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ABSTRACT  

 This study examines the long term interactions between the well-known Roman city 

of Ostia and a river meander. Located at the mouth of the Tiber River, Ostia was a major 

harbor city that connected Rome to the Mediterranean Sea. Based on aerial photography 
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and boreholes analysis, the paleodynamics of the Fiume Morto’s paleomeander are 

understood to be linked to the urban evolution of the city of Ostia. Four periods of evolution 

have been identified as a result of this interdisciplinary work: (1) the foundation of Ostia’s 

urban center, in the 4th – 3rd century BC, occurred when the meander already existed; 

(2) between the 4th century BC and the 3rd century AD, human/environmental interactions 

contributed to the compound growing of the meander which possibly eroded an important 

Roman road linking Ostia to Rome; (3) from the Imperial period until the meander was cut 

off in AD 1557-1562, the constricted meander channel at the apex led to the stability of the 

downstream river channel; (4) the cut off of the paleomeander was completed in 1562, 

leading to the filling of the paleochannel. These successive phases of channel evolution mark 

changing fluvial risks from the Roman period to today.  

 

INTRODUCTION 

 

 Fluvial risks considered in a long term perspective have been the focus of several 

studies with the development of geoarchaeology (Brown, 1997; Arnaud-Fassetta, 2008), and 

the results of some studies have been used to evaluate present risks in the floodplains 

(Bravard et al., 2008). It is important to recognize that the current concept of risk takes on 

different meaning depending on the cultures and the periods considered (Kasperson et al., 

2005; Arnaud-Fassetta et al., 2009; Bradford et al., 2012). As such, since the 1980’s, 

interdisciplinary studies involving archaeologists, geoarchaeologists and historians have 

been engaged to examine possible alluvial risks during the Roman period to cities (Bravard, 

Burnouf, & Vérot, 1989; Bravard et al., 1990; Allinne, 2007; Leveau, 2008; Arnaud-Fassetta et 

al., 2010) and deltaic areas (Arnaud-Fassetta & Landuré, 2003). During the Roman period, 



the term “risk” did not exist, but the experience of fluvial events and their disruptions in 

Rome are well recorded in ancient texts (Le Gall, 1953). At the beginning of the 1st century 

AD, Romans even considered several plans in the watershed of the Tiber River to prevent or 

reduce the floods in Rome (Leveau, 2008).  

 

 In this context, the study of the relationship between the Roman site of Ostia, located 

20 km downstream of Rome, and the Tiber River is significant to examine the risk of fluvial 

mobility and the modalities of its inconvenience regarding Ostia over a long period of time. 

Founded at the mouth of the Tiber River, Ostia was a crucial city in the Roman world and 

existed over at least one thousand years (6th/3rd century BC to 4th-5th century AD), with 

revivals in the Borgo di Ostia from late antiquity to the present (Figure 1). Today, Ostia is one 

of the most extensively excavated Roman cities. Historical and archaeological scientific 

literature attests that Ostia was a harbor city connecting Rome to the Mediterranean Sea 

and that it controlled access to the Tiber River. Recently, the location of a harbor basin has 

been confirmed on the left bank of the Tiber at Ostia (Heinzelmann & Martin, 2002; Goiran 

et al., 2014; Hadler et al., 2015), but it is small in size when compared to the basins at Portus 

(Keay et al., 2005; Goiran et al., 2010). Considering the recent discovery of warehouses 

facing both sides of the river mouth (Keay, Parcak, & Strutt, 2014), it is possible that the 

entire Tiber channel flowing through Ostia was a linear harbor. Consequently, we can 

assume that the river banks and channel mobility would have been considered carefully by 

the Romans.  

 

 This paper looks at the development of the area of Ostia since the Roman period in 

correlation with the evolution of the paleomeander of Ostia. Specifically, this study will (1) 



analyze the morphology of the paleomeander in detail using aerial photography, (2) provide 

the complete sedimentary sequence of the convexity and the cut-off channel, (3) determine 

the chronology of the evolution of the paleomenader and (4) put this new data into 

archaeological context. Finally, the changing relationship of river and city through time will 

provide a solid framework to discuss the evolution of the concept of fluvial risk in Central 

Italy. 

 

GEOLOGICAL AND ARCHAEOLOGICAL SETTING 

 

 The Tiber river drains a watershed of 17,375 km2 and follows a 405 km course to the 

Tyrrhenian Sea. From its confluence with the Paglia River to the sea (206 km), the Tiber River 

shows a meandering morphology. This study focuses on the deltaic plain, ca. 25 km 

downstream of Rome. The annual mean water discharge at Rome is 240 m3/s, with the 

highest water discharge measured and calculated around 3100 m3/s during a flood in 1900 

(Calenda, Mancini, & Volpi, 2009). More ancient data concerning the floods is recorded 

through water levels (Martino & Belati, 1980) or ancient texts from the Roman period (Le 

Gall, 1953; Bersani & Bencivenga, 2001). Before 1950, the Tiber River was still crossed by a 

few dams, and the suspended matter represented 7.18 x 106 t/yr. Now, the suspended 

matter is only about 1.41 x 106 t/yr (Iadanza & Napolitano, 2006). The bedload discharge has 

been measured only once in 1990, with respect to only one medium flood event deposit 

(Bersani & Amici, 1993). 

 

 The Tiber Delta formation and evolution has been studied using sedimentary data 

since the 1980s (Bellotti et al., 1989, 1995, 2007; Milli et al., 2013). The delta developed 



from 6000-4000 cal. yr BP onward (Amorosi & Milli, 2001; C. Giraudi, 2004; Bellotti et al., 

2007; Milli et al., 2013; Salomon, 2013) and is composed of the upper deltaic plain 

(paleolagoons area), the lower deltaic plain (beach ridges area), and the subaqueous deltaic 

plain (lobes and prodelta). Paleoenvironmental data comes mainly from the littoral (Bellotti 

et al., 1995, 2007; C. Giraudi, 2004; Milli et al., 2013) or the lagoonal systems (Di Rita, Celant, 

& Magri, 2009; Bellotti et al., 2011; Carlo Giraudi, 2011; Vittori et al., 2015), or else from the 

harbor basins of Portus and Ostia (C. Giraudi, Tata, & Paroli, 2009; Goiran et al., 2010, 2014; 

Hadler et al., 2015), but little data available for the Tiber channel during the Holocene. 

 

 Many difficulties exist in the attempt to reconstruct the mobility of the river channels 

over time, thus many hypotheses of paleochannel dynamics have been suggested for the 

Tiber delta (Segre, 1986; C. Giraudi, Tata, & Paroli, 2009; Bellotti et al., 2011). The bedload of 

the Tiber River has been scarcely observed for the Late Pleistocene or the deltaic 

transgressive phase (Bellotti et al., 2007), and not clearly since the formation of the 

prograding Holocene Tiber Delta, ca. 8000-6000 years ago. The paleomeander of Ostia, cut 

off in 1557-1562 and thereafter called Fiume Morto, offers a good opportunity to study a 

late-Holocene channel of the Tiber River. The complete stratigraphic sequence has never 

been reconstructed, and the modalities of paleomeander evolution were avoided or only 

hypothesized. 

 

Archaeological data concerning the foundation of Ostia (Zevi, 2001) and the evolution 

of the urban area have been collected since the 19th century, especially along the river 

channel (Calza et al., 1953; Pavolini, 2006). Archaeological work also focused on the Fiume 

Morto (Pellegrino, Olivanti, & Panariti, 1995; Shepherd, 2006) combined with 



geoarchaeological hand corings but only down to a depth of 3-4 meters (Arnoldus-

Huyzendveld & Paroli, 1995). However, the origins of Ostia and its paleomeander are still 

unclear. Textual tradition links the origin of Ostia to the reign of the king Ancus Martius at 

the end of the 7th century BC In contrast, archaeological data relating to the foundation of 

the Castrum with the cardo and the decumanus dates the origin of Ostia to the 4th – 3rd 

century BC (Zevi, 2001). During the Medieval period Ostia was abandoned, while a relative 

rejuvenation of the city occurred with the development of the Borgo di Ostia, located close 

to the paleomeander apex (Figure 2). Finally, according to the contemporary texts, an 

impressive summer flood initiated the cut off of the meander in 1557, completely separating 

it in 1562 (Bacci, 1576; Pannuzi, 2009). 

 

METHODS 

 

 Three sediment cores have been drilled across the palaeochannel of the Fiume Morto 

using a mechanical rotary coring device and exported to the laboratory of sedimentology of 

the University of Lyon 2 in France (Core MO1: 12°17'59.16" E, 41°45'32.43" N, 1.79 m above 

sea level (a.s.l.); Core MO2: 12°18'0.46" E, 41°45'31.22" N, 1.7 m a.s.l.; and Core MO3: 

12°17'55.19" E, 41°45'40.02" N, 2 m a.s.l.). The magnetic susceptibility was measured at 

every centimeter using a Bartington MS2E1 high-resolution surface sensor and enabled with 

visual recognition to define sedimentary units (Dearing, 1999). The identification of these 

units using the magnetic susceptibility has been used and validated for the Tiber delta in 

Salomon et al. (2012). Afterwards, the core sequences were sampled systematically 

regarding the units and the sub-units defined, in order to ensure that each strata was 

sampled. We extracted 36 samples for MO1, 33 samples for MO2, and 33 samples from 



MO3. The organic material was measured by loss-on-ignition on a fraction of 10 g of raw, dry 

sediment placed at 375°C for 16 hours (Ball, 1964), in order to give an estimation of the 

productivity of the overlying water column and the sedimentation rate in fine deposits 

(Doyle & Garrels, 1985). The texture diagram (inorganic, organic and shell fractions) was 

made based on a fraction of 30 g of dry raw sediments. The coarse fraction (> 2 mm), sands 

(2 mm at 63 µm) and silts/clays (< 63 µm) were differentiated by weighing the sieve 

contents. A selection of the most representative samples of each unit was undertaken for 

particle-size distribution analysis. Laser granulometry was carried out using a Malvern 

Mastersizer 2000, on clay, silts and sands after treatments with H2O2 for the destruction of 

the organic matter and KCl for the elimination of the flocculation ions (Ca2+). It provides 

information on the distribution of grain sizes and enables evaluation of hydrodynamic 

intensity (Folk and Ward, 1957; Cailleux and Tricart, 1959). Shells fragments were identified 

and provide information on the paleoenvironments (Perès & Picard, 1964). Radiocarbon 

dates were established using the accelerator mass spectrometry (AMS) method and 

calibrated as described by Reimer et al. (Reimer et al., 2013) (Table I). Eleven ceramics were 

studied by S. Zampini (pers. com.), but most of them were too small and damaged to be 

identified and dated (Table I). 

 

Concerning the photo interpretation, the background of Figure 2 is created with 

geographical information system software that combines the topographic map of the Tiber 

Delta (IGM, 1:25,000, 2005) and an aerial photograph taken by balloon in 1911. Main 

archaeological findings for our purpose have been added to Figure 2 from different kinds of 

published data (Calza et al., 1953; Arnoldus-Huyzendveld & Paroli, 1995; Pellegrino, Olivanti, 

& Panariti, 1995; Heinzelmann, 2001; Bukowiecki, Dessales, & Dubouloz, 2008; Pannuzi, 



2009; Goiran et al., 2014; Keay, Parcak, & Strutt, 2014). The aerial photography shows the 

clearest marks of the morphology of the channel of the paleomeander of Ostia just before 

the cutting in 1557-1562. Theoretical lobes have been drawn on the basis of the last 

paleochannel feature. 

 

RESULTS 

 

Aerial Photography Analysis: A Compound Evolution of the Paleomeander 

 

 It is possible to recognize several steps of evolution of the Tiber River channel in 

Figure 2. The aerial photograph taken in 1911 shows a wide Tiber channel curve that erodes 

part of the archaeological site of Ostia at that time (north of the Castrum / Capitolium) as 

well as the clearest delineation of the paleochannel of the meander of Ostia just before the 

cutting in 1557-1562. The amplitude of this last active meander was 1700 m with a radius of 

330 m for the main lobe (L1 in figure 2). The sinuosity index has been measured at 3.63 

(SI=L(Lengh of the channel) / λ(wavelength) = 4100 m/1130 m) and allows us to identify the 

last active meander of Ostia amongst the meanders with high sinuosity (Rosgen, 1994; Van 

den Berg, 1995).  

 

 A detailed observation of this paleomeander reveals morphological specificities, 

especially a destructive shift of the main lobe to the east. Towards the north and south, 

secondary lobes have also been observed. The circles in green help to highlight the 

compound growth of this complex paleomeander. The secondary lobe upstream (L2) has a 

radius of 210 m and the secondary lobe downstream has a smaller radius of 40 m (L3). 



 

Analysis of Core MO3: Convexity of the Paleomeander of Ostia 

 

 Core MO3 was drilled in the convexity of the paleomeander of Ostia. The stratigraphy 

presents four mains units (Figure 3). 

 

Unit A (13 to 11.67 m below the current Italian mean sea level at Genoa (b.s.l.)) 

 This basal Unit A is composed of yellow laminated silty sand. The coarse fraction is 8% of the 

total weight of the samples analyzed and contains mostly small psephites and shell fragments. Most 

of the shells fragments are marine bivalves, but they cannot be identified precisely. However, some 

Bittium reticulatum living in posidonia or rocky coasts were identified with Lentidium mediterraneum 

living in sandy to clayey coasts close to a river mouth. The age of this deposit is attributed to the 

beginning of the Holocene by radiocarbon date performed on a marine shell (10,070 ± 50 14C yr B.P., 

9250-8951 cal. BC, Ly-8799). 

 

Unit B (11.67 to 1.72 m b.s.l.)  

 A major change in the stratigraphy occurs with Unit B, and especially B1. Coarse sand 

composes Subunit B1 with pebbles (40 to 70% of the total weight of the samples). Coarsest pebbles 

have a length of 3.5 to 4 cm (A-axis), a width of 2.5 cm (B-axis), and they are 0.4 cm thick (C-axis). The 

flatness index is very high, around 7.5 (Cailleux & Tricart, 1959). Subunits B2 to B6 are characterized 

by a alternation of very coarse sand (Unit B2), coarse sand (Units B4 and B6) and medium sand 

deposits (Units B3, B5). These deposits date between the 4th century BC and the 1st century BC 

according to two radiocarbon ages from Units B3 (Bone, 2230 ± 30 14C yr B.P., 385-204 cal. BC, Ly-

8792) and B5 (Charcoal, 2120 ± 30 14C yr cal. B.P., 344-51 cal. BC, Ly-8793). 

 

Unit C (1.72 to 1.45 m b.s.l.) 



 Unit C consists of sands with a high content of ceramics and mortar. A piece of mortar is 

identified in the stratigraphy at -1.72 to -1.70 m. At -1.60 m a Terra sigillata “Africana A” was 

identified and dated to 90-250 AD (Table I). 

 

Unit D (1.45 m b.s.l. to 1.80 m a.s.l.) 

 This sedimentary unit presents bedded gray and yellow silty-clay. Unlike lower units, only 2% 

of this unit is composed of sand. The coarse fraction disappears and the organic matter content 

increases up to more than 2% of the total sample analyzed. 

 

Analysis of Core MO1: Last Active Channel of the Ostia Paleomeander  

 

 Core MO1 was drilled into the last active channel of the Ostia paleomeander (Figure 

4). 

 

Unit A (14.69 to 14.39 m b.s.l.) 

 Unit A is a laminated silty-sand deposit similar to Unit A in Core MO3. The samples are 

composed of 70% sand, 30% silts and clays, and of only 0.5% of coarse fraction. Unidentified shells 

were found in this unit. 

 

Unit B (14.39 to 10.36 m b.s.l.) 

 Four subunits compose the sedimentary Unit B. The bottom Subunit B1 and the top layer B4 

correspond to high energy deposits of pebbles and coarse sands (1 cm x 1 cm x 0.5 cm for the 

coarsest pebbles). The corer drilled through two levels of volcanic tuff (-11.36 m to -11.09 m and -

10.57 m to -10.37 m) included in Subunit B4. It is difficult to know if the pieces of tuff were broken 



originally or during the drilling. However, no sedimentary deposits are mixed with these tuffs. These 

coarse deposits overlap medium sand (Subunit B2 and B3). 

 

Unit C (10.36 to 8.62 m b.s.l.) 

 Unit C incorporates 95% sands (mainly coarse to very coarse sand), 2% silt and clay and 3% 

coarse fraction. A bone fragment has been dated to AD 1455-1635 (355 ± 25 14C yr B.P. / Ly-8041). 

 

Unit D (8.62 m to 4.24 m b.s.l.) 

 From the Subunit B4 to E2, the tendency is a decrease of grain-size. Unit D consists of 92% 

sand at the bottom to 78% at the top. In contrast, the organic matter content grows from 1% to 2%. 

Unidentified ceramics and bricks were found in these deposits. 

 

Unit E (4.24 m to 0.82 m b.s.l.) 

 The decrease of the grain size is confirmed in this unit. Sand fraction is only 48% of Subunit 

E1 and the silts and clays compose more than the half of the sediments (52%). At the top of Subunit 

E2, the silts and clays are 99% of the sediment content. The closure of the environment is confirmed 

by a higher organic matter content (up to 5%). The carbon content of vegetal matter found at -0.76m 

was too young to be dated (Ly-8040). 

 

Analysis of Core MO2: Concavity of the Ostia Paleomeander  

 

 Finally, Core MO2 was drilled within the concavity of the Ostia paleomeander (Figure 

5). 

 

Unit A (13.55 m to 12.19 m b.s.l.) 



 This yellow laminated silty sand unit is similar to Units A in Cores MO1 and MO3. Most of the 

shells are unidentified, but shells living in sandy coast (Cerastoderma edule, Mactra sp., Neverita 

Josephina) and near a river mouth (Zonites nitidus) were observed. 

 

Unit B (12.19 m to 9.28 m b.s.l.) 

 This unit is composed of an intercalation of coarse sands to pebbles. The coarsest pebbles are 

2.5 (A-axis) x 2 (B-axis) x 1 (C-axis) cm, which corresponds to pebbles with a very high flatness index 

around 4.5 (Cailleux & Tricart, 1959). 

 

Unit C (9.28 m to 6.76 m b.s.l.) 

 This unit corresponds to an intercalation of fine (96% silts and clays) and sandy (61% sand) 

deposits. No coarse fraction was observed. Two radiocarbon dates were obtained on a wood 

fragment (2160 ± 25 14C yr B.P., Ly 8044; 2035 ± 30 14C yr B.P., Ly-8780), which date the layer 

between the 4th century BC and the 1st century AD. 

 

Unit D (6.76 m to 0.63 m b.s.l.) 

 The bottom of Unit D is composed of sand. Above this sandy layer, Unit D incorporates fine 

particles with 92% silts and clays, 6% sands and 2% coarse fraction. Unlike the lower units, the 

organic matter increases up to 10%. A piece of wood collected at the top of Unit E was too young to 

be dated by radiocarbon (Ly-8788). 

 

DISCUSSION 

 

Sedimentological Characteristics and Chronology of the Paleomeander 



Photo interpretation draws a relative chronological framework for this study. It is 

possible to hypothesize a first phase of evolution of the meander toward the east, followed 

by the growing of two secondary lobes toward the north and toward the south. The last step 

of evolution of the meander happens with the cut-off of the paleomeander in 1557-1562. 

Thus, the core sequences can be better understood in these phases of evolution. 

 

At the base of the three core sequences drilled in the Fiume Morto, the very well 

sorted yellow laminated silty sand (Units A in Cores MO1, 2 and 3) (Figures 3 to 6) has been 

interpreted such as coastal sand from the last transgressive period when the coastline was 

moving up toward the east (Bellotti et al., 2007; Milli et al., 2013). Some marine shells have 

been preserved in this coastal sediment, of which one shell has been dated to 9250-8875 cal. 

BC (Ly-8799). 

 

 A sharp discontinuity on the top of these sandy sediments is observed. The 

stratigraphic Unit A is overlapped by pebbles and very coarse deposits from the bedload of 

the Tiber River (Subunits B1 in Cores MO1, 2 and 3 and also B4 in MO1). For the first time, 

the bedload of the Tiber river in the delta was recorded and measured, which noted a high 

energy deltaic river channel. Medians of these deposits fluctuated between 0.58 mm and 1.6 

mm with the largest pebbles measuring A-axis=3.5 cm and B-axis=2.5 cm in MO3-Unit B1, 

2.5 cm and 2 cm in MO2-Unit B1 and only 1 cm and 1 cm in MO1-Unit B4. Usually, large 

Mediterranean deltas have sandy river mouths (Anwar, El Askary, & Frihy, 1984; Maillet, 

2005), but it is possible to find pebbles such as those in the mouth of the Rhone Delta 

(Arnaud-Fassetta, Quisserne, & Antonelli, 2003). These pebbles reveal major floods to 

torrential behaviors of the Tiber River from the late 1st millennium BC until its cut off  



(Bersani, 2004). A hypothesis is that these flat pebbles, similar to coastal pebbles, have been 

reworked and come from an area just upstream of the Tiber delta, where similar material 

has been observed in the Pleistocene deltaic deposits (Ponte Galeria formation) (Milli, 1997). 

The maximum depths of these paleochannels recorded by the cores are the following: 11.70 

m b.s.l. (Core MO3), 14.40 m b.s.l. (Core MO1) and 12.20 m b.s.l (Core MO2). However, it has 

to be taken into consideration that the ancient sea level was 80 cm below the current level 

during the 4th-5th century AD at Portus (Goiran et al., 2009) and probably even lower in 

previous centuries. 

 

 Core MO3 was drilled within the convexity of the main lobe (Figures 3 & 6). It 

therefore contains sediments related to the migration of the Ostia paleomeander towards 

the east. Fluvial deposits have been separated into three main units. First, Unit B is 

composed of six subunits dated to between the 4th and the 1st century BC (Ly-8792; Ly-

8793). The common facies of the six subunits is the fluvial dark gray coarse sediments. They 

are interrupted by Subunit B3 with medium sand and a gray silty clay layer. Units B2 to B6 

correspond to fluvial point bar deposits, in other words the building of the meander 

convexity. Unit C corresponds to medium to fine sand deposits. A pottery sherd of terra 

sigillata “Africana A” was found in this layer and provides a limiting age (terminus post 

quem) to the deposit. This ceramic dates the layer to around 90-250 AD. This layer reveals 

the beginning of Roman activity on the river bank soon after the point bar deposits 

accumulated on the inside of the meander channel. At the top of the core, Unit D is a 

bedded gray-yellow silty clay layer interpreted as a floodplain deposit. The bottom of this 

unit (1.35 m b.s.l.) is dated between AD 1212 and 1280 (Ly-8781). 

 



 Cores MO1 and MO2 are located within the concavity of the southern secondary lobe 

of the paleomeander (Figures 4, 5 and 6). Core MO1 is in the middle of the last active 

channel dated to AD 1557, just before the cutting. Unit B contains four subunits composed 

of medium sand to pebbles. Two layers of volcanic tuff fragments have been found in 

Subunit B4 at 11.36-11.10 m and 10.57-10.37 m. Fragments of terrestrial shells were 

collected in this subunit and suggest that this layer with fluvial deposits and tuff was partially 

formed by the erosion of a close riverbank. Subunits B2 and 3 are interpreted either as 

fluvial deposits or as old coastal deposits eroded and trapped below the tuff layers and the 

coarse bedload. From Unit C to Unit E, we can observe a decrease in the grain size. We 

observe very coarse deposits in Unit C, medium and silty sand in Unit D and clayey silt and 

silty clay in Unit E. A piece of bone found in Unit C has been dated to AD 1455-1635 (Lyon-

8041). We consider Unit C as the last bedload of the Tiber river before the meander cut off, 

and Units D and E as the subsequent channel infill from AD 1557 onwards. As previously 

expressed, Unit B in Core MO2 represents bedload. This unit is covered by different types of 

facies (sandy and silty clay / Unit C) dated by a fragment of bone to 4th century BC – 1st 

century AD. Silt and clay might be deposited decantation in a period of low energy 

(Seasonal? Over several years?). Flocculation could have been active with the intrusion of 

salt water in the Tiber river channel (Capelli & Mazza, 2008). The sandy layers can be 

attributed either to fluvial deposits or to erosion of the river banks’ coastal sands. Unit D is 

considered a post-cut off deposit related to the last bedload at the bottom (sandy layer), and 

to an oxbow lake existing until the end of the 19th century AD, after which it was finally 

reclaimed (Amenduni, 1884). A pollen analysis on Core MO-2 supports this interpretation 

(Pepe et al., 2016). 

 



Sedimentological Data in their Archaeological and Paleoclimatic Contexts 

 

 Four main phases of evolution of the active meander of Ostia can be observed (Figure 

7). The first phase corresponds to the origin of the paleomeander. The oldest sedimentary 

data comes from the base of Core MO3 in the convexity of the main lobe of the Ostia 

paleomeander. Unit B is dated to the 4th – 1st century BC by radiocarbon dating. It is possible 

to show that the meander of Ostia was already established when the Castrum was built in 

the 4th – 3rd century BC. Combined archaeological and sedimentological data bring to light 

the same period of time. However, these data do not give evidence for the existence of Ostia 

during the reign of the king of Rome, Ancus Martius (ca. 642-617 BC). Neither does it give 

evidence for the location of the Tiber River during that period. The main lobe channel shifts 

toward the east from at least 385-205 BC until the 1st century AD. 

 

 The second phase corresponds to the formation of the secondary lobes. The southern 

secondary lobe was already in formation in the 1st century AD. Core MO2 reveals the 

sedimentation at the maximum southern extent of the Fiume Morto dated between the mid-

4th century BC and the mid 1st century AD (terminus post quem). The chronology provided by 

excavated archaeological remains is comparable concerning the date of the maximum 

erosion of the southern secondary lobe. The construction of the aqueduct at the end of the 

2nd / beginning of the 3rd century AD is the terminus ante quem for the paleomeander 

mobility toward the south, because its outline roughly follows the curve of the last channel 

of the meander before its cut off in AD 1557-1562. 

 



 During the third phase, archaeological evidence and sedimentological data are 

consistent to support a lateral stability of the southern secondary lobe channel from the 1st / 

3rd century AD to the cut-off of the meander in AD 1557-1562. The cut-off of the 

paleomeander was initiated by a summer flash-flood in AD 1557 that also broke the Pons 

Aemilius (also called Ponte Rotto) in Rome. This exceptional meteorological event is 

recorded in texts from South France to Sicily (Bacci, 1576). Most of the 16th century is 

characterized in the Tiber River by rare hydrological events with sudden major summer 

floods (AD 1530 & AD 1557; Bersani, 2004). These records tell us about particular conditions 

occurring within the Tiber watershed during some decades of the Little Ice Age (Camuffo & 

Enzi, 1995; Camuffo et al., 2014). Afterwards, the paleomeander was slowly filled up by 

sediments and finally reclaimed at the end of the 19th century / beginning of the 20th century 

(fourth phase). 

 

Erosion of the Via Ostiensis? 

 

 When the Castrum of Ostia was established in the 4th – 3rd century BC, two main 

streets of the urban area of Ostia were delineated: the cardo (north-south), and the 

decumanus (west-east). The cardo at the north of the Capitolium of Ostia was eroded after 

the cut-off of the meander in AD 1557-1562, but at this point the city of Ostia had already 

been abandoned for about a millennium. However, the Via Ostiensis, continuing off the 

decumanus, could have been eroded during antiquity, when the economic activity of Ostia 

was flourishing. A notable problem here is the possibility that the Via Ostiensis already 

avoided the secondary lobes of the meander during its construction. The chronology of the 

deposits based on radiocarbon dates is too extended in time to solve this problem.  The 



shifting of the Tiber to the east and the formation of the secondary lobes could have 

happened in the 4th century - 3rd century BC and then been followed by the construction of 

the road. However, the discovery of tuff in the bedload of the paleo-Tiber channel just below 

the theoretical position of the Via Ostiensis (Core MO1) could support the hypothesis of an 

effective erosion of the road by the Tiber River (Figures 2 & 6). The excavations undertaken 

across the Via Ostiensis near Ostia recorded a wide distribution of pieces of tuff (Calza et al., 

1953). More investigation needs to be done to definitively solve this question. Similarly, the 

question arises concerning an aqueduct built in the 1st century AD, which was connected to a 

reservoir included within the city wall of Ostia. Was the first aqueduct following the 

hypothetical Via Ostiensis eroded by the paleomeander? Unfortunately, no outline of this 

early aqueduct has been found near Ostia. Instead there are the remains of a ”second” 

aqueduct dated to the 2nd – 3rd century AD with a route following the curve of the southern 

secondary lobe (Bukowiecki, Dessales, & Dubouloz, 2008). 

 

Hypothesis Regarding the Compound Evolution of the Ostia Paleomeander  

 

 Two questions are therefore pending: (1) Why does the meander’s growth stop in its 

migration to the east? and (2) why did the southern secondary lobe show lateral stability 

between antiquity and AD 1557? The stability of such a lobe is surprising over almost one 

millennium. An answer can be found in the theoretical knowledge concerning meander 

dynamics (Jin & Schumm, 1986). The meander could have been blocked by cohesive silty-

clayey deposits remaining from the lagoon of Ostia (limit delineated on Figures 1 & 2) and by 

the presence of a huge structure composed of volcanic tuff, a possible harbor installation, 

dating back to the early Republican period (Pavolini, 2006). This structure still remained in 



the channel in AD 1557 despite the high energy of the Tiber River. These anthropic and 

natural obstacles could have led to the formation of secondary lobes. Later on, the effect of 

these obstacles could have had consequences on the resonance of the energy upstream, 

accelerating the migration of the upstream channel of the meander of Ostia and stabilizing 

the channel downstream of the obstacles. In support of this hypothesis, the outlines of 

paleochannels on the two parts of the neck are not symmetrical (Figure 2). The upstream 

curve of the paleomeander is broader than the downstream curve in the city of Ostia and 

the northern secondary lobe has a larger radius. Similar mechanics are observed in flume 

studies (Jin & Schumm, 1986). 

 

 Additionally, a possible reduction of the water energy for medium floods is 

conceivable since the construction of Portus in AD 42-45. Today, one-fifth of the Tiber River 

discharge is flowing through Fiumicino. Other canals were excavated and in use after the 

construction of Portus (Testaguzza, 1970; Keay et al., 2005; Salomon et al., 2014) and could 

have led to the decrease of the energy of the Tiber river downstream in Ostia (Figure 1).  

 

The City of Ostia Facing River Mobility Risks during the Roman Period   

 

 From 414 BC onward, floods of the Tiber River are recorded in ancient texts for the 

lower Tiber valley (Le Gall, 1953; Aldrete, 2007). These records are not systematic and 

depend on the observations of the ancient authors as well as the preservation of the texts 

through time. However, floods became a major problem in Rome at the beginning of the 1st 

century AD, forcing the Senate to consider solutions (Miller, 1959; Leveau, 2008). Flood 

management through flood-relief canals is also underlined in some inscriptions from the 



middle of the 1st century AD and early 2nd century AD found at Portus (Keay et al., 2005; 

Salomon, 2013). Overbank flooding is the main inconvenience reported during this period in 

Rome, rather than river mobility disruption. However, a shift in the course of a river was 

observed at least elsewhere during the Roman period. Ancient jurists took into account 

these fluvial disruptions through their consequences on land use and possession (Campbell, 

2012). The present study exposes the fact that the city of Ostia faced the problem of erosion 

by relocating infrastructure: locally, by moving roads and the aqueduct to the south, or 

regionally, by the foundation of Portus, a huge harbor system indirectly linked to the fluvial 

system by canals flowing to the north and to the south of the harbor basins (Salomon et al. 

2012, 2014). Some of these canals prevent lateral mobility by the construction of built 

riverbanks such as the Canale Romano, the Canale Traverso and the Fossa Traiana, now 

called Fiumicino (Testaguzza, 1970; Keay et al., 2005). They may have been conceived and 

used for ship unloading, but these lateral structures did in fact also prevent lateral mobility. 

By comparison, it is clear that the Republican structure in the north of the paleomeander 

played its part on the evolution of morphology of the paleomeander together with the 

cohesive deposits of the palaeolagoon of Ostia, and participated in crushing the apex of the 

meander. However, at the moment, we cannot assume that this structure was built on 

purpose to prevent river bank erosion.  

 

CONCLUSION 

 

 The study of the Tiber River paleomeander in relation to the city of Ostia provides 

new data to investigate long term interaction between human settlements and fluvial 

dynamics and brings new evidence for the understanding of fluvial risk management across 



time. This transdisciplinary approach clarifies the multiscale parameters involved in the 

evolution of the Ostia paleomeander and identifies the successive redistribution of fluvial 

erosion along the riverbanks. During the Roman period, the combination of natural 

geomorphological processes and human pressures led to the formation of a compound 

meander near Ostia. This new river course constrained the development of Ostia to the east. 

As such, the Romans responded to this by displacing their infrastructure both locally 

(aqueduct and Via Ostiensis) and regionally (construction of Portus and excavation of the 

canals). 

 

 According to our hypothesis, clayey deposits in the riverbank and/or the massive 

Republican structure at the apex of the meander caused the formation of secondary lobes 

that subsequently redistributed the fluvial erosion upstream. From late Antiquity to the cut-

off of the meander, the southern part of the meander of Ostia was stable and the urban area 

of the Borgo and the Castle of Giulio 2 remained safe even though they were located on the 

concave riverbank. A large flood occurring in AD 1557 initiated the cut-off of the meander 

and stopped definitively the lateral mobility of the paleomeander. Since then, the new river 

channel considerably eroded the archaeological site of Ostia at the north of the Capitolium - 

Castrum. 

 

 This active fluvial erosion in northern Ostia began during the Rinascimento, with the 

revival of Roman antiquity in Italy. However, the current acceptation of the concepts of 

cultural heritage and fluvial risk did not apply at that time. The two concepts originated in 

the 19th century (Segarra Lagunes, 2004; Combe, 2007). Fluvial risk management started in 

Rome when it became the capital of unified Italy (1871) and after several major floods of the 



Tiber occurring in the middle of the 19th century.  In this context, embankments were built in 

Rome along the Tiber River (muraglioni) and, five decades later, embankments were built in 

the Tiber Delta (Segarra Lagunes, 2004). Since the beginning of the 19th century, the 

archaeological site of Ostia has been studied by archaeologists (Fea, 1802, 1835; Canina, 

1838; Vaglieri, 1909), and Carlo Fea, Director General of Antiquities, helped to control the 

random excavations and the trade of antiquities in Rome and Ostia (Ridley, 2000). Today, for 

Western societies, the concept of risk management extends not only to population and 

economically and socially viable infrastructures, but also toward cultural heritage 

preservation. Coastal erosion and its effects on archaeological sites have been recently taken 

into account in Italy (Lollino & Pagliarulo, 2008; Gerolamo, 2012). This work contributes to 

the consideration of fluvial damage to archaeological contexts. 

 

 More generally, the geoarchaeolocial approach can complete the picture of the risks 

prevailing for a river system and it can also identify the risks occurring in extreme conditions 

experienced at some point in the past (Thorndycraft et al., 2003; Bravard, 2004; Kidder et al., 

2012). The big pebbles measured in the bedload of the paleomeander of Ostia and the 

destructive summer flash-flood of AD 1557 are evidence of exceptional fluvial events of the 

Tiber River. This question is particularly relevant to the beginning of the 21st century in which 

we are experiencing a climatic change and an increase of natural hazards.  
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FIGURE CAPTIONS 

Figure 1. Location map of study area. This figure shows the paleomeander of Ostia in its final 

morphology and the locations of boreholes MO1, 2 and 3. The limit of the lagoonal 

deposits near the paleomeander is drawn using the paleolagoon shape from Amenduni 

(Amenduni, 1884) and sedimentary data (De Angelis D’Ossat, 1938). 

Figure 2. Morphometric characteristics of the paleomeander, archaeological data, and core 

locations. 

Figure 3. Stratigraphic descriptions of Core MO3 (convexity of the Ostia paleomeander). 

Figure 4. Stratigraphic descriptions of Core MO1 (channel of the Ostia paleomeander). 

Figure 5. Stratigraphic descriptions of of Core MO2 (concavity of the Ostia paleomeander). 

Figure 6. Interpretative cross-section of the Ostia meander paleochannel. 

Figure 7. Four maps showing the evolution of the paleomeander in relation to the city of 

Ostia.  
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Table 1 

 
Radiocarbon date – ARTEMIS program – Lyon - France 

Samples 
(Depth related to 
the Core Depth) 

Laboratory 
samples 

Sample 
description 

Activity 
(in %) 

Radiocarbon 
Age (14C yr 

BP) 

2σ calibrated 
Age (Reimer et 

al., 2013) 
MO-1 / 9.64m Ly-8041 Bone 95.654 ± 0.270 355 ± 25 AD 1454 to 1634 
MO-1 / 0.76m Ly-8040 Organic matter 103.210 ± 0.278 Today 
MO-2 / 7.18m Ly-8780 Wood 77.612 ± 0.243 2035 ± 30 159 BC to AD 50 
MO-2 / 0.9m Ly-8788 Wood 106.635 ± 0.329 Today 
MO-2 / 8m Ly-8044 Wood 76.430 ± 0.244 2160 ± 25 356 to 112 BC 
MO-3 / 8m Ly-8792 Bone 75.751 ± 0.287 2230 ± 30 384 to 204 BC 

MO-3 / 12.25 m Ly-8799 Shell 28.546 ± 0.172 10 070 ± 50 9250 to 8951 BC* 
MO-3 / 1.35 m Ly-8781 Wood 90.762 ± 0.294 780 ± 30 AD 1210 to 1281 

MO-3 / 4m Ly-8793 Charcoal 76.802 ± 0.262 2120 ± 30 344 to 51 BC 
Archaeological date 

Core Location Ceramic Archaeological 
date Identification 

MO3-Unit C Paleomeander of 
Ostia - Convexity Terra sigillata “Africana A” 90-250 AD 

S. Zampini 
(ceramologist 

– pers. 
comm.) 

Radiocarbon, and archaeological ages.*Calibrated using the Marine13 curve 
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