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Abstract

The knowledge of the wave transmission and reflection characteristics in con-

nected two-dimensional structures provides the necessary background for many

engineering prediction methodologies. Extensive efforts have previously been

exerted to investigate the propagation of waves in two-dimensional periodic

structures. This work focuses on the analysis of the wave propagation and the

scattering properties of joined structures comprising of two or more plates. The

joint is modelled using the finite element (FE) method whereas each (of the

joined) plate(s) is modelled using the wave and finite element (WFE) method.

This latter approach is based on post-processing a standard FE model of a

small segment of the plate using periodic structure theory; the FE model of

the segment can be obtained using any commercial/in-house FE package. Stat-

ing the equilibrium and continuity conditions at the interfaces and expressing

the motion in the plates in terms of the waves in each plate yield the reflec-

tion and transmission matrices of the joint. These can then be used to obtain

the response of the whole structure, as well as investigating the frequency and

incidence dependence for the flow of power in the system.
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1. Introduction

Wave methods are suitable for the analysis of the dynamic behaviour of

simple structures, since they do not require powerful computing resources. This

is very important for many applications especially at high frequencies where

element-based models, e.g. the finite element (FE), become impractically large.5

The wave representation of the behaviour provides the necessary information for

subsequent implementation of many techniques such as Power Flow Analysis,

Statistical Energy Analysis (SEA)[1], Dynamical Energy Analysis (DEA) [2, 3],

etc.

For simple cases such as slender connected beams, analytical solutions can be10

obtained for the reflection and transmission coefficients [4, 5]. However, develop-

ing analytical models that describe the dynamic behaviour of more complicated

structures comprised of plates and different type of joints can be a very difficult

task. Therefore, for such complicated structures, and particularly at high fre-

quencies, the wave and finite element (WFE) method can be used. The WFE15

method for waveguides has been used to predict the free [6] and forced [7] re-

sponse and to study different type of structures, such as thin-walled structures

[8], laminated plates [6], fluid filled pipes [9, 10] etc. It has also been extended

to two-dimensional plane [11, 12] and cylindrical structures [13]. An alternative

formulation of the WFE method for two-dimensional structures is presented20

in [14], where a harmonic motion of the form exp(−ıkyy) was enforced in one

direction, and the equation of motion is one-dimensionalised and subsequently

solved using the WFE method of [6, 7].

The waves in two-dimensional systems such as plates are propagating at

angle and when they are incident upon an interface they give rise to reflected25

and transmitted waves, which in general are propagating at a different angle

in the transmitted system compared to the initial one. At first glance, the

formulation of the WFE method which depends on the incident angle seems to

be the most appropriate and general. This is also the formulation adopted in
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this paper. Concerning the scattering properties of joints, wave approaches have30

been also used for the calculation of the reflection and transmission coefficients

of plate/beam junctions [15], bolted joints [16] and curved beams [17]. The case

of a junction with an elastic interlayer has been studied in [18], for a junction

between semi-infinite plates [19, 20] and for junctions in heavyweight buildings.

More recently, experimental work and numerical modelling of wave modes at a35

junction has been conducted [21, 22] using the analytical approach developed

by Heron and Langley [15].

The hybrid FE/WFE approach for the computation of the scattering prop-

erties of joints in structures modelled as one-dimensional waveguides was first

introduced in [23].40

The objective of this article is to calculate the scattering properties of a joint

in the case of two or three joined plates, that could represent a bonded joint, an

L-shaped or a T-shaped junction. In section 2, a review of wave propagation in

two-dimensional homogeneous structures and wave scattering upon a disconti-

nuity is presented. In particular, the FE model and the free wave propagation45

in a segment of the plate is discussed. The knowledge of the wavemodes in com-

bination with the scattering properties can be used to compute the energy flow

of the waves as shown in subsection 2.6, through which the power reflection and

transmission coefficients can be found, subsection 2.7. Section 3 is dedicated to

the hybrid FE/WFE approach which yields the scattering matrix of the joint50

by applying continuity and equilibrium conditions at the interface nodes, for

different cases of coupled plates. Section 4 includes some numerical results for

the power scattering coefficients for different joint configurations, frequencies

and incidence directions. The main results of the work are finally summarised

in section 5.55

2. A review of the WFE method for two-dimensional structures

In this section, the WFE method for two-dimensional structures is briefly

reviewed.
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2.1. Free wave propagation in two dimensions

Consider two-dimensional media which are homogeneous in both the x and y60

directions but whose properties may vary arbitrarily through its thickness in the

z direction. Time harmonic motion of the form exp[ı(ωt−kxx−kyy)] and in the

direction θ is assumed throughout this work where kx = k cos θ and ky = k sin θ

are the components of the wavenumber k in the x and y directions. These

wavenumbers might be real for propagating waves in the absence of damping,65

pure imaginary for evanescent waves or complex for oscillating, decaying waves.

2.2. The WFE model

The WFE method starts with a FE model of a small rectangular segment in

the (x,y) plane of the plate with sides of lengths Lx and Ly as in Figure 1. This

segment is meshed through the thickness using any number of elements. The70

only condition is that the nodes and degrees of freedom (dofs) are identically

arranged on the opposite sides of the segment in order to relate the motion and

the forces on each side of the segment in the propagating direction. Conse-

quently, in the case of laminated plates any number of layers and any stacking

sequence can be considered.75

x

y
qlb

qlt

qrb

qrt

qb

qr

qt

ql qi

Lx

Ly

Figure 1: Rectangular segment for WFE method.

The vector q contains the generalised displacements at the left, right, top
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and bottom sides and is partitioned as

q = [qT
lb qT

rb qT
lt qT

rt qT
b qT

r qT
t qT

l qT
i ]T ,

where on each node there are m dofs. The vector of nodal forces f is partitioned

in a similar manner.

2.3. Free wave propagation80

If the structure undergoes time harmonic motion at frequency ω and in

the absence of external forces, the nodal displacements and forces are related

through the frequency dependent dynamic stiffness matrix of the segment

Dq = f , (1)

where D = (K+ıωC−ω2M) and K, C, and M are the stiffness, viscous damping

and mass matrices, respectively. Imposing the wave propagation conditions in85

the y direction allows reduction of the dimension of Equation 1. Under the free

passage of a wave whose wavenumber component in the y direction is specified

as ky, a transformation matrix T relates the full vector of dofs to a reduced set

of dofs as

q = Tqred , where qred =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

qlb

qrb

qb

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

qL

qR

qO

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

.

The transformation matrix depends on the propagation constant λy = e−ıkyLy ,90

which can relate the nodes on the top side of the segment and the middle nodes

with those on the bottom side. Exploiting the periodicity assumption, other

ways of reducing the matrices can be also applied. The transformation matrix
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chosen for this analysis is written as:

T(λy) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0

0 I 0

λyI 0 0

0 λyI 0

0 0 I

0 λ
1
2
y I 0

0 0 λyI

λ
1
2
y I 0 0

0 0 λ
1
2
y I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Hence, Equation 1 can be written in terms of the reduced dofs as95

TH(K + ıωC − ω2M)Tqred = fred , (2)

where H is the Hermitian matrix operator and

fred ∶= THf =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

flb + λ−1y flt + λ
− 1

2
y fl

frb + λ−1y frt + λ
− 1

2
y fr

fb + λ−1y ft + λ
− 1

2
y fi

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

fL

fR

fO

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

.

Since the internal nodal forces are zero, fi = 0, and due to the equilibrium

conditions on the bottom edge of the segment fb + λ−1y ft = 0 then the interior

forces fO = 0.

Thus, Equation 2 can be expressed as100

D̃qred = fred , (3)

where D̃ = TH[K + iωC − ω2M]T; this can be rearranged into

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

D̃LL D̃LR D̃LO

D̃RL D̃RR D̃RO

D̃OL D̃OR D̃OO

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

qL

qR

qO

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

fL

fR

0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

. (4)

Using the bottom nodes of Equation 4, the dofs in qO can be eliminated, and

the following form is obtained

⎡⎢⎢⎢⎢⎢⎣

DLL DLR

DRL DRR

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

qL

qR

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

fL

fR

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (5)
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where

DLL = D̃LL − D̃LOD̃
−1
OOD̃OL, DLR = D̃LR − D̃LOD̃

−1
OOD̃OR

DRL = D̃RL − D̃ROD̃
−1
OOD̃OL, DRR = D̃RR − D̃ROD̃

−1
OOD̃OR .

(6)

The system of Equation 5 is of size 2m × 2m, where m is the number of dofs at105

each corner or edge node of the segment, Figure 1. The formulation of Equa-

tion 5 is identical to the formulation of the WFE method for one-dimensional

waveguides that was originally presented in [6].

2.4. Eigenvalue problem

Stating the periodicity and equilibrium conditions between the left and right110

edges of the segment, the admissible values of λx = e−ıkxLx can be found by

requiring

qR = λxqL and λxfL + fR = 0 . (7)

Substituting Equation 7 into Equation 5 yields an eigenvalue problem for the

unknown wave constant λx

T

⎧⎪⎪⎪⎨⎪⎪⎪⎩

qL

fL

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= λx

⎧⎪⎪⎪⎨⎪⎪⎪⎩

qL

fL

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (8)

where115

T =
⎡⎢⎢⎢⎢⎢⎣

−D−1
LRDLL D−1

LR

−DRL +DRRD−1
LRDLL −DRRD−1

LR

⎤⎥⎥⎥⎥⎥⎦
(9)

is the transfer matrix. For complicated structures with many dofs at each node,

care needs to be taken when solving this eigenvalue problem as various numerical

problems may arise [24]. The eigenvalue problem is usually then recast into one

of a number of better-conditioned forms [25].

The solution of the eigenvalue problem in Equation 8 yields the propagation120

constants λjx, j = 1, . . . ,2m and hence WFE estimates of the corresponding

wavenumber kjx, j = 1, . . . ,2m. Moreover, the eigenvectors of the eigenvalue

problem correspond to the wavemode shapes φj , j = 1, . . . ,2m and contain

information about both the nodal displacements q and the associated internal
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forces f under the propagation of the j-th wave125

φj =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

φq

φf

⎫⎪⎪⎪⎬⎪⎪⎪⎭j

, j = 1, . . . ,2m .

2.5. Wave basis

The transfer matrix is symplectic and the eigenvalues come in pairs and

are of the form λ±x = e±ıkxLx , which represent positive and negative going wave

pairs [25, 26]. Positive going waves are those for which the magnitude of the

eigenvalues is less than 1, i.e. ∣λx∣ < 1 or if ∣λx∣ = 1, the power (energy flow) is130

positive, i.e.

R{fTLq̇L} =R{ıωfTLqL} =R{ıωφH
f,`φq,`} > 0 . (10)

With the positive and negative going waves identified, one can group the

wavemodes as

Φ =
⎡⎢⎢⎢⎢⎢⎣

Φ+
q Φ−

q

Φ+
f Φ−

f

⎤⎥⎥⎥⎥⎥⎦
. (11)

The vectors q and f can be written as a linear combination of the eigenvectors

with the amplitudes a± as the coefficients of the linear combination; specifically

q = Φ+
qa+ +Φ−

qa− , f = Φ+
f a+ +Φ−

f a− . (12)

The matrix Φ defines a transformation between the physical domain, where

the motion is described in terms of displacements and forces, i.e., q and f, and135

the wave domain, where the motion is described in terms of wave amplitudes,

a± that travel in the positive and negative x directions, respectively.

Apart from solving the right eigenvalue problem of Equation 8, one can solve

the left eigenvalue problem as well and compute the left eigenvectors. These are

1 × 2m vectors which can be partitioned as:140

ψj = [ψT
q ψT

f
]
j
, j = 1, . . . ,2m and Ψ =

⎡⎢⎢⎢⎢⎢⎣

Ψ+
q Ψ+

f

Ψ−
q Ψ−

f

⎤⎥⎥⎥⎥⎥⎦
. (13)

The left and the right eigenvectors are orthogonal and can be normalized so

that

ΨΦ = I . (14)
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The orthogonality relationships will be utilised in section 3 and section 4 to

reduce numerical ill-conditioning.

2.6. Energy flow145

The knowledge of the wavemodes can be further used to find the time aver-

aged power [27] propagated by the waves as

Π = 1

2
aHPa ,

where a = [(a+)T (a−)T ]T is the vector of the wave amplitudes and P is the

power matrix that can be expressed as

P = iω
2

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

(Φ+
q)HΦ+

f (Φ+
q)HΦ−

f

(Φ−
q)HΦ+

f (Φ−
q)HΦ−

f

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

(Φ+
f )HΦ+

q (Φ+
f )HΦ−

q

(Φ−
f )HΦ+

q (Φ−
f )HΦ−

q

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
. (15)

The power matrix is Hermitian and thus the time averaged power Π is always150

real.

2.7. Scattering matrix

Structures can include discontinuities such as boundaries, line junctions or

joints of finite dimensions, whose scattering properties are of a great importance

for structural vibration analysis.155

Consider a straight line junction between two plates as in Figure 2.

Plate 1 Boundary Plate 2

x1

y1

z1

x2

y2

z2

Figure 2: Two semi-infinite plates in the x direction are joined along the cross-

sectional area.

Waves in “Plate 1” of amplitudes a+1 are incident on the joint at an angle

θ to the normal and they give rise to reflected waves of amplitudes a−1 = r11a
+
1

and transmitted waves in “Plate 2” of amplitudes a−2 = t21a
+
1 , where r11 and
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Plate 1 Plate 2

boundary

incoming

outgoing outgoing

incoming

φ

φ

θ

a−1

a+1

a−2

a+2

θ

x1

y1

x2

y2

Figure 3: Reflection and transmission upon a joint and the coordinate conven-

tions.

t21 are the matrices of the reflection and transmission coefficients of the joint,160

Figure 3.

These define the scattering matrix s of the joint, whose partitions relate the

amplitudes of the incident and scattered waves as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a−1

a−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= s

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a+1

a+2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
with s =

⎡⎢⎢⎢⎢⎢⎣

r11 t12

t21 r22

⎤⎥⎥⎥⎥⎥⎦
. (16)

2.8. Reflection and transmission coefficients

Denoting by j the wavemodes and by aj their related wave amplitude, from165

Equation 15, the power flow of the j-th wave is given by
1

2
Pjj ∣aj ∣2. For an

incoming wave denoted by j and by using the indices i and k for reflected and

transmitted waves, respectively, the power reflection and transmission coeffi-

cients are computed by

R = [Rij] = [∣rij ∣2
Pii

Pjj
] and T = [Tkj] = [∣tkj ∣2

Pkk

Pjj
] . (17)

For lossless systems the power scattering coefficients should sum to unity,170

i.e.,

∑
i

Rij +∑
k

Tkj = 1 . (18)
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Note that this approach is applicable and indicates wave reflection and trans-

mission when the waves are of different form, i.e., bending, shear, axial etc.

3. Hybrid FE/WFE approach

The approach developed in this article in order to compute the reflection175

and transmission properties in joined two-dimensional structures is the hybrid

FE/WFE approach. The FE/WFE approach relies on modelling the plates by

using the WFE method, as described in section 2, and on modelling a segment

of the joint by using standard FE methods; the stiffness and mass matrices Kj

and Mj are used to formulate the dynamic stiffness matrix of the joint180

Dj = Kj − ω2Mj .

In principle, the scattering matrix is found by applying the equations of equilib-

rium and continuity at the interface nodes between the joints and the plates and

by expressing the outgoing waves in the wave domain in terms of the incoming

waves. For this purposes and for simplicity, it is also assumed that the interfaces

have compatible meshes.185

There are numerous possibilities of joining two or more plates together. The

analysis for the computation of the scattering properties follows the type of

joint under consideration. For the sake of simplicity, in the following sections

the analysis is restricted to the joint. The general theory of the scattering

properties of point joints and finite size joints in waveguide structures can be190

found in [14].

3.1. Joint along the common cross-sectional area

As shown in Figure 4, this type of joint is of finite size along the x direction

but is extended infinitely in the y direction and all of its nodes defined on the

edges are interface nodes between the joint and the plates. Note that there is195

no restriction here in the choice of the FE model for the joint, i.e. it can be

plate or solid element, etc. The local coordinate system is defined such that the
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x-axis points towards the direction of the joint. The rotation matrices R1 and

R2 transform the dofs and the forces on “Plate 1” and “Plate 2” from the local

coordinate system (x1, y1, z1) and (x2, y2, z2) to the global (X,Y,Z).

Plate 1

WFE

Joint

FE WFE

Plate 2

x1

y1

z1

x2

y2

z2

X
Y

Z

Figure 4: Two semi-infinite plates in the x direction and a joint with infinite

length in the y direction and finite length in the x direction.

200

The time harmonic behaviour of the joint is described through the dynamic

stiffness matrix D, i.e.

DjQj = Fj , (19)

where Qj and Fj are the vectors of dofs and nodal forces on the joint.

Concatenating the relevant vectors and matrices for the individual plates,

the vectors Qj and Fj due to continuity and equilibrium conditions for the joint205

become:

Qj = R

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Q1

Q2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and Fj = R

⎧⎪⎪⎪⎨⎪⎪⎪⎩

F1

F2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (20)

where

R =
⎡⎢⎢⎢⎢⎢⎣

R1 0

0 R2

⎤⎥⎥⎥⎥⎥⎦
(21)

is a block diagonal matrix, which includes the rotation matrices R1 and R2 for

“Plate 1” and “Plate 2”, respectively. The vectors Q1 and Q2 are their vector

of displacements respectively. Equation 19 can be expressed in the wave domain210

in terms of the eigenvectors Φ
{1,2}±
Q and Φ

{1,2}±
F using Equation 12.

Combining Equation 12 with Equation 20, the dofs at the interface can be
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rewritten in a matrix form as follows

Qj = R

⎡⎢⎢⎢⎢⎢⎣
Φin

QQQ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a+1

a+2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+Φout

QQQ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a−1

a−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦
, (22)

where

Φin
QQQ =

⎡⎢⎢⎢⎢⎢⎣

Φ1+
Q 0

0 Φ2+
Q

⎤⎥⎥⎥⎥⎥⎦
and Φout

QQQ =
⎡⎢⎢⎢⎢⎢⎣

Φ1−
Q 0

0 Φ2−
Q

⎤⎥⎥⎥⎥⎥⎦
.

Similarly, the vector Fj is given by215

Fj = R

⎡⎢⎢⎢⎢⎢⎣
Φin

FFF

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a+1

a+2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+Φout

FFF

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a−1

a−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦
. (23)

The arrangement of the matrices in Equation 22 and Equation 23 is done with

respect to the outgoing and incoming waves. Returning to the FE model of the

joint and Equation 19, the latter is written

DjR

⎡⎢⎢⎢⎢⎢⎣
Φin

QQQ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a+1

a+2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+Φout

QQQ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a−1

a−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦
= R

⎡⎢⎢⎢⎢⎢⎣
Φin

FFF

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a+1

a+2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+Φout

FFF

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a−1

a−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦
. (24)

Taking into account Equation 16 and rearranging Equation 24 in terms of in-

coming and outgoing waves220

[DjRΦin
QQQ −RΦin

FFF ]
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a+1

a+2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= [RΦout

FFF −DjRΦout
QQQ ]

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a−1

a−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (25)

the scattering matrix is finally given by

s = − [DjRΦout
QQQ −RΦout

FFF ]−1 [−RΦin
FFF +DjRΦin

QQQ ] . (26)

Since the inversion of the matrix in Equation 26 can cause numerical instabili-

ties, appropriate use of the left eigenvector matrix Ψ from Equation 13 and the

orthogonality conditions can remove these numerical difficulties [23]. Here one

can premultiply with the Ψout
QQQ matrix, which has the following form:225

Ψout
QQQ =

⎡⎢⎢⎢⎢⎢⎣

Ψ1−
Q 0

0 Ψ2−
Q

⎤⎥⎥⎥⎥⎥⎦
.

The scattering matrix finally takes the form

s = − [Ψout
QQQ (DjRΦout

QQQ −RΦout
FFF )]−1 Ψout

QQQ [−RΦin
FFF +DjRΦin

QQQ ] . (27)
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3.2. Lap joint

Overlapped plates, see Figure 5, which can be found in an adhesive bonding

type of connection, can be considered as another type of joint. In this case, the

lap joint includes not only interface nodes but also non-interface ones, on which230

the external forces are equal to zero. The interface and the non-interface nodes

are distinguished and denoted by n and i respectively.

Plate 1 Joint

Plate 2

x1

y1

z1

x2

y2

z2

X

Y

Z

Figure 5: Two plates in an off-set.

After partitioning the dynamic stiffness matrix with respect to the interface

and non-interface nodes, the time harmonic behaviour of the joint is described

through235

D̃
j
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Qj
i

Qj
n

⎫⎪⎪⎪⎬⎪⎪⎪⎭
≡
⎡⎢⎢⎢⎢⎢⎣

D̃
j

ii D̃
j

in

D̃
j

ni D̃
j

nn

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Qj
i

Qj
n

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Fj
i

Fj
n

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (28)

Since no external forces are applied at the non-interface nodes, i.e., Fj
n = 0, then

Equation 28 reduces to

Dj
iiQ

j
i = Fj

i (29)

where

Dj
ii = D̃

j

ii − D̃
j

in[D̃
j

nn]−1D̃
j

ni, and Qj
n = −[D̃j

nn]−1D̃
j

niQ
j
i .

Similar to Equation 20, the vectors Qj
i and Fj

i can be expressed in the wave

domain with respect to “Plate 1” and “Plate 2”.240
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The scattering matrix is given by

s = − [Dj
iiRΦout

QQQi
−RΦout

FFF i
]−1 [−RΦin

FFF i
+Dj

iiRΦin
QQQi

] (30)

and by the use of the Ψout
QQQ matrix

s = − [Ψout
QQQi

(Dj
iiRΦout

QQQi
−RΦout

FFF i
)]−1 Ψout

QQQi
[−RΦin

FFF i
+DjRΦin

QQQi
] . (31)

3.3. L-shaped joint

Plate 1 Joint

P
la

te
2

x1

y1

z1

X

Y

Z

z2

y2

x2

Figure 6: Two plates in a L-shaped joint.

Another type of connection includes semi-infinite plates formed with an angle

between them. As an example one can consider two semi-infinite plates in a 90245

degrees angle forming an L-shaped structure, see Figure 6. As for the off-set

case, for this L-shaped joint the nodes on the joint can be first distinguished

into interface and non-interface nodes. In contrast to the case of two plates in a

line, in this case the interface nodes can also be common nodes in both plates,

denoted by Qc, and nodes which belong to only one of the plates, denoted by250

Qs =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Q1
s

Q2
s

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. The vectors of displacements and forces at the interface nodes can
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be written as

Qi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Qc

Q1
s

Q2
s

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

, and Fi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Fc

F1
s

F2
s

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

.

The continuity conditions at the interface nodes which are common on both

plates can be stated as

Qc = R1Q
1
c = R2Q

2
c , (32)

where R1 and R2 are the rotation matrices of “Plate 1” and “Plate 2”, since the255

continuity condition is expressed in the global coordinate system (X-Y-Z). Sub-

stituting Q1
c and Q2

c with their representation in the wave domain, Equation 32

is further written as

R1 [Φ1+
QQQc

a+1 +Φ1−
QQQc

a−1] = R2 [Φ2+
QQQc

a+2 +Φ2−
QQQc

a−2] .

Rearranging the latter with respect to incoming and outgoing waves, gives

Φin
c

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a+1

a+2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= Φout

c

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a−1

a−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(33)

where260

Φin
c = [R1Φ

1+
QQQc

−R2Φ
2+
QQQc

] and Φout
c = [R1Φ

1−
QQQc

−R2Φ
2−
QQQc

] .

At the common nodes for the vector of nodal forces it holds

Fc = R1F
1
c +R2F

2
c . (34)

The equilibrium condition at the joint, expressed in the global coordinates sys-

tem using Equation 29 can be stated as

Dj
iiRq

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q1
c

Q1
s

Q2
s

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

= TrRf

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1
c

F2
c

F1
s

F2
s

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (35)
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where Rq and Rf are block diagonal matrices including the rotation matrices

R1 and R2, and Tr is a transformation matrix of the form265

Tr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I I 0 0

0 0 I 0

0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

which is used to express the relation of Equation 34. As before, the vectors at

the interface nodes are expressed in terms of wave amplitudes. The vector of

displacements is written

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q1
c

Q1
s

Q2
s

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

= Φin
QQQ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a+1

a+2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+Φout

QQQ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a−1

a−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

where

Φin
QQQ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1+
QQQc

0

Φ1+
QQQs

0

0 Φ2+
QQQs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Φout
QQQ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1−
QQQc

0

Φ1−
QQQs

0

0 Φ2−
QQQs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The vector of forces is respectively of the form270

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1
c

F2
c

F1
s

F2
s

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= Φin
FFF

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a+1

a+2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+Φout

FFF

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a−1

a−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

where

Φin
FFF =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1+
FFFc

0

0 Φ2+
FFFc

Φ1+
FFFs

0

0 Φ2+
FFFs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Φout
FFF =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1−
FFFc

0

0 Φ2−
FFFc

Φ1−
FFFs

0

0 Φ2−
FFFs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Rearranging in terms of ingoing and outgoing waves from the wave representa-

tions from above, Equation 35 takes the form

[Dj
iiRqΦ

in
QQQ −TrRfΦin

FFF ]
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a+1

a+2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= [TrRfΦout

FFF −Dj
iiRqΦ

out
QQQ ]

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a−1

a−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (36)
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Combining the continuity condition, Equation 33, and equilibrium condition,

Equation 36, one obtains the following matrices275

C+ =
⎡⎢⎢⎢⎢⎢⎣

Dj
iiRqΦ

in
QQQ −TrRfΦin

FFF

Φin
c

⎤⎥⎥⎥⎥⎥⎦
and C− =

⎡⎢⎢⎢⎢⎢⎣

TrRfΦout
FFF −Dj

iiRqΦ
out
QQQ

Φout
c

⎤⎥⎥⎥⎥⎥⎦
.

The scattering matrix is found by solving the equation

s = [C−]−1C+ . (37)

Multiplying Equation 36 by the block matrix L of the left eigenvectors of

the form

L =
⎡⎢⎢⎢⎢⎢⎣

Ψ1−
QQQc

Ψ1−
QQQs

0 Ψ1−
QQQc

0 0 Ψ2−
QQQs

Ψ2−
QQQc

⎤⎥⎥⎥⎥⎥⎦
the scattering matrix is finally found by

s = [LC−]−1LC+ . (38)

4. Numerical results280

In this section, numerical examples are presented to demonstrate the hybrid

method developed for two-dimensional structures. All the plates are considered

to be flat isotropic plates in the (x-y) plane. They are semi-infinite in the

x direction and infinite in the y direction with thickness h = 3 × 10−3m. All

plates have the same material properties: ρ = 2700kg m−3, E = 0.71×1011Nm−2,285

ν = 0.28. A segment with Lx = Ly = 3 × 10−3m is meshed using one SOLID45

element from the ANSYS software package; SOLID45 is 8-noded with three

translational dofs for each node. The mesh has been chosen according to the

analytical dispersion curves for these plates. For convenience, the same mesh

density was then used for the solid elements representing the joints. In the290

following, all properties and dimensions are in SI units.

4.1. Line joint result

The first example is for two isotropic plates to confirm that the approach has

been implemented correctly and to validate the method against expected results.
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The joint is considered to have the same material properties as the plates and295

the same type of FE has been used. The configuration of this structure is shown

in Figure 4.

x1

z1

y1

x3
z3

y3

X

Z

Y

Figure 7: Two semi-infinite plates in the x direction and a joint with infinite

length in the y direction and finite length in the x direction. The joint is

modelled by a single solid element.

First, the WFE method, as described in section 2, is applied for each plate,

and the WFE predictions of the wavenumbers of all the propagating waves are

computed. Since the plates are isotropic, the analytical values of the wavenum-300

bers [4, 5] can be calculated as well. A comparison between the analytical values

and the ones computed by the WFE method show good agreement and validates

the implementation of the WFE method. For general validation and comparison

examples of the WFE method concerning the wavenumbers in two-dimensional

structures see [11]. The big advantage of WFE method though, is that the WFE305

method is also applicable for more complicated structures, such as laminates,

for which no analytical expression for the wavenumbers can be found.

The hybrid FE/WFE approach allows the computation of the reflection and

transmission coefficients of the joint. By using the scattering matrix and the

wavemodes the power reflection and transmission coefficients can be calculated310

by Equation 17.

For normal incidence plane waves, i.e, waves propagating along the x-axis,

i.e., θ = 0○ and for different frequencies, perfect transmission (transmission ratio

= 1) for bending-to-bending (B-to-B) waves is shown in Figure 8a. The power

reflection ratio between bending type waves is zero.315
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Figure 8: Power reflection and transmission coefficients in case of plates with a

joint as in Figure 7. “−+”, transmission for B-to-B, “−∗”, reflection for B-to-B,

“−.”, sum of power scattering coefficients for normal incidence versus frequency

(Figure 8a) and for different incidence angles at 1kHz (Figure 8b).

One can also investigate the influence of the angle of incidence on the reflec-

tion and transmission. Figure 8b shows the power reflection and transmission

coefficients for bending-to-bending reflection and transmission at 1kHz with

respect to the incidence angle range (0○,90○). For identical plates perfect trans-

mission occurs at all frequencies and at all angles of incidence with no wave320

mode conversion taking place.

The third curve, identified in the caption of Figure 8, represents the sum of

all the power scattering coefficients for an incoming bending type wave. In this

particular case, since perfect transmission occurs this curve coincides with the

one for the transmission coefficient for B-to-B and is therefore not visible.325

4.2. Lap joint results

This section includes the numerical results which correspond to a joint con-

figuration as in subsection 3.2. This configuration could represent a simple

approximation for overlapped bonded plates. The bonded area between the

two plates is assumed to be infinitely stiff, massless and of negligible thickness.330
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Hence the nodes on the overlapped section are coincident in the two plates. For

this lap joint case, two different types of joints have been chosen.

4.2.1. First type of lap joint

First the joint is considered as in Figure 9. This joint is modelled by using

two elements which are the same ANSYS elements, i.e., SOLID45, and with the335

same material properties as the plates.

x1

z1

y1

x3
z3

y3

X

Z

Y

Figure 9: Two plates in an offset where the joint is modelled by two elements.

In a more general sense the joint could also have different properties than the

plates. Alternatively the plates could be different from each other or the joint

could comprise two elements with different material properties. For the sake of

a better understanding of the results, in this article, the material properties are340

kept the same for all elements. In this case, where there are interface and non-

interface nodes between the plates and the joint, as described in subsection 3.2,

attention needs to be paid with respect to the ordering and matching of the

wavemodes.

Figure 10 shows the reflection and transmission coefficients for a bending345

type incident wave with respect to the frequency and with respect to the angle.

Close to 0 Hz frequency most of the power of the incident bending type

wave propagating in the “Plate 1” is transmitted through the joint into waves

of the same type and only an insignificant part of it is reflected or transmitted to

other wave types, see Figure 10a. As the frequency increases though, the power350
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Figure 10: Reflection and transmission coefficients in case of two bonded plates

with a joint as in Figure 9. “−−”, transmission for B-to-B, “−○”, reflection

for B-to-B, “−+”, transmission for B-to-A, “−∗”, reflection for B-to-A, “−.”,

sum of all power scattering coefficients for normal incidence versus frequency

(Figure 10a) and for different incidence angles at 3kHz (Figure 10b). The curves

“−+” and “−∗” are in exact agreement.

is transferred to other wave types as well. For example, one can see that energy

is transferred to reflected and transmitted axial type waves (B-to-A). These two

curves coincide and therefore are not very well distinguishable in Figure 10a.

In Figure 10b the reflection and transmission coefficients between two bend-

ing type waves show that as the angle of incidence is increasing more energy is355

transferred to reflected waves than to transmitted at a frequency 3kHz. The sin-

gularities around θ ≈ 3 and θ ≈ 5 degrees correspond to the critical angle for the

axial and shear type waves. Beyond these angles no propagating waves of these

types are generated by an incident bending type wave. At an incidence angle

θ ≈ 90○, which corresponds to wave propagation in the y direction, ie. grazing360

incidence, the reflection ratio is 1 and the transmission ratio 0 as expected.

Due to the conservation of energy and as a validation of the computations,

both Figures 10a and 10b show that the summation of the power reflection and

transmission coefficients for all propagating waves is always unity for lossless
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systems.365

4.2.2. S-shaped type of joint

The second type of joint in the case of two bonded plates is constructed

by using four elements as shown in Figure 11. This joint includes more nodes

than the previous one. Therefore, for the needs of the procedure of matching

the interface nodes, the extra nodes need to be condensed by using static or370

dynamic condensation. The rest of the analysis remains the same as for the

previous joint and follows subsection 3.2.

x1

z1

y1

x3
z3

y3X

Z

Y

Figure 11: Two plates in an offset where the joint is modelled by four elements.

For both configurations of the lap joint the results in Figure 10 and in Fig-

ure 12 look almost identical. There is only a small difference in the reflected

power of the bending type waves. When the frequency is increasing the conden-375

sation starts having an affect on the approximation. This can be observed in

both figures of the reflection coefficient, the one with respect to the frequency

and the other with respect to the angle. In the case of the larger joint the

reflection at high frequencies is greater than in the case of the smaller joint.

4.3. L-shaped joint results380

Another very common type of structure of joined plates in engineering in-

cludes two plates in a 90 degrees angle. Depending on the type of joint one
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Figure 12: Power reflection and transmission coefficients in case of two bonded

plates with a joint as in Figure 11. “−−”, transmission for B-to-B, “−○”, reflec-

tion for B-to-B, “−+”, transmission for B-to-A, “−∗”, reflection for B-to-A, “−.”,

sum of all power scattering coefficients for normal incidence versus frequency

(Figure 12a) and for different incidence angles at 3kHz (Figure 12b). The curves

“−+” and “−∗” are in exact agreement.

is considering, the hybrid FE/WFE approach follows either the formulation of

subsection 3.2 or of subsection 3.3.

4.3.1. Single solid element joint385

In the simplest case the joint is of finite length along the x direction, infinitely

extended along the y direction and is modelled by the same ANSYS element

as the plates, Figure 13. The plates are considered to be semi-infinite and be

connected along the y-axis.

The difference in this case compared to the previous examples is that there390

are nodes on the joint which belong to both plates, i.e., common nodes. This

case adds an extra equation to be solved for the continuity condition, i.e. Equa-

tion 32.

The results concerning the reflection and transmission coefficients in Fig-

ure 14a show that for frequency around 0 Hz and an incident bending type395
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z2
x2

y2X

Z

Y

Figure 13: Two plates forming an L-shaped structure where the joint is modelled

by a single solid element.

wave, the power is divided into transmitted and reflected power for outgoing

waves of the same type. As the frequency increases, the power in the reflected

bending wave decreases and the power difference is transferred to other wave

types, such as the transmitted axial and reflected wave. The power carried by

the shear type waves still remains negligible. Therefore it is chosen not to be400

shown on the graph, although it is included in the summed power calculation.

Singularities as in subsection 4.2 related to the critical angle around 3 and 5

degrees are observed in Figure 14b. The critical angle depends on the material

properties of the plates and not on the configuration of the structure, therefore

one sees that for fixed frequency it always occurs at the same angle.405

4.3.2. L-shaped type of joint

For the second case, a larger joint is chosen, see Figure 15. For this scenario

the interface between the joint and the plates is separate and there are no

common nodes. In order to define this joint though many nodes are needed

which in an early stage are condensed, in order to make the matching of the410

interface nodes easier.

The results in Figure 16 are comparable and similar with those in Figure 14.
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Figure 14: Power reflection and transmission coefficients in case of two plates in

90 degrees angle with the joint as in Figure 13. “−−”, transmission for B-to-B,

“−○”, reflection for B-to-B, “−+”, transmission for B-to-A, “−∗”, reflection for

B-to-A, “−.”, sum of all power scattering coefficients for normal incidence versus

frequency (Figure 14a) and for different incidence angles at 3kHz (Figure 14b).
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Figure 15: Two plates forming an L-shaped structure where the joint is modelled

by three solid elements.

The only difference observed is related to the reflected power in the bending

type waves when the frequency increases. The power is greater in the case of

the larger joint than for the joint modelled by a single element, since with the415
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Figure 16: Power reflection and transmission coefficients in case of two plates

in 90 degrees angle with a joint as in Figure 15. “−−”, transmission for B-to-B,

“−○”, reflection for B-to-B, “−+”, transmission for B-to-A, “−∗”, reflection for

B-to-A, “−.”, sum of all power scattering coefficients for normal incidence versus

frequency (Figure 16a) and for different incidence angles at 3kHz (Figure 16b).

procedure of static condensation a stiffer joint has been created.

The summation to unity of all the power reflection and transmission coef-

ficients shown is the expected result, due to the law of conservation of energy

and due to the fact the numerical instabilities have been solved using the or-

thogonality conditions through the Ψ matrices.420

Junctions of an arbitrary number of plates which are either coupled through

a beam or directly coupled along a line have been previously investigated in

[15]. A comparison between the method presented by Heron & Langley ( H&L)

for the case of two plates at 90 degrees angle and the FE/WFE approach is

shown in Figure 17. Due to the fact that the analysis in [15] considers as a425

propagation angle the complementary angle of the angle θ, Figure 17 includes

the power scattering coefficients with respect to the cosine of the angle with

respect to the interface, i.e., cos(90 − θ). In the predictions shown in Figure 17

using the earlier wave approach [15], thin plate theory and line connection has

been assumed. For sake of uniformity, the transmission coefficients have been430
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calculated at frequency 3kHz.

The numerical restrictions during the implementation of the WFE method,

as for example by fixing the wavenumber component ky, explain the differences

one can notice at higher angles between the two approaches. The correct critical

angles are shown from both approaches, even if the one connection is assumed435

to be along a line, whereas the other over and along a cross sectional area.

Other numerical differences occur due to the modelling of the plates by using

either 3D or 2D elements. More details on the effects of the 3D deformation

of the cross section with respect to the frequency can be found in [28]. In

particular, it has been shown that the shear strain is important on the dynamic440

response of the joint and at frequency higher than 2kHz the 3D model and the

H&L model show significant discrepancies. At frequency lower than 2kHz, i.e.,

500Hz, the authors observed a better agreement of the transmission coefficients

between the WFE/FE model and the H&L model, as it is suggested in [28].
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Figure 17: Power reflection and transmission coefficients for different incidence

angles at 3kHz in case of two plates in 90 degrees angle. “−−”, reflection for

B-to-B with H&L, “−.”, transmission for B-to-B with H&L, “−+”, reflection for

B-to-B with FE/WFE, “−”, transmission for B-to-B with FE/WFE.

28



4.4. T-shaped joint results445

The hybrid FE/WFE approach can be further generalised and used in struc-

tures comparing three or more plates. Keeping the same principal ideas as in

the case of two plates, the only things changing are the size of the matrices

and the rotation matrices in order to express the continuity and equilibrium

conditions in the global coordinate system.450

4.4.1. Single solid element joint

In this case, with a joint of the simplest form, the matching of the nodes

between the joint and the interface follows subsection 3.3.
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x2

y2X
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Y

Figure 18: Three plates forming a T-shaped structure where the joint is modelled

by a single solid element.

Since there are three connected plates and the incident wave is chosen to

propagate from the left hand side plate (“Plate 1”) then the joint gives rise to455

reflected waves, transmitted waves to the vertical plate (“Plate 2”) and trans-

mitted waves to the right hand side plate (“Plate 3”).

In Figure 19a the reflection and transmission coefficients for an incident

bending type wave is shown. By inspection for this model, below 500Hz the

power of the bending type wave is mainly reflected to another bending type460

wave or transmitted to “Plate 2” or to “Plate 3” in the same type of wave. As

the frequency increases a significant part of the reflected power is transferred
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Figure 19: Power reflection and transmission coefficients in case of three plates

in a T-shaped structure with a joint as in Figure 18. “−○”, reflection for B-to-B,

“−−”, transmission for B-to-B from Plate 1 to 2, “−x”, transmission for B-to-

B from Plate 1 to 3, “−+”, transmission for B-to-A from Plate 1 to 2, “−∗”,

reflection for B-to-A, “−.”, sum of all power scattering coefficients for normal

incidence versus frequency (Figure 19a) and for different incidence angles at

3kHz (Figure 19b).

to the axial wave propagating in “Plate 2” and the transmitted power in the

third plate decreases. The contribution of the bending wave to the other types

of waves remains negligible.465

Figure 19b shows again numerical singularities around the critical angles and

the transmission ratio in “Plate 2” is higher than in “Plate 3”.

5. Conclusion

In this article the structures under consideration comprised two or more

isotropic plates which are either overlapping or they form an angle between470

them, such as an L-shaped or a T-shaped type of joint. Analytical models exist

for the cases of plates connected in a line with a joint comprised of plates or

a beam, but in case of a lap joint or for connections along the cross-section,

the hybrid FE/WFE approach becomes a very useful tool. It can, using solid
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elements, incorporate the full three dimensional deformation and wave types. In475

order to apply the hybrid FE/WFE approach and find the scattering properties

of the joint one has the possibility to consider different type of joints made of

different numbers of elements. The joint is modelled using standard FE and one

needs to pay attention only on matching the nodes at the interfaces between

the joint and the plates. Through continuity and equilibrium conditions, the480

power reflection and transmission ratios can be calculated and provide valuable

knowledge regarding the wave propagation. With the numerical results it has

been shown that, the type of the interface indicates the method which needs to

be applied but does not influence significantly the final result.
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