Monteiro, F.M., Bach, L.T., Brownlee, C., Bown, P., Rickaby, R.E.M., Poulton, A.J., Tyrrell, T., Beaufort, L., Dutkiewicz, S., Gibbs, S., Gutowska, M., Lee, R.B.Y., Riebesell, U., Young, J. and Ridgwell, A. (2016) Why marine phytoplankton calcify. Science Advances, 2 (7), e1501822. (doi:10.1126/sciadv.1501822).
Abstract
Calcifying marine phytoplankton - coccolithophores - are some of the most successful yet enigmatic organisms in the ocean, and are at risk from global change. In order to better understand how they will be affected we need to know 'why' coccolithophores calcify. Here we review coccolithophorid evolutionary history, cell biology, and insights from recent experiments to provide a critical assessment of the costs and benefits of calcification. We conclude that calcification has high energy demands, and that coccolithophores might have calcified initially to reduce grazing pressure, but that additional benefits such as protection from photo-damage and viral-bacterial attack further explain their high diversity and broad spectrum ecology. The cost-versusbenefit of these traits is illustrated by novel ecosystem modeling, although conclusive observations are still limited. In the future ocean, the trade-off between changing ecological and physiological costs of calcification and their benefits will ultimately decide how this important group is affected by ocean acidification and global warming.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.