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Abstract – The paper discusses some of the recent progress in 
kriging based worst-case design optimisation and proposes a new 
two-stage approach to solve practical problems. The efficiency of 
the infill points allocation is largely improved by adding an extra 
layer of optimisation enhanced by a validation process. 

 
I. PROBLEM SPECIFICATION 

 
Robust optimisation is a relatively new term, its history can 

be dated back to 1989 when Taguchi first introduced the 
concept of design quality [1], and since then optimisation 
involving uncertainties has been increasingly drawing more 
attention. Due to the complexity of the optimisation problems 
in engineering design, the high level of non-linearity means 
these problems cannot be closely approximated by single linear 
or quadratic functions. Therefore, these problems are often 
solved by using direct search global optimisation algorithms. 
When evaluation of the underlying problem is expensive in 
terms of time or cost, surrogate modelling techniques are often 
implemented as an approximation and optimisation is applied 
to the surrogate model instead of the original problem. 

The output 𝑓𝑓 of a black-box function when the input variable 
𝑥𝑥 contains deterministic type of uncertainties can be expressed 
by a simplified equation (ignoring possible other sources of 
uncertainties and assuming the uncertainty 𝜀𝜀 is independent of 
the input variable 𝑥𝑥)  

𝑓𝑓 =  𝑓𝑓(𝑥𝑥 + 𝜀𝜀)                                         (1) 

where 𝜀𝜀[−𝜖𝜖, 𝜖𝜖], the distribution of uncertainty 𝜀𝜀, is unknown, 
but the magnitude is bounded to a given range 𝜖𝜖.  

 
II. A BRIEF REVIEW OF EXISTING APPROACHES 

 
For a deterministic type of uncertainties, the basic approach 

is to transform the robust optimisation problem into a standard 
optimisation problem by optimising the worst-case of the 
original objective function, where multiple objective function 
evaluations are needed at each design stage. The number of 
objective function calls may be significantly increased and many 
unimportant and possibly nearly duplicated design points will be 
allocated during this process and thus making the optimisation 
extremely inefficient. This large number of function calls will be 
of particular concern to designers especially when the objective 
function is expensive to evaluate. 

Recently, some more efficient kriging based approaches for 
solving worst-case optimisation problems have been proposed in 
literature. The authors of [3] use the mean and variants to assess 
the robustness, while their proposed strategy utilises the gradient 
information computed from the kriging model. In [4] the 
Expected Improvement (EI) infill sampling approach is 

combined with a relaxation procedure based on a kriging model.  
In [5] the EI infill sampling approach is applied to the worst-case 
response surface calculated based on the kriging model. 

 
III. A TWO STAGE APPROACH 

 
In this paper, we propose a two-stage approach for solving 

expensive worst-case optimisation problems. We focus on 
maximising the usage of available information while delaying 
the calculation of the worst-case value at sampling points to 
achieve a more efficient sampling scheme for the worst-case 
type of robust design optimisation.  

The worst-case optimisation problem is often referred to as 
the minimax problem, with an extra ‘layer’ of optimisation, 
therefore the infill sampling criteria for global optimisation are 
often found ‘uncomfortable’ in the context of the worst-case 
optimisation problems. The worst-case value of the objective 
function at any given point does not depend on information 
given by that point alone (including the kriging prediction, 
MSE, gradient etc.), as information from its neighbouring 
points also needs to be taken into account.  

The algorithm contains two stages; the first one is to update 
the kriging model by sequentially adding infill points at each 
iteration based on the worst-case expected improvement (WCEI) 
– this expected improvement measure is recalculated from 
standard EI, by taking the minimal EI value within the worst-
case region of that design point (design site) 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝑥𝑥) = max{min[𝐸𝐸𝐸𝐸(𝑥𝑥 + 𝜀𝜀)] , 0}               (2) 

𝑥𝑥 + 𝜀𝜀 ∈ 𝑋𝑋    

where 𝑋𝑋 is a set of points located within the worst-case region of 
that unknown point 𝑥𝑥. A one-dimensional example is illustrated 
in Fig. 1, where the boundary 𝜖𝜖 of the worst-case design is ±0.3. 

 
Fig. 1. The worst-case regions of existing design sites in a 1D example 

 
The extra layer of the minimax problem is embedded within 

the WCEI; the new infill sampling point will be located where 
the minimal expected improvement around the target point is 
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the largest. The WCEI is equal to zero at the locations within 
the worst-case region of existing design sites; consequently, 
these areas are banned as future infill locations at the model 
updating stage. During the process of model updating, the worst-
case estimation of the objective function is computed 
simultaneously based on the kriging model constructed using the 
existing design sites at that iteration.  

The second stage is triggered when the maximum WCEI 
within the design space becomes less than a predefined value or 
stage one has exceeded its allowance, if it has been imposed. The 
location of the worst-case estimated optimum is added as the 
next infill point and the associated objective function are 
evaluated. When the range of the underlying objective function 
surface is large, the actual worst-case optimum can differ from 
the estimated one; therefore, a validation process is necessary at 
stage two, after the worst-case optimum based on estimation is 
located. The worst-case region around the worst-case optimum 
is exploited and validated using a modified EI approach, where 
instead of calculating the improvement, the deterioration is 
computed to give an indication where the maximal worsening is 
located within the worst-case region of the worst-case optimum 

 

𝐸𝐸[𝐷𝐷(𝑥𝑥)] = �(𝑦𝑦�(𝑥𝑥) − 𝑦𝑦𝑤𝑤𝑤𝑤)Φ�𝑢𝑢(𝑥𝑥)� + 𝑠̂𝑠𝜙𝜙(𝑢𝑢) , 𝑠𝑠 > 0
0, 𝑠𝑠 = 0

 

 𝑢𝑢 =
𝑦𝑦�(𝑥𝑥) − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

𝑠̂𝑠(𝑥𝑥)  

 
This process can be repeated until the value of the expected 

deterioration is smaller than the predefined value. 
 

IV. EXAMPLE 
 

The worst-case optimisation process using the two-stage 
approach is illustrated by a one-dimensional test example. In 
Figs 2 and 3, the yellow dotted line depicts the original 
objective function, while the blue bold line shows the kriging 
model. The focus is on showing the mechanism of the proposed 
approach and how a position of the new infill point is decided. 

 

 
Fig. 2. The kriging model after 11th iteration 

 

 
Fig. 3. The kriging model after 12th iteration 

 
Fig. 4. The worst-case estimation based on the kriging model  

after 13th iteration 
 
The maximum WCEI within the design space is less than the 

predefined value of 0.01, and the optimum at 𝑥𝑥 = 0.34 of the 
worst-case estimation is taken as the next infill sampling point 
to be evaluated. The worst-case optimum is found in the 12th 
iteration in Fig. 3 at the location of the optimum point in the 
previous worst-case estimation, while Fig. 4 gives the final 
worst-case estimation of the objective function. The yellow 
dotted line in Fig. 4 is the worst-case response surface of the 
underlying objective function, and the blue bold line is the 
estimated worst-case response surface based on the kriging 
model. It will be noted that with the consideration of robustness 
the position of the final optimum is different to what has been 
suggested by Figs 2 and 3, in other words the robust optimum 
is different to the theoretical global one. 
 

V. CONCLUSION AND DISSCUSION 
 
A two-stage approach to worst-case optimisation problems 

has been proposed and details of the algorithm discussed. The 
suggested method does not compute the worst-case value, or the 
corresponding robustness measure, for any design site during the 
model updating stage, in order to avoid the objective function 
evaluation at a location that would contribute less to the overall 
model landscape, which would have taken place if the worst-
case value was evaluated for the newly added infill point. 
Instead, the explicit search for the robust optimum takes place in 
the second stage after the model updating process has completed, 
with a validation process added to exploit the region around the 
estimated worst-case optimum. In the full-page version, the 
proposed optimisation method will be tested on a multi-
dimensional practical electromagnetic design problem. 
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