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ABSTRACT

Accreting stellar mass black holes (BHSs) routinely exhilyipe-C quasi-periodic oscillations
(QPOs). These are often interpreted as Lense-Thirringegesen of the inner accretion flow,

a relativistic effect whereby the spin of the BH distorts sluerounding space-time, inducing
nodal precession. The best evidence for the precessionlnsattie recent discovery, using
a long jointXMM-NewtonandNuSTARobservation of H 1743-322, that the centroid energy
of the iron fluorescence line changes systematically wittoQihase. This was interpreted
as the inner flow illuminating different azimuths of the at@n disc as it precesses, giving
rise to a blue/red shifted iron line when the approachimgding disc material is illuminated.
Here, we develop a physical model for this interpretatioclLiding a self-consistent reflection
continuum, and fit this to the same H 1743-322 data. We useayt@rfunction to param-
eterise the asymmetric illumination pattern on the dis¢asarthat would result from inner
flow precession, and find that the data are well describeditiright patches rotate about the
disc surface. This model is preferred to alternatives amigig an oscillating disc ionisation
parameter, disc inner radius and radial emissivity proflfe.find that the reflection fraction
varies with QPO phase3 (60), adding to the now formidable body of evidence that Type-C
QPOs are a geometric effect. This is the first example of taapigc QPO modelling, initi-
ating a powerful new technique that utilizes QPOs in ordenép the dynamics of accreting
material close to the BH.
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1 INTRODUCTION since the iron line is observed to be distorted by Doppldtsfiom
orbital motion and gravitational redshift (Fabian e{ al89®

In black hple (BH) X-ray binary systems,.matter S acc_reted So-called Type-C quasi-periodic oscillations (QPOs) are r
from the binary partner through a geometrically thin, apitic tinely observed in the X-ray flux, with the oscillation fr
thick disc, which emits a multi-coloured blackbody spegctru y y ' ey

(Shakura & Sunyaby_1973; Novikov & Tholie 1B73). Compton increasing from~ 0.1 — 30 Hz as the spectrum transitions from

the hard power-law dominatddhrd stateto the disc dominatesoft

up-scattering of soft seed photon.s by a cloud of hot elestron state (e.g. Wi | | 99). In theuncated disc modethe
close to the black hole also contributes a power-law commone . L . -
disc evaporates inside of some transition radius to formveepo

to the X-ray spectrum, with low and high energy cut-offs dete o . Ichi -
mined respectlvely by the seed photon and electron tempest law emitting hot inner flowt(Ichimafu 197[7; Done eflal. 200me

spectral transitions then arise as the disc inner radiusemow
5; Sunyaev & Truemper 1979). Some fractio = : . g
wards, until it reaches the innermost stable circular qfBI€O) in
of the Comptonized photons reflect from the disc and are scat- . . - .

. . . LT - . the soft state. Alternatives include a corona partiallyezong the
tered into our line-of-sight. This imprints charactedsteflection . ) ic fields (C fang
features onto the spectrum, including a prominent irgnfliores disc, confined by magnetic fiel 197

: ; : [Haardt & Maraschi_1991) and an outflowing jét_(Markoff et al.

cence line atv 6.4 keV and a so-called reflection hump, result- ; ?
ing from inelastic free-electron scattering, peaking~at30 keV 2005). In all models, changes to the accretion geometry ae

R % Fabidh 2005: Garcia eflal. 2013). These reflectidnres quired to explain the spectral transitions.

provide the opportunity to probe the dynamics of the aconedisc, . S_ugges_t_e_d QPO mechar_llsms n the literature_either con-
sider instabilities in the accretion flow (é.g.Tagger & BE1999;

ICabanac et &l. 2010), or a geometric oscillation
* E-mail:a.ringram@uva.nl [1998; [Wagoner et al._2001). There is now strong evidence in
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favour of the geometric models, since high inclination (enor  Sectiorl# and the results of our tomographic modelling irtiSec
edge-on) systems display stronger QPOs than low inclina- [B. We discuss our results in Sect[dn 6 and present our caoankis
tion (more face-on) systems (Schnittman et al. 2006; Matedle in SectiorL .

[2015; [ Heil et al[ 2015). Phase lags between energy bands also

strongly depend on inclination, with hard photons laggimndt s
for low inclination objects, and vice-versa for high ination
objects (van den Eijnden et al, submitted). A prominent in- 2 DATA ANALYSIS

terpretation associates the QPO with Lense-Thirring @msoa 2.1 Observations

(Stella & Vietr|l1998). This is a General Relativistic effethereby ]

the spin of the BH induces precession in orbits of partictes i e considerXMM-Newtonand NuSTARdata from the 2014 out-
clined relative to the equatorial plane (Lense & Thirringl&® burst of H 1743-322XMM-Newtorobserved this outburst for two
Schnittman, Homan & Millér (2006) considered a precessing r full orbits around the _Earth in_Iat(_a $eptember 2014. Wg use da
at the inner edge of the disc. However, the disc is expectémtto  1om the EPIC pn, which was in timing mode for the entire expo-
held stationary by viscosity (Bardeen & Pettel5on 19759, te sure. The first orbit has obs ID 0724400501, and the second or-
QPO amplitude is stronger in the Comptonized spectrum thérei bit is split into two obs IDs (0724401901 and 0740980201) wue
disc spectrum| (Sobolewska Zycki [2006:[ Axelsson et 4l 20114). @ change in Pl. In 116, we split théMM-Newtondata into four
ingram., Done & Fragilé (2009) instead suggested that tHeednt segments: orbit 1a, orbit 1b, orbit 2a and orbit 2b (see Fim 1
ner flow precesses whilst the disc remains stationary, mstivby 116). This was to allow for a minor change in instrumentalipet
the simulations mm)- between orbits 2a and 2b, and for possible changes in theesour

I & D [2012b) showed that precession of the inner geometry over the course of orbit 1. We employ the same nam-
flow will cause the iron line to rock from blue to red shifted,the Ing conventions n thl's papdﬂuS_'I’?Rh)bservgfc:dthe source (otl))_s ID
inner flow illuminates the approaching followed by receddisc 80001044004) simultaneous with the secoftdM-Newtonorbit.

material. This prediction can be directly tested with QP@g&h W%l::ss,&gtzfrom both of th\tuslTA;q‘ocal plzne mo:ule_s, FPMA d
resolved spectroscopy. Phase-resolving poses a techhad&nge, an -Here, we use exactly the same data reduction proee

since the stochastic nature of the QPO prevents phase doldia described in I16.

can be used for e.g. neutron star pulses (e.g. Wilkinsor] 20l In this paper, we use only thduSTARdata and the orbit 2

Gierlinski et al| 2002) - from being appropriate. Miller & Homan XMM-Nevytondata. We keep the _data fqr orbits 2a and 2b sepa-
m) applied a simple flux selection to strong QPOs from GRS rate, but tie together parameters in our fits between th@(MM-
1915+105, but constraining spectra for more than two pheses Newtonsegments and tr.muSTAFexposure.. We exclude orbit 1 for
quires a more sophisticated method. Ingram & van def KIid§20 a numbe_r of reasons. F|r_st_ly, there is no simultan@wSTARcov-
hereafter IK15) developed a technique that uses the avEmgeer erage. Itis very useful tO,JO'me, fXMM-NewtoralndNuSTARjataz
properties in order to reconstruct phase-resolved speuithused since XMM-Newtonprovides high signal-to-noise at the iron line
it to discover spectral pivoting in GRS 1915+1 andNuSTARgives a view of the reflection hump. Unfortunately,
(2016) used a similarly sophisticated technique in ordengasure ~ N€re are some cross-calibration issues betw@é-Newtorand
changes in the disc temperature of GX 339-4 during the QPO cy- NuSTARwhich we will discuss in the following Section. We show
cle (although this is for a Type B QPO; see 5 0. Casellal b085 2 that these issues can be overcome if data from the two oliserva
for QPO classifications). However, the phase-resolved\hetia €S @ré simultaneous, but without this simultaneity itrfsbiguous

of the iron line could not be constrained in these studiestdue whether differences in the spectrum are down to crossredin,

limitations on data quality. Ingram etlal. (2016, hereaHa) ap- or genuinely down to evolution of the spectrum between the tw
plied a developed 3ersion of the IK15 method to a IO(I)gH\/FI) observations. Secondly, we saw in 116 that orbits 1a, 2an@titze
Newtonand NuSTARbbservation of H 1743322 in the hard state NuSTARbbservation all showed the same characteristic modulation

in line energy with QPO phase, with maxima~at0.2 and~ 0.7
cycles, whereas orbit 1b showed a different modulation.réhson
behind this difference is still not clear, so we exclude thema-

in order to measure a QPO phase dependence of the iron line cen
troid energy. This provides strong evidence that the QP Qivernl
by precession - either precession of the inner f

2012Dh), or alternatively of the disc (i.e. precession ofréfeector; ll?eusi 3212 set, and also orbit 1a to avoid simply ‘cherry pigkthe
ISchnittman et al. 2006). '

In this paper, we develop a physical model for the QPO phase-
resolved spectra measured in 116. Our model is designedrticmi

illumination of the disc by a precessing inner flow - as the fioer 2.2 Summary of phase-resolving method

cesses, it preferentially illuminates different azimuttfighe disc. The phase-resolving method used is described extensindliGi
Rather than consider a specific geometry for the precessimg fl  and IK15. Here, we summarise the method and leave the details
we parameterise the asymmetric, rotating illuminatiorfifgavith earlier references. Conceptually, the method consistsmsteain-
an analytic function. This has the advantage of making poiori ing the average QPO Fourier transform (FT) for each energp-ch

assumptions about the inner flow geometry, it enables theemod nel. That is, for each energy channel, we wish to measure gaam
to be fast enough to fit directly to data, and it allows us torgefi ~ count rate, and the amplitude and phase of each observed PO h
asymmetry parameters that can be set to zero in order tog@ecov monic. We detect only the fundamental (first harmonic) arel th

the usual case of axisymmetric illumination. In Secfibn 2sum- overtone (second harmonic) over the broad band noise, acahso
marise the observations and the phase-resolving meth&edton not consider any higher harmonics. The zeroth harmonignglgi
[B, we fit the time-averaged spectrum with a relativistic it the mean count rate, and also needs to be taken into cortsitera
model in order to address cross-calibration issues betwéav- Since the mean count rate is real, it trivially has a phasestd.z
NewtonandNuSTARand also to provide a comparison to our even- Therefore, for a given energy channel, the QPO FT considigeof
tual tomographic modelling. We present the details of oudeh numbers: the (amplitude of the) mean count rate, the anclgliof
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the first and second harmonics, and the phase of the first andde
harmonics. Equivalently, we can think in terms of real andgm
nary parts instead of amplitude and phase, in which casewuae fi
numbers are: the real part of the mean count rate, first armhdec
harmonics and the imaginary part of the first and second haios.0

It is fairly straight forward to measure the amplitude of the
two QPO harmonics as a function of energy. The simplest way is
make a power spectrum for each energy channel and fit eachr powe
spectrum with a sum of Lorentzian functions. The squaredliamp
tude of thejth harmonic is simply the integral of the Lorentzian
component representing it. We used a slightly more comglita
method in 116 to maximize signal-to-noise and to circumtbiet
NuSTARdeadtime but, conceptually, our method is the same as

described here. The phase can be measured by defining a refer-

ence band, and, for each energy channel, calculating trss-cro
spectrum between that channel (the subject channel) arrdfiére
ence band (van der Klis etlal. 1987; Uttley et al. 2014). Thasph
of the cross-spectrum averaged over the width ofjtheharmonic
tells us by how many radians thigh harmonic of the subject chan-
nel lags thejth harmonic of the reference band. However, we in-
stead want to know by how many radians ke harmonic of the
subject channel lags tHeast harmonic of the reference band. To
know this, we must measure the phase difference betweerrshe fi
and second harmonics in the reference band, and use thigéztto
the phase as measured from the cross-spectrum. We meaisure th
phase difference between harmonics using the method of. IK15
With the QPO FT as a function of energy constrained, we can
proceed in two ways. The simplest is to inverse FT the datgiy®
a waveform for each energy channel. It is simple to pictuie the
waveform for a given channel is a constant (the mean couet rat
of that channel) plus two sine wave functions of QPO phase rep
resenting the two harmonics, each with their own amplitudé a

phase. Having a waveform for each energy channel, we can sim-

ply take the spectrum for different values of QPO phase and fit

each phase with a spectral model, and see how the paraméters o

the spectral model change with QPO phase. However, the-stati
tics are badly behaved in this case. This is because, eveighho
the five numbers per energy channel that make up the QP@oFT
have well-behaved, Gaussian errors, the inverse FT intexicor-
relations between QPO phases. It is therefore much cleamer f
a statistical point of view to define a model for how the spettr
changes as a function of QPO phase, and then Fimthgel Note
that both of these methods are equivalent - we can eitherseve
FT the data and fit in the time domain, or we can FT the model and
fit in the Fourier domain. The only difference is that the Feur
domain method is superior when it comes to assessing godhes
fit, error calculations etc. Therefore, in this paper, werfiirely in

the Fourier domain.

3 TIME-AVERAGED SPECTRAL FITS

Before analysing the QPO FT, we first fit the time-averagitiv-
Newtonand NuSTARspectra with a relativistic reflection model.
One motivation for this is to gain insight into the effect qfes-
tral variability on the time-averaged spectrum. If spdctrari-
ability were exclusively linear, the QPO phase-averagesttspm
would be exactly equal to the spectrum calculated using lilase
averaged spectral parameters. However, we saw in 116 thatati
line centroid energy and the photon index change systeafigtic
with QPO phase. These changes are mildly non-linear ané-ther
fore may introduce biases into time-averaged spectral Hiogle

(© 2016 RAS, MNRASD00, [THI3

Reflection tomography of H 1743-3223
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Figure 1. Unfolded time-averaged spectrum with the best fit model)(top
and data to model ratio (bottom). We considekM-Newton orbit 2a
and the strictly simultaneous portion of theiSTARobservation. FPMA,
FPMB and EPIC-pn data and corresponding models are asddbdlhe
dashed lines represent the continuum model. The pn spedsrsignifi-
cantly harder than thBluSTARspectra, but we are able to find an accept-
able fit using a multiplicative correction factor (equafffin Data have been
re-binned for plotting purposes

Another motivation is to explore the cross-calibrationcdépancy
betweenXMM-Newtonand NuSTAR The XMM-Newtonspectrum
is significantly harder than tieéuSTARspectrum.

We consideiXMM-Newtororbit 2a and select a strictly simul-
taneous interval of thduSTARbbservation. We usespecv12.8.2
to fit the model

constant x E“T x tbabs x [relazill + willver],

@)

to the FPMA, FPMB { — 75 keV) and EPIC pn4 — 10 keV)
spectra simultaneously. We choose to ignore<h¢ keV range in
the XMM-Newtondata in order to avoid calibration features result-
ing from uncertain modelling of the so-called charge trangfef-
ficiency (see De Marco & Pohti 2016 and references thereim for
discussion on this). The- 4 keV energy range also reliably has
a negligible contribution from direct disc emission, witietdisc
temperature for this observation measured t@he< 0.4 keV by
both| Stiele & Y (2016) and _De Marco & Panti (2016). The con-
stant factor simply accounts for differences in absolutedhlibra-
tion. We introduce the parametAf” to account for the discrepancy
in photon index measured individually for the two observiatm
We fix AT = 0 for bothNuSTARmodules, and allow it to go free
for the pn. We choose to fit this way around for a number of nesso
Firstly, the reflection models we use are only tabulated'for 1.4,
so using the ralxMM-Newtonspectrum, which is very hard, risks
going close to this boundary at some point during the runofrige
x? minimisation algorithm. Secondly, théMM-Newtonspectrum
is far harder than is commonly observed in the hard stateggge
IShaposhnikov & Titarchllk 2009), whereas the photon indea-me
sured from theNuSTARspectrum is consistent with expectation.
Finally, it has previously been reported that the pn in tigmnode
also measures a harder power-law index tRXT Efor a hard state
observation of GX339-4 similar in flux and spectral shapehto t
observations analysed hete (Kolehmainen &t al.|2014). &Valli
other parameters to be the same for the two observatories.
Thbabs accounts for interstellar absorption, and we freeze the
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Table 1. Best fit parameter values and errors for our time-averaged spectral fI" is a calibration parameter that accounts for the offset @cspl index
measured bXMM-NewtonandNuSTARR,, is a gravitational radius?, = G M /c2. See the text for more details.

Parameter AT T Tin i Ecut logg & f Aro
Units R,  deg keV %
Best fit 0.22 1.57  36.3 67.5 285.0 2.0 24.7 0.7
1o error 5x 1074 1073 41 23 64 5x1072 03 3x1072
hydrogen column density t&V;, = 2 x 10%2cm~2 assuming 4 TOMOGRAPHIC MODEL

the abundances of Wilms, Allen & McCiagy (2000), followindet
spectral analyses of the same data set_(De Marco &|PPonti 2016;
Stiele & YU [2016). This is slightly higher than the value used
116, but we find that it has no significant effect on the measure
ment of an iron line centroid energy modulatidielx:ll is a rel-
ativistic reflection model which includes an exponentialyt-off
power-law X-ray continuum and a reflection component whgh i
smeared by the orbital motion of disc material and graatei
redshift (Garcia et al. 2014). We include théllver component
I3), which is the sameragzill but without the
relativistic smearing, to account for a distant reflectoichht is
possible to detect ilXMM-Newtonspectra of BH X-ray binaries
in the form of a narrow iron line (e.g. Cygnus X{1: Fabian ét al
2012; GX 339-4 al. 2014). The shape of thee res
frame reflection spectrum depends on the shape of the ilatmin
continuum, the disc ionisation paramelies, , £ and the iron abun-
dance relative to solarl r.. For therelxill component, we allow
log,, £ andAr. to be free parameters. For the distant reflector, we
assume neutral materidbg,, £ = 0), with the same iron abun-
dance as theelzill component. The relativistic smearing depends
on the inclination anglé the disc inner radius,, and the radial de-
pendence of illuminating flux, which we assume tabe 3. Since

we do not assume that, is equal to the innermost stable circular
orbit (ISCO), the relativistic smearing only depends verakly

on the BH spin parametet, (the energy shifts and photon paths
both depend on the metric). For this reason, wexfix 0.21 to be
consistent with the measurementeofe 0.2 made bI.
) through disc spectral fitting and the limig 0.2 placed by

(2014) using high frequency QPOs.

Fig[ shows the data unfolded around the best-fit model (top)
and the ratio of data to model (bottom). After applying%
systematic errors to account for uncertainties in the teles re-
sponse matrices (as is widely practiced: e
[2014;[Plant et All_2015), we achieve an acceptable fit (retuce
x? = 3357/3225 = 1.04). We find through an F-test that the
distant reflector is formally required with a significance 080
(since the best-fit without theillver component has a reduced
x> = 3387/3226). Table[l shows the resulting best-fit parameters
with 1o errors. Our best fit model indicates that the disc is trunttate
outside of the ISCO and yields a moderately high inclingtemmn-
sistent with the source showing dips but not eclip
[2005)[ Steiner et al. (2012) measured the angle betweetneusf
sight and the radio jet (which is likely aligned with the BHirsp
axis; Blandford & Znajek 1977) in H 1743-322 to be75°. Thus,
although the two angles are broadly consistent within srrere
is room for a modest misalignment between the disc and BH spin
axes, as is required for the precession model. The fit ineficat
fairly low ionisation, consistent with the relatively lovoitinuum
luminosity, and a mildly sub-solar iron abundance.

In this section, we describe our physical model for the QP&sph
resolved reflection spectrum. The intention is to mimic tegna
metric, rotating illumination pattern that would be caubgd pre-
cessing inner flow irradiating the disc by using an analyétam-
eterisation which we can fit directly to the data. The brightches
on the disc in Fid R illustrate this for two QPO phases. Weasgnt
the reflected intensity as a function of disc radiyglisc azimuth
¢, and QPO phase using the function

Ie(rg.y) o 170 {1+ Arvcos’ [(v— ¢+ 61)/2)

+ Avcos’[y— &+ o] s, @
wherelg, is the rest-frame reflection spectrum ahg (r, ¢, ) is
the specific intensity of radiation emitted at photon enefiyyfor
a given patch of the disc at a given QPO phase. We see that the
intensity is a power-law function of radius, the same as dartdi
the time-averaged spectrum in Secfign 3 (wjth= 3). We define
the z-axis to be parallel with the disc rotation axis such e disc
lies in the x-y plane. The disc azimuthis measured clockwise
from the x-axis, which is defined as the projection of the oles
line-of-sight on the black hole equatorial plane. The deleece
of intensity on disc azimuth is parameterised through theneo
terms in equatio]2. Setting, = 0, 4; > 0 creates only one
bright patch that rotates about the disc surface once peegs®n
cycle, leading to only one maximum in the iron line energy per
QPO cycle. At QPO phase = 0, the brightest patch of the disc in
this case would be = ¢:. SettingA; = 0, A2 > 0 corresponds
to the front and back of the flow irradiating the disc with equa
intensity, leading to two identical patches rotating abiiat disc
surface and two identical maxima in the line energy per QRslecy
At QPO phasey = 0, the two brightest patches of the disc in this
case would b&) = ¢ and¢ = ¢2 + 180°. In 116, we observed
two maxima in the iron line centroid energy per QPO cycle with
the second slightly higher than the first, thus the best fitehadll
likely have A; > 0, A> > 0. This indicates that the front and
back of the flow irradiate the disc, and thus requires the flow t
have a fairly small vertical extent (or alternatively thesalignment
between disc and flow is large). Ingram & Dbne (2012b) instead
modelled the flow as an oblate spheroid with large verticterex
and therefore the underside of the flow was never above tloe dis
mid-plane. The cosines in equatich 2 are squared so as terrev
the possibility of unphysical parameter combinations foiak the
intensity is negative.

The specific flux observed at enerdy, from a patch of the
disc subtending solid angl&(r, ¢) to the observer is

dFE, (r,6,7) = (Bo/Ee)*Ip, (1, ¢,7)dQ(r, ). (3)

Each solid angle elemen2(r, ¢) can be seen as a pixel on the
observer's camera. We definet@ x 400 circular (polar) grid of
pixels and, for each one, trace the unique null-geodesiearkerr

metric (using the codeEOKERR [Dexter & Agoll2009) back from

© 2016 RAS, MNRASD00,[THI3




Reflection tomography of H 1743-3225
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Figure 2. Left: Ray traced disc images for two QPO phases (as labelled)ligisigrour best fit model. The disc inner radius and inclioatare equal to our
best fit values, and the border of the multi-coloured patihaet by the best fit illumination profile for the relevant QPfase. The colour scheme of the
multi coloured patches encodes blue shiight: The best fitting reflection spectrum, zoomed in on the iroe, lfor the same QPO phases. The QPO phase
= 0.2 cycles iron line (blue) has a boosted blue horn and red wicguse the blue and red shifted parts of the disc are prefheiffuminated (top image),

in contrast to the QPO phase0= iron line (red line), which corresponds to the bottom disag®. Animated versions of these plots can be viewed at and
downloaded fronhttps://figshare.com/articles/Tomographic_modellofgH 1743-322/3503933rhese animations are designed to be played together.

the centre of the pixel to assess if and where that geodésicépts Our model calculates the integrated specific flux as a func-
the disc. The blue shif{,F,/E.), is calculated for all the photon  tion of observed energ¥z, () for 16 steps iy and, for each
paths that intercept the disc using the equation energy channel, calculates the FF, (y) for the harmonicg = 0,

j = landj = 2. Thej = 0 harmonic (the so-called DC com-

E, _ V—Gtt — 2916w — gpow?

(4 ponent) is simply the spectrum averaged overyaltach harmonic
E. 1 4+ wasin(i) '

has real and imaginary parts, but the imaginary part of the&@-
ponent s trivially zero. This leaves five spectra to fit sitaneously
to the observed QPO FT. We load our model ix®PEC using
the local model functionality. We include absorption ustibgbs
for real and imaginary parts of every harmonic (since aligmp

whereg,, is the Kerr metricw = 1/(r*/? + a) is the angular
velocity in dimensionless units, and the impact parametirthe
horizontal distance from the centre of the observer’s carteethe

centre of the pixel inR,. We use the same coordinate system and . S . )
. - is multiplicative). We also add a distant reflectatil to the
ray-tracing procedure as Middleton & Ingrlam (2015) excegreh P ) (ver)

. " . DC component only, since a constant additive component dloes

Wle ass‘:mti clc.)crl:;/vsz (|e;t-hh€:.l;'tlded) r?tatlontsct)ht h?t f? me contribute to the non-zero harmonics. As discussed in Hesfact
aways to de ng 1 an reFEsb |I1$ are?vlva}/s othe ed' o i ‘; that we fit in terms of real and imaginary parts rather thanlamp
!mfll?esBan spetc ral(sle:e _I-_h.EC.IUﬂ '(i t a;fs tuhmes. ISCTo allon tude and phase means that the instrument response islyrial
n fb ¢ equac?rla P ZnSH |ts LS nol rue iftnere 1s a mgr& .. counted for when the data are loaded iRBPEC In order to avoid
ment between disc an rotafional axes, as we are Imagining edge effects of the convolution, we extend the energy gretius
here, but the error introduced is very smO .

. ) to calculate the model up @00 keV (using thexspEccommand
We usezxillver |1E13) for the rest-frame reflection . . )

. energies extend high 200").
spectrum/[ g, (see sectiopl3).
We allow the continuum normalisatiaN, the reflection frac-

tion f, and the photon indeX; to vary as a function of QPO phase,
~, with two non-zero harmonics. For example, the photon index 5 RESULTS
varies with QPO phase as

We load the model described in the previous sectionXsREcas
() = Do + Airsin[y — éir] + Aor sin[2(y — dar)],  (5) the local modetnodfeprec. We _fit to the measure_d energy depen-
dent FT of the QPO, considering the real and imaginary pdrts o
and we use analogous expressions for the other two variakdep the first and second harmonics, and also the time-averaged sp
eters,N(v) and f (7). trum (which is the real part of the zeroth harmonic). Altdgpet
this gives five spectra to simultaneously fit for each dataat
the non-zero harmonics, we use the same coarse binning yedplo
1 The original derivation of equatidd 4, presented in Luh{aez9) (equa- in 116, which is necessary to ensure Gaussian errors. Farehe
tion 18 therein), contains a typographical error, which vegated in equa- ~ oth harmonic (the time-averaged spectrum), we insteadthese
tion A3 of [Middleton & Ingrarh [(2015) but corrected here (tresuits of fine spectral binning employed here in Sectidn 3 (althougte no
[Middleton & Ingrari 2015 were calculated using the correatiola). that this is still coarser than the instrument response)a Akeck,
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Figure 3. QPO FT as a function of energy fatMM-Newtonorbit 2a (left) andNuSTARright). Real and imaginary parts of the first and second baics

are as labelled. Real and imaginary parts of the data arercotmled blue and red respectively, and the black lines tidmdest fitting model. The data are
unfolded around the best fitting model and are in units ofgneguaredx specific photon flux. We see features around the iron line afielction hump,
particularly for the real partsXMM-Newtomnd NuSTARhow the same trends.

we also performed fits using coarse binning for the timeayed
spectrum and see no significant differences in our best4férpa

eters or goodness of fit. We use the fine binning for our arglysi

however, since it is sensitive to parameter combinatioas ¢an

reproduce the observed variability properties but preshieirp fea-

tures in the time-averaged spectrum that are not observed.
We employ the model

constant x E“T x tbabs x [modfeprec + willver], (6)

these features result from changes in the shape of the refiect
spectrum over a QPO cycle.

Table[2 shows our best-fit parameters with errors. Fig[R2
shows a visualisation of the disc illumination profile iratied by
the best-fit asymmetry parametets, A2, ¢1 andg, (see equation

[2). We show disc images for two QPO phases with the correspond

ing phase-resolved reflection spectra. The multi-coloyr@idhes
pick out where the illuminating intensity,z, (r, ¢, ), is greater
than10% of its maximum value, with the rest of the disc coloured

wheremodfeprec outputs either the real or imaginary part of the ~ 9rey. The colour coding of the patches encodes bloue shiftsate
first, second or zeroth QPO harmonic. We fix the calibration pa tion[4). The two QPO phases shown are cycles (2°, blue line

rameters donstant and AT") to the values obtained in Sectibh 3,
and continue to usd, = 2 x 10?2 cm~2 for the hydrogen column
density. We also fix the ionisation parameter, high energyofu
and relative iron abundance to the values obtained in Se@io

profile) and0.4 cycles (144°, red line profile), since these roughly
correspond respectively to the maximum and minimum line cen
troid energy, as measured by 116. For the purposes of thesg pl
the modulations i, reflection fraction and normalisation have

The zillver component, as before, accounts for distant reflection, Peen set to zero, to ensure that all changes to the refleqien s
which we assume not to vary on the QPO period and therefore sett'um result purely from changes to the disc illuminationfipeo All

its normalisation to zero for all non-zero harmonics. Waljgi fit
for the two XMM-Newtonobservations and thiduSTARobserva-
tion. We tie all physical parameters between these threge siis,
except for those describing the modulation of the continunam
malisation. As in 116, the modulation in the continuum nolisza
tion is very similar for the three data sets, but can be mealstara
high enough precision for small differences to be highiyngigant.

5.1 Best fit tomographic model

We achieve a good fit with reduced = 2544.54/2511 = 1.013
(rejection probability68.5%). Fig.[d shows the QPO FT data and
model forXMM-Newtonorbit 2a (left) andNuSTAR(right). Here,
the real and imaginary parts of the first and second harmanécas
labelled, with real and imaginary data points colour cod=spec-
tively blue and red, and the model always plotted as a blamk li
The data are unfolded around the instrument response asgptimei
best fit model and are in units of energy squaredpecific photon
flux (i.e. theeeu f option inXsSPEQ. We see curvature around the
iron line, particularly for the real parts. In tiNuSTARlata, we also
see the effect of the reflection hump at high energy. In theaihod

other parameters come directly from our best fitting mode.sée
that the line has a strongly boosted blue horn and a suppresse
(blue line) when the left and right sides of the disc are iilnated
(top disc image). This is because we see enhanced emisesion fr
both the blue shifted approaching material and the redezhife-
ceding material, but Doppler boosting ensures that the shifeed
emission dominates. In contrast, the line has a strong adrsup-
pressed wings (red line) when the front and back of the disc ar
illuminated (bottom disc image), since there is no enharcerof
the Doppler shifted emission from the approaching and iieged
disc material. As with the time-averaged fits, we measure éemo
ately truncated disc and a fairly high inclination anglegttibend-
ing effects are evident in the disc images through appararping

of the disc, but we do not consider ghost images, since phaion
these paths will likely be scattered before reaching thesives.
Animated versions of the plots shown in i 2 can be viewed at
and downloaded from the link given in the caption.

Fig.[4 is a contour plot resulting from varying the asymmetry
parametersi; andAs. The contours representy® = 2.3 (black),
6.18 (red) and 11.83 (green). These levels correspond tahd?2
3 o for two degrees of freedom. We see that fairly large values of
A; and A; return ay? value within I of the best-fit (black cross).
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Table 2.Best fit parameters for our tomographic modelling. See tkiefte more details.

Parameter Ty Tin ) fo Ay As b1 b2
Units Ry deg % deg deg

1o upper 1.571  37.30 73.33 23.20 2.263 8.740 138.685  28.105
Best fit 1.567 31.47 70.68 21.83  0.93 3.50 94.66 18.98

1o lower 1.563 27.81 67.51 20.48 0.322 1.275  49.675 8.93

This is because of the way the illuminating fluks, (r, ¢,~), is
parameterised. We see from equafidn 2 that(r, ¢,~) is a sum
with three terms. The first term does not depend on QPO phase,
whereas the second two do. Increasing and A» respectively
increases the relative importance of the second and thirdste
with respect to the first. However, increasidg from, e.g.100
to 1000 makes a negligible difference, since the constant compo-
nent changes from beindg% to 0.1% of the flux in this case. Our
parameterisation is of course designed to investigate fiet ef
settingA:; = A2 = 0, in which case there is no QPO phase de-
pendence of the line profile in the model. We see thais better
constrained thaml; and that the pointl; = A, = 0 lies outside
of the 30 contour. However, these contours are for two degrees of
freedom, and the pointl; = A, = 0 is a special point, in that
setting A1 = Az = 0 renders the fit insensitive t¢, and ¢2.
Following 116, we therefore use an F-test to compare our fiest
(reducedy?® = 2544.54/2511) with the null-hypothesis (reduced
x* = 2556.98/2515). This indicates that the best-fit model is pre-
ferred with2.40 o confidence. Therefore, although we can say with
3.700 confidence that the line centroid energy is modulated (116),
our analysis yields a lower significance for an actual asytrime
illumination profile. This is partly because here we necelysase
a more complex model for the iron line than a Gaussian, arré-the
fore lose degrees of freedom. Also, small apparent shiftsdriron
line profile can be driven by changes in the reflection comtmyu
caused by changes in the photon index (which our model agtoma
cally takes into account). Finally, we have been rather ecmgive
in excludingXMM-Newtonorbit 1.

As another visualisation of our results, Hi¢j. 5 shows hovitvar
ous quantities / model parameters vary with QPO phase. EawH p
is labelled with a statistical significance. For the top paties is
the significance of asymmetric illumination as calculatbd\e.
For the other three panels, this is the significance with Wwlithe
plotted parameter changes with QPO phase, calculated asifg
test comparing the best fitting model with an alternative fieveby
the parameter in question is forced to be constant. In ocderatke
this plot, we run a Monte Carlo Markov Chain for our best fit rabd
and, for each of the four panels, calculate a histogram foh e
512 QPO phases (see 116 for details). The chain has 125,608 st
and we burn the first 25,000. For the top panel, we computertae |
profile as a function of QPO phask(y, ), assuming a-function
rest-frame iron fluorescence linett keV and define the centroid
energy as

B fow EL(~v, E)dE

Ee(v) = = L(v, B)dE

(M

We see that the centroid energy calculated in this way fdltve
same trend as the centroid of the Gaussian used in 116, withhma
at~ 0.2 and~ 0.7 cycles. The second panel shows the reflection
fraction. We see that this is modulated with QPO ph&sg2¢).
The significance is calculated from an F-test, and does rpsrae
on the chain. Our model is normalised such that the obsemred r
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Figure 4. x2 contour plot showing the two asymmetry parametégsand
As. The contours correspond to 1 (black), 2 (red) and 3 (greeonfi-
dence for two degrees of freedom.

flected flux will be higher when the approaching disc matesal
preferentially illuminated, even if remains constant, because of
Doppler boosting. Changes jihtherefore indicate variability in the
reflected fluxon top of this effect. We expect changes in the re-
flection fraction if the misalignment angle between the mfitav
and disc changes throughout a precession cDon
). The third panel shows a modulatiorlinhowever this is
not significant .950). This modulation i has a different phase
to that measured by 116, with maximaat0.4 and~ 0.9 cycles,
compared with~ 0.3 and~ 0.8 cycles in I16. The significance of
theT" modulation has also drastically reduced compared with 116.
This is because we now include a full reflection model with a-co
tinuum rather than just a Gaussian iron line. Our result&catd
that the observed changes in spectral hardness during a @iRO ¢
are more due to changes in reflection fraction than photoexind
An increase in reflection fraction makes the spectrum hgsiece
the reflected continuum is harder than the directly obsecoatin-
uum). With no reflected continuum in the model, this hardgian
only be modelled as a reduction inh We can see evidence of this
in Fig.[3, since the lowest reflection fraction (0.25 cycles) co-
incides with the highedf in 116. TheNuSTARdata is particularly
important for constraining this, since the reflection hunieg a
good constraint on the reflected continuum.

For completeness, we briefly investigate the anomaXis-
Newtonorbit 1b. In [16, we found that the best-fit iron line centroid
energy modulation was very different in this data set tohalath-
ers, and also that the modulation was not statisticallyifazmt
(see Fig. 7 in 116). As expected, when we fit these data withaur
mographic model, the asymmetry parametérandA- are poorly
constrained, and the best-fit model with = 0.96 and Az ~ 0 is
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that governs the ionisation balance. Thus, we would expetttis
case that the line energy should be in phase with the comtinuu
flux, which is not the case (Figgl 5). Nonetheless, we testdhisa-
tion hypothesis without this constraint. We skt = A> = 0 and
parameterise the ionisation parameter as a function of Qe
log,, £(), in the same way aB(v) in equatiorb, with the av-
erage, amplitudes and phases replacetbpy, £o, A1¢, Az, P1e
and@,g.

The null-hypothesis, withd;e = A: = 0 has a reduced
x> = 2556.98/2515, and the best fit we find after releasirg
and As¢ has reduceg® = 2556.96/2511. The negligible change
in x2 for a reduction of 4 degrees of freedom means that this model
is not an improvement over the null-hypothesis. Our besbfitd-
graphic model is preferred over this alternative model thatsig-
nificance of this cannot be measured using an F-test sinasvthe
models have the same number of degrees of freedom. We dalcula
a lower limit of the significance through an F-test by artélbi
adding a degree of freedom onto the alternative model. Fhisn t
we conclude that the our best fit tomographic model is preteto
the alternative model with a significance uf3.50 (see Tabl€l3).
This model does not work because increasing ionisatioreasas
the line energy anduppressethe relative strength of the reflection
Z 0.12 hump, which is the complete opposite of what we observe (gpe F
3in 116).

E, (keV)

f (%)

1 l 1 l 1 l 1 l 1
0 0.2 0.4 0.6 0.8 5.2.2 Modulated disc inner radius

Phase (QPO cycles) Our results strongly favour a systematic geometric change d
ing the QPO cycle. Perhaps an axisymmetric change is adequat
though? We consider a modulation of the disc inner radiuls pat
rametersino, Air, A2r, o1~ and¢o,.. This can cause changes in

Figure 5. Visualisation of our best fitting parameter modulationse Tion
line centroid energy, defined by equatidn 7, shows a chaistitevariation
with QPO phase, with two maxima at 0.2 and~ 0.4 cycles. This is the

same trend as is presented in 116 for a Gaussian iron line Imdtealso the line profile because rotational velocity depends onusadive
see that the reflection fraction is modulatéds@o) and the photon index again setd; = A, = 0 and start with the null-hypothesis model
modulation is not statistically significant. The modulatio normalisation A1 = As = 0. When we releasd - and As,-, we find a best fit
corresponds t&XMM-Newtonorbit 2a. with reducedy® = 2556.2/2511. Using the same method as be-

fore, we find that our best-fit model is preferred over thisralative

) N model with> 3.4¢ significance.
preferred toAd; = A2 = 0 with a significance of only).5¢. The

absence of simultaneolMuSTARdata for this data set adds to the

difficulty in constraining model parameters. Our best fgtirmlue 5.2.3 Modulated emissivity profile

of A2 =~ 0 is consistent with the results of 116, who found that _ _ o ) o

the best fitting iron line centroid energy modulation had ecand Finally, we consider a modulation in the radial emissivitpfge.
harmonic (i.eA2x ~ 0). Our best fitting value of; = 160.9° is This will also influence the line profile because of the radiepen-
also consistent with the 116 results, since this implies the line dence of rotational velocity (and gravitational redshiftje see in
centroid energy peaks at 0.5 QPO cycles (see Fig. 7 in 116) -  equatiorL2, that the illuminating flux is r~“. Here, we parame-
very different to the other data sets. teriseq with the parametergo, A1q, Azq, ¢14 aNdgz,. The best fit

we find has reduce;z!2 = 2556.9/2511, and so our best-fit model
is preferred over this with> 3.50 significance (see Tablé 3 for a
5.2 Alternative models comparison of all the models tested).

We also consider alternative interpretations for the iioe ken-

troid energy modulation.
6 DISCUSSION

We have developed a spectral model that calculates thetieflec

5.2.1 Modulated ionisation parameter ) ) . . o
P spectrum emitted from a disc with an asymmetric, rotatihgnil-

We first consider changes in the ionisation paraméigr,, &, over nation pattern. This is designed to mimic the effect of a @ssing
a QPO cycle. An increase in ionisation leads to a higher rest- inner flow preferentially illuminating different disc azirths dur-
frame line energy, since the ions are on average more tigbtipd ing a precession cycle, but makes agriori assumptions about
(Matt et al| 1993t Done 20010). Therefore, it is possible, rimgi- the inner flow geometry. The asymmetry in the illumination-pr

ple, for there to be a modulation in line energy with no gesiomet  file, and therefore the QPO phase dependence of the irontdine p
changes. In this case, the disc ionisation should peak wieeir-t file, is parameterised by the asymmetry parametgrand A,. We
radiating flux peaks, since it is the intensity of incomingiagion fit this model, in Fourier space, to the QPO phase-resolvedisp
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Table 3.Comparison of models. The best fitting model is our tomogaph
model and the null-hypothesis model considers axi-symmiditrmination

of the disc (i.,e.A; = Az = 0). The three alternative models tested in
Sectio{ 5. are also listed. In the third column, we list tiadistical signif-
icance with which the best fitting model is preferred overhealternative
model.

Model | x?/d.o.f. Significance
Best fit | 2544.54/2511 -
Null-hypothesis | 2556.98/2515 240

& modulation | 2556.96,/2511 > 3.50
rin Modulation | 2556.20/2511 > 3.4do

g modulation | 2556.90/2511 > 3.50

from H 1743-322, originally constrained by 116. In this Seiwt
we discuss our results.

6.1 Asymmetric illumination profile

For our best fit modelA; ~ 0.9 and A, ~ 3.5, indicating an
asymmetric illumination profile that rotates about the distface
throughout a QPO cycle. This is visualised in Fih. 2 by thetimul
coloured patches. Sincé, > A, there are two bright patches
rotating about the disc surface. The iron line has its marinsen-

troid energy when the left and right hand sides of the disc are

illuminated (QPO phase- 0.2 cycles), and it has its minimum
centroid energy when the front and back of the disc are iHumi
nated (QPO phase 0.2 cycles). These configurations both oc-
cur twice per precession cycle, explaining why we see two-max
ima in line centroid energy per QPO cycle (top panel of Elg. 5;
also see Fig. 10 of 116). In 116, we suggested that such amiilu
nation profile could result from the disc being irradiatedtoth
the front and back of the precessing flow. This could occuhéf t
vertical extent of the flow is relatively small compared witte
misalignment between the disc and flow, since in this casenhe
derside of the flow can be above the disc. The true configuragio
likely more complex than this, perhaps with a transitionaagor
even differential precession warping the inner flow as ssiggeby
ivan den Eijnden, Ingram & Uttley (2016).

We find that our best fit model is preferred to a null-hypotkesi
with A, = A> = 0 with 2.40 confidence. This is a lower sig-
nificance than for the iron line centroid energy modulationrfd
by 116 (3.70), because we are now fitting a more complex model
with less degrees of freedom, and we also conservativelgrégn
~ 130 ks of data. We also fit alternative models for the line cen-
troid energy modulation. We model modulations in the disisa-
tion parameter, inner radius and radial emissivity profile find

Reflection tomography of H 1743-3229
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Figure 6. Main plot: Misalignment angle between the disc and BH spin
axes,(, plotted against the cosine of the azimuthal viewing angée the
text for details). This assumes our best fitting value fordise inclination
angle: and a best fitting value of the BH spin inclination angl&éom the
literature.Inset: Cumulative distribution function fof which takes statis-
tical measurement errors and6 into account and assumes equal proba-
bility of measuring a giveros ®.

6.2 Light-crossing lags

Our analysis has not considered light-crossing time lagseghey
are small compared with the timescales we are consideringeS
we have simply parameterised the illumination profile ondtse
surface as a function of QPO phag¢r, ¢, ), light-crossing lags
can, in principle, be swallowed up into our definitionIdf-, ¢, ).
We can estimate the importance of light-crossing lags bygima
ing that equatio]2 represents the illumination under tiseiap-
tion that light travel isinstantaneouslin this case, a patch of the
disc located at, ¢ sees the illumination pattern corresponding to
the QPO phase’ = v — (7, @)vgpo/c, Wherel(r, ¢) is the path
length from the illuminating source to the disc patch. Usihg
approximationl ~ rRg, the expression for the illuminating flux
becomed (r, ¢,y — rvgpo Ry /c). For the observation considered
here,vy,, =~ 0.25 Hz, so even at = 100 and assuming/ =
10Mg, this correction to the phase is only,oRy/c ~ 1072
cycles. If we were considering instead a QPO with, = 25
Hz, however, we see that this correction becomes signifiaaint
~ 0.1 cycles. Therefore, analysis of higher frequency Type C QPOs
should take light-crossing lags into account when inteipgethe
measured QPO phase dependent illumination profile.

6.3 Misalignment

In the precession model, the inner flow spin axis is assumptkto
cess around the BH spin axis, such that the angle betweenthe B
and flow spin axes stays constant. Since Lense-Thirringepstan
does not occur in the BH equatorial plane, a misalignmentéent

the disc and the BH spin axes is assumed. This way, the inner flo
is being fed by a misaligned disc, driving precession. Defjrihe
angle between the disc and BH axesfaghe angle between the

that none can explain the observed QPO phase dependena of thBH and flow axes is als@ and the angle between the inner flow

iron line. We note that a model whereby the disc inclinatiogla
changes will likely provide an acceptable fit. Alternativedels
considering precession of theflectorrather than the illuminator

(Schnittman, Homan & Miller 2006) therefore cannot be ruded

(© 2016 RAS, MNRASO00,[THI3

and the disc varies over a precession cycle from a minimudriof

a maximum oRg (see schematics lin Veledina, Poutanen & Ingram
[2013 and Ingram et Hl. 2015). This misalignment introdudesel

of asymmetry not captured by our simple parameterisatichef
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disc illumination profile, since in our parameterisatioe thisc il-
lumination profile is asymmetric throughout the precessipcie.
For a misaligned system, in contrast, the illumination fpeafiill be
maximally asymmetric when the flow and disc are maximally-mis
aligned, and will be axisymmetric when the flow and disc align
other words,A; and A2 would depend on QPO phase, becoming
zero once per precession cycle, rather than remaining auinas
we assume here. Nonetheless, it is clearly sensible to figubie
simplest possible model before introducing further comipje

If the angle between the disc and flow is indeed changing dur-
ing a precession cycle, this will drive changes in the refbadrac-
tion. This is what we see in Fifl] 5 with5o significance. In any
case, this is indicative of systematic changes of the doorefe-
ometry during a QPO cycle and provides yet more confirmatfon o
the geometric origin of Type C QPOs. In the precession maiisl,
implies that the flow aligns with the disc at a QPO phase @f.25
cycles when the reflection fraction dips.

In order to reproduce the observed QPO amplitude, the pre-
cession model require§ ~ 10 — 15° (Veledina etal! 2013;
5). Since here we measure the angle between o
line-of-sight and the disc spin axis, and|Steiner et &/ (2012)
used proper motion of the jet lobes to measure the angle be-
tween our line-of-sight and the je, we can place some con-
straints on the misalignment angle (assuming the jet can be
used as a proxy for the BH spin axis). Even if we knowand 6
to perfect precession, there is some unknown azimuthakadg|

Defining ® on the disc plane following _Ingram etlal. (2015) and
Veledina, Poutanen & Ingrar (2013), the anglesds are related

as

®)

This is equation 3 in Ingram etlal. (2015) and can be mostyedsil
rived using the coordinate system of Veledina, Poutanengfam

m) (see their Fig. 2). In their formalisithjs the angle between
the vectorsi g anda. We solve the above equation frassum-
ing best fitting values of = 70.68° andé = 75°, running through
the full range of viewer azimutf® (which is completely unknown).
The result is plotted in the main panel of Hig). 6 (black lindg see
that nearly the full range of possibfevalues are allowed. Note that

cos = sinisin 8 cos ® + cosicos .
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Figure 7. QPO waveform for orbit 2a (black points) and for the preaassi
model (red line). The observed waveform is calculated irisuof counts

s~ 1 and then divided by the mean count rate. The waveform caicnla
uses the limb darkening law shown in the ingeti§ the cosine of the in-
stantaneous viewing angle). See the text for more details.

will modulate the X-ray continuum flux in (at least) three wa¥)
limb darkening, 2) changes in solid angle and 3) changes ppl2o
boosting. The limb darkening law depends on the radiativegss,
which is Comptonization for the inner flow. For a stationdabsof
Comptonizing material, the observed intensity of X-rayiatidn
depends on viewing angle, since photons that have undergang
scatterlngs are more likely to escape at a large inclinagiogle
(e.g/Sunyaev & Titarchuk 1985; 004eT
more face-on we view the flow, the greater the solid anglehbvit
relativistic effects, the observed flux is simply the inigns< the
solid angle. Doppler boosting has the opposite effect: thisgon
is maximally boosted when the flow is viewed maximally edge-

3 = 0 corresponds to alignment between the disc and BH spin, and ON. since this maximizes the line-of-sight velocities. Diserved

B = 180° corresponds to counter-alignment (M@ZOOS
for a discussion on counter-alignment). We can take thithéur

by simulating Gaussian distributed random variablesifand 6,
and a uniformly distributed random variable fess ®. Since the
measurement error on bothand # is ~ 3°, we use this as the
standard deviation for both of the Gaussian distributidie inset
plot in Fig.[8 shows the resulting cumulative probabilitgtedibu-
tion function for 3. The grey dashed line shows = 15° which
is consistent with our measurements witbino (the probability
distribution peaks at- 4°).

6.4 Continuum flux

Our tomographic modeling indicates that the front and bddkhe
disc are preferentially illuminated by the inner flow at QP@ges

~ 0.4 and~ 0.9 cycles. As discussed in the previous sub-section,
we also have measurements of the anglemd: and a measure-
ment of the disc inner radius (=flow outer radius). The botpamel

of Fig.[H indicates that the X-ray flux peaks &t 0.35 cycles.

So can the precession model reproduce this waveform in a man-

ner consistent with these constraints? Precession of tieg ftow

flux as a function of precession angle is then a balance batwee
these three considerations. Doppler boosting is most irapbat
small radii due to the higher rotational velocity, and sealijle ef-
fects are most important for large radii since light bendigds to
wash out solid angle variations close to the BH (Ingram €2Gi15;
\Veledina, Poutanen & Ingram 2013).

Since our definition of QPO phasgis fairly arbitrary, we
must define a further parameter toti¢o the geometry. We define
the QPO phase such that angle between our line-of-sighttend t
flow spin axis is at a minimum whef = ~o. In other words, the
flow spin axis comes the closest to pointing at the observenwh
v = 70, corresponding to a maximum in the observed solid angle.
We use the code describedin Ingram étlal. (2015) to calcttiate
flux as a function ofy (i.e. the QPO waveform), fixing= 70.68°,

0 = 75° and flow outer radius= 31.47 R,. We leavey, as a
free parameter, in order to compare the model waveform \mith t
observed waveform. The value ¢f that best reproduces the ob-
served waveform therefore tells about when in the QPO cyde t
flow spin axis is predicted to be maximally facing us. The code
takes all relativistic effects into account, and also idelsi obscu-
ration of the flow by the disc. We take the flow to be a torus with
scale height,/r = 0.1 (se 5 for details of the
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flow geometry). We parameterise the limb darkening law as
)

Here, 1 is the cosine of the angle between the observer's line-
of-sight and the flow spin axis, anfh is set to ensure that the
minimum of I(x) in the rangey = 0 — 1S Imin = bo. In
M.Léﬁ%%o, b1 andb, were set to reproduce the Comp-
ton scattering limb darkening law for optical depth= 1 derived

by |Sunyaev & Titarchuk (1985). Here, we leave them as free pa-
rameters. We also leave the misalignment ambées a free param-
eter. The remaining parameter is the inner radius of the fhowt
least the inner radius at which the flow radiates.

We compare our waveform model to the— 10 keV QPO
waveform of XMM-Newtonorbit 2a, derived using the method of
IK15 (Fig[d). We perform a least-squared fit, but note thatesor
lated errors between the QPO phases meanthabes not give a
reliable indication of goodness of fit (see Section 2.2). \ide- s
ply use this fitting as an exercise to try and roughly match the
data. For our ‘best fit' model, we s&§ ~ 0.3, b ~ —1.75 and
ba ~ 0.76, which gives the limb darkening law shown in the inset
of Fig.[@. This roughly matches the limb darkening law expdct
for Compton scattering with an optical depth~ 0.5 (see Fig.
7a ofl Sunyaev & Titarchlik 1985). We set the inner flow radius to
11 R,. This is fairly large, being outside of the ISCO even for a
maximally retrograde BH, but we find that the amplitude of the
waveform is sensitive to the difference between flow outerian
ner radii. This is because of the balance between Dopplestboo
ing and solid angle effects: the flux from a very small radisis i
out of phase with the flux from a very large radius, since the fo
mer is dominated by Doppler boosting and the latter is dotatha
by solid angle variations. The amplitude of the waveformhesé-
fore damped by destructive interference between differafit. It
is not unreasonable for a misaligned flow to have a fairlydarg
ner radius, since it has been shown in General Relativistig-m
neto hydrodynamic simulations that torques from the framse-d
ging effect can create plunging streams at the so-calledibgn
wave radius, truncating the flow outside of the IS.
2007;/ Ingram, Done & Fraglle 2000; Fragile 2009). The ‘bet fi
misalignment angle i§ ~ 11°, which is compatible with the mea-
surements presented in the previous sub-section.

Finally, we find a ‘best fit' value ofy ~ 0.17 cycles.
This means that the flow spin axis maximally faces us at a QPO
phase ofy = 0.17 cycles, and maximally faces away from us at
v =70 + 0.5 = 0.67 cycles. From Fid.]5, we see that this roughly
corresponds with the two maxima in line energy. Therefooe)-c
bining tomographic modelling with the waveform modelling-i
plies that the flow appears to the observer to shine prefatignin
the left and right of the disc when it is maximally facing uigis
the opposite to what 116 suggested. There, the suggestisthata
the front and back of the flow illuminate the disc such thatewh
the flow is facing us, it illuminates the front and back of thecdas
we see it. Whether or not this is credible should be testeunvire
sophisticated calculations. For the values we use@ferand®, it
can be derived from equati@h 8 thht~ 110°. Further taking into
account the fitted value ofy, indicates that the flow aligns with
the disc at a QPO phase ofx 0.35 cycles. The QPO phase with
the lowest observed reflection fraction gives an indepenésii-
mate for the alignment phase. We see in Elg. 5 that the minimum
in reflection fraction occurs ag ~ 0.25 cycles, which disagrees
somewhat with the- 0.35 cycles derived from waveform fitting.

I(p) o< bo — Io+ bip+ bzu2-

Reflection tomography of H 1743-32211

plicity of both our tomographic and waveform models. A modu-
lation mechanism our waveform model does not take into atdcou
is variation of seed photons. As the misalignment angle eetw
the disc and flow changes over a precession cycle, the flowasees
varying luminosity of disc photons. This will introduce a cuba-
tion into the intrinsic luminosity of the flowZycki, Done & In-
gram in prep). This oscillation of the misalignment angld also
drive spectral pivoting as the disc cooling changes, intaafdto
the aforementioned changes in reflection fradflofe do observe

a modulation inl" for our best fit tomographic model (see Hig. 5),
but this is not statistically significant. It is also likelydt the optical
depth, and therefore the limb darkening law, is a functioradfus
(Axelsson et dll_2014), which will complicate the picturether.
Itis very hard to see how alternative mechanisms for the liran
centroid modulation, such as oscillations in the disc imaglius,
ionisation parameter or radial emissivity, can be compatitith
the observed QPO waveform.

We calculate the Lense-Thirring precession frequency for a
flow with a flat surface density profile extending fromh R, to
31.67 R, (see equation 1 in Ingram & Ddne 2012a, whefier
is given in equation 3 af Ingram & Motla 2d14), and our BH spin
value ofa = 0.21. The mass of H 1743-322 is unknown, but the
mass distribution function for Galactic BHs peaks~at6.3M
(Ozel et all 2010; Farr et al. 2011). Using this value for ngisss
a precession frequency 6f25 Hz, which matches the observed
QPO frequency well. If we instead ugd = 9.3M), consistent
with the estimate of\/ > 9.29M, obtained ba
M) using high frequency QPOs, the precession frequbecy
comes).17 Hz.

6.5 Biases in the time-averaged line profile

For our best fitting model, the spectrum is varying with QP@gzh
in a non-linear fashion. This means that the phase-aversged
trum is not exactly equal to a spectrum computed using thegzha
averaged parameter values. Since time-averaged specialling
implicitly makes the assumption that the affects of noedinspec-
tral variability are negligible, this may lead to biases.ohder to
investigate these biases, we can first compare our fits tartfee t
averaged spectrum in Sectibh 1 with our best fitting tomducap
model (see Tabldd 1 aht 2). We see that the tomographic rimagell
yields a slightly smaller truncation radius and a slightigher in-
clination, although they are consistent within errors. Tdet that
these sets of parameters are consistent with one anothéesmp
that biases due to non-linear spectral variability (whiod auto-
matically accounted for in our tomographic modelling butaged
for the time-averaged spectral fits), are small.

In Fig.[8, we assess the importance of non-linear affect&mor
directly. The black line shows the phase-averaged reflesjiec-
trum corresponding to our best-fit parameters. Here, we bake
culated the spectrum for the full range of QPO phases, arehtak
the mean. For the red line, we take our best fitting model, set
A1 = Ay = 0,(y) = To, f(v) = fo (therefore removing all
non-linear variability) and calculate the phase-averagpettrum.
We see that this slightly over-predicts the size of the bl hbut
is a~ 2% effect (see bottom panel). Therefore, we conclude that
the bias is small and likely does not introduce significastematic
errors into time-averaged spectral fits, at least for thase. &Ve do

Nonetheless, it is encouraging that we can achieve a reason-2 Spectral pivoting can additionally result from observihgpugh different

able match to the observed QPO waveform, given the relaitive s

(© 2016 RAS, MNRASO00, [THI3

optical depths as the flow precesses.
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Figure 8. Top: Phase-averaged reflection spectrum, zoomed in on the iron
line, for our best fit model (black) and also calculated byirsgtall the
parameters to their phase-averaged values (red). A snaalidicreated by
non-linear variability.Bottom: The percentage difference between the two
spectra (red line minus the black line, then divided by treeklline and
multiplied by 100%). We see an approximately constantl % offset, with
features around the iron line on the2% level.

stress, however, that considering variability properireaddition
to the time-averaged spectrum is always advantageousisimes
more information.

6.6 Assumptions

We have developed the first physical model for QPO phase-
resolved spectroscopy. There are a number of improvembeats t
could be made to our physical assumptions in future. The mode
we use for the reflection continuumgllver, is the current state-of-
the-art, but improvements are still being made. First qfzalllver
models the illuminating continuum as an exponentially affit-
power-law, whereas a sharper high energy cut-off is ammtmlth
thermal Compton up-scatterin i z
[19961 Fabian et &l. 20115). Also, the disc is assumed to bestamin
density slab. Making the more physical assumption of hytirs
equilibrium affects the predicted reflection spectrum,lbss so in
the > 4 keV range we consider_(Nayakshin, Kazanas & Kallman
[2000] Done & Nayakshin 2007). For this paper, we simply param
terise the radial dependence of the irradiating fluxas This will
be true far from the BH, but not close to the irradiating seueg.
UMIKLns_&_Eabldh_ZD_iZ) We have also made the simpl
fying assumption that the rest-frame reflection spectrumesame
for the whole disc, allowing us to convolve the rest-framectpum
with a smearing kernel. However, in reality the ionisati@mgme-
ter will depend on radius since disc irradiation dependssflly on
proximity to the continuum source, Svoboda et lal. (2012aftb
that not accounting for this can lead to measurement of veny c
trally peaked emissivity profiles( »~7), as is often the case (e.g.

\Wilkins & Fabian| 20111] Fabian et’al. 2012). Also, light bemgli
means that different parts of the disc have different oteskimcli-
nation angles, which makes a difference to the spectrurrulse(m‘
the limb darkenlng law of reflected emissi

[Garcia et dl. 2014). Finally, our assumed azimuthal enifggivo-
flle is rather simplistic, but this allows us to define a gemerbdel
to compare with the data. This can be calibrated against mere
volved theoretical modeling in future.

7 CONCLUSIONS

We have developed the first physical model for QPO phase-
resolved spectroscopy and fit it to data from the BH binaryesys

H 1743-322. We find that the reflection fraction varies systeém
cally with QPO phase3(52¢0), adding to the now formidable body

of evidence in favour of a geometric origin of Type C QPOs. Our
model mimics the asymmetric illumination pattern, rotgtabout

the disc surface, that would be produced by a precessingfione

with a simple analytic parameterisation. It provides a gdescrip-

tion of the observed shifts in the iron line energy and is gurefd
over a null-hypothesis of axisymmetric illumination wighd0Oc
significance. More data is therefore needed if a difectdetec-

tion of asymmetric disc illumination is to be achieved. Wesider
alternative axisymmetric models, but none of them adetyude
scribe the data. Our results, alongside the results of lddyige
strong evidence that Type C QPOs are driven by precession. We
note that precession of the disc rather than the flow is alssiple.

We expand upon our results by modelling the continuum flux as a
function of QPO phase with a precessing inner flow model (Fig.
[7), and find we can match the observed QPO waveform for a spe-
cific geometry in which the flow spin axis faces us at a QPO phase
of ~ 0.2 cycles. Since this roughly coincides with a maximum in
iron line centroid energy, this implies that the flow preferally
illuminates the left and right hand sides of the disc whenakim
mally faces us. This geometry can be tested with direct niadel

of the illumination profile from a precessing flow in futuregether
with more sophisticated continuum flux waveform modellifg-
mographic modelling of QPOs is a powerful new technique. The
next step is to apply the technique to more data in order tktra
changes in accretion geometry of a source throughout anieitb
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