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Abstract. Operating horizontal axis wind turbines create large-scale turbulent wake
structures that affect the power output of downwind turbines considerably. The computational
prediction of this phenomenon is challenging as efficient low dissipation schemes are necessary
that represent the vorticity production by the moving structures accurately and that are able
to transport wakes without significant artificial decay over distances of several rotor diameters.
We have developed a parallel adaptive lattice Boltzmann method for large eddy simulation
of turbulent weakly compressible flows with embedded moving structures that considers these
requirements rather naturally and enables first principle simulations of wake-turbine interaction
phenomena at reasonable computational costs. The paper describes the employed computational
techniques and presents validation simulations for the Mexnext benchmark experiments as well
as simulations of the wake propagation in the Scaled Wind Farm Technology (SWIFT) array
consisting of three Vestas V27 turbines in triangular arrangement.

1. Introduction
The majority of available computational fluid dynamics (CFD) methods for wind engineering
approximate the incompressible or weakly compressible Navier-Stokes equations, which leads to
a globally coupled problem that in practice can only be solved by iteration. In the case of a wind
turbine, the motion of the rotor needs to be captured while still representing the static tower
and nacelle geometry. A typical approach is to enclose the rotor in a moving cylinder mesh that
is either perfectly embedded [1] or overlaps [2] with a static background mesh. Complicate and
computing intensive special grid intersection and interpolation algorithms are mandatory that
can also be difficult to parallelize.

So far, simulations of turbines that resolve structural and topographic details accurately
to the cm scale have concentrated on simulations of the NREL Phase VI [3] and the Mexnext
benchmark experiments [4], in which large-scale laboratory rotors are operated at prescribed rate
of rotation in quasi-uniform inflow. The objective is the numerical prediction of thrust and torque
on the rotor and the determination of the near-turbine velocity deficit. Using unstructured grids
throughout, Lynch and Smith [5] reported a computational effort of ∼ 12, 000 h CPU for a grid
of ∼ 67 M cells to compute one revolution of the NREL Phase VI rotor (∼ 180 h CPU/1M
cells/revolution). This is in good agreement with a documented result from the structured
Wind Multi-Block code by Liverpool University that required 7128 h CPU with a grid of ∼ 34 M
cells to compute one revolution of the Mexnext three-bladed rotor, which corresponds to an
effort of 209 h CPU/1M cells/revolution [4]. An even better computational performance of



only 1152 h CPU per revolution of the Mexnext rotor on a 28.3 M cell grid is documented for
the structured multi-block code EllipSys3D (∼ 40.7 h CPU/1M cells/revolution) [4]. However,
nacelle and tower could not be represented leading to large velocity errors when the turbine is
at a yawed position. Already for 0◦ inflow, major deviations to the experiment with a 14.9%
difference in thrust and a 15.0% difference in torque had to be noticed [6].

As an alternative, we adopt in here the lattice Boltzmann method (LBM). Instead of
approximating the Navier-Stokes equations, the approach is based directly on the Boltzmann
equation, the fundamental stochastic particle equation of gas dynamics [7]. By discretizing
the particle velocity space on an equidistant Cartesian grid (the lattice) and employing a
time-explicit streaming and collision algorithm [8], in which transport of quantities is always
exactly by one grid point, the LBM exhibits the properties of a low dissipation scheme for
weakly compressible flows, while computing times are considerably reduced compared to typical
Navier-Stokes-based CFD solvers [9]. On uniform grids, unsteady flow computations can easily
show performance gains by up to two orders. A large number of lattice Boltzmann schemes is
nowadays available, cf. [10]. Being a type of Cartesian immersed boundary method, the LBM
is also principally well suited for modeling fluid-rotor interaction.

In the following, we sketch the basics of our numerical approach in Section 2 and present
validation and benchmark simulations for the Mexnext configuration in Section 3. In Section 4,
a simulation of the SWIFT array at uniform inflow conditions is discussed, demonstrating the
capabilities of our LBM-based software system. The conclusions follow in Section 5.

2. Adaptive lattice Boltzmann method
The LBM is based on solving the simplified Boltzmann equation ∂t f + u · ∇f = ω(feq − f).
Partial density distribution functions fα(x, t) are associated to transport in a discrete velocity
direction eα. The total density distribution is given as ρ =

∑
α fα(x, t) and the macroscopic

moments are ρui =
∑

α eαifα(x, t). The discrete lattice Boltzmann equation reads

fα(x + eα∆t, t+ ∆t) = fα(x, t) + ωL∆t (feqα (x, t)− fα(x, t)) , (1)

where the time step ∆t = ∆x/
(√

3cs
)

is based on the speed of sound cs, which corresponds to
a trivial advection step (aka streaming) of fα in direction of eα by exactly one lattice point. In
this paper, a three-dimensional stencil with 19 distribution functions, i.e., 19 update equations
(1) is used (aka D3Q19). For the right hand side of (1) we adopt the equilibrium function

feqα (ρ,u) = ρtα
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with coefficients tα determined from the specific discrete velocity set. It can be shown via a
Chapman-Enskog expansion that for vanishing Knudsen number the method converges to a
solution of the weakly compressible Navier-Stokes equations [11]. Note that considering the
last two terms in (2) corresponds to an extended 3rd order scheme that is stable for higher
flow velocities than the normally used 2nd-order accurate LBM scheme [12], which was of vital
importance for the stability of the simulations of Section 3.

The hydrodynamic pressure for the equilibrium function (2) reads p =
∑

α f
eq
α c2s = ρc2s.

Kinematic viscosity ν and discrete collision frequency ωL are connected by the relation

ωL = τ−1L =
c2s

(ν + ∆tc2s/2)
. (3)

To consider high Reynolds number flows, a large eddy simulation (LES) approach with eddy
viscosity model is adopted [13]. The effective viscosity ν? = ν + νt = 1

3

(
τ? − 1

2

)
∆x2/∆t is used



Figure 1. Mexnext rotor simulation for 0◦ yaw. Flow field at t = 10 s visualized by displaying
iso-surfaces of vorticity, side (left) and top view (right)

with τ?L = τL + τt =: 1/ω?L in (1). Like Hou et al. [11], we apply the Smagorinsky model to
evaluate the turbulent eddy viscosity as νt = (Csf∆x)2|S̄|. The filtered strain tensor can be

directly expressed via a second moment as S̄ij =
(
2ρc2sτ

?
L

)−1∑
a eαieαj(f̄α − f̄eqα ) , from which

eventually τt = 1
2

[(
τ2L + 18

√
2(ρ∆x2/∆t2)−1C2

s∆xS̄
)1/2 − τL] can be derived.

Since the utilization of uniform lattices is not effective for realistic geometries, the LBM has
been incorporated into the AMROC software [14], which supports block-structured adaptive
mesh refinement (SAMR) algorithms generically. In order to fit smoothly into the existing, fully
parallelized software, we have implemented the LBM cell-based, which makes the scheme also
conservative in ρ and ρui. In the SAMR approach, finite volume cells are clustered with a special
algorithm into non-overlapping rectangular grids. The grids have a suitable layer of halo cells for
synchronization and applying inter-level and physical boundary conditions. Refinement levels
are integrated recursively and with successively smaller time steps on higher levels. Distributions
streaming across refinement boundaries during the recursive temporal update are considered and
employed in the collision step of the LBM by a correction-type algorithm that was especially
designed for the SAMR methodology, cf. [15]. Note that the resolution alteration on each level
requires the utilization of a different collision frequency, cf. Eq. (3).

In order to implement non-Cartesian boundary conditions with the LBM, we have chosen to
adopt for now a generic 1st order accurate ghost fluid approach that was already available in
AMROC [14]. Applied to LBM, this technique adjusts the distributions in embedded ghost cells
to consider the boundary conditions of a non-Cartesian reflective wall moving with prescribed
velocity w, which involves interpolation and mirroring of ρ, u across the boundary to ρ′ and ū
and modification of the macro-velocity in the immersed boundary cells to u′ = 2w − ū. From
the newly constructed macroscopic values the density distributions in the embedded ghost cells
are simply set to feqα (ρ′,u′) before computing a normal LBM update.

Geometrically complex structures, such as a wind turbine, are constructed as multi-body
systems and are represented as sets of triangulated surface meshes configured in kinetic chains
represented by quaternions. The dynamics of these mechanisms are solved by a recursive
Newton-Euler method at each time step [16]. This triangulation is transformed into a scalar
level set function ϕ on the Cartesian mesh that stores the distance to the boundary surface.
The benefit of using a smooth distance function is that the normal to the nearest boundary
location can always be evaluated as n = ∇ϕ/|∇ϕ|. The level set is computed exactly only in
a small band around the embedded structure using a specially developed algorithm based on
characteristic reconstruction and scan conversion [17].



Figure 2. Mexnext rotor simulation for 30◦ yaw. Flow field at t = 10 s visualized by displaying
iso-surfaces of vorticity, side (left) and top view (right).

Table 1. Rotor thrust and
torque predictions versus exper-
imental results.

0◦ yaw
Exp. Sim.

Fx [N] 1517 1633
Tx [Nm] 284.6 307.9

30◦ yaw
Exp. Sim.

Fx [N] 13.66 14.80
Tx [Nm] 7.72 8.36

Table 2. Normalized deviation (in %) versus experimental
results in predicted flow velocity along transects.

yaw 0◦ 30◦

transect in out in out

Axial
ux 6.416 7.663 5.742 6.410
uy 3.400 4.061 3.043 3.373
uz 3.073 3.678 2.752 3.068

up down up down

Radial
ux 6.556 7.325 7.093 6.655
uy 3.409 3.809 3.684 3.466
uz 3.242 3.659 3.511 3.294

3. Validation for Mexnext laboratory rotor
We have validated the level-set-based dynamically adaptive lattice Boltzmann code for the case
of the Mexnext laboratory rotor with diameter D = 4.5 m at prescribed rate of revolution and
constant inflow velocity of 14.93 m/s [4]. The simulations replicate from [4] Case 1.1 examining
aligned operation (u0 = 14.93 m/s, ρ = 1.246 kg/m3, T∞ = 284.03 K, p∞ = 101922 Pa) and Case
2.1 examining yawed operation at 30◦ (u0 = 14.99 m/s, ρ = 1.237 kg/m3, T∞ = 285.96 K, p∞ =
101847 Pa). In both cases the turbine operates a prescribed rotation rate 424.5 rpm and -2.3◦

blade pitch.
A computational domain of 30 m×20 m×20 m is discretized with a base grid of 120×80×80

and three additional levels refined by the isotropic factors 2, 2, and 4 are used, which gives a finest
resolution around structures of 1.5625 cm = 0.0035D. In quasi-steady state, our dynamically
adaptive code uses ∼ 12 M cells in total. For instance, for the 30◦ yaw case, the computational
effort is 267 h CPU per rotation, where overall 10 s physical time (70.75 revolutions) have been
computed. The computation was run on 120 cores Intel Ivybridge and required 157.6 hours wall
time in total. Normalized per 1 M cells and per revolution, our current implementation required
only ∼ 22.25 h CPU/1M cells/revolution, which obviously compares quite favorably to previous
computations, cf. Section 1.

Vorticity snapshots of the simulated flow fields at t = 10 s at 0◦ and 30◦ yaw angle are shown
in Figs. 1 and 2, respectively, giving a good qualitative representation of the quasi-steady wake
structures. The graphics in the top row of Fig. 3 display normal and tangential loads on an
individual blade averaged over the interval [5 s, 10 s], i.e., over ∼ 35 rotations, as it is passing
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Figure 3. Top row: averaged single-blade loads in simulation (current) and experiment (force
reference). Lower three rows: comparison of time-averaged velocity in simulation and experiment
along transects. The velocity in the axial direction is compared along axial (2nd row) and radial
(3rd row) transects, the radial velocity only along radial transects (bottom row). The 0◦ yaw
case is shown in the left column, the 30◦ yaw case in the right.



Figure 4. Flow field of Vestas V27 turbine operating at 33 rpm in uniform 8 m/s inflow averaged
over 10 s. Left: Torque along blades, right: pressure fluctuations 20 m downwind.

through the vertically upward position. Note that the comparative experimental results (solid
lines in these two graphics) use data from five measurement locations only. The normal and
tangential loads are all overestimated by approximately 8% with the largest errors occurring
near the blade root and tips. Mean rotor loads during [5, 10] s are summarized in Table 1.
Fluctuations in loads over the radius in the range of a few N/m can likely be attributed to
small-scale vortex structures in the highly turbulent flow fields, cf. Figs. 1 and 2. While for 0◦

our normal load prediction is comparable to other 3D CFD codes, the tangential load estimate
is closer to the experimental results than any prediction in [4], especially for larger values of r.

To compare with PIV data from the experiments, samples were taken along axial and radial
transects at specified locations (cf. [4]) at a sampling rate of 7.075 Hz and again time-averaged
over the interval [5 s, 10 s]. The most important of these comparisons are shown in Fig. 3.
The agreement is apparently quite good and the velocity predictions generally exhibit maximal
deviations to the experimental data of similar relative magnitude as the mean rotor loads, see
Table 2. In the graphics in the second row of Fig. 3 the velocity deficit in axial direction due
to the rotor can clearly be seen. In the third row graphics, but particularly in the bottom row,
depicting the radial velocity, the vortex production at the blade tip can be inferred.

4. Wake propagation in SWIFT array
In order to assess the wake prediction capabilities of the adaptive LBM, we have carried out a
simulation of the U.S. Department of Energy Scaled Wind Farm Technology (SWIFT) facility
at uniform inflow conditions. The SWIFT array uses Vestas V27 turbines to obtain full-scale
wake interaction data. The V27 is a small-scale turbine of rotor diameter of D = 27 m and has a
tower height of ∼ 35 m. It achieves a maximal energy output of 225 kW at wind velocities from
14 to 25 m/s. The time-dependent surface geometry model for each turbine consists of ∼ 23, 300
triangles.

In all subsequent computations it is assumed that the inflow is in direction of the turbine
middle axis and that the pitch blade angle is 0◦. The turbines are always operating at prescribed
rate of rotation of 33 rpm. Since this is a prototypical investigation, simplified inflow conditions
are used in behalf of a more realistic turbulent atmospheric boundary layer profile: The inflow
velocity is constant across the rotor diameter of velocity 8 m/s, with no turbulent fluctuations,
and initially a laminar boundary layer profile of 5 m height is assumed near the ground.

A single turbine is considered first to provide some ad-hoc model validation. Dynamic
isotropic refinement with three additional levels refined by the factors 2, 2 and 4 is applied,



Figure 5. Vestas V27 turbine operating
at the conditions of Fig. 4. Axial velocity
20 m downwind.

Figure 6. Adaptive mesh near a single turbine at
t = 19.7 s. Color planes visualize the magnitude of
the vorticity vector.

Figure 7. Domains of refinement and structured blocks visualized by color at t = 19.7 s.

ensuring a resolution of ∆3.125 cm around solid structures. A physical time of 18 s is simulated
and from t = 8 s onward, pressure, axial velocity, and torque have been sampled every 0.034 s on
18 radial sections along the blades and 20 m downwind of the rotor plane. Figures 4 and 5 display
this data averaged over the last 10 s of the computation. Note that the sections have an extension
of 0.75D. Visualized are the torque on the blades, the root-mean-square (rms) variation of the
pressure 20 m downwind as well as the axial velocity at the same downwind location. From the
left graphic of Fig. 4, an average power coefficient of Cp = 0.44 and an average torque coefficient
of Ct = 0.78 can be deduced. This would correspond to 81 kW production, which is within 5 % of
the manufacturer’s rated values [18]. In the right graphic of Fig. 4 and in Fig. 5 the influence of
tower and nacelle is imminent. Pressure fluctuations stemming from a low velocity recirculating
region behind the tower and nacelle are clearly captured. The low streamwise velocity at the



Figure 8. Fully established wakes in quasi-steady conditions after t = 50.9 s simulated time.
Top: color plot of velocity component in wind direction; bottom: color plot of vorticity
magnitude.

bottom of the sampling circle is due to the vortical structures emanating from the base of the
tower and ground.

In the SWIFT array, three Vestas V27 are placed in triangular arrangement with respect to
the prevalent wind direction allowing a direct comparison between an undisturbed and a two-
turbine wake. In our case, the turbines are located at x = 0, z = 0; x = 135 m, z = 0; and x = 0,
z = 80 m and the inflow is in the x-direction. Using a domain of extensions 14D × 3D × 3D on
a dynamic 4-level mesh refined isotropically by the factors 2, 2, 4, the computation ensures a
resolution of 6.25 cm = 0.0023D near the geometry and 0.0092D in the wakes. When the wakes
are fully established, the dynamic mesh uses ∼ 147 M cells instead of 44.04 billion in the uniform
case (factor ∼ 300), where ∼ 102 M cells are concentrated on the second finest level. Using 192
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cores Intel-Xeon-E5, the computational effort was just 784.4 h CPU or 4.09 h wall clock time per
revolution, i.e., ∼ 5.34 h CPU/1M cells/revolution. While in the simulations in Section 3 the
turbine geometry and the wake were refined identically and at the highest level, the majority
of cells is now on the second finest level, which is four times coarser, and used for downstream
wake capturing. The utilization of hierarchical time steps inherent to the SAMR method (cf.
Section 2) explains the reduction in computational effort per revolution by roughly a factor of
4 compared to Section 3.

Figures 6 and 7 visualize the dynamically constructed mesh at an intermediate time. Figure 6
shows the individual computational cells as well as the magnitude of the vorticity vector in color.
It can clearly be seen that the highest resolution follows the moving structure, while the second
highest level is refined based on fluid vorticity. Figure 7 shows by color the different levels of
mesh refinement and it can be inferred that the downwind wakes are still in a development
stage and close to reaching the x-location of the downwind turbine. In this graphic, also the
individual refinement blocks characteristic for the SAMR approach can be discerned. Note that,
as the refinement is evolving, parallel load-balancing and dynamic repartitioning based on a
space-filling curve algorithm happen automatically within the AMROC framework, cf. [14].

Figure 8 displays the fully established wake fields. Note the transitioning of the tip vortices
into large central wake structures behind the individual turbine and how this process is clearly
altered in the lower row. It is apparent from Fig. 8 that – thanks to the low dissipation properties
of the LBM – the turbine wakes are well preserved throughout the entire domain. A very different
vortex shedding pattern is evident in the tower wakes compared to wakes created by the rotor
motion. Figure 9 displays the wind velocity deficit at hub height temporally averaged over the
time interval [40 s, 50 s]. Sensor locations are placed in lines 50 m apart at z = 37 m. The sensor
positions are indicated by the red spheres in the left graphic of Fig. 9. The right graphics depicts
the deficit in the normalized mean velocity component in the x-direction. The introduction of an
additional velocity deficit by the second turbine, which is decreasing with increasing downstream
distance, can be seen. An asymmetric shift towards the two-turbine column in the velocity deficit
behind the isolated turbine indicates a slight interaction even in the lateral direction. Interesting
to note is the larger velocity deficit at x = 50 m and its faster recovery in the single-turbine wake.
This is a clear indication of the resistance and resulting pressure increase from the downwind
turbine that happens in the two-turbine column. Note that this effect could not accurately be
represented other than by a detailed numerical simulation.

5. Conclusions
The prototype of a dynamically adaptive, three-dimensional lattice Boltzmann method for
simulating the wake fields behind fully resolved wind turbines has been developed. The
implementation has been validated using data from the Mexnext 4.5 m rotor experiments at



both 0◦ and 30◦ yaw angle. Preliminary wake investigations for the SWIFT array, consisting of
three Vestas V27 turbines, have been carried out. Our method can deal well with complex solid
structures under motion. For the Mexnext configurations it is found that the deviations to the
experimental results are of similar magnitude for both yaw angles.

It is further found that the approach is computationally efficient and well suited for
propagating wake structures over long distances without adding excessive amounts of numerical
dissipation. This result was recently confirmed in a meticulous investigation of a simplified
train model at scale 1:25 [19]. In this study, LES and detached eddy simulations (DES) with
incompressible fluid solvers from the popular OpenFOAM software package were compared in
a similar way as above to LES computations of our new LBM solver. Again, while delivering
time-averaged force and roll moment predictions in best agreement with available experimental
results, our implementation was approximately 16 times faster than OpenFOAMs PISO solver
using a static unstructured mesh.

As a next step, it is planned to incorporate enhanced wall-near treatment approaches into the
LBM for turbulent flows. For cases that fully resolve turbulent boundary layers, the damping
of the Smagorinsky constant by the van Driest approach can be easily implemented, cf. [20];
for high Reynolds number situations, in which accurate resolution of the boundary layer is
prohibitively expensive with a Cartesian method, a wall function model will be implemented. A
successful and consistent integration of a wall function model into the LBM with Smagorinsky
large-eddy simulation approach has been demonstrated by Malaspinas & Sagaut [21]. Their
approach uses an implicit iteration locally in each wall-near cell to construct a set of density
distribution functions to specify the skin friction provided to the outer flow according to
boundary layer theory. Incorporating improved wall-near treatments into our LBM-based LES
code can be expected to improve its computational accuracy further.
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