
ar
X

iv
:1

61
0.

00
94

8v
1 

 [a
st

ro
-p

h.
H

E
]  

4 
O

ct
 2

01
6

Mon. Not. R. Astron. Soc.000, 1–13 (2016) Printed 5 October 2016 (MN LATEX style file v2.2)

Tomographic reflection modelling of quasi-periodic oscillations in
the black hole binary H 1743–322

Adam Ingram,1⋆ Michiel van der Klis,1 Matthew Middleton,2

Diego Altamirano,3 & Phil Uttley1
1Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
2Institute of Astronomy, Cambridge University, Madingley Road, CB3 0HA, Cambridge, UK
3Department of Physics & Astronomy, University of Southampton, Southampton, Hampshire SO17 1BJ, UK

Accepted 2016 October 4. Received 2016 September 25; in original form 2016 July 29

ABSTRACT
Accreting stellar mass black holes (BHs) routinely exhibitType-C quasi-periodic oscillations
(QPOs). These are often interpreted as Lense-Thirring precession of the inner accretion flow,
a relativistic effect whereby the spin of the BH distorts thesurrounding space-time, inducing
nodal precession. The best evidence for the precession model is the recent discovery, using
a long jointXMM-NewtonandNuSTARobservation of H 1743–322, that the centroid energy
of the iron fluorescence line changes systematically with QPO phase. This was interpreted
as the inner flow illuminating different azimuths of the accretion disc as it precesses, giving
rise to a blue/red shifted iron line when the approaching/receding disc material is illuminated.
Here, we develop a physical model for this interpretation, including a self-consistent reflection
continuum, and fit this to the same H 1743–322 data. We use an analytic function to param-
eterise the asymmetric illumination pattern on the disc surface that would result from inner
flow precession, and find that the data are well described if two bright patches rotate about the
disc surface. This model is preferred to alternatives considering an oscillating disc ionisation
parameter, disc inner radius and radial emissivity profile.We find that the reflection fraction
varies with QPO phase (3.5σ), adding to the now formidable body of evidence that Type-C
QPOs are a geometric effect. This is the first example of tomographic QPO modelling, initi-
ating a powerful new technique that utilizes QPOs in order tomap the dynamics of accreting
material close to the BH.
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1 INTRODUCTION

In black hole (BH) X-ray binary systems, matter is accreted
from the binary partner through a geometrically thin, optically
thick disc, which emits a multi-coloured blackbody spectrum
(Shakura & Sunyaev 1973; Novikov & Thorne 1973). Compton
up-scattering of soft seed photons by a cloud of hot electrons
close to the black hole also contributes a power-law component
to the X-ray spectrum, with low and high energy cut-offs deter-
mined respectively by the seed photon and electron temperatures
(Thorne & Price 1975; Sunyaev & Truemper 1979). Some fraction
of the Comptonized photons reflect from the disc and are scat-
tered into our line-of-sight. This imprints characteristic reflection
features onto the spectrum, including a prominent iron Kα fluores-
cence line at∼ 6.4 keV and a so-called reflection hump, result-
ing from inelastic free-electron scattering, peaking at∼ 30 keV
(Ross & Fabian 2005; García et al. 2013). These reflection features
provide the opportunity to probe the dynamics of the accretion disc,

⋆ E-mail:a.r.ingram@uva.nl

since the iron line is observed to be distorted by Doppler shifts from
orbital motion and gravitational redshift (Fabian et al. 1989).

So-called Type-C quasi-periodic oscillations (QPOs) are rou-
tinely observed in the X-ray flux, with the oscillation frequency
increasing from∼ 0.1 − 30 Hz as the spectrum transitions from
the hard power-law dominatedhard stateto the disc dominatedsoft
state(e.g. Wijnands et al. 1999). In thetruncated disc model, the
disc evaporates inside of some transition radius to form a power-
law emitting hot inner flow (Ichimaru 1977; Done et al. 2007).The
spectral transitions then arise as the disc inner radius moves in-
wards, until it reaches the innermost stable circular orbit(ISCO) in
the soft state. Alternatives include a corona partially covering the
disc, confined by magnetic fields (Galeev, Rosner & Vaiana 1979;
Haardt & Maraschi 1991) and an outflowing jet (Markoff et al.
2005). In all models, changes to the accretion geometry are re-
quired to explain the spectral transitions.

Suggested QPO mechanisms in the literature either con-
sider instabilities in the accretion flow (e.g.Tagger & Pellat 1999;
Cabanac et al. 2010), or a geometric oscillation (e.g. Stella & Vietri
1998; Wagoner et al. 2001). There is now strong evidence in
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favour of the geometric models, since high inclination (more
edge-on) systems display stronger QPOs than low inclina-
tion (more face-on) systems (Schnittman et al. 2006; Motta et al.
2015; Heil et al. 2015). Phase lags between energy bands also
strongly depend on inclination, with hard photons lagging soft
for low inclination objects, and vice-versa for high inclination
objects (van den Eijnden et al, submitted). A prominent in-
terpretation associates the QPO with Lense-Thirring precession
(Stella & Vietri 1998). This is a General Relativistic effect whereby
the spin of the BH induces precession in orbits of particles in-
clined relative to the equatorial plane (Lense & Thirring 1918).
Schnittman, Homan & Miller (2006) considered a precessing ring
at the inner edge of the disc. However, the disc is expected tobe
held stationary by viscosity (Bardeen & Petterson 1975), and the
QPO amplitude is stronger in the Comptonized spectrum than in the
disc spectrum (Sobolewska &̇Zycki 2006; Axelsson et al. 2014).
Ingram, Done & Fragile (2009) instead suggested that the entire in-
ner flow precesses whilst the disc remains stationary, motivated by
the simulations of Fragile et al. (2007).

Ingram & Done (2012b) showed that precession of the inner
flow will cause the iron line to rock from blue to red shifted, as the
inner flow illuminates the approaching followed by recedingdisc
material. This prediction can be directly tested with QPO phase-
resolved spectroscopy. Phase-resolving poses a technicalchallenge,
since the stochastic nature of the QPO prevents phase folding - as
can be used for e.g. neutron star pulses (e.g. Wilkinson et al. 2011;
Gierliński et al. 2002) - from being appropriate. Miller & Homan
(2005) applied a simple flux selection to strong QPOs from GRS
1915+105, but constraining spectra for more than two phasesre-
quires a more sophisticated method. Ingram & van der Klis (2015,
hereafter IK15) developed a technique that uses the averageFourier
properties in order to reconstruct phase-resolved spectra, and used
it to discover spectral pivoting in GRS 1915+105. Stevens & Uttley
(2016) used a similarly sophisticated technique in order tomeasure
changes in the disc temperature of GX 339-4 during the QPO cy-
cle (although this is for a Type B QPO; see e.g. Casella et al. 2005
for QPO classifications). However, the phase-resolved behaviour
of the iron line could not be constrained in these studies dueto
limitations on data quality. Ingram et al. (2016, hereafterI16) ap-
plied a developed version of the IK15 method to a longXMM-
NewtonandNuSTARobservation of H 1743–322 in the hard state
in order to measure a QPO phase dependence of the iron line cen-
troid energy. This provides strong evidence that the QPO is driven
by precession - either precession of the inner flow (Ingram & Done
2012b), or alternatively of the disc (i.e. precession of thereflector;
Schnittman et al. 2006).

In this paper, we develop a physical model for the QPO phase-
resolved spectra measured in I16. Our model is designed to mimic
illumination of the disc by a precessing inner flow - as the flowpre-
cesses, it preferentially illuminates different azimuthsof the disc.
Rather than consider a specific geometry for the precessing flow,
we parameterise the asymmetric, rotating illumination profile with
an analytic function. This has the advantage of making noa priori
assumptions about the inner flow geometry, it enables the model
to be fast enough to fit directly to data, and it allows us to define
asymmetry parameters that can be set to zero in order to recover
the usual case of axisymmetric illumination. In Section 2 wesum-
marise the observations and the phase-resolving method. InSection
3, we fit the time-averaged spectrum with a relativistic reflection
model in order to address cross-calibration issues betweenXMM-
NewtonandNuSTAR, and also to provide a comparison to our even-
tual tomographic modelling. We present the details of our model in

Section 4 and the results of our tomographic modelling in Section
5. We discuss our results in Section 6 and present our conclusions
in Section 7.

2 DATA ANALYSIS

2.1 Observations

We considerXMM-NewtonandNuSTARdata from the 2014 out-
burst of H 1743–322.XMM-Newtonobserved this outburst for two
full orbits around the Earth in late September 2014. We use data
from the EPIC pn, which was in timing mode for the entire expo-
sure. The first orbit has obs ID 0724400501, and the second or-
bit is split into two obs IDs (0724401901 and 0740980201) dueto
a change in PI. In I16, we split theXMM-Newtondata into four
segments: orbit 1a, orbit 1b, orbit 2a and orbit 2b (see Fig. 1in
I16). This was to allow for a minor change in instrumental setup
between orbits 2a and 2b, and for possible changes in the source
geometry over the course of orbit 1. We employ the same nam-
ing conventions in this paper.NuSTARobserved the source (obs ID
80001044004) simultaneous with the secondXMM-Newtonorbit.
We use data from both of theNuSTARfocal plane modules, FPMA
and FPMB. Here, we use exactly the same data reduction procedure
described in I16.

In this paper, we use only theNuSTARdata and the orbit 2
XMM-Newtondata. We keep the data for orbits 2a and 2b sepa-
rate, but tie together parameters in our fits between the twoXMM-
Newtonsegments and theNuSTARexposure. We exclude orbit 1 for
a number of reasons. Firstly, there is no simultaneousNuSTARcov-
erage. It is very useful to jointly fitXMM-NewtonandNuSTARdata,
sinceXMM-Newtonprovides high signal-to-noise at the iron line
andNuSTARgives a view of the reflection hump. Unfortunately,
there are some cross-calibration issues betweenXMM-Newtonand
NuSTAR, which we will discuss in the following Section. We show
that these issues can be overcome if data from the two observato-
ries are simultaneous, but without this simultaneity it is ambiguous
whether differences in the spectrum are down to cross-calibration,
or genuinely down to evolution of the spectrum between the two
observations. Secondly, we saw in I16 that orbits 1a, 2a, 2b and the
NuSTARobservation all showed the same characteristic modulation
in line energy with QPO phase, with maxima at∼ 0.2 and∼ 0.7
cycles, whereas orbit 1b showed a different modulation. Thereason
behind this difference is still not clear, so we exclude the anoma-
lous data set, and also orbit 1a to avoid simply ‘cherry picking’ the
best data.

2.2 Summary of phase-resolving method

The phase-resolving method used is described extensively in I16
and IK15. Here, we summarise the method and leave the detailsto
earlier references. Conceptually, the method consists of constrain-
ing the average QPO Fourier transform (FT) for each energy chan-
nel. That is, for each energy channel, we wish to measure the mean
count rate, and the amplitude and phase of each observed QPO har-
monic. We detect only the fundamental (first harmonic) and the
overtone (second harmonic) over the broad band noise, and socan-
not consider any higher harmonics. The zeroth harmonic is simply
the mean count rate, and also needs to be taken into consideration.
Since the mean count rate is real, it trivially has a phase of zero.
Therefore, for a given energy channel, the QPO FT consists offive
numbers: the (amplitude of the) mean count rate, the amplitude of

c© 2016 RAS, MNRAS000, 1–13



Reflection tomography of H 1743–3223

the first and second harmonics, and the phase of the first and second
harmonics. Equivalently, we can think in terms of real and imagi-
nary parts instead of amplitude and phase, in which case the five
numbers are: the real part of the mean count rate, first and second
harmonics and the imaginary part of the first and second harmonics.

It is fairly straight forward to measure the amplitude of the
two QPO harmonics as a function of energy. The simplest way isto
make a power spectrum for each energy channel and fit each power
spectrum with a sum of Lorentzian functions. The squared ampli-
tude of thejth harmonic is simply the integral of the Lorentzian
component representing it. We used a slightly more complicated
method in I16 to maximize signal-to-noise and to circumventthe
NuSTARdeadtime but, conceptually, our method is the same as
described here. The phase can be measured by defining a refer-
ence band, and, for each energy channel, calculating the cross-
spectrum between that channel (the subject channel) and therefer-
ence band (van der Klis et al. 1987; Uttley et al. 2014). The phase
of the cross-spectrum averaged over the width of thejth harmonic
tells us by how many radians thejth harmonic of the subject chan-
nel lags thejth harmonic of the reference band. However, we in-
stead want to know by how many radians thejth harmonic of the
subject channel lags thefirst harmonic of the reference band. To
know this, we must measure the phase difference between the first
and second harmonics in the reference band, and use this to correct
the phase as measured from the cross-spectrum. We measure this
phase difference between harmonics using the method of IK15.

With the QPO FT as a function of energy constrained, we can
proceed in two ways. The simplest is to inverse FT the data, togive
a waveform for each energy channel. It is simple to picture this: the
waveform for a given channel is a constant (the mean count rate
of that channel) plus two sine wave functions of QPO phase rep-
resenting the two harmonics, each with their own amplitude and
phase. Having a waveform for each energy channel, we can sim-
ply take the spectrum for different values of QPO phase and fit
each phase with a spectral model, and see how the parameters of
the spectral model change with QPO phase. However, the statis-
tics are badly behaved in this case. This is because, even though
the five numbers per energy channel that make up the QPO FTdo
have well-behaved, Gaussian errors, the inverse FT introduces cor-
relations between QPO phases. It is therefore much cleaner from
a statistical point of view to define a model for how the spectrum
changes as a function of QPO phase, and then FT themodel. Note
that both of these methods are equivalent - we can either inverse
FT the data and fit in the time domain, or we can FT the model and
fit in the Fourier domain. The only difference is that the Fourier
domain method is superior when it comes to assessing goodness of
fit, error calculations etc. Therefore, in this paper, we fit entirely in
the Fourier domain.

3 TIME-AVERAGED SPECTRAL FITS

Before analysing the QPO FT, we first fit the time-averagedXMM-
Newtonand NuSTARspectra with a relativistic reflection model.
One motivation for this is to gain insight into the effect of spec-
tral variability on the time-averaged spectrum. If spectral vari-
ability were exclusively linear, the QPO phase-averaged spectrum
would be exactly equal to the spectrum calculated using the phase-
averaged spectral parameters. However, we saw in I16 that the iron
line centroid energy and the photon index change systematically
with QPO phase. These changes are mildly non-linear and there-
fore may introduce biases into time-averaged spectral modelling.
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Figure 1. Unfolded time-averaged spectrum with the best fit model (top)
and data to model ratio (bottom). We considerXMM-Newtonorbit 2a
and the strictly simultaneous portion of theNuSTARobservation. FPMA,
FPMB and EPIC-pn data and corresponding models are as labelled. The
dashed lines represent the continuum model. The pn spectrumis signifi-
cantly harder than theNuSTARspectra, but we are able to find an accept-
able fit using a multiplicative correction factor (equation1). Data have been
re-binned for plotting purposes

Another motivation is to explore the cross-calibration discrepancy
betweenXMM-NewtonandNuSTAR. TheXMM-Newtonspectrum
is significantly harder than theNuSTARspectrum.

We considerXMM-Newtonorbit 2a and select a strictly simul-
taneous interval of theNuSTARobservation. We useXSPECv12.8.2
to fit the model

constant × E∆Γ
× tbabs × [ relxill + xillver ], (1)

to the FPMA, FPMB (4 − 75 keV) and EPIC pn (4 − 10 keV)
spectra simultaneously. We choose to ignore the< 4 keV range in
theXMM-Newtondata in order to avoid calibration features result-
ing from uncertain modelling of the so-called charge transfer inef-
ficiency (see De Marco & Ponti 2016 and references therein fora
discussion on this). The> 4 keV energy range also reliably has
a negligible contribution from direct disc emission, with the disc
temperature for this observation measured to beTin < 0.4 keV by
both Stiele & Yu (2016) and De Marco & Ponti (2016). The con-
stant factor simply accounts for differences in absolute flux calibra-
tion. We introduce the parameter∆Γ to account for the discrepancy
in photon index measured individually for the two observatories.
We fix ∆Γ = 0 for bothNuSTARmodules, and allow it to go free
for the pn. We choose to fit this way around for a number of reasons.
Firstly, the reflection models we use are only tabulated forΓ > 1.4,
so using the rawXMM-Newtonspectrum, which is very hard, risks
going close to this boundary at some point during the runningof the
χ2 minimisation algorithm. Secondly, theXMM-Newtonspectrum
is far harder than is commonly observed in the hard state (seee.g.
Shaposhnikov & Titarchuk 2009), whereas the photon index mea-
sured from theNuSTARspectrum is consistent with expectation.
Finally, it has previously been reported that the pn in timing mode
also measures a harder power-law index thanRXTEfor a hard state
observation of GX339-4 similar in flux and spectral shape to the
observations analysed here (Kolehmainen et al. 2014). We tie all
other parameters to be the same for the two observatories.

Tbabs accounts for interstellar absorption, and we freeze the
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Table 1.Best fit parameter values and1σ errors for our time-averaged spectral fit.∆Γ is a calibration parameter that accounts for the offset in spectral index
measured byXMM-NewtonandNuSTAR. Rg is a gravitational radius,Rg = GM/c2. See the text for more details.

Parameter ∆Γ Γ rin i Ecut log10 ξ f AFe

Units Rg deg keV %

Best fit 0.22 1.57 36.3 67.5 285.0 2.0 24.7 0.7
1σ error 5× 10−4 10−3 4.1 2.3 6.4 5× 10−2 0.3 3× 10−2

hydrogen column density toNh = 2 × 1022cm−2 assuming
the abundances of Wilms, Allen & McCray (2000), following other
spectral analyses of the same data set (De Marco & Ponti 2016;
Stiele & Yu 2016). This is slightly higher than the value usedin
I16, but we find that it has no significant effect on the measure-
ment of an iron line centroid energy modulation.Relxill is a rel-
ativistic reflection model which includes an exponentiallycut-off
power-law X-ray continuum and a reflection component which is
smeared by the orbital motion of disc material and gravitational
redshift (García et al. 2014). We include thexillver component
(García et al. 2013), which is the same asrelxill but without the
relativistic smearing, to account for a distant reflector which it is
possible to detect inXMM-Newtonspectra of BH X-ray binaries
in the form of a narrow iron line (e.g. Cygnus X-1: Fabian et al.
2012; GX 339-4: Kolehmainen et al. 2014). The shape of the rest-
frame reflection spectrum depends on the shape of the illuminating
continuum, the disc ionisation parameterlog10 ξ and the iron abun-
dance relative to solar,AFe. For therelxill component, we allow
log

10
ξ andAFe to be free parameters. For the distant reflector, we

assume neutral material (log10 ξ = 0), with the same iron abun-
dance as therelxill component. The relativistic smearing depends
on the inclination anglei, the disc inner radiusrin and the radial de-
pendence of illuminating flux, which we assume to be∝ r−3. Since
we do not assume thatrin is equal to the innermost stable circular
orbit (ISCO), the relativistic smearing only depends very weakly
on the BH spin parameter,a (the energy shifts and photon paths
both depend on the metric). For this reason, we fixa = 0.21 to be
consistent with the measurement ofa ≈ 0.2 made by Steiner et al.
(2012) through disc spectral fitting and the limita & 0.2 placed by
Ingram & Motta (2014) using high frequency QPOs.

Fig 1 shows the data unfolded around the best-fit model (top)
and the ratio of data to model (bottom). After applying0.5%
systematic errors to account for uncertainties in the telescope re-
sponse matrices (as is widely practiced: e.g. Kolehmainen et al.
2014; Plant et al. 2015), we achieve an acceptable fit (reduced
χ2 = 3357/3225 = 1.04). We find through an F-test that the
distant reflector is formally required with a significance of5.3σ
(since the best-fit without thexillver component has a reduced
χ2 = 3387/3226). Table 1 shows the resulting best-fit parameters
with 1σ errors. Our best fit model indicates that the disc is truncated
outside of the ISCO and yields a moderately high inclination, con-
sistent with the source showing dips but not eclipses (Homanet al.
2005). Steiner et al. (2012) measured the angle between our line of
sight and the radio jet (which is likely aligned with the BH spin
axis; Blandford & Znajek 1977) in H 1743–322 to be∼ 75◦. Thus,
although the two angles are broadly consistent within errors, there
is room for a modest misalignment between the disc and BH spin
axes, as is required for the precession model. The fit indicates a
fairly low ionisation, consistent with the relatively low continuum
luminosity, and a mildly sub-solar iron abundance.

4 TOMOGRAPHIC MODEL

In this section, we describe our physical model for the QPO phase-
resolved reflection spectrum. The intention is to mimic the asym-
metric, rotating illumination pattern that would be causedby a pre-
cessing inner flow irradiating the disc by using an analytic param-
eterisation which we can fit directly to the data. The bright patches
on the disc in Fig. 2 illustrate this for two QPO phases. We represent
the reflected intensity as a function of disc radiusr, disc azimuth
φ, and QPO phaseγ using the function

IEe
(r, φ, γ) ∝ r−q

{

1 +A1 cos
2 [(γ − φ+ φ1)/2]

+ A2 cos
2 [γ − φ+ φ2]

}

IEe
, (2)

whereIEe
is the rest-frame reflection spectrum andIEe

(r, φ, γ) is
the specific intensity of radiation emitted at photon energyEe for
a given patch of the disc at a given QPO phase. We see that the
intensity is a power-law function of radius, the same as our fits to
the time-averaged spectrum in Section 3 (withq = 3). We define
the z-axis to be parallel with the disc rotation axis such that the disc
lies in the x-y plane. The disc azimuthφ is measured clockwise
from the x-axis, which is defined as the projection of the observer’s
line-of-sight on the black hole equatorial plane. The dependence
of intensity on disc azimuth is parameterised through the cosine
terms in equation 2. SettingA2 = 0, A1 > 0 creates only one
bright patch that rotates about the disc surface once per precession
cycle, leading to only one maximum in the iron line energy per
QPO cycle. At QPO phaseγ = 0, the brightest patch of the disc in
this case would beφ = φ1. SettingA1 = 0, A2 > 0 corresponds
to the front and back of the flow irradiating the disc with equal
intensity, leading to two identical patches rotating aboutthe disc
surface and two identical maxima in the line energy per QPO cycle.
At QPO phaseγ = 0, the two brightest patches of the disc in this
case would beφ = φ2 andφ = φ2 + 180◦. In I16, we observed
two maxima in the iron line centroid energy per QPO cycle with
the second slightly higher than the first, thus the best fit model will
likely haveA1 > 0, A2 > 0. This indicates that the front and
back of the flow irradiate the disc, and thus requires the flow to
have a fairly small vertical extent (or alternatively the misalignment
between disc and flow is large). Ingram & Done (2012b) instead
modelled the flow as an oblate spheroid with large vertical extent,
and therefore the underside of the flow was never above the disc
mid-plane. The cosines in equation 2 are squared so as to prevent
the possibility of unphysical parameter combinations for which the
intensity is negative.

The specific flux observed at energyEo from a patch of the
disc subtending solid angledΩ(r, φ) to the observer is

dFEo
(r, φ, γ) = (Eo/Ee)

3IEe
(r, φ, γ)dΩ(r, φ). (3)

Each solid angle elementdΩ(r, φ) can be seen as a pixel on the
observer’s camera. We define a400 × 400 circular (polar) grid of
pixels and, for each one, trace the unique null-geodesic in the Kerr
metric (using the codeGEOKERR; Dexter & Agol 2009) back from
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Figure 2. Left: Ray traced disc images for two QPO phases (as labelled) visualising our best fit model. The disc inner radius and inclination are equal to our
best fit values, and the border of the multi-coloured patchesis set by the best fit illumination profile for the relevant QPOphase. The colour scheme of the
multi coloured patches encodes blue shifts.Right: The best fitting reflection spectrum, zoomed in on the iron line, for the same QPO phases. The QPO phase
= 0.2 cycles iron line (blue) has a boosted blue horn and red wing because the blue and red shifted parts of the disc are preferentially illuminated (top image),
in contrast to the QPO phase =0.4 iron line (red line), which corresponds to the bottom disc image. Animated versions of these plots can be viewed at and
downloaded fromhttps://figshare.com/articles/Tomographic_modelling_of_H_1743-322/3503933. These animations are designed to be played together.

the centre of the pixel to assess if and where that geodesic intercepts
the disc. The blue shift,(Eo/Ee), is calculated for all the photon
paths that intercept the disc using the equation

Eo

Ee
=

√

−gtt − 2gtφω − gφφω2

1 + ωα sin(i)
, (4)

wheregµν is the Kerr metric,ω = 1/(r3/2 + a) is the angular
velocity in dimensionless units, and the impact parameterα is the
horizontal distance from the centre of the observer’s camera to the
centre of the pixel inRg . We use the same coordinate system and
ray-tracing procedure as Middleton & Ingram (2015) except here
we assume clockwise (left-handed) rotation so that blue shifts are
always to the right and red shifts are always to the left both for disc
images and spectra (see Fig. 2).1 Equation 4 assumes disc rotation
in the BH equatorial plane. This is not true if there is a misalign-
ment between disc and BH rotational axes, as we are imagining
here, but the error introduced is very small (Ingram et al. 2015).
We usexillver (García et al. 2013) for the rest-frame reflection
spectrum,IEe

(see section 3).
We allow the continuum normalisationN , the reflection frac-

tion f , and the photon index,Γ to vary as a function of QPO phase,
γ, with two non-zero harmonics. For example, the photon index
varies with QPO phase as

Γ(γ) = Γ0 + A1Γ sin[γ − φ1Γ] + A2Γ sin[2(γ − φ2Γ)], (5)

and we use analogous expressions for the other two variable param-
eters,N(γ) andf(γ).

1 The original derivation of equation 4, presented in Luminet(1979) (equa-
tion 18 therein), contains a typographical error, which wasrepeated in equa-
tion A3 of Middleton & Ingram (2015) but corrected here (the results of
Middleton & Ingram 2015 were calculated using the correct formula).

Our model calculates the integrated specific flux as a func-
tion of observed energyFEo

(γ) for 16 steps inγ and, for each
energy channel, calculates the FT̃FEo

(j) for the harmonicsj = 0,
j = 1 andj = 2. The j = 0 harmonic (the so-called DC com-
ponent) is simply the spectrum averaged over allγ. Each harmonic
has real and imaginary parts, but the imaginary part of the DCcom-
ponent is trivially zero. This leaves five spectra to fit simultaneously
to the observed QPO FT. We load our model intoXSPEC using
the local model functionality. We include absorption usingtbabs
for real and imaginary parts of every harmonic (since absorption
is multiplicative). We also add a distant reflector (xillver) to the
DC component only, since a constant additive component doesnot
contribute to the non-zero harmonics. As discussed in I16, the fact
that we fit in terms of real and imaginary parts rather than ampli-
tude and phase means that the instrument response is trivially ac-
counted for when the data are loaded intoXSPEC. In order to avoid
edge effects of the convolution, we extend the energy grid used
to calculate the model up to200 keV (using theXSPECcommand
‘energies extend high 200’).

5 RESULTS

We load the model described in the previous section intoXSPECas
the local modelmodfeprec. We fit to the measured energy depen-
dent FT of the QPO, considering the real and imaginary parts of
the first and second harmonics, and also the time-averaged spec-
trum (which is the real part of the zeroth harmonic). Altogether,
this gives five spectra to simultaneously fit for each data set. For
the non-zero harmonics, we use the same coarse binning employed
in I16, which is necessary to ensure Gaussian errors. For theze-
roth harmonic (the time-averaged spectrum), we instead usethe
fine spectral binning employed here in Section 3 (although note
that this is still coarser than the instrument response). Asa check,
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Figure 3. QPO FT as a function of energy forXMM-Newtonorbit 2a (left) andNuSTAR(right). Real and imaginary parts of the first and second harmonics
are as labelled. Real and imaginary parts of the data are colour coded blue and red respectively, and the black lines depict the best fitting model. The data are
unfolded around the best fitting model and are in units of energy squared× specific photon flux. We see features around the iron line and reflection hump,
particularly for the real parts.XMM-NewtonandNuSTARshow the same trends.

we also performed fits using coarse binning for the time-averaged
spectrum and see no significant differences in our best-fit param-
eters or goodness of fit. We use the fine binning for our analysis,
however, since it is sensitive to parameter combinations that can
reproduce the observed variability properties but predictsharp fea-
tures in the time-averaged spectrum that are not observed.

We employ the model

constant × E∆Γ
× tbabs × [ modfeprec + xillver ], (6)

wheremodfeprec outputs either the real or imaginary part of the
first, second or zeroth QPO harmonic. We fix the calibration pa-
rameters (constant and∆Γ) to the values obtained in Section 3,
and continue to useNh = 2×1022 cm−2 for the hydrogen column
density. We also fix the ionisation parameter, high energy cut-off
and relative iron abundance to the values obtained in Section 3.
Thexillver component, as before, accounts for distant reflection,
which we assume not to vary on the QPO period and therefore set
its normalisation to zero for all non-zero harmonics. We jointly fit
for the twoXMM-Newtonobservations and theNuSTARobserva-
tion. We tie all physical parameters between these three data sets,
except for those describing the modulation of the continuumnor-
malisation. As in I16, the modulation in the continuum normalisa-
tion is very similar for the three data sets, but can be measured to a
high enough precision for small differences to be highly significant.

5.1 Best fit tomographic model

We achieve a good fit with reducedχ2 = 2544.54/2511 = 1.013
(rejection probability68.5%). Fig. 3 shows the QPO FT data and
model forXMM-Newtonorbit 2a (left) andNuSTAR(right). Here,
the real and imaginary parts of the first and second harmonicsare as
labelled, with real and imaginary data points colour coded respec-
tively blue and red, and the model always plotted as a black line.
The data are unfolded around the instrument response assuming the
best fit model and are in units of energy squared× specific photon
flux (i.e. theeeuf option in XSPEC). We see curvature around the
iron line, particularly for the real parts. In theNuSTARdata, we also
see the effect of the reflection hump at high energy. In the model,

these features result from changes in the shape of the reflection
spectrum over a QPO cycle.

Table 2 shows our best-fit parameters with1 σ errors. Fig. 2
shows a visualisation of the disc illumination profile indicated by
the best-fit asymmetry parametersA1,A2, φ1 andφ2 (see equation
2). We show disc images for two QPO phases with the correspond-
ing phase-resolved reflection spectra. The multi-colouredpatches
pick out where the illuminating intensity,IEe

(r, φ, γ), is greater
than10% of its maximum value, with the rest of the disc coloured
grey. The colour coding of the patches encodes blue shifts (equa-
tion 4). The two QPO phases shown are0.2 cycles (72◦, blue line
profile) and0.4 cycles (144◦, red line profile), since these roughly
correspond respectively to the maximum and minimum line cen-
troid energy, as measured by I16. For the purposes of these plots,
the modulations inΓ, reflection fraction and normalisation have
been set to zero, to ensure that all changes to the reflection spec-
trum result purely from changes to the disc illumination profile. All
other parameters come directly from our best fitting model. We see
that the line has a strongly boosted blue horn and a suppressed core
(blue line) when the left and right sides of the disc are illuminated
(top disc image). This is because we see enhanced emission from
both the blue shifted approaching material and the red shifted re-
ceding material, but Doppler boosting ensures that the blueshifted
emission dominates. In contrast, the line has a strong core but sup-
pressed wings (red line) when the front and back of the disc are
illuminated (bottom disc image), since there is no enhancement of
the Doppler shifted emission from the approaching and receding
disc material. As with the time-averaged fits, we measure a moder-
ately truncated disc and a fairly high inclination angle. Light bend-
ing effects are evident in the disc images through apparent warping
of the disc, but we do not consider ghost images, since photons on
these paths will likely be scattered before reaching the observer.
Animated versions of the plots shown in Fig 2 can be viewed at
and downloaded from the link given in the caption.

Fig. 4 is a contour plot resulting from varying the asymmetry
parametersA1 andA2. The contours represent∆χ2 = 2.3 (black),
6.18 (red) and 11.83 (green). These levels correspond to 1, 2and
3 σ for two degrees of freedom. We see that fairly large values of
A1 andA2 return aχ2 value within 1σ of the best-fit (black cross).
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Table 2.Best fit parameters for our tomographic modelling. See the text for more details.

Parameter Γ0 rin i f0 A1 A2 φ1 φ2

Units Rg deg % deg deg

1σ upper 1.571 37.30 73.33 23.20 2.263 8.740 138.685 28.105
Best fit 1.567 31.47 70.68 21.83 0.93 3.50 94.66 18.98
1σ lower 1.563 27.81 67.51 20.48 0.322 1.275 49.675 8.93

This is because of the way the illuminating flux,IEe
(r, φ, γ), is

parameterised. We see from equation 2 thatIEe
(r, φ, γ) is a sum

with three terms. The first term does not depend on QPO phase,
whereas the second two do. IncreasingA1 and A2 respectively
increases the relative importance of the second and third terms
with respect to the first. However, increasingA2 from, e.g.100
to 1000 makes a negligible difference, since the constant compo-
nent changes from being1% to 0.1% of the flux in this case. Our
parameterisation is of course designed to investigate the effect of
settingA1 = A2 = 0, in which case there is no QPO phase de-
pendence of the line profile in the model. We see thatA2 is better
constrained thanA1 and that the pointA1 = A2 = 0 lies outside
of the3σ contour. However, these contours are for two degrees of
freedom, and the pointA1 = A2 = 0 is a special point, in that
settingA1 = A2 = 0 renders the fit insensitive toφ1 andφ2.
Following I16, we therefore use an F-test to compare our bestfit
(reducedχ2 = 2544.54/2511) with the null-hypothesis (reduced
χ2 = 2556.98/2515). This indicates that the best-fit model is pre-
ferred with2.40 σ confidence. Therefore, although we can say with
3.70σ confidence that the line centroid energy is modulated (I16),
our analysis yields a lower significance for an actual asymmetric
illumination profile. This is partly because here we necessarily use
a more complex model for the iron line than a Gaussian, and there-
fore lose degrees of freedom. Also, small apparent shifts inthe iron
line profile can be driven by changes in the reflection continuum,
caused by changes in the photon index (which our model automati-
cally takes into account). Finally, we have been rather conservative
in excludingXMM-Newtonorbit 1.

As another visualisation of our results, Fig. 5 shows how vari-
ous quantities / model parameters vary with QPO phase. Each panel
is labelled with a statistical significance. For the top panel, this is
the significance of asymmetric illumination as calculated above.
For the other three panels, this is the significance with which the
plotted parameter changes with QPO phase, calculated usingan F-
test comparing the best fitting model with an alternative fit whereby
the parameter in question is forced to be constant. In order to make
this plot, we run a Monte Carlo Markov Chain for our best fit model
and, for each of the four panels, calculate a histogram for each of
512 QPO phases (see I16 for details). The chain has 125,000 steps
and we burn the first 25,000. For the top panel, we compute the line
profile as a function of QPO phase,L(γ,E), assuming aδ-function
rest-frame iron fluorescence line at6.4 keV and define the centroid
energy as

Ec(γ) =

∫

∞

0
EL(γ,E)dE

∫

∞

0
L(γ,E)dE

. (7)

We see that the centroid energy calculated in this way follows the
same trend as the centroid of the Gaussian used in I16, with maxima
at∼ 0.2 and∼ 0.7 cycles. The second panel shows the reflection
fraction. We see that this is modulated with QPO phase (3.52σ).
The significance is calculated from an F-test, and does not depend
on the chain. Our model is normalised such that the observed re-
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+

Figure 4.χ2 contour plot showing the two asymmetry parametersA1 and
A2. The contours correspond to 1 (black), 2 (red) and 3 (green)σ confi-
dence for two degrees of freedom.

flected flux will be higher when the approaching disc materialis
preferentially illuminated, even iff remains constant, because of
Doppler boosting. Changes inf therefore indicate variability in the
reflected fluxon topof this effect. We expect changes in the re-
flection fraction if the misalignment angle between the inner flow
and disc changes throughout a precession cycle (Ingram & Done
2012b). The third panel shows a modulation inΓ, however this is
not significant (0.95σ). This modulation inΓ has a different phase
to that measured by I16, with maxima at∼ 0.4 and∼ 0.9 cycles,
compared with∼ 0.3 and∼ 0.8 cycles in I16. The significance of
theΓ modulation has also drastically reduced compared with I16.
This is because we now include a full reflection model with a con-
tinuum rather than just a Gaussian iron line. Our results indicate
that the observed changes in spectral hardness during a QPO cycle
are more due to changes in reflection fraction than photon index.
An increase in reflection fraction makes the spectrum harder(since
the reflected continuum is harder than the directly observedcontin-
uum). With no reflected continuum in the model, this hardening can
only be modelled as a reduction inΓ. We can see evidence of this
in Fig. 5, since the lowest reflection fraction (∼ 0.25 cycles) co-
incides with the highestΓ in I16. TheNuSTARdata is particularly
important for constraining this, since the reflection hump gives a
good constraint on the reflected continuum.

For completeness, we briefly investigate the anomalousXMM-
Newtonorbit 1b. In I16, we found that the best-fit iron line centroid
energy modulation was very different in this data set to all the oth-
ers, and also that the modulation was not statistically significant
(see Fig. 7 in I16). As expected, when we fit these data with ourto-
mographic model, the asymmetry parametersA1 andA2 are poorly
constrained, and the best-fit model withA1 = 0.96 andA2 ≈ 0 is
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Figure 5. Visualisation of our best fitting parameter modulations. The iron
line centroid energy, defined by equation 7, shows a characteristic variation
with QPO phase, with two maxima at∼ 0.2 and∼ 0.4 cycles. This is the
same trend as is presented in I16 for a Gaussian iron line model. We also
see that the reflection fraction is modulated (3.52σ) and the photon index
modulation is not statistically significant. The modulation in normalisation
corresponds toXMM-Newtonorbit 2a.

preferred toA1 = A2 = 0 with a significance of only0.5σ. The
absence of simultaneousNuSTARdata for this data set adds to the
difficulty in constraining model parameters. Our best fitting value
of A2 ≈ 0 is consistent with the results of I16, who found that
the best fitting iron line centroid energy modulation had no second
harmonic (i.e.A2E ≈ 0). Our best fitting value ofφ1 = 160.9◦ is
also consistent with the I16 results, since this implies that the line
centroid energy peaks at∼ 0.5 QPO cycles (see Fig. 7 in I16) -
very different to the other data sets.

5.2 Alternative models

We also consider alternative interpretations for the iron line cen-
troid energy modulation.

5.2.1 Modulated ionisation parameter

We first consider changes in the ionisation parameter,log10 ξ, over
a QPO cycle. An increase in ionisation leads to a higher rest-
frame line energy, since the ions are on average more tightlybound
(Matt et al. 1993; Done 2010). Therefore, it is possible, in princi-
ple, for there to be a modulation in line energy with no geometric
changes. In this case, the disc ionisation should peak when the ir-
radiating flux peaks, since it is the intensity of incoming radiation

that governs the ionisation balance. Thus, we would expect in this
case that the line energy should be in phase with the continuum
flux, which is not the case (Fig. 5). Nonetheless, we test the ionisa-
tion hypothesis without this constraint. We setA1 = A2 = 0 and
parameterise the ionisation parameter as a function of QPO phase,
log

10
ξ(γ), in the same way asΓ(γ) in equation 5, with the av-

erage, amplitudes and phases replaced bylog
10

ξ0, A1ξ, A2ξ, φ1ξ

andφ2ξ.
The null-hypothesis, withA1ξ = A2ξ = 0 has a reduced

χ2 = 2556.98/2515, and the best fit we find after releasingA1ξ

andA2ξ has reducedχ2 = 2556.96/2511. The negligible change
in χ2 for a reduction of 4 degrees of freedom means that this model
is not an improvement over the null-hypothesis. Our best fit tomo-
graphic model is preferred over this alternative model, butthe sig-
nificance of this cannot be measured using an F-test since thetwo
models have the same number of degrees of freedom. We calculate
a lower limit of the significance through an F-test by artificially
adding a degree of freedom onto the alternative model. From this,
we conclude that the our best fit tomographic model is preferred to
the alternative model with a significance of> 3.5σ (see Table 3).
This model does not work because increasing ionisation increases
the line energy andsuppressesthe relative strength of the reflection
hump, which is the complete opposite of what we observe (see Fig.
3 in I16).

5.2.2 Modulated disc inner radius

Our results strongly favour a systematic geometric change dur-
ing the QPO cycle. Perhaps an axisymmetric change is adequate
though? We consider a modulation of the disc inner radius with pa-
rametersrin0, A1r, A2r, φ1r andφ2r. This can cause changes in
the line profile because rotational velocity depends on radius. We
again setA1 = A2 = 0 and start with the null-hypothesis model
A1r = A2r = 0. When we releaseA1r andA2r, we find a best fit
with reducedχ2 = 2556.2/2511. Using the same method as be-
fore, we find that our best-fit model is preferred over this alternative
model with> 3.4σ significance.

5.2.3 Modulated emissivity profile

Finally, we consider a modulation in the radial emissivity profile.
This will also influence the line profile because of the radialdepen-
dence of rotational velocity (and gravitational redshift). We see in
equation 2, that the illuminating flux is∝ r−q. Here, we parame-
teriseq with the parametersq0, A1q , A2q, φ1q andφ2q . The best fit
we find has reducedχ2 = 2556.9/2511, and so our best-fit model
is preferred over this with> 3.5σ significance (see Table 3 for a
comparison of all the models tested).

6 DISCUSSION

We have developed a spectral model that calculates the reflection
spectrum emitted from a disc with an asymmetric, rotating illumi-
nation pattern. This is designed to mimic the effect of a precessing
inner flow preferentially illuminating different disc azimuths dur-
ing a precession cycle, but makes noa priori assumptions about
the inner flow geometry. The asymmetry in the illumination pro-
file, and therefore the QPO phase dependence of the iron line pro-
file, is parameterised by the asymmetry parametersA1 andA2. We
fit this model, in Fourier space, to the QPO phase-resolved spectra
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Table 3.Comparison of models. The best fitting model is our tomographic
model and the null-hypothesis model considers axi-symmetric illumination
of the disc (i.e.A1 = A2 = 0). The three alternative models tested in
Section 5.2 are also listed. In the third column, we list the statistical signif-
icance with which the best fitting model is preferred over each alternative
model.

Model χ2/d.o.f. Significance

Best fit 2544.54/2511 -

Null-hypothesis 2556.98/2515 2.4σ

ξ modulation 2556.96/2511 > 3.5σ

rin modulation 2556.20/2511 > 3.4σ

q modulation 2556.90/2511 > 3.5σ

from H 1743–322, originally constrained by I16. In this Section,
we discuss our results.

6.1 Asymmetric illumination profile

For our best fit model,A1 ≈ 0.9 andA2 ≈ 3.5, indicating an
asymmetric illumination profile that rotates about the discsurface
throughout a QPO cycle. This is visualised in Fig. 2 by the multi-
coloured patches. SinceA2 > A1, there are two bright patches
rotating about the disc surface. The iron line has its maximum cen-
troid energy when the left and right hand sides of the disc are
illuminated (QPO phase∼ 0.2 cycles), and it has its minimum
centroid energy when the front and back of the disc are illumi-
nated (QPO phase∼ 0.2 cycles). These configurations both oc-
cur twice per precession cycle, explaining why we see two max-
ima in line centroid energy per QPO cycle (top panel of Fig. 5;
also see Fig. 10 of I16). In I16, we suggested that such an illumi-
nation profile could result from the disc being irradiated byboth
the front and back of the precessing flow. This could occur if the
vertical extent of the flow is relatively small compared withthe
misalignment between the disc and flow, since in this case theun-
derside of the flow can be above the disc. The true configuration is
likely more complex than this, perhaps with a transition region, or
even differential precession warping the inner flow as suggested by
van den Eijnden, Ingram & Uttley (2016).

We find that our best fit model is preferred to a null-hypothesis
with A1 = A2 = 0 with 2.4σ confidence. This is a lower sig-
nificance than for the iron line centroid energy modulation found
by I16 (3.7σ), because we are now fitting a more complex model
with less degrees of freedom, and we also conservatively ignore
∼ 130 ks of data. We also fit alternative models for the line cen-
troid energy modulation. We model modulations in the disc ionisa-
tion parameter, inner radius and radial emissivity profile.We find
that none can explain the observed QPO phase dependence of the
iron line. We note that a model whereby the disc inclination angle
changes will likely provide an acceptable fit. Alternative models
considering precession of thereflector rather than the illuminator
(Schnittman, Homan & Miller 2006) therefore cannot be ruledout.
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Figure 6. Main plot: Misalignment angle between the disc and BH spin
axes,β, plotted against the cosine of the azimuthal viewing angle (see the
text for details). This assumes our best fitting value for thedisc inclination
anglei and a best fitting value of the BH spin inclination angleθ from the
literature.Inset: Cumulative distribution function forβ which takes statis-
tical measurement errors ofi andθ into account and assumes equal proba-
bility of measuring a givencos Φ.

6.2 Light-crossing lags

Our analysis has not considered light-crossing time lags, since they
are small compared with the timescales we are considering. Since
we have simply parameterised the illumination profile on thedisc
surface as a function of QPO phase,I(r, φ, γ), light-crossing lags
can, in principle, be swallowed up into our definition ofI(r, φ, γ).
We can estimate the importance of light-crossing lags by imagin-
ing that equation 2 represents the illumination under the assump-
tion that light travel isinstantaneous. In this case, a patch of the
disc located atr, φ sees the illumination pattern corresponding to
the QPO phaseγ′ = γ − l(r, φ)νqpo/c, wherel(r, φ) is the path
length from the illuminating source to the disc patch. Usingthe
approximationl ≈ rRg, the expression for the illuminating flux
becomesI(r, φ, γ − rνqpoRg/c). For the observation considered
here,νqpo ≈ 0.25 Hz, so even atr = 100 and assumingM =
10M⊙, this correction to the phase is onlyrνqpoRg/c ∼ 10−3

cycles. If we were considering instead a QPO withνqpo = 25
Hz, however, we see that this correction becomes significantat
∼ 0.1 cycles. Therefore, analysis of higher frequency Type C QPOs
should take light-crossing lags into account when interpreting the
measured QPO phase dependent illumination profile.

6.3 Misalignment

In the precession model, the inner flow spin axis is assumed topre-
cess around the BH spin axis, such that the angle between the BH
and flow spin axes stays constant. Since Lense-Thirring precession
does not occur in the BH equatorial plane, a misalignment between
the disc and the BH spin axes is assumed. This way, the inner flow
is being fed by a misaligned disc, driving precession. Defining the
angle between the disc and BH axes asβ, the angle between the
BH and flow axes is alsoβ and the angle between the inner flow
and the disc varies over a precession cycle from a minimum of0 to
a maximum of2β (see schematics in Veledina, Poutanen & Ingram
2013 and Ingram et al. 2015). This misalignment introduces alevel
of asymmetry not captured by our simple parameterisation ofthe
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disc illumination profile, since in our parameterisation the disc il-
lumination profile is asymmetric throughout the precessioncycle.
For a misaligned system, in contrast, the illumination profile will be
maximally asymmetric when the flow and disc are maximally mis-
aligned, and will be axisymmetric when the flow and disc align. In
other words,A1 andA2 would depend on QPO phase, becoming
zero once per precession cycle, rather than remaining constant as
we assume here. Nonetheless, it is clearly sensible to fit using the
simplest possible model before introducing further complexity.

If the angle between the disc and flow is indeed changing dur-
ing a precession cycle, this will drive changes in the reflection frac-
tion. This is what we see in Fig. 5 with3.5σ significance. In any
case, this is indicative of systematic changes of the accretion ge-
ometry during a QPO cycle and provides yet more confirmation of
the geometric origin of Type C QPOs. In the precession model,this
implies that the flow aligns with the disc at a QPO phase of∼ 0.25
cycles when the reflection fraction dips.

In order to reproduce the observed QPO amplitude, the pre-
cession model requiresβ ∼ 10 − 15◦ (Veledina et al. 2013;
Ingram et al. 2015). Since here we measure the angle between our
line-of-sight and the disc spin axis,i, and Steiner et al. (2012)
used proper motion of the jet lobes to measure the angle be-
tween our line-of-sight and the jet,θ, we can place some con-
straints on the misalignment angleβ (assuming the jet can be
used as a proxy for the BH spin axis). Even if we knowi andθ
to perfect precession, there is some unknown azimuthal angle,Φ.
Defining Φ on the disc plane following Ingram et al. (2015) and
Veledina, Poutanen & Ingram (2013), the anglesθ andi are related
as

cos θ = sin i sin β cos Φ + cos i cos β. (8)

This is equation 3 in Ingram et al. (2015) and can be most easily de-
rived using the coordinate system of Veledina, Poutanen & Ingram
(2013) (see their Fig. 2). In their formalism,θ is the angle between
the vectorŝJBH andô. We solve the above equation forβ assum-
ing best fitting values ofi = 70.68◦ andθ = 75◦, running through
the full range of viewer azimuthΦ (which is completely unknown).
The result is plotted in the main panel of Fig. 6 (black line).We see
that nearly the full range of possibleβ values are allowed. Note that
β = 0 corresponds to alignment between the disc and BH spin, and
β = 180◦ corresponds to counter-alignment (see King et al. 2005
for a discussion on counter-alignment). We can take this further
by simulating Gaussian distributed random variables fori andθ,
and a uniformly distributed random variable forcosΦ. Since the
measurement error on bothi and θ is ∼ 3◦, we use this as the
standard deviation for both of the Gaussian distributions.The inset
plot in Fig. 6 shows the resulting cumulative probability distribu-
tion function forβ. The grey dashed line showsβ = 15◦ which
is consistent with our measurements within0.5σ (the probability
distribution peaks at∼ 4◦).

6.4 Continuum flux

Our tomographic modeling indicates that the front and back of the
disc are preferentially illuminated by the inner flow at QPO phases
∼ 0.4 and∼ 0.9 cycles. As discussed in the previous sub-section,
we also have measurements of the anglesθ andi and a measure-
ment of the disc inner radius (=flow outer radius). The bottompanel
of Fig. 5 indicates that the X-ray flux peaks at∼ 0.35 cycles.
So can the precession model reproduce this waveform in a man-
ner consistent with these constraints? Precession of the inner flow
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Figure 7. QPO waveform for orbit 2a (black points) and for the precession
model (red line). The observed waveform is calculated in units of counts
s−1 and then divided by the mean count rate. The waveform calculation
uses the limb darkening law shown in the inset (µ is the cosine of the in-
stantaneous viewing angle). See the text for more details.

will modulate the X-ray continuum flux in (at least) three ways: 1)
limb darkening, 2) changes in solid angle and 3) changes in Doppler
boosting. The limb darkening law depends on the radiative process,
which is Comptonization for the inner flow. For a stationary slab of
Comptonizing material, the observed intensity of X-ray radiation
depends on viewing angle, since photons that have undergonemany
scatterings are more likely to escape at a large inclinationangle
(e.g. Sunyaev & Titarchuk 1985; Viironen & Poutanen 2004). The
more face-on we view the flow, the greater the solid angle. Without
relativistic effects, the observed flux is simply the intensity × the
solid angle. Doppler boosting has the opposite effect: the emission
is maximally boosted when the flow is viewed maximally edge-
on, since this maximizes the line-of-sight velocities. Theobserved
flux as a function of precession angle is then a balance between
these three considerations. Doppler boosting is most important at
small radii due to the higher rotational velocity, and solidangle ef-
fects are most important for large radii since light bendingtends to
wash out solid angle variations close to the BH (Ingram et al.2015;
Veledina, Poutanen & Ingram 2013).

Since our definition of QPO phaseγ is fairly arbitrary, we
must define a further parameter to tieγ to the geometry. We define
the QPO phase such that angle between our line-of-sight and the
flow spin axis is at a minimum whenγ = γ0. In other words, the
flow spin axis comes the closest to pointing at the observer when
γ = γ0, corresponding to a maximum in the observed solid angle.
We use the code described in Ingram et al. (2015) to calculatethe
flux as a function ofγ (i.e. the QPO waveform), fixingi = 70.68◦,
θ = 75◦ and flow outer radius= 31.47 Rg . We leaveγ0 as a
free parameter, in order to compare the model waveform with the
observed waveform. The value ofγ0 that best reproduces the ob-
served waveform therefore tells about when in the QPO cycle the
flow spin axis is predicted to be maximally facing us. The code
takes all relativistic effects into account, and also includes obscu-
ration of the flow by the disc. We take the flow to be a torus with
scale heighth/r = 0.1 (see Ingram et al. 2015 for details of the
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flow geometry). We parameterise the limb darkening law as

I(µ) ∝ b0 − I0 + b1µ+ b2µ
2. (9)

Here,µ is the cosine of the angle between the observer’s line-
of-sight and the flow spin axis, andI0 is set to ensure that the
minimum of I(µ) in the rangeµ = 0 − 1 is Imin = b0. In
Ingram et al. (2015)b0, b1 andb2 were set to reproduce the Comp-
ton scattering limb darkening law for optical depthτ = 1 derived
by Sunyaev & Titarchuk (1985). Here, we leave them as free pa-
rameters. We also leave the misalignment angleβ as a free param-
eter. The remaining parameter is the inner radius of the flow,or at
least the inner radius at which the flow radiates.

We compare our waveform model to the4 − 10 keV QPO
waveform ofXMM-Newtonorbit 2a, derived using the method of
IK15 (Fig 7). We perform a least-squared fit, but note that corre-
lated errors between the QPO phases mean thatχ2 does not give a
reliable indication of goodness of fit (see Section 2.2). We sim-
ply use this fitting as an exercise to try and roughly match the
data. For our ‘best fit’ model, we setb0 ≈ 0.3, b1 ≈ −1.75 and
b2 ≈ 0.76, which gives the limb darkening law shown in the inset
of Fig. 7. This roughly matches the limb darkening law expected
for Compton scattering with an optical depthτ ≈ 0.5 (see Fig.
7a of Sunyaev & Titarchuk 1985). We set the inner flow radius to
11 Rg. This is fairly large, being outside of the ISCO even for a
maximally retrograde BH, but we find that the amplitude of the
waveform is sensitive to the difference between flow outer and in-
ner radii. This is because of the balance between Doppler boost-
ing and solid angle effects: the flux from a very small radius is
out of phase with the flux from a very large radius, since the for-
mer is dominated by Doppler boosting and the latter is dominated
by solid angle variations. The amplitude of the waveform is there-
fore damped by destructive interference between differentradii. It
is not unreasonable for a misaligned flow to have a fairly large in-
ner radius, since it has been shown in General Relativistic mag-
neto hydrodynamic simulations that torques from the frame drag-
ging effect can create plunging streams at the so-called bending
wave radius, truncating the flow outside of the ISCO (Fragileet al.
2007; Ingram, Done & Fragile 2009; Fragile 2009). The ‘best fit’
misalignment angle isβ ≈ 11◦, which is compatible with the mea-
surements presented in the previous sub-section.

Finally, we find a ‘best fit’ value ofγ0 ≈ 0.17 cycles.
This means that the flow spin axis maximally faces us at a QPO
phase ofγ = 0.17 cycles, and maximally faces away from us at
γ = γ0 + 0.5 = 0.67 cycles. From Fig. 5, we see that this roughly
corresponds with the two maxima in line energy. Therefore, com-
bining tomographic modelling with the waveform modelling im-
plies that the flow appears to the observer to shine preferentially on
the left and right of the disc when it is maximally facing us. This is
the opposite to what I16 suggested. There, the suggestion was that
the front and back of the flow illuminate the disc such that, when
the flow is facing us, it illuminates the front and back of the disc as
we see it. Whether or not this is credible should be tested with more
sophisticated calculations. For the values we used forβ, i andθ, it
can be derived from equation 8 thatΦ ≈ 110◦. Further taking into
account the fitted value ofγ0, indicates that the flow aligns with
the disc at a QPO phase ofγ ≈ 0.35 cycles. The QPO phase with
the lowest observed reflection fraction gives an independant esti-
mate for the alignment phase. We see in Fig. 5 that the minimum
in reflection fraction occurs atγ ∼ 0.25 cycles, which disagrees
somewhat with the∼ 0.35 cycles derived from waveform fitting.

Nonetheless, it is encouraging that we can achieve a reason-
able match to the observed QPO waveform, given the relative sim-

plicity of both our tomographic and waveform models. A modu-
lation mechanism our waveform model does not take into account
is variation of seed photons. As the misalignment angle between
the disc and flow changes over a precession cycle, the flow seesa
varying luminosity of disc photons. This will introduce a modula-
tion into the intrinsic luminosity of the flow (̇Zycki, Done & In-
gram in prep). This oscillation of the misalignment angle will also
drive spectral pivoting as the disc cooling changes, in addition to
the aforementioned changes in reflection fraction.2 We do observe
a modulation inΓ for our best fit tomographic model (see Fig. 5),
but this is not statistically significant. It is also likely that the optical
depth, and therefore the limb darkening law, is a function ofradius
(Axelsson et al. 2014), which will complicate the picture further.
It is very hard to see how alternative mechanisms for the ironline
centroid modulation, such as oscillations in the disc innerradius,
ionisation parameter or radial emissivity, can be compatible with
the observed QPO waveform.

We calculate the Lense-Thirring precession frequency for a
flow with a flat surface density profile extending from11 Rg to
31.67 Rg (see equation 1 in Ingram & Done 2012a, wherefLT

is given in equation 3 of Ingram & Motta 2014), and our BH spin
value ofa = 0.21. The mass of H 1743–322 is unknown, but the
mass distribution function for Galactic BHs peaks at∼ 6.3M⊙

(Özel et al. 2010; Farr et al. 2011). Using this value for massgives
a precession frequency of0.25 Hz, which matches the observed
QPO frequency well. If we instead useM = 9.3M⊙, consistent
with the estimate ofM & 9.29M⊙ obtained by Ingram & Motta
(2014) using high frequency QPOs, the precession frequencybe-
comes0.17 Hz.

6.5 Biases in the time-averaged line profile

For our best fitting model, the spectrum is varying with QPO phase
in a non-linear fashion. This means that the phase-averagedspec-
trum is not exactly equal to a spectrum computed using the phase-
averaged parameter values. Since time-averaged spectral modelling
implicitly makes the assumption that the affects of non-linear spec-
tral variability are negligible, this may lead to biases. Inorder to
investigate these biases, we can first compare our fits to the time-
averaged spectrum in Section 1 with our best fitting tomographic
model (see Tables 1 and 2). We see that the tomographic modelling
yields a slightly smaller truncation radius and a slightly higher in-
clination, although they are consistent within errors. Thefact that
these sets of parameters are consistent with one another implies
that biases due to non-linear spectral variability (which are auto-
matically accounted for in our tomographic modelling but ignored
for the time-averaged spectral fits), are small.

In Fig. 8, we assess the importance of non-linear affects more
directly. The black line shows the phase-averaged reflection spec-
trum corresponding to our best-fit parameters. Here, we havecal-
culated the spectrum for the full range of QPO phases, and taken
the mean. For the red line, we take our best fitting model, set
A1 = A2 = 0, Γ(γ) = Γ0, f(γ) = f0 (therefore removing all
non-linear variability) and calculate the phase-averagedspectrum.
We see that this slightly over-predicts the size of the blue horn, but
is a∼ 2% effect (see bottom panel). Therefore, we conclude that
the bias is small and likely does not introduce significant systematic
errors into time-averaged spectral fits, at least for these data. We do

2 Spectral pivoting can additionally result from observing through different
optical depths as the flow precesses.
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Figure 8. Top: Phase-averaged reflection spectrum, zoomed in on the iron
line, for our best fit model (black) and also calculated by setting all the
parameters to their phase-averaged values (red). A small bias is created by
non-linear variability.Bottom:The percentage difference between the two
spectra (red line minus the black line, then divided by the black line and
multiplied by100%). We see an approximately constant∼ 1% offset, with
features around the iron line on the∼ 2% level.

stress, however, that considering variability propertiesin addition
to the time-averaged spectrum is always advantageous sinceit uses
more information.

6.6 Assumptions

We have developed the first physical model for QPO phase-
resolved spectroscopy. There are a number of improvements that
could be made to our physical assumptions in future. The model
we use for the reflection continuum,xillver, is the current state-of-
the-art, but improvements are still being made. First of all, xillver
models the illuminating continuum as an exponentially cut-off
power-law, whereas a sharper high energy cut-off is associated with
thermal Compton up-scattering (Zdziarski, Johnson & Magdziarz
1996; Fabian et al. 2015). Also, the disc is assumed to be a constant
density slab. Making the more physical assumption of hydrostatic
equilibrium affects the predicted reflection spectrum, butless so in
the> 4 keV range we consider (Nayakshin, Kazanas & Kallman
2000; Done & Nayakshin 2007). For this paper, we simply parame-
terise the radial dependence of the irradiating flux asr−3. This will
be true far from the BH, but not close to the irradiating source (e.g.
Laor 1991; Wilkins & Fabian 2012). We have also made the simpli-
fying assumption that the rest-frame reflection spectrum isthe same
for the whole disc, allowing us to convolve the rest-frame spectrum
with a smearing kernel. However, in reality the ionisation parame-
ter will depend on radius since disc irradiation depends strongly on
proximity to the continuum source. Svoboda et al. (2012) showed
that not accounting for this can lead to measurement of very cen-
trally peaked emissivity profiles (∼ r−7), as is often the case (e.g.

Wilkins & Fabian 2011; Fabian et al. 2012). Also, light bending
means that different parts of the disc have different observed incli-
nation angles, which makes a difference to the spectrum because of
the limb darkening law of reflected emission (Svoboda et al. 2009;
García et al. 2014). Finally, our assumed azimuthal emissivity pro-
file is rather simplistic, but this allows us to define a generic model
to compare with the data. This can be calibrated against morein-
volved theoretical modeling in future.

7 CONCLUSIONS

We have developed the first physical model for QPO phase-
resolved spectroscopy and fit it to data from the BH binary system
H 1743–322. We find that the reflection fraction varies systemati-
cally with QPO phase (3.52σ), adding to the now formidable body
of evidence in favour of a geometric origin of Type C QPOs. Our
model mimics the asymmetric illumination pattern, rotating about
the disc surface, that would be produced by a precessing inner flow
with a simple analytic parameterisation. It provides a gooddescrip-
tion of the observed shifts in the iron line energy and is preferred
over a null-hypothesis of axisymmetric illumination with2.40σ
significance. More data is therefore needed if a direct3σ detec-
tion of asymmetric disc illumination is to be achieved. We consider
alternative axisymmetric models, but none of them adequately de-
scribe the data. Our results, alongside the results of I16, provide
strong evidence that Type C QPOs are driven by precession. We
note that precession of the disc rather than the flow is also possible.
We expand upon our results by modelling the continuum flux as a
function of QPO phase with a precessing inner flow model (Fig.
7), and find we can match the observed QPO waveform for a spe-
cific geometry in which the flow spin axis faces us at a QPO phase
of ∼ 0.2 cycles. Since this roughly coincides with a maximum in
iron line centroid energy, this implies that the flow preferentially
illuminates the left and right hand sides of the disc when it maxi-
mally faces us. This geometry can be tested with direct modelling
of the illumination profile from a precessing flow in future, together
with more sophisticated continuum flux waveform modelling.To-
mographic modelling of QPOs is a powerful new technique. The
next step is to apply the technique to more data in order to track
changes in accretion geometry of a source throughout an outburst.
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