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Abstract: Since uncertainties in variables are unavoidable, an optimal solution must consider the robustness of the design. The
gradient index approach provides a convenient way to evaluate the robustness but is inconclusive when several possible solutions
exist. To overcome this limitation, a novel methodology based on the use of first- and second-order gradient indices is proposed
introducing the notion of gradient sensitivity. The sensitivity affords a measure of the change in the objective function with
respect to the uncertainty of the variables. A Kriging method assisted by algorithms exploiting the concept of rewards is
employed to facilitate function predictions for the robust optimisation process. The performance of the proposed algorithm is
assessed through a series of numerical experiments. A modification to the correlation model through the introduction of a
Kriging predictor and mean square error criterion allows efficient solution of large scale and multi-parameter problems. The
three-parameter version of TEAM Workshop Problem 22 has been used for illustration.
1 Introduction

The notion of robust design can be traced back to Taguchi in
the 1950s who proposed the following definition: ‘a product
whose performance is minimally sensitive to factors causing
variability (at lowest possible cost)’. His significant
contribution was an introduction and specification of the
orthogonal arrays as a particularly efficient approach to the
design of experiments [1]. The more recent research has
applied the method to the design of electromechanical
devices [2] and has also focused on the related issues of
optimal centring and tolerance design [3], where the
optimal parameters and tolerances may be found by
applying some form of a statistical procedure. The aim is a
process of ‘recentering’ of the design factors such that the
tolerances may be maximised with little or no quality losses
and a solution is sought which is more compatible with the
relevant manufacturing processes. Electromagnetic design
generally falls into the same category of problems and
searches not just for the global optimum but also some
measure of its quality in case another optimum, even if
only local, offers better robustness. What is somewhat
special in the context of electromagnetic analysis is that
accurate magnetic field simulation, essential to increase
confidence in the predicted performance, requires
computationally expensive numerical modelling, such as
finite elements, finite differences and boundary elements.
Commercial software is available for this purpose and it is
extremely helpful to designers, but solution times for
each field model are often long, thus repeated objective
function calculations inherent to any design algorithm
could make the process exceedingly time-consuming
and thus impractical. This is why so much effort has gone
into developing efficient design procedures based on
surrogate modelling. This paper addresses such issues, both
from the point of view of the actual optimisation process
but primarily in the context of robust design. Some prior
work is mentioned first to provide a starting point to the
discussion.
The concept of the gradient index (GI) has been explored in

[4–6]. The method transforms a problem into a
multi-objective optimisation by concurrently minimising the
function and its GI, thus forming Pareto fronts. This
approach is promising but does not provide a clear answer
how to select a preferred solution when the size of the
uncertainty varies. Moreover, the sensitivity computations
must be incorporated into the finite-element code, which
may be impossible when commercial software is used. This
paper offers further advances both in terms of the way in
which the gradient indices are used and by improving the
computational efficiency of the algorithms. The notions of
the GI sensitivity and the second-order GI are introduced
and explained. It is shown that when practical problems are
attempted relying solely on the first-order gradient or
second-order gradient for evaluation of robustness may not
be enough, especially when several possible robust
solutions exist which all have their first- and second-order
gradients zero. Finally, rather than calculating the objective
function using computationally expensive finite-element
software, a Kriging prediction [7] is employed. In other
words, the objective function is approximated using Kriging
[8], assisted by algorithms balancing exploration and
exploitation ([9, 10]) using the concept of rewards [11].
This strategy has been shown previously to be very efficient
and has the advantage that it can be linked with any
finite-element code, including commercial software.
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2 Robust optimisation

In conventional optimisation, the minimum (maximum) of an
objective function is sought while the search space is limited
through a set of constrains. Once the global optimum has been
found, the problem is considered to have been solved. When
practical devices are designed, however, we need to recognise
that almost all parameters (design variables) are subject to
uncertainties (manufacturing tolerances, variation of
material properties etc.) and thus not just the value but also
the shape of the optimum becomes relevant in the
neighbourhood of the selected design; this is demonstrated
by the examples of Figs. 1 and 2. A theoretical optimum
may therefore be abandoned in favour of a ‘worse’ but
more robust design; however, the decision will depend on
the size of the uncertainties involved. For this reason
having a Pareto front instead of a single solution may be
preferable.

2.1 Multi-objective robust optimisation using GI

Consider a commonly used one-variable test function [4–6]
(see Fig. 1)

f (x) = 3− 3.5

1+ x− 5( )2

− 2.2

1+ x− 15( )2/10−
1.2

1+ x− 25( )2/30

(1)

The uncertainties may be either specified directly (e.g. as
machining tolerances, say Δ) or defined mathematically as

U (x) = j [ Rn|x− ks ≤ j ≤ x+ ks
{ }

(2)

where σ is the standard deviation of uncertain variables and k
is determined by a confidence level [5].
One way of incorporating robustness into the mainstream

optimisation process is by adding the GI [4] as a second
objective and formulating the problem as

Minimise f x( ) x [ Rn xL ≤ x ≤ xU
( )

Minimise GI(x) = max
1≤i≤n

∂f (x)/∂xi
∣∣ ∣∣

Subject to gi(x) ≤ 0, i = 1, . . . , m

(3)

Point A1 in Fig. 1a is the theoretical global optimum.
However, any small change in the variable x results in a
large variation of the objective function; thus, A1 is not a
robust design and points A2 or A3 might be preferred.
Importantly, it can be seen that both the values of the
first-order gradient in Fig. 1a and the values of the
second-order gradient in Fig. 1b, for both points A2 and
A3, are very close to zero. Therefore considering only the
first-order gradient or the second-order gradient to evaluate
robustness of solutions might not be reliable for such cases.
The final decision, however, is not straightforward and is
influenced by the size of the uncertainty. The sensitivity of
the gradient may thus be defined as the difference between
the largest and the smallest value of the GI within the
uncertainty range; as shown in Fig. 1a, the shape of this
sensitivity carries useful information. The trajectory of the
objective function in terms of sensitivity and objective
function values is plotted in Fig. 1c. It can be seen that the
traditional optimisation task of minimising a single
IET Sci. Meas. Technol., 2015, Vol. 9, Iss. 4, pp. 400–409
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objective function is transferred into a two-objective
optimisation involving minimisation of the objective
function and the sensitivity based on the GI. The theoretical
most optimal solution and several critical local minima
(A1–A3), together with the corresponding range restricted
by specific uncertainties (U1–U5), have been outlined in
Figs. 1a–c. Although A1 appears to offer a better objective
function value, its sensitivity is relatively poor as compared
with the other two local minima A2 and A3. The
second-order gradient of the function may also be useful
(Fig. 1b).
Another example (Fig. 2) shows ‘sharp’ global and

‘shallow’ local minima with a ‘plateau’ with associated
sensitivities and second-order gradient indices. Strictly
speaking A2 is not a ‘minimum’, but nevertheless a
possible design with attractive spread of values. Using the
first-order gradient and/or the second-order gradient on their
own will not identify A2 as a potential solution, whereas
the use of sensitivity – as shown in Fig. 2b – allows proper
judgement to be made regarding the robustness of this
particular design. Table 1 shows that the sensitivity values
for A2 and A3 are smaller, and thus better, than for A1.
The choice between A2 and A3 will then be guided by the
shape of the trajectory of Fig. 2b.

3 Robust optimisation based on Kriging
modelling

3.1 Kriging

As a type of regression model, Kriging [9] is able to predict
the shape of the objective function through exploiting the
spatial correlation of data based only on limited
information. The accuracy of this prediction can be
estimated by Kriging, which may be extremely helpful
when making a decision where to place the next evaluation
point at any stage of the optimisation process. To
accomplish this aim, Kriging needs to exploit the spatial
correlation between the known points (vectors) of the
objective function and all the unknown points, as well as
the correlation between the known points (newly found
points and initial sampling points), to build a correct
surrogate model of the real objective function through
interpolation. This relies on the linear regression model

ŷ(x) =
∑m
k=1

bk fk (x)+ 1(x) (4)

and the Gaussian correlation model

R 1 xi
( )

, 1 xi
( )( ) = ∏n

k=1

e−uk xik−xj
k

∣∣ ∣∣ pk
(5)

where the global function
∑m

k=1 bk fk(x) and an additive
Gaussian noise ε(x) are integrated to the predicted value
ŷ(x) of the objective function; the hyperparameter θk is the
correlation among the data in k-direction and pk determines
the ‘smoothness’ of (5). The most popular correlation
function is given by the Gaussian model where the value of
pk is simply taken as equal to 2. For a given set of data, the
maximum likelihood estimation optimises the value of θ
and then the correlation model is brought into the
regression model to evaluate the function with the best
linear unbiased predictor [8, 12].
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Fig. 1 Example of a robust design for a one-variable problem

a Objective function, the GI and sensitivity
b First- and second-order gradients
c Objective function trajectory showing sensitivity and objective function values (OF)

www.ietdl.org

402
& The Institution of Engineering and Technology 2015

IET Sci. Meas. Technol., 2015, Vol. 9, Iss. 4, pp. 400–409
doi: 10.1049/iet-smt.2014.0054



Fig. 2 Two minima and a plateau

a Objective function, the first-order gradient index (GI) and the second-order gradient index (GI’)
b Objective function trajectory showing sensitivity, second-order gradient index (GI’) and objective function values (OF)
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Along with the increase in the number of sampling points
selected by Kriging during the iterations, the amount of
data produced by the correlation matrices accumulates
constantly throughout the optimisation process, which may
become problematic especially when dealing with large-
scale multi-parameter problems, leading to a ‘combinatorial
explosion’. In [13], we proposed a successive ‘zoom-in’
Table 1 Values of the objective function, second gradient and
sensitivity for the three design points A1, A2 and A3 (Fig. 2)

Coordinates on
x-axis

Objective
function
value

Second
gradient
value

Sensitivity

A1 5 6.21628 6.702025 2.2634
A2 7.8 6.735 0.5 1.47
A3 15.1 7.48699 0.42475 0.4618
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strategy to alleviate the problem, where –to reduce the
amount of data storage and utilise the installed physical
memory capacity efficiently – the step sizes of the variable
parameters involved in the design (named design vectors
here) were increased while the test range reduced. However,
the optimal step size is often problem dependent, thus
if the ‘roughness’ of the initial test is set inappropriately, it
is possible that certain regions of the search space
containing important information (including the optimum)
might be missed. Hence, what appears to be the best point
found in such a search may in fact misguide the algorithm
leading to erroneous results. To address this issue, an
alternative strategy is pursued here where, rather than
reducing the size of the problem, a more efficient handling
of relevant matrices is proposed. This novel methodology
divides the correlation matrices in an adaptive manner so
that the physical memory available is used in an optimum
way.
403
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Fig. 3 Correlation matrices partitioned by

a Sampling points,
b Design vectors (where S1, S2, … , Sn: sampling points)
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3.2 Partitioning of correlation matrices

In general, the known sampling points selected throughout
the iterative process of prediction only take account of a
very limited part of the full design vectors; hence, the
correlation matrix between the existing sampling points
only is unlikely to cause memory problems. On the other
hand, the correlation matrix between the known points and
all the design vectors may be very large and keeps growing
with the increasing number of updated sampling points as
iterations progress. For problems with several variables and
a large number of potential design vectors, the correlation
matrix can grow uncontrollably and may result in
‘combinatorial explosion’. Should this happen, a part of
data might need to be transferred to a hard disk, which
could cause the iterative process to slow down
considerably. Therefore a strategy of partitioning the
correlation matrices into manageable size is proposed and
illustrated in the flowchart sketched in Fig. 3; it should be
noted, however, that unordered (or random) splitting could
cause unnecessary calling of the correlation model
Fig. 4 Flowchart of the adaptive division of correlation matrices
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subprogram leading to increased computing times, hence
the need for a ‘strategy’. The scheme proposed here adjusts
the size of the sub-elements into which the correlation
matrices are split adaptively to make full use of the
available memory while minimising the number of calls of
the correlation model. Two schemes have been employed
and operate throughout the process as explained in Fig. 3,
one based on partitioning in terms of the sampling points
and the other related to the design vectors, for Kriging
prediction and calculating mean-square error, respectively.
Two alternative switching criteria have been implemented.
The first is memory related: if the memory occupied by the
predictor involving the correlation matrices exceeds the
available memory of a specific computer, a modified
strategy of partitioning matrices is applied instead of the
original method of producing correlation matrices.
However, as other background processes may
simultaneously be taking place the available memory is
never fixed. Consequently, another criterion has also been
implemented related to the average time taken by a single
iteration; should this time suddenly start to increase the
switching is triggered and the partitioning matrices scheme
is activated; it then continues throughout the remaining
iterations.
A careful balance is therefore maintained between

preventing the correlation matrices to grow uncontrollably
while monitoring simultaneously the computing times. The
operation of the scheme is problem related but also depends
on the actual computer used, so it is impossible to provide
strict guidelines regarding memory limits. The example of
Fig. 9, however, does show some quantitative details for a
specific case and particular computer implementation.
To verify the viability of the proposed methodology, the

TEAM problem 22 has been attempted [14]. Without the
strategy of Fig. 4, the Kriging algorithm failed because of
the memory size problem when tested on a smaller computer.
4 Application to electromagnetic design

4.1 TEAM Problem 22

The full description of the TEAM benchmark problem 22
(superconducting magnetic energy storage system) may be
found in [14]. The target is to achieve an arrangement of
the two superconducting coils such that the stored energy
IET Sci. Meas. Technol., 2015, Vol. 9, Iss. 4, pp. 400–409
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Table 2 Setting of initial sampling points

R2, m 2.7 2.9 3.0 3.3 2.6 3.4 2.6 3.4
h2, m 0.744 1.304 1.64 2.088 0.408 0.408 2.2 2.2
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within the system is Eref = 180 MJ while a minimal stray field
Bstray is obtained. The objective function is defined as

OF = B2
stray

B2
norm

+ E − Eref

∣∣ ∣∣
Eref

(6)

where Bnorm = 3 μT and B2
stray =

∑22
i=1 Bstray,i

∣∣∣ ∣∣∣2
[ ]

/22,

subject to geometrical and ‘quench’ constraints.

4.2 Two-parameter test results

Before addressing the three-parameter problem, for the
purpose of demonstrating typical shapes of the objective
function, one of the variables has been fixed (d2 = 0.394 m),
while R2 and h2 are varied. Usually the initial sampling
points are selected using Latin Hypercube [15]; however,
Table 3 Performance comparison of algorithms

Algorithm R2, m h2/2, m Best OF Iterations

RBF 3.06 0.236 0.088 240
AWEI (Kriging) 3.08 0.239 0.089 38

Radial basis functions (RBF) [16]; AWEI (Kriging) [10].

Fig. 5 TEAM Workshop Problem 22

a Prediction by Kriging with AWEI (3≤ R2≤ 3.3, 0.408≤ h2≤ 0.5, d2 = 0.394, ot
b Sensitivity with respect to R2 and h2
c Objective function trajectory showing sensitivity and objective function values (
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for this test eight initial sampling points were used as
shown in Table 2. Table 3 compares one typical result from
literature with our AWEI algorithm (Kriging with adaptive
weighted expected improvement) [9, 10], whereas Fig. 5
demonstrates the convergence process of AWEI.
The uncertainties are predefined as R2− 0.02 < j(R2) <

R2 + 0.02, h2− 0.01 < j(h2) < h2 + 0.01, while the
increments with respect to R2 and h2 for calculating
first-order gradients are set as dx(R2) = 0.002, dx(h2) = 0.01.
4.3 Three-parameter test results

The full three-parameter TEAM 22 problem [14] is
potentially a challenge to the Kriging method because of
the ‘combinatorial explosion’ associated with setting up the
correlation model, as explained in Section 3 – thus the
savings because of avoidance of the computationally
expensive finite-element simulations may be lost, or even
overtaken, by the excessive time required by the model if a
less powerful computer is used for simulation. The
previously reported ‘zoom-in’ strategy [13] to deal with this
issue has some drawbacks and could result in loss of
accuracy. This was the motivation behind the new approach
based on adaptive correlation matrices division described in
Section 3. The initial sampling points are set as in Table 4,
whereas the settings for the test ranges and step sizes
her parameters fixed)

OF)
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Table 4 Setting of initial sampling points

R2, m h2, m d2, m

sample 1 3.1 0.576 0.32
sample 2 3 0.408 0.3
sample 3 3.2 0.744 0.4

Table 5 Specific definition of the test as used for constructing
the Kriging model

R2, m h2, m d2, m

test range [2.6 3.4] [0.408 2.2] [0.1 0.4]
step size 0.01 0.014 0.003
number of steps 81 129 101

Table 6 Performance comparison of algorithms for TEAM 22
problem

Algorithm R2, m d2, m h2/2, m OF No. of
FEM calls

GA 3.040 0.386 0.240 0.134 2400
HuTS 3.080 0.380 0.246 0.089 3821
ITS 3.100 0.388 0.240 0.098 1824
SA 3.078 0.390 0.237 0.098 5025
NTS 3.080 0.370 0.254 0.089 1800
PBIL 3.110 0.421 0.241 0.101 3278
Kriging (EI) 3.1 0.328 0.281 0.0893 276
Kriging
(AWEI)

3.08 0.382 0.246 0.0875 242

Genetic algorithm (GA) [17]; Tabu search (HuTS) [18]; improved
Tabu search (ITS) [19]; simulated annealing algorithm (SA) [20];
new Tabu search (NTS) [21]; population-based incremental
learning (PBIL) [22].
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shown in Table 5 are initialised to preserve the test conditions
originally suggested in [14]. Please note that the relatively
small imposed step sizes are probably unnecessary – and
relaxing them would have made the problem easier and
computationally more efficient to solve – but they have
been kept here to allow for direct comparisons.
A comparison between the results obtained with the

‘zoom-in’ strategy and those using ‘the adaptive correlation
matrices division’ for this example are presented in Fig. 6.
Fig. 6 Three-parameter TEAM 22 problem

a EI
b AWEI

406
& The Institution of Engineering and Technology 2015
With the ‘zoom-in’ strategy, the Kriging assisted by
expected improvement (EI) and AWEI took 211 iterations
and 323 iterations, respectively. However, the number of
iterations is not uniform as it depends on the choice of the
Fig. 7 Objective function trajectory showing sensitivity and
objective function values (OF)

a EI
b AWEI
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specific range of each test stage. By applying the scheme of
partitioning the correlation matrices, the issue of
combinatorial explosion is alleviated to a great extent –
without a loss of important information – by the sheer fact
of the sub-matrices being of much smaller size. With the
help of this scheme, the Kriging with EI needed 276
iterations to find the global optimum. Although it has been
noted that Kriging with EI performs slightly worse than the
‘zoom-in’ strategy, the entire design space has now been
explored. The AWEI using the novel scheme performs
better, as it took 242 iterations rather than 323 to find the
optimum (Fig. 6b). The comparisons of efficiency of
convergence (number of finite element method (FEM) calls)
and the quality of the optimum (value of OF) are presented
in Table 6. Kriging with either EI or AWEI performs far
more efficiently than other currently available
methodologies. Kriging guided by AWEI performs slightly
better than Kriging with EI, both in terms of efficiency and
the quality of the optimum. However, the main benefit of
the modified correlation model is that the Kriging model is
now able to cope with problems that theoretically could be
of any size without the complications brought about by the
‘combinatorial explosion’.
The uncertainties for R2, h2 and d2 have been pre-set as R2

− 0.03 < j(R2) < R2 + 0.03, R2 − 0.042 < j(h2) < R2 + 0.042,
d2− 0.009 < j(d2) < d2 + 0.009. The differences d(x)
required by the gradient calculation with respect to these
three parameters were set as their relevant step sizes. The
objective function trajectory in terms of sensitivity and
objective function values (OF) obtained using Kriging with
EI and AWEI are presented in Figs. 7a and b, respectively.
Both best solutions, in terms of the objective function value
and the sensitivity, are shown in Fig. 7. The graphs focus
around the optimum values of the function. It can be seen
that both EI and AWEI produce similar results and for the
Fig. 8 Specific parameter setting and transient process of testing the T

S: sampling points, n: the number of existing sampling points
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given set of uncertainties the ‘less optimal’ solution seems
to be more robust than the optimum one.
To demonstrate the performance of the proposed

partitioning scheme, two tests – both applying EI and
AWEI – have been undertaken and the results of the
monitoring of memory savings and associated computing
times for a specific computer are presented in Fig. 9. The
size of the full correlation matrix, the reduced size using
the idea of a standard sub-matrix and the joint usage of the
sub-matrix and matrix partitioning are described in Fig. 8.
The decision if the correlation matrix needs to be
partitioned follows from two considerations: limiting the
memory occupied by the optimiser or minimising the time
required by each iteration. When one of the limitations is
exceeded, the normal method of producing correlation
matrices is replaced by the modified scheme of partitioning
matrices. Once the criteria for switching on the partitioning
scheme are activated, the correlation matrices partitioning into
sub-matrices – both in terms of design vectors and
sampling points – are triggered. If splitting in terms of
design vectors, the size of the full version correlation matrix
is 81 × 129 × 101 × n (where n is the total number of
existing sampling points), that is divided into 36
sub-matrices (35 sub-matrices with the size 30 000 × n and
1 sub-matrix with the size of 5349 × n). As mentioned
before in Section 4.3, under normal design practice the
number of steps could probably be made smaller making
the problem go away or at least less severe. In the particular
case, the testing environment provided ∼11 GB available
memory, which was set as the triggering value. However,
because of other simultaneous processes, the effective
available memory was smaller, although difficult to predict.
Thus, the time for a single iteration was also monitored and
– as shown in Fig. 9 – at some point a marked increase
could be observed when the 11 GB memory limit had not
EAM 22 problem with the help of the novel partitioning scheme
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Fig. 9 Monitoring of computing times and memory requirements

a Computing time of each iteration
b Memory requirements
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yet been reached; in this particular case, the actual memory
usage was around 9.6 GB. Thus, in cases when background
(or other) processes may be memory ‘hungry’, this
additional iteration time constraint is clearly helpful.
Overall, setting the memory limit somewhat below the
‘theoretical maximum’ might be advisable, but monitoring
the computing times also useful.
Finally, although this is not the focus of this paper, it has

been reported before that Kriging offers a particularly
efficient way of surrogate modelling with the number of
necessary function calls significantly less than when using
other methods; this was demonstrated for example by Table
IV in [13] and confirmed by Table 6 in Section 4.3 of this
paper. Thus although in principle other algorithms could
also be used to achieve the same goal, there seems to be a
good reason to continue using Kriging. However, the issue
of the size of the correlation matrices – and associated time
required for their creation at each iteration step – is an
important hurdle in implementation of the method
especially on smaller computers. Some ideas about how to
overcome this difficulty have been put forward here, but
will be mostly pursued in future work. Notwithstanding, it
should be noted that when using a computer with limited
memory there will be difficulties associated with running
the numerical simulation software too, which the Kriging
model is trying to replace, so the issues of limited available
memory are not unique to Kriging formulation; they must,
408
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however, be addressed. One possible way forward for much
larger practical problems with many variables is to explore
the sensitivity of the objective function to changes in all
parameters and focus on a subset of such parameters; this
idea is pursued in the follow-up work [23].

5 Conclusion

Finding a global optimum may not be sufficient when a robust
design is desired. If uncertainties of the variables are defined,
the difference between the highest and the lowest gradient can
be used to evaluate the sensitivity of the solution in the search
for a robust result. Assisted by the Kriging model, the
evaluation of sensitivity can rely on the Kriging prediction
rather than the computationally expensive finite-element
models, but the classic Kriging model can be inefficient
when multi-variable problems are solved on smaller
computers. The strategy based on splitting the correlation
matrices makes the process much more effective for
large-scale multi-parameter electromagnetic design problems.
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