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ABSTRACT
Accreting stellar-mass black holes often show a ‘Type-C’ quasi-periodic oscillation (QPO) in
their X-ray flux, and an iron emission line in their X-ray spectrum. The iron line is generated
through continuum photons reflecting off the accretion disk, and its shape is distorted by
relativistic motion of the orbiting plasma and the gravitational pull of the black hole. The
physical origin of the QPO has long been debated, but is oftenattributed to Lense-Thirring
precession, a General Relativistic effect causing the inner flow to precess as the spinning
black hole twists up the surrounding space-time. This predicts a characteristic rocking of
the iron line between red and blue shift as the receding and approaching sides of the disk
are respectively illuminated. Here we report onXMM-NewtonandNuSTARobservations of
the black hole binary H 1743-322 in which the line energy varies systematically over the
∼ 4 s QPO cycle (3.70σ significance), as predicted. This provides strong evidencethat the
QPO is produced by Lense-Thirring precession, constituting the first detection of this effect
in the strong gravitation regime. There are however elements of our results harder to explain,
with one section of data behaving differently to all the others. Our result enables the future
application of tomographic techniques to map the inner regions of black hole accretion disks.
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1 INTRODUCTION

Accreting stellar-mass black holes routinely exhibit ‘Type-C’ low
frequency quasi-periodic oscillations (QPOs) in their X-ray flux,
with a frequency that evolves from∼ 0.1 − 30 Hz as the X-ray
spectrum transitions from the power-law dominated hard state to
the thermal disk dominated soft state (e.g. Wijnands et al. 1999;
van der Klis 2006). The thermal disk component is well under-
stood as originating from a geometrically thin, optically thick ac-
cretion disk (Shakura & Sunyaev 1973; Novikov & Thorne 1973)
and the power-law emission, which displays breaks at low and
high energy, is produced via Compton up-scattering of seed pho-
tons by a cloud of hot electrons located close to the black hole
(Thorne & Price 1975; Sunyaev & Truemper 1979). The low and
high energy breaks are associated respectively with the seed pho-
ton temperature and the electron temperature. The exact geome-
try of this electron cloud is uncertain, and is probably changing
through this transition. In thetruncated disk model(Ichimaru 1977;
Esin et al. 1997; Poutanen et al. 1997), the disk truncates inthe
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hard state at some radius larger than the innermost stable circular
orbit (ISCO), with the inner regions forming a large scale height,
hot accretion flow (hereafter theinner flow) which emits the Comp-
tonised spectrum. The Comptonised spectrum becomes softerand
the disk component becomes more prominent in the spectrum as
the truncation radius moves inwards (e.g. Done et al. 2007).Alter-
natively, the hot electrons may be located in a corona above the
disk (e.g. Galeev et al. 1979; Haardt & Maraschi 1991) or at the
base of a jet (e.g. Markoff et al. 2005), or perhaps some combi-
nation of these alternatives. The X-ray spectrum also displays re-
flection features, formed by Comptonised photons being scattered
back into the line of sight by the disk. The most prominent fea-
tures of the reflection spectrum are the iron Kα line at ∼ 6.4
keV, formed via fluorescence, and the reflection hump peakingat
∼ 30 keV, formed via inelastic scattering from free electrons (e.g.
Ross & Fabian 2005; Garcı́a et al. 2013). The shape of the reflec-
tion spectrum, and in particular the iron line which is narrow in the
rest frame, is distorted by orbital motion of the disk material and
gravitational redshift (Fabian et al. 1989).

The QPO arises from the immediate vicinity of the black

http://arxiv.org/abs/1607.02866v1


2 A. Ingram et al

hole1, but its physical origin has long been debated. Suggested
QPO models in the literature generally consider either somein-
stability in the accretion flow, or a geometric oscillation.Insta-
bility models consider, for example, oscillations in mass accre-
tion rate or pressure (e.g. Tagger & Pellat 1999; Cabanac et al.
2010) or standing shocks in the disk (e.g. Chakrabarti & Molteni
1993). Geometric models mostly consider relativistic precession.
Due to the frame dragging effect, a spinning black hole drags
the surrounding spacetime around with it, inducing Lense-Thirring
precession in the orbits of particles out of the equatorial plane
(Lense & Thirring 1918). Stella & Vietri (1998) and Stella etal.
(1999) were the first to suggest that low frequency QPOs could
be driven by Lense-Thirring precession, noting that the expected
precession frequency of a test mass at the truncation radiusis com-
mensurate with the QPO frequency. Schnittman, Homan & Miller
(2006) considered a precessing ring in the disk, and corrugation
modes in the disk caused by the frame dragging effect have also
been studied (e.g. Wagoner et al. 2001). Ingram, Done & Fragile
(2009) suggested that the entire inner flow precesses whilst
the disk remains stationary, motivated by the simulations of
Fragile et al. (2007). This model explains why the QPO modu-
lates the Comptonised emission much more than the disk emis-
sion, and predicts that the QPO should be stronger in more highly
inclined sources as observed (Schnittman, Homan & Miller 2006;
Heil, Uttley & Klein-Wolt 2015, Motta et al. 2015). It also makes a
distinctive prediction: as the inner flow precesses, it willilluminate
different azimuths of the disk such that an inclined observer sees
a blue/red shifted iron line when the approaching/recedingsides
of the disk are illuminated (Ingram & Done 2012). The precession
model therefore predicts that the line energy changes systematically
with QPO phase. This is a difficult effect to measure, since phase-
resolving the QPO poses a technical challenge. Miller & Homan
(2005) used a simple flux selection to obtain suggestive but incon-
clusive results for GRS 1915+105. Ingram & van der Klis (2015,
hereafter IK15) developed a more sophisticated technique to dis-
cover spectral pivoting and a modulation in the iron line fluxin the
same source, but data quality prevented unambiguous measurement
of a line energy modulation. Recently, Stevens & Uttley (2016) de-
veloped a similarly sophisticated QPO phase-resolving technique,
which involves cross-correlating each energy channel witha ref-
erence band. Using this technique, they found a modulation in the
disk temperature of GX 339-4, interpreted as reprocessed radiation
from a precessing inner flow or jet. However, they too lacked the
data quality to measure a line energy modulation.

In this paper, we further develop the QPO phase-resolving
method of IK15, conducting fitting in the Fourier domain rather
than the time domain so that the error bars are independent. We
use this method to analyse a long exposure observation of theblack
hole binary H 1743-322 in the hard state. We summarise the obser-
vations in Section 2, describe our phase-resolving method in Sec-
tion 3 and present the results of fitting a phenomenological model
to the phase-resolved spectra in Section 4. We discuss our findings
in Section 5 and outline our conclusions in Section 6.

1 the light crossing timescale puts a hard upper limit of∼ 300 Rg

(whereRg = GM/c2), but the true size scale is likely. 60 Rg (e.g.
Axelsson et al. 2013).
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Figure 1. Long term light curve summarising theXMM-NewtonandNuS-
TARobservations analysed in this paper. Throughout, the data are referred
to as labelled in this plot. The rise in count rate fromXMM-Newtonorbit 2a
to 2b is due to a small change in the instrument setup (from pn thick to pn
thin) as a new PI took over the observation.

2 OBSERVATIONS

The X-ray Multi-Mirror Mission (XMM-Newton; Jansen et al.
2001) observed H 1743-322 for two full orbits of the satellite
around the Earth in late September 2014. The first orbit (obs ID
0724400501) lasted from∼18:45 on 21st September until∼08:45
on 23rd September. The second orbit lasted from∼20:10 on 23rd

September until∼08:35 on 25th September. The second orbit
is split into two obs IDs, with the first∼ 70 ks classified as
0724401901 and the final∼ 50 ks, which had a different PI, as
0740980201. In this paper, we split up each orbit into two separate
observations to allow for potential evolution of spectral and tim-
ing properties over such long exposures (and also the small change
in instrumental setup as the PI changed). Hereafter, we refer to
these fourXMM-Newtonobservations as orbits 1a, 1b, 2a and 2b.
The Nuclear SpecTroscopic ARray(NuSTAR; Harrison 2013) ob-
served the source from∼18:20 on23rd September until∼08:50
on 25th September (obs ID 80001044004). Figure 1 shows long
term4 − 10 keV light curves for all exposures and illustrates our
naming convention for theXMM-Newtondata. Spectral and timing
analyses of theXMM-Newtondata have been previously presented
by Stiele & Yu (2016) and De Marco & Ponti (2016), whereas the
NuSTARdata are reported on here for the first time.

2.1 Data reduction

2.1.1 XMM-Newton

We used theXMM-NewtonScience Analysis Software (SAS) ver-
sion 14.0 to reduce data from the EPIC-pn (European Photon Imag-
ing Camera) in timing mode. We generated calibrated and concate-
nated event lists usingEPPROCwith the default settings for tim-
ing mode as of SAS v14.0 (runepreject=yes withxrlcorrection=yes
runepfast=no withrdpha=yes). We extracted all products from a
region 32 6RAWX< 44, RAWY > 23 and use only single
and double events (PATTERN6 4), whilst ignoring bad pixels
(FLAG==0). We generated response and ancillary files usingRM-
FGEN and ARFGEN, and rebinned all spectra to have at least 20
counts per channel usingSPECGROUP. We extracted background
spectra from the region3 6RAWX6 5, RAWY > 23 and find
that the source contributes98.5% of the total counts (this number
is likely even higher in reality, since source counts can contami-
nate the background spectrum in timing mode: Done & Diaz Trigo
2010). Since the source dominates, we did not perform a back-
ground subtraction when extracting light curves. Inspection of the
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long term10−12 keV light curve reveals that none of the exposure
is affected by proton flares.

We extract light curves in 20 energy bands. We focus our
phase-resolved analysis on the4 − 10 keV region, so extract one
broad light curve for energies< 4 keV and one broad light curve
for energies> 10 keV (both of which will be ignored for the analy-
sis), leaving 18 high signal-to-noise-channels in the region of inter-
est. These channels are broad enough to achieve good statistics, and
are trivially broader than the FWHM of the instrument response.
We used theFTOOL RBNRMF in order to re-bin the spectral re-
sponse file into these 20 energy bands.

2.1.2 NuSTAR

We used theNuSTARanalysis software, NuSTARDS v1.4.1. We
extracted products from the cleaned event list with theFTOOL

NUPRODUCTS, using a 120” circular source extraction region and
a 90” circular background extraction region taken from an area not
contaminated by source counts. We find that the source contributes
99.7% of the total counts, and consequently we did not perform
a background subtraction when extracting light curves. Theback-
ground is negligible up to∼ 50 keV, above which it dilutes the
rms and phase lags by a small amount. We extract light curves in
19 energy bands. We concentrate on the energy range4 − 60 keV,
and so bin into 2 broad channels for energies< 4 keV and 1 broad
channel> 60 keV (with these three channels to be ignored in the
analysis), leaving 16 high signal-to-noise channels in therange of
interest. As forXMM-Newton, we re-binned the spectral response
file usingRBNRMF.

2.2 Power spectra

Fig. 2 shows 4-10 keV power spectra calculated forXMM-
Newtonorbits 1a (black), 1b (red), 2a (green) and 2b (blue) and
NuSTAR (magenta). TheXMM-Newtonpower spectra are calcu-
lated in the standard way, with a constant Poisson noise level sub-
tracted (van der Klis 1989; Uttley et al. 2014). ForNuSTARwe in-
stead calculate the co-spectrum between the two (independent) Fo-
cal Plane Modules, FPMA and FPMB (Bachetti et al. 2015), since
the NuSTARdead time ofτd ≈ 2.5 ms imprints instrumental
features on the Poisson noise in a power spectrum calculatedin
the standard way. The co-spectrum is the real part of the cross-
spectrum and includes no Poisson noise contribution. We also cor-
rect for the suppression of variability caused by theNuSTARdead
time using the simple formula (Bachetti et al. 2015)

rmsdet
rmsin

≈ 1

1 + τdrin
=
rdet
rin

, (1)

whererdet andrin are respectively the detected and intrinsic count
rates. For this observation, the ratio of detected to intrinsic vari-
ability is rmsdet/rmsin = 0.8462 (recorded in the NuSTAR spec-
tral files as the keyword ‘DEADC’). The power spectra in Fig. 2
are normalised such that the integral of the power spectrum over
a given frequency range gives the variance of the corresponding
time series over that range, and are plotted in units of frequency×
power.

All power spectra display QPOs with a strong fundamental
(first harmonic) and overtone (second harmonic) evidenced by two
large, harmonically related peaks. We see that the QPO funda-
mental frequency evolved from∼ 0.205 Hz to ∼ 0.25 Hz over
the ∼ 300 ks duration of the twoXMM-Newtonorbits. We also
see that the 4-10 keV (dead time corrected)NuSTARco-spectrum
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Figure 2. 4− 10 keV Power spectrum forXMM-Newtonorbits 1a (black),
1b (red), 2a (green) and 2b (blue), and4−10 keV co-spectrum between the
NuSTARFPMA and FPMB (magenta).For all datasets we see a strong Type-
C QPO with two clearly detected harmonics. The QPO frequencyincreased
from ∼ 0.2 Hz to∼ 0.25 Hz over the∼ 300 ks elapsed from the start of
orbit 1a to the end of orbit 2b. Error bars are 1σ.

agrees very well with the simultaneousXMM-Newtonorbit 2 data
for the same energy band. For our analysis, we treat each of the
five datasets shown in Fig. 2 separately to allow for the evolution
in source properties over such a long exposure, and also to allow
for the different responses of the two instruments, and the small
change in theXMM-Newtoninstrumental setup during orbit 2.

2.3 Energy spectra

As a preliminary analysis, we jointly fit the spectra of bothXMM-
Newtonorbit 2a and the simultaneous (FPMA)NuSTARobserva-
tion with a simple absorbed power-law plus Gaussian iron line
model, considering only4− 10 keV for both. Throughout this pa-
per, we account for interstellar absorption using the modelTBABS,
with hydrogen column densityNH = 1.35 × 1022cm−2 and the
relative abundances of Wilms et al. (2000). We useXSPECv12.8.2
for all spectral fitting (Arnaud 1996). We achieve a best fit with re-
ducedχ2 = 551.14/529 = 1.04, without applying any systematic
error. There is no evidence for direct disk emission in the> 4 keV
bandpass, and theNuSTARspectrum above10 keV reveals a reflec-
tion hump. In this paper, we focus on phenomenological modelling
of the 4 − 10 keV region for our QPO phase-resolved analysis,
modelling continuum and iron line with a power-law and Gaus-
sian respectively. We consider this bandpass because it is shared
betweenXMM-Newton andNuSTAR, it is above the energies for
which direct disk emission is relevant and below energies for which
the reflection hump is important. Clearly, a Gaussian function is
not a physical model for the iron line, but we wish to characterise
the QPO phase dependence of the iron line profile without making
physical assumptions. We will focus on physical spectral modelling
in a future paper.

We find a discrepancy in the power-law index measured for
these two spectra (1.286 ± 0.003 for XMM-Newtonand1.509 ±
0.004 for NuSTAR). The Gaussian representing the iron line has a
larger equivalent width in theNuSTARspectral fit (∼ 65 eV) than
in theXMM-Newtondata (∼ 47 eV), and lower centroid energy in
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theNuSTARdata (∼ 6.41 keV) than in theXMM-Newtondata (∼
6.61 keV), but the line width is consistent. This cross-calibration
discrepancy poses a problem for time-averaged spectral analysis.
However, our analysis is differential: it focuses on the variation
of spectral parameters with QPO phase, and is therefore far more
robust to cross-calibration issues. We demonstrate in the follow-
ing two sections that the variability properties are consistent be-
tween the two observatories, and that the differential variation in
each of the spectral parameters with QPO phase is consistent. For
our phase-resolved spectral analysis, we allow the time averaged
power-law index and line energy to be different between the two
observatories, but tie theirdifferential properties between the two
observatories.

3 PHASE-RESOLVING METHOD

We use the phase-resolving method of IK15, with some small
changes designed to increase signal-to-noise and circumvent the
NuSTARdead time, and also some more significant changes to
allow us to reliably calculate statistical significances for our fits.
The essence of the IK15 phase-resolving method is to measurethe
Fourier transform (FT) of the QPO as a function of energyE, for
each harmonic for which this is possible. For thejth harmonic, this
can be written as

Wj(E) = µ(E)σj(E)eiΦj(E), (2)

whereµ(E) is the mean count rate,σj(E) the fractional rms in the
jth QPO harmonic andΦj(E) is referred to in IK15 as thephase
offsetof the jth harmonic, all as a function of energy. It is clear
from Fig. 2 that the QPO for the observations considered herehas
two strong harmonics, therefore we calculate the QPO FT forj = 1
andj = 2. We must also consider the case ofj = 0; i.e. the DC
component (standing for direct current). This is simply themean
count rate, such thatW0(E) = µ(E).

As for the phase offsets,Φj(E), we can calculate the cross-
spectrum between each energy channel and a reference band inor-
der to measure the phase lag for each harmonic,∆j(E), as a func-
tion of energy. That is, we can measure by how many radians the
jth harmonic of each energy channel lags thejth harmonic of the
reference band. What we cannotmeasure using the cross-spectrum
is the phase difference between the harmonics. By measuringthis
phase difference, we can calculate the phase-offsets of thefirst two
harmonics using the formulae

Φ1(E) = Φ1 +∆1(E)

Φ2(E) = 2[Φ1 + ψ] + ∆2(E). (3)

Here,ψ is the phase difference between the two harmonics in the
reference band andΦ1 is the arbitrary reference phase of the first
harmonic, which we set toΦ1 = π/2 following IK15. Note that
there is a version of the above formula in IK15 (equation 8 in that
paper), which differs slightly from equation 3 presented here. The
version presented here is correct and the mistake is in IK15.Note
that we only need to measure the phase difference between thehar-
monics in one band (is it obviously advantageous to measure this
for the reference band which has far more photons than the indi-
vidual channels). The phase difference between the harmonics as a
function of energy is given byψ(E) = ψ−∆1(E)+∆2(E)/2. We
stress that the use of a broad reference band doesnot smear out the
data in some way, as is a common misconception. For unity coher-
ence, changing the reference band affectsonly the constant offset of
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Figure 3.Spectra from two selected QPO phases, plotted as a ratio to anab-
sorbed power-law continuum model. The blue circles correspond to a QPO
phase a quarter of a cycle later than the red triangles (11/16 cycles com-
pared with7/16 cycles). We showXMM-Newtondata averaged between
orbits 2a and 2b. We see shifts in the iron line energy betweenthe two
selected QPO phases, and the hard X-ray coverage ofNuSTAR(inset) ad-
ditionally reveals that the reflection hump is enhanced relative to the line
when the line is blue shifted. Error bars are 1σ.

the lag spectrum and also the signal-to-noise (see e.g. Uttley et al.
2014).

The method of IK15 involves taking the inverse FT of equa-
tion 2 to give an estimate of the QPO waveform in each energy
channel. This method is intuitive, since it gives a way of estimating
the spectrum as a function of QPO phase. The inverse FT, how-
ever, introduces correlations in the errors between different QPO
phases. Here, we first summarise the time domain approach and
then describe a new Fourier domain approach that circumvents the
problem of correlated error bars associated with the time domain
method.

3.1 Phase-resolved spectra in the time domain

We can inverse FT equation 2 to estimate the QPO waveform for
each energy band

w(E,γ) = µ(E)

{

1 +
√
2

2
∑

j=1

σj(E) cos[jγ −Φj(E)]

}

, (4)

whereγ is QPO phase. Plotting this instead as count rate versus
photon energy for a given QPO phase gives phase-resolved spectra.
We describe in the following subsections how we measureµ(E),
σj(E) and∆j(E), focusing mainly on the modifications we have
made to the IK15 method in order to maximise signal-to-noiseand
correct for theNuSTARdead time. We propagate the errors in equa-
tion 4 using a Monte Carlo simulation.

We first reconstruct phase-resolved spectra in the time domain
using equation 4. We consider 16 QPO phases (i.e. 16 values ofγ),
and throughout we analyse each dataset defined in Fig. 1 separately,
resulting in five independent datasets. Fig 3 shows examplesof the
phase-resolved spectra, plotted as a ratio to an absorbed power-law
continuum model (folded around the telescope response matrix).
The continuum model has been fit ignoring5.5− 8 keV, where the
iron line is prominent and> 10 keV, where the reflection hump
is prominent. For this plot, we only consider theNuSTARdata and
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XMM-Newtonorbits 2a and 2b, which were simultaneous with the
NuSTARobservation. For plotting purposes, we have averaged to-
gether data from orbits 2a and 2b, even though we treat them as
two separate datasets in our analysis. Red triangles correspond to a
QPO phase ofγ = 7/16 cycles and blue circles to a QPO phase
of γ = 11/16 cycles; i.e. the blue points are a quarter of a cycle
after the red points. We see that the line energy changes overthe
course of a QPO cycle, and theNuSTARdata reveal that the reflec-
tion hump becomes more prominent when the line energy is higher
(blue triangles). In the following section, we model the iron line
with a Gaussian and the continuum with an absorbed power-lawin
order to characterise this QPO phase dependence of the line energy.
However, in order to robustly assess the statistical significance of
the line energy modulation, we fit the same model in the Fourier
domain, as described in the following subsection.

3.2 Phase-resolved spectra in the Fourier domain

It is straightforward to fit the 16 phase-resolved spectra, as ex-
pressed in equation 4, with a phenomenological spectral model
to determine if the best-fit spectral parameters vary systematically
with QPO phase. However, assessing the statistical significance of
the spectral parameters is complicated by correlations between the
errors for different QPO phases. For this reason this is not the
method we use to determine significances. Instead, we perform the
fits in the Fourier domain, which provides a different representation
of the same information. The QPO FT,Wj(E), from equation 2, is
in units of count rate and, as a complex quantity, can be expressed in
terms of amplitude,µ(E)σj(E), and phase,Φj(E), or in terms of
real and imaginary parts,ℜ{Wj(E)} = µ(E)σj(E) cos[Φj(E)]
andℑ{Wj(E)} = µ(E)σj(E) sin[Φj(E)] respectively. The real
and imaginary parts ofWj(E), and the different harmonics, are
statistically independent from one another. Thus standardstatisti-
cal methods can be applied if we fit a model toWj(E) rather than
w(E, γ). Here, we first fit spectral models to the phase-resolved
spectra in the time domain to gain insight, before constructing a
model for the QPO Fourier transform. We can exploit the linearity
of the Fourier transform to define a model,W̃j(E), and fold around
the telescope response to get the observedWj(E), as for a normal
spectrum. Specifically, for theIth energy channel

Wj(EI) =

∫

∞

0

W̃j(E)R(I,E)dE, (5)

whereR(I,E) is the telescope response for theIth energy chan-
nel. We perform a joint fit to real and imaginary parts to preserve
this linearity (which would be lost if we were to instead fit for am-
plitude and phase). This results in a joint fit of 5 spectra: the real
and imaginary parts of the first and second harmonics, and thereal
part of the DC component (the imaginary part is trivially zero).

3.3 Phase difference between harmonics

We first measure the phase difference,ψ, between the two QPO har-
monics. This phase difference represents the number of QPO cycles
by which the second harmonic (first overtone) lags the first har-
monic (fundamental), converted to radians (i.e. multiplied by 2π).
It is defined on the interval0−π radians, since there are two cycles
of the second harmonic for each cycle of the fundamental. We split
the full band light curve into segments of duration32 s. Each seg-
ment contains 512 time bins of durationdt = 0.0625s, and roughly
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Figure 4. Phase difference between the two QPO harmonics, with differ-
ent datasets represented using the same colour scheme as Fig. 1. For all
datasets, we measure the phase difference between harmonicsψ for many
32 s segments (see text for details). This plot is a histogram ofthose mea-
surements and shows that there is a well-defined average phase difference
between the harmonics, which we measure by determining the peak of the
plotted distribution.

8 QPO cycles.XMM-Newtonorbits 1a, 1b, 2a and 2a contain re-
spectively 2135, 2134, 2455 and 1535 segments with good teleme-
try, and theNuSTARobservation contains 2217 segments. For each
segment, we calculate the phase differenceψ following IK15. In
Fig. 4, we plot a histogram of theseψ values for each dataset (the
colour scheme is the same as defined in Fig. 1), revealing a strong
peak for all datasets. These histograms have two peaks purely be-
causeψ is cyclical and we show two cycles. We measure the peak
of each histogram following IK15 to obtain the average phasedif-
ference between harmonics. ForXMM-Newton orbits 1a, 1b, 2a,
2b, we measureψ/π = 0.309 ± 0.005, ψ/π = 0.336 ± 0.005,
ψ/π = 0.336 ± 0.005 andψ/π = 0.347 ± 0.006. For NuS-
TAR, we take the average of the independent measurements for
the FPMA and FPMB to getψ/π = 0.332 ± 0.005. Note that,
even though theNuSTARobservation is simultaneous with orbit 2
of XMM-Newton, the measuredψ are not required to agree because
the full band light curves ofXMM-NewtonandNuSTARcover a dif-
ferent energy range. The agreement we see between observatories
tells us that the phase difference has little energy dependence here.

3.4 Energy dependence of QPO amplitude

We measure the fractional rms amplitude of the two QPO har-
monics as a function of energy,σj(E), for all five datasets. IK15
did this by calculating the power spectrum for each energy chan-
nel. For theXMM-Newtondata here, we instead calculate the co-
variance spectrum to increase signal-to-noise (Wilkinson& Uttley
2009). We follow the standard procedure for calculating thecovari-
ance and its error (Uttley et al. 2014). Our reference band isthe
full XMM-Newtonband minus the channel of interest so as to avoid
correlating a time series with itself. For each energy channel, we
calculate the cross-spectrum between that channel and the refer-
ence band, and also the power spectrum of the reference band.The
covariance is the modulus squared of the cross-spectrum divided
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Figure 5. Fractional rms as a function of energy for three selected datasets,
represented using the same colour scheme as Fig. 1. The points above the
grey dashed line correspond to the fundamental (first harmonic) and the
points below the dashed line are for the second harmonic. Theother datasets
are omitted for clarity. We see tentative features around the iron line. Error
bars are 1σ.

through by the power spectrum of the reference band. Since the
light curves from each energy channel are well correlated, the co-
variance gives a good measure of the power spectrum with smaller
statistical errors (Wilkinson & Uttley 2009). ForNuSTAR, we cir-
cumvent the dead time by calculating the co-spectrum between the
FPMA and FPMB light curve for each energy channel instead of
the power spectrum. Following IK15 we fit our power spectral es-
timates (covariance and co-spectrum forXMM-Newton andNuS-
TARrespectively) in each energy channel with a sum of Lorentzian
functions. We calculate the fractional rms of each QPO harmonic
from the integral of the corresponding Lorentzian function. A dead
time correction ofrmsdet/rmsin = 0.8462 also must be applied
to theNuSTARdata. Fig. 5 shows the resulting calculation of rms
as a function of energy for three of the five datasets, following the
colour scheme of Fig. 1. We show only three datasets to avoid over-
crowding the plot. The points above the dashed line are for the first
harmonic, and below the dashed line are for the second harmonic.

For our Lorentzian fits, we use four Lorentzian functions, one
for each QPO harmonic and two to fit the broad band noise. We tie
the centroid of the second harmonic component to be double that
of the first harmonic and force the two QPO Lorentzians to have
the same quality factor (Q = centroid frequency / full width at half
maximum). The centroid and quality factor of the QPO fundamen-
tal component are free to vary with energy, but we measure no sig-
nificant energy dependence for either of these quantities. We tried
many variations on the model to test for the robustness of thefit.
We tried using more and less broad band noise Lorentzians, allow-
ing the QPO components to have different quality factors, relaxing
the centroid frequency ratio of 2, fixing the widths and/or centroid
frequencies of the QPO Lorentzians to equal those measured for
the full band and so on. We even tried simply integrating the power
spectral estimates over the widths of the QPO components instead
of fitting a model. In all cases, we obtained consistent results, indi-
cating that our fits are robust.
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Figure 6. Phase lag of each energy channel relative to a reference band
for three selected datasets, represented using the same colour scheme as
Fig. 1. The reference band is the full band of the respective instrument,
and therefore is slightly different betweenXMM-NewtonandNuSTAR. This
creates the small offset seen in the second harmonic. As withFig. 5, the
other datasets are omitted for clarity. Error bars are 1σ.

3.5 Phase lags between energy bands

We calculate the phase lag between each energy channel and a
broad reference band for both QPO harmonics,∆j(E). ForXMM-
Newton, we use the same reference band as described above for
the covariance spectrum. We calculate the cross-spectrum for each
channel and average this over the width of each QPO harmonic,as
defined by the Lorentzian fitting described in the previous section.
The phase lag for each QPO harmonic is the argument of this av-
eraged cross-spectrum. ForNuSTAR, we again utilise the two in-
dependent focal plane modules. We use the full FPMB band as
the reference band and calculate the cross-spectrum between this
and each channel of interest in FPMA. We also calculate an in-
dependent set of cross-spectra using FPMA as the reference band
and FPMB for the subject bands. For each energy channel, we av-
erage together these two independent measurements of the cross-
spectrum to increase signal-to-noise. Fig. 6 shows the lag spectra
for the same three datasets as the previous plot. We see a small
offset in the second harmonic betweenXMM-Newtonand NuS-
TAR. This is simply because the lag spectra are calculated forNuS-
TAR using a different reference band, and the lag of the second
harmonic depends on energy. This will introduce a small offset be-
tweenXMM-NewtonandNuSTARwhen it comes to plotting best-fit
spectral parameters against QPO phase. As it turns out, thisoffset
is small enough to ignore completely, but even if it were large, it
would be fairly simple to correct for since it is just a constant offset.
We calculate the phase offsetsΦ1(E) andΦ2(E) using equation 3.
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3.6 Step-by-step summary

The steps of the IK15 method can be summarised as follows:

(i) Measure the phase difference between the QPO harmonics in
a broad reference band (see Section 3.3),

(ii) For both QPO harmonics, measure the rms variability as a
function of energy (see Section 3.4),

(iii) For both QPO harmonics, measure the phase-lag between
each energy channel and the reference band (see Section 3.5),

(iv) Combine these measurements in order to calculate the QPO
FT (Equation 2),

(v) Inverse FT to obtain a waveform for each energy channel
(Equation 4.

For the Fourier domain method, we stop at step 4 and fit a model
directly to the QPO FT, whereas the time domain method also in-
cludes step 5.

4 RESULTS

Fig. 3 shows the spectrum for two selected QPO phases plottedas
a ratio to an absorbed power-law continuum model, with the blue
circles representing the spectrum a quarter of a cycle laterthan the
red triangles. We see a shift in line energy between the two QPO
phases. In this section, we fit the iron line with a Gaussian function
to characterise the phase dependence of the centroid energyand
assess its statistical significance.

4.1 Time domain fits

We first fit the phase-resolved spectra in the time domain withan
absorbed power-law plus Gaussian model, in the energy range4-10
keV. We consider the five datasets separately, which allows us to
compare results for independent analyses. We initially tieall spec-
tral parameters to remain constant during the QPO cycle and test
if the fit is improved when we allow each parameter to vary freely
with QPO phase. For all three datasets, we achieve the minimum re-
ducedχ2 value by allowing the Gaussian centroid energy (Eline),
Gaussian flux (NG) and the power-law index (Γ) and normalisa-
tion (Ncont) to vary with QPO phase. The fit is not improved by
allowing the Gaussian width to vary with QPO phase. We plot the
best-fit line centroid energy against QPO phase (light blue circles)
in Figure 7. We do not plot error bars here, since the errors are cor-
related between QPO phases in the time domain fits. All datasets
show a modulation in the line energy. For all but orbit 1b of XMM-
Newton, the line energy modulation has the same distinctiveshape,
with maxima at∼ 0.2 and∼ 0.7 cycles. The modulations inΓ,
NG andNcont (not pictured) are also consistent between these 4
datasets.

It is puzzling that orbit 1b disagrees with the other datasets.
This dataset also exhibits different modulations inNG andΓ from
the others (this can be seen in Fig. 10, which is explained in detail
in the following sections). To investigate this further, wesplit up
orbit 1 into four quarters such that the first two quarters together
make up orbit 1a and the final two quarters together make up orbit
1b. We find, as expected, that the first two quarters both show the
same modulation in line shape seen for orbit 1a. The fourth quarter
(i.e. the second half of orbit 1b) shows a peak in line energy at 0.7
cycles but not at0.2 cycles, so is different from orbit 1a but only
slightly. This fourth quarter also shows a modulation inΓ consistent
with orbit 1a. It is the third quarter that differs so radically from all

of the other datasets. This shows a peak in line energy at∼ 0.4
cycles, and also exhibits a different (but very weak) modulation in
Γ from orbit 1a. The fact that the two halves of orbit 1a displaythe
same modulations as each other, and as orbit 1a treat as a whole,
gives us confidence in the robustness of the method, and implies
that something different really is happening in this third quarter of
orbit 1.

4.2 Fourier domain fits

We now fit the same phenomenological spectral model directlyto
the QPO FT derived from the data. This will allow us to assess the
statistical significance of the line energy modulation. We construct
a model for the QPO Fourier transform by representing the spectral
parameters as periodic functions of QPO phase,γ. For example,
the line energy is

Eline(γ) = E0+A1E sin[γ−φ1E]+A2E sin[2(γ−φ2E)], (6)

whereE0,A1E ,A2E, φ1E andφ2E are model parameters. We see
thatE0 is the mean line energy, and all variability in the line en-
ergy as a function of QPO phase is captured by the amplitudes and
phases of the sine waves. The other potentially varying spectral pa-
rameters (Gaussian width and normalisation, power-law index and
normalisation) are also modelled in the same manner with 5 pa-
rameters each. Our model calculates the resulting spectrumfor 16
QPO phases and then calculates the Fourier transform for a grid of
energy bins. We then fold, for each harmonic, the real and imagi-
nary parts of this Fourier transform around the telescope response
matrix (equation 5) and fit to the observed QPO Fourier transform
(equation 2).

4.2.1 Separate fits

As with the time domain fits, we fit the five datasets separately,
expecting to see exactly the same results as before (since the FT of
a function is simply a different representation of the same function),
but with more manageable statistics. We again find a best-fit with
modulations in the line energy (i.e.A1E > 0 andA2E > 0) and
flux and the continuum normalisation and power-law index, and
again the fits are not improved by allowing the Gaussian widthto
vary with QPO phase. As an example of our fits, we plot in Fig. 8
(left) the QPO FT for orbit 1a (black points) along with the best-fit
model (lines). Here, the data are unfolded around the instrument
response assuming the best-fit model and are in units of energy
squared× specific photon flux (i.e. theeeufoption inXSPEC). The
best-fit model for the first harmonic is plotted in red and the second
harmonic in blue. We see features in the data and model around
the iron line, which result in the model from modulations of the
line energy and equivalent width. The second harmonic showsthe
clearest features, with an excess at∼ 6.2 keV in the real part and
a dip at the same energy in the imaginary part, surrounded by two
peaks either side. We fit jointly for the real and imaginary parts of
both harmonics, and also for the mean spectrum (the real partof
the DC component) which is not pictured here.

We plot theEline(γ) function derived from our Fourier do-
main fits, visualised as a probability map, in Fig. 7. The best-fit
functionEline(γ) can be plotted by substituting the best-fit val-
ues forE0,A1E,A2E, φ1E andφ2E into equation 6. Here, we also
take into account the probability distributions of these 5 parameters
by running a Monte Carlo Markov Chain (MCMC) inXSPECand
then, for each step in the chain, calculating theEline(γ) function.
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Figure 7. Iron line centroid energy as a function of QPO phase for each of
the five datasets (as labelled). Light blue circles are the results of our time
domain fits and the probability maps are the results of our Fourier domain
fits. For the time domain fits, we fit an absorbed power-law plusGaussian
model to spectra corresponding to 16 QPO phases. For the Fourier domain
fits, we consider the same model, with parameters varying periodically with
QPO phase, and FT the model to fit to the data in Fourier space. We de-
termine the significance of the modulations (as labelled) from the Fourier
domain fits, and create the probability maps using a Monte Carlo Markov
Chain (see text for details). The maps are normalised such that they peak at
unity, and the colours are defined in the key. Note thatP/Pmax = 0.1, be-
low which the colour scale looks rather white, corresponds to the∼ 2.15σ
confidence contour.

We then create a histogram to plot the posterior distribution for the
function. Details of the chain and of the calculation of these his-
tograms are presented in Appendix A. As expected, the frequency
domain results plotted in Fig. 7 agree with the time domain fits
(light blue circles), but we are now able to visualise the uncertainty
on the best-fit line energy modulation (see the key).

We calculate the significances quoted in Fig. 7 by comparing
theχ2 from the best fit model for each dataset with the minimum
χ2 achieved for the same dataset when the line energy amplitudes
are fixed toA1E = A2E = 0. This null hypothesis model has
4 more degrees of freedom than the best fit model, because it is
insensitive to the phase parameters,φ1E andφ2E . We compare the
best-fit to the null hypothesis using an f-test, converting p-values to
sigmas in the standard way (e.g.1σ corresponds top = 0.317).

4.2.2 The case of orbit 1b

As with the time domain fits, it is striking that all datasets except
for orbit 1b show the same characteristic trend, with peaks in line
energy at∼ 0.2 and∼ 0.7 cycles. Looking at the QPO FT reveals
that the difference between orbit 1b and all the other datasets is
in the second harmonic. Fig. 8 (right) shows the FT of the second
harmonic (real and imaginary parts as labelled) for orbit 1a(black
circles) and orbit 1b (grey triangles). The best fit models for orbits
1a and 1b are plotted in red and blue respectively. We see verydif-
ferent behaviour between the two datasets. Where orbit 1a shows a
dip (real part at∼ 7 keV), orbit 1b shows an excess. Where orbit 1a
shows an excess (imaginary part at∼ 7 keV), orbit 1b shows a dip.
All other datasets display similar behaviour to orbit 1a. Toillustrate
this, we plot the best-fit model for orbit 2b in magenta. This has a
slightly different normalisation, but the same characteristic shape
as orbit 1a.

We check if these differences can result from our assump-
tions when measuring the fractional rms as a function of energy.
For the many different methods of measuring this described in sec-
tion 3.4, we measure QPO FTs consistent with before and therefore
obtain results consistent with Fig. 7. We therefore conclude that the
method produces robust results and that orbit 1b really doesseem
to be doing something different to the other datasets.

4.2.3 Joint fits

Since all datasets show a modulation in line energy, we com-
bine them into a joint fit to compare with the null hypothesis:
A1E = A2E = 0. We first leave out the anomalous dataset, or-
bit 1b. We see in Fig. 7 that the two maxima in line energy mea-
sured forNuSTARslightly lead those measured for the simultane-
ousXMM-Newtonorbit 2. This is because we used a different ref-
erence band forNuSTAR. Since this constant offset turns out to be
very small in this case, we are able to ignore it. We thereforetie
the modulations in line energy, line flux and power-law indexto
be the same for all four considered datasets, but allow the power-
law normalisation to differ for different datasets. We notethat the
modulation in power-law normalisation is very similar for each
dataset (even including orbit 1b), but is well constrained enough
for small differences in datasets to be highly statistically signifi-
cant. We tie the power-law index betweenXMM-NewtonandNuS-
TAR using the formulaΓNuSTAR(γ) = ΓXMM (γ) + ∆Γ, in
order to account for the cross-calibration discrepancy. Similarly,
we tie the line energy between observatories using the formula
Eline,NuSTAR(γ) = CEline,XMM (γ). We use∆Γ = 0.236 and
C = 0.970. We obtain a good fit (reducedχ2 = 287.13/279 =
1.029) with the differential properties of the spectral parameters
consistent with before.

When we also include the orbit 1b data in our fit, tying all pa-
rameter modulations except for the power-law normalisation across
all datasets, we obtain a fit with reducedχ2 = 370.32/364 =
1.017. When we allowφ1E andφ2E to be different for orbit 1b
compared with all the other datasets (as seems to be the case from
Fig. 7), the fit improves with reducedχ2 = 361.82/362 = 1.000.
An f-test determines that this is a2.43σ improvement, indicating
that the line energy modulation in orbit 1b is likely different from
the other datasets. Also freeingA1E andA2E for orbit 1b does not
further improve the fit, so we keep these amplitudes tied across all
datasets. When we also allow the second harmonic amplitudesof
theNG andΓ modulations to be different for orbit 1b, the fit again
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Figure 8. Left: QPO Fourier Transform as a function of energy forXMM-Newtonorbit 1a. Real and imaginary parts of the first and second harmonics are as
labelled. Here, we plot the data (black points) unfolded around the instrument response matrix, assuming the best-fit model (red lines for the first harmonic
and blue lines for second harmonic), in units of energy squared× specific photon flux (i.e. theeeuf option in XSPEC). Right: QPO FT for the anomalous
XMM-Newtonorbit 1b (grey triangles and blue lines) compared withXMM-Newtonorbit 1a (black circles and red lines), only considering thesecond harmonic
(real and imaginary parts as labelled). We see clear differences in the shape for both real and imaginary parts. To demonstrate thatXMM-Newtonorbit 1a is
representative of all the other datasets, we also plot the best-fit model for orbit 2b. Error bars are 1σ.
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improves, with reducedχ2 = 354.24/360 = 0.984. An f-test in-
dicates that this is a2.29σ improvement. This is our best-fit model.

Our best-fit parameters for the line energy modulation are pre-
sented in Table 1. Fig. 9 (left) is a contour plot resulting from vary-
ing A1E andA2E (using thestepparcommand inXSPEC). The
contours represent∆χ2 = 2.3 (black), 6.18 (red), 11.83 (green)
and19.33 (blue). Theseχ2 levels correspond to 1, 2, 3 and 4σ con-
fidence for two degrees of freedom. We see that a fairly large part
of parameter space can be ruled out with4σ confidence. The null
hypothesis model (A1E = A2E = 0), now has 6 more degrees of
freedom than the best-fit model, because the null hypothesismodel
is insensitive toφ1E andφ2E for orbit 1b, plus the same two pa-
rameters for the other datasets. We compare the best-fit achieved

Table 1.Best fit line energy parameters for our joint fit. Errors are1σ.

Parameter Best fit

A1E (keV) 0.0446+0.023
−0.020

φ1E (cycles) 0.373+0.076
−0.13

A2E (keV) 0.119+0.026
−0.026

φ2E (cycles) 0.0497+0.019
−0.018

E0 (keV) 6.60+0.019
−0.018
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by fixing A1E = A2E = 0 (χ2 = 380.68/366) with our global
best-fit (χ2 = 354.24/360) using an f-test, which rules out the
null-hypothesis with3.70σ confidence.

Fig 9 (right) showsχ2 plotted againstA1E (black) andA2E

(red). The dashed line depicts∆χ2 = 9, which corresponds to
3σ for 1 degree of freedom. We see thatA2E in particular is
fairly well constrained, with3σ confidence limits of approximately
0.04 < A2E < 0.21. The best-fit achieved when fixingA1E = 0
has reducedχ2 = 359.58/363 and the best-fit achieved with
A2E = 0 isχ2 = 375.63/363. Comparing these to the global best
fit yields significances of1.46σ for the first harmonic and3.89σ
for the second harmonic.

Fig. 10 (left) shows the probability map for all four vari-
able spectral parameters for our final joint fit. Here, for parame-
ters which are not tied across all datasets (such asφ1E andφ2E),
we plot the values corresponding to orbit 1a. Note that the func-
tionsEline(γ),NG(γ) andΓ(γ) are tied acrossall datasets except
for orbit 1b. We see no statistically significant modulationin the
iron line flux, but we do see a modulation in the power-law index
which lags the line energy modulation by∼ 0.1 cycles. In Fig. 10
(right), we make the same plot for the case of orbit 1b. Even though
the statistics are of course worse, the parameter modulations are
strikingly different. The line energy and power-law index are both
consistent with being constant, but the iron line flux varieswith a
large amplitude and high statistical significance. Clearly, there is
something very different about orbit 1b. We have checked forpro-
ton flares, absorption events and various instrumental issues, but
find no contribution from these effects, so are forced to conclude
that this anomalous behaviour during orbit 1b is intrinsic to the
source. We note that the iron line width is larger during orbit 1b
(0.51±0.05keV) than for the other datasets combined (0.43±0.02
keV). We can also see in the4 − 10 keV power spectrum (Fig. 2)
a slight increase in the amplitude of the fundamental from orbit 1a
(black) to 1b (red), but a very slight decrease in the amplitude of
the second harmonic. Also, the broad band noise above∼ 2 Hz
changes a little between orbit 1a and 1b. These differences may be
indicative of their being a slightly different geometry during orbit
1b.

5 DISCUSSION

We have further developed the QPO phase-resolving method of
IK15 and applied it to, in total,∼ 260 ks ofXMM-Newtondata and
∼ 70 ks of NuSTARdata from the 2014 outburst of H 1743-322.
We measure a statistically significant (3.7σ) modulation of the iron
line centroid energy with QPO phase by combining five indepen-
dent datasets. We see in Fig. 7 that, for four of the five datasets, the
line energy modulation has the same distinctive shape, withmax-
ima at∼ 0.2 and∼ 0.7 QPO cycles. Surprisingly, one dataset
(XMM-Newtonorbit 1b) does not show the same trend. Here we
discuss the implications of the measured modulation and speculate
as to why orbit 1b differs from the other datasets.

5.1 Interpretation: Precession

Our result provides strong evidence that the Type C QPO observed
here is driven by systematic changes in the accretion geometry
over the course of a QPO cycle. The only mechanism by which
the line energy can vary without a geometric change is through
shifts in the rest frame line energy driven by changes in the disk
ionisation state. An increase in disk ionisation increasesthe iron

Figure 11. Schematic representation of the precessing inner flow model.
The inner flow (orange) extends out to∼ 20 − 30 Rg and is misaligned
with both the disk (grey) and black hole equatorial plane (horizontal). The
flow precesses around the (vertical) black hole spin axis such that the front
of the flow faces us in (a), to our left in (b) and so on. The frontand back of
the flow irradiate the disk, illustrated here by the multi-coloured patches. As
the flow precesses, these irradiated patches rotate over thedisk surface, pro-
grade with disk orbital motion (white arrows). The colours of the irradiated
patches encode energy shifts due to disk orbital motion and gravitational
redshift.

line energy andsuppressesthe flux in the reflection hump rela-
tive to the line (e.g. Ross & Fabian 2005; Garcı́a et al. 2013), in
conflict with what we observe (Fig. 3). Also, the observed∼ 6.4
keV to ∼ 6.8 keV change in line energy would require a factor
∼ 200 change in illuminating flux over a QPO cycle to origi-
nate purely from variations of disk ionisation (see e.g. Fig. 1 in
Matt, Fabian & Ross 1993); which is implausible for all datasets
except for orbit 1b, which show a change in line flux smaller than
a factor of 2 (see Fig. 10, left). This indicates that the lineenergy
variation is driven, at least in part, by changes in the relativistic
distortions to the iron line profile, and therefore by a geometric
variation over a QPO cycle. This ties in with recent population
studies (Motta et al. 2015; Heil, Uttley & Klein-Wolt 2015) which
show that systems observed with a more edge-on disk display sys-
tematically higher amplitude Type C QPOs.

Shifts in the line energy are predicted to arise if the QPO
originates from Lense-Thirring precession of the hot innerflow
(Ingram, Done & Fragile 2009; Ingram & Done 2012). As the in-
ner flow precesses, it preferentially illuminates different disk az-
imuths, giving rise to a blue/red shifted iron line when the ap-
proaching/receding disk material is irradiated. For a geometry in
which a single bright patch rotates about the disk surface, complet-
ing one cycle per QPO cycle, we would observe one maximum and
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Figure 10.Probability maps from our Fourier domain fits for line energy(Eline), line flux (NG), power-law index (Γ) and power-law normalisation (Ncont).
Significances for each parameter are as labelled and coloursare as defined in Fig. 7.Left: The results of our joint fits, considering all datasets. For parameters
which are not tied across all datasets (see text for details), we plot the values corresponding to orbit 1a.Right: The results for only the anomalous orbit 1b. We
see clear differences from the other datasets, with perhapsthe most striking being the large modulation in iron line flux.

one minimum in line energy per QPO cycle. Instead, we observe
two maxima, neither of which coincide with a peak in continuum
flux. This can be explained if we consider two bright patches rotat-
ing about the disk surface, as illustrated in Fig. 11. In thispicture,
the inner flow (orange) precesses, but the disk (grey) is heldstation-
ary by viscosity (Bardeen & Petterson 1975). The disk transitions
into the hot inner flow at the truncation radius. In this schematic,
the disk is irradiated by both the front and back of the flow (see
the multi-coloured patches), as we may expect to happen if the in-
ner flow is sufficiently thin for its underside to be above the disk
mid-plane (or for a very large misalignment between the diskand
inner flow). The calculations of Ingram & Done (2012) considered
an inner flow with very large vertical extent, and therefore only pre-
dicted one bright patch on the disk, as the underside of the flow was
never above the disk mid-plane. The Doppler shifts experienced by
photons reflected from respectively approaching and receding disk
material are illustrated in Fig. 11 by the colour scheme of the irradi-
ated patches. Precession of the flow as illustrated in Fig. 11predicts
a rocking of the iron line shape twice per precession cycle asdif-
ferent disk azimuths are illuminated first by the front of theflow,
then half a cycle later by the back. The maximum line energy will
occur when the approaching and receding sides of the disk areil-
luminated (Fig. 11 b and c), since Doppler boosting means that the
blue shifted part of the line (the so-called ‘blue horn’) will domi-
nate over the red shifted part (the so-called ‘red wing’).

Non-relativistic precession mechanisms are unlikely. Classical
precession is expected around an oblate spinning star but not for a
black hole (Stella & Vietri 1998). Magnetic precession can result
when the magnetic field of a spinning star intersects the accretion

flow (Shirakawa & Lai 2002), but not for astrophysical black holes
which, without electric charge, have no way to generate their own
magnetic field. Radiation pressure can cause variable warping in
the outer disk through non-linear growth of perturbations,but only
at disk radii& 160 Rg (Pringle 1996; Frank, King & Raine 2002),
where orbital motion is too slow to explain the large observed en-
ergy shifts in the line. It is therefore likely that we are specifically
witnessing Lense-Thirring precession. We note that Lense-Thirring
precession of the reflector (the disk) rather than the illuminator (the
inner flow) could potentially reproduce the observed line energy
modulation (Schnittman, Homan & Miller 2006; Tsang & Butsky
2013); although we note that the QPO modulates the power-law
spectrum emergent from the inner flow much more strongly than
the thermal disk emission visible at low energies. We also note that
the observed line energy modulation could potentially result from
a precessing jet (Kalamkar et al. 2015).

For Lense-Thirring precession of the entire inner flow, the
precession period depends on the inner and outer radii of the
inner flow, the radial surface density profile of the inner flow
(Fragile et al. 2007; Ingram, Done & Fragile 2009), as well asthe
mass and dimensionless spin parameter,a = cJ/GM2, of the
black hole. Assuming a constant surface density, a canonical black
hole mass of10 M⊙ and a spin ofa = 0.2 (Steiner et al. 2012;
Ingram & Motta 2014), the∼ 4 s period implies a truncation ra-
dius of∼ 20− 30 Rg.
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5.2 Implications

Lense-Thirring precession arises (due to the General Relativistic
frame dragging effect) only in orbits with their rotationalaxis mis-
aligned with the black hole spin axis. This may occur for accret-
ing material in binary systems in which the black hole spin axis
is misaligned with the axis of binary orbital motion (as the re-
sult of an asymmetric natal supernova kick; Fragos et al. 2010).
Quite how the accretion flow reacts to this misalignment is a chal-
lenging theoretical question, which will be informed by ourre-
sult. For a classical thin disk, the inner regions have long been
thought to align with the black hole and the outer regions with the
binary (Bardeen & Petterson 1975), but the location of the transi-
tion between orientations has remained uncertain. Recent simula-
tions (Krolik & Hawley 2015) find this radius to be∼ 8 − 9 Rg ,
which is small enough to be within the disk truncation radiusof
∼ 20−30 Rg indicated here by setting the precession period equal
to the QPO period. This implies that the inner flow is being fedby
material from the truncated disk out of the black hole equatorial
plane (as in Fig. 11). Grid-based General Relativistic magnetohy-
drodynamic simulations of accretion flows in which the vertical ex-
tent is large compared with viscosity indicate that the entire hot in-
ner flow can precess in this situation due to strong coupling through
pressure waves (Fragile et al. 2007), in line with what is illustrated
in Fig. 11. Alternatively, calculations using anα-prescription vis-
cosity with a large misalignment angle and/or low viscosityshow
evidence for the disk breaking into discrete, independently precess-
ing rings (Nixon & King 2012). This phenomenon has been seen in
smoothed particle hydrodynamics simulations (Nixon et al.2012;
Nealon et al. 2015), but not as yet in the grid-based simulations
(Morales Teixeira et al. 2014; Zhuravlev et al. 2014). Such differ-
ential precession could also potentially give rise to the line energy
shifts observed here, via the same mechanism of illumination of
different disk azimuths. More sophisticated phase-resolved spec-
tral modelling and additional high quality data in future will allow
tomographic mapping of the inner flow geometry, further informing
numerical simulations.

Recently, van den Eijnden, Ingram & Uttley (2016) found ev-
idence in observations of GRS 1915+105 that some form of dif-
ferential precession could indeed be at play (although likely not as
extreme as that suggested by Nixon & King 2012). They show that,
in observations displaying an energy dependent QPO frequency
(Qu et al. 2010; Yan et al. 2012), the phase of the band with the
higher QPO frequency increases faster than that of the band with
the lower QPO frequency. This confirms that the frequency differ-
ence is intrinsic to the source, and can be explained if, for example,
the inner regions of the flow are precessing slightly faster than the
outer regions. Although there is no energy dependence of theQPO
frequency in the observations we analyse here, H 1743-322 does
show an energy dependence of the QPO frequency for observations
with much higher (& 3 Hz) QPO frequencies (Li et al. 2013).

Our result has implications for black hole spin measurements.
Spin estimates obtained through disk spectral fitting oftenas-
sume that the black hole spin aligns with the binary orbit (e.g.
Kolehmainen & Done 2010; Steiner et al. 2012), which is incom-
patible with the precession model. Indeed, recent spectralmod-
elling of Cygnus X-1 in the soft state implies a& 13◦ misalign-
ment (Tomsick et al. 2014). The iron line method provides an inde-
pendent measure of inclination, but assumes that the disk extends
down to the ISCO, whereas the precession model assumes an evolv-
ing truncation radius. If the truncation radius really is moving, the
shape of the line energy modulation should change with QPO fre-

quency (Ingram & Done 2012), which can be tested in future. We
also note that the spectral pivoting and line energy modulation de-
tected here arenon-linearchanges in spectral shape, which could
bias studies of the time-averaged spectrum. The biases are likely
small, but should be quantified in future with tomographic model-
ing, since iron line fitting is sensitive to fairly small spectral dis-
tortions. For the case of active galactic nuclei (AGN), it isunclear
if a misaligned accretion flow is expected in the absence of a bi-
nary partner2. If there is precession in AGN, it will not create a
bias through non-linear variability, since the precessiontimescale
would be longer than a typical integration time.

5.3 Alternative interpretations

As an alternative to precession, axisymmetric variations in the ac-
cretion geometry can cause changes in the iron line shape. Since
the disk rotational velocity and gravitational redshift both depend
on radius, variation of the disk inner radius throughout a QPO cycle
can cause shifts in the line energy. For the same reasons, changes
in the radial dependence of disk irradiation, perhaps caused by
changes in the vertical extent of the illuminating source, can also
drive changes in the line shape. However, it is very difficultto ex-
plain how such mechanisms could give rise to two maxima in line
energy per QPO cycle. Nonetheless, in future we will explicitly test
the precession model described above against the data presented
here, and compare it to simple axisymmetric alternatives.

De Marco & Ponti (2016) recently suggested that the soft
lag measured in the0.1 − 1 Hz frequency range for the
XMM-Newtondata is a reverberation lag corresponding to a∼
100 Rg path length. However, this frequency range is domi-
nated by the QPO. Both soft and hard lags are routinely ob-
served for QPOs (e.g. Qu et al. 2010), and the QPO lag is of-
ten very different to that measured for the broadband noise (e.g.
Wijnands, Homan & van der Klis 1999), and not compatible with
a reverberation lag (Stevens & Uttley 2016). Moreover, in our Fig.
6 we show that the two QPO harmonics have different lags, and so
averaging them together has little physical meaning. Reverberation
lags are still expected to be present of course, but will yield much
smaller soft lags than the QPO.

5.4 Anomalous dataset: orbit 1b

As for the anomalous dataset, orbit 1b, this is puzzling in the
context of any QPO model. The modulations in line energy and
flux and also power-law index are consistent between all the other
datasets. Orbit 1b shows different modulations in all threeof these
parameters3, as can be seen in Fig. 10. The most striking is per-
haps the large amplitude, and highly statistically significant (4σ),
modulation in the line flux in orbit 1b. This may be indicativeof
a different geometry during orbit 1b. Such a geometrical change
needs to explain the increased iron line flux, the increased vari-
ability in line flux and also the increased width of the iron line
(0.51 keV for orbit 1b and∼ 0.43 keV for the other observations).
It also needs to be consistent with the only subtle differences in

2 also, it is notoriously difficult to detect a Type C QPO analogue due to the
very long period expected through mass scaling (Vaughan & Uttley 2005)
3 the power-law normalisation is trivially very similar across all datasets,
because QPO phase is defined from the reference band flux, which tracks
the power-law normalisation to a good approximation, giventhat the power-
law index varies only with small amplitude.
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other diagnostics (such as the full band power spectrum and the
time averaged power-law photon index) and the change needs to
plausibly happen over a. 60 ks time scale. The increased line flux
implies a greater fraction of continuum photons intercept the disk,
which will broaden the line somewhat by increasing the disk ioni-
sation. The increased variability in line flux suggests thatthis frac-
tion variesmore than for the other datasets. This could occur if the
misalignment angle between the disk and the black hole spin axes,
β, is somehow larger, since the misalignment between the disk
and inner flow varies between0 and2β in the precession model
(Veledina, Poutanen & Ingram 2013; Ingram et al. 2015). Thisex-
tra variability in illuminating photons could make line energy vari-
ations due to ionisation changes significantly more important than
for the other datasets. We see in Fig. 10 (right, second panel) that
the line flux, and therefore the flux irradiating the disk, varies by a
factor of∼ 8 over a QPO cycle for orbit 1b. This means that the
ionisation parameter (ξ ∝ illuminating flux) should also vary by
a factor of 8. In Fig. 1 of Matt, Fabian & Ross (1993), we see that
varying the ionisation parameter fromξ ∼ 100 to ξ ∼ 800 changes
the line rest frame energy from∼ 6.4 keV to∼ 6.7 keV. This mod-
ulation in the rest frame line energy should be in phase with the
line flux, and therefore in anti-phase with the line energy modula-
tion seen in the other datasets. It is unfortunate thatNuSTARwas
not observing during orbit 1b, otherwise this hypothesis could have
been tested by tracking the reflection hump. Alternatively (or per-
haps additionally), our view may be obstructed by some material
in our line of sight during orbit 1b, which is plausible giventhe
likely high inclination of H 1743-322. The variable illumination of
the line of sight material will give rise to variable ionisation, which
will imprint itself onto the phase-resolved spectra.

6 CONCLUSIONS

We find that the iron line centroid energy in H 1743-322 is mod-
ulated on the QPO period with a statistical significance of3.7σ.
We also find that this modulation has a non-zero second harmonic
with a statistical significance of3.94σ. Shifts of the line energy
over a QPO cycle are a distinctive prediction of the Lense-Thirring
precession model (Ingram, Done & Fragile 2009), in which thein-
ner accretion flow precesses due to the frame dragging effect.
Our observation is a typical example of a Type-C QPO, implying
that this class of QPOs in general are driven by Lense-Thirring
precession, and therefore supporting studies that measureblack
hole mass and spin using the period of the Type-C QPO in com-
bination with that of high frequency QPOs (Motta et al. 2014;
Ingram & Motta 2014; Fragile, Straub & Blaes 2016). There are
still, however, unanswered questions. We have simply employed
phenomenological modelling to track the iron line here, butmore
physical modelling using a self-consistent reflection model will
provide further insight. We will perform this modelling in afu-
ture paper, as well as testing alternative models to precession. The
largest question mark concerns the anomalous dataset, orbit 1b,
which exhibits different parameter modulations to all other datasets
(which all agree with one another).

In future, high quality observations of the same source dis-
playing a QPO with a higher frequency will provide further insight.
The precession model predicts the disk inner radius to be smaller
for higher QPO frequencies, and therefore we expect the lineen-
ergy dependence on QPO phase to have a different shape. Studies
such as this will be greatly enhanced by new instrumentation. De-
tectors with a very large collecting area will allow us to perform

similar studies without needing to stack over very long exposures
as is necessary here. Also, X-ray polarimetry will provide an extra
dimension, particularly when combined with phase-resolved spec-
troscopy (Ingram et al. 2015). The precession model predicts that
the polarisation angle changes with QPO phase, and that the ex-
trema in polarisation angle coincide with maxima in the lineen-
ergy.
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APPENDIX A: DATA VISUALISATION

In order to create the probability maps shown in Figs. 7 and 10, we
run an MCMC inXSPECafter finding a best-fit model in the Fourier
domain.XSPEC uses theEMCEE algorithm (the MCMC hammer:
Foreman-Mackey et al. 2013). We use the Goodman-Weare algo-
rithm with a chain length of3 × 105 steps and103 walkers. The
starting point of the chain is a randomised realisation of the best-
fit parameters. Visual inspection of theχ2 implies that the chain
takes∼ 2× 104 steps to converge, so we burn2.5× 104 steps. For
the rest of the chain, the autocorrelation function of the parameters
of interest is centrally peaked, indicating reasonable convergence.
Even so, we note that none of our significances or error estimates
use these chains, we use them purely for data visualisation.

For the probability maps in Figs. 7 and 10, we calculate the
Eline(γ) function for each step of the chain, for 400 values ofγ.
That is, for each step of the chain, we read in the parametersA1E ,
A2E, φ1E, φ2E andE0 for that step and calculateEline(γ) from
equation 6. For eachγ value, we thus have2.75 × 105 values of
Eline, which we bin into an 800 bin histogram. Fig. A1 shows these
histograms for the chain corresponding to our joint fit, for two se-
lected QPO phases (red: phase=7/16 cycles, blue: phase=11/16 cy-
cles). We normalise each histogram to peak at unity. For plotting
purposes, we smooth these histograms by averaging each of the
800 bins with the±10 bins either side. The black lines show the
smoothed versions of the histograms. We use the smoothed ver-
sions for our probability maps.
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Figure A1. Histograms for the line energy for two QPO phases (red:
phase=7/16 cycles, blue: phase=11/16 cycles) created using an MCMC. The
black lines are smoothed versions of these histograms (see text for details)
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