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Abstract Over a 13 day period magma propagated laterally from the subglacial Bardarbunga volcano in
the northern rift zone, Iceland. It created > 30,000 earthquakes at 5-7 km depth along a 48 km path before
erupting on 29 August 2014. The seismicity, which tracked the dike propagation, advanced in short bursts at
0.3-4.7 km/h separated by pauses of up to 81 h. During each surge forward, seismicity behind the dike tip
dropped. Moment tensor solutions from the leading edge show exclusively left-lateral strike-slip faulting
subparallel to the advancing dike tip, releasing accumulated strain deficit in the brittle layer of the rift
zone. Behind the leading edge, both left- and right-lateral strike-slip earthquakes are observed. The lack of
non-double-couple earthquakes implies that the dike opening was aseismic.

1. Introduction

Volcanic eruptions in rift zones are frequently preceded by lateral migration of a magma-filled dike, some-
times for many kilometers [e.g., Rubin and Pollard, 1988; Rubin, 1992; Belachew et al., 2011]. Some of these dike
intrusions freeze at depth while others breach the surface, resulting in a fissure eruption [e.g., Bjérnsson and
Saemundsson, 1977; Abdallah et al., 1979; Hamling et al., 2009; Wright et al., 2012]. Seismicity often accompa-
nies propagation of the dike front as the magma forces its way forward [Einarsson and Brandsdottir, 1978;
Brandsdéttir and Einarsson, 1979; Battaglia et al., 2005; Morita et al., 2006; Keir et al., 2009], commonly fed
by a subsiding volcanic center [e.g., Einarsson and Brandsdéttir, 1978). The extent of accompanying seismicity
is variable, influenced strongly by the preexisting stresses and material properties of the rift fabric [Rubin and
Gillard, 1998; Rivalta et al., 2015]. However, when seismicity is present, the migrating earthquake swarm marks
the tip of the intrusion [Brandsdéttir and Einarsson, 1979; Grandin et al., 2011].

The Béardarbunga volcanic system is made up of a subglacial central volcano with an ice-filled caldera and
a transecting fissure swarm which extends 115km SW (the Veidivotn fissure swarm) and 55km NNE
(the Dyngjuhals fissure swarm) [Jéhannesson and Saemundsson, 1998; Larsen et al., 2013; Larsen and
Gudmundsson, 2015]. Episodic rifting within the fissure swarms of Icelandic volcanoes accommodates plate
spreading along the divergent plate boundary [Tryggvason, 1984; Wright et al., 2012]. Gravity studies suggest
that dense intrusions have previously radiated at depth from the Bardarbunga central volcano [Gudmundsson
and Hbgnadodttir, 20071.

In 2014 a dike propagated laterally 48 km from Bardarbunga central volcano northeast along the Dyngjuhals
fissure swarm. After 13 days propagation the dike erupted at Holuhraun, reoccupying old craters formed
before the midnineteenth century by magma which also originated within the Bdardarbunga system
[Hartley and Thordarson, 2013]. This study addresses the origin and extent of migrating seismicity accompa-
nying the 2014 dike intrusion. The spatiotemporal resolution exceeds that of numerous previous observa-
tions of dike seismicity [Passarelli et al., 2015; Rivalta et al, 2015, and references therein]. We assess the
relationship between the dike trajectory and seismicity and construct precise fault plane solutions to
investigate the failure mechanisms along the dike.

1.1. The 2014 Bardarbunga-Holuhraun Dike Intrusion

On 16 August 2014 an unusual sequence of earthquakes began near the southeastern rim of the ice-covered
Bardarbunga caldera. The earthquakes migrated rapidly 6 km southeastward, delineating a laterally propa-
gating, radial dike, before turning 90° northeastward away from the caldera. Over the next 12 days the dike
propagated episodically a farther 42 km beneath the glacier and into the Holuhraun lava field. It advanced
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Figure 1. Seismicity produced by the propagating dike 16-31 August 2014, colored by date (see also Movie S1). (a) Earthquake locations in map view. Shaded
topography in grey with glaciers in white. Ticked lines delineate central volcano calderas, black triangles seismometers, orange triangles eruption site, orange
stars depressions in the ice surface, and dark shading new Holuhraun lava flow (Holuhraun Ill). Inset shows location on a simplified tectonic map of Iceland with
volcanic systems shaded [Einarsson and Saemundsson, 1987]. (b) Cross section along dike. (c) Depth distribution of hypocenters.

beyond the eventual eruption site by 2 km, making the total length of the dike 48 km (Figure 1 and Movie S1
in the supporting information). It was not until 29 August that the dike breached the surface, reoccupying the
old Holuhraun craters. The initial fissure eruption lasted only 4h. A further 40 h later, on 31 August, a
sustained and larger fissure eruption began. It continued until 27 February 2015, erupting 1.6 km> of lava over
an area of 84.1 km? [Gislason et al., 2015].

The dike propagation followed a pathway of minimum potential energy [Heimisson et al., 2015; Sigmundsson
et al, 2015a]. Five large-scale segments can be identified, each distinguishable by a change in dike strike
(Figures 1 and 2 and Movie S1). The strike of the northernmost dike segment in the ice-free region is 025°,
consistent with the regional rift fabric orientation of 025° [Hjartardéttir et al., 2015a] but 11° clockwise from
the normal to the plate spreading direction of 104°, extending at 18.5 mm/yr [DeMets et al., 2010]. Surface
fracturing and graben formation accompanied the intrusion [Hjartardéttir et al., 2015b]. Modeling of geodetic
data shows that it was a vertically extensive planar dike [Green et al., 2015; Sigmundsson et al., 2015a]. During
the dike propagation Bardarbunga caldera began to subside and experienced over 50 M > 3 earthquakes,
suggesting a deflating magma reservoir beneath the caldera.

2. Seismic Data

A seismic network deployed by Cambridge University has been operated in Iceland since 2006 and
expanded to surround Vatnajokull ice cap in 2013. In August 2014 the network comprised 72
three-component broadband seismometers (Figures 1 and S1) that recorded the 2014 Bardarbunga-
Holuhraun dike propagation in detail. To complement the network, 14 stations from the national seismic
network of the Icelandic Meteorological Office were used, as well as one British Geological Survey station
and one University College Dublin station. The network provides good azimuthal coverage, with excellent
sampling north of the ice cap. Coverage is less good to the south of the dike due to difficult field conditions
on the ice cap. The data used in this study cover the period from 16 to 31 August 2014, encompassing the
whole dike intrusion and the onset of the two eruptions. All data were recorded at 100 Hz sample rate with
a GPS time stamp.
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Figure 2. Propagation of seismicity through time with earthquake failure mechanisms. (a) Automated earthquake hypo-
centers (black dots) delineate segmented propagation of dike, plotted as distance along dike versus time. Propagation
phases are shown in grey. Eruption periods are shown in peach and fissure location in orange. Dike cumulative seismic
moment release is shown by solid black line. (b) Inset from Figure 2a with left-lateral (green), right-lateral (red), and
undetermined (grey) fault mechanism categorizations (see section 3.5). Earthquakes scaled by magnitude. (c) Depth cross
section of Figure 2b, with main crater identified by orange triangle. (d) Distribution of depths in Figure 2c.

More than 30,000 earthquakes (M, 0.5-4) were automatically detected by coalescence microseismic mapping
[Drew et al., 2013]. Accurate hypocenter locations were determined using NonLinLoc [Lomax et al., 2000], with
average location errors of 0.5 km laterally and 1.0 km in depth. We used a linear gradient velocity model for
earthquake locations based on refraction experiments [Pdlimason, 1971; Gebrande et al., 1980; Darbyshire
et al., 1998] with a constant Vp/Vs ratio of 1.78, constrained by the Wadati plots [Wadati, 1933] from manually
picked phase arrival times along the whole dike (Figure S2 and Table S1).
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A manually constructed earthquake cat-
alogue was created by refining earth-
quake arrival times for more than 500
events, producing 30,000 P phase and
28,000 S phase picks. Refined earth-
quakes were located with NonLinLoc to
determine earthquake hypocenters with
average errors of 0.5km laterally and
0.9km in depth (Figures 1 and S2 and
Table S3).

3. Bardarbunga-Holuhraun
Dike Seismicity
3.1. Seismicity Migration

During the intrusion new segments of
the Barbdarbunga-Holuhraun dike were
emplaced in propagation phases at
speeds of 0.3-4.7km/h, with seismicity
focused near the dike tip. The advances
were separated by periods where the
migration stalled for up to 81 h. During
periods of most rapid propagation, seis-
mically quiet zones occurred immedi-
ately behind the concentrated seismicity
Figure 3. Example of fault plane solution with earthquake arrival wave- of the leading edge. The propagation
forms. The fault plane solution is tightly constrained by polarity phase phases are delineated by tight clusters
picks at 70 stations, each showing clear first motion polarity on vertical in space and time of advancing earth-
component. Each waveform is cut 0.25 s before first motion, 0.85 s in length,
and normalized to the same maximum amplitude. Red triangles represent
compressional first motions, and blue inverted triangles represent dilata-

tional first motions. The range of possible fault plane solutions is given by 13 h, with the longest continuous
the black lines, with the average fault plane solution highlighted in yellow.  advance of 5.5km made in 13 h. Large-
Location of this earthquake is shown with a green star in Figure S3. scale dike segments were emplaced by

quakes, highlighted by grey bands in
Figure 2a. They last between 40 min and

episodic intrusion of many smaller seg-
ments with similar orientations. Each of the main segments became seismically quiet once a new segment
had intruded beyond it, producing the step-like propagation of seismicity apparent in Figure 2a.

3.2. Seismicity Distribution

Throughout the dike emplacement, seismicity remained concentrated at 5-7 km below sea level, near the
brittle-ductile boundary where differential stresses in this extensional area are greatest. The brittle-ductile
boundary is mapped at about 7 km depth in the Askja volcanic system, located about 20 km along rift from
the dike tip [Key et al., 2011a, 2011b; Green et al., 2014]. Sparse seismicity was observed in the uppermost 4 km
of crust at several subglacial locations (orange stars in Figure 1), but none near the eruption fissure, despite
the dike breaching the surface. Persistent seismicity was observed at discrete locations along the dike,
appearing as horizontal bands of seismicity on a distance along dike versus time plot (Figures 2a and 2b).
A cluster at 37.5 km (64.80°N) occurred where the dike stalled for 14 h before surging forward. Another cluster
is seen at 46 km (64.87°N), below the southern edge of the eruption fissure (Figures 2a and 2b).

3.3. Seismicity Rates and Moment Release

The majority of the seismic moment release accompanying intrusion of the Bardarbunga-Holuhraun dike
occurred during the rapid propagation phases (grey bands in Figure 2a). The largest increase in the moment
release occurred simultaneously with the rapid advance of the dike on 24 August. Between propagation phases
seismicity rates generally remained high but smaller magnitude earthquakes were observed. On several
occasions the seismicity retreated or appeared to backpropagate, such as following the onset of the initial
fissure eruption. In this case the seismicity rate remained high but immediately retreated ~8 km along the dike,

AGUSTSDOTTIR ET AL.

BARDARBUNGA-HOLUHRAUN DIKE SEISMICITY 4



@AG U Geophysical Research Letters

10.1002/2015GL067423

a

Left-lateral

n=211

38/86/176

b Right-lateral n=51

17/86/179

Figure 4. Fault plane solutions from northernmost segment of the dike shown in Figure 2b. (a and b) Mean fault plane solution
with strike/dip/rake marked; all P (red) and T (blue) axes; rose diagram of fault plane strikes, with strike of northernmost dike
segment in the ice-free region in orange. Figure 4a shows left-lateral strike-slip faults. Figure 4b shows right-lateral strike-slip
faults. (c) Schematic diagram showing fault motion produced by interaction of strike of dike with rift spreading direction.
(d) Schematic diagram of dike tip fracture angles. Rubin and Gillard [1998] theoretical angles given by grey range, observed
angles given by colored range. Left-lateral failure in green and right-lateral failure in red.

before migrating back to the eruption site over the subsequent 8 h. An instantaneous drop in seismicity rate
along the entire dike was observed with the onset of the main eruption on 31 August (Figure 2).

3.4. Earthquake Source Mechanisms

In order to investigate the earthquake source mechanisms, we concentrate on the 13 km of the dike nearest
the eruption site (red box in Figure 2a, beyond 64.78°N, emplaced from 24 August 2014). This northernmost
segment of the dike has a strike of 025° and is where the seismic network provides the best azimuthal and
spatial constraints. Lower hemisphere fault plane solutions and inversions of the full moment tensor were
constructed using a Bayesian moment tensor solution program MTINV [Pugh, 2015]. Each event had a mini-
mum distance to the nearest station of 1-7 km, a maximum azimuthal gap of 30°-50°, and an average of 53 P
phase polarities (Figure 3). Inversions for the full moment tensor revealed no significant volumetric compo-
nent, despite the setting of an opening dike. All fault plane solutions are best described by double-couple
failure. There is a surprising lack of normal faulting events, given this is an extensional rift setting (Figure
S3). Instead, we find that the dominant failure mechanism is strike slip. One nodal plane is consistently sub-
parallel to the strike of the dike so we assume this to be the fault plane (Figures 4a and 4b). There is a signifi-
cant range in the dike-perpendicular nodal plane orientations (Figure 3), strongly suggesting that they are
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not fault planes. It is therefore most likely that the fractures generated during the 48 km dike propagation are
subparallel to the direction of travel.

The fault plane solutions constrain populations of left- and right-lateral strike-slip mechanisms with consis-
tent fault planes (Figures 4a and 4b). The strike of the average left-lateral fault plane solution is 038°
(Figure 4a, green in Figure S3b). This is a rotation of 13° clockwise from the strike of the dike and the regional
rift orientation of ~025° [Hjartardéttir et al., 2015al. The right-lateral faulting observed occurs predominantly
behind the leading edge, mainly in a cluster at 46 km (64.87°N) near the southern edge of the eruption fissure
(red in Figure S3b). The strike of the average fault plane solution for this population is 017° (Figure 4b). The
distribution of fault plane strikes is shown in the rose diagrams in Figures 4a and 4b.

3.5. Earthquake Fault Motion Categorization

A categorization method based on the consistency of the nodal planes (described above) was used to
analyze the earthquake failure mechanisms in the northernmost dike segment (Figure 2b). Two representa-
tive sets of stations from opposite polarity quadrants (dilatational and compressional) were selected with
reliable, clear arrivals and stable locations on the focal sphere. Hence, plotting the earthquake arrival
waveforms for both sets of seven stations enabled quick differentiation between left- and right-lateral fault
motion (Figure S4). Results from manually constructed fault plane solutions are consistent with the
categorization (Figures 2b and S3b), allowing for the rapid failure mechanism analysis of ~9500 events.

The fault motion categorization shows that the principal failure mechanism along the dike is left-lateral strike
slip (85%, green in Figures 2b and 2c). Right-lateral strike-slip faulting is less common (15%, red in Figures 2b
and 2¢). The leading edge failure is exclusively left-lateral strike slip. Right-lateral strike-slip failure only occurs
after the leading edge of the dike has passed, persistently in a cluster at the southern end of the eruptive
fissure, 1km shallower than the majority of the seismicity (Figure 2c). Uncategorized earthquakes (grey in
Figures 2b and 2c) are generally those with signal-to-noise ratios too low to confidently identify first
motion polarities.

4. Discussion

As in other intrusions [Brandsddttir and Einarsson, 1979; Keir et al., 2009; Belachew et al., 2011; Grandin et al.,
2011], the seismicity was confined to the region close to the front of the propagating dike, suggesting that
the flow of magma is aseismic once a pathway has formed and remains open. The quiet zones observed
immediately behind the leading edge during rapid propagation phases (grey bands in Figure 2b) may be
due to stress shadowing [Segall et al., 2013]. During the stalled phases a resupply of magma by lateral flow
from Bardarbunga volcano inflated the region behind the dike tip and allowed the pressure to build up
sufficiently to drive the next advance forward [Sigmundsson et al., 2015a]. The initial eruption on 29 August
may have been short lived because it used up all the magma available in the dike and the pressure dropped.
It then took 2 days for a consistent magma supply channel to form between the source and the fissures,
before the start of the main, continuous eruption. Locations of persistent seismicity along the dike, behind
the leading edge, may be due to an increase in local strength of the surrounding medium which required
continual fracturing to maintain magma flow. Equally, they could arise from angular jogs in the dike, such
as at the southern end of the eruptive fissure where magma moves upward to the eruption fissure.

During emplacement, dike seismicity remained at 5-7 km depth. However, surface geodetic observations
require most of the opening to be above 5 km depth [Green et al., 2015; Sigmundsson et al., 2015a]. The dike
certainly extended shallower than the seismicity at the eruption fissure at Holuhraun. Small magma volumes
may also have reached the surface at several other subglacial locations, especially where ice depressions
formed at the surface (orange stars in Figure 1) [Sigmundsson et al., 2015a]. We infer that the uppermost crust
is so weak from the pervasive rift fabric that it fractured in tension and the dike inflated largely aseismically as
magma was intruded and eventually froze. A similar lack of shallow seismicity was observed during the 1983
Kilauea dike intrusion [Rubin et al., 1998]. Migrating magma in prefractured crust may propagate creating
little brittle failure as shown by Taisne et al. [2011] where vertical magma propagation at Piton de la
Fournaise is associated with fewer and smaller earthquakes than during lateral propagation phases.

Propagation rates vary along the Bardarbunga-Holuhraun dike from 0.3 to 4.7 km/h. These speeds of lateral
dike propagation, guided by preexisting fractures, are comparable to those reported from other studies.
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Measured speeds of magma propagation at Piton de la Fournaise range from 0.7 to 2.9 km/h [Battaglia et al.,
2005; Peltier et al., 2005] and from 0.7 to 2.2 km/h for several rifting events during the 1975-1986 Krafla rifting
episode, North Iceland, and the 2005-2010 rifting episode in Dabbahu, East African rift [Wright et al., 2012].
Highest propagation rates are associated with short periods of rapid advance of the dike front on 16, 18,
and 23 August.

The dike seismicity arises predominantly from double-couple strike-slip failure, with a minority of oblique
normal faults (Figures 2b and S3b). The lack of non-double-couple earthquakes implies that the opening
was aseismic. This is supported by the two orders of magnitude difference between the geodetic moment
and seismic moment release of the dike. Seismic moment reflects the brittle energy released by fracturing,
whereas geodetic moment records the energy associated with the dike inflation. We calculate the seismic
moment to be 1.8 10'” Nm and the geodetic moment to be 1.8 x 10'° Nm [Green et al., 2015].

Seismicity along the leading edge of the dike arises exclusively from left-lateral strike-slip failure. These
earthquakes exhibit greater seismic moment release than those behind the propagating front, where both
left-lateral and right-lateral strike-slip failure is observed. Left-lateral strike-slip failure is the dominant
mechanism. This can be explained by the obliquity of the fault planes (038°) to the regional spreading axis
(104°). Fault plane motion is preferentially left-lateral to accommodate extension across the divergent plate
boundary. The strikes of the fault planes agree with theoretical models of dike tip failure which postulate
fracturing oblique to the propagation direction. With a standard coefficient of friction of 0.6, fracturing would
be expected approximately 30° to the dike strike, but high fluid pressures can cause greatly reduced fracture
angles [Rubin and Gillard, 1998]. The high magmatic pressures at the dike tip are sufficient to reduce the angle
of failure to 13° clockwise to the dike strike as observed (Figure 4d). Notably, no corresponding right-lateral
events are observed along the leading edge on faults oriented 13° anticlockwise to the propagating dike tip.
Any faults aligned in that direction would be almost exactly orthogonal to the spreading direction of 104° and
may therefore fail aseismically in Mode | failure or at magnitudes smaller than our magnitude of completion
(M 1.1). Nonetheless, small-scale faulting mapped at the surface close to the fissures [Hjartardéttir et al.,
2015b] shows both left-lateral and right-lateral failure clockwise and anticlockwise to the strike of the dike
as predicted by our model.

The path of the dike is governed by the pressure field produced by the overlying topographic load and the
local stress field [Sigmundsson et al., 2015a]. However, the influence of preexisting weaknesses must also be
considered. Fracture movements on preexisting faults occur during rifting episodes, and the fracture density
in fissure swarms in the northern rift zone gradually increases with time, indicating that dike intrusions tend
to use the same pathways many times. The dike unquestionably reoccupied the old Holuhraun craters, and
the northernmost dike segment is parallel with the surrounding rift fabric [Hjartardéttir et al., 2015a]. Hence,
the dike is likely to have followed preexisting weaknesses within the rift zone.

Throughout the propagation, eruption, and cooling phases, the seismicity remained concentrated at 5-7 km
depth. We therefore infer that after the dike emplacement, an open pathway was formed and magma
continued to flow along a conduit at approximately 6 km depth. The primary driving force for the magma
flow through the 48km long dike is likely to be the pressure head from the magma reservoir beneath
Bardarbunga. Effects of magma gas release are assumed to be minimal in the case of lateral subhorizontal
flow. It seems likely that the overburden pressure may have remained too high at the subglacial locations
where ice depressions formed [Sigmundsson et al., 2015a] for the pressure head available from the magma
reservoir to overcome. Instead, the magma migrated north until it reached a topographic low.

The Bardarbunga caldera subsided 66 m from the beginning to the end of the eruption, accompanied by
79 M > 5 earthquakes [Sigmundsson et al., 2015b]. The subsidence provides a measure of the available driving
force for the magma flow. The average flow rate during the six month eruption was 100 m/s [Gislason et al.,
2015], but at the beginning it was as high as 400 m>/s [Pedersen et al., 2015], dropping to zero at the end. A
simple model of laminar flow through a tube, with an initial flow rate of 400 m/s, a driving force of 1.6 MPa
(65 m thickness of magma with a density of 2500 kg/m?>), and a dynamic viscosity of 100 Pa s, requires a tube
of 15 m diameter and a flow rate of 2.3 m/s (8.3 km/h). Using the average eruptive rate of 100 m®/s and an
average driving force of half the magma reservoir thickness (0.8 MPa), a similar size tube of 15.6m
diameter is required but with a reduced flow rate of 0.8 m/s (2.9 km/h). This is within the bounds of the
observed dike front propagation rates of 0.3-4.7 km/h and suggests that once the flow path has been
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opened, the lateral magma flow can continue unimpeded. The shape of the conduit need not be circular:
equivalent flow rates are derived, for example, in rectangular conduits with a width of 7m and a height of
100 m. Narrow, tall flow channels would fit the geodetic constraints on the extensional width of a few meters
for a vertically extensive dike better than a circular channel.

5. Conclusions

The 2014 Bardarbunga-Holuhraun dike propagated at 5-7 km below sea level, 48 km to the northeast from
Bardarbunga caldera, before erupting at Holuhraun. The propagation was episodic, advancing at velocities
of 0.3-4.7 km/h. Seismicity remains focused around the dike tip and at constrictions or jogs in the dike path.
Detailed analysis of the northernmost dike segment reveals that the seismicity arises from double-couple
strike-slip failure. Earthquakes along the leading edge are found to be exclusively left-lateral strike-slip failure,
which is also the dominant mechanism overall. This preferential fault motion accommodates extension
within the rift zone.
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