A Descriptive Type Foundation for RDF Schema

Ross Horne*?®, Gabriel Ciobanu?, Vladimiro Sassoned

¢ Romanian Academy, Institute of Computer Science, Blvd. Carol I, no. 8, lagi, Romania
b Nanyang Technological University, School of Computer Engineering, Singapore
¢ Kazakh-British Technical University, Faculty of Information Technology, Almaty, Kazakhstan
4 University of Southampton, Electronics and Computer Science, Southampton, UK

Abstract

This paper provides a type theoretic foundation for descriptive types that appear in
Linked Data. Linked Data is data published on the Web according to principles and
standards supported by the W3C. Such Linked Data is inherently messy: this is due to
the fact that instead of being assigned a strict a priori schema, the schema is inferred
a posteriori. Moreover, such a posteriori schema consists of opaque names that guide
programmers, without prescribing structure. We employ what we call a descriptive type
system for Linked Data. This descriptive type system differs from a traditional type
system in that it provides hints or warnings rather than errors and evolves to describe
the data while Linked Data is discovered at runtime. We explain how our descriptive
type system allows RDF Schema inference mechanisms to be tightly coupled with
domain specific scripting languages for Linked Data, enabling an interactive feedback
to Web developers.

Keywords: Linked Data, RDF, schema, type systems, operational semantics

1. Introduction

This paper is the second of two journal papers that addresses RDF Schema [8]
from a type theoretic perspective. RDF Schema is a data-modelling vocabulary for
the Resource Description Framework (RDF) [15]], where RDF is a W3C recommended
data format for publishing data on the Web.

This work spans two journal papers, since certain aspects of RDF Schema are best
treated using a conventional approach to typing, whereas other aspects are quite un-
conventional even to the seasoned type theorist. The previous paper in the series [13]
treated the conventional typing aspects of RDF Schema that concern familiar simple
datatypes [41] such as integers and strings. As we know, if a type system guarantees
that a variable is a string, but the same variable appears in an expression for integers,
then a type error arises. We call such conventional type systems prescriptive type sys-
tems, since the type system prescribes that the variable concerned must be a particular

Email addresses: ross.horne@gmail.com (Ross Horne), gabriel@info.uaic.ro (Gabriel
Ciobanu), vs@ecs.soton.ac.uk (Vladimiro Sassone)

Preprint submitted to Elsevier February 25, 2016

type, hence can only be used in the manner prescribed. A prescriptive type system is
appropriate for aspects of RDF Schema concerning simple data types. However pre-
scriptive typing is less appropriate for other aspect of RDF Schema.

In this second paper in the series, that may be read independently of the first, we
address less conventional aspects of RDF Schema types. The aspects we model concern
opaque names, where there is no difference in the underlying structure of names that
inhabit distinct types. In this paper, all resources are named by a URI — a Web address
such as res:Vitali_Klitschko| or res:Udar. Since all URIs are URIs, no runtime type
error would arise if one URI is accidentally used in place of another URI. However,
these URIs are intended to represent resources that are understandable to human beings.
If resources are used in the wrong place in data, then the data may not make any sense.

The descriptive type system we introduce enables simple routine data-modelling
slips to be detected. RDF is based on triples of URIs that represent how two URIs
are related to each other. Here the property that relates the two URIs is also a URI,
e.g. free:governmentpolitician/party . The programmer may simply have accidentally
switched the expected order of the two URIs related to imply something nonsensical,
such as: “res:Udar is a member of the political party res:Vitali_Klitschko|”. Since
our descriptive type system would describe that the above property relates politicians to
political parties, then our type system issues a warning suggesting that either res:Udar
is politician, or there is some problem with the data. In another scenario, the wrong
person may be used. For example, the statement “|res: Wiladimir_Klitschko| is a member
of the political party res:Udar|” would result in a warning, since Wladimir Klitschko,
Vitali’s brother, is not a politician. From meaningful warnings a human is likely to
spot the problem with the data. Note that types are themselves named using URIs that
do not impose any structure on the data itself. For example, the type politician can be
represented by the URI [free: government.politician .

The descriptive type approach illustrated above differers from the standard ap-
proach to RDF Schema inference [24]. In both of the above examples, standard RDF
Schema inference would wrongly infer that res:Udar| and res:Wiadimir_Klitschko
are politicians. In the descriptive typing approach a warning that presents a menu of
options is generated. From the menu, the human reading the warning can select the
best option, where the options include the standard RDF Schema inference along with
several other possible courses of action. Furthermore, since, unlike errors, warnings
may be ignored, the choice of inference may be suspended while the program contin-
ues. At a later point more illuminating data may be obtained that helps resolve the
warnings; or, perhaps, the warning can be ignored indefinitely citing imperfect schema
information.

This line of work also considers how descriptive types can be of assistance to pro-
gramming languages that consume Linked Data [18], 23} 27]]. Linked Data is data pub-
lished on the Web according to certain principles and standards. The main principle
laid down by Berners-Lee in a note [5] is to use HTTP URIs to identify resources in
data. By using HTTP URIs, anyone can use the HTTP protocol to look up (derefer-
ence) resources that appear in data in order to obtain more data. All URIs that appear
in this paper are real dereferenceable URIs that you can dereference by following the
links in the electronic version of this article.

The descriptive type system introduced in this work can be used for typing pro-

http://live.dbpedia.org/resource/Vitali_Klitschko
http://live.dbpedia.org/resource/Udar
http://rdf.freebase.com/ns/government/politician/party
http://live.dbpedia.org/resource/Udar
http://live.dbpedia.org/resource/Vitali_Klitschko
http://live.dbpedia.org/resource/Udar
http://live.dbpedia.org/resource/Wladimir_Klitschko
http://live.dbpedia.org/resource/Udar
http://rdf.freebase.com/ns/government.politician
http://live.dbpedia.org/resource/Udar
http://live.dbpedia.org/resource/Wladimir_Klitschko

grams, as well as data. For example, the descriptive type system can raise warnings
when a query over RDF data involves properties that make no sense according the their
schema, for example the subject and object of a statement are accidentally reversed.
When a program is well typed, the program can be used in confidence that there will
be no warnings and hence unwanted RDF Schema inferences will never be applied.

If you ask the Linked Data scientist whether there is any link between types in RDF
and type systems, they will explain that there is almost no connection. Traditionally,
type systems are used for static analysis to prescribe a space of constraints on data and
programs. In contrast, types in RDF change to describe the data instead of prescribing
constraints on the data. In this work, we provide a better answer to the question of the
type-theoretic nature of types in Linked Data, by distinguishing between prescriptive
type systems and descriptive type systems. The idea of descriptive types arose in joint
work with Giuseppe Castagna and Giorgio Ghelli. Here we instantiate it for our Linked
Data scripting language [13]]. Descriptive type systems, not formally related to this
work, appear in work on logic programs, tree data structures and dynamically typed
objects [211,132,[14} 4] [16] 25].

This work is an extended version of the invited conference version presented at PSI
2014 [[12]]. This version of the paper closes the gap between the descriptive type system
in the conference version and W3C standards. The new contributions compared to the
conference version are:

o An extended introduction that presents the W3C standard RDF Schema inference
mechanism called simple entailment and, by intuitive examples, compares the
standards to the approach enabled by the descriptive type system in this work.

e An extended syntax and type system covering a larger subset of the RDF Schema
standard, with features corresponding to not only rdf:type triples but also triples
with \rdfs:subClassOf|, |rdfs:domain and rdfs:range| as the property.

o A proposition formally relating W3C standard simple entailment to inference for
descriptive types; accompanied by common-sense recommendations about good
practice for designing ontologies to work well with both descriptive type systems
and the W3C standards.

This version also expands considerably the discussion and deals more carefully with
algorithmic issues regarding generating and solving subtype constraints. Hence this
version fully supersedes the invited conference version.

In Section 2| we provide a self-contained section that explains this work in the
context of existing work on type systems for semi-structured data and RDF Schema.
We present a motivating example of a scenario where descriptive typing can be applied
to Linked Data to present meaningful warnings to a programmer that would like to
interact with Linked Data. This section can be read separately without going into
details of the type system or the scripting language.

In Section[3} we develop technical prerequisites for our descriptive type system. In
particular, we require a notion of type and a consistent notion of subtyping. We develop
these notions and present supporting results.

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range

In Section[d] we continue the technical development of the type system. We intro-
duce a simple scripting language for dereferencing resources over the Web and query-
ing Linked Data in a local store. We devise an algorithmic type system that we use as
part of our typing and inference mechanism. This section formally connects the de-
scriptive type system developed with the standard RDF Schema inference mechanisms
and justifies differences between the approaches.

In Section 5] we specify the behaviour of scripts using a novel operational seman-
tics. This section formalises the real novelty of descriptive types as a means to support
the inference of schema at runtime. The operational semantics allows us to refine the
type system during execution in response to warnings about potential mismatches be-
tween the data and schema. We describe an algorithm for deriving warnings based on
constraints generated by the operational semantics and algorithmic type system. We
conclude with a type reduction result that proves that, if the type system is sufficiently
refined, then the script will run without unnecessary warnings; and hence no new in-
ferences need be applied.

2. Type Systems for Semi-Structured Data

Schema for the Resource Description Framework (RDF) are considerably differ-
ent from schema for other popular forms of data representation including XML and
relational databases. We firstly review the state of the art of XML Schema as a type
system for XML and also types for relational databases, before explaining why such
approaches do not directly translate across to RDF Schema.

Types for XML. XML is essentially a standardised syntax for serialising abstract syn-
tax trees [44]. An XML Schema [22] describes the permitted structure of the abstract
syntax tree as well as the primitive datatypes that may appear inside the tree.

XML Schema are types for data, as clarified and formalised in a line of work where
type systems for programming languages have been extended with types inspired by
XML Schema. Notable contributions include the prototype functional programming
languages XDuce [28]] and CDuce [3]. In these prototype languages, it is possible to
statically type check functions that manipulate XML. To consider an example, suppose
also that we would like to transform SPARQL Query XML Results into GraphML
formaﬂ When defining a function performing the transformation, CDuce will infer the
type of the function. If there is a problem with the function, then either a type checking
error will occur, or the wrong type will be inferred, suggesting to the programmer how
the function may be fixed.

The investigation into XML Schema and type systems have lead to non-trivial de-
velopments in the theory of types. The theory of semantic subtyping [20] was originally
motivated by the problem of developing a subtype system for XML Schema. Semantic
subtyping employs a denotational model of types to derive a subtype relation.

IFor SPARQL XML results schema see http://www.w3.org/2007/SPARQL/result.xsd, for
GraphML see http://graphml.graphdrawing.org/xmlns/1.0/graphml . xsd.

http://www.w3.org/2007/SPARQL/result.xsd
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd

Types for relational data. Languages for relational databases have long been endowed
with type systems [1]]. Rows in a table, or relations, can be typed using record types [11].
A combination of record types and type constructors for lists, bags and sets can be
used to type complex query languages and database programming languages as demon-
strated in [9]. For example the language Kleisli [48] incorporates a type system and
has inspired the development of modern query languages. Related work on types for
RDF [35]] suggested a distinct approach to ours based on record types.

Why Types for RDF Schema are Different. This work proposes quite a different use
of type systems compared to existing systems for XML and relational databases men-
tioned above. In the context of XML Schema and relational databases, the method for
integrating the type system with programming languages is conventional, in the sense
that the types are used to prescribe a space in which only certain structures are per-
mitted to exist, and if a structure is not inhabited by the given type, then a type error
occurs.

RDF Schema is designed for messy data that is combined from multiple heteroge-
neous datasets published on the Web. RDF Schema is only intended to be used as a
guideline for how data may be used, rather than a prescription for how data must be
used. For example, suppose that data is discovered from one source stating that a re-
source has type boxer, while in another source statements are made about the resource
that can only apply to politicians. In this scenario, a type error need not be thrown.
Instead of generating an error, RDF Schema is used to infer that person is both a boxer
and a politician. The fundamental difference to the type systems described above is
that the type of the resource itself (the person) has been refined at runtime; in contrast,
type information in traditional prescriptive type systems is static.

This work builds on the conference version of this paper [12] to establish a formal
system that respects RDF Schema inference [8]]. Further to respecting standard RDF
Schema inference, the system enables some new forms of inference that are useful for
completing missing schema information. This paper formalises and illustrates the un-
derlying system, called a descriptive type system, that reflects the requirements of RDF
Schema inference as well as enabling tight integration with domain specific scripting
languages.

A triple is the basic unit for representing data in RDF. It consists of a subject, a
property and an object. The subject is a URI that names the resource being described,
the property is a URI indicating how the subject is related to another resource that
appears in the object position.

Suppose that we have the following triple that states that Vitali Klitschko has the
boxing category Heavyweight.

res: Vitali_Klitschko| dbp:boxerCategory, res:Heavyweight .

A property can be assigned type information that indicates the type of resource
that should appear in the subject and object position when the resource appears as
the property. Suppose that dbp:boxerStyle|is a property with domain dbp:Boxer and
range dbp:BoxingCategory . In RDF Schema notation this may be represented by the

http://live.dbpedia.org/resource/Vitali_Klitschko
http://live.dbpedia.org/ontology/boxerCategory
http://live.dbpedia.org/resource/Heavyweight
http://live.dbpedia.org/ontology/boxerStyle
http://live.dbpedia.org/ontology/Boxer
http://live.dbpedia.org/ontology/BoxingCategory

following two triples.

dbp:boxerCategory, rdfs:domain |dbp:Boxer, .
dbp:boxerCategory, rdfs:range| dbp:BoxingCategory| .

The URIs rdfs:domain and rdfs:range, are special keywords from the RDF Schema
vocabulary [8]. According to the specification, a triple of the form p |rdfs:domain t
indicates that the URI ¢ is a type and resources that appear as subject of triples with
property p have the type ¢. Similarly, a triple of the form p |rdfs:range| t indicates that
the URI ¢ is a type and resources that appear as the object of triples with property p
have the type .

Now consider that the type of |res:Vitali_Klitschko| is currently unknown, so as-
sumed to be only the top type rdfs:Resource, that is a special top type that can be
assigned to all URIs. By RDF Schema inference described informally above we can
deduce that, since |res: Vitali_Klitschko| appears as the subject of a triple with property
dbp:boxerCategory and furthermore the domain of that property is dbp:Boxer, we can
infer that res: Vitali_Klitschko|is of typeldbp:Boxer. In RDF this may be represented by
the following inferred triple.

res: Vitali_Klitschko a |dbp:Boxer| .

The notation we use for representing RDF triples is inspired by the W3C standard
notation Turtle [43]. In this notation the keyword ‘a’ is a synonym for the URI |rdf:type
from the RDF vocabulary [15] which is used to indicate that the resource that appears
in the subject position is an instance of the type that appears in the object position.

Triples can be of the following forms, where the tokens ranging over type form a
distinguished finite subset of the tokens ranging over uri.

o Simple triples consisting of three URIs: uri uri uri.

Type declarations that indicate a type associated with a URL: uri a type.

o Subclass assertions relating two classes: type rdfs:subClassOf| type.

o Assertions about the domain of URI naming a property: uri rdfs:domain| type.
o Assertions about the range of URI naming a property: uri |rdfs:range| type.

Notice that to avoid circular definitions, we treat rdfs:subClassOf|, rdfs:domain| and
rdfs:range like keywords. Only in the ontology for RDF Schema itself, do we need to
make statements about these properties as if they are any other URI; hence the price
paid is small.

2.1. W3C Recommended RDF Schema inference

In Figure [T we present a version of the W3C recommended semantics for RDF
Schema. Similarly to the work of Munoz et al. [36] on minimal deductive systems for
RDF Schema, rules are presented as a deductive system. In such deductive systems,
if all the triples that appear above the horizontal line hold, then the rules below the

http://live.dbpedia.org/ontology/boxerCategory
http://www.w3.org/2000/01/rdf-schema#domain
http://live.dbpedia.org/ontology/Boxer
http://live.dbpedia.org/ontology/boxerCategory
http://www.w3.org/2000/01/rdf-schema#range
http://live.dbpedia.org/ontology/BoxingCategory
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range
http://live.dbpedia.org/resource/Vitali_Klitschko
http://www.w3.org/2000/01/rdf-schema#Resource
http://live.dbpedia.org/resource/Vitali_Klitschko
http://live.dbpedia.org/ontology/boxerCategory
http://live.dbpedia.org/ontology/Boxer
http://live.dbpedia.org/resource/Vitali_Klitschko
http://live.dbpedia.org/ontology/Boxer
http://live.dbpedia.org/resource/Vitali_Klitschko
http://live.dbpedia.org/ontology/Boxer
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range

uriy rdfs:domain, type uriy uri; urip

(rdfs2)

urip a type

uriy \rdfs:range, type urip uriy urip

(rdfs3)

uri; a type

(rdfs8)
uri a |rdfs:Resource
uri a type type, rdfs:subClassOf type
0 0 L (rdfs9)

uri a type,

(rdfs10)
type rdfs:subClassOf| type

type, rdfs:subClassOf type, type, rdfs:subClassOf type,

(rdfs11)
type, |rdfs:subClassOf type,

Figure 1: A deductive system for RDF Schema inference. Rule names correspond to the names of the
equivalent patterns of entailment in the W3C recommendation [24].

horizontal line hold. If there are no rules above the horizontal line, then an axiom is
defined that always holds.

There are two axioms in the deductive system defined in Fig.[l] The axiom rdfs8
defines that all resources have the supertype |rdfs:Resource. The axiom rdfsI0 states
that all types are a subtype of themselves; thereby rdfs:subClassOf| is a reflexive rela-
tion. The relation [rdfs:subClassOf) is also a transitive relation, as defined by the rule
rdfsl 1.

The rdfs9 rule in Fig. [T] performs subsumption, which allows a weaker type for a
resource to be inferred, by using the [rdfs:subClassOf | relation. Subsumption is a com-
mon feature of subtype systems [10} 34} 2] — an observation key to the formal system
developed in the body of this work. The remaining rules rdfs2 and rdfs3 formalise that
if the given URI is used as a property in a triple then the object of the triple, respectively
the subject of the triple, has the type indicated. See above for the examples regarding
boxer categories.

Notice that rules involve two sorts of variables: classes that range over the variables
type, type,, type, type,; and URIs that range over the variables uri, urig, uri;. Classes
form a subset of all URIs, thus a variable for a class may appear as a URI. This allows
triples that describe classes to be expressed, such as the following triples.

dbp:Boxer, prov:wasDerivedFrom| mapping:Boxer, .
dbp:Boxer, a prov:Entity, .

http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://live.dbpedia.org/ontology/Boxer
http://www.w3.org/ns/prov#wasDerivedFrom
http://mappings.dbpedia.org/index.php/OntologyClass:Boxer
http://live.dbpedia.org/ontology/Boxer
http://www.w3.org/ns/prov#Entity

The above triples state that type information about the class Boxer was derived from a
particular ontology wiki page, and is also of type prov:Entity. This metadata is taken
from the W3C recommended provenance ontology [31] that is used to express the
origin of resources, including classes.

By treating classes as an explicit finite subset of URISs, several rules become more
concise than in the recommendation, and two rules called rdfs4a and rdfs4b become
redundant. The remaining rules in the recommendation rdfs5, rdfs6, rdfs7 concern a
relation called rdfs:subPropertyOf|, which can be added straightforwardly to this work,
however contribute little to the type system. The final remaining rule rdfsI concerns
literals, such as strings and integers which are treated thoroughly by the prescriptive
type system in [13]]. The prescriptive type system may co-exist with the descriptive type
system in this work: the descriptive type system generating warnings; the prescriptive
type system generating errors. Literals must be treated prescriptively, since for example
adding an integer to a string can cause serious runtime errors.

Several papers already provide related formal models of RDF Schema addressing
known issues with the W3C recommendations. The inference mechanisms are anal-
ysed from a model theoretic perspective by ter Horst [47]. The main result of the
model theoretic analysis is that RDF Schema inference, as defined in the W3C recom-
mendation is incomplete. The incompleteness is caused by an interaction between two
features of RDF Schema — the property [rdfs:subPropertyOf and blank nodes. Blank
nodes are local identifiers that appear in RDF in place of URIs, but not in the property
position in a triple. With a more complete reasoning mechanism blank nodes should
be allowed to appear in the property position. In the latest W3C recommendation [24],
the notion of a generalised triple is proposed that allows blank nodes to appear in the
property position, addressing the concerns of ter Horst. In this work, we cover neither
blank nodes nor |rdfs:subProperty|, since the associated problems are perpendicular to
those in this work. For a discussion on blank nodes and their associated problems we
refer to Mallea et al. [33]].

Pan et al. [39] address issues with the higher-order nature of the official W3C rec-
ommendation for RDF Schema. A major point of contention is that the top level types
are defined in a circular fashion. In particular, there is a type rdfs:Class which is a type
of itself meaning making the system higher-order. Fortunately, there is little descriptive
power to gain by treating rdfs:Class like any other URI, since its main use is to de-
scribe the RDF Schema vocabulary itself. For example, rdfs:subClassOf has domain
rdfs:Class and range rdfs:Class| — a fact that can be implicitly built into the deductive
system itself by using a separate sort for classes, as in Fig.|1| In this work, |rdfs:Class| is
built into the formal system implicitly, by maintaining a finite set of known URIs that
can be used as classes. In this way, we are able to avoid the descriptive type system in
this work becoming higher-order.

2.2. Extending inference to infer the RDF Schema itself.

In the body of this work, we formally define a type system that supports RDF
Schema inference. RDF Schema inference is one of several other modes of inference
enabled by our type system. We argue that firstly these new modes of inference are no
less natural than the recommended RDF Schema inference; and, in common scenarios,

http://www.w3.org/ns/prov#Entity
http://www.w3.org/2000/01/rdf-schema#subPropertyOf
http://www.w3.org/2000/01/rdf-schema#subPropertyOf
http://www.w3.org/2000/01/rdf-schema#subProperty
http://www.w3.org/2000/01/rdf-schema#Class
http://www.w3.org/2000/01/rdf-schema#Class
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#Class
http://www.w3.org/2000/01/rdf-schema#Class
http://www.w3.org/2000/01/rdf-schema#Class

an alternative mode of inference is more appropriate. Unlike OWL [26] we are not ex-
tending the vocabulary used to describe schema; we are simply providing an alternative
method for using the existing vocabulary, that furthermore, remains sound with respect
to the W3C recommendation.
Consider the following triple that states that Vitali Klitschko was born in the Kyrgyz
SSR.
res: Vitali_Klitschko| dbp:birthPlace, res:Kyrgyz_SSR| .

We know that Vitali Klitschko has the type dbp:Boxer. Furthermore, from the DBpedia
ontology, we obtain the following triples.

dbp:birthPlace| rdfs:domain, dbp:Person .
dbp:birthPlace| rdfs:range dbp:Place, .

From the above RDF Schema information, the standard behaviour is to apply RDF
Schema inference, whence we infer that Klitschko has the types dbp:Boxer and
dbp:Person.

In this scenario, there is an alternative stronger mode of inference. Consider the
following subclass assumption.

dbp:Boxer |rdfs:subClassOf| |dbp:Person

If we add the above assumption to our dataset, then every boxer can be used as a
person. Therefore, by the rdfs9 rule in Fig. [T} we can infer that Klitschko is person,
without using the rdfs2 rule from Fig. [l Thus, no new type information regarding
Klitschko need be added to the dataset.

In the example, more general schema information has been extracted that can be
applied to other resources of the same type. So, for example, suppose that the following
triples are retrieved about Wladimir the brother of Vitali Klitschko.

res: Wiladimir_Klitschko a dbp:Boxer, .
dbp:Kazakh _SSR a dbp:Place, .
res: Wiladimir_Klitschko| \dbp:birthPlace, dbp:Kazakh_SSR) .

Since Wladimir is a boxer and all boxers are people, no further type information need
to be added to the dataset. The type system developed in this work identifies such
well-typed systems where no further inference is required.

Now suppose that by using freebase [7] we obtain the following triple, where
free:m/0j1b%hc| is name in freebase for the political party Ukrainian Democratic Al-
liance for Reform.

res. Vitali_Klitschko, [free:government/politician/party, [free:m/0j1b9hc, .

Suppose furthermore that, from the freebase ontology, we obtain the following triples
indicating the usage of the above property.

[free:government/politician/party, rdfs:domain |free:government/politician| .
[free:government/politician/party, rdfs:range| ffree:government/political_party, .

http://live.dbpedia.org/resource/Vitali_Klitschko
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/resource/Kyrgyz_SSR
http://live.dbpedia.org/ontology/Boxer
http://live.dbpedia.org/ontology/birthPlace
http://www.w3.org/2000/01/rdf-schema#domain
http://live.dbpedia.org/ontology/Person
http://live.dbpedia.org/ontology/birthPlace
http://www.w3.org/2000/01/rdf-schema#range
http://live.dbpedia.org/ontology/Place
http://live.dbpedia.org/ontology/Boxer
http://live.dbpedia.org/ontology/Person
http://live.dbpedia.org/ontology/Boxer
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://live.dbpedia.org/ontology/Person
http://live.dbpedia.org/resource/Wladimir_Klitschko
http://live.dbpedia.org/ontology/Boxer
http://live.dbpedia.org/ontology/Kazakh_SSR
http://live.dbpedia.org/ontology/Place
http://live.dbpedia.org/resource/Wladimir_Klitschko
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/ontology/Kazakh_SSR
http://rdf.freebase.com/ns/m/0j1b9hc
http://live.dbpedia.org/resource/Vitali_Klitschko
http://rdf.freebase.com/ns/government/politician/party
http://rdf.freebase.com/ns/m/0j1b9hc
http://rdf.freebase.com/ns/government/politician/party
http://www.w3.org/2000/01/rdf-schema#domain
http://rdf.freebase.com/ns/government/politician
http://rdf.freebase.com/ns/government/politician/party
http://www.w3.org/2000/01/rdf-schema#range
http://rdf.freebase.com/ns/government/political_party

Now, since Klitschko is a boxer and appears as the subject of a triple with property
[free:government/politician/party, we can apply one of the two modes of inference de-
scribed.

o Add the triple dbp:boxer |rdfs:subClassOf| free:government/politician.

o Infer that Vitali Klitschko has types |free: government/politician and dbp:boxer.

By adding the above subclass assumption to our dataset, every boxer would also be
a politician. Clearly, this is not what is intended since most boxers have no political
ambitions. In this scenario, what is intended is clearly the second case above.

A question that a machine cannot answer easily is which option is best. In both the
examples in this section, to a human, it is immediately clear that all boxers are people
but not all boxers are politicians. The descriptive type system formalised and explained
in the rest of this paper provides a mechanism for involving humans in the decision
process. Whenever inference may be performed, the required inference is presented
to the user of a program as a warning. The warning presents the option of applying
standard RDF Schema inference or possibly a stronger inference mode as described in
this section. Furthermore, since the message is a warning about a type violation, rather
than an error, the user may choose to ignore the warnings and only resolve warnings
that they believe are necessary. Thereby, we introduce the basis of a tool that assists
rather than restricts programmers.

3. Types and Subtyping for the Descriptive Type System

In this section, we introduce the types that are used in our type system. We explain
the intuition behind each construct and how they are useful for describing resources.
We also define how types are arranged into a hierarchy by using a subtype system.

3.1. Types for Classifying Resources

Many type systems are intimately connected to the form of data. For example, in
XML Schema, the lexeme 3 has the type xsd:integer, whereas the lexeme "Ershov"
has the type xsd:string. RDF does allow XML Schema datatypes [41] to appear as ob-
jects in triples. Such literals should be typed prescriptively, since it should be forbidden
to add a string to an integer or evaluate an integer using a regular expression.

Now consider the types of resources. Resources in RDF are represented by a URI
that identifies the resource. The simplest answer is to say that the type of a resource is
xsd:anyURI|, in which case a prescriptive type system is sufficient, as defined in [13]].

In contrast, this work concerns types that classify resources represented as URIs.
Using RDF types, one resource can be classified using the type dbp:IceHockeyPlayer
and another using the type yago.:SovietComputerScientists|. Both resources are repre-
sented as URIs, so there is nothing about the syntax of the resources that distinguishes
their type. Classes themselves are a distinguished finite set of URIs that form the
atomic types of our type system. The full syntax for types is presented in Fig.[2]

In Fig.[2] there are three type constructors, namely intersection, union, and property
types. There is also a top type |rdfs:Resource| that represents the type of all resources.
This type for all resources includes classes; hence all classes are also resources as in
the W3C recommendation [24].

10

http://rdf.freebase.com/ns/government/politician/party
http://live.dbpedia.org/ontology/boxer
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://rdf.freebase.com/ns/government/politician
http://rdf.freebase.com/ns/government/politician
http://live.dbpedia.org/ontology/boxer
http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#anyURI
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://dbpedia.org/class/yago/SovietComputerScientists
http://www.w3.org/2000/01/rdf-schema#Resource

Type == class atomic type

rdfs:Resource top type
IntersectionOf(Type, Type) intersection type
UnionO£f(Type, Type) union type
Property(Type, Type) property type

Figure 2: The syntax of descriptive types. Variables C, D, E are used to range over types.

Intersection types. The intersection type constructor is used to combine several types.
For example, according to DBpedia, res:Andrey_Ershov has several types, including
yago:SovietComputerScientists. and |yago:FellowsOfTheBritishComputerSociety. In
this case, the following intersection type can be assigned to |res:Andrey_Ershov.

IntersectionOf (yago:SovietComputerScientists,,
yago:FellowsOfTheBritishComputerSociety))

Intuitively, the resource res:Andrey_Ershov| is a member of the intersection of the set
of all resources that have the type yago:SovietComputerScientists| and the set of all
resources of type yago:FellowsOfTheBritishComputerSociety|.

Note that intersections and unions form part of the OWL [26] recommendation.
The semantics for intersections and unions in OWL are the same as the semantics for
intersection and union types, in the sense that they are the greatest lower bounds and
least upper bounds respectively in a preorder.

Property types. The property type is inspired by the \rdfs:domain and [rdfs:range
properties in RDF Schema [8]], which declare the type of data that may appear in the
respective subject and object position of a triple. In RDF [[15], the basic unit of data is
a triple, such as:

res. Vitali_Klitschko| dbp:birthPlace| res:Kyrgyz_SSR .

The elements of a triple are the subject, property and object respectively. Here the
subject is expected to be of type |dbp:Person|, the object is expected to be of type
dbp:Settlement, while the property dbp:birthPlace| is assigned the following type.

Property(dbp:Person, |dbp:Settlement)

In RDF Schema, this type represents two statements: one that declares that the domain
of the property is dbp:Person|; and another that declares that the range of the property
is ldbp:Settlement.

Union types. If we inspect the data in DBpedia, we discover that the following triple
also appears.

res: Vitali_Klitschko| |dbp:birthPlace| res:SovietUnion, .

11

http://www.w3.org/2000/01/rdf-schema#Resource
http://live.dbpedia.org/resource/Andrey_Ershov
http://dbpedia.org/class/yago/SovietComputerScientists
http://dbpedia.org/class/yago/FellowsOfTheBritishComputerSociety
http://live.dbpedia.org/resource/Andrey_Ershov
http://dbpedia.org/class/yago/SovietComputerScientists
http://dbpedia.org/class/yago/FellowsOfTheBritishComputerSociety
http://live.dbpedia.org/resource/Andrey_Ershov
http://dbpedia.org/class/yago/SovietComputerScientists
http://dbpedia.org/class/yago/FellowsOfTheBritishComputerSociety
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range
http://live.dbpedia.org/resource/Vitali_Klitschko
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/resource/Kyrgyz_SSR
http://live.dbpedia.org/ontology/Person
http://live.dbpedia.org/ontology/Settlement
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/ontology/Person
http://live.dbpedia.org/ontology/Settlement
http://live.dbpedia.org/ontology/Person
http://live.dbpedia.org/ontology/Settlement
http://live.dbpedia.org/resource/Vitali_Klitschko
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/resource/SovietUnion

Observe that |res:SovietUnion| is not a settlement. We can use the union type to refine
the above type so that the range of the property is either a settlement or a country. The
refined type for dbp:birthPlace|, involving union, is as follows.

Property(dbp:Person, UnionO£f(dbp:Settlement, |dbp:Country))

Notice that intersection would not be appropriate above. If we replace UnionOf with
IntersectionOf in the above example, the range of the property is restricted to re-
sources that are both a settlement and a country (e.g. Singapore), which is not the
intended semantics of dbp:birthPlace. We return to this common modelling slip when
we discuss properties with multiple domains and ranges, towards the end of the next
section.

Top type. Intuitively the top type ranges over the set of all resources. If a resource
has no descriptive type information, then it can be assigned the top type. The re-
source [yago:Random_access_machine| in the Yago dataset [46] has no type other than
rdfs:Resource.

In Yago the following triple relates Ershov to the random access machine.

yvago:Andrei_Ershov, yago:linksTo| yago:Random_access_machine|.

The property yago:linksTo, is very general, relating any resource to any resource, as
indicated by the property type Property(rdfs:Resource, rdfs:Resource).

Notice that the syntax of types is liberally expressive. We can express types that
are both resources and property types, allowing multiple uses of one URI. This design
decision accommodates the subjective nature of human knowledge and data representa-
tion, without the system becoming higher order. A descriptive type system is expected
to evolve, hence we do not want to restrict unforeseeable developments in its evolution.

3.2. A Subtype Relation over Descriptive Types

Types form a lattice defined by a subtype relation. The subtype relation, defined in
Fig. 3] determines when a resource of one type can be used as a resource of another
type. In subsequent sections, this relation is important for both the type system for data
and scripts that is introduced, and also for refining the type system itself at runtime in
response to warnings.

Axioms. We assume that there are a number of subtype inequalities that relate atomic
types to each other. For example, we may assume that the following subtype inequali-
ties hold.

dbp:Settlement < dbp:PopulatedPlace dbp:Country < dbp:PopulatedPlace
vago: CitiesAndTownsInMoscowOblast < dbp:Settlement

Clearly a settlement is a populated places, as is a country. Cities and towns in Moscow
oblast are also populated places, but are more specifically settlements.

These inequalities are inspired by the rdfs:subClassOf property from RDF Schema,
which defines a reflexive transitive relation. We call a subclass relation SC the set of

12

http://live.dbpedia.org/resource/SovietUnion
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/ontology/Person
http://live.dbpedia.org/ontology/Settlement
http://live.dbpedia.org/ontology/Country
http://live.dbpedia.org/ontology/birthPlace
http://dbpedia.org/class/yago/Random_access_machine
http://www.w3.org/2000/01/rdf-schema#Resource
http://dbpedia.org/class/yago/Andrei_Ershov
http://dbpedia.org/class/yago/linksTo
http://dbpedia.org/class/yago/Random_access_machine
http://dbpedia.org/class/yago/linksTo
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource
http://live.dbpedia.org/ontology/Settlement
http://live.dbpedia.org/ontology/PopulatedPlace
http://live.dbpedia.org/ontology/Country
http://live.dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/class/yago/CitiesAndTownsInMoscowOblast
http://live.dbpedia.org/ontology/Settlement
http://www.w3.org/2000/01/rdf-schema#subClassOf

classy < class; € SC*

fop subclass
+ C < rdfs:Resource F classy < class,
FC<D FC<E
left injection left projection
+ C < UnionOf(D,E) + Intersection0f(C,D) < E
+rC<E FrD<E
right injection right projection
+ C < UnionOf(C,E) + IntersectionOf(C,D) < E

FC<E +rD<E
+ UnionOf(C,D) < E

least upper bound

+FC<D FC<E

greatest lower bound
+ C < IntersectionOf(D, E)

FCo<Cy + Dy < Dy
+ Property(C;, D;) < Property(Cy, D)

property

Figure 3: Axioms and rules of the subtype system.

subtype assumptions. We denote the reflexive transitive closure of SC as SC*. Notice
that SC is a relation over a finite number of atomic types, hence SC* can be calculated
in cubic time [29]. The relation SC* is used in the subclass rule in Fig.

The top axiom states that every resource is of type [rdfs:Resource.

Rules for union, intersection and properties. Suppose that a hint leads to the type of
the property dbp:birthPlace, to be refined further. The hint suggests that the range
of the property should include dbp:PopulatedPlace. From the subtype rules, we can
derive the following inequality.

Property(dbp:Person,
UnionOf(dbp:Settlement
dbp:Country)))

Property(dbp:Person,
dbp:PopulatedPlace))

The derivation of the above subtype relation follows from applying first the property
rule, that swaps the direction of subtyping in each component, generating the following
subtype constraint, and an axiom.

+ UnionOf(dbp:Settlement, dbp:Country) < dbp:PopulatedPlace

The above subtype inequality between properties suggests that a property with range

dbp:PopulatedPlace| can also range over resources that are settlements or countries.
The above constraint is solved by applying the least upper bound rule. The least

upper bound rule generates two inequalities between classes that were declared to be

13

http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/ontology/PopulatedPlace
http://live.dbpedia.org/ontology/Person
http://live.dbpedia.org/ontology/PopulatedPlace
http://live.dbpedia.org/ontology/Person
http://live.dbpedia.org/ontology/Settlement
http://live.dbpedia.org/ontology/Country
http://live.dbpedia.org/ontology/Settlement
http://live.dbpedia.org/ontology/Country
http://live.dbpedia.org/ontology/PopulatedPlace
http://live.dbpedia.org/ontology/PopulatedPlace

in SC* above, hence the following hold by the subclass rule.
dbp:Settlement < dbp:PopulatedPlace, and dbp:Country < dbp:PopulatedPlace
Now suppose that the following inequality is added to the relation SC.
yvago:SovietComputerScientists < dbp: Person
By the left projection rule and the above subtype inequality, we can derive the following
subtype inequality.

IntersectionOf (|yago:SovietComputerScientists,,

< .
vago:FellowsOfTheBritishComputerSociety) ~ dbp: Person

The above inequality suggests that Ershov can be treated as a person, although his type
does not explicitly mention the class |dbp: Person.

The cut rule. A subtype relation is expected to be a transitive relation. To prove that
subtyping is transitive, we assume that there is a rule called the cut rule in our subtype
system and then show that any subtype inequality that is derived using cut can also be
derived without using cut. The cut rules is defined as follows.

+rC<D +D<FE
FC<E

In proof theory, the result that show that the cut rule is redundant is known as cut
elimination, and is central to establishing desirable properties of systems including
consistency.

cut

Theorem 1 (Cut elimination). The cut rule can be eliminated from the subtype system
in Fig. |5|using an algorithmic procedure.

Proof. The proof works by transforming the derivation tree for a subtype judgement
into another derivation tree with the same conclusion. The transformation is indicated
by [-]. The symbol r; above a subtype inequality represents a proof tree with the
subtype inequality as its conclusion.

Without loss of generality, assume that the rule applied at the base of the proof tree
is the cut rule. The proof proceeds by induction over the structure of the proof tree.

Consider the case of cut applied across two subclass rules. Since SC* is transitively
closed, if a < b € SC" and b < ¢ € SC*, then we know that a < ¢ € SC*. Hence the
following transformation simplifies subclass rules.

a<beSC" b<ceSC a<ceSC*
—>

Fa<b Fb<c Fa<c
ta<c

The above case is a base case for the induction. The other base case is when the top
rule is applied on the right branch of the cut rule. In this case, the cut can be absorbed
by the top type axiom, as follows.

b4
FC <D + D <grdfs:Resourcell — + C < rdfs:Resource

+ C < rdfs:Resource

14

http://live.dbpedia.org/ontology/Settlement
http://live.dbpedia.org/ontology/PopulatedPlace
http://live.dbpedia.org/ontology/Country
http://live.dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/class/yago/SovietComputerScientists
http://live.dbpedia.org/ontology/Person
http://dbpedia.org/class/yago/SovietComputerScientists
http://dbpedia.org/class/yago/FellowsOfTheBritishComputerSociety
http://live.dbpedia.org/ontology/Person
http://live.dbpedia.org/ontology/Person
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource

The result of the above transformation step is clearly cut free.
Consider the case where the left branch of a cut is another cut rule. The nested cut
rule can be normalised first, as demonstrated by the transformation bellow.

o T
FC<D FD<E P
+rC<E FE<F
FC<F
o T Uy
FC<D +rD<E +rE<F
—
FrC<E
FC<F

By induction, the resulting nested tree is transformed into a cut free derivation tree;
hence another case applies. This induction step is symmetric when a nested cut appears
on the right branch of a cut.

Consider the case where the least upper bound rule appears on the left branch of a
cut. In this case, the transformation can be applied separately to each of the premises
of the union introduction rule, as demonstrated below.

o T
FCo<D FC <D o
+ UnionO£(Cy,C1) < D +tD<E

+ Union0f(Cy,Cy) < E
o Up) T Uy
+FCo<D +rD<E FCi <D FDLE
FCo<E +C <E
+ UnionOf(Cy,C;) < E

By induction, the result of the transformation is a cut free proof. The case for the
greatest lower bound is symmetric, with the order of subtyping exchanged and union
exchanged for intersection.

Consider the case of the injection rules. Without loss of generality, consider the left
injection rule. In this case, the cut is pushed up the proof tree, as demonstrated below.

T o T
o FD<E FC<D FD<E
—
FC<D + D<UnionO£f(Ey, E) FC<E
+ C < UnionOf(Ey, E;) + C < UnionOf(Ey, E;)

By induction, the result is a cut free proof. The cases for right injection, left projection
and right projection are similar.

Consider when the injection rule is applied on the left of a cut, and least upper
bound rule is applied on the right of a cut. This is a principal case of the cut elimination
procedure. Without loss of generality, consider the left projection. The result of the
transformation is that only the left premise of the union introduction rule is required;

15

the irrelevant branch is removed by the elimination step, as demonstrated below.

T T Uy
+C < Dy FDy<E FD <E
+ C <Union0f(Dy,D;) + UnionOf(Dy,D,) <E
FC<E
o T
— | FC <Dy FDyg<E
FC<E

By induction, the result of the transformation is a cut-free proof. The principal case for
intersection is similar to union.

Consider the case of cut applied to two predicate subtype rules. In this case, the
contravariant premises of each subtype rule are cut individually, as follows.

) 7T6 T 7('1
+ Dy < Cy + D, <C + Ey < Dy +E, <D

+ Property(Cy, Cy) < Property(Dy, D) + Property(Dy, D) < Property(Ey, E)
+ Property(Cy, C;) < Property(Ey, E;)

Vo] b0 i i
FEy <Dy Dy < Cy FE; <D Dy <C
+ E() < C() F E1 < C1
+ Property(Cy, C;) < Property(Ey, E;)

By induction, each of the new transformations on the right above have a cut-free proof,
so the result of original transformation on the left above has a cut-free proof.

For every cut one of the above cases applies. Furthermore, in each transformation
a finite number of proof trees are considered after a transformation step, each of which
has a smaller depth than the original proof tree; hence by a standard multiset ordering
argument [[17] it is easy to see that the procedure terminates. Therefore, by structural
induction on the derivation tree, a cut free derivation tree with the same conclusion can
be constructed for any derivation. O

Notice that the base case in the proof above would not be possible without taking
the transitive closure of the subclass relation. Pre-computing the transitive closure is
equivalent to applying in advance the cut rule exhaustively over atomic types, which
works since there are finitely many atomic classes at any time and the resulting relation
is finite.

Cut elimination proves that the subtype system is transitive. It is straightforward to
prove that the subtype system is reflexive, by structural induction. Also, the direction
of subtyping is preserved (monotonicity) by conjunction and disjunction, while the
direction of subtyping is reversed (antitonicity) for property types. Monotonicity and
antitonicity can be established by a direct proof.

Proposition 2. For any type + C < C is derivable. Also, if + Co < Dy and + C; < Dy
then the following hold:

e + IntersectionOf(Cy,C,) < IntersectionOf(Dy, D) is derivable.

16

e + UnionOf(Cy, Cy) < UnionO£f(Dy, D) is derivable.
e + Property(Dy, D) < Property(Cy, C) is derivable.

Proof. Reflexivity of subtyping follows by induction on the structure of types. The
base cases are as follows.

There are two base cases. Consider the case for class types a. Since SC* is reflex-
ively closed, a < a € SC*; hence by the subclass rule + a < a holds. Consider the case
for rdfs:Resource. By the top rule, k rdfs:Resource < rdfs:Resource| as required.

The remaining cases follow by induction. Assume that+ C < C and + D < D, then
by the property rule, + range(C) D holds. Also by the left projection, right projection
and greatest lower bound rules, we can derive the following.

FC<C +rD<D
IntersectionOf(C,D) < C + Intersection0f(C,D) < D

+ Intersection0f(C, D) < IntersectionOf(C, D)

A symmetric argument holds for union types and similar argument or property types.

Therefore, by induction on the structure of the type, the subtype relation is reflexive.
The antitonicity of property types and monotonicity of intersection and union types

follow directly from the rules for each type constructor. O

Theorem [T and Proposition 2] are sufficient to establish the consistency of the sub-
type system, i.e. subtyping is a well defined preorder.

Corollary 3. The relation defined by subtyping is a preorder over types.

Our subtype system is closely related to the functional programming language with
intersection and union types presented by Barbanera et al. [2]. Our subtype system
without properties coincides with the subtype system of Barbanera et al. without im-
plication. Implication corresponds to fully fledged function types, which, of course, is
much more expressive than our property types. Properties can be encoded using im-
plication, so our system is a restriction of the system presented in [2]. However, the
system of Barbanera et al. types all terminating functions; hence is undecidable, and
therefore inappropriate to use directly.

4. An Algorithmic Type System for Scripts and Data

We introduce a simple scripting language for interacting with Linked Data. The
language enables resources to be dereferenced and for data to be queried. This language
is a restriction of the scripting language presented in [13[]; which is based on process
calculi presented in [18} [27]. We keep the language here simple to maintain the focus
on descriptive types.

17

http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource

term = variable | uri data == term term term
term a term
script :== ok class rdfs:subClassOf class

where term term term script
from term script
select variable: type script

term rdfs:domain| class
term rdfs:range class
data data

Figure 4: The syntax of scripts and data.

4.1. The Syntax of a Simple Scripting Language for Linked Data

The syntax of scripts is presented in Fig.] Terms in the language are URIs which
are identifiers for resources, or variables of the form $x. RDF triples [15] and triple
patterns are represented as three terms separated by spaces. The where keyword pre-
fixes a triple pattern. The keyword ok, representing a successfully terminated script, is
dropped in examples. Data is simply one or more triples, representing an RDF graph.

The keyword from represents dereferencing the given resource. The HTTP pro-
tocol is used to obtain some data from the URI, and the data obtained is loaded into
a graph local to the script (see [13] for an extensive discussion of the related from
named construct).

The keyword where represents executing a query over the local graph that was
populated by dereferencing resources. The query can execute only if the data in the
local graph matches the pattern. Variables representing resources to be discovered by
the query are bound using the select keyword (see [27] for the analysis of more
expressive query languages based on SPARQL [23] 140]).

4.2. An Algorithmic Type System for Scripts and Data

We type scripts for two purposes. Firstly, if the script is correctly typed, the script is
consistent with the schema information currently known by the type system. Therefore,
when the script is executed, no warning will be thrown, where a warning indicates
that there is an inconsistency between the current schema information and the data or
script hence some form of inference should be applied. Secondly, if the script is not
well typed, we can use the type system as the basis of an algorithm for generating
the warnings and inferences themselves. Scripts and data are typed using the system
presented in Fig.[5] There are typing rules for each form of term, script and data.

Typing data. To type resources we require a partial function Ty from resources to
types. This represents the current type of resources assumed by the system. We write
Ty(uri) for the current type of the resource, and call Ty the type assumptions. The type
rule for resources states that a resource can assume any supertype of its current type.
For example Ershov and Klitschko are people even though their type is the intersection
of several professions.

The type rule for triples states that a triple is well typed as long as the subject and
object of a triple can match the type of the property type assumed by the predicate.
Well typed triples are then composed together.

18

http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range

+rC<D FTy(uri) < C

variable ——— resource — success
Env,$x: C+ $x: D Env v uri: C Env + ok
Env, $x: C + script ; Env + script 5
. select . . rom
Env + select $x: C script Env + from uri script

Env + termg: C Env + term;: Property(C,D) Env r termy: D Env + script
Env + where termg term, term; script

where

Env + termy: C Env v term; : Property(C,D) EnvF termy: D

triple
Env + termy term, termy P
Env + datag Env + data : ..
0 1 compose Env + term: class ascription
Env + datay data, Env + term a class

Env + classy < class,
Env r classy rdfs:subClassOf class

subclass

Env + term: Property(classg, classy)
Env + term rdfs:domain, class

domain

Env + term: Property(classy, class)

range
Env + term rdfs:range class

Figure 5: The type system for scripts and data.

Triples with the reserved keywords in the property position are typed differently
from other triples. In the ascription rule, the object is an atomic type and the subject
is a term of the given atomic type. This rule is used to extract type information from
data during inference, and can be viewed as a form of type ascription or casting [42].
Recall that a type ascription indicates that we expect a resource to be a particular type,
when it could possibly take on several other types.

The type rule for triples where |rdfs:subClassOf| appears in the predicate position
forces the corresponding assertion to appear in the subclass relation. The type rules for
triples with \rdfs:domain and \rdfs:range in the property position, force the domain and
range of a property respectively to permit the type indicated. Notice that for the domain
rule the corresponding range is not specified, and similarly for the range rule. This
leaves considerable flexibility in determining the type of a property. Further rules could
be added to extract more refined types based on OWL [26] including rules covering
intersection and union types.

19

http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range

Typing scripts. Variables may appear in scripts. The type rule for variables is similar
to the type rule for resources, except that the type of a variable is drawn from the
type environment, which appears on the left of the turnstile in a judgement. A type
environment consists of a set of type assignments of the form $x: C. As standard
in type systems, a variable is assigned a unique type in a type environment. Type
assumptions are introduced in the type environment using the type rule for select.

The rule for where is similar to the type rule for triples, except that there is a
continuation script. A script prefixed with from is always well typed as long as the
continuation script is well typed, since we work only with dereferenceable resources. A
prescriptive type system involving data, such as numbers which cannot be dereferenced
as in [13]], takes more care at this point. The terminated script is always well typed.

The subsumption rule. Derivation trees in an algorithmic type system are linear in
the size of the syntax. Suppose that we included the following subsumption rule that
relaxes the type of a term at any point in a typing derivation, thereby explicitly applying
subtyping at any point.

Envtiterm: C +C<D
Env + term: D

subsumption

The type system extended with the subsumption rule, gives rise to type derivations
of an unbounded size. By showing that subsumption is not necessary hence can be
eliminated from any type derivation, as with the cut rule in the previous section, we
establish that the type system is algorithmic [42]].

Proposition 4 (Algorithmic typing). For any type assumption that can be derived using
the type system in Fig. | plus the subsumption rule, we can construct a type derivation
with the same conclusion where the subsumption rule has been eliminated from the
derivation tree.

Proof. There are three similar cases to consider, namely when a subsumption immedi-
ately follows: another subsumption rule; or a type rule for resources, or a type rule for
variables. In each case notice that, by Theorem if - C < Dand+ D < E, then we
can construct a cut-free derivation for - C < E. Hence, in each of the following, the
type derivation of the left can be transformed into the type derivation on the right.

Envtkterm: C +C<D
1. Env + term: D rD<E yields
Env + term: E

Envrterm: C +C<E
Envk term: E

FTy(uri) < D
2. Envvuri: D + D < E where Ty(uri) = C yields
Env v uri: E

FTy(uri) < E
Env + term: E

FC<D
3. Env,$x: C+$x: D +D<E yields
Env,$x: C+ $x: E

FC<E
Env,$x: C+ $x: E

20

For other type rules subsumption cannot be applied, so the induction step follows im-
mediately. Hence, by induction on the structure of a type derivation, all occurrences of
the subsumption rule can be eliminated. O

Since the type system is algorithmic, we can use it efficiently as the basis for infer-
ence algorithms that we will employ in Section 5}

Monotonicity. We define an ordering over type assumptions and subtype assumptions.
This ordering allows us to refine our type system by enlarging the subtype assump-
tions; by enlarging the domain of the type assumptions; and by tightening the types
of resources with respect to the subtype relation. Refinement can be formalised as
follows.

Definition 5. When we would like to be explicit about the subtype assumptions SC
and type assumptions Ty used in a type judgement Env + script and subtype judgement
+ C < D, we use the following notation:

Env I—?C script Fsc C <D
We define a refinement relation (Ty', SC") < (Ty, SC), such that:
1. SCcSC.

2. For all uri such that Ty(uri) = D, there is some C such that Ty'(uri) = C and
Fsc C < D.

We say that (TY',SC") is a refinement of (Ty, SC).

In a descriptive type system, we give the option to refine the type system in re-
sponse to warnings that appear. The following two lemmas are steps towards establish-
ing soundness of the type system in the presence of refinements of subtype and type
assumptions. These lemmas establish that anything that is well typed remains well
typed in a refined type system.

Lemma 6. If+gc C < D and SC C SC’, then +gc C < D.

Proof. Observe that only the atom rule uses SC. Also notice that if a < b € SC*, and
SC € SC’, then a < b € SC™™. Hence if the subtype axiom on the left below holds, then
the subtype axiom on the right below holds.

a<beSC a<beSC”
Fsc a < b ylelds Fsor a < b

All other cases do not involve SC, hence the induction steps are immediate. Hence, by
structural induction, the set of subtype assumptions can be enlarged while preserving
the subtype judgements. O

Lemma 7. The following monotonicity properties hold for scripts and data respec-
tively.

1. Ifl-?é script and (Ty', SC") < (Ty, SC), then "?c script.

21

T data.

2. Ifl—?é data and (Ty', SC') < (Ty, SC), then .,

Proof. For type assumptions, observe that the only rule involving Ty is the rule for
typing resources. Assume that (Ty’,SC’) < (Ty,SC). By definition, if Ty(uri) = D
then Ty’ (uri) = C and ks C < D where SC € SC’. Hence if ksc D < E, by Lemmal6]
tscv D < E. Hence, by Theorem |1} we can construct a cut free proof of +gc» C < E.
Therefore if the type axiom on the left below holds, then the type axiom on the right
also holds.

Fsc Ty(uri) < E Fsc Ty'(uri) < E
Env I—gé uri: E yields Env I-?é uri: E

Consider the type rule for variables. By Lemma[6} if Fsc C < D then +s¢r C < D.
Therefore if the type axiom on the left below holds, then the type axiom on the right
also holds.

I—SCcSD Fsc'CSD
Env,$x: C+ $x: D yields Env,$x: C+ $x: D

All other rules do not involve Ty or SC, hence follow immediately. Therefore, by
structural induction, refining the type system preserves well typed scripts and data. O

4.3. Simple Entailment as a Mode of Inference

This work presents a mechanism that complementary RDF Schema in a more flex-
ible fashion, rather than conflicting with existing standards. Here we clarify the con-
nection between conventional RDF Schema inference defined in Section [2] and the
inference problem in terms of descriptive types. The inference problem is: given some
data D can we calculate type assignments and subtype assumptions Ty and SC such
that . D.

A solution to the inference problem for descriptive types is based on applying stan-
dard RDF Schema inference as defined in Fig.[I] To use the Fig. [I] formally, we intro-
duce the following standard terminology regarding RDF Schema.

Definition 8. Given data D, as defined in Fig. 4} assume that any triple in D can be
taken to be axioms in the inference system defined in Fig.[I] If a triple, say T, can be
derived using that system, then we say that D simply entails T.

The formal statement relating simple entailment and inference is provided in Propo-
sition[9] Intuitively, given any data, we can construct some type assignment and any
subclass relation such that the data is well-typed; and furthermore, if a triple may be
inferred using simple entailment, then that triple is also well typed. Notice that the
statement is stronger for subclass relations than type assignments, since any subclass
relation that allows the data to be typed also respects simple entailment; in contrast,
there may exist other type assignments that type the data but do not respect simple
entailment. Further discussion of this discrepancy follows after the proof below.

Proposition 9. For any data D, there exists Ty such that, for any SC such that "?c D
and, for any triple T such that D simply entails T, it holds that I—?C T.

22

Proof. Firstly, consider triples of the form classg rdfs:subClassOf class, simply en-
tailed by D, for any SC such that I-?é D. Intuitively, simply entailed triples of the
given form must either appear in D, follow by reflexivity, or follow by applying tran-
sitivity to |rdfs:subClassOf| triples in D. This is formally established by the in-
duction in the following paragraph, where we establish the stronger invariant that, if
classg \rdfs:subClassOf class; is simply entailed by D such that I—?é D, then it holds
that classy < class; € SC*.

The base case is that the triple is in D. In this case, by the subclass rule in Fig.[3]
this triple is well typed only if +sc classg < class;, which by the subclass subtype rule
in Fig.3]holds only if classy < class; € SC*. In the base case for reflexivity (rule rdfs10
in Fig.[1), class [rdfs:subClassOf class is simply entailed and, since SC* is reflexively
closed over all atomic types, class < class € SC* holds by definition. Consider the
case of transitivity (rdfs1] from Fig. [I)), where class [rdfs:subClassOf class, follows
from class rdfs:subClassOf class, and class; rdfs:subClassOf|class,. By the induction
hypothesis, classy < class; € SC* and class; < class, € SC* hence, since SC* is
transitively closed, classy < class, € SC*. By induction, for any inferred triple of the
form classg rdfs:subClassOf class,, it holds that classy < class, € SC*, as required.

Now consider the construction of the subtype assumptions. For some data D, con-
struct Ty such that Ty(uri) is defined to be the intersection of all atomic types class
such that one of the following hold:

e uri a class appears in D,
o uri uriy urip and uri; rdfs:domain| class appear in D,
o uriy uriy uri and uri; rdfs:range class appear in D;

and, furthermore, if uriy uri uri; or uri rdfs:domain/class or uri|rdfs:range class appears
in D, then Ty(uri) should also intersect with Property(rdfs:Resource,|rdfs:Resource)).

Now consider triples of the form uri a class and any SC such that I—éé D. There
are four base cases. Assume that uri a class is in D. By the ascription rule in Fig. 5]
this hold only if l-gé uri: class, which holds only if Fgc Ty(uri) < class which holds
by construction of Ty. Assume that uri a class follows from uri rdfs:domain class
and wuri uriy uriy which are in D by rdfs2. To force l—gé uri a class to hold, as in

the previously case, it must be the case that Ty(uri) < class. Furthermore, since k?é

uriy [rdfs:domain|class and l—gé uri uriy uriy, it must be the case that the following hold.

T . T .
"sé uriy : Property(class,rdfs:Resource) "sé uriy : [rdfs:Resource

In the above, the former holds since Ty(uri;) < Property(class,rdfs:Resource), by
construction of Ty, and the latter holds since Ty(uriy) < rdfs:Resource, by the top rule
in the subtype system. The inductive case is when uri a class; follows from rule rdfs9.
For the induction hypothesis, assume that uri a classy and classg rdfs:subClassOf class;
are well typed. By the argument in the first paragraph of this proof, Fsc classy < class,
and also Fsé uri: classy. Therefore, by subsumption, I—gé uri: classy, as required.
Finally, Property(rdfs:Resource,|rdfs: Resource) is the bottom property type since
Property(rdfs:Resource,|rdfs:Resource) < Property(class,|rdfs:Resource). By con-
struction of Ty, Ty(uri) < Property(rdfs:Resource,|rdfs:Resource) for any uri used

23

http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource

as a property. By Theoremm Ty(uri) < Property(class,rdfs:Resource). Thereby by
construction of Ty, l-gé urirdfs:domain|class. A similar argument holds for rdfs:range.

. . . T .
If urip uri; uri, appears in D, "sé uriy : Property(rdfs:Resource, rdfs:Resource).

. T . T . T .
Since also Fsyc urip : |rdfs:Resource and Fsé uriy : |rdfs:Resource, Fs}é urig uriy uri,. 0

To the RDF Schema purist, the above result is likely to be much weaker than ex-
pected. As expected, every subclass assumption that well types data will type the sub-
class triples entailed by the data by standard simple entailment. However, Proposition[J]
only states that there exists some type assignment that types all simply entailed triples.
There are many type assignments that type the data but do not type all simply entailed
triples. In particular, triples with properties |rdfs:domain and rdfs:range need not
necessarily force the URIs appearing as the subject and object respectively to take on
exactly the type indicated.

Furthermore, the assignment constructed in the proof is not the most general assign-
ment, for which standard RDF Schema inferences are well-typed. Any URI used as a
property is intersected with the type Property(rdfs:Resource, rdfs:Resource), which
is the bottom property type with respect to the subtype relation, i.e. the least property
type with respect to the subtype relation. A property type that is more explicit about
the range and domain are more general in the sense that they are greater in the subtype
hierarchy.

A justification for the more flexible choice of Ty is that standard RDF Schema
inference is only one of many natural inference modes. Another more technical issue
is that there are differences in the handling of properties with multiple domains and
ranges that we explain thoroughly in the next section.

4.4. Note on Recommendations for Multiple Domain and Range Properties

Restricting ourselves strictly to the recommended RDF Schema inference, called
simple entailment, introduces difficulties for systems with dynamically changing data.
The problem arises due to the handling of multiple domain and range triples. The W3C
recommendation [§] states the following.

Where a property P has more than one rdfs:domain property, then the
resources denoted by subjects of triples with predicate P are instances of
all the classes stated by the rdfs:domain properties.

A similar quote appears for [rdfs:range..

In light of the above statement, suppose that we have a property with domain 7
and range t;. Now suppose that a further rdfs:domain| and rdfs:range triple are dis-
covered for the same property, indicating types t, and #3 respectively. Under a strict
interpretation of RDF Schema inference, the type of the property should be as follows.

Property(IntersectionO£f(zy,), Intersection0f(z,3))

Unfortunately, (assuming that #; is not a subclass of f,, or #; is not a subclass of 73) it
is not the case that the above type is a subtype of the original type for the property.
Since the above type is a supertype of Property(z, t1), then all type judgements made
earlier involving the property concerned may be invalidated and hence must be checked

24

http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range

again, i.e. we cannot apply the monotonicity condition in Lemma[7] This would break
the static aspects of the type checking mechanisms, making RDF Schema inference and
descriptive type checking for a dynamically growing dataset prohibitively expensive.
At each discovery of new [rdfs:domain or rdfs:range triples, inferences would need to
be recalculated for the entire dataset and all scripts that interact with the dataset.

There are a number of approaches to avoiding the above problem, all of which
are within the scope of our descriptive type system. We can instead interpret multiple
domains as to be interpreted in a disjunctive manner.

Where a property P has more than one rdfs:domain property, then the
resources denoted by subjects of triples with predicate P are instances of
one of the classes stated by the |rdfs:domain properties.

In practice, many real life data sets imply our more relaxed interpretation above. For
example, the Bioportal [37]] contains many properties with multiple domains and ranges
that make no sense when they are intersected, or are even unsatisfiable. In the Biopor-
tal, the property bpo:has_event has three classes indicated as its domain: bpo:person
, |[bpo:event and bpo:disease_or_disorder|. 1t is clearly not the intention of the pub-
lishers of the ontology that any resource that appears in the subject position of a triple
with property |bpo:has_event, has a type bounded above by the intersection of all three
of these types. Common sense says that the three classes are intended to be disjoint.
Instead the intended meaning is clearly that |bpo.has_event| has one domain that is the
union of the three types. Elsewhere, for example the provenance ontology [31], the
above interpretation is made explicit by using owl:unionOf| frequently for the do-
main and range triples, for example property prov:waslnfluencedBy has the following
range:
UnionOf (pprov:Activity, prov:Agent, prov:Entity)

Many ontologies, such as the DBpedia ontology [|6] avoid discrepancies with respect to
the W3C recommendation by only ever stating one domain or range for any property.
The reader may observe for themselves the real usage of multiple domains for a prop-
erty by using the following query on various SPARQL endpoints exposing ontologies.

select ?p ?x ?y where {
?p rdfs:domain ?x . ?p rdfs:domain ?y . filter (?x != ?y) }

We recommend that ontology designers use the explicit approaches to domains
and ranges where either an explicit union is used, as in the provenance ontology; or
only one range or property appears, as in the DBpedia ontology. Multiple domain or
range properties discovered from separate sources about the same property are best
treated as a single domain and range with a union type, rather than an intersection type.
This permits a more accommodating approach to inference and a monotonic approach
to descriptive typing, where the time complexity of inference is proportional to size
of the new data added rather than the entire dataset. Note that this problem means
that standard RDF Schema inference would cope poorly with big evolving datasets, as
typical of Linked Data applications.

25

http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#domain
http://www.semanticweb.org/ontologies/2010/10/BPO.owl#has_event
http://www.semanticweb.org/ontologies/2010/10/BPO.owl#person
http://www.semanticweb.org/ontologies/2010/10/BPO.owl#event
http://www.semanticweb.org/ontologies/2010/10/BPO.owl#disease_or_disorder
http://www.semanticweb.org/ontologies/2010/10/BPO.owl#has_event
http://www.semanticweb.org/ontologies/2010/10/BPO.owl#has_event
http://www.w3.org/2002/07/owl#unionOf
http://www.w3.org/ns/prov#wasInfluencedBy
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Entity

5. An Operational Semantics using Descriptive Types at Runtime

This section is the high point of this paper. We illustrate how descriptive typing is
fundamentally different from prescriptive typing.

In a prescriptive type system, we only permit the execution of programs that are
well typed. In contrast, in this descriptive type system, if a program is not well typed,
then the program can still be executed. During the execution of an ill-typed program,
warnings are generated. At runtime, the program provides the option to, at any point
during the execution of the program, address the warnings and refine the type system
to resolve the warnings.

In this section, we informally motivate the problems descriptive types address at
runtime using examples, we then introduce the formal operational semantics, and re-
visit the same examples formally using the operational semantics. Finally, we refine
the example further to explain how an algorithm can be used to generate warnings.

5.1. Descriptive Typing for Linked Data Scripting Languages

We first intuitively illustrate a scenario involving descriptive typing for scripts that
interact with Linked Data. Descriptive typing generates meaningful warnings during
the execution of a script, that can assist programmers without imposing obligations.

Suppose that at some point we would like to obtain data about Andrei Ershov.
Our script firstly dereferences the URI dbp:Andrei_Yershov, (in Russian Ershov and
Yershov are transliterations of the same Cyrilic characters). From this we obtain some
data including the following triples.

res:Andrei_Yershov dbp:birthPlace, [res:Soviet_Union, .
res:Andrei_Yershov, dbp:league| \res: Kazakhstan_Major_League| .
res:Andrei_Yershov, a |dbp:IceHockeyPlayer, .

The reader familiar with Ershov the academician will find the above data strange, but
the script that performs the dereferencing has no experience to judge the correctness of
the data.

The script then tries to query the data that has just been obtained, as follows:

select $place
where res:Andrei_Yershov| \dbp:birthPlace $place .

The above query uses a property dbp:birthPlace| that can relate any person to any loca-
tion. The database is aware, due to the DBPedia ontology [6], thatldbp.:IceHockeyPlayer
is a subtype of dbp:Person. Hence the query is considered to be well typed. The query
produces the result $place | res:Soviet_Union), which appears to be correct.

Next the script tries a different query.

select $book
where res:Andrei_Yershov, ffree:book.author.works_written| $book .

Before the query is executed, it is type checked. The type system knows that the prop-
erty |free:book.author.works_written relates authors to books. The type system also

26

http://live.dbpedia.org/ontology/Andrei_Yershov
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/resource/Soviet_Union
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/ontology/league
http://live.dbpedia.org/resource/Kazakhstan_Major_League
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://live.dbpedia.org/ontology/Person
http://live.dbpedia.org/resource/Soviet_Union
http://live.dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author.works_written

knows, from the data obtained earlier, that res:Andrei_Yershov| is an ice hockey player,
which is not a subtype of author. The subject of the triple and the property appear not
to match.

In a prescriptive type system the query would be automatically rejected as being
wrong. In contrast, a descriptive type system provides warnings at runtime with several
options to choose from other than outright rejection.

1. Change the type of [res:Andrei_Yershov| so that the resource is both an ice hockey
player and an author.

2. Change the type of the property free:book.author.works_written so that ice hockey
players can author books.

3. Change the subtype relations so that ice hockey player is a subtype of author,
hence all ice hockey players are automatically inferred to be authors.

4. Change the data so that a different resource or property is used.

The default option for RDF Schema [36] is to infer that, because the subject of
[free:book.author.works_written is an author and res:Andrei_Yershov appears as the sub-
ject, then res:Andrei_Yershov must also be an author. The type of res:Andrei_Yershov
would be refined to the following intersection of types.

IntersectionOf(dbp:IceHockeyPlayer, free:book.author)

Academics can have colourful lives, so the above type may appear plausible to an
observer unfamiliar with Ershov’s life. However, this is a case of mistaken identity.
Ershov the academician was never a professional ice hockey player.

The correct way to resolve the above conflict is instead to change the data. A query
to freebase [7] and DBpedia [6] asking resources with name Ershov in Cyrillic that are
book authors reveals that the intended Ershov was identified by [res:Andrey_Ershov|in
DBpedia and free:m.012s31 in freebase.

We return to this example after developing introducing the rules of the operational
semantics.

5.2. The Operational Semantics

The rules of the operational semantics are presented in Fig.[6] The first three are
the operational rules for select, where and from respectively. The fourth rule is the
optional rule that refines the type system in response to warnings. We quotient data by
the relation = defined such that the composition of data is associative and commutative,
i.e. = 1is a congruence relation such that (data, data,) datas = data, (data, datas) and
data, data, = data, data, .

Configurations. A configuration (script, data, Ty, SC) represents the state of the sys-
tem, which can change during the execution of a script. It consists of four components:

o The script script that is currently being executed.

e The data data representing triples that are currently stored locally.

27

http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author.works_written
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book.author
http://live.dbpedia.org/resource/Andrey_Ershov
http://rdf.freebase.com/ns/m.012s3l

Ty

Foo uri: C
- select
(select uri: C script,data, Ty, SC) — (script{””/sx},data, Ty, SC)
data = termg term, term, data’
where

(where termy term; termy script, data, Ty, SC) — (script, data, Ty, SC)

(Ty’,SC’) < (Ty,SC) ot datay

(from uri script, datay, Ty, SC) — (script, datay data,, Ty’, SC")

from

(Ty’, SC’) < (Ty, SC) I—zé script
(script, data, Ty, SC) — (script, data, Ty’, SC")

optional

Figure 6: The operational semantics for scripts. Note that, in the from rule, data; is the data obtained at
runtime by dereferencing the resource uri.

e A partial function Ty from resources to types, representing the current type as-
sumptions about resources.

e A relation over atomic types SC, representing the current subtype assumptions.

Type assumptions and subtype assumptions can be changed by the rules of the opera-
tional semantics, since they are part of the runtime state.

The rules are best explained by the examples in the rest of the section. Notice that
a novel feature of this operational semantics are the type assertions in the premise of
the rules select, from and optional. We briefly highlight these novelties below.

For the rule select, the type assertion in the premise represents a dynamic type
check that cannot always be checked statically, for example assume that the type of the
bound variable is dbp:Boxer, that the variable appears in a subsequent where clause
as the subject or object of a property foaf:knows that relates two resources of type
foaf:Person, and also that dbp:Boxer < foaf:Person. In this case, the well-typed data
involving [foaf:knows may match the pattern in the where clause, but the people related
may not necessarily be boxers, hence a dynamic type check needs to be performed.
Notice that static analysis could eliminate the dynamic type check when the type of
the variable is of the greatest type that the variable may assume according to how the
variable is used in subsequent where clauses.

For the rule from, the type assertion in the premise is required to deal with poten-
tial new type assumption and subtype assertions that accommodate the new data. For
example, there may be no type assumption for a uri in the newly discovered data that
is used as the subject in a triple that may only refer to authors, hence the type assump-
tions should be refined in one of a number of ways to accommodate this new schema
information. The premise is a declarative specification from which constraints can be
generated which are then solved algorithmically, according a method explained and

28

http://live.dbpedia.org/ontology/Boxer
http://xmlns.com/foaf/0.1/knows
http://xmlns.com/foaf/0.1/Person
http://live.dbpedia.org/ontology/Boxer
http://xmlns.com/foaf/0.1/Person
http://xmlns.com/foaf/0.1/knows

illustrated later in this section. Scenarios where it is useful to have multiple options,
rather than selecting default RDF Schema inference, are presented by examples in this
section.

For the optional rule, satisfying the type assertion in the premise ensures that the
remaining parts of the script are well typed. By unfolding the rules of the algorithmic
type system, constraints are generated for which several options are algorithmically
generated, using the same approach as for the from rule as explained by the algorithms
and illustrated by the examples in the rest of this section. For example, a query may
involve triple with property foaf:knows| which forces constraints on the types of vari-
ables and resources that appear in the context of the triple that cannot be resolved
without refining the type system. Thus the rule optional anticipates refinements that
may be applied later in the script and also assists the human in spotting data modelling
errors in the queries in scripts themselves.

5.3. A Worked Example of a Good Script

We explain the interplay between the operational rules using a concrete example.
Suppose that initially we have a configuration consisting of:

e ascript:
from res:Andrey_Ershov
select $place: ldbp:PopulatedPlace
where|res:Andrey_Ershov |dbp.:birthPlace| $book

e some data datay including triples such as the following:

dbp:birthPlace| rdfs:domain, dbp:Person
dbp:birthPlace| rdfs:range dbp:PopulatedPlace
res:SovietUnion| a dbp:PopulatedPlace

e some type assumptions Ty such that:

Ty(dbp:birthPlace) = Property(dbp:Person,
dbp:PopulatedPlacel)
Ty(res:Andrey_Ershov) = rdfs:Resource
Ty(res:SovietUnion) = dbp:PopulatedPlace

e an empty set of subtype assumptions.

The above script is not well typed with respect to the type assumptions, since the
strongest type for res:Andrey_Ershov| is the top type, which is insufficient to estab-
lish that the resource represents a person.

There are several options other than rejecting the ill typed script. We can inspect the
warning, which provides a menu of options to refine the type system so that the script
is well typed. At this stage of execution, there are two reasonable solutions: either we
can refine the type of res:Andrey_Ershov|, so that he is of type dbp:Person|; or we
can refine the type of dbp:birthPlace| so that it can relate any resource to a populated
place.

29

http://xmlns.com/foaf/0.1/knows
http://live.dbpedia.org/resource/Andrey_Ershov
http://live.dbpedia.org/ontology/PopulatedPlace
http://live.dbpedia.org/resource/Andrey_Ershov
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/ontology/birthPlace
http://www.w3.org/2000/01/rdf-schema#domain
http://live.dbpedia.org/ontology/Person
http://live.dbpedia.org/ontology/birthPlace
http://www.w3.org/2000/01/rdf-schema#range
http://live.dbpedia.org/ontology/PopulatedPlace
http://live.dbpedia.org/resource/SovietUnion
http://live.dbpedia.org/ontology/PopulatedPlace
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/ontology/Person
http://live.dbpedia.org/ontology/PopulatedPlace
http://live.dbpedia.org/resource/Andrey_Ershov
http://www.w3.org/2000/01/rdf-schema#Resource
http://live.dbpedia.org/resource/SovietUnion
http://live.dbpedia.org/ontology/PopulatedPlace
http://live.dbpedia.org/resource/Andrey_Ershov
http://live.dbpedia.org/resource/Andrey_Ershov
http://live.dbpedia.org/ontology/Person
http://live.dbpedia.org/ontology/birthPlace

A further option is available. Since these are warnings, we can ignore them and
continue executing the script. Assuming we choose to ignore the warnings at this
stage, we apply the operational rule for from.

The rule involves some new data data; that is obtained by dereferencing the re-
source with URI dbp:Andrey_Ershov, . This includes triples such as:

res:Andrei_Ershov, a yago:FellowsOfTheBritishComputerSociety
res:Andrei_Ershov, dbp:birthPlace res:SovietUnion

The rule must calculate (Ty’, SC’) such that (Ty’, SC’) < (Ty, SC) and I—Eé data,. Again
there are several options for resolving the above constraints, presented below.

1. Refine the type assumptions such that the resource res:Andrey_Ershov 1is as-
signed the intersection of the types [yago: FellowsOfTheBritishComputerSociety
and dbp: Person| as its type.

2. Refine the type of Ershov to the type yago: FellowsOfTheBritishComputerSociety
and refine the type of property dbp:birthPlace| such that it is of the following

type:

IntersectionOf(Property(|dbp:Person,
dbp:PopulatedPlace)),
Property(|yago:FellowsOfTheBritishComputerSociety,
dbp:PopulatedPlace)))

3. Refine the subtype assumptions to SC’ such that it contains the following subtype
inequality:

vago:FellowsOfTheBritishComputerSociety| < dbp:Person

The first option above is the default option taken by RDF Schema [8]. It assumes
that, since the domain of the property was dbp:Person|, Ershov must be a person. The
second option above makes the property more accommodating, so that it can also be
used to relate fellows of the British Computer Society to populated places. The third
option is the most general solution, since it allows any fellow of the British Computer
Society to be used as a person in all circumstances.

The appropriate option is subjective, so the choice is delegated to a human. Suppose
that the programmer selects the third option. This results in the following configuration:

e a script where the leading from keyword has been removed:

select $place: |dbp: PopulatedPlace
where res:Andrey_Ershov|dbp:birthPlace $place

e some data datag data; including the new data obtained by dereferencing the
resource dbp:Andrey_Ershovl;

o arefined type assumption Ty’, such that:

Ty’ (res:Andrey_Ershov) = yago:FellowsOfTheBritishComputerSociety

30

http://live.dbpedia.org/ontology/Andrey_Ershov
http://live.dbpedia.org/resource/Andrei_Ershov
http://dbpedia.org/class/yago/FellowsOfTheBritishComputerSociety
http://live.dbpedia.org/resource/Andrei_Ershov
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/resource/SovietUnion
http://live.dbpedia.org/resource/Andrey_Ershov
http://dbpedia.org/class/yago/FellowsOfTheBritishComputerSociety
http://live.dbpedia.org/ontology/Person
http://dbpedia.org/class/yago/FellowsOfTheBritishComputerSociety
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/ontology/Person
http://live.dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/class/yago/FellowsOfTheBritishComputerSociety
http://live.dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/class/yago/FellowsOfTheBritishComputerSociety
http://live.dbpedia.org/ontology/Person
http://live.dbpedia.org/ontology/Person
http://live.dbpedia.org/ontology/PopulatedPlace
http://live.dbpedia.org/resource/Andrey_Ershov
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/ontology/Andrey_Ershov
http://live.dbpedia.org/resource/Andrey_Ershov
http://dbpedia.org/class/yago/FellowsOfTheBritishComputerSociety

e the refined subtype assumptions SC” suggested in the third option above.

Having resolved the warning we are now in the fortunate situation that the remainder
of the script is also well typed with respect to the new type and subtype assumptions.
Thus we can continue executing without further warnings.
We apply the operational rule for select. This rule dynamically checks that the
following holds.
I—?é res:SovietUnion|: |dbp:PopulatedPlace

Since the above subtype judgement holds, the substitution is applied to obtain a con-
figuration with the following script.

where|res:Andrey_Ershov|dbp:birthPlace|res:SovietUnion

Finally, since the triple in the where clause matches a triple in the data, we can apply
the operational rule for where. This successfully completes the execution of the script.

5.4. A Worked Example of a Bad Script

Now consider the motivating example at the beginning of this section. We begin
with the following configuration, where the wrong URI has been used for Ershov, mis-
taking Andrei Yershov and Andrei Ershov for the same person:

o the following script:

from res:Andrei_Yershov
select $book: free:book
where res:Andrei_Yershov, ffree:book.author.works_written| $book .

e some initial data datay including triples such as:

[free:book.author.works_written |rdfs:domain [free:book.author
free:book.author.works_written rdfs:range, |free:book

e initial type assumptions Ty such that:

Ty(free:book.authorworks_written) = Property([free:book.author,
free:book))

e an empty set of subtype assumptions.

The programmer has not yet realised that [res:Andrei_Yershov| represents an ice
hockey player who is not the intended scientist. At runtime, the programmer initially
ignores a menu of warnings that would enable the optional rule to be applied. One op-
tion suggests that the type of res:Andrei_Yershov, should be free:book.author|; another
option suggest refining the type of |free:book.author.works_written to the following

type.
Property(rdfs:Resource,|free:book)

31

http://live.dbpedia.org/resource/SovietUnion
http://live.dbpedia.org/ontology/PopulatedPlace
http://live.dbpedia.org/resource/Andrey_Ershov
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/resource/SovietUnion
http://live.dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book
http://live.dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author.works_written
http://www.w3.org/2000/01/rdf-schema#domain
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book.author.works_written
http://www.w3.org/2000/01/rdf-schema#range
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book.author.works_written
http://www.w3.org/2000/01/rdf-schema#Resource
http://rdf.freebase.com/ns/book

The programmer decides to ignore the warnings and continue executing the script.
As in the previous example, we apply the from rule. This dereferences the resource
res:Andrei_Yershov obtaining some new data data; including the following triple.

res:Andrei_Yershov a dbp:IceHockeyPlayer

There is only one good option in this case, which that script automatically selects. It
sets a refined type assumption Ty’ such that the following holds.

Ty’ (res:Andrei_Yershov) = dbp:IceHockeyPlayer

In the new configuration, there are still warnings that are induced by attempting to apply
the optional rule. The following menu of options is presented to the programmer.

1. Refine the type assumptions such that the resource |res:Andrei_Yershov, is as-
signed the intersection of [yago:IceHockeyPlayer and dbp:Person as its type.

2. Refine the type of the property free:book.author.works_written, such that it is of
the following type.

IntersectionOf(Property([free:book.author,
free:book)),
Property(ldbp:IceHockeyPlayer,
free:book|))

3. Refine the subtype assumption to SC” such that it contains the following subtype
inequality.
dbp:IceHockeyPlayer| < free:book.author

The three options are similar to the options in the previous examples. The difference
is that the programmer should be suspicious. The first option above may be plausible,
but the programmer will be asking whether Ershov was really both an author and a
professional ice hockey player. The second option above, which allows all ice hockey
players to author books, is highly questionable. It certainly does not make sense to take
the third option above and make every ice hockey player a book author.

A further reason to be alarmed is that, if the programmer attempts to ignore the
strange warnings, then the script cannot be executed further. There is no resource that
can be selected that enables the where clause to be matched.

Given the evidence, the programmer can conclude that there was a mismatch be-
tween the query and the resource dereferenced. The solution is therefore to change the
scripts. By inspecting the data it is clear that the resource represents the wrong Ershov,
hence the programmer decides to change all appearances of the troublesome resource.

5.5. Calculating the Options in Warnings Algorithmically

The optional operational rule and the operational rule for from are specified declar-
atively in the operational semantics. These rules permit any refined type system that
satisfies the constraints to be chosen. By exploiting the algorithmic type system defined
in previous section, we can algorithmically generate a menu of good solutions that fix
some types while maximising others.

Firstly, we explain how the algorithm can be applied to generate the options in the
examples above. Secondly, we present the generalised algorithm.

32

http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://live.dbpedia.org/resource/Andrei_Yershov
http://dbpedia.org/class/yago/IceHockeyPlayer
http://live.dbpedia.org/ontology/Person
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book.author

Example constraints. Consider a system of constraints from the running examples.
Assume that SC is empty and we have that Ty is such that:

Ty(res:Andrei_Yershov) = dbp:IceHockeyPlayer
Ty(free:book.author.works_written) = Property([free:book.author,
free:book))

The aim is to calculate Ty’ and SC’ such that (Ty’, SC’) < (Ty, SC) and the following
type assumption holds.

1y select$book: free:book
SC" where res:Andrei_Yershov, [free:book.author.works_written $book .

We then unfold the algorithmic type system, using type variables X and Y for types that
could take several values, as follows.

+ Ty’ (res:Andrei_Yershov) < X+ Ty’ (free:book.author.works_written) < Property(X,Y) H free:book < Y

H res:Andrei_Yershov: X H free:book.author.works_written: Property(X,Y) $book: free:book + $book: Y

$book: free:book where res:Andrei_Yershov, free:book.author.works_written, $book

 select$book: free:book where res:Andrei_Yershov, free:book.author.works_written, $book

From the above we generate the following constraints on Ty’, where X and Y are vari-
ables for types that must be solved.

Ty’ (res:Andrei_Yershov) < X free:bookl <Y
Ty'(free:book.author.works_written) < Property(X,Y)

Also, since (Ty’, SC’) < (Ty, SC), we have the following constraints, by definition.

Ty’ (res:Andrei_Yershov) < ldbp:IceHockeyPlayer

Ty'(free:book.author.works_written) < Property(free:book.author, free:book)

Furthermore, SC € SC’.
From the above, we can generate the following scheme for upper bounds on Ty’.

Ty’ (res:Andrei_Yershov) < IntersectionOf(dbp.IceHockeyPlayer, X)

Ty’ (free:book.author.works_written) < IntersectionOf(
Property(free:book.author, free:book) ,
Property(X,Y))

We use these upper bounds to generate the options that appear in warnings, by varying
X and Y within the bounds set by the constraints.

Notice that immediately the mapping for Y can be chosen such that both of the up-
per bounds are maximised and the constraints are satisfied. In particular, the mapping
Y — free:book will maximise the upper bound on free:book.author.works_written| and
has no impact on the upper bound for res:Andrei_Yershov. We can therefore immedi-
ately apply this mapping for Y to refine the upper bound on the type of the property as
follows.

Ty (free:book.author.works_written) < IntersectionOf(
Property(free:book.author, free:book) ,
Property(X,free:book))

33

http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book
http://live.dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book.author.works_written
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book
http://live.dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book
http://live.dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book.author.works_written
http://live.dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book.author.works_written
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book.author.works_written
http://live.dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book

In contrast to Y, there is no optimal solution for X, since X — rdfs:Resource will
maximise the upper bound for res:Andrei_Yershov, but X — free:book.author will
maximise the upper bound for free:book.author.works_written. Any type between these
two types are potential solutions for X for which there are infinitely many possible
solutions.

Option no.1: Maximise type of property. To generate the first option Ty,, we maximise
the type of properties by ensuring that Ty, (uri) = Ty(uri) for any property uri. Hence
we assume:

Ty, (free:book.author.works_written) = Property(free:book.author, free:book)
This assumption yields the following type inequality.

Property(free:book.author,free:book) < IntersectionOf(
Property(free:book.author, free:book) ,
Property(X,free:book))

We use the cut-free subtype system to analyse the above constraints. We apply the
greatest lower bound rule, then the property rule to obtain the following subtype con-
straint: X < free:book.author.

We then maximise the remaining type assignments with respect this these con-
straints. We seek the mapping for X such that the constraints are satisfied and the new
type assignment is maximised, with respect to the subtype relation. Recall that the
upper bound on the subject of the example triple is of the following form:

Ty, (res:Andrei_Yershov) < IntersectionOf(dbp:IceHockeyPlayer, X)

From this we derive the mapping X + free:book.author, as an optimal solution for X
that satisfies the constraints and maximises the above upper bound on the type assign-
ment. By substituting the variable for the optimal solution we obtain a refined type
system such that:

Ty, (res:Andrei_Yershov) = Intersection0£(dbp:IceHockeyPlayer, free:book.author)

The above type assignment is exactly what standard RDF Schema inference would
infer [36].

Option no.2: Maximise type of subject/object. To generate the second option Ty,, we
maximise the type of the subject of our example triple be setting Ty, (res:Andrei_Yershov) =
Ty(res:Andrei_Yershov), hence the following assumption is made.

Ty, (res:Andrei_Yershov)) = dbp:IceHockeyPlayer
This yields the following subtype inequality, due to the upper bound on the resource.

dbp:IceHockeyPlayer < IntersectionOf(dbp:IceHockeyPlayer, X)

34

http://www.w3.org/2000/01/rdf-schema#Resource
http://live.dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book.author
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book.author
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book.author
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://live.dbpedia.org/ontology/IceHockeyPlayer

As in option no.1, we unfold the rules of the algorithmic type system to derive the
constraint dbp:IceHockeyPlayer < X. We then maximise the type of the property with
respect to this constraint. Recall that the upper bound on the property is as follows.

Property(free:book.author,|free:book) < IntersectionO£f(
Property(free:book.author,|free:book)) ,
Property(X,free:book))

Hence, due to the contravariance of property types, the solution for X that maximises
the above upper bound on the type assignment is X + dbp:lceHockeyPlayer. By
applying this mapping to variable X, we obtain a refined type system such that.

Ty, (free:book.author.works_written) = IntersectionOf(
Property(free:book.author, free:book) ,
Property(dbp:IceHockeyPlayer, free:book))

This is more general than standard RDF Schema inference, since RDF Schema infer-
ence does not have the ability to modify the types of properties according to the types
of data related by the properties.

Option no.3: Extend the subtype relation. The final option is to add subtype assump-
tions to the type system. We can calculate these subtype assumptions algorithmi-
cally, by calculating the conditions under which the above two options are equal, i.e.
Ty, = Ty,. Now Ty, = Ty, if and only if the following inequalities hold.

dbp:IceHockeyPlayer < Intersection0f(dbp.:IceHockeyPlayer, [free:book.author)

Property([free:book.author Intersection0£(
perty(free-' book.) > < Property(free:book.author, free:book) ,
— Property(dbp:IceHockeyPlayer, free:book))

By unfolding the rules of the cut-free subtype system in Fig. 3] we can calculate that
the above inequalities hold only if the following subtype inequality holds.

dbp:IceHockeyPlayer < free:author

Thus, if we include the above constraint in SC’, then the original Ty satisfies the nec-
essary constraints to enable the optional rule.

Note that the above algorithm does not always find a suitable set of constraints. For
example, if we attempt to apply the optional rule before executing from in the above
example of a bad script, the algorithm gets stuck at the following constraint.

rdfs:Resource < free:book.author

Since |rdfs:Resource| is not an atomic type, the above inequality cannot be induced by
extending the set of subtype assumptions, so there is no solution to modifying SC. This
is a positive feature since, in an open world of knowledge like the Web, it makes no
sense to state that every resource is an author.

35

http://live.dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/author
http://www.w3.org/2000/01/rdf-schema#Resource
http://rdf.freebase.com/ns/book.author
http://www.w3.org/2000/01/rdf-schema#Resource

Summary of all three options. The general algorithm works as follows.

1. We use the algorithmic type system and the constraint (Ty’, SC’) < (Ty, SC) to
generate a scheme (types with type variables) for upper and lower bounds on
Ty’. We consider the type assumption appearing in the premise of the from and
optional rules: the script — in the case of the optional rule; or the data — in
the case of the from rule. We unfold the rules of the algorithmic type system, in
Fig. 5] using variables for any undetermined value and thereby obtaining a set
of subtype constraints, which include bounds on the types of URIs in Ty’. From
the assumption (Ty’, SC") < (Ty, SC), by definition, we deduce that all of the
constraints in SC must also hold in SC” and also, for any uri in the domain of Ty,
Ty’ (uri) < Ty(uri). For each URI in the domain of Ty’, we take the intersection
of all upper bounds and the union of all lower bounds generated to obtain the
scheme for upper and lower bounds.

2. We generate the first option (Ty,, SC) by, for every property uri in the domain
of Ty, setting the type assignment such that Ty, (uri) = Ty(uri). This generates a
subtype inequality based on the upper bounds on Ty’ calculated in the first step.
We unfold the cut-free subtype system, in Fig.[3] to generate constraints on other
URIs that must be assigned types by Ty,. We then find a mapping from type
variables to types that maximises the type assigned to URIs that have not yet
been assigned a type in Ty,, while respecting all constraints generated (this can
be done on a random or user/heuristic guided URI-by-URI basis). By applying
the mapping generated to the upper bounds from the first step above, we obtain
the type assignment Ty;.

3. We generate the second option (Ty,, SC) by, for every subject and object uri in
the domain of Ty, setting the type assignment such that Ty, (uri) = Ty(uri). We
then proceed as in the previous step to maximise the type assignments for the
URIs representing properties.

4. To generate the third option (Ty, SC’), we set Ty, = Ty, to obtain a system of
subtype inequalities. If there is a solution then, by unfolding the rules of the cut-
free subtype system, we obtain a set of subtype inequalities over atomic types
and we extend SC with these constraints to obtain SC’. If there is no solution,
then the unfolding of the rules of the cut-free system will halt with neither a
subtype inequality over atomic types nor an axiom, in which case no third option
is presented.

The second point above generates classes for resources as expected by RDF Schema [8]];
with the exception of the handling of multiple domains and ranges as discussed in Sec-
tion The third and fourth points above provide alternative, more general modes
of inference. Thus the above algorithm extends RDF Schema inference. Note that
steps 2 and 3 above can be interleaved allowing the type of any URI that appears to
be maximised in any order, thereby mixing RDF Schema inference with more general
inferences. Further analysis of the above algorithm is we believe is best conducted by
an implementation.

36

5.6. Subject Reduction

There are two reasons why a system is well typed. Either a priori the script was
well typed before refining the type system, or at some point during the execution the
programmer acted to resolve all warnings. In either case, once the script is well typed it
can be executed to completion without generating any warnings other than unavoidable
warnings that occur from reading data from the Web.

The following proposition characterises the relationship between the type system
and script after choosing to resolve warnings, by selecting the optional rule. Recall that
warnings are resolved by selecting one or more options for refining the type system
from a menu generated based on constraints imposed by the premise of the optional
rule. In particular, after choosing to resolve all warnings the script is also well typed
with respect to the refined type system.

Proposition 10. If F?C data and the optional rule is applied, such that

(script, data, Ty, SC) — (script, data, Y, SC"),

5 data.

then v¢., script and k.,

Proof. Assume that I—gé data and (script, data, Ty, SC) — (script, data, Ty’, SC") due
to the optional rule. Hence it must be the case that (Ty’, SC’) < (Ty, SC) and Fgé
Hence, by Lemma , I-?é data holds, as required. O

script.

We require the following substitution lemma. It states that if we assume that a
variable is of a certain type, then we can substitute a URI of that type for the variable
and preserve typing.

Lemma 11. Assume that v+ uri: C. Then the following statements hold:

1. If Env, $x: C + script, then Env + script{“’i/sx}.
2. If Env, $x: C + term: D, then Env + term{”’i/$x}: D.

Proof. Assume that uri: C. The proof proceeds by structural induction on the type
derivation tree.

Consider the case of the type rule for variables, where the variable equals $x. In
this case, the type tree on the left can be transformed into the type tree on the right.

FC<D Furi:C +rC<D
Env,$x: Cr $x: D yields Env - uri: D

Hence, by Proposition[d] Env + uri: D holds in the algorithmic type system and clearly
$x{”’i/$x} = uri as required. All other cases for terms are trivial.

Consider the case of the select rule. Assume that Env, $x: C + select $y: D script
holds. If $x = $y, then $x does not appear free in select $x: D, hence Env +
select $x: D script as required. If $x # $y, then, by the induction hypothesis, if

37

Env, $x: C,$y: D + script holds then Env,$y: D + script{”%x} holds. Hence the
proof tree on the left below can be transformed into the proof tree on the right below.

. : uri
Env, $x: C, $y: D + script Env,$y: D+ SC”pt{ /x}

Env, $x: C + select $y: Dscript yields Env - select $y: Dscript{”’i/x}

Furthermore, since $x # $y, by the standard definition of substitution the following
holds as required.

select $y: Dscripf{uri/x} = (select $y: Dscript){”’i/x}
The cases for other rules follow immediately by induction. O

The property that a well-typed script will not raise unnecessary warnings, is formu-
lated as the following subject reduction result.

Theorem 12 (Subject reduction). If by script and +&. data, then if
(script, data, Ty, SC) — (script’ ,data’, Y, SC") ,

Vil . il ,
then v, script’ and v, datd’.

Proof. The proof is by case analysis, over each operational rule.
Consider the operational rule for select. Assume that the following hold.

+ select $x: C script F data Furi: C

The above holds only if $x: C + script, by the type rule for select. By Lemma|[I1]
since $x: C + script and + wuri: C, it holds that + script{””/x}. Therefore the select
rule preserves types.

Consider the operational rule for where. Assume that the following type assump-
tion holds.

+ where termy term; termy script F termg termy term, data

The above holds only if + script holds, hence the operational rule for where preserves
well-typed scripts.

Consider the operational rule for from. Assume that the following assumptions
hold.

bev fromuri script bedatag ber, datay (Ty',SC’) < (Ty, SC)

The first assumption above holds only if ngc script holds, by the type rule for from.
Since (Ty’,SC’) < (Ty,SC), by Lemma , l—?é script holds. By Lemma [7| again,
kgé datay holds. Hence I—?é datay data; holds. Therefore the from rule preserves

types.
Consider the case of the optional operational rule. For some initial configuration
(script, data, Ty, SC), we assume that i—g(y: data. The result then follows from Prop.
]

38

6. Future Work

This paper provides the foundational definitions and results required to introduce a
descriptive type system. This approach can be adapted to more expressive languages
including the full W3C SPARQL recommendation [23] and extensions of scripting
languages for Linked Data developed by the authors [18) 27, [13]. We now consider
our line of work to be mature, having enough supporting results to be confident in the
correctness of the approach and the realistic computational resources required.

In related work [30]], a prescriptive variant of the type systems in this line of work
is adapted for ensuring privacy guarantees in Linked Data. The authors of that related
work make the correct choice of style for their setting of privacy, since a type system
for security should be prescriptive.

Further investigations in the direction of descriptive types would best be pursued
through prototype implementations. A prototype implementation would enable ques-
tions to be investigated regarding the presentation of type information and warnings to
users and also machine learning support to reduce, but not eliminate, decisions made by
humans. We highlight some challenges in the remaining paragraphs in this subsection.

How would type information best be presented to the user? RDF Schema and the
descriptive types in this work are essentially graphical, hence a graphical representa-
tion of type information would be appropriate. It makes sense to use representations
familiar to software engineers similar to entity-relationship diagrams. There is a wealth
of tool support for graphical modelling [38,[19] that can be adapted for this purpose.

How would the menu of options to resolve warnings be presented? The algorithm
for generating warnings, particularly when larger queries and scripts are supported, is
capable of generating many options for resolving warnings about mismatches between
the schema and data. Indeed in some cases there are infinitely many potential solutions.
This problem may require heuristics to select a small number of options, or perhaps
present options visually as a lattice, thereby assisting further the user in pinning down
the appropriate schema.

A third line of enquiry, that can be evaluated by using a prototype implementation,
is to investigate the potential of machine learning in the support for choosing correct in-
ferences. The programmer is only asked about a minimal number of inferences where
only human knowledge of the context can distinguish the correct inference; most other
inferences are applied automatically. Furthermore, the schema for a dataset is generally
much smaller than the dataset itself. In many scenarios, ideally, once a few queries have
been asked over a dataset, enough schema information will have been inferred to pro-
ceed without applying many more inferences. However, in some use cases, the number
of warnings presented to the programmer by the type system may become prohibitively
large. To support this scenario, machine learning could be applied to support selecting
or suggesting the best options for resolving warnings on behalf of the programmer. We
imagine that a collaborative or social approach would be most effective, assuming that
programmers are willing to share their warnings and any chosen resolutions.

We do not believe that human input to resolving warnings thrown by the descrip-
tive type system should be replaced entirely by machine learning. A philosophical
argument from the field of semiotics [45] is that descriptive types provide support for
abductive reasoning to assist with moving between the levels of syntax and semantics.

39

In the philosophy of semiotics, syntax is the data which is typically intended for ma-
chine processing, while semantics refers to the ontology that is intended for humans to
make sense of the data. Semiotics emphasises the subjective nature of the relationship
between syntax and semantics by recording the interpretant. In this case, the interpre-
tants are the users resolving warnings to infer refinements to the ontology represented
by the type system. The community who originally introduced the RDF recommen-
dations are directly inspired by semiotics, hence an additional result of our work on
descriptive types is to formally bring closer the fields of type theory in the tradition of
Curry, and semiotics in the tradition of Pierce. Future work emphasising the interpre-
tant can draw from techniques in the field of semiotics. For instance, the consequences
of each refinement made by users can be recorded; thereby enabling decisions to be
reversed when desired changes to an ontology are not a monotonic refinement of the
current ontology.

7. Conclusion

The contribution of this paper is motivation for and the technical development of a
novel descriptive type system for Linked Data. This descriptive type system is a seam-
less combination of run-time schema inference and scripting languages that interact
with Linked Data. The schema inference mechanism permits RDF Schema inference
as one of several modes of inference, where inference is performed by refining the type
system itself at run-time. This descriptive type system is quite different from a tradi-
tional prescriptive type system, since, in this descriptive type system, types change to
describe the data, whereas traditionally types fix static information about data.

Changes are made to data in a controlled fashion such that the descriptive type
system can still benefit from many properties enjoyed by a traditional prescriptive type
system: in particular, when part of a system is well typed, it remains well typed, and
hence no more inferences need be applied to that part of the system. Furthermore,
when part of the system is not well-typed, instead of blindly applying one mode of
inference, a menu of options is generated and the options are presented as a warning
rather than an error. This gives the ability to the programmer to inspect the suggestions
to decide whether they make sense conceptually, thereby possibly identifying mistakes
in the data or more general inferences than assumed by RDF Schema by default.

We bring a number of type theoretic results to the table. We establish the consis-
tency of subtyping through a cut elimination result (Theorem [I)). We are able to tightly
integrate RDF schema with executable scripts that dereference and query Linked Data.
This is formalised by a type system that we prove is algorithmic (Proposition) —
hence suitable for inference — and monotonic (Lemma[7) — hence permissive of re-
finements to the type system itself. We specify the run-time behaviour of scripts using
an operational semantics, and prove a subject reduction result (Theorem[I2) that proves
that well-typed scripts do not raise unnecessary warnings; and hence no new inference
need be applied. We also provide an algorithm for solving systems of constraints to
generate warnings at run-time.

A subtle point regarding the W3C recommendations themselves is discussed in
Section In particular, we make recommendations for handling scenarios where
multiple domain and range properties appear. The handling of multiple domains and

40

ranges is the only significant technical discrepancy between the standard and descrip-
tive type based approaches. We highlight how three major real life ontologies use three
different approaches to handling this discrepancy, which should cover the needs of on-
tology engineers.

The Web is an open world of subjective knowledge, where it is impossible to glob-
ally agree schema a priori. Our descriptive type system assists with subjective decisions
that resolve inconsistencies between the data and schema information a posteriori.

Acknowledgements. The work of the first and second authors was supported by a grant
of the Romanian National Authority for Scientific Research, project number PN-II-
ID-PCE-2011-3-0919. The first author also received support from Ministry of Educa-
tion Singapore Tier 2 grant MOE2014-T2-2-076 and British Council and Newton—Al-
Farabi Partnership Programme travel grant no. 165901157. We highly appreciate the
pointers given by the anonymous reviewers.

References

[1] Malcolm P Atkinson and O Peter Buneman. Types and persistence in database
programming languages. ACM Computing Surveys (CSUR), 19(2):105-170,
1987.

[2] Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. Inter-
section and union types: Syntax and semantics. Inf. Comput., 119(2):202-230,
1995.

[3] Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: an XML-
centric general-purpose language. ACM SIGPLAN Notices, 38(9):51-63, 2003.

[4] Sacha Berger, Emmanuel Coquery, Wtodzimierz Drabent, and Artur Wilk. De-
scriptive typing rules for Xcerpt. In Principles and Practice of Semantic Web
Reasoning, pages 85-100. Springer, 2005.

[5] Tim Berners-Lee. Linked data. International Journal on Semantic Web and In-
formation Systems, 4(2):1, 2006.

[6] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Soren Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. DBpedia — a crystallization point for
the Web of Data. Web Semantics: science, services and agents on the world wide
web, 7(3):154-165, 2009.

[7] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
Freebase: a collaboratively created graph database for structuring human knowl-
edge. In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, pages 1247-1250. ACM, 2008.

[8] Dan Brickley and Ramanathan V. Guha. RDF Schema 1.1. Recommendation
REC-rdf-schema-20140225, W3C, 2014.

41

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

Peter Buneman, Shamim Naqvi, Val Tannen, and Limsson Wong. Principles of
programming with complex objects and collection types. Theoretical Computer
Science, 149(1):3-48, 1995.

Luca Cardelli, Simone Martini, John C Mitchell, and Andre Scedrov. An exten-
sion of system F with subtyping. In Theoretical Aspects of Computer Software,
pages 750-770. Springer, 1991.

Luca Cardelli and John C Mitchell. Operations on records. Mathematical struc-
tures in computer science, 1(01):3—48, 1991.

Gabriel Ciobanu, Ross Horne, and Vladimiro Sassone. Descriptive types for
linked data resources. In Andrei Voronkov and Irina Virbitskaite, editors, Per-
spectives of Systems Informatics, 9th International Ershov Informatics Confer-
ence, PSI 2014, St. Petersburg, Russia, June 24-27, volume 8974 of LNCS, 2015.

Gabriel Ciobanu, Ross Horne, and Vladimiro Sassone. Minimal type inference
for linked data consumers. Journal of Logical and Algebraic Methods in Pro-
gramming, 84(4):485-504, 2015.

Sylvain Conchon and Francois Pottier. JOIN(X): Constraint-based type inference
for the join-calculus. In Programming Languages and Systems, pages 221-236.
Springer, 2001.

Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 concepts and
abstract syntax. Recommendation REC-rdf11-concepts-20140225, W3C, 2014.

Oege de Moor, Damien Sereni, Pavel Avgustinov, and Mathieu Verbaere. Type
inference for datalog and its application to query optimisation. In Proceedings of
the twenty-seventh ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 291-300. ACM, 2008.

Nachum Dershowitz and Zohar Manna. Proving termination with multiset order-
ings. Communications of the ACM, 22(8):465-476, 1979.

Mariangiola Dezani-Ciancaglini, Ross Horne, and Vladimiro Sassone. Tracing
where and who provenance in Linked Data: A calculus. Theor. Comput. Sci.,
464:113-129, 2012.

John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North, and Gordon
Woodhull. Graphviz—open source graph drawing tools. In Graph Drawing,
pages 483—484. Springer, 2002.

Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic subtyping.
In Logic in Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium
on, pages 137-146. IEEE, 2002.

Thom Fruhwirth, Ehud Shapiro, Moshe Y Vardi, and Eyal Yardeni. Logic pro-
grams as types for logic programs. In Logic in Computer Science, 1991. LICS’91.,
Proceedings of Sixth Annual IEEE Symposium on, pages 300-309. IEEE, 1991.

42

[22] Shudi Gao, C. M. Sperberg-McQueen, and Henry S. Thompson. W3C XML
Schema Definition Language (XSD) 1.1 part 1: Structures. Recommendation
REC-xmlschemal1-1-20120405, W3C, 2012.

[23] Steve Harris and Andy Seaborne. SPARQL 1.1 query language. Recommendation
REC-sparql11-query-20130321, W3C, MIT, MA, 2013.

[24] Patrick J. Hayes and Peter F. Patel-Schneider. RDF 1.1 Semantics. Recommen-
dation REC-rdf11-mt-20140225, W3C, 2014.

[25] Phillip Heidegger and Peter Thiemann. Recency types for analyzing scripting
languages. In ECOOP 2010-Object-Oriented Programming, pages 200-224.
Springer, 2010.

[26] Pascal Hitzler, Markus Krotzsch, Bijan Parsia, Peter F. Patel-Schneider, and Se-
bastian Rudolph. OWL 2 Web Ontology Language primer (second edition).
Recommentation REC-owl2-primer-20121211, W3C, 2012.

[27] Ross Horne and Vladimiro Sassone. A verified algebra for read-write Linked
Data. Science of Computer Programming, 89(A):2-22, 2014.

[28] Haruo Hosoya and Benjamin C Pierce. Xduce: A statically typed XML process-
ing language. ACM Transactions on Internet Technology (TOIT), 3(2):117-148,
2003.

[29] Yannis E Ioannidis and Raghu Ramakrishnan. Efficient transitive closure algo-
rithms. In VLDB, volume 88, pages 382—-394, 1988.

[30] SVETLANA JAKSIC, JOVANKA PANTOVIC, and SILVIA GHILEZAN.
Linked data privacy. Mathematical Structures in Computer Science, pages 1-21,
2015.

[31] Timothy Lebo, Satya Sahoo, and Deborah McGuinness. PROV-O: The PROV
Ontology. Recommendation REC-prov-0-20130430, W3C, 2013.

[32] Lunjin Lu. Type analysis of logic programs in the presence of type definitions. In
Proceedings of the 1995 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based program manipulation, pages 241-252. ACM, 1995.

[33] Alejandro Mallea, Marcelo Arenas, Aidan Hogan, and Axel Polleres. On blank
nodes. In The Semantic Web—ISWC 2011, pages 421-437. Springer, 2011.

[34] John C. Mitchell. Type inference with simple subtypes. Journal of Functional
Programming, 1(03):245-285, 1991.

[35] Rod Moten. Modelling the semantic web using a type system. In Proceedings of
Semantic Web Information Management on Semantic Web Information Manage-
ment, SWIM’ 14, pages 21:1-21:4, New York, NY, USA, 2014. ACM.

43

[36] Sergio Mufioz, Jorge Pérez, and Claudio Gutierrez. Simple and efficient minimal
RDFS. Web Semantics: Science, Services and Agents on the World Wide Web,
7(3):220-234, 2009.

[37] Natalya F Noy, Nigam H Shah, Patricia L Whetzel, Benjamin Dai, Michael
Dorf, Nicholas Griffith, Clement Jonquet, Daniel L Rubin, Margaret-Anne Storey,
Christopher G Chute, et al. Bioportal: ontologies and integrated data resources at
the click of a mouse. Nucleic acids research, page gkp440, 2009.

[38] Natalya F Noy, Michael Sintek, Stefan Decker, Monica Crubézy, Ray W Ferg-
erson, and Mark A Musen. Creating semantic web contents with protege-2000.
IEEFE intelligent systems, (2):60-71, 2001.

[39] Jeff Z Pan and Ian Horrocks. RDFS (FA) and RDF MT: Two semantics for
RDFS. In The Semantic Web-ISWC 2003, pages 30-46. Springer Berlin Hei-
delberg, 2003.

[40] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity
of SPARQL. ACM Transactions on Database Systems (TODS), 34(3):16, 2009.

[41] David Peterson, Shudi Gao, Ashok Malhotra, C. M. Sperberg-McQueen, and
Henry S. Thompson. W3C XML Schema Definition Language (XSD) 1.1 Part 2:
Datatypes. Recommendation REC-xmlschemal 1-2-20120405, W3C, 2012.

[42] Benjamin C Pierce. Types and programming languages. MIT press, 2002.

[43] Eric Prud’hommeaux and Gavin Carothers. RDF 1.1 turtle: Terse RDF triple
language. Recommendation REC-turtle-20140225, W3C, 2014.

[44] Jérome Siméon and Philip Wadler. The essence of XML. ACM SIGPLAN Notices,
38(1):1-13, 2003.

[45] John F Sowa. Conceptual structures: information processing in mind and ma-
chine. 1983.

[46] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of
semantic knowledge. In Proceedings of 16th WWW conference, pages 697-706.
ACM, 2007.

[47] Herman J. ter Horst. Completeness, decidability and complexity of entailment
for RDF Schema and a semantic extension involving the OWL vocabulary. Web
Semantics: Science, Services and Agents on the World Wide Web, 3(2):79-115,
2005.

[48] Limsoon Wong. Kleisli, a functional query system. Journal of Functional Pro-
gramming, 10(01):19-56, 2000.

44

	Introduction
	Type Systems for Semi-Structured Data
	W3C Recommended RDF Schema inference
	Extending inference to infer the RDF Schema itself.

	Types and Subtyping for the Descriptive Type System
	Types for Classifying Resources
	A Subtype Relation over Descriptive Types

	An Algorithmic Type System for Scripts and Data
	The Syntax of a Simple Scripting Language for Linked Data
	An Algorithmic Type System for Scripts and Data
	Simple Entailment as a Mode of Inference
	Note on Recommendations for Multiple Domain and Range Properties

	An Operational Semantics using Descriptive Types at Runtime
	Descriptive Typing for Linked Data Scripting Languages
	The Operational Semantics
	A Worked Example of a Good Script
	A Worked Example of a Bad Script
	Calculating the Options in Warnings Algorithmically
	Subject Reduction

	Future Work
	Conclusion

