping nature of UPS dysfunction found across mental
diseases, the proteasome system has emerged as a putative
candidate highlighting both mRNA and protein-level changes in
psychosis and SCZ. This clearly is an area that deserves attention
and mechanistic elucidation by future hypothesis-driven research.
In determining relationships between blood gene expression

and structural MRI data, we revealed a significant association of
the ubiquitin-mediated proteolysis module to the anterior CC
(r=− 0.55, P= 0.002; Supplementary Figure 3). Conversely, the
circadian clock module, expressed to a greater extent in MAP
subjects (Figure 2), was significantly associated to EPQRS measure
of psychoticism (that is, aggression, egocentrism and impulsive-
ness; r= 0.43, P= 0.02) and the posterior CC (r= 0.39, P= 0.03;
Supplementary Figure 3). There is considerable evidence

Figure 3. Top candidate blood biomarkers for methamphetamine-associated psychosis (MAP). (a) Convergent functional genomic (CFG)
evidence and scoring are depicted on the right side of the pyramid. Genes in bold have been found in external publications. Genes found in
methamphetamine (METH)-free studies investigating schizophrenia (SCZ, †) and psychosis (*) are as indicated. (b) Overlapping gene–disease
relationships including CFG-validated genes within gene modules (ubiquitin-mediated proteolysis and circadian rhythm) and single-gene
biomarkers. Nodes represent genes and edges indicate gene–disease relationships. Node shape denotes empirically derived functions from
our network analysis. Green shading indicates biomarkers from our machine-learning analysis including 14 unique genes separating controls
from METH dependants. Grey nodes represent CFG-validated biomarkers of delusion (psychosis) or SCZ.11,17 Node border colour in turquoise
indicates gene signatures across MAP, general psychosis and SCZ studies. Venn diagram depicts lack of overlap from curated haloperidol gene
signatures onto the 128 candidate MAP genes (61 UPS+39 clock+25+20= 128 genes (while accounting for overlap across lists)).
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suggesting that global white matter abnormalities (that is,
disruptions in connectivity in intra- and interhemispheric path-
ways) have a role in the pathophysiology of psychiatric
disorders.57 With the CC being the largest white matter tract
containing highly packed neuronal fibres, abnormalities in this
structure have frequently been reported in patients with SCZ,58

including first-episode SCZ and psychosis patients,59 often relating
to the severity of psychotic symptoms. It has been hypothesized
that less efficient connectivity and resulting aberrant signal
transmission between the brain regions may be a pivotal factor
in the manifestation of psychotic symptoms, including delusions
and hallucinations, and of cognitive dysfunctions.60,61 However,
these disturbances have not been fully elucidated in the context
of MAP nor in its relationship to blood gene expression
differences. Yet most interestingly, we also observed significantly
lower bilateral hippocampal volumes in MAP subjects (Table 2).
Although correlates of blood gene expression to hippocampal
volumes relate mainly to processes of protein ubiquitination
(r= 0.37, P= 0.05), reductions in the hippocampal volumes are
consistent with previous reports of pathological hippocampus
changes in MAP,62 in first-episode and chronic schizophrenia,63

and in individuals at high risk for psychosis.64 Taken together,
these results suggest that changes in the blood occur in parallel to
structural changes in the brain of MAP subjects and that they are
also most likely involved in the pathophysiology of psychotic
disorders and SCZ in the absence of METH.
The interrogation of the comparative toxicogenomics

database41 with a signature query composed of the genes in
our ‘ubiquitin-mediated proteolysis’ annotated module revealed
an enrichment of sodium arsenate gene signatures
(Supplementary Table 1). Although sodium arsenate is one of
the most toxic metals derived from the natural environment,65 it
has been used as a therapeutic medication in acute promylocytic
leukaemia based on its mechanism to induce apoptotic effects via
release of apoptosis-inducing factor.65 However, arsenic is mainly
a contaminator and interestingly is known to cause clinical
features such as psychosis, toxic cardiomyopathy and seizures.66,67

This exploratory result suggests arsenic, and chemically similar
compounds, as a putatively useful gene-hunting tool for
investigating future mechanisms of psychosis in either primary
or patient-derived lymphoblast cell lines to elucidate further these
effects in search for more verifiable biomarkers.
Topping our list of candidate MAP biomarkers, we found eight

genes involved in RNA degradation (CLN3, FBP1, TBC1D2, ZNF821,
ADAM15, ARL6, FBN1 and MTHFSD), two specific to circadian
rhythm (ELK3 and SINA3) and three involved in ubiquitin-mediated
proteolysis (PIGF,UHMK1 and C7orf11; Table 3). Indeed it is possible
that some of the gene expression changes detected in this
moderately sized cohort (N= 30) may represent biological or
technical artefacts. To minimize such effects, our candidate MAP
biomarkers were selected based on having a line of evidence
(CFG) score of two or higher (Figure 3a). Proper cross-validation
both in silico and across-literature (CFG), minimized the likelihood
of having identified false positives while increasing sensitivity and
specificity in the ability to distinguish true signal (biomarkers) from
noise through a fit-to-disease Bayesian-like methodology.12–20

CLN3 (Ceroid-Lipofuscinosis, Neuronal 3) was the top-scoring
gene in our study and is conventionally involved in lysosome
function. Mutations in this gene are well known to cause
neurodegenerative diseases such as Batten disease,66,68 which
impairs mental and motor development during childhood,
causing difficulty with walking, speaking and intellectual function-
ing. Patients with a CLN3 mutation are also prone to recurrent
seizures, epilepsies, vision impairment and occasionally psychosis.
It is hypothesized that mutations in CLN3 disrupt lysosome
function resulting in build-up of lipopigments, which may induce
apoptotic effects in brain neurons. Although this gene has not yet
been discussed in the context of psychosis, it may represent a

putative biomarker of MAP. In addition, variants in the gene FBP1
(fructose-1,6-bisphosphatase 1) have previously provided genetic
support for the view that alterations in glucose metabolism are
intrinsic to SCZ pathology.69 However, in our study, this gene was
found co-expressed in the ‘RNA degradation’ module. Other top-
scoring genes included genes annotated to a circadian clock
module (Supplementary Table 3B), which are involved in sleep–
wake cycles and previously identified as risk factors for
psychosis,12 anxiety disorders,17 suicidality19 and mood
disorders.70 ELK3 (ETS-Domain Protein (SRF Accessory Protein 2))
encodes a transcriptional factor that may switch from activator to
repressor in the presence of Ras, whereas SIN3A (SIN3 Transcrip-
tion Regulator Family Member A) encodes a transcriptional
repressor with known roles in circadian clock negative
feedback.71 Although SIN3A has well-known association to
circadian clock function, an advantage of our approach was to
be able to derive guilt-by-association co-expression interpretation
of biomarkers, such as ELK3, by indicating module membership
status. Dysregulation of circadian clock genes in post-mortem
brain of SCZ patients have previously been observed,72 however,
reports in the blood are less frequent.
Of note, MA-associated findings also allow us to speculate on

molecular mechanisms of psychosis. MA discoveries mainly
included elevated expression in modules specific to interferon
and cytokine signalling. Although cytokine signalling was
positively associated to METH dependency (that is, MA and MAP
subjects; r= 0.39, P= 0.03), a module specific to ‘interferon
signalling’ was significantly overexpressed in the blood of MA
subjects relative to controls, rather than MAP subjects relative to
controls (Supplementary Figure 2). Previous work has highlighted
a weak or absent immune stress response, specific to HPA axis
activation73 and cortisol measurements,74 in medication-naive
first-onset psychosis patients. Moreover, modules specific to IL-5
signalling, actin cytoskeleton and ATPase activity all showed a
strong association to both the left and right accumbens area
(Supplementary Figure 3). Owing to high levels of dopaminergic
innervations, the nucleus accumbens, together with other
subcortical structures, has a pivotal role in several neurocircuits
involved in reward, motivation, drug-reinforcement and drug-
seeking behaviour, mood regulation and sleep–wake cycles.75,76

Such neurocircuit functions are similarly affected by drug
exposure as well as stressors, life events or social pressure, with
increased dopamine release in the nucleus accumbens triggered
by the stimulant in addiction and by glucocorticoid hormones in
stress.75 Furthermore, there is emerging evidence that cytokines
circulating in blood may target subcortical dopamine function,
with potential implications on behaviour, sleep patterns and the
progression of psychiatric disorders, such as depression.77

Although it appears that the identification of blood-based
biomarkers may be accomplished by systems level and machine-
learning approaches, it remains an open empirical question for
future work, which approach provides the most favourable
translational avenues. Systems approaches are particularly useful
in providing comprehensive characterizations of the molecular
factors for a given disease state, multi-scale data integration and
are statistically robust in terms of reproducibility. Machine-
learning applications, while often fit-to-cohort, rank genes by
importance producing a unique predictive or diagnostic panel of
biomarkers. This dual approach permitted the placement of MAP
single-gene biomarkers into an empirically derived biological
framework (that is, gene network) to derive mechanistic insights.
Pragmatically, these results provide a proof of principle for joint
statistical analysis providing complimentary and comprehensive
molecular characterizations in pursuit of blood biomarkers for
MAP. A limitation of this study is that our findings cannot yet be
used to change the clinical practice. Notwithstanding that many of
our MAP single-gene biomarkers identified by machine learning
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were supported by CFG evidence, these findings need to be
replicated in an independent MAP sample.
Overall, our results support the MAP model for the identification

of biomarkers involved in psychosis and SCZ. Our most significant
findings suggest that genes involved in UPS and circadian clock
dysregulation are prominent players in psychosis and are reflected
in both peripheral blood and post-mortem brain profiles.
Specifically, UPS abnormalities have emerged as a common
denominator across a variety of independent studies investigating
psychosis, SCZ and bipolar disorder. Indeed in clinical practice
there is a high degree of overlap and comorbidity between
psychotic disorders, MAP and SCZ. Our results were able to shed
light on the biological mechanisms of psychosis, regardless of
polysubstance abuse, medication or other confounding factors
and further emphasize the value of moving towards comprehen-
sive empirical profiling. These results also open empirical avenues
for future field trials, clinical testing and validation in various at-
risk populations.
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