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Abstract

Using holography, we study the low-lying mesonic spectrum of a range of asymptotically free gauge

theories. First we revisit a simple top-down holographic model of QCD-like dynamics with predictions

in the Mρ - Mπ plane. The meson masses in this model are in very good agreement with lattice gauge

theory calculations in the quenched approximation. We show that the key ingredient for the meson

mass predictions is the running of the anomalous dimension of the quark condensate γ. This provides

an explanation for the agreement of holographic and quenched lattice gauge theory calculations. We

then study the ‘Dynamic AdS/QCD model’ in which the gauge theory dynamics is included by a

choice for the running of γ. We use the naive two-loop perturbative running of the gauge coupling

extrapolated to the non-perturbative regime to estimate the running of γ across a number of theories.

We consider models with quarks in the fundamental, adjoint, two-index symmetric and two-index

anti-symmetric representations. We display predictions for Mρ,Mπ,Mσ and the lightest glueball mass.

Many of these theories, where the contribution to the running of γ is dominated by the gluons, give very

similar spectra, which also match with lattice expectations for QCD. On the other hand, a significant

difference between spectra in different holographic models is seen for theories where the quark content

changes the gradient of the running of γ around the scale at which chiral symmetry breaking is triggered

at γ ' 1. For these walking theories we see an enhancement of the ρ mass and a suppression of the σ

mass. Both phenomena are characteristic for walking behaviour in the physical meson masses.



1 Introduction

Asymptotically free gauge theories are notoriously difficult to study since they run to strong

coupling in the infra-red. Computing the bound state spectrum of theories such as QCD is

therefore very hard. First-principle lattice calculations are possible but very numerically expen-

sive. They are typically guided by the answers observed in nature. It is hard to explore the

range of behaviour across the full space of asymptotically free theories. The holographic descrip-

tion of large Nc N=4 gauge theory [1] has raised the prospect of a dual gravitational picture

for these theories in which the spectrum might be computed in a purely classical theory. Top-

down attempts [2, 3, 4] to rigorously find a gravity dual originating from ten-dimensional string

theory are complicated by the need to find a brane construction that decouples all unwanted

super-partners, and also by the challenge of finding the appropriate gravitational background

for embedding those branes. In any case when the gauge theory is weakly coupled, such as in

the ultra-violet, the gravitational theory will itself become strongly coupled. Bottom-up holo-

graphic modelling [5] has taken broad brush stroke lessons from the AdS/CFT correspondence

and attempted to model the mesonic and glueball degrees of freedom. Basic AdS/QCD mod-

els appear to work reasonably well, even at the quantitative 10% level or better, but are not

systematically improvable. This is due to the fact that in principle, very many operators and

higher dimension couplings can be important for the vacuum and bound state structure. Both

top-down and bottom-up models have therefore struggled to encode the particular dynamics of

a specific theory with, for example, a definite value of Nc or the number of quark flavours Nf .

Recently there have been new attempts to construct holographic models [6, 7, 8] that address

these issues and provide insight into why some top-down models give good descriptions of the

QCD spectrum [9]. Here we will push these insights further with two goals: First, we provide

further support for the success of an existing top-down model. Second, we present bottom-

up models for a large range of different gauge theories. One key observation was highlighted

already in [7], where it was noted in particular that the quark condensate that characterizes

the vacuum in all such models is described holographically by a scalar in an AdS-like space.

The scalar becomes unstable to acquiring a vev, corresponding to a quark condensate, when

its mass violates the Breitenlohner-Freedman (BF) bound [10]. This mass bound is given by

m2 = −4 in AdS5, for instance. The AdS mass of the scalar in turn is mapped by the AdS/CFT

dictionary [1] to the dimension of the gauge theory operator, m2 = ∆(∆ − 4). This implies

that in a dual to a QCD-like theory, the operator q̄q operator has dimension three in the UV,

and is described by a scalar with m2 = −3. To reach the BF bound, beyond which there is an

instability leading to condensation to a new ground state and chiral symmetry breaking, the

dimension of q̄q must have become ∆ = 2, which corresponds to an anomalous dimension of

γ = 1. Top-down holographic models of QCD-like theories that use probe branes display the
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importance of these ideas: as described in [9], the running of the coupling or factors deviating

from AdS in the background metric enter into the Dirac-Born-Infeld (DBI) action of the probe

that describes the quark and meson physics. If the DBI action is linearized, it leads to an action

for a scalar in AdS, dual to the operator describing q̄q, with a running mass squared. This

effective running mass is generated by the metric and forms of the background geometry which

enter the DBI action. In fact, the dual geometry and running of the coupling enter into the

effective AdS/QCD model only through the running of the anomalous dimension γ, i.e. of the

mass squared of the AdS scalar.

Models that describe QCD reasonably have γ = 0 in the UV (as occurs naturally in a theory

that is supersymmetric in the UV), a long range over which γ is small and a sudden rise to γ

greater than one. This running is broadly similar to that in QCD, where the logarithmic running

keeps γ small except around ΛQCD where it blows up rapidly. We will illustrate this here in

the top-down Constable-Myers model [4, 11], which has been higlighted in [3] as providing a

surprisingly good description relative to lattice data of the light spectrum.

These ideas were simplified in [8] where the ‘Dynamic AdS/QCD’ model was proposed.

The model is just the linearized DBI action of the D3/probe-D7 system, but with an arbitrary

running for γ. To describe any particular gauge theory then requires a guess as to the form of

that running. A naive but still sensible guess is provided by the perturbative running of the

QCD coupling to two loops. For Nf just below 11Nc/2 where asymptotic freedom is gained, the

two-loop running displays a Banks-Zaks fixed point [12]. As Nf is decreased, the value of the

coupling at the fixed point increases and the anomalous dimension γ increases. At a point close

to Nf ' 4Nc for fundamental quarks, the BF bound is tripped and chiral symmetry breaking

sets in. Above that value of Nf , the model is in the regime referred to as the “conformal window”

[13]. Using the standard AdS relations, the running can be translated into a radially dependent

mass squared for the scalar describing the condensate. The model then makes predictions for

the spectrum of the theory. Here we will concentrate on the ρ meson, the pions, the σ meson

( i.e. the singlet q̄q bound state with vanishing quantum numbers, also identified with the f0)

and the lightest glueball. For the glueball, only qualitative statements are possible since the

Dynamic AdS/QCD model concentrates on the quark sector. We will present our results in

the style of “Edinburgh” plots [14] used by lattice gauge theorists. These plots display only

physical observables, such as the mass of the ρ as function of the pion mass, in order to remove

scheme-dependent quantities such as the quark mass.

In our section 2 we will revisit the Constable-Myers model of chiral symmetry breaking

[4, 11] and extract, by linearizing the DBI action of a D7 brane in the geometry, the running

anomalous dimension. We will show that in the critical range of radial coordinate, where γ ' 1,

the running of the model is similar to quenched QCD. We compare the Mρ against Mπ behaviour
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with that of quenched lattice computations [15] and re-emphasise the surprising success of the

model. In the subsequent sections, we then turn to the Dynamic AdS/QCD model [8] which

allows us to explore the space of gauge theories as a function of Nc, Nf and in dependence on the

representation of the quarks. Again we find the holographic models give good agreement with

lattice data where it exists. In fact we find a relatively weak dependence on Nc and the quark

representation. Significant deviations from QCD-like behaviour is seen for so-called “walking”

gauge theories [19]. These are theories whose running is governed by an IR fixed point, although

this point is never reached due to chiral symmetry breaking. Moreover, these theories approach

fixed points with γ close to but above 1 since they exist for Nf just below Nf ' 4Nc. For

these theories, the gradient of γ as function of the running coupling is small when γ = 1. They

are expected to have a quark condensate which is enhanced in the UV, which in turn tends to

enhance the ρ mass, enhance the π mass to a lesser degree and to suppress the σ mass [20, 21].

The effective potential becomes very flat as the UV condensate is pushed out to high scales,

leaving a pseudo-flat radial direction in the potential. We observe all of these phenomena in

our model.

These models remain only models though, since they cannot be brought closer to the true

dynamics systematically, and depend on the naive guess for the running of γ. Indeed in gauge

theory beyond two loops the running parameters are gauge dependent but we hope working at

lower order does correctly capture the dynamics of the gauge theory running. Nevertheless, the

success in reproducing the lattice data, where such data exists, gives hope that the approach

presented provides information about universal behaviour in these theories. In particular we

hope that the trends we see as the edge of the conformal window is reached, should provide

guidance to lattice simulations of those theories [22].

2 A Top-Down Model

An early holographic description of QCD [4] was provided by placing D7-brane probes in the

dilaton flow geometry of Constable and Myers [11]. D3-D7 strings introduce quenched quark

degrees of freedom. The Constable-Myers deformation of AdS5×S5 is a very simple description

of a gauge theory with a running coupling that breaks the N = 4 supersymmetry completely.

The non-trivial dilaton profile is dual to that running coupling and has an IR pole which is ill-

understood. In practice the geometry describes a gravity dual of a soft wall since the singularity

is repulsive to probe branes. The D7 probes bend away from the singularity and asymptotically

the embedding describes a dynamically generated quark condensate at zero quark mass. In [3]

the light meson spectrum was computed. Moreover, the Mρ versus M2
π plot was compared to

quenched lattice data [15]. We update these computations in Figure 1. The fit is remarkably
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Figure 1: Plots of Mρ against M2
π - in each case the points are normalized by Mρ at Mπ = 0

to set the non-perturbative scale Λ. As shown in the key, the plot shows the data for quenched
lattice computations taken from [15] (and linearly fitted to find Mρ at Mπ = 0); the Constable
Myers top down model; and the Dynamic AdS/QCD predictions.

good. At the time this seemed very surprising since the gauge theory apparently lies close to

infinitely strongly coupled N = 4 gauge theory with all the associated super-partners and has

no asymptotic freedom. In this section we return to this model and analyze it in the spirit of

[9] to shed some light on the success at describing the QCD spectrum.

The gravity background of Constable and Myers [11] in Einstein frame has the geometry

ds2 = H−1/2

(
w4 + b4

w4 − b4

)δ/4 3∑
j=0

dx2
j +H1/2

(
w4 + b4

w4 − b4

)(2−δ)/4
w4 − b4

w4

6∑
i=1

dw2
i , (1)

where b is the scale of the geometry that determines the size of the deformation (δ = R4/(2b4)

with R the AdS radius) and

H =

(
w4 + b4

w4 − b4

)δ
− 1 , w2 =

6∑
i=1

wi
2 . (2)

In this coordinate system, the dilaton and four-form are, with ∆2 + δ2 = 10,

e2Φ = e2Φ0

(
w4 + b4

w4 − b4

)∆

, C(4) = −1

4
H−1dt ∧ dx ∧ dy ∧ dz . (3)

This geometry returns to AdS5× S5 in the UV as may be seen by explicitly expanding at large

radial coordinate w.

To add quarks [4] we will use an embedded probe D7-brane. The D7-brane will be embedded

with world-volume coordinates identified with x0,1,2,3 and w1,2,3,4. Transverse fluctuations will
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be parameterized by w5 and w6 (or L and φ in polar coordinates) - it is convenient to define

a coordinate ρ such that
∑4

i=1 dw
2
i = dρ2 + ρ2dΩ2

3 and the radial coordinate is given by w2 =

ρ2 + w5
2 + w6

2 = ρ2 + L2.

The Dirac-Born-Infeld action of the D7-brane probe in the Constable-Myers background

takes the form

SD7 = −T7R
4

∫
d8ξ ε3 e

φG(ρ, L)
(

1 + gabgLL∂aL∂bL+ gabgφφ∂aφ∂bφ+ 2πα′F ab
)1/2

, (4)

where

G = ρ3 ((ρ2 + L2)2 + b4)((ρ2 + L2)2 − b4)

(ρ2 + L2)4
.

Here we have rescaled w and b in units of R, so that factors of R only occur as an overall factor

on the embedding Lagrangian.

From these equations we derive the corresponding equation of motion. We look for classical

solutions of the form L(ρ), φ = 0. Numerically we shoot from a regular boundary condition

in the IR (L′ = 0) and find solutions with the asymptotic behaviour L ∼ m + c/ρ2. These

coefficients are then identified with the quark mass and condensate 〈ψ̄ψ〉 respectively (formally

c is only the unique contribution to the condensate in zero mass limit [23]), in agreement with

the usual AdS/CFT dictionary obtained from the asymptotic boundary behaviour.

Mesonic states are identified by looking at linearized fluctuations about the background

embedding. Fluctuations in φ correspond to the pion and fluctuations in the world volume

gauge field the ρ meson. In each case one seeks solutions of the form f(ρ)eik.x, k2 = −M2 with

the mass states being picked out by the condition that f(ρ) is regular.

Fig.1 shows the first example of the plots we will be producing in this paper - it shows

the ρ meson mass as a function of the pion mass squared. Note that in any given theory we

must fix the strong coupling scale Λ. Here and throughout this paper we choose to do this by

setting the ρ mass at Mπ = 0 (ie when the quark mass is zero) the same in all theories, and we

express all physical quantities in units of that fixed mass. The figure shows the results from the

Constable-Myers model. We also display quenched lattice results for the plot in theories with

gauge group SU(3), SU(5) and SU(7) - data taken from [15]. Note to place the lattice data on

the plot we have taken the two data points at lowest Mπ and linearly extrapolated to find Mρ

at Mπ = 0. This is naive and we will argue later that this maybe puts the points a little high in

the plane. Conservatively we will use the spread of the lattice data across the different SU(Nc)

theories as reflective of the systematic errors in the lattice simulations. The remarkable thing

is the lack of dependence on Nc in the lattice data and the match of the holographic model to

the lattice data. The aim of this section is to identify why there is such a close match given the

large deviations in the holographic dual that includes different adjoint particle content and UV

behaviour.
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Following [9] we will argue that the key element for the quark physics in the top-down model

is the running of the anomalous dimension γ with the renormalization scale. We will show that

this running is very similar to that in QCD, especially in the regime where γ ' 1 and where

the BF bound-violating instability sets in that causes chiral symmetry breaking. To study this

instability we will look at when the chirally symmetric L = 0 embedding becomes unstable. We

simply take our DBI action which up to a multiplicative constant we may write as

SD7 =

∫
dρλ(ρ, L)ρ3

√
1 + (∂ρL)2, (5)

where λ(ρ, L) = ρ−3eφG(ρ, L) and r =
√
ρ2 + L2, and expand around L = L′ = 0 to quadratic

order
SD7 =

∫
dρ ρ3

(
λ|L=0 + ∂λ

∂L2

∣∣
L=0

L2
) (

1 + 1
2

(∂ρL)2) ,
=

∫
dρ ρ3

(
1
2
λ|L=0 (∂ρL)2 + ∂L2λ|L=0 L

2
)
.

(6)

In order to ensure that the kinetic term in our Lagrangian is canonical, we perform a coor-

dinate transformation on ρ,

λ(ρ)ρ3 ∂

∂ρ
≡ ρ̃3 ∂

∂ρ̃
, (7)

that is,

ρ̃ =

√
1

2

1∫∞
ρ

1
λρ3
dρ
. (8)

We may rewrite our action in terms of the ρ̃-variable. Along with writing L(ρ) = ρ̃ φ(ρ̃), we

obtain

SD7 =

∫
dρ̃

1

2
ρ̃3

(
ρ̃2(∂ρ̃φ)2 + 3φ2 + λ

∂λ

∂ρ

∣∣∣∣
L=0

ρ5

ρ̃4
φ2

)
. (9)

The first two terms in the action describe a canonical m2 = −3 scalar in AdS5, whereas the

remaining term gives ρ-dependent mass to the scalar field in AdS5. We find an overall mass

squared

m2 = −3− δm2, δm2 ≡ − λ∂λ
∂ρ

∣∣∣∣
L=0

ρ5

ρ̃4
. (10)

Using the standard scalar mass/operator dimension relation of the AdS/CFT dictionary, m2 =

∆(∆− 4), but now assuming the mass dimension of the qq̄-operator to be 3− γ, where γ is the

running anomalous dimension of the gauge theory quark mass, we obtain the relation

m2 = −3− 2γ + γ2. (11)

Thus we associate δm2 = −2γ+γ2, and are thus able to extract a running anomalous dimension

in the Constable-Myers background.

The key point to note is that the only way that the background geometry and running

dilaton enters into the equation for the embedding is through the running of γ. The background
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D7 embedding is then the key ingredient for the computation of linearized fluctuations that

determine the mesonic masses. Effectively the origin of the running of γ is lost - so questions

about whether the background has too many superpartners of the gauge fields, or whether the

running coupling is correctly that of QCD in the UV, and so forth become subsumed into simply

asking whether γ is close to that in QCD.

In Fig. 2, we plot the RG scale dependence of the anomalous dimension γ extracted from

the Constable-Myers model and the one loop running of large Nc quenched QCD theory. We

have matched the strong-coupling scale of the two theories by assuming that they each take

the value γ = 1 at the same scale. Setting the AdS radius R to one, we identify the RG scale

and the radial coordinate by µ = ln ρ (ie we are choosing to set this relation by matching to

the physical RG scale). This is the scale where chiral symmetry breaking is triggered, in the

holographic model by the BF bound violation. From the figure it is immediately obvious that

the scale dependence of the anomalous dimension γ is similar in both cases, and the gradient

of γ is almost the same near γ = 1. Deviations in the UV are present but are mild. They occur

in the regime where the BF bound is not violated in the holographic model.

This close matching of the scale dependence of the anomalous dimension is, we believe,

the reason for the success of the holographic model. It is worth pointing out that the reason

that the holographic description and QCD match in the UV is somewhat artificial. The UV of

the Constable-Myers theory is infinitely strongly coupled N = 4 super Yang-Mills theory, yet

the theory’s large amount of supersymmetry preserves the perturbative dimension of the quark

operator, i.e. γ = 0. In QCD, the UV result γ = 0 simply follows from weak coupling. This

coincidence has long been behind the successes of AdS/QCD models.

Given that the key ingredient to describe the mesonic spectrum is simply the running of γ, it

seems an obvious step to do away with the background construction of a geometry that mimics

QCD, since there is no top-down holographic construction of real QCD, and to simply use the

assumed form of γ as an imput in the DBI action. This is essentially the starting point for the

bottom-up model that we call ‘Dynamic AdS/QCD’ [8], which we will now move to studying.
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Figure 2: A plot of the anomalous dimension γ in the top-down Constable-Myers model. It is
compared to QCD by using the one-loop perturbative result for the running coupling in large Nc

Yang-Mills theory (µdα/dµ = −11Ncα
2/6π) as input for calculating the anomalous dimension

γ (γ = 3Ncα(µ)/4π). We set the scale at which γ = 1 to be equal in each case.

3 Dynamic AdS/QCD

Dynamic AdS/QCD was introduced in detail in [8]. The model maps onto the action of a probe

D7 brane in an AdS geometry expanded to quadratic order [9]. The anomalous dimension of

the quark mass/condensate is encoded through a mass term that depends on the radial AdS

coordinate ρ.

The five-dimensional action of our effective holographic theory is

S =

∫
d4x dρTr ρ3

[
1

ρ2 + |X|2
|DX|2 +

∆m2

ρ2
|X|2 +

1

2
F 2
V

]
, (12)

The field X (the equivalent of the embedding coordinates L, φ of the D7 brane in the top

down model) describes the quark condensate degree of freedom. Fluctuations in |X| around its

vacuum configurations describe the scalar meson. The π fields are the phase of X,

X = L(ρ) e2iπaTa

. (13)

FV are vector fields that will describe the vector (V ) mesons.

We work with the five dimensional metric

ds2 =
dρ2

(ρ2 + |X|2)
+ (ρ2 + |X|2)dx2, (14)

which will be used for contractions of the space-time indices. ρ is the holographic coordinate

and |X| = L enters into the effective radial coordinate in the space, i.e. there is an effective
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r2 = ρ2 + |X|2. This is how the quark condensate generates a soft IR wall for the linearized

fluctuations that describe the mesonic states: when L is non-zero the theory will exclude the

deep IR at r = 0.

The normalizations of X and FV are determined by matching to the gauge theory in the UV.

External currents are associated with the non-normalizable modes of the fields in AdS. In the

UV we expect |X| ∼ 0 and we can solve the equations of motion for the scalar, L = KS(ρ)eiq.x

and vector V µ = εµKV (ρ)eiq.x field. Each satisfies the same equation

∂ρ[ρ
2∂ρK]− q2

ρ
K = 0 . (15)

The UV solution is

Ki = Ni

(
1 +

q2

4ρ2
ln(q2/ρ2)

)
, (i = S, V ), (16)

where Ni are normalization constants that are not fixed by the linearized equation of motion.

Substituting these solutions back into the action gives the scalar correlator ΠSS and the vector

correlator ΠV V . Performing the usual matching to the UV gauge theory requires us to set

N2
S = N2

V =
NcNf

24π2
. (17)

The vacuum structure of the theory can be determined by setting all fields except |X| = L

to zero. We assume that L will have no dependence on the x coordinates. The action for L is

given by

S =

∫
d4x dρ ρ3

[
(∂ρL)2 + ∆m2L

2

ρ2

]
. (18)

If ∆m2 = 0 then the scalar, L, describes a dimension 3 operator and dimension 1 source as is

required for it to represent q̄q and the quark mass m. That is, in the UV the solution for the

L equation of motion is L = m+ q̄q/ρ2. A non-zero ∆m2 allows us to introduce an anomalous

dimension for this operator. If the mass squared of the scalar violates the BF bound of -4

(∆m2 = −1, γ = 1) then the scalar field L becomes unstable and the theory enters a chiral

symmetry breaking phase.

We will fix the form of ∆m2 using the two loop running of the gauge coupling in QCD with

Nf flavours transforming under a representation R. This takes the form

µ
dα

dµ
= −b0α

2 − b1α
3, (19)

where

b0 =
1

6π

(
11C2(G)− 4NfC2(R)

dim(R)

dim(G)

)
, (20)

and

b1 =
1

8π2

(
34

3
[C2(G)]2 −

[
20

3
C2(G)C2(R) + 4 [C2(R)]2

]
Nf

dim(R)

dim(G)

)
. (21)
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Above, we denote the adjoint representation as G and its respective Casimir by C2(G) = Nc.

Table 1 shows all the distinguishing quantities associated to each of the representations we

consider: the dimension of the representation, C2(R), and the minimum number of flavours

required for loss of asymptotic freedom, Nmax
f .

R dim(R) C2(R) Nmax
f

Fundamental Nc
N2

c−1
2Nc

11
2
Nc

Adjoint (G) N2
c − 1 Nc 23

4

2IS Nc(Nc+1)
2

(Nc−1)(Nc+2)
Nc

11
2

Nc

Nc+2

2IA Nc(Nc−1)
2

(Nc+1)(Nc−2)
Nc

11
2

Nc

Nc−2

Table 1: Distinguishing quantities of representations of SU(Nc) gauge theories with asymptotic
freedom valid for any Nc ≥ 2.

The one loop result for the anomalous dimension of the quark mass is

γ1(µ;R) =
3C2(R)

2π
α(µ;R). (22)

We will identify the RG scale µ with the AdS radial parameter r =
√
ρ2 + L2 in our model.

Note it is important that L enters here. If it did not and the scalar mass was only a function

of ρ then, were the mass to violate the BF bound at some ρ, it would leave the theory unstable

however large L grew. Including L means that the creation of a non-zero but finite L can remove

the BF bound violation leading to a stable solution. This is analogous to what happens in the

top-down model.

Working perturbatively from the AdS result m2 = ∆(∆− 4) we have

∆m2 = −2γ1(µ;R) = −3C2(R)

π
α(µ;R). (23)

This will then fix the r dependence of the scalar mass through ∆m2 as a function of Nc and

Nf for each R. Note that if one were to attempt such a matching beyond two loop order

the perturbative result would become gauge dependent. We hope that the lower order gauge

independent results provide sensible insight into the running in the theory.

It is important to stress that using the perturbative result outside the perturbative regime

is in no sense rigorous, but simply a phenomenological parametrization of the running as a

function of µ,Nc, Nf that shows fixed-point behaviour. We expect broad trends in the behaviour

of the theories with varying Nf , Nc to be sensibly described with this ansatz. Similarly, the
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relation (23) between ∆m2 and γ1 is a guess outside of the perturbative regime. Note that the

holographic fixed point value for the anomalous dimension is given by solving ∆(∆− 4) = ∆m2

and the resultant γ will not be the same as the fixed point in γ1 away from the perturbative

regime.

The vacuum structure for a given choice of representation, Nf and Nc must be identified

first. The Euler-Lagrange equation for the vacuum embedding Lv is given at fixed ∆m2 by the

solution of
∂

∂ρ

(
ρ3∂ρLv

)
− ρ∆m2Lv = 0. (24)

Note that if ∆m2 depends on L at the level of the Lagrangian then there would be an additional

term −ρL2
v∂∆m2/∂Lv. We neglect this term and instead impose the running of ∆m2 at the level

of the equation of motion. The reason is that the extra term introduces an effective contribution

to the running of γ that depends on the gradient of the running coupling. Such a term is not

present in perturbation theory in our QCD-like theories - we wish to keep the running of γ in

the holographic theory as close to the perturbative guidance from the gauge theory as possible.

In order to find Lv(ρ) we solve the equation of motion numerically with shooting techniques

with an input IR initial condition. A sensible first guess for the IR boundary condition is

Lv(ρ = L0) = L0, L′v(ρ = L0) = 0. (25)

This IR condition is similar to that from top down models[2] but imposed at the RG scale where

the flow becomes “on-mass-shell”. Here we are treating Lv(ρ) as a constituent quark mass at

each scale ρ. Were we to continue the flow below this quark mass scale we would need to address

the complicated issue of the decoupling of the quarks from the running function γ.

3.1 Meson Spectra

We now turn to computing the physical parameters, the masses of the (ρ, σ, π)-mesons and the

scalar glueball, for each viable representation. These parameters are true predictions of the

model which, just as in the gauge theories, depend only on the choice of the quark mass, Nc, Nf

and the scale Λ.

3.2 Linearized Fluctuations

The isoscalar q̄q (σ) mesons are described by linearized fluctuations of L about its vacuum

configuration, Lv. We look for space-time dependent excitations, ie |X| = Lv + δ(ρ)eiq.x, q2 =

−M2
σ . The equation of motion for δ is, linearizing (24),

∂ρ(ρ
3δ′)−∆m2ρδ − ρLvδ

∂∆m2

∂L

∣∣∣∣
Lv

+M2
σR

4 ρ3

(L2
v + ρ2)2

δ = 0 . (26)
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We seek solutions with, in the UV, asymptotics of δ = ρ−2 and with ∂ρδ|L0 = 0 in the IR, giving

a discrete meson spectrum.

The isovector (ρ) meson spectrum is determined from the normalizable solution of the equa-

tion of motion for the spatial pieces of the vector gauge field Vµ⊥ = εµV (ρ)eiq.x with q2 = −M2.

The appropriate equation is

∂ρ
[
ρ3∂ρV

]
+

ρ3M2

(L2
v + ρ2)2

V = 0 . (27)

We again impose ∂ρV |L0 = 0 in the IR and require in the UV that V ∼ c/ρ2.

The pion mass spectrum is identified by assuming a space-time dependent phase πa(x) of the

AdS-scalar X describing the q̄q degree of freedom, i.e X = L(ρ) exp(2iπa(x)T a). The equation

of motion of the pion field is then,

∂ρ
(
ρ3L2

v∂ρπ
a
)

+M2
π

ρ3L2
v

(ρ2 + L2
v)

2
πa = 0. (28)

Again, we impose at the IR boundary that ∂ρπ
a|L0 = 0.

3.3 Results

We can now move to displaying the outcomes of the Dynamic AdS/QCD theory. We will fix

the strong coupling scale Λ by fixing the ρ mass at Mπ = 0 for each choice of representation,

Nf and Nc and express all quantities in units of that scale. For our plots then the only input

parameters are the quark mass, Nf and Nc. We will explore a range of gauge theories with

different quark matter.

3.3.1 Quenched Fundamental Representation

To test the model, we first compute Mρ and Mπ in the model with quenched fundamental quarks.

This means that we do not include the quark contribution in the running of the gauge coupling.

We compute the meson masses as functions of Nc to compare with the previously discussed

quenched lattice data of Fig 1. We display the data also in Fig 1. We note that all choices of

SU(Nc) give essentially the same curve in this plot. This curve lies below, but within 5% of

the prediction of the Constable-Myers top-down model. The result for the Dynamic AdS/QCD

model in this plot displays some curvature over the range of the lattice data, suggesting that the

linear extapolation used to place the lattice data on the plot maybe incorrect. This suggests the

results for the lattice data in our linear fit are slightly too large, by as much as 5%. Indeed in

[15] evidence is presented for a non-linear fit already in the lattice data. Given the expectation

of some systematic error on the lattice data (see [15]) the match between all these models is

13



Figure 3: A Log-Log plot of Mρ versus M2
π - the plot displays the quenched lattice data from

[15], the top-down Constable-Myers model of section 2 and the quenched results for varying Nc

in Dynamic AdS/QCD from section 3. The solid line corresponds to Mρ = Mπ.

remarkable and lends considerable support to further predictions of the Dynamic AdS/QCD

model.

To emphasise how well the results match, we also plot the same Dynamic AdS/QCD and

lattice data on a Log-Log plot in Fig 3. The figure also displays the line Mρ = Mπ, which would

be the one appropriate to a very weakly coupled theory where both mesons masses are just

twice the quark mass. This line is expected to be approached at large Mπ, i.e. in the limit of

large quark mass. Clearly, the very different computations for these theories agree rather well.

Whilst both the holographic model’s curves are compatible with the lattice data at the level of

the errors due to the coarse lattice spacing taken in [15], the top-down Constable Myers model

does fit the data mildly better (the Mρ points are raised by upto 2% or so), including in the

large Mπ limit. If this is indeed the case, then it is likely due to γ in that model falling to zero

more quickly than in QCD as function of the RG scale - the holographic description of the UV

is probably closer to perturbative QCD with γ = 0.

3.3.2 Fundamental Representation

The quenched results display very little dependence on Nc. The reason is that the running of γ

at the point γ = 1 is very fast in all these cases so the dynamics comes out very similar. To see

some Nc dependence we should unquench the theory and include a sufficent number of quarks

to affect the running. For example in Fig 4 we show the Nc variation in the Mρ - M2
π plane of

a theory with Nf = 8. The dependence on Nc is again not huge but for low Nc there is a clear

14



distinction from larger Nc theories that are effectively more quenched. This further emphasises

the success of the holographic model in lying so close to the quenched lattice data - it is not

that the curves seen in the previous subsection are the only outcome!

We can now turn to study the question of whether there are choices of Nf and Nc that

provide spectra very different from QCD-like theories. As is well known, the theories that are

most unlike QCD are those on the edge of the conformal window. For example, for an SU(3)

gauge theory at Nf > 12 the running of γ flows to an IR fixed point below γ = 1. In the

holographic model the BF bound is not violated and chiral symmetry breaking does not occur.

For theories that do break chiral symmetry at slightly lower values of Nf the theory runs close

to an IR fixed point that just violates the BF bound. Crucially at the point where γ = 1 the

gradient of the running of γ is much smaller than in QCD-like theories. To demonstrate the

impact of this on the spectrum we plot the Nf dependence of the SU(3) theory in the Mρ - M2
π

plane in Fig. 5. The ρ mass is substantially enhanced relative to the π mass at larger Nf .

Theories with slow running at the scale where chiral symmetry breaking is triggered are

called walking gauge theories [19]. For these theories the chiral condensate has dimension ap-

proximately 2 at the IR scale of conformal symmetry breaking. The dimension 3 UV condensate

is roughly the product of that dimension 2 IR condensate and the scale of the 1-loop β function

of the theory that determines where the anomalous dimension changes from γ = 0 to γ = 1.

This scale will be much larger than the IR scale and the UV condensate enhanced. The usual

expectation is that the ρ mass will be proportional to 〈q̄q〉1/3 whilst the π mass will scale as

m
1/2
q 〈q̄q〉1/6. An enhancement of the condensate would therefore raise Mρ at any fixed Mπ as is

seen in Fig. 5. Generically for different Nc we observe the same behaviour as Nf/Nc → 4.

This is a good point to compare our Dynamic AdS/QCD theory to unquenched lattice data

[16, 17, 18]. We have seen that the effect of including more quarks in our model is that the value

of Mρ rises at fixed Mπ. This suggests that the effect of quark loops is to raise Mρ. We display

lattice data in the top plot of Fig. 5 - we show both the quenched results previously discussed

for SU(3) gauge theory, but now also unquenched data for the same theory with Nf = 3, taken

from [16, 17, 18]. The three sets of lattice data show some spread in the low Mπ region, but we

indeed observe a shift upwards in Mρ by 20% or so. In fact, the fit to the Dynamic AdS/QCD

model for Nf = 3 is a little poorer than to the quenched lattice data - the lattice points are

more similar to the Nf = 5 version of Dynamic AdS/QCD (although there is clearly some

uncertainty in the lattice results as shown by the spread). This is most plausibly explained as

a failure of the very naive perturbative based running ansatz we have used as an input into

the model. The key measure is the gradient of γ with RG scale at the scale where γ = 1. For

Nf = 3 γ′ = −4.25, whilst at Nf = 5 γ′ = −3.70. This implies that the shift in spectrum is

caused by a 15% shift in this gradient. Clearly the perturbative ansatz cannot be trusted at this

15



Figure 4: Mρ versus M2
π in SU(Nc) theory with NF = 8 fundamental quarks - the lower plot

shows the same in Log Log format. The solid line corresponds to Mρ = Mπ.
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Figure 5: SU(3) gauge theory with Nf fundamental quarks showing the approach to the con-
formal window at Nf = 12. The lower plot is a Log Log version of the top plot. The solid line
corresponds to Mρ = Mπ. The plots also show lattice data for the quenched theory [15] and
unquenched Nf = 3 theory [16, 17, 18].
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level of accuracy. It is not surprising that the precise features of the spectrum are dependent

on the choice of assumed running for γ. It is encouraging that the holographic model correctly

gets gross features correct, such as the rise in Mρ in theories with more quark loops. This gives

us confidence that the holographic model can be useful in understanding broad trends in the

spectrum as quark content of the theory is changed.

An additional expectation in a walking theory is that the σ mode q̄q bound state should

become light as one approaches the edge of the conformal window from below. The reason is

that since the quark condensate is enhanced the effective potential for the condensate becomes

flatter as discussed in [20]. To observe this let us now turn to computing the σ meson mass. We

will again pick Nc = 3 as an example and show the Nf dependence of Mσ against M2
π in Fig. 6.

The Nf = 7 curve is perhaps what one would have predicted for QCD - at large quark mass the

σ and π masses become degenerate. At low quark mass as the π mass tends to zero the σ mass

saturates at a value below the ρ mass. One might then identify this state with the f0(500) state

observed in experiment. However, for Nf = 3 the holographic model predicts that the lightest

σ is heavier than the ρ and it looks more sensible to match it to the f0(980) which it matches

at the 10% level. An explanation of the origin of the lighter f0 would then be needed. In fact

though the literature has considerable speculation about this state which might be a molecule

or some other exotic state (see for example [24]). We can not resolve this issue here. However,

the main use of our model is to look at significant trends in the behaviour of the spectra as we

adjust the running of γ. Here our plot very strongly supports the speculation that this σ mode

becomes light as one approaches the walking regime and the edge of the conformal window at

Nf = 12.
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Figure 6: Mσ versus M2
π in SU(3) gauge theory with varying Nf fundamental quarks. The lower

plot is a Log Log version of the top plot. The solid line corresponds to Mσ = Mπ.
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3.3.3 Other Representations

As we have stressed above Dynamic AdS/QCD can accommodate a description of any arbitrary

quark representation. The flavour representation enters through the running of the anomalous

dimension γ (for which we continue to use the two loop perturbative result). In this section we

provide some plots showing some exploration of the larger space of theories.

As a first example in Fig. 7 we show results for Nc = 3. The top plot shows the results

in the Mρ vs M2
π plane for the theory with a single quark in the fundamental representation

(here the same as the 2 index anti-symmetric representation), the adjoint representation, and

the 2 index symmetric representation. Increasing the size of the representation makes a bigger

impact on the running of the coupling and moves the curve away from QCD-like towards the

walking regime. In the lower two plots we show the Nf dependence for the adjoint and 2 index

symmetric representation (here we allow Nf = 1.5 since by Nf = 2 chiral symmetry breaking is

lost). Adding flavours makes the theory more walking in behaviour.

We can also explore the Nc dependence of these theories at fixed Nf . For example in Fig. 8

we vary Nc with two 2 index symmetric representation quarks. Increasing Nc moves the theory

closer to the quenched limit and a more QCD-like spectrum. Within this space of theories we

are not finding any additional structure beyond the dependence on the rate of running at the

point γ = 1.

One final interesting case is that of 2 index anti-symmetric representation quarks. As one

moves to higher Nc at fixed Nf the two loop IR fixed point value of the coupling actually

decreases. For these theories increasing Nc moves one towards the walking regime. We show

this in Fig. 9.

The walking regimes of these theories also display a light σ meson. We show this trend for

a variety of sequences of theories moving towards the walking regime in Fig. 10. The trends

in the spectrum as one approaches the walking regime across a wide range of theories are very

similar.
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Figure 7: A Log-Log plot in the Mρ-M
2
π plane for SU(3) gauge theory. The top plot shows the

results in models with Nf = 1 but with the fermions in the fundamental, adjoint and 2-index
symmetric representations. The middle figure shows the Nf dependence in the case with adjoint
fermions and the bottom plot the same for the 2-index symmetric representation. The solid line
corresponds to Mσ = Mπ.
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Figure 8: A Log-Log plot in the Mρ-M
2
π plane for SU(Nc) gauge theory with Nf = 2 2-index

symmetric representation quarks. The solid line corresponds to Mσ = Mπ.

Figure 9: A Log-Log plot in the Mρ-M
2
π plane for SU(Nc) gauge theory with Nf = 3 2-index

anti-symmetric representation quarks. The solid line corresponds to Mσ = Mπ.
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Figure 10: Log-Log plots in the Mσ-M2
π plane. The top plot shows the results in SU(3) gauge

theory with adjoint quarks. The middle plot is for SU(Nc) gauge theory with Nf = 2 2-index
symmetric representation quarks. The bottom plot is for SU(Nc) gauge theory with Nf = 3
2-index anti-symmetric representation quarks. The solid line corresponds to Mσ = Mπ.
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3.4 The Scalar Glueball

Another state that one might be interested in studying as part of the lightest spectra of these

theories is the lightest glueball state (see [21] for some discussions in preliminary lattice simu-

lations). AdS/QCD is not suited to study this state since it is fundamentally a description of

the quark sector. The glueball could be included as a separate scalar in AdS but one would

then need to correctly encode its dynamics for the gauge theory’s vacuum TrF 2 condensate and

make a guess as to how it couples in the scalar potential to the quark condensate field X. There

are a lot of unknown parameters that describe the mixing of the σ and glueball state. Rather

than attempt this here we will instead make a back of the envelope computation for the glueball

state.

In pure Yang Mills the glueball is expected to be between 5 and 10 times the one loop strong

coupling scale. In the Dynamic AdS/QCD model we have asumed the two loop running for the

gauge coupling and γ and then computed the IR quark mass gap, the value of L at the on-mass

shell condition. A simple thing to do then is to decouple the quarks at that scale Lon−mass and

use the one loop pure Yang Mills coupling into the IR. We compute the position of the IR pole

and multiply by 8 to estimate the glueball mass. This will at least give a ball-park behaviour

although mixing is explicitly not addressed.

In Fig. 11 we display the spectra of the Nc = 3 theory for Nf = 3 (QCD-like) and Nf = 11

(close to walking) including the glueball. Both theories display a Goldstone pion. As we have

seen before the σ becomes light and interchanges ordering with the ρ as one approached the

walking regime. In both cases the glueball is the lightest state at large quark mass - here the

quarks decouple at their mass scale, where the glue is still weakly coupled, and the pure glue

theory then runs logarithmically to strong coupling at a much lower scale to set the glueball

mass. For very small quark mass the glueball becomes the heaviest state in both cases. The

gauge coupling is sufficiently strong above the quark mass scale that the BF bound is violated

and the quarks acquire a dynamical mass. The pure glue running between that scale and the IR

pole is very fast since we are already at strong coupling when the quarks decouple - the glueball

mass is set by essentially the quark decoupling scale. The interesting difference between the two

cases with different Nf is in the intermediate regime. The crossover between these two cases is

fast for the Nf = 3 theory but much slower for the walking Nf = 11 theory. The reason is that

for a range of intermediate quark mass scales the walking theory has run to a strong regime but

which is below the critical coupling to trigger chiral symmetry breaking. Since it is walking,

this regime, in which the quark decoupling and IR pole values are reasonably close, is enlarged

in the walking theory - the cross over occurs over a wider range of quark mass. This is a signal

in the spectra of walking behaviour. Such a signal is important because it does not depend on

gauge dependent objects such as the coupling itself.
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Figure 11: The spectra of the Nc = 3 gauge theory with fundamental quarks - the top figure
shows Nf = 3, the bottom Nf = 11.
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4 Summary

In this paper we have studied the lowest lying meson spectra (ρ, π, σ and the lightest glueball)

in asymptotically free gauge theory using some simple holographic models. In section 2 we

studied an old top-down model [4] that had been previously shown [3] to reproduce quenched

lattice results in the Mρ −Mπ plane (see Fig 1). The model includes strongly coupled gauge

fields but returns to N = 4 Super Yang Mills in the UV. We argued, following [9], that the

mesonic sector of the holographic model is described by a DBI action and that the only input

of the background geometry is the running anomalous dimension of the quark bilinear operator,

γ. We have shown that that function is a good approximation to quenched QCD in Fig 2 and

this explains the success of the model in the mesonic sector.

Motivated by this observation (and the inability to find a true gravity dual of the theories

under analysis) we turned to the phenomenological Dynamic AdS/QCD model [8]. The model

is basically the DBI action of a probe brane with the gauge dynamics input through a running

scalar mass dual to γ. Once the running of γ is input the spectrum is then predicted. Of course

we do not know the non-perturbative running of γ, but the perturbative two loop running for the

gauge coupling α combined with the one loop expression for γ provide a well explored proposal

- these theories lose asymptotic freedom for large quark numbers and have a conformal window

with a fixed point for γ at lower Nf , which rises as Nf shrinks. In the holographic setting the

condition γ = 1 corresponds to a violation of the BF bound in AdS and the quark condensate

switches on at lower values of Nf . The model then allows us to study any asymptotically free

gauge theory with quarks in arbitrary representation and for any Nc and Nf - these quantities

simply enter through the running of γ.

We first explored theories close to QCD - theories with a small number of quark flavours that

do not impact on the running of the gauge coupling too much. These theories are characterized

by a scale where γ = 1 and chiral symmetry breaking is triggered and a fast running of γ at

that scale. They all predict a very similar mesonic spectrum (see Fig 1 for example) that match

quenched lattice predictions [15] and the top-down model previously studied, at the level of

errors in the lattice computations. A variant spectrum can be seen if Nf is increased at fixed

Nc, so that the theory approaches the edge of the conformal window and the running of γ is slow

when γ = 1 (see for example the behaviour in SU(3) gauge theory in Fig 5). The deviations are

those expected given that the UV quark condensate is enhanced in these walking theories. Thus

the holographic duals of walking models lead to significant deviations in the ‘Edinburgh’ meson

plots, depending on the slope of the anomalous dimension in the IR near γ = 1. However, in

the QCD-like theories discussed above, these deviations are much smaller. This is due to the

fact that the QCD-like models are close to the quenched limit, in which the derivative of γ has

less Nf dependence at the chiral symmetry breaking point. The result that the deviations are
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much smaller in the QCD-like models as compared to the walking models adds further weight

to the success of the QCD-like models in matching lattice data.

The deviations in the spectrum due to walking is the only gross feature we have found

across a range of gauge theories studied. For those theories we see the ρ mass enhanced, the

π mass enhanced to a lesser degree at a fixed bare quark mass and the σ mass falls as it acts

as a Goldstone of the shift symmetry in the flattening effective potential for q̄q. We show this

behaviour in Fig 6 for SU(3) gauge theory. We explored theories with quarks in the adjoint and

two index symmetric and anti-symmetric representations also and found similar behaviours.

Finally we estimated the lightest glueball mass in the theories, although our model does not

include mixing effects with the mesonic states. At large bare quark mass the quarks decouple at

scales exponentially separated from the scale where the glue becomes strongly coupled and the

glueball is light relative to the mesons. At zero quark mass, guided by QCD, the glueballs are

expected to be heavier than the lightest mesons. We sketch the crossover behaviour with the

quark mass for SU(3) gauge theory with Nf = 3, 11 in Fig 11 - the effect of walking dynamics

in the physical spectra is to enlarge the energy range over which this cross-over occurs. This is

a potententially useful statement of a signal for walking dynamics that is not couched in terms

of a gauge dependent object such as the running coupling.
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