Energy transfer in a beam-framed structure using a modal method and a wave method at mid frequencies
Energy transfer in a beam-framed structure using a modal method and a wave method at mid frequencies
A fully framed system consisting of four beams and a rectangular plate has been investigated in terms of the energy transfer between the beams and the plate when a force is applied to one of the beams. This configuration, which is a mixture of stiff and flexible elements, is a particularly important example in the industrial area, as it is widely used. A modal model based on interface basis functions is used. A wave model, which is an approximate method, has also been developed in which the plate, acting as a wave impedance, is separately attached to each beam. Experimental studies have been carried out for validation. The investigation with respect to power flow and energy shows the validity of both models in the mid-frequency region. The results show that most energy is dissipated by the flexible plate. The physical phenomena and limitations of the wave method for this particular structural configuration are discussed. Even though it is an approximate method, the wave approach can describe the dynamic characteristics of the excited beam and the plate in terms of the ratios of power and energy of each component. The comparison of the two methods shows that the plate rather than the beams plays a crucial role in transferring the energy from the excited beam to the parallel opposite beam in the beam-framed structure when these two beams have identical properties, whereas the energy transfer is reduced when the beams have dissimilar properties.
79-95
Yoo, J.W.
d077459b-13fa-4bd0-8d32-9ab07e23ccb3
Thompson, D.J.
bca37fd3-d692-4779-b663-5916b01edae5
Ferguson, N.S.
8cb67e30-48e2-491c-9390-d444fa786ac8
January 2018
Yoo, J.W.
d077459b-13fa-4bd0-8d32-9ab07e23ccb3
Thompson, D.J.
bca37fd3-d692-4779-b663-5916b01edae5
Ferguson, N.S.
8cb67e30-48e2-491c-9390-d444fa786ac8
Yoo, J.W., Thompson, D.J. and Ferguson, N.S.
(2018)
Energy transfer in a beam-framed structure using a modal method and a wave method at mid frequencies.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232 (1), .
(doi:10.1177/0954406216673396).
Abstract
A fully framed system consisting of four beams and a rectangular plate has been investigated in terms of the energy transfer between the beams and the plate when a force is applied to one of the beams. This configuration, which is a mixture of stiff and flexible elements, is a particularly important example in the industrial area, as it is widely used. A modal model based on interface basis functions is used. A wave model, which is an approximate method, has also been developed in which the plate, acting as a wave impedance, is separately attached to each beam. Experimental studies have been carried out for validation. The investigation with respect to power flow and energy shows the validity of both models in the mid-frequency region. The results show that most energy is dissipated by the flexible plate. The physical phenomena and limitations of the wave method for this particular structural configuration are discussed. Even though it is an approximate method, the wave approach can describe the dynamic characteristics of the excited beam and the plate in terms of the ratios of power and energy of each component. The comparison of the two methods shows that the plate rather than the beams plays a crucial role in transferring the energy from the excited beam to the parallel opposite beam in the beam-framed structure when these two beams have identical properties, whereas the energy transfer is reduced when the beams have dissimilar properties.
Text
Yoo, Thompson & Ferguson - Energy transfer in a beam-framed ... 16 Sep 2016.pdf
- Accepted Manuscript
Text
0954406216673396
- Version of Record
Restricted to Repository staff only
Request a copy
More information
Accepted/In Press date: 16 September 2016
e-pub ahead of print date: 7 October 2016
Published date: January 2018
Organisations:
Inst. Sound & Vibration Research
Identifiers
Local EPrints ID: 401532
URI: http://eprints.soton.ac.uk/id/eprint/401532
ISSN: 0954-4062
PURE UUID: a8a11187-134d-4706-a9d6-b23d8ce65769
Catalogue record
Date deposited: 20 Oct 2016 12:16
Last modified: 16 Mar 2024 02:33
Export record
Altmetrics
Contributors
Author:
J.W. Yoo
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics