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ABSTRACT

Accreting stellar-mass black holes often show a ‘Type-Gisjtperiodic oscillation (QPO) in
their X-ray flux, and an iron emission line in their X-ray sg@en. The iron line is generated
through continuum photons reflecting off the accretion diskd its shape is distorted by
relativistic motion of the orbiting plasma and the gravaagl pull of the black hole. The
physical origin of the QPO has long been debated, but is afteibuted to Lense-Thirring
precession, a General Relativistic effect causing therifloes to precess as the spinning
black hole twists up the surrounding space-time. This ptedh characteristic rocking of
the iron line between red and blue shift as the receding apdoaphing sides of the disk
are respectively illuminated. Here we report ¥kIM-Newtonand NuSTARobservations of
the black hole binary H 1743-322 in which the line energy eardystematically over the
~ 4 s QPO cycle §.700 significance), as predicted. This provides strong evidénatthe
QPO is produced by Lense-Thirring precession, constijutie first detection of this effect
in the strong gravitation regime. There are however elesnahbur results harder to explain,
with one section of data behaving differently to all the eth®ur result enables the future
application of tomographic techniques to map the inneromegof black hole accretion disks.
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1 INTRODUCTION hard state at some radius larger than the innermost stabldani
orbit (ISCO), with the inner regions forming a large scaléghte

hot accretion flow (hereafter thener flow) which emits the Comp-
tonised spectrum. The Comptonised spectrum becomes softer
the disk component becomes more prominent in the spectrum as
the truncation radius moves inwards (¢.g. Done et al.|208®r-
natively, the hot electrons may be located in a corona abloge t
disk (e.g. Galeev et al. 1979; Haardt & Maraschi 1991) or at th
base of a jet (e.g. Markoff et ial. 2005), or perhaps some combi
nation of these alternatives. The X-ray spectrum also ajspie-
flection features, formed by Comptonised photons beingeseat
back into the line of sight by the disk. The most prominent fea
tures of the reflection spectrum are the iron Kne at ~ 6.4
keV, formed via fluorescence, and the reflection hump peaking
~ 30 keV, formed via inelastic scattering from free electrong.(e
Ross & Fabian 2005; Garcia el al. 2013). The shape of thecrefle
tion spectrum, and in particular the iron line which is nariia the
rest frame, is distorted by orbital motion of the disk matkand
gravitational redshift (Fabian etlal. 1989).

Accreting stellar-mass black holes routinely exhibit ‘€@’ low
frequency quasi-periodic oscillations (QPQOs) in theiray-iflux,
with a frequency that evolves from 0.1 — 30 Hz as the X-ray
spectrum transitions from the power-law dominated hartesta
the thermal disk dominated soft state (e.g. Wijnandslet@991
van der Klis| 2006). The thermal disk component is well under-
stood as originating from a geometrically thin, opticalhjck ac-
cretion disk [(Shakura & Sunyaev 1973; Novikov & Thotne 1973)
and the power-law emission, which displays breaks at low and
high energy, is produced via Compton up-scattering of séwd p
tons by a cloud of hot electrons located close to the black hol
(Thorne & Price 1975 Sunyaev & Truemper 1979). The low and
high energy breaks are associated respectively with the [see-

ton temperature and the electron temperature. The exaotageo
try of this electron cloud is uncertain, and is probably diag
through this transition. In theuncated disk modélchimaru 1977;
Esin et al[ 1997, Poutanen et al. 1997), the disk truncatebdn
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hold], but its physical origin has long been debated. Suggested
QPO models in the literature generally consider either some
stability in the accretion flow, or a geometric oscillatidnsta-
bility models consider, for example, oscillations in massra-
tion rate or pressure (e.Q. Tagger & Pellat 1999; Cabandc et a
2010) or standing shocks in the disk (e.g. Chakrabarti & Bfult
1993). Geometric models mostly consider relativistic pssion.
Due to the frame dragging effect, a spinning black hole drags
the surrounding spacetime around with it, inducing Lenkefihg
precession in the orbits of particles out of the equatorilah@
(Lense & Thirringl 1918)[ Stella & Vielril (1998) and_Stellaat
(1999) were the first to suggest that low frequency QPOs could
be driven by Lense-Thirring precession, noting that thecetqd
precession frequency of a test mass at the truncation riadoosn-
mensurate with the QPO frequency. Schnittman, Homan & Mille
(2006) considered a precessing ring in the disk, and catinmga
modes in the disk caused by the frame dragging effect haee als
been studied (e.g. Wagoner etlal. 2001). Ingram, Done & [eragi

(2009) suggested that the entire inner flow precesses whilst

the disk remains stationary, motivated by the simulatiofis o
Fragile et al. |(2007). This model explains why the QPO modu-

lates the Comptonised emission much more than the disk emis-

sion, and predicts that the QPO should be stronger in motdyhig
inclined sources as observed (Schnittman, Homan & Mill€¥20
Heil, Uttley & Klein-Woltl2015%5) Motta et &l. 2015). It also rkes a
distinctive prediction: as the inner flow precesses, it ililminate
different azimuths of the disk such that an inclined obsesees
a blue/red shifted iron line when the approaching/recediidgs
of the disk are illuminated (Ingram & Dane 2012). The prea@ss
model therefore predicts that the line energy changesmgsieally
with QPO phase. This is a difficult effect to measure, sinasph
resolving the QPO poses a technical challenge. Miller & Homa
(2005) used a simple flux selection to obtain suggestiverimatri-
clusive results for GRS 1915+105. Ingram & van derKlis (2015
hereafter IK15) developed a more sophisticated techniquast
cover spectral pivoting and a modulation in the iron line fluxhe
same source, but data quality prevented unambiguous nesasot
of a line energy modulation. Recently, Stevens & Ultley €20de-
veloped a similarly sophisticated QPO phase-resolvingrtiegie,
which involves cross-correlating each energy channel witlef-
erence band. Using this technique, they found a modulaticdhe
disk temperature of GX 339-4, interpreted as reprocesshdtian
from a precessing inner flow or jet. However, they too lackes t
data quality to measure a line energy modulation.

In this paper, we further develop the QPO phase-resolving
method of IK15, conducting fitting in the Fourier domain eath
than the time domain so that the error bars are independemt. W
use this method to analyse a long exposure observation bfdhk
hole binary H 1743-322 in the hard state. We summarise therobs
vations in Sectiofi]2, describe our phase-resolving meth@&keti-
tion[3 and present the results of fitting a phenomenologicadeh
to the phase-resolved spectra in Sedtibn 4. We discuss dlimdim
in Sectiorl’b and outline our conclusions in Secfibn 6.

! the light crossing timescale puts a hard upper limit~of 300 Ry
(where R, = G'M/c?), but the true size scale is likelg 60 R, (e.g.
Axelsson et gl. 201.3).
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Figure 1. Long term light curve summarising thdMM-Newtonand NuS-
TARobservations analysed in this paper. Throughout, the dateegerred
to as labelled in this plot. The rise in count rate fréM-Newtonorbit 2a
to 2b is due to a small change in the instrument setup (frontick to pn
thin) as a new PI took over the observation.

2 OBSERVATIONS

The X-ray Multi-Mirror Mission (XMM-Newton |Jansen et al.
2001) observed H 1743-322 for two full orbits of the satellit
around the Earth in late September 2014. The first orbit (8bs |
0724400501) lasted from18:45 on 21* September untit08:45

on 234 September. The second orbit lasted frer0:10 on 23°
September unti~~08:35 on 2% September. The second orbit
is split into two obs IDs, with the firstv 70 ks classified as
0724401901 and the final 50 ks, which had a different PI, as
0740980201. In this paper, we split up each orbit into twasae
observations to allow for potential evolution of spectratlaim-

ing properties over such long exposures (and also the shrealige

in instrumental setup as the Pl changed). Hereafter, we tefe
these fourKXMM-Newtonobservations as orbits 1a, 1b, 2a and 2b.
The Nuclear SpecTroscopic ARrgMuSTAR|Harrison 2013) ob-
served the source from18:20 on23™ September untik08:50

on 25" September (obs ID 80001044004). Figlte 1 shows long
term4 — 10 keV light curves for all exposures and illustrates our
naming convention for thEMM-Newtordata. Spectral and timing
analyses of thkMM-Newtondata have been previously presented
by|Stiele & Yu (2015) and De Marco & Ponti (2016), whereas the
NuSTARJata are reported on here for the first time.

2.1 Datareduction
2.1.1 XMM-Newton

We used theXMM-NewtonScience Analysis Software (SAS) ver-
sion 14.0 to reduce data from the EPIC-pn (European Photag1m
ing Camera) in timing mode. We generated calibrated andatenc
nated event lists usingpPrROCwWiIth the default settings for tim-
ing mode as of SAS v14.0 (runepreject=yes withxrlcorrecti®s
runepfast=no withrdpha=yes). We extracted all produatsnfia
region 32 <RAWX< 44, RAWY > 23 and use only single
and double events (PATTERN 4), whilst ignoring bad pixels
(FLAG==0). We generated response and ancillary files usimg
FGEN and ARFGEN, and rebinned all spectra to have at least 20
counts per channel usirgPECGROUP We extracted background
spectra from the regiof <RAWX< 5, RAWY > 23 and find
that the source contributé®8.5% of the total counts (this number
is likely even higher in reality, since source counts cantan-
nate the background spectrum in timing made: Done & Diazdlrig
2010). Since the source dominates, we did not perform a back-
ground subtraction when extracting light curves. Inspectf the



long term10 — 12 keV light curve reveals that none of the exposure
is affected by proton flares.

We extract light curves in 20 energy bands. We focus our
phase-resolved analysis on the- 10 keV region, so extract one
broad light curve for energies 4 keV and one broad light curve
for energies> 10 keV (both of which will be ignored for the analy-
sis), leaving 18 high signal-to-noise-channels in theaegif inter-
est. These channels are broad enough to achieve goodstatis
are trivially broader than the FWHM of the instrument resgmn
We used theeToOL RBNRMF in order to re-bin the spectral re-
sponse file into these 20 energy bands.

2.1.2 NuSTAR

We used theNuSTARanalysis software, NUSTARDS v1.4.1. We
extracted products from the cleaned event list with Hr@oL
NUPRODUCTS using a 120" circular source extraction region and
a 90" circular background extraction region taken from aaarot
contaminated by source counts. We find that the source bates
99.7% of the total counts, and consequently we did not perform
a background subtraction when extracting light curves. Gaek-
ground is negligible up tev 50 keV, above which it dilutes the
rms and phase lags by a small amount. We extract light curves i
19 energy bands. We concentrate on the energy rargé0 keV,
and so bin into 2 broad channels for energied keV and 1 broad
channel> 60 keV (with these three channels to be ignored in the
analysis), leaving 16 high signal-to-noise channels inrtimge of
interest. As forXMM-Newton we re-binned the spectral response
file usingRBNRMF.

2.2 Power spectra

Fig. @ shows 4-10 keV power spectra calculated ¥vIM-
Newtonorbits 1a (black), 1b (red), 2a (green) and 2b (blue) and
NuSTAR (magenta). ThXMM-Newtonpower spectra are calcu-
lated in the standard way, with a constant Poisson nois¢ sete
tracted|(van der Klis 1989; Uttley etlal. 2014). AFduSTARwe in-
stead calculate the co-spectrum between the two (indeprfee-

cal Plane Modules, FPMA and FPMB_(Bachetti et al. 2015),esinc
the NuSTARdead time ofry 2.5 ms imprints instrumental
features on the Poisson noise in a power spectrum calculated
the standard way. The co-spectrum is the real part of thes€ros
spectrum and includes no Poisson noise contribution. Wecals
rect for the suppression of variability caused by MeSTARlead
time using the simple formula (Bachetti etlal. 2015)

; @)

whererq.; andr;, are respectively the detected and intrinsic count
rates. For this observation, the ratio of detected to isitivari-
ability is rmsget /rmsin = 0.8462 (recorded in the NUSTAR spec-
tral files as the keyword ‘DEADC’). The power spectra in Fib. 2
are normalised such that the integral of the power spectven o
a given frequency range gives the variance of the correspond
time series over that range, and are plotted in units of faqux
power.

All power spectra display QPOs with a strong fundamental
(first harmonic) and overtone (second harmonic) evidengewb
large, harmonically related peaks. We see that the QPO funda
mental frequency evolved from 0.205 Hz to ~ 0.25 Hz over
the ~ 300 ks duration of the twoXMM-Newtonorbits. We also
see that the 4-10 keV (dead time correctBdiSTARCco-spectrum
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Figure 2.4 — 10 keV Power spectrum foKMM-Newtonorbits 1a (black),

1b (red), 2a (green) and 2b (blue), ahd 10 keV co-spectrum between the
NuSTARFPMA and FPMB (magenta).For all datasets we see a strong Type
C QPO with two clearly detected harmonics. The QPO frequéerargased
from ~ 0.2 Hz to ~ 0.25 Hz over the~ 300 ks elapsed from the start of
orbit 1a to the end of orbit 2b. Error bars are'1

agrees very well with the simultaneoX$/M-Newtonorbit 2 data

for the same energy band. For our analysis, we treat eacheof th
five datasets shown in Figl 2 separately to allow for the diamiu

in source properties over such a long exposure, and alsdotw al
for the different responses of the two instruments, and thalls
change in theXMM-Newtoninstrumental setup during orbit 2.

2.3 Energy spectra

As a preliminary analysis, we jointly fit the spectra of botlklM-
Newtonorbit 2a and the simultaneous (FPMNuUSTARobserva-
tion with a simple absorbed power-law plus Gaussian irop lin
model, considering only — 10 keV for both. Throughout this pa-
per, we account for interstellar absorption using the modeks,
with hydrogen column densitiWVy = 1.35 x 10*2cm ™2 and the
relative abundances of Wilms et al. (2000). We MseeEcv12.8.2
for all spectral fittingl(Arnaud 1996). We achieve a best fitwre-
ducedy? = 551.14/529 = 1.04, without applying any systematic
error. There is no evidence for direct disk emission inthé keV
bandpass, and tiéuSTARspectrum above0 keV reveals a reflec-
tion hump. In this paper, we focus on phenomenological niogel
of the4 — 10 keV region for our QPO phase-resolved analysis,
modelling continuum and iron line with a power-law and Gaus-
sian respectively. We consider this bandpass because liaied
betweenXMM-Newton and NUSTARt is above the energies for
which direct disk emission is relevant and below energies/foch
the reflection hump is important. Clearly, a Gaussian fuamcts
not a physical model for the iron line, but we wish to chardsee
the QPO phase dependence of the iron line profile without mgaki
physical assumptions. We will focus on physical spectradeting

in a future paper.

We find a discrepancy in the power-law index measured for
these two spectral 286 + 0.003 for XMM-Newtonand 1.509 +
0.004 for NUSTAR. The Gaussian representing the iron line has a
larger equivalent width in thBluSTARspectral fit & 65 eV) than
in the XMM-Newtondata ¢~ 47 eV), and lower centroid energy in
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the NuSTARdata ¢ 6.41 keV) than in theXMM-Newtondata ¢
6.61 keV), but the line width is consistent. This cross-calilmat
discrepancy poses a problem for time-averaged spectraisisa
However, our analysis is differential: it focuses on theiation
of spectral parameters with QPO phase, and is thereforedeg m
robust to cross-calibration issues. We demonstrate inahewf-
ing two sections that the variability properties are caesisbe-
tween the two observatories, and that the differentialatanm in
each of the spectral parameters with QPO phase is consiBtamt
our phase-resolved spectral analysis, we allow the timeageel
power-law index and line energy to be different between the t
observatories, but tie theififferential properties between the two
observatories.

3 PHASE-RESOLVING METHOD

We use the phase-resolving method of IK15, with some small
changes designed to increase signal-to-noise and cirquntive
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Figure 3. Spectra from two selected QPO phases, plotted as a raticetio-an
sorbed power-law continuum model. The blue circles coordfo a QPO

NuSTARdead time, and also some more significant changes to phase a quarter of a cycle later than the red trianglég 16 cycles com-

allow us to reliably calculate statistical significances éor fits.
The essence of the IK15 phase-resolving method is to metisaire
Fourier transform (FT) of the QPO as a function of enefgyfor
each harmonic for which this is possible. For & harmonic, this
can be written as

W;(E) = p(E)o;(E)e'® ", )

whereu(E) is the mean count rate,; (E) the fractional rms in the
7™ QPO harmonic ane; (E) is referred to in IK15 as thphase
offsetof the j*® harmonic, all as a function of energy. It is clear
from Fig.[2 that the QPO for the observations considered hase
two strong harmonics, therefore we calculate the QPO F7 ferl
andj = 2. We must also consider the casejof= 0; i.e. the DC
component (standing for direct current). This is simply thean
count rate, such tha¥o (E) = u(E).

As for the phase offset®; (), we can calculate the cross-
spectrum between each energy channel and a reference band in
der to measure the phase lag for each harmarj¢FE), as a func-

pared with7/16 cycles). We showXMM-Newtondata averaged between
orbits 2a and 2b. We see shifts in the iron line energy betvibentwo
selected QPO phases, and the hard X-ray coverap@BTAR(inset) ad-
ditionally reveals that the reflection hump is enhancedtiveldo the line
when the line is blue shifted. Error bars are.1

the lag spectrum and also the signal-to-noise (see e.geWétlal.
2014).

The method of IK15 involves taking the inverse FT of equa-
tion[2 to give an estimate of the QPO waveform in each energy
channel. This method is intuitive, since it gives a way ofmaating
the spectrum as a function of QPO phase. The inverse FT, how-
ever, introduces correlations in the errors between diffeQPO
phases. Here, we first summarise the time domain approach and
then describe a new Fourier domain approach that circurebat
problem of correlated error bars associated with the tinmaaio
method.

tion of energy. That is, we can measure by how many radians the 3 1  phase-resolved spectra in the time domain

4* harmonic of each energy channel lags jHeharmonic of the
reference band. What we cant measure using the cross-spectrum
is the phase difference between the harmonics. By measthiing
phase difference, we can calculate the phase-offsets difshewo
harmonics using the formulae

®1(E) ®1 + A(E)
Dy (E) 2[®1 + Y] + A2(E). (©)]

Here,v is the phase difference between the two harmonics in the
reference band and; is the arbitrary reference phase of the first
harmonic, which we set t®4 /2 following IK15. Note that
there is a version of the above formula in IK15 (equation &t t
paper), which differs slightly from equatidh 3 presenteceh&he
version presented here is correct and the mistake is in IKb%e
that we only need to measure the phase difference betwesarthe
monics in one band (is it obviously advantageous to measise t
for the reference band which has far more photons than the ind
vidual channels). The phase difference between the haosiasia
function of energy is given by (E) = ¢ — A1 (E)+ A2 (E) /2. We
stress that the use of a broad reference band mimessnear out the
data in some way, as is a common misconception. For unityreohe
ence, changing the reference band affecty the constant offset of

We can inverse FT equatigh 2 to estimate the QPO waveform for
each energy band

w(E,v) = p(E) {1 + ﬂZUJ(E) cos[jy — @(E)]} » (4)

where~ is QPO phase. Plotting this instead as count rate versus
photon energy for a given QPO phase gives phase-resolvettape
We describe in the following subsections how we meagu{ig),
o;(E) andA;(E), focusing mainly on the modifications we have
made to the IK15 method in order to maximise signal-to-naise
correct for thdNuSTARJead time. We propagate the errors in equa-
tion[4 using a Monte Carlo simulation.

We first reconstruct phase-resolved spectra in the time otoma
using equatiofil4. We consider 16 QPO phases (i.e. 16 valugs of
and throughout we analyse each dataset defined ifiFig. laselyar
resulting in five independent datasets. [Hig 3 shows exanopkbe
phase-resolved spectra, plotted as a ratio to an absorhest-pew
continuum model (folded around the telescope responseaxnatr
The continuum model has been fitignorihg — 8 keV, where the
iron line is prominent and> 10 keV, where the reflection hump
is prominent. For this plot, we only consider tNeSTARdata and



XMM-Newtonorbits 2a and 2b, which were simultaneous with the
NuSTARbbservation. For plotting purposes, we have averaged to-

gether data from orbits 2a and 2b, even though we treat them as

two separate datasets in our analysis. Red triangles pomdgo a
QPO phase ofy = 7/16 cycles and blue circles to a QPO phase
of v = 11/16 cycles; i.e. the blue points are a quarter of a cycle
after the red points. We see that the line energy changestloser
course of a QPO cycle, and theiISTARJata reveal that the reflec-
tion hump becomes more prominent when the line energy i€high
(blue triangles). In the following section, we model thenirdine
with a Gaussian and the continuum with an absorbed poweirlaw
order to characterise this QPO phase dependence of thenkingye
However, in order to robustly assess the statistical siganifie of
the line energy modulation, we fit the same model in the Fourie
domain, as described in the following subsection.

3.2 Phase-resolved spectra in the Fourier domain

It is straightforward to fit the 16 phase-resolved spectsmag@a
pressed in equationl 4, with a phenomenological spectralemod
to determine if the best-fit spectral parameters vary syatieally
with QPO phase. However, assessing the statistical signifee of
the spectral parameters is complicated by correlationsdeat the
errors for different QPO phases. For this reason this is het t
method we use to determine significances. Instead, we petfor
fits in the Fourier domain, which provides a different repreation
of the same information. The QPO P¥;(E), from equatiol®, is
in units of count rate and, as a complex quantity, can be egptkin
terms of amplitudey(E)o;(E), and phasep; (E), or in terms of
real and imaginary part&{W;(E)} = u(E)o;(E) cos[®;(E)]
andS{W;(E)} = pu(E)o;(E)sin[®;(E)] respectively. The real
and imaginary parts of;(E), and the different harmonics, are
statistically independent from one another. Thus standtatisti-
cal methods can be applied if we fit a modelg (E) rather than
w(E,~). Here, we first fit spectral models to the phase-resolved
spectra in the time domain to gain insight, before consimgca
model for the QPO Fourier transform. We can exploit the liitga
of the Fourier transform to define a mod#l; (£), and fold around
the telescope response to get the obseiWg(E), as for a normal
spectrum. Specifically, for thE® energy channel

W;(Er) = W;(E)R(I,E)dE,
0

®)

whereR(I, E) is the telescope response for tH& energy chan-
nel. We perform a joint fit to real and imaginary parts to prese
this linearity (which would be lost if we were to instead fit fam-
plitude and phase). This results in a joint fit of 5 spectra: rial
and imaginary parts of the first and second harmonics, ancetie
part of the DC component (the imaginary part is trivially@er

3.3 Phase difference between harmonics

We first measure the phase differengebetween the two QPO har-
monics. This phase difference represents the number of Q€l€sc
by which the second harmonic (first overtone) lags the first ha
monic (fundamental), converted to radians (i.e. multgbly 27).
Itis defined on the intervdl — 7 radians, since there are two cycles
of the second harmonic for each cycle of the fundamental. e s
the full band light curve into segments of durati®ms. Each seg-
ment contains 512 time bins of duratidh= 0.0625s, and roughly

Iron line modulationin H 1743-322 5

Ne of segments (normalized)

Figure 4. Phase difference between the two QPO harmonics, with differ
ent datasets represented using the same colour scheme. B Fay all
datasets, we measure the phase difference between hasngofic many

32 s segments (see text for details). This plot is a histograthaxfe mea-
surements and shows that there is a well-defined average giffesence
between the harmonics, which we measure by determiningealk f the
plotted distribution.

8 QPO cyclesXMM-Newtonorbits 1a, 1b, 2a and 2a contain re-
spectively 2135, 2134, 2455 and 1535 segments with gooohéele
try, and theNuSTARobservation contains 2217 segments. For each
segment, we calculate the phase differegictollowing IK15. In
Fig.[4, we plot a histogram of thegevalues for each dataset (the
colour scheme is the same as defined in[Hig. 1), revealingagstr
peak for all datasets. These histograms have two peaksyfheel
causey is cyclical and we show two cycles. We measure the peak
of each histogram following IK15 to obtain the average phdite
ference between harmonics. PSMM-Newton orbits 1a, 1b, 2a,
2b, we measure)/m = 0.309 £ 0.005, ¢/7 = 0.336 £ 0.005,

Y/m = 0.336 £ 0.005 and /7w = 0.347 £ 0.006. For NuS-
TAR we take the average of the independent measurements for
the FPMA and FPMB to get)/r = 0.332 £ 0.005. Note that,
even though th&luSTARbbservation is simultaneous with orbit 2
of XMM-Newtonthe measureg are not required to agree because
the full band light curves cKMM-NewtorandNuSTARcover a dif-
ferent energy range. The agreement we see between obs@vato
tells us that the phase difference has little energy deperdeere.

3.4 Energy dependence of QPO amplitude

We measure the fractional rms amplitude of the two QPO har-
monics as a function of energy, (E), for all five datasets. IK15
did this by calculating the power spectrum for each ener@neh
nel. For theXMM-Newtondata here, we instead calculate the co-
variance spectrum to increase signal-to-naise (Wilkingdsttley
2009). We follow the standard procedure for calculatingcibsari-
ance and its error_(Uttley etlal. 2014). Our reference barttiés
full XMM-Newtorband minus the channel of interest so as to avoid
correlating a time series with itself. For each energy ckgnmne
calculate the cross-spectrum between that channel ancetée r
ence band, and also the power spectrum of the reference Daad.
covariance is the modulus squared of the cross-spectruitiediv
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Figure 5. Fractional rms as a function of energy for three selectedse#s,

represented using the same colour scheme agFig. 1. The phiove the
grey dashed line correspond to the fundamental (first haichamd the

points below the dashed line are for the second harmonicofftez datasets
are omitted for clarity. We see tentative features arouedrtin line. Error

bars are br.

through by the power spectrum of the reference band. Sinee th
light curves from each energy channel are well correlatesl cb-
variance gives a good measure of the power spectrum witHesmal
statistical errors_(Wilkinson & Uttley 2009). FduSTARwe cir-
cumvent the dead time by calculating the co-spectrum betes
FPMA and FPMB light curve for each energy channel instead of
the power spectrum. Following IK15 we fit our power spectsl e
timates (covariance and co-spectrum XWM-Newton and NuS-
TARrespectively) in each energy channel with a sum of Lorentzia
functions. We calculate the fractional rms of each QPO haimo
from the integral of the corresponding Lorentzian functiardead
time correction ofrmsget /rmsin = 0.8462 also must be applied
to theNuSTARdata. Fig[b shows the resulting calculation of rms
as a function of energy for three of the five datasets, folhgwhe
colour scheme of Fiff] 1. We show only three datasets to awad o
crowding the plot. The points above the dashed line are fofitht
harmonic, and below the dashed line are for the second hazmon
For our Lorentzian fits, we use four Lorentzian functionse on
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Figure 6. Phase lag of each energy channel relative to a reference band
for three selected datasets, represented using the same scheme as
Fig.[. The reference band is the full band of the respectigtrument,

and therefore is slightly different betweMM-NewtonandNuSTARThis
creates the small offset seen in the second harmonic. AsRigtg, the
other datasets are omitted for clarity. Error bars ase 1

3.5 Phase lags between energy bands

We calculate the phase lag between each energy channel and a
broad reference band for both QPO harmoniks(E). For XMM-
Newton we use the same reference band as described above for
the covariance spectrum. We calculate the cross-spectugath
channel and average this over the width of each QPO harmamic,
defined by the Lorentzian fitting described in the previougise.

The phase lag for each QPO harmonic is the argument of this av-
eraged cross-spectrum. RIUSTARwe again utilise the two in-
dependent focal plane modules. We use the full FPMB band as

for each QPO harmonic and two to fit the broad band noise. We tie the reference band and calculate the cross-spectrum betise

the centroid of the second harmonic component to be douhbte th

and each channel of interest in FPMA. We also calculate an in-

of the first harmonic and force the two QPO Lorentzians to have dependent set of cross-spectra using FPMA as the referamcke b

the same quality factof = centroid frequency / full width at half
maximum). The centroid and quality factor of the QPO fundame
tal component are free to vary with energy, but we measurégao s
nificant energy dependence for either of these quantitiestriad
many variations on the model to test for the robustness ofithe
We tried using more and less broad band noise Lorentzidogj-al
ing the QPO components to have different quality factolsxieg
the centroid frequency ratio of 2, fixing the widths and/anteceid
frequencies of the QPO Lorentzians to equal those measared f
the full band and so on. We even tried simply integrating theegy
spectral estimates over the widths of the QPO componertsaiths
of fitting a model. In all cases, we obtained consistent tesundi-
cating that our fits are robust.

and FPMB for the subject bands. For each energy channel, we av
erage together these two independent measurements ofode cr
spectrum to increase signal-to-noise. [Elg. 6 shows thepagtsa

for the same three datasets as the previous plot. We see bk smal
offset in the second harmonic betweXMM-Newtonand NuS-
TAR This is simply because the lag spectra are calculateN i&-
TARusing a different reference band, and the lag of the second
harmonic depends on energy. This will introduce a smalkotie-
tweenXMM-NewtorandNuSTAR~vhen it comes to plotting best-fit
spectral parameters against QPO phase. As it turns oubfthit

is small enough to ignore completely, but even if it were éarig
would be fairly simple to correct for since itis just a comgtaffset.

We calculate the phase offséis(E) and®. (E) using equatiohl3.



3.6 Step-by-step summary
The steps of the IK15 method can be summarised as follows:

(i) Measure the phase difference between the QPO harmanics i
a broad reference band (see Sedfioh 3.3),

(i) For both QPO harmonics, measure the rms variability as a
function of energy (see Sectibn B.4),

(iif) For both QPO harmonics, measure the phase-lag between

each energy channel and the reference band (see Seclipn 3.5)
(iv) Combine these measurements in order to calculate tl@ QP
FT (EquatioriR),
(v) Inverse FT to obtain a waveform for each energy channel
(Equatiori 4.
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of the other datasets. This shows a peak in line energy ét4
cycles, and also exhibits a different (but very weak) maotioitain

T" from orbit 1a. The fact that the two halves of orbit 1a displasy
same modulations as each other, and as orbit 1a treat as a,whol
gives us confidence in the robustness of the method, andaspli
that something different really is happening in this thitéder of
orbit 1.

4.2 Fourier domain fits

We now fit the same phenomenological spectral model diréatly
the QPO FT derived from the data. This will allow us to asshes t
statistical significance of the line energy modulation. Wastruct

For the Fourier domain method, we stop at step 4 and fit a model @ model for the QPO Fourier transform by representing thetsgle

directly to the QPO FT, whereas the time domain method also in
cludes step 5.

4 RESULTS

Fig.[3 shows the spectrum for two selected QPO phases pladted
a ratio to an absorbed power-law continuum model, with the bl
circles representing the spectrum a quarter of a cycle tlager the
red triangles. We see a shift in line energy between the two QP
phases. In this section, we fit the iron line with a Gaussiation

to characterise the phase dependence of the centroid eardyy
assess its statistical significance.

4.1 Time domain fits

We first fit the phase-resolved spectra in the time domain arith
absorbed power-law plus Gaussian model, in the energy r&ige
keV. We consider the five datasets separately, which allav®u
compare results for independent analyses. We initiallpltispec-
tral parameters to remain constant during the QPO cycle estd t
if the fit is improved when we allow each parameter to varylfree
with QPO phase. For all three datasets, we achieve the mmirau
ducedy? value by allowing the Gaussian centroid energy;{.),
Gaussian flux §¥¢) and the power-law indexI{) and normalisa-
tion (Neont) to vary with QPO phase. The fit is not improved by
allowing the Gaussian width to vary with QPO phase. We plet th
best-fit line centroid energy against QPO phase (light bitges)

in Figure[T. We do not plot error bars here, since the err@sair-
related between QPO phases in the time domain fits. All distase
show a modulation in the line energy. For all but orbit 1b of MM
Newton, the line energy modulation has the same distinstiape,
with maxima at~ 0.2 and~ 0.7 cycles. The modulations iR,

Ng¢ and Neon: (not pictured) are also consistent between these 4
datasets.

It is puzzling that orbit 1b disagrees with the other datset
This dataset also exhibits different modulations\ia andI” from
the others (this can be seen in Higl 10, which is explaineciaild
in the following sections). To investigate this further, g@it up
orbit 1 into four quarters such that the first two quartersetbgr
make up orbit 1a and the final two quarters together make up orb
1b. We find, as expected, that the first two quarters both shew t
same modulation in line shape seen for orbit 1a. The fourttgqu
(i.e. the second half of orhit 1b) shows a peak in line enetgy.a
cycles but not a0.2 cycles, so is different from orbit 1a but only
slightly. This fourth quarter also shows a modulatiofriconsistent
with orbit 1a. It is the third quarter that differs so radlgdtom all

parameters as periodic functions of QPO phasedror example,
the line energy is

Eline(v) = Eo+ A1gsin[y — ¢1e] + A2p sin[2(y — ¢2£)], (6)

whereEy, A1g, A2k, 1 andg2 are model parameters. We see
that Ey is the mean line energy, and all variability in the line en-
ergy as a function of QPO phase is captured by the amplituttés a
phases of the sine waves. The other potentially varyingtsgdema-
rameters (Gaussian width and normalisation, power-lawxrahd
normalisation) are also modelled in the same manner with-5 pa
rameters each. Our model calculates the resulting spedtut®
QPO phases and then calculates the Fourier transform fad afgr
energy bins. We then fold, for each harmonic, the real andjiima
nary parts of this Fourier transform around the telescoppaese
matrix (equatioi ) and fit to the observed QPO Fourier tamsf
(equatioriR).

4.2.1 Separate fits

As with the time domain fits, we fit the five datasets separately
expecting to see exactly the same results as before (siad€Ttlof
afunction is simply a different representation of the sanmefion),

but with more manageable statistics. We again find a bestitfit w
modulations in the line energy (i.elig > 0 and A2 > 0) and
flux and the continuum normalisation and power-law indexd an
again the fits are not improved by allowing the Gaussian width
vary with QPO phase. As an example of our fits, we plot in Eig. 8
(left) the QPO FT for orbit 1a (black points) along with thesbét
model (lines). Here, the data are unfolded around the imsni
response assuming the best-fit model and are in units of energ
squaredx specific photon flux (i.e. theeufoption inxsPEQ. The
best-fit model for the first harmonic is plotted in red and theosid
harmonic in blue. We see features in the data and model around
the iron line, which result in the model from modulations bét
line energy and equivalent width. The second harmonic shbes
clearest features, with an excess-abt.2 keV in the real part and

a dip at the same energy in the imaginary part, surrounded/by t
peaks either side. We fit jointly for the real and imaginarytpaf
both harmonics, and also for the mean spectrum (the realopart
the DC component) which is not pictured here.

We plot the Ey;,. () function derived from our Fourier do-
main fits, visualised as a probability map, in Hi§. 7. The figst
function Ej;n.() can be plotted by substituting the best-fit val-
ues forEo, A1r, A2, ¢1£ andg into equatiof B. Here, we also
take into account the probability distributions of theseaBgmeters
by running a Monte Carlo Markov Chain (MCMC) ikspPecand
then, for each step in the chain, calculating fg,. () function.
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Figure 7.1ron line centroid energy as a function of QPO phase for eéch o
the five datasets (as labelled). Light blue circles are theli®of our time
domain fits and the probability maps are the results of ouriEpdomain
fits. For the time domain fits, we fit an absorbed power-law @asissian
model to spectra corresponding to 16 QPO phases. For théeFdomain
fits, we consider the same model, with parameters varyiniggieally with
QPO phase, and FT the model to fit to the data in Fourier spaeedéA/
termine the significance of the modulations (as labelledinfthe Fourier
domain fits, and create the probability maps using a Montéo@aarkov
Chain (see text for details). The maps are normalised sathtthy peak at
unity, and the colours are defined in the key. Note APy ax = 0.1, be-
low which the colour scale looks rather white, correspondhié~ 2.150
confidence contour.

We then create a histogram to plot the posterior distriloufbo the
function. Details of the chain and of the calculation of théss-
tograms are presented in Appenfik A. As expected, the frexyue
domain results plotted in Fi] 7 agree with the time domaim fit
(light blue circles), but we are now able to visualise theastainty
on the best-fit line energy modulation (see the key).

4.2.2 The case of orbit 1b

As with the time domain fits, it is striking that all datasexsept
for orhit 1b show the same characteristic trend, with peakse
energy atv 0.2 and~ 0.7 cycles. Looking at the QPO FT reveals
that the difference between orbit 1b and all the other d&gase
in the second harmonic. Figl 8 (right) shows the FT of the séco
harmonic (real and imaginary parts as labelled) for orbiftdlack
circles) and orbit 1b (grey triangles). The best fit modetsoitits
la and 1b are plotted in red and blue respectively. We seedilery
ferent behaviour between the two datasets. Where orbitdsssa
dip (real part at- 7 keV), orbit 1b shows an excess. Where orbit 1a
shows an excess (imaginary partaf keV), orbit 1b shows a dip.
All other datasets display similar behaviour to orbit lailllstrate
this, we plot the best-fit model for orbit 2b in magenta. Thas la
slightly different normalisation, but the same charastarishape
as orbit 1a.

We check if these differences can result from our assump-
tions when measuring the fractional rms as a function ofgner
For the many different methods of measuring this describesg¢-
tion[3.4, we measure QPO FTs consistent with before andftirere
obtain results consistent with F[gd. 7. We therefore corelint the
method produces robust results and that orbit 1b really deem
to be doing something different to the other datasets.

4.2.3 Joint fits

Since all datasets show a modulation in line energy, we com-
bine them into a joint fit to compare with the null hypothesis:
A1 = Az = 0. We first leave out the anomalous dataset, or-
bit 1b. We see in Fid.]7 that the two maxima in line energy mea-
sured forNuSTARslightly lead those measured for the simultane-
ousXMM-Newtonorbit 2. This is because we used a different ref-
erence band foluSTARSince this constant offset turns out to be
very small in this case, we are able to ignore it. We therefiare
the modulations in line energy, line flux and power-law index
be the same for all four considered datasets, but allow thepo
law normalisation to differ for different datasets. We ntitet the
modulation in power-law normalisation is very similar foaoh
dataset (even including orbit 1b), but is well constrainedugh
for small differences in datasets to be highly statisticalgnifi-
cant. We tie the power-law index betwe¥MM-NewtonandNuS-
TAR using the formulal’ yusTar(y) = Txmam(y) + AT, in
order to account for the cross-calibration discrepancmil@rly,
we tie the line energy between observatories using the fiermu
Eline, NusTAR(Y) = CEline,x mm (7). We useAT" = 0.236 and
C = 0.970. We obtain a good fit (reduceg® = 287.13/279 =
1.029) with the differential properties of the spectral paramgete
consistent with before.

When we also include the orbit 1b data in our fit, tying all pa-
rameter modulations except for the power-law normalisedicross
all datasets, we obtain a fit with reducgd = 370.32/364 =
1.017. When we allow¢:r and ¢ to be different for orbit 1b

We calculate the significances quoted in Eig. 7 by comparing compared with all the other datasets (as seems to be thercase f

the x? from the best fit model for each dataset with the minimum

Fig.[7), the fit improves with reduced® = 361.82/362 = 1.000.

x? achieved for the same dataset when the line energy amgitude An f-test determines that this is2a430 improvement, indicating

are fixed toA1g = A2g = 0. This null hypothesis model has

that the line energy modulation in orbit 1b is likely diffetefrom

4 more degrees of freedom than the best fit model, because it isthe other datasets. Also freeiny r and A2 for orbit 1b does not

insensitive to the phase parametersg and¢.r. We compare the
best-fit to the null hypothesis using an f-test, convertingajues to
sigmas in the standard way (elg: corresponds tp = 0.317).

further improve the fit, so we keep these amplitudes tiedsscadl

datasets. When we also allow the second harmonic amplitofdes

the N¢ andT” modulations to be different for orbit 1b, the fit again
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Figure 8. Left: QPO Fourier Transform as a function of energy XdM-Newtonorbit 1a. Real and imaginary parts of the first and second twica are as
labelled. Here, we plot the data (black points) unfoldediatbthe instrument response matrix, assuming the best-fieh{ced lines for the first harmonic
and blue lines for second harmonic), in units of energy spiar specific photon flux (i.e. theeuf option in xsPEQ. Right: QPO FT for the anomalous
XMM-Newtonorbit 1b (grey triangles and blue lines) compared WNMM-Newtonorbit 1a (black circles and red lines), only consideringgbeond harmonic
(real and imaginary parts as labelled). We see clear difta® in the shape for both real and imaginary parts. To demad@shatXMM-Newtonorbit 1a is
representative of all the other datasets, we also plot thefltenodel for orbit 2b. Error bars aredl
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Figure 9. x2 contour plots from our Fourier domain fits considering aliadats. We show the amplitude of the first and second harnedtie line energy
modulationA; i and A, g . Left: Two dimensional contour plot. The cross denotes the beatitthe black, red, green and blue lines correspond to 1, 2, 3
and 4o confidence contours respectively for two degrees of freed®ight: One dimensional plot forl; i (black) andAs g (red). The grey dashed line is
Ax? = 9 (30 for one degree of freedom).

improves, with reduceg” = 354.24/360 = 0.984. An f-test in- Table 1.Best fit line energy parameters for our joint fit. Errors awe
dicates that this is 2.29¢ improvement. This is our best-fit model.

Our best-fit parameters for the line energy modulation age pr

. . . . Parameter Best fit
sented in TablEl1. Fi§l 9 (left) is a contour plot resultingnirvary-
ing A1g and Asg (using thestepparcommand inXxsPEQ. The A (keV) 0.044670-023
contours represenhy? = 2.3 (black), 6.18 (red), 11.83 (green) ;00‘007260
and19.33 (blue). Thesec? levels correspond to 1, 2, 3 andr4on- ¢15 (cycles) 0.373%4713
fidence for two degrees of freedom. We see that a fairly laege p Az (keV) 0.11919526

of parameter space can be ruled out withconfidence. The null

hypothesis model41r = A2 = 0), now has 6 more degrees of
freedom than the best-fit model, because the null hypothesit! Ep (keV)
is insensitive tap1 g and ¢2 for orbit 1b, plus the same two pa-
rameters for the other datasets. We compare the best-fivachi

¢2 (cycles) 0.0497t8:8}g§

+0.019
6‘6070.018
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by fixing A1 = A2r = 0 (x* = 380.68/366) with our global
best-fit (* = 354.24/360) using an f-test, which rules out the
null-hypothesis witl8.700 confidence.

Fig[d (right) showsy? plotted against;  (black) andAs s
(red). The dashed line depictsy®> = 9, which corresponds to
30 for 1 degree of freedom. We see thdtg in particular is
fairly well constrained, witl8c confidence limits of approximately
0.04 < Az < 0.21. The best-fit achieved when fixindg, g = 0
has reducedy® = 359.58/363 and the best-fit achieved with
Asp = 0is x* = 375.63/363. Comparing these to the global best
fit yields significances ot.460 for the first harmonic an@.89c
for the second harmonic.

Fig. [I0 (left) shows the probability map for all four vari-
able spectral parameters for our final joint fit. Here, forgpae-
ters which are not tied across all datasets (suct;asand ¢2k),
we plot the values corresponding to orbit 1a. Note that tme-fu
tions Eine (), Na(v) andI'(~) are tied acrosall datasets except
for orbit 1b. We see no statistically significant modulatiarthe
iron line flux, but we do see a modulation in the power-law inde
which lags the line energy modulation by 0.1 cycles. In Fig[”ID
(right), we make the same plot for the case of orbit 1b. Evengh
the statistics are of course worse, the parameter modusatice
strikingly different. The line energy and power-law inde® &oth
consistent with being constant, but the iron line flux variéth a
large amplitude and high statistical significance. Cleahgre is
something very different about orbit 1b. We have checkegfor
ton flares, absorption events and various instrumentaésssout
find no contribution from these effects, so are forced to hate
that this anomalous behaviour during orbit 1b is intringiche
source. We note that the iron line width is larger during oflti
(0.5140.05keV) than for the other datasets combinédt8 +0.02
keV). We can also see in the— 10 keV power spectrum (Fif] 2)
a slight increase in the amplitude of the fundamental frohitdra
(black) to 1b (red), but a very slight decrease in the amgitaf
the second harmonic. Also, the broad band noise abovg Hz
changes a little between orbit 1a and 1b. These differenegsba
indicative of their being a slightly different geometry thg orbit
1b.

5 DISCUSSION

Figure 11. Schematic representation of the precessing inner flow model
The inner flow (orange) extends out4e 20 — 30 R, and is misaligned
with both the disk (grey) and black hole equatorial planei¢omtal). The
flow precesses around the (vertical) black hole spin axib that the front

of the flow faces us in (a), to our left in (b) and so on. The framd back of
the flow irradiate the disk, illustrated here by the multiecmed patches. As
the flow precesses, these irradiated patches rotate owveisthsurface, pro-
grade with disk orbital motion (white arrows). The coloufdte irradiated
patches encode energy shifts due to disk orbital motion aadtgtional
redshift.

line energy andsuppresseshe flux in the reflection hump rela-

tive to the line (e.g. Ross & Fablan 2005; Garcia ét al. 20ir8)

conflict with what we observe (Fill 3). Also, the observeds.4

We have further developed the QPO phase-resolving method of yav/ 10 ~ 6.8 keV change in line energy would require a factor

IK15 and applied it to, in totak- 260 ks of XMM-Newtordata and

~ 70 ks of NuSTARdata from the 2014 outburst of H 1743-322.
We measure a statistically significat{c) modulation of the iron
line centroid energy with QPO phase by combining five indepen
dent datasets. We see in Aig. 7 that, for four of the five ditatee
line energy modulation has the same distinctive shape, mvétk-
ima at~ 0.2 and~ 0.7 QPO cycles. Surprisingly, one dataset
(XMM-Newtonorbit 1b) does not show the same trend. Here we
discuss the implications of the measured modulation ancldpie

as to why orbit 1b differs from the other datasets.

5.1 Interpretation: Precession

Our result provides strong evidence that the Type C QPO wbder
here is driven by systematic changes in the accretion gegmet
over the course of a QPO cycle. The only mechanism by which
the line energy can vary without a geometric change is throug
shifts in the rest frame line energy driven by changes in ikk d
ionisation state. An increase in disk ionisation increabesiron

~ 200 change in illuminating flux over a QPO cycle to origi-
nate purely from variations of disk ionisation (see e.g.. Aign
IMatt, Fabian & Ro$s 1993); which is implausible for all datas
except for orbit 1b, which show a change in line flux smallemth
a factor of 2 (see Fig._10, left). This indicates that the kmergy
variation is driven, at least in part, by changes in the refiic
distortions to the iron line profile, and therefore by a getine
variation over a QPO cycle. This ties in with recent popolati
studies(Motta et al. 2015; Heil, Uttley & Klein-Wolt 2015)hich
show that systems observed with a more edge-on disk disptay s
tematically higher amplitude Type C QPOs.

Shifts in the line energy are predicted to arise if the QPO
originates from Lense-Thirring precession of the hot infiew
(Ingram. Done & Fragile 2009; Ingram & Ddne 2012). As the in-
ner flow precesses, it preferentially illuminates diffdrdisk az-
imuths, giving rise to a blue/red shifted iron line when the a
proaching/receding disk material is irradiated. For a getoynin
which a single bright patch rotates about the disk surfaneptet-
ing one cycle per QPO cycle, we would observe one maximum and
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Figure 10.Probability maps from our Fourier domain fits for line enefdy; . ), line flux (Ng), power-law index ') and power-law normalisatiomM{cont)-
Significances for each parameter are as labelled and caogiss defined in Fi§l Left: The results of our joint fits, considering all datasets. Foameters
which are not tied across all datasets (see text for detaitsplot the values corresponding to orbit Right: The results for only the anomalous orbit 1b. We
see clear differences from the other datasets, with pethapmost striking being the large modulation in iron line flux

one minimum in line energy per QPO cycle. Instead, we observe flow (Shirakawa & Lai 2002), but not for astrophysical blackds

two maxima, neither of which coincide with a peak in contimuu
flux. This can be explained if we consider two bright patclotatr
ing about the disk surface, as illustrated in [Eig. 11. In gidsure,
the inner flow (orange) precesses, but the disk (grey) isstatibn-
ary by viscosity|(Bardeen & Petterson 1975). The disk ttiors
into the hot inner flow at the truncation radius. In this schém
the disk is irradiated by both the front and back of the flone(se
the multi-coloured patches), as we may expect to happee ifith
ner flow is sufficiently thin for its underside to be above tlekd
mid-plane (or for a very large misalignment between the distt
inner flow). The calculations of Ingram & Ddne (2012) conséte
an inner flow with very large vertical extent, and therefang/gre-
dicted one bright patch on the disk, as the underside of thevitas
never above the disk mid-plane. The Doppler shifts expeeery
photons reflected from respectively approaching and ragedisk
material are illustrated in Fig11 by the colour scheme efitradi-
ated patches. Precession of the flow as illustrated if Eigrddicts

a rocking of the iron line shape twice per precession cycldifas
ferent disk azimuths are illuminated first by the front of frav,
then half a cycle later by the back. The maximum line enerdy wi
occur when the approaching and receding sides of the disit-are
luminated (Figl_IlL b and c), since Doppler boosting meartsthiea
blue shifted part of the line (the so-called ‘blue horn’) lvdbmi-
nate over the red shifted part (the so-called ‘red wing’).

Non-relativistic precession mechanisms are unlikelys§itzal
precession is expected around an oblate spinning star béoma
black hole |(Stella & Vietr| 1998). Magnetic precession casult
when the magnetic field of a spinning star intersects theetiocr

which, without electric charge, have no way to generate then
magnetic field. Radiation pressure can cause variable mguipi

the outer disk through non-linear growth of perturbatidng,only

at disk radiizz 160 R, (Pringle 1996 Frank, King & Raire 2002),
where orbital motion is too slow to explain the large obsdrga-
ergy shifts in the line. It is therefore likely that we are sifieally
witnessing Lense-Thirring precession. We note that Lértgering
precession of the reflector (the disk) rather than the ilhator (the
inner flow) could potentially reproduce the observed linergg
modulation |((Schnittman, Homan & Miller 2005; Tsang & Buisky
2013); although we note that the QPO modulates the power-law
spectrum emergent from the inner flow much more strongly than
the thermal disk emission visible at low energies. We alge titat

the observed line energy modulation could potentially ltefsom

a precessing jet (Kalamkar etlal. 2015).

For Lense-Thirring precession of the entire inner flow, the
precession period depends on the inner and outer radii of the
inner flow, the radial surface density profile of the inner flow
(Fragile et all 2007; Ingram, Done & Fragile 2009), as welthas
mass and dimensionless spin parameiet= cJ/GM2, of the
black hole. Assuming a constant surface density, a candsiaek
hole mass ofil0 M and a spin oz = 0.2 (Steiner et al. 2012;
Ingram & Mottal 2014), thev 4 s period implies a truncation ra-
dius of ~ 20 — 30 Ry.
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5.2 Implications

Lense-Thirring precession arises (due to the General iRistat
frame dragging effect) only in orbits with their rotatioradis mis-
aligned with the black hole spin axis. This may occur for atcr
ing material in binary systems in which the black hole spiis ax
is misaligned with the axis of binary orbital motion (as thee r
sult of an asymmetric natal supernova kick; Fragos et al0p01
Quite how the accretion flow reacts to this misalignment iba-c
lenging theoretical question, which will be informed by aer
sult. For a classical thin disk, the inner regions have loagrb
thought to align with the black hole and the outer region$tie
binary (Bardeen & Petterson 1975), but the location of thesi
tion between orientations has remained uncertain. Regmolas
tions (Krolik & Hawley|2015) find this radius to be 8 — 9 Ry,
which is small enough to be within the disk truncation radfis
~ 20— 30 R, indicated here by setting the precession period equal
to the QPO period. This implies that the inner flow is beinglfgd
material from the truncated disk out of the black hole equaito
plane (as in Fig_11). Grid-based General Relativistic neamjmy-
drodynamic simulations of accretion flows in which the \eatiex-
tent is large compared with viscosity indicate that therertiot in-
ner flow can precess in this situation due to strong couplingugh
pressure waves (Fragile eflal. 2007), in line with what issiitated
in Fig.[11. Alternatively, calculations using anrprescription vis-
cosity with a large misalignment angle and/or low viscositypw
evidence for the disk breaking into discrete, indepengiqargcess-
ing rings (Nixon & King 2012). This phenomenon has been seen i
smoothed particle hydrodynamics simulations (Nixon €28012;
Nealon et all 2015), but not as yet in the grid-based sinoniati
(Morales Teixeira et al. 2014; Zhuravlev eilal. 2014). Suitfed
ential precession could also potentially give rise to the Bnergy
shifts observed here, via the same mechanism of illuminatio
different disk azimuths. More sophisticated phase-resblspec-
tral modelling and additional high quality data in futurdhailow
tomographic mapping of the inner flow geometry, further infimg
numerical simulations.

Recently| van den Eijnden, Ingram & Uttley (2016) found ev-
idence in observations of GRS 1915+105 that some form of dif-
ferential precession could indeed be at play (althoughyliket as
extreme as that suggested by Nixon & King 2012). They shoty tha
in observations displaying an energy dependent QPO freguen
(Qu et al. 2010;_Yan et al. 2012), the phase of the band with the
higher QPO frequency increases faster than that of the bathd w
the lower QPO frequency. This confirms that the frequendgdif
ence is intrinsic to the source, and can be explained if Xan®ple,
the inner regions of the flow are precessing slightly fagtantthe
outer regions. Although there is no energy dependence @B@
frequency in the observations we analyse here, H 1743-322 do
show an energy dependence of the QPO frequency for obsersati
with much higher £ 3 Hz) QPO frequencies (Li et al. 2013).

Our result has implications for black hole spin measurement
Spin estimates obtained through disk spectral fitting ofish
sume that the black hole spin aligns with the binary orbig.(e.
Kolehmainen & Done 2010; Steiner et lal. 2012), which is incom
patible with the precession model. Indeed, recent spenical-
elling of Cygnus X-1 in the soft state impliesza 13° misalign-
ment (Tomsick et al. 2014). The iron line method providesraie+
pendent measure of inclination, but assumes that the diskés
down to the ISCO, whereas the precession model assumeslan evo
ing truncation radius. If the truncation radius really isvimg, the
shape of the line energy modulation should change with QRO fr

quency I(Ingram & Done 2012), which can be tested in future. We
also note that the spectral pivoting and line energy momtulate-
tected here araon-linear changes in spectral shape, which could
bias studies of the time-averaged spectrum. The biaseskahg |
small, but should be quantified in future with tomographicdeie
ing, since iron line fitting is sensitive to fairly small sped dis-
tortions. For the case of active galactic nuclei (AGN), itirclear

if a misaligned accretion flow is expected in the absence af a b
nary partnﬂ. If there is precession in AGN, it will not create a
bias through non-linear variability, since the precesgiorescale
would be longer than a typical integration time.

5.3 Alternative interpretations

As an alternative to precession, axisymmetric variationthée ac-
cretion geometry can cause changes in the iron line shapee Si
the disk rotational velocity and gravitational redshiftibaepend
on radius, variation of the disk inner radius throughout &@kcle
can cause shifts in the line energy. For the same reasonggyeha
in the radial dependence of disk irradiation, perhaps chimse
changes in the vertical extent of the illuminating souram also
drive changes in the line shape. However, it is very diffitoilex-
plain how such mechanisms could give rise to two maxima i lin
energy per QPO cycle. Nonetheless, in future we will exijicest
the precession model described above against the datanfgdse
here, and compare it to simple axisymmetric alternatives.

De Marco & Ponti 1(2016) recently suggested that the soft
lag measured in thed.1 — 1 Hz frequency range for the
XMM-Newtondata is a reverberation lag corresponding te-a
100 R, path length. However, this frequency range is domi-
nated by the QPO. Both soft and hard lags are routinely ob-
served for QPOs (e.g. Qu et al. 2010), and the QPO lag is of-
ten very different to that measured for the broadband nasg (
Wijnands, Homan & van der Klis 1999), and not compatible with
a reverberation lag (Stevens & Utlley 2016). Moreover, infeig.

[6 we show that the two QPO harmonics have different lags, and s
averaging them together has little physical meaning. Reration
lags are still expected to be present of course, but willdyielich
smaller soft lags than the QPO.

5.4 Anomalous dataset: orbit 1b

As for the anomalous dataset, orbit 1b, this is puzzling i@ th
context of any QPO model. The modulations in line energy and
flux and also power-law index are consistent between all thero
datasets. Orbit 1b shows different modulations in all ttokethese
paramete& as can be seen in Fig.]10. The most striking is per-
haps the large amplitude, and highly statistically sigaific@do),
modulation in the line flux in orbit 1b. This may be indicatiué

a different geometry during orbit 1b. Such a geometricaingea
needs to explain the increased iron line flux, the increased v
ability in line flux and also the increased width of the irondi
(0.51 keV for orbit 1b and~ 0.43 keV for the other observations).

It also needs to be consistent with the only subtle diffeesnio

2 also, itis notoriously difficult to detect a Type C QPO anaieglue to the
very long period expected through mass scaling (Vaughant&yJ2005)

3 the power-law normalisation is trivially very similar asmall datasets,
because QPO phase is defined from the reference band fluxy whitks

the power-law normalisation to a good approximation, givest the power-
law index varies only with small amplitude.



other diagnostics (such as the full band power spectrum la@d t
time averaged power-law photon index) and the change needs t
plausibly happen over g 60 ks time scale. The increased line flux
implies a greater fraction of continuum photons intercaptdisk,
which will broaden the line somewhat by increasing the disk-i
sation. The increased variability in line flux suggests thit frac-

tion variesmore than for the other datasets. This could occur if the
misalignment angle between the disk and the black hole s@is, a

B, is somehow larger, since the misalignment between the disk

and inner flow varies betwedehand 28 in the precession model
(Veledina, Poutanen & Ingram 2013; Ingram €l al. 2015). Eis
tra variability in illuminating photons could make line egeg vari-
ations due to ionisation changes significantly more impuortiaan
for the other datasets. We see in Figl 10 (right, second péral
the line flux, and therefore the flux irradiating the disk,iearby a
factor of ~ 8 over a QPO cycle for orbit 1b. This means that the
ionisation parameter¢ (o illuminating flux) should also vary by
a factor of 8. In Fig. 1 of Matt, Fabian & Ross (1993), we seé tha
varying the ionisation parameter frafm~ 100 to £ ~ 800 changes
the line rest frame energy from 6.4 keV to~ 6.7 keV. This mod-
ulation in the rest frame line energy should be in phase vhiéh t
line flux, and therefore in anti-phase with the line energydoia-
tion seen in the other datasets. It is unfortunate Mz TARwas
not observing during orbit 1b, otherwise this hypothesisdd¢have
been tested by tracking the reflection hump. Alternativeltyper-
haps additionally), our view may be obstructed by some rzdter
in our line of sight during orbit 1b, which is plausible givéme
likely high inclination of H 1743-322. The variable illunation of
the line of sight material will give rise to variable ionigat, which
will imprint itself onto the phase-resolved spectra.

6 CONCLUSIONS

We find that the iron line centroid energy in H 1743-322 is mod-
ulated on the QPO period with a statistical significances.Gé .
We also find that this modulation has a non-zero second haecmon
with a statistical significance d§.94c. Shifts of the line energy
over a QPO cycle are a distinctive prediction of the LensgriFiy
precession model (Ingram, Done & Fragile 2009), in whichithe
ner accretion flow precesses due to the frame dragging effect
Our observation is a typical example of a Type-C QPO, imglyin
that this class of QPOs in general are driven by Lense-THgjrri
precession, and therefore supporting studies that meddack
hole mass and spin using the period of the Type-C QPO in com-
bination with that of high frequency QPOs_(Motta etlal. 2014;
Ingram & Mottal2014; Fragile, Straub & Blaes 2016). There are
still, however, unanswered questions. We have simply eyeplo
phenomenological modelling to track the iron line here, inotre
physical modelling using a self-consistent reflection nhoslid
provide further insight. We will perform this modelling infa-
ture paper, as well as testing alternative models to premesbhe
largest question mark concerns the anomalous dataset, ldrbi
which exhibits different parameter modulations to all otth@tasets
(which all agree with one another).

In future, high quality observations of the same source dis-
playing a QPO with a higher frequency will provide furthesight.
The precession model predicts the disk inner radius to bélerma
for higher QPO frequencies, and therefore we expect theeline
ergy dependence on QPO phase to have a different shapeesSStudi
such as this will be greatly enhanced by new instrumentaben
tectors with a very large collecting area will allow us to foem
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similar studies without needing to stack over very long expes
as is necessary here. Also, X-ray polarimetry will providesatra
dimension, particularly when combined with phase-resbkyeec-
troscopy l(Ingram et al. 2015). The precession model predictt
the polarisation angle changes with QPO phase, and thaixthe e
trema in polarisation angle coincide with maxima in the lare

ergy.
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APPENDIX A: DATA VISUALISATION

In order to create the probability maps shown in Higs. 7[afhave0
run an MCMC inxspPEecafter finding a best-fit model in the Fourier
domain.xsPEC uses theeMCEE algorithm (the MCMC hammer:
Foreman-Mackey et al. 2013). We use the Goodman-Weare algo-
rithm with a chain length o8 x 10° steps and.0® walkers. The
starting point of the chain is a randomised realisation eftibst-
fit parameters. Visual inspection of thé implies that the chain
takes~ 2 x 10* steps to converge, so we butrs x 10* steps. For
the rest of the chain, the autocorrelation function of thepeters
of interest is centrally peaked, indicating reasonableveagence.
Even so, we note that none of our significances or error esgna
use these chains, we use them purely for data visualisation.

For the probability maps in FigE] 7 ahd]10, we calculate the
Ejine(y) function for each step of the chain, for 400 valuesyof
That is, for each step of the chain, we read in the parameters
Asg, ¢1E, ¢2r and Eq for that step and calculat®;; . (y) from
equatior 6. For each value, we thus have.75 x 10° values of
Ejine, which we bin into an 800 bin histogram. Hig.JA1 shows these
histograms for the chain corresponding to our joint fit, feotse-
lected QPO phases (red: phase=7/16 cycles, blue: phad&=dyt/
cles). We normalise each histogram to peak at unity. Fotippt
purposes, we smooth these histograms by averaging eacle of th
800 bins with thet10 bins either side. The black lines show the
smoothed versions of the histograms. We use the smoothed ver
sions for our probability maps.
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Figure Al. Histograms for the line energy for two QPO phases (red:

phase=7/16 cycles, blue: phase=11/16 cycles) created asiflCMC. The
black lines are smoothed versions of these histograms€zeot details)
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