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Transition to turbulence in pipe flow is investigated experimentally using a temporally

resolved dual-plane particle image velocimetry (PIV) approach, at a Reynolds number

of 3440. The flow is analyzed using proper orthogonal decomposition, and it is shown

that the flow can be divided into two regions: a pseudo-laminar region governed by the

presence of azimuthally steady traveling waves, and turbulent slugs. The evolution of the

structures within the slugs is identified by using the temporally resolved data along with the

dual-plane velocity field. These structures are shown to be remarkably similar to the large-

scale-motions found in fully turbulent flows, with a streamwise and spatio-temporal extent

about 4 pipe radii. The transition between structures are characterized by the detachment

and decay of an old structure and the initiation of a new structure at the wall.
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I. INTRODUCTION

Pipe flow is linearly stable to small disturbances but non-linearly unstable to finite-amplitude

disturbances, which makes it an abrupt process that immediately generates complex spatio-

temporal flows4. This abrupt transition depends crucially on how the disturbances are brought

to the system3. For example, Wu et al. 17 performed a direct numerical simulation of a transitional

pipe flow and found that transition was sensitive to the disturbance magnitude and the critical

Reynolds number, as well as the radial location at which the disturbance was introduced.

There has been significant progress in analyzing such flows by treating them as large dynamical

systems. In this respect, exact solutions to the Navier-Stokes equations such as traveling waves

and periodic orbits are of particular interest6,13,15,16. For instance, Schneider et al. 14 found that the

global dynamical structure in pipe flow was dominated by a pair of strong counter-rotating vortices

aligned along the streamwise axis, while Wedin and Kerswell 16 and Chantry et al. 4 examined

the azimuthally decomposed structures and identified solutions for azimuthal mode numbers m ∈

[1,6]. These streamwise-averaged solutions bear many similarities to structures found in fully-

developed turbulent pipe flow using azimuthally decomposed two-point correlations5 and proper

orthogonal decomposition (POD)2,8,10, suggesting that the large-scale structures in transitional and

fully turbulent pipe flow are intimately related.

These relationships were further investigated by Wu et al. 17 , who found that the disturbances

grew into small-scale hairpin packets or even large-scale-motions (LSM) that are typically found

in fully turbulent flows1. They further showed that the hairpin packets grew into turbulent spots,

supporting the observations by Wygnanski and Champagne 18 who found that the motions within

turbulent spots (called slugs when occupying the entire cross-section of the pipe12) were similar

to those in fully turbulent flows.

Hellström et al. 9 investigated experimentally such large-scale turbulence features in the cross-

stream plane of a fully-developed turbulent pipe flow at a bulk Reynolds number ReD = 12,500

using a POD procedure, and demonstrated that the gross features of the flowfield could be re-

constructed using a relatively small number of energetically important POD modes. Hellström

and Smits 8 and Hellström et al. 10 extended this approach by increasing the Reynolds number to

104,000, and azimuthally decomposing the flow field using a Fourier series expansion. They con-

cluded that the dominant motions consist of three azimuthal and one radial structure. Hellström

et al. 10 also showed that the extracted structures describe the hairpin packet or LSM with a span-
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wise length defined by the azimuthal mode number, and that the radial evolution of the LSM was

described by a “transition” between POD modes.

Here, we build on this previous body of work by using POD to identify energetically important

structures in a transitional pipe flow within the turbulent slugs and within the pseudo-laminar

regions surrounding the slugs. We also address the similarity of the structures found in a turbulent

slug to those found in fully turbulent flows.

II. EXPERIMENTAL SETUP

The experiment was conducted using the same pipe flow facility and experimental techniques

described by Hellström et al. 10 . The facility consist of seven glass pipe sections, and uses wa-

ter seeded with 10µm glass hollow spheres as the working fluid. Approximately 180D down-

stream of the pipe entrance, the flow was simultaneously investigated in a cross-sectional plane

and a streamwise plane using stereoscopic (2D-3C) and planar (2D-2C) particle image velocime-

try (PIV), respectively. The streamwise plane was placed along the pipe centerline and centered

on the cross-sectional plane, spanning a streamwise distance of 2.4D.

The results presented here were obtained at a single Reynolds number ReD =UbD/ν = 3440,

where Ub is the bulk velocity, D is the pipe diameter (= 2R), and ν is the kinematic viscosity of

water. All three PIV cameras were operated at 30 Hz, so that at ReD = 3440 there was a bulk

convective displacement of 0.15R between any two consecutive PIV snapshots. The full data set

consisted of ten blocks, each containing 2200 image pairs, where each block represents a convec-

tive bulk velocity displacement of 418R. The PIV data processing, including image processing,

interpolation, and data validation techniques, were identical to that described by Hellström et al. 10 .

The transition to turbulence was natural in the sense that there was no passive or active tripping

device in place, and at this Reynolds number the flow was intermittently turbulent, alternating be-

tween turbulent slugs and approximately laminar regions, which we will refer to as pseudo-laminar

regions.

III. PROPER ORTHOGONAL DECOMPOSITION

When performing POD, we consider only the fluctuating velocity field, which depends on the

definition of the mean flow. In an intermittently turbulent flow, the time-averaged velocity profile

3



is sensitive to the occurrence rate of the slugs within each particular dataset. To circumvent this

difficulty, we create a reference mean velocity profile for which we only use the average of the

pseudo-laminar regions. These regions were selected such that the centerline velocity UCL >

1.8Ub, while the slugs, or turbulent regions, were defined by UCL < 1.5Ub. With these thresholds,

approximately 18% of the data entries were considered to be in a turbulent region. Note that the

reference profile does not follow precisely a parabolic shape.

Following Hellström et al. 11 , we begin with a “direct” POD analysis of the three-component

fluctuating velocity data in the cross-plane. We recap some of the definitions here to be sure of their

meaning. The cross-correlation tensor only depends on the shift in the azimuthal (homogeneous)

direction, and it can be shown to be a Fourier series. The eigenvalue problem becomes

∫

r′
S(m;r,r′)Φ(n)(m;r′)r′dr′ = λ (n)(m)Φ(n)(m;r), (1)

where n represents the POD mode number, Φ(n) are the radial eigenfunctions with the correspond-

ing eigenvalues λ (n), and m represents the azimuthally decomposed mode number. The azimuthal

decomposition has the benefit of making the analysis insensitive to the chosen mean flow, as all

changes in mean flow are captured in m = 0 and can be discarded if desired. The time-averaged

cross-correlation tensor, S, is defined as

S(m;r,r′) = lim
τ→∞

1

τ

∫ τ

0
uc(m;r, t)u∗

c(m;r′, t)dt, (2)

where uc denotes the three-component velocity field in the cross-sectional plane, and ∗ denotes

the conjugate transpose. The nature of the cylindrical coordinate system creates an asymmetry in

the kernel with respect to r′. Glauser and George 7 addressed this issue by absorbing r′ into the

eigenfunctions and the cross-correlation tensor, creating a set of substitute equations which can be

solved using Hilbert-Schmidt theory. The substitute functions are here denoted by an overbar,

∫

r′
S(m;r,r′)Φ

(n)
(m;r′)dr′ = λ (n)(m)Φ

(n)
(m;r), (3)

with the corresponding time-averaged cross-correlation tensor:

S(m;r,r′) = lim
τ→∞

1

τ

∫ τ

0
r1/2

uc(m;r, t)u∗
c(m;r′, t)r′1/2dt. (4)

At this point, each mode is subject to a phase shift such that their streamwise component is real.

This procedure has no implication on its optimality but is solely a matter of azimuthally aligning
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the modes with the streamwise plane when creating the dual-plane modes. The optimal POD

modes can now be retrieved by

Φ(n)(m;r) = Φ
(n)

(m;r)r−1/2. (5)

The presence of each mode at each instance in time can be identified by the POD (or random)

coefficients α(n)(m; t) which are determined by projecting the modes back onto the fluctuating

velocity field,

α(n)(m; t) =
∫

r
r1/2

uc(m;r, t)Φ
(n)∗

(m;r)dr. (6)

In order to visualize the streamwise evolution of the POD modes, we create a dual-plane mode

Ψ(m,n)(θ ,r,x). Instead of creating the dual-plane mode by a conditional average, as done by Hell-

ström et al. 10 , we create the mode by performing an inner-product between the POD coefficients

and the dual-plane velocity field. That is,

Ψ(m,n)(θ ,r,x) := lim
τ→∞

∫ τ

0
ud(θ ,r,x, t)ℜ{α(n)(m; t)}dt (7)

where ud represents the dual-plane velocity field. Because the streamwise component of each

mode has been forced to be real, we reduce α(n) to consider only its real part, and force Ψ(m,n) to

align with the streamwise plane. This construction is similar to that used by Hellström et al. 10 ,

but with the added benefit of being threshold independent.

The relative energy in the fluctuating velocity field for the first 15 azimuthal modes (m∈ [0,15])

and five POD modes (n ∈ [1,5]) is displayed in figure 1(a). It can be seen that 75% of the energy is

associated with mode Φ(1)(0;r). However, this mode represent the deviation between the pseudo-

laminar and turbulent mean velocity profiles, and is of limited interest in the present analysis. By

removing the energy contribution from λ (1)(0), the relative energy distribution becomes as seen

in figure 1(b), where λ (1)(1) contains 33.7% of the energy, λ (1)(2) contains 6.31%, while λ (1)(3)

and λ (1)(4) both contain 3.44% of the energy.

The POD modes Φ(n)(m;r) are reduced to radial profiles, one for each POD mode number (n)

and azimuthal mode number (m) combination. The streamwise component of the radial profile for

the first POD mode and azimuthal modes 1 through 5 are illustrated in figure 2(a), where the pipe

wall is located at y/R = 0 and the centerline at y/R = 1. The POD modes bear a close resemblance

to those found in fully turbulent pipe flow at ReD = 104,00010, where the structures approach the

wall as the azimuthal mode number increases. The higher order POD modes (n > 1) for azimuthal

mode number m = 3 are seen in figure 2(b), where there are increasing number of radial structures
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FIG. 1. The relative energy contribution of the first five POD modes (n ∈ [1,5]), with azimuthal modes

m ∈ [0,15]. Cumulative energy content of the first five POD modes is represented by − · −. (a) The

complete set of eigenvalues (λ n(m)), representing all deviation from the laminar flow field. (b) As in (a),

but excluding the energy associated with the deviation of the laminar to turbulent mean velocity profile,

resolved by (n,m) = (1,0).

as n increases. The first three radial modes are similar to those found by Hellström et al. 10 while

the modes m = 3 and n ∈ {4,5} are mixed and can be represented as combinations of modes

(m = 3, n ∈ {4,5}) obtained in the higher Reynolds number data.

For clarity, the modes in figure 2 can be reconstructed into two-dimensional modes that high-

light their radial and azimuthal behavior. Figure 3(a) shows the reconstructed mode for (m,n) =

(1,1), which is similar to the exact traveling wave solution found by Wedin and Kerswell 16 , while

figure 3(b) through (d) represent m = 3 and n ∈ {1,2,3}. The streamwise component is shown us-

ing contours, while the in-plane components are visualized as streamlines. It can be seen that the

streamwise and wall-normal velocity components display a strong negative correlation, making

these structures major contributors to the Reynolds shear stress8.

IV. TEMPORAL EVOLUTION

The presence of a turbulent slug was identified by the value of the instantaneous velocity at the

centerline using a threshold UCL < 1.5Ub. In figure 4(a), we show the scaled centerline velocity

for data block 10, taken from the cross-plane. Although the turbulent slugs within the complete

dataset vary in length by a factor of two, they all share the same gross features. The slug can

be divided into three sections: (I) the head, from tUb/R ≈ 100 to ≈ 140, (II) the tail, located at
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FIG. 2. Modal profile of the streamwise component of the POD modes. (a) First radial mode, n = 1, and

m ∈ [1,5]. (b) Third azimuthal mode number, m = 3, and radial modes n ∈ [1,5].

≈ 325, and (III) the flow in between, which resembles a turbulent-like flow12. It can further be

seen that the centerline velocity between the slugs does not reach the laminar solution, UCL/Ub = 2,

but rather an approximation characteristic of the pseudo-laminar regime suggesting there is some

modal activity causing these deviations.

The temporal activity of each mode can be viewed by the POD coefficients α(n)(m; t), which

are acquired by projecting each mode back onto the fluctuating velocity field. The coefficients

are complex and carry magnitude and azimuthal phase information. In figure 4(b), we show the

magnitude of the POD coefficients of the first POD modes, and azimuthal mode numbers m∈ [1,4],

for data block 10. We note that the average value of α(1)(1; t) in the slug is similar to that in the

pseudo-laminar region, with the difference that it displays larger magnitude fluctuations while in

the slug. The azimuthal phase of modes n = 1 and m ∈ [1,2] are shown in figure 4(c). Both

Φ(1)(1;r) and Φ(1)(2;r) describe azimuthally steady traveling waves with constant magnitude
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(a) (b) (c) (d)

FIG. 3. Contour plots of the streamwise component of sample POD modes. Red represents positive and

blue negative modal values, respectively. The streamlines indicate the in-plane components of the POD

modes, Φ(n)(m;r). (a) Φ(1)(1;r); (b) Φ(1)(3;r); (c) Φ(2)(3;r); (d) Φ(3)(3;r).

while in the pseudo-laminar regions, with a length scale > 100R. The two modes alternate phase

from one pseudo-laminar region to another, such that its mean value is zero. The higher order

azimuthal modes (m ≥ 3) are present only within the slug.

In the centerline region, the slug tail travels at a slower speed than the pseudo-laminar fluid

behind it, hence compressing the tail. This can be seen by the sharp increase in centerline velocity

and also by the high modal activity during the tail, followed by an almost complete decay after-

wards. However, while in a turbulent slug, as in fully turbulent flow, mode Φ(1)(3;r) is one of the

most energetic modes after Φ(1)(1;r).

To estimate the temporal evolution between the resolved POD mode, we create the normalized

cross-correlation ρ , defined as:

ρ(m1,n1,m2,n2,τ) :=

(

α(n1)(m1; t),α(n2)(m2; t + τ)
)

‖α(n1)(m1; t)‖‖α(n2)(m2; t)‖
, (8)

where (·, ·) is the sliding inner-product with respect to time, and ‖ · ‖ represents its L2-norm10.

Figure 5 shows the magnitude of the cross-correlations between the reference mode, Φ(1)(3;r),

and for the first three POD modes (n∈ [1,3]) and azimuthal modes m∈ [1,4]. We choose Φ(1)(3;r)

to be the reference mode as it is the most energetic mode within the turbulent slug. It can be seen in

figure 5 that the modes stays correlated with modes resolved by the same azimuthal mode number.

Furthermore, the largest correlation values for the cross-correlation with the higher order POD

mode have a temporal offset, where the peak for n = 2 is located about one convective radius

downstream, and about 2 radii for n = 3, suggesting that the temporal evolution of mode Φ(1)(3;r)

is through modes Φ(2)(3;r) and Φ(3)(3;r).

These correlations, together with the POD modes, are now used to create a spatio-temporal
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FIG. 4. Temporal activity of the flow field for data block 10. (a) Scaled centerline velocity. (b) Magnitude

of POD coefficients α(1)(1; t) for n = 1 and m ∈ [1,4]. (c) Azimuthal phase of POD coefficients α(1)(1; t)

for n = 1 and m ∈ [1,2].

structure. We consider only azimuthal mode m = 3 and the first five POD modes shown earlier

in figure 2(b). The structure is constructed by superimposing the product between the correlation

values and the corresponding POD modes, that is, ∑n ρ(3,1,3,n,τ)Φ(n)(3;r). The resulting struc-

ture is displayed in figure 6, where we have isolated a single positive structure using an isosurface

corresponding to 50% of the maximum value. The correlation ρ is complex and it allows for any

9



(a)
1.00

0.80

0.60

0.40

0.20

0.00

ρ
(3

,1
,m

,1
)

 
-6 -4 -2 0 2 4 6

(b)
0.50

0.40

0.30

0.20

0.10

0.00

(3
,1

,m
,2

)

 
-6 -4 -2 0 2 4 6

(c)
0.25

0.20

0.15

0.10

0.05

0.00

(3
,1

,m
,3

)

τUb / R
 

-6 -4 -2 0 2 4 6
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spanning, m ∈ [1,4] and n ∈ [1,3]. (a) shows the correlation between the reference mode and α(1)(m; t); (b)
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azimuthal rotation, but as this is a statistical structure any rotation is expected to average to zero,

as seen in figure 6(b). In a similar manner, since modes n ∈ {2,3} describe the front end of the

structure, modes n ∈ {4,5} resolve the downstream end. The figure indicate a structure governed

by a radial evolution, very similar to the large-scale-motions found in fully turbulent flows. Here,

the structure is initiated at the wall, then grows radially, detaches from the wall, and finally decays.

V. DUAL-PLANE MODES

The spatio-temporal structures suggest strong similarities between the turbulence in a slug and

that in fully turbulent pipe flow. To examine these similarities further, without being limited by

the temporal resolution of the PIV system, we use the dual-plane modes, Ψ(m,n)(θ ,r,x), defined
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FIG. 6. Isosurface of an isolated spatio-temporal structure for m = 3 and n ∈ [1,5]. The isosurface value is

chosen to be +50% of the maximum value. (a) side view; (b) seen from pipe centerline. Flow is from left

to right.

by equation 7. The modes were constructed using three datasets: the current dataset acquired at

ReD = 3440, a dataset at ReD = 51,700 from Hellström et al. 11 , and a dataset at ReD = 104,000

from Hellström et al. 10 . The two latter datasets were re-analyzed according to the procedure in

section III.

The streamwise components of the dual-plane modes are shown in figure 7, where the left

column shows mode Ψ(3,1) and the right column shows mode Ψ(3,3). The top, middle and bottom

rows show the modes for ReD = 3440, ReD = 51,700 and ReD = 104,000, respectively. The left

column in figure 7 shows the initial structures which remain attached to the wall while growing

in size, extending well into the wake region. The structure shows a generally similar behavior

for this range of Reynolds numbers and is about 4R long, although the streamwise correlation

for the structure within the slug flow is somewhat weaker. As previously reported by Hellström

et al. 10 , and illustrated in figure 5, mode Ψ(3,1) is followed by a “transitional mode” describing its

evolution: Ψ(3,2) and Ψ(3,3), which shows the transition between subsequent structures. The right

column shows mode Ψ(3,3), which identifies a ramp-like structure where the downstream end is

detached from the wall. As the structure detaches, a new structure of the same sign is initiated at

the wall, with an opposite signed structure in between. The length of the intermediate structure

varies between the different datasets, from being about 2R in figure 7(b) to about R in figure 7(f).

The detachment of the structure is rapid, occurring over a distance of about one radius, with an

evolution very similar to the growth of the LSMs described by Adrian et al. 1 .
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FIG. 7. Streamwise components of the dual-plane modes Ψ(m,n)(θ ,r,x). (a) Ψ(3,1) and (b) Ψ(3,3) at ReD =

3440. (c) Ψ(3,1) and (d) Ψ(3,3) at ReD = 51,700. (e) Ψ(3,1) and (f) Ψ(3,3) at ReD = 104,000. Flow goes from

left to right.

VI. DISCUSSION AND CONCLUSIONS

The transitional pipe flow at ReD = 3440 was divided into two parts, a pseudo-laminar and a

turbulent part. The structures in the pseudo-laminar part were governed by azimuthally steady

traveling waves resolved by the lower order azimuthal POD modes, in particular modes n = 1 and
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m ∈ {1,2}. These modes alter the azimuthal phase from opposite sides of a turbulent slug, such

that their mean is zero. It is also the presence of these modes that prevents the velocity profile

from fully recovering to a parabolic profile.

The turbulent parts (slugs) were composed of the lower order azimuthal modes which were

present in the laminar regions (m ≤ 2), with the addition of the higher order azimuthal modes

(m ≥ 3). The most energetic structures within the slugs were those associated with azimuthal

mode numbers m ∈ {3,4}, where the POD modes show a strong resemblance to those found in

fully turbulent pipe flow.

The form of the structures within the turbulent slugs themselves were shown to be similar

to the large-scale-motions found in fully turbulent flows. These structures were characterized

by a streamwise and temporal extent of about 4R, after which a transition to a new structure

occurred. The transition between structures was characterized by the detachment and decay of an

old structure and the initiation of a new structure at the wall. The gross features of these organized

motions were found to be insensitive to Reynolds number, and the structures within a slug were

remarkably similar to those in a fully turbulent pipe flows at ReD = 51,700 and ReD = 104,000.
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