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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF MATHEMATICS
SCHOOL OF SOCIAL, HUMAN, AND MATHEMATICAL SCIENCES

Doctor of Philosophy

by Charles Garnet Cox

Groups naturally occur as the symmetries of an object. This is why they appear in so
many different areas of mathematics. For example we find class groups in number theory,
fundamental groups in topology, and amenable groups in analysis. In this thesis we will

use techniques and approaches from various fields in order to study groups.

This is a ‘three paper’ thesis, meaning that the main body of the document is made
up of three papers. The first two of these look at permutation groups which contain all
permutations with finite support, the first focussing on decision problems and the second
on the R property (which involves counting the number of twisted conjugacy classes
in a group). The third works with wreath products C?Z where C' is cyclic, and looks to
determine the probability of choosing two elements in a group which commute (known
as the degree of commutativity, a topic which has been studied for finite groups intensely
but at the time of writing this thesis has only two papers involving infinite groups, one
of which is in this thesis).
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Nomenclature

Z

L

N

Countable
Countably infinite

Uncountable
Ax B

(A)

(A
Nu(G)
Sym(X)
FSym(X)
FAIt(X)
o

G=y H
Gaiel Gi
Hiel G;

Hgf G
Gix H
(G, H]

the integers

{1,2,...,n}

the natural numbers, which we will consider to be the positive integers
of cardinality equal to a subset of N

of cardinality equal to N

of greater cardinality than N

the cartesian product of A and B i.e. {(a,b) |a € A,b € B}

the cyclic group of order n

the dihedral group of order 2n

the symmetric group of order n!

unless stated, we will assume that C,, D,, and S,, act on the set Z,
the group generated by elements from the set A

the normal closure of A

the normaliser of G i.e. {p € H | p~lgp € G}

the group of all permutations of X

the group of all permutations of X with finite support

the group of all even permutations of X with finite support

the automophism induced by conjugation by g

i.e. (h)py =g thg for all h € G

G is isomorphic to H via the isomorphism ¥ : G — H

the direct sum of the groups G;

the direct product of the groups G;

the identity element of a group (unless the group is abelian)

H has finite index in G

the permutational wreath product with head H acting on X

the commutator subgroup of G and H,i.e. (g7'h~'gh|g € G,h € H)
when working with functions that we may compose, we

will act on the right, so that fg means apply f then g

xi






Background

1 Introduction

The aim of this chapter is to provide background and context for the three papers that
follow. We will refer to these as paper 1, paper 2, and paper 3 respectively.

We begin by introducing common ways to produce a new group from two or more groups.
This leads us to discuss group extensions and finite index subgroups. We then give
background relating to paper 1 on decision problems for groups. Section 3 contains
background for paper 2, including a proof (Proposition 3.3.1 on page 31) which was
my first result as a PhD student. The final section provides background for paper 3,

including introductions to growth of groups and the degree of commutativity of a group.

There is much relevant and interesting mathematics which could have been included
in this chapter. In general I have tried to take an efficient path to cover those topics
relevant to the three papers. For this reason I have given a more cursory overview
of topics for which I am aware of a reference which reflects my view and where the
technicalities involved seem disproportionate to the relevance of the topic. Thus, only a
cursory glance has been given to: free groups; Turing machines; Tietze transformations;
classes of groups e.g. hyperbolic groups; properties of groups e.g. virtually, poly, locally,
meta, and when these properties are preserved. References for these topics are provided

within the text for the interested reader.

Throughout we shall assume The Axiom of Choice, indeed, it is vital to some of our
arguments (for example in paper 2, where we assume that every infinite set contains a

countably infinite subset).

1.1 Groups as collections of permutations

This section aims to provide motivation for considering groups as permutations of a set.
For many groups this allows for a more hands on approach. I developed this point of
view since the Houghton groups, studied in paper 1, are naturally seen as permutations

of a countable set {1,...,n} x N for some n € N. I also took this approach in paper 2.

1



2 Background

Paper 3 involves generalisations of the lamplighter groups, which are wreath products
(defined below) and whose elements can be naturally viewed as permutations of a set.

In both paper 1 and paper 2 we encounter the following.

Notation. For a non-empty set X, let Sym(X) denote the group of all permutations
of X. Furthermore, let FSym(X) denote the group of all permutations of X with finite
support, and let FAlt(X) denote the group of all even permutations of X with finite
support. We will denote these by Sym, FSym, and FAlt respectively if it is not ambiguous

to do so.
For more information on the groups Sym, FSym, and FAlt, see [Cam99, Chap. 6].

Definition 1.1.1. Let G be a group. Then Aut(G) is the group of all isomorphisms from
G to G, known as automorphisms of G. Let ¢ € Aut(G). If there exists a g € G such that
(h)¢ = g~ thg for all h € G, then ¢ is called inner. The set of all inner automorphisms
form a normal subgroup of Aut(G), which we denote Inn(G). Not all automorphisms
are inner. For example Z is abelian and so Inn(Z) is trivial, yet Z has an automorphism
of order 2 (which sends each element to its inverse). Then Out(G) := Aut(G) / Inn(G)

and these elements are known as outer automorphisms.

Notation. Let G < Sym(X) for some non-empty set X. Then, for any p € Ngym(x)(G),
let (h)¢, :== p~Lhp for all h € G. Note that ¢, € Aut(G) (though it is not necessarily in
Inn(G)).

Definition 1.1.2. Let A and B be non-empty sets. Then A N B, the intersection of A
and B, is the supremum of sets X such that X C A and X C B. Moreover, AU B (the
union of A and B) is the infimum of all sets X such that A C X and B C X. We will
indicate that AN B is empty by writing A LI B for the disjoint union of A and B.

Some simple observations about FAlt(X), FSym(X), and Sym(X)

As with conjugacy in S,, conjugacy in Sym(X) preserves cycle type (see Lemma 4.3 in
paper 2). Moreover, in Sym(X), elements are conjugate if and only if they have the same
cycle type. Similarly, if X is infinite, elements in FSym(X) and FAlt(X) are conjugate
if and only if they have the same cycle type (clearly elements in FAlt(X) with the same
cycle type are conjugate in FSym(X), but we may then introduce a 2-cycle outside of

the support of the elements in FAlt(X) in order to produce a conjugator in FAIt(X)).

Also, FAIt(X) is centreless for any infinite set X. This follows from the same arguments
that (for n > 3) S, is centreless (for example see the end of the proof of Lemma 3.3.3).
From this it also follows that, for any infinite set X, FAlt(X) is simple i.e. contains no

non-trivial proper normal subgroups. We provide quite a hands on proof of this below.
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Lemma 1.1.3. For any infinite set X, FAIt(X) is generated by S, where S is the set of
all 3-cycles with support in X.

Proof. Using S we can produce any element which is a product of two 2-cycles (for
example choose (a1 az)(az b1) and (ag by)(by b2) whose product is (a1 a2)(by b2)). Now,
given an element o € FAIt(X), write o as a product of 2-cycles. By definition this
product will consist of an even number of 2-cycles. Now, each pair of 2-cycles will either

be: trivial; a 3-cycle; or a product of two 2-cycles. ]

Note that, from this lemma, for any infinite set X we have that |X| = |S| = | FAIt(X)|.
Moreover FAlt(X) is an index 2 subgroup of FSym(X), and so for any infinite set X we
also have that |X| = | FSym(X)|.

Lemma 1.1.4. For any infinite set X, FAIt(X) is simple.

Proof. Assume that 1 # o € N, a non-trivial normal subgroup of FAlt(X). Then o € A,
where n > 5. But A, NN < A, and (since N is non-trivial and A, is simple for n > 5)
we have that N N A, = A,. Thus N contains a 3-cycle and so N = FAlt(X) by the

previous lemma. O

Note that only the cardinality of X determines the structure of Sym(X), since if there
exists a bijection f : X — Y, then this induces an isomorphism between Sym(X) and
Sym(Y) e.g. () : Sym(X) — Sym(Y), o — f~'of. Moreover ) induces isomor-
phisms FSym(X) = FSym(Y) and FAlt(X) = FAIt(Y) by restriction.

It is worth remarking on a curiosity which occurs in infinite groups at this stage. Note
that FSym(N) = FSym(kN) for all & € N. Thus there is an infinite chain of proper
subgroups

FSym(N) > FSym(2N) > FSym(4N) > FSym(8N) > ...

and each group is isomorphic to FSym(N). A simpler example of this can be seen using
Z and its subgroups, though this is a torsion free example whilst the FSym example
contains only torsion groups. We will see later that these two examples can be combined

(see Remark 2.7.2). We now provide two other simple cardinality proofs.

Lemma 1.1.5. Let X be an infinite set. Then Sym(X) has cardinality 21X! (the size of
the power set of X ).

Proof. Partition X into X; and Xs, so that there is a bijection f between X; and Xo.
We may then define f € Sym(X) by (2)f = (z)fifz € X; and (2)f = (z)f Lifz € X,.
Also, since X is infinite, | X;| = | X|. Now, for each subset A of X7, define f4 € Sym(X)
to be the element f restricted to A L (A)f so that

@) ::{ (x)f ifze AU(A)f

otherwise.
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Thus, for each subset of X there is an element of Sym(X). Hence Sym(X) has size at

least the size of the power set of X;. For the reverse inclusion, note that
| Sym(X)| < |X¥[ < [(2%)%] = 2% = 2%

In order to see that |(2%)X| = |2X*X|, note for any sets A, B, C' that BA*Y consists of
functions f(a,c) = b. By fixing ¢ we may consider these as functions f.(a) = b. We can
then think of these as functions from C to B4. Hence BA*¢ is equal to (B#)¢ and they

have the same size. O

Lemma 1.1.6. Let X be an infinite set. Then FSym(X) has 21X subgroups.

Proof. For any subset A of X, there is a subgroup FSym(A) of FSym(X). Now, any
group containing A elements has 2* subsets. This therefore bounds the maximum number

of subgroups a group may have. O

There has been recent work relating to properties of these groups.

Theorem. [BH15| Let x < A be two infinite cardinals. Then there is no embedding of
FAlt(\) into Sym(k)

Recall that the regular representation of a group G is realised by considering the action of
elements of G on the underlying set of G (choosing a right or left action of G provides us
with the right or left regular representation of G respectively, but we will always consider
right actions). This allows us to see G as a subgroup of Sym(G). This is the idea for
Cayley’s Theorem (which applies to infinite groups by using Sym(G) rather than the
finite symmetric groups S, ). Some simple observations are that each non-trivial element
g € G < Sym(G) has supp(g) = G and that if g has order r € N| then g consists entirely
of r-cycles. Such a representation of a group may be much ‘larger’ than necessary e.g.
the regular representation of D,, produces a subgroup of Ss, and yet D,, can naturally

be seen as a subgroup of S,.

Proposition. [HO15, 5.13] For every finitely generated infinite group @, there exists a
finitely generated group G such that FSym(N) < G < Sym(N) and G/FSym(N) = Q.

Proof. Let Sg = {q1,...,qm} denote a finite generating set for @) and realise Q) via its
right regular representation W. Let 1 denote the identity element of (). Computations
show that the set (Sg)WU{(1 q1), (1 g2), ..., (1 gm)} generates a subgroup G of Sym(Q)
containing (Q)¥ and FSym(Q). Since conjugation by elements in Sym(Q) preserves
cycle type, FSym(Q) <G, and since (Q)¥ only consists of elements with infinite support
we have that (Q)¥ NFSym(Q) = 1. The Second Isomorphism Theorem yields the final

claim. =

Theorem 1.1.7 ([Sco87] or [DM96]). Let G be equal to FSym(X), FAIt(X), or Sym(X)
where X is an infinite set. Then Aut(G) = Ngyy(x)(G) = Sym(X).
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In paper 2, Theorem 1.1.7 is generalised to investigate subgroups of Sym(X) that contain
FAlt(X). A crucial ingredient of this proof can be found in Section 3.3 on page 31.

Proposition. ([Cox16a, Prop. 1]). Let FAIt(X) < G < Sym(X). Then FAIt(X) is
characteristic in G, Aut(G) = Ngyy(x)(G), and G is monolithic.

1.2 Standard group theoretic constructions

We now discuss standard group theoretic constructions to produce a new group from two
or more groups. These are the direct product, the semidirect product, and the wreath
product. We do this in order to introduce notation and a permutational way of thinking

about groups.

Remark. All group actions will be considered as faithful i.e. if we say that G acts on
X, then G can be thought of as a subgroup of Sym(X), or equivalently that there is a
monomorphism from G to Sym(X).

Let A be a non-empty set, and let A~! denote the inverses of A. Then (A) is the
set consisting of all finite products taking values from A and A~!, or equivalently the
smallest subgroup containing the set A. If (A) = G, then we will say that A generates
G and that G is generated by A. Let A C H. Then the normal closure of A, denoted
(A) g, is the smallest group containing A which is normal in H. Clearly the largest such
group is always H. The normaliser of G in H, denoted Ny (G), is the largest subgroup
of H in which G is normal. Clearly the smallest subgroup in which G is normal is G
itself. The normal closure and normaliser are therefore, in some respect, complimentary

notions when considering groups that are normal and lie between G and H.

Direct Products

The first natural way to produce a new group from groups G and H is via the direct
product. Algebraically this can be seen as the group which takes as its underlying set
G x H and inherits multiplication from G and H separately i.e. if g,¢' € G and h,h' € H,
then the multiplication % in G x H is defined by (g,h) * (¢',h) := (g¢’, hh') where gg'
is computed as multiplication in G and hh' is computed as multiplication in H. This
construction can also be seen geometrically. Let GG act on a set X, H on a set Y, and
assume that X NY is empty (this is not restrictive since we may define X’ = X x {1}
and Y/ :=Y x {2} so that X’ and Y’ then have trivial intersection). Then G x H, the
direct product of G and H, naturally acts on the set X LY, where an element a € G x H
always decomposes into two permutations g, h where supp(g) < X and supp(h) < Y.

This allows us to ‘see’ the permutations g and h as elements of G and H respectively.
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Example 1.2.1. Let n,m € N. We have that Sy naturally acts on k objects, for example
the elements of the set Zy. Then S,, x S, can be thought of as a subgroup of Sy 4.
Let 0 € Sp4+m be written in disjoint cycle notation. Then o € S, x S, if and only if
each cycle of o has support in either {1,...,n} or {n+1,...,n+m}. We may therefore
write o uniquely as a product of two permutations, one consisting of all of the cycles of
o with support contained in {1,...,n} which we will denote by «, and one consisting of
all of the cycles of o with support contained in {n+1,...,n+m} which we will denote
by B. It is then clear that a and 8 commute: by construction these permutations have

disjoint supports.

We can also combine finitely many groups using the direct product. If G1,Go, ..., Gy
are groups, then H := G1 X Gy X ... X Gy, is the direct product of the G;. When dealing
with infinitely many groups, there is a choice to make. Let {G; | i € N} be an infinite
family of non-trivial groups. For example we could set G; := Cs for all ¢ € N. For each
i € N, let S® denote a generating set for G;. Now @P,cn Gi is the direct sum of the
G; and is generated by | |,y S the union of all of the generating sets of the G;. The
direct product of the Gj, denoted [];cy G, consists of elements of the form [],c 4 gk
where A C N and g € Gy, for each k € A. One way to therefore visualise elements of
the direct product is that each element is a sequence which takes its i*" term from G;.
The direct sum can then be seen as the subgroup of the direct product consisting of all
elements which can be written using a sequence containing only finitely many non-trivial

elements. From this reasoning it can be seen that if Gg is trivial, then

@G,g@GZ and HG, = HGZ

120 1€N 120 1eN

If all of the G; are countable, then the direct sum of them is countable (we have given
a countable generating set above) whilst the direct product will be uncountable. This
can be observed since |G;| > 2 for all ¢ € N and so this direct product has size at least
equal to a direct product of infinitely many Ca’s. Now, each element g € [];c C2 can
be thought of as a subset A of N where n € A if and only if g has a non-trivial factor
in the n't Cy. Hence the elements of this group are in bijection with the power set of
N, and hence the product is uncountable. Also note that the proof of Lemma 1.1.5 was

essentially showing that Sym(X) contains an infinite direct product of Cy’s.

Note that @,y C2 and [ [, .y C2 can naturally be seen to be subgroups of Sym(X) where
X = {1,2} x N and the n'M Cy moves only the points (1,n) and (2,n).

Semidirect Products

A semidirect product Gy H can be thought of as a generalisation of a direct product of G
and H where the ‘interaction’ between G and H is given by H acting via automorphisms

of G. Moreover, if h, k' € H induce automorphisms ¢ and ¢’ respectively, we require that
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hh' induces the automorphism ¢o¢’, i.e. there is a homomorphism 1 from H to Aut(G).
For each generator h € H, let ¢, denote the automorphism induced by conjugation by
h. In the case where 9)(p,) is the identity for all h, we will obtain the direct product. The
semidirect product G' Xy H can also be thought of as the set G x H with multiplication

(g, 0)(g", 1) = (g(g )by, hI).

In some cases this automorphism can be realised via a permutation of the underlying set
which G acts on. For example in D,, := C), X, C2, the dihedral group of order 2n, where
1) sends the non-trivial element of Cy to ¢ : C,, = Cy, a — a~!. Note that G must be
normal in the group G x4 H, since conjugation by elements of H sends every element of

G to an element in G.

Example 1.2.2. The group Dy is defined by extending the definition of D, to use the
infinite cyclic group. We will define it to be the subgroup of Sym(Z) which is generated
by two permutations. The ‘translation’ in this case is the most natural one to define on
Z, the permutation ¢ : Z — Z, z — z + 1. The reflection is given by the permutation
s :Z — Z, z — —z. This produces the group Z x C3, where 1 sends the non-trivial
element of Cy to the non-trivial automorphism of Z. In this case omitting the definition
of 1 is not ambiguous: Z has only one non-trivial automorphism, and so if we wished to

use the trivial automorphism we would write Z x Cs.

With this example the automorphism is in Ngyy,z)((t)). It may be for a particular
action that the automorphism is not realisable in this way, for example by viewing
72 < Sym({1,2} x Z) with one generator translating only {(1,2) : z € Z} and the other
generator translating only {(2,z) : z € Z}. One of the first aims of paper 2 was to show
that if FAIt(X) < G < Sym(X), then Ngyn,(x)(G) =y Aut(G) where ¥ : g — ¢,

Example 1.2.3. Let us consider FSym(Z). Conjugation by any element of Sym(Z) \
FSym(Z) induces an outer automorphism of FSym(Z). Thus, if H < Sym(Z) with
HNFSym(Z) =1, (FSym(Z), H) is in fact the semidirect product FSym(Z) x H, where
the automorphisms are provided by the action of the elements of H on the set Z. The
second Houghton group Hs is given by choosing H := (t), where ¢ sends z to z+ 1 for all
z € Z. For any n > 3, the Houghton group H, is not a semidirect product in this way.

One way to construct a group H < Sym(X)\ FSym(X) is as follows. Let H < Sym(H)
denote the right regular representation of H i.e. the one obtained by defining H to act
on the set H via the multiplication defined on H. As with the previous example we may
then produce (H, FSym(H)) which is equal to the semidirect product FSym(H) x H.

Generalising semidirect products

Just as the semidirect product was a generalisation of the direct product, the construc-

tions of the previous two sections are examples of group extensions. These are naturally
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described via short exact sequences.

Definition 1.2.4. Let G1,...,G, be groups. Then

¢n71

GG,

is an ezact sequence of groups if, for each ¢ € Z,_o, the image of ¢; is equal to the kernel
of ¢;11. Moreover a short exact sequence of groups is an exact sequence of groups of the

form

o1 o2 3 o4 ‘ (1)

Immediate consequences of the definition of a short exact sequence are that ¢o must be a
monomorphism and that ¢3 must be an epimorphism. I thank Ana Khukhro, currently
at the University of Neuchatel, for providing the following clear (non semidirect product)

example.

Example. Consider the sequence
1—22—7—7/27 —1

which can be seen to be exact (so that Z is an extension of 2Z by 7Z/27). This cannot
be a semidirect product since Z does not contain torsion: all of its non-trivial elements

have infinite order.
The following helps us to decide which group extensions are semidirect products.

Lemma 1.2.5. A group G is a semidirect product of Q and N if and only if there is a

group extension of the form (1) above where ¢3 splits (meaning there is a homomorphism
f:Q — G such that (q)fos =q forall g € Q).

Proof. Consider if ¢3 splits. Let Ng := (N)¢2 and let Q¢ := (Q)f so that Ng < G and
Qc < G. Now, if n € Ng then (n)¢s = 1, and so n € Q¢ \ {1} i.e. Na N Qg = {1}.
If g € G then (9)¢3 € Q and (g9)p3f = q € Qg. So take gg~' € ker(¢3). Then
gq ' =n € Ng and so g = ng. This means that G = NgQg, and so G is a semidirect

product of @ and N as required.

Conversely, let (IV)¢a := N¢ and consider if ¢35 does not split. Then there is no monomor-
phism ¥ from @ to G such that (Q)¥ N Ng = {1}, and so the short exact sequence does

not provide a semidirect decomposition for G. O

Example. Let X be an infinite set and consider the sequence

1 — FAIt(X) — FSym(X) -2 Cy — 1.
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Here the Cy can be visualised as a two cycle lying in FSym(X). This immediately yields

a splitting for ¢, making this a semidirect product.

Example. Consider the sequence
1 ZxCy—ZxCy 25 Cy —> 1

where Z x Cy is not a direct product. If we merely require the maps to be an epimor-
phism and monomorphism, then the sequence may not be exact. Let {a,t} denote a
generating set for Z x Cy where ¢ generates Z and a generates Cy (which acts on Z via
the automorphism ¢ + ¢t~1). In order to be exact we must then have that Z x Cy is
generated by a? and ¢ and that ¢ sends a to x, the non-trivial element of Cy. For this
map to be split we would then need there to be a map f : Co — Z x Cy such that either
f:xzraor f:z+ a3 But for f to be a homomorphism f must then send z - = to a?

but also x -z = 1 so (22)f = 1. Thus this is not a split extension.

Example. Let n > 3 and consider H,,, the n'" Houghton group. These are defined on

page 25 and fit into the short exact sequence
1 — FSym(X,) — H, = 7Z"' —1

where 7 : g — (t1(9),t2(9),-..,tn—1(g)). At first glance it may be thought that e; — g;
for all 4 € Z,_1 is a splitting for this map (where {e;}?"]' denote the standard basis
for Z"~'). However this cannot be a homomorphism since gogs # g3g2. There is no
splitting of 7 since |n/2] is the largest possible rank of any free abelian subgroup of
H,,. This can be seen since, in order for elements to commute in Sym(X,), they must
either: have disjoint supports; or where their supports intersect they must induce the
same permutation of X,; or one must induce a permutation of the orbits of the other.

This means that, for any n > 3, there cannot be a monomorphism from Z"~! to H,,.

Wreath Products

A permutational wreath product, as the name suggests, can naturally be seen as a

permutation group. We first provide an algebraic definition.

Definition. Let G and H be groups and let H act on a set X. Then the unrestricted
permutational wreath product of G and H with respect to X has elements which come
in pairs. One entry is an element h € H and the other entry is a function f : X — G.
Let B’ be the set of all such functions. If fi, fo € B, then (f1 x fo)(x) := fi(x) - fo(x)
for all x € X, where - denotes the binary operation of G. Moreover if h € H then
h=Y(f(x))h := f(zh~!) for all ¥ € X. This is the semidirect product B’ x H, where
H acts by permuting the entries of functions in B’. The restricted permutational wreath

product, denoted G i1x H, is defined analogously as the semidirect product B x H where
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H is the head of Gix H and where B, the base of GV H, is the subgroup of B’ consisting
of functions with finite support i.e. functions f € B’ such that {x € X : f(z) # 1} is
finite.

Given groups G and H where H acts on a set X, G x H can also be defined from
a permutational perspective. For each x € X, let G := G, as sets, and make G,
a group by inheriting the same multiplication from G. The base of G 1x H is then
given by B := @, .y G,. We may also consider an infinite product of G, to produce
the unrestricted permutational wreath product of G and H (so that if G is non-trivial
then B’ will be uncountable). Note that any permutation of the factors G, will be an
automorphism of B. To be more specific, for any element g € G and any x € X, let g,
denote the element of G, within B which produces the same permutation on G, as g
does on G. For any b € B, there exist ¢(),...,¢™ € G and 1, ...,z, € X, such that
b:=1[, gg(,;?. For any o € Sym(X), we have an automorphism ¢, of B, defined by

Now, since H < Sym(X), we may impose that H induces these automorphisms of B via
conjugation, producing

PG, xH=Gix H.

zeX
A wreath product is the result of this construction using the regular action for H i.e. the
group G g H where H acts on itself by multiplication on the right. Since we will only
use permutational wreath products within this work and the set that H acts on should
be clear, we will often suppress the set X from the notation and simply write G H to

denote the permutational wreath product of G and H over the set X.

Example 1.2.6 (Finite symmetric groups). Let n,m € N. Just as S,, x S;, naturally
acts on n + m objects, the permutational wreath product S, 1.5, naturally acts on nm
objects. To be more specific, for each i € Z,,, let Y; := {(¢,1),...,(i,n)}. We will work

with with permutations with support contained within

m

.

s=1
Let us describe four permutations that generate S, Sy,. Let aq := ((1,1) (1,2)) and
az = ((1,1) (1,2) ... (1,n)). Note that a7 and ay generate a copy of S, as a subgroup
of Spm (acting on Y7). Now, let

n n

pr = H((l’k) (2,k)) and B2 := H((l,k) (2,k) ... (m,k))

k=1 k=1
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where 1 and [y can be seen to generate a copy of S, which permutes the m sets

Y1,...,Y. As was mentioned within the definition of wreath products,

Sp 1 Sm = (ég&) X S,
i=1

where the automorphisms are given by the above action i.e. how Sy, permutes the m
sets {Y; | i € Zp, }.

We now introduce the groups studied in paper 3, which also happen to be natural exam-
ples of infinite groups constructed via the wreath product. Note that for groups of the
form G H where H is cyclic, the regular action corresponds to the ‘natural’ permuta-
tion action and so such groups can be thought of as permutational wreath products or

as wreath products.

Example 1.2.7 (The Lamplighter group C21Z). The base of this group is @, C2 =: B.
One can consider this as a bi-infinite street (the real line) with a streetlamp located at
every integer point. When dealing with the restricted wreath product we have that any
group element may only ‘light’ finitely many lamps. If a; denotes the generator of Co
which ‘turns on’ the k™" lamp, then {a; | i € Z} is a generating set for B. We may
then introduce an action of Z = (t) on B by imposing that conjugation by ¢ induces the
automorphism ay — ag4q for all k € Z. A suitable generating set for Co ! Z is therefore
{ap,t}. This generating set is frequently encountered within the literature. The action
of Z is often thought of as a ‘lamplighter’ who moves to light different lamps. From a
permutational viewpoint, the action of Z can be thought of as a ‘shift’ or translation of
Z which allows any finite collection of lamps to be lit using only ag (or ay for any k € Z,

since {ag,t} is also a generating set for Cy ! Z for any k € Z).

This group has been given much attention, for example see [LPP96| and |Par92] where
random walks and growth of such groups have been studied. These concepts will be
described in Section 4. Also dead end and seesaw elements for these groups have been
investigated, see |[CTO05].

Example 1.2.8 (Lamplighter groups). In a similar way, we can consider C?Z where C'
is a cyclic group. If C is finite, the base of this group can be thought of as lamps with
a discrete number of different settings e.g. for Cy, we could think of the possible ‘states’
of each lamp to be ‘off’, ‘low’, ‘medium’, and ‘high’. In the case where C is infinite, one
can think of each lamp as having an associated ‘voltage’ (which can take any value in

Z). A presentation for the group C1Z where |C| = n is therefore

(a,t ] a™ = 1; [t at’, t7at’] = 1 for all i # j).
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Moreover if G has presentation (Sg | Rg), then
GUZ = (Sa,t | Rg; [t gt t7Iht?] = 1 for all i # j and for all g, h € Sg).

Example 1.2.9. Consider Z1C,,. This is equal to Z" x,,Cy,, where the automorphisms of
Z" relate to cyclically permuting the n copies of Z. Similarly, S, acts on the n point set
{1,...,n} =Y, and so the permutational wreath product Z1y S, is equal to Z" X Sy,

where S, acts by permuting the n copies of Z.

1.3 Results regarding finite index subgroups

Let H be a subgroup of G. We say that H has finite index in G if and only if there exist
ai,...,ay € G such that, as sets, G = Ha; UHas U. ..U Ha,. We may then say that H
has index n in G, and denote this by [G : H] = n. Note that, by definition, Ha; # Ha;
for all distinct ¢ and j in Z,. If H is not a finite index subgroup of G, then we say that
H has infinite index in G.

Notation. Let H <y G denote that H is a finite index subgroup of G and let H <, G
denote that H has index n in G.

Remark. Although index is often studied as part of an undergraduate course, the concept
of finite index can be missed since it has little relevance to finite group theory. It is for
this reason that we discuss some elementary results. The structure of these results came
about from discussions with Hector Durham, a fellow PhD student at the University of

Southampton.

Lemma 1.3.1. If K <y G, then there exists N Iy G (normal and finite indez in G)
such that N < K.

Proof. Let K have index n in G and let N := ﬂgeG(g_lKg). Then G acts on K\G by
right multiplication, and so there is a homomorphism ¢ : G — S,,. Now h € ker(¢) if,

Kgh=Kgforallge G
&ghg e K forallg e G
sheg Kgforall g eG.

Hence ker(¢) = N and N is normal. Moreover G/ker((b) ~ Im(¢) < Sp, and so N has

index m in G where m < n! and m divides n!. O

Lemma 1.3.2. If G s finitely generated then there exist only finitely many K < G of

any given index.

Proof. Suppose H <, G. Right multiplication by G on H\G gives a homomorphism
¢ : G — S,. Note that Stab(H) = H since g € Stab(H) < Hg = H. Thus, by
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choosing 1 € Z,, to correspond to the coset H in H\G, the preimage of Stab(1) in S, is
H. Hence H=H' & ¢y = ¢pr.

But G finitely generated =- 3 only finitely many homomorphisms G — S,

(there are (n!)!Sl maps from S to S,) and so there can only be finitely many index n

subgroups. O

Lemma 1.3.3 (Poincaré). Let H <; G and K <y G. Then HNK <5 G.

Proof. We use the map (from cosets of H N K in G to cosets of H x K in G x G)
defined by (H N K)a — (Ha, Ka). Our aims are to show that this map is well defined
and injective. In order to show it is well defined, consider if b were used as a coset
representative rather than a. Then b = ag where g € HN K. Hence g € H and g € K.
Thus (Hb, Kb) = (Ha, Ka), and so changing the representative does not change the map.
In order to show injectivity, consider if (Ha, Ka) = (Hb, Kb). Then ab~! € HN K and
so (HNK)a = (H N K)b. Moreover, this means that [G: HNK| < [G: H|[G: K|. O

Lemma 1.3.4. If H <,, G and G is finitely generated, then there exists a K <; H

which is characteristic in G.

Proof. Recall that a finite index normal subgroup of G can be constructed by e g 'Hg

i.e. Nyeq(H)dg. Including all automorphisms will produce a characteristic subgroup. Let
K:= [)(H)¢ (2)

peAUt(G)

and note that, for any ¢ € Aut(G), (H)¢ <, G. By Lemma 1.3.2, there are only finitely
many possible images for H in (2), and so, by Lemma 1.3.3, K is finite index in G.
Finally, K is characteristic in G since the image of K under ¢ € Aut(G) is contained
within
() (H)ev)
HEAUL(G)

which is equal to K. O
We now prove a result for interest, which can be found, amongst other places, in [Fenl14].
Lemma 1.3.5. Let H <, G and K < G. Then HNK <y K.

Proof. By definition we have that G = Ha; U Has U ... U Ha,. Let us only keep those
a; such that

Ha; N K # 0. (3)

Thus, after a renumbering, we have that K = (Ha; N K)U(Ha2NK)U...U(Hap,NK).
From (3), we have for each i € Z,, that there exists a b; € Ha; N K and so we may
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replace each a; with some b; € K (so that Ha; N K = Hb; N K for each i € Z,,). Now
Hb;N K = Hb; N Kb; = (H N K)b; and so

K=HNK)bh U(HNK)byU...U(HNK)by,.

Thus HNK <y K and [K: HN K] < [G: H]. O

We may also draw a simple conclusion from this lemma.

Lemma 1.3.6. I[f N I G where N is simple and infinite, then any finite index subgroup

of G must contain N.

Proof. Using N as the subgroup K in the previous lemma, we have, for any H <y G,
that HN N is of finite index in N. By Lemma 1.3.1 we have that there must be a normal
finite index subgroup of N in H N N. But since N is infinite and simple, the only finite
index normal subgroup of N is N itself, and so H N N must be equal to N. O

2 Background for Paper 1

This section is about the construction of algorithms to answer questions about groups

or classes of groups.

2.1 Free groups

Let X be a non-empty set. Then a word in X is an ordered n-tuple ajas...a, where
ai,...,ap € X UX 1 = X+ A word is then reduced if it contains no subword of the

form zz!

or 7'z where x € X. Since all of our words are finite, we can always delete
such pairs from our word in order to produce a reduced word. We will now define the
free group on X, which we denote by F(X). The underlying set of F/(X) is the set of
all reduced words on X, and the group operation on F(X) is concatenation of words
with cancellation i.e. if a1 ...a, and by ...b,, are words on X, then their product is the
result of reducing aj ...apb; ... by, (where it may be that aj...apby ...by, is a reduced
word). The identity is therefore the empty word and inverses can then be computed.

The operation is also associative.
Example. If | X| =1, then F(X) = Z.

A common form to present the information of a group G is a group presentation. This
involves two pieces of information, S and R, where S denotes the set of generators of G
and R denotes the set of relations of G. We may then write G = (S | R) to mean that
G is the group generated by S subject to the relations R. Formally, G is the quotient of
the free group generated by S and the normal closure of the set R. If R is empty then

we say that G is free on S. Free groups have the following universal property.
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Let G be a group with generating set X (so that there is an injective map i : X — G).
Then G is free on X if and only if the following universal property holds:

every map ¢ from X into a group H extends into a unique homomorphism

@* from G to H so that the diagram below commutes.

X‘~@G

|
‘*
¢\\xv¢

H

This means that we may talk about the free group on X, since all groups which are
free on X are isomorphic (since any two satisfy the universal property and so there are
injective homomorphisms between them). This leads to the common terminology that,
if | X| =n, then F(X) is the free group of rank n.

Lemma 2.1.1. Let X and Y be non-empty sets. Then F(X) = F(Y) if and only if
| X =1Y].

Proof. If | X| = |Y| then this immediately yields the isomorphism. For the other direction
we follow [Bog08, Thm. 3.8 & Cor. 3.11]. Let Zg := {0,1} and for any non-empty set
Z let Hyz consist of all functions f : Z — Zs such that the preimage of 1 is a finite
set. Given f,g € Hyz, let (f +9g)(z) :== f(2) + g(2) (mod 2) for all z € Z. Note that
Hz =@, ,Co. Forany m € Z, let fy,, € Hz be defined by

n(2) ::{ 1 ifz=m

0 otherwise

so that {f. : z € Z} corresponds to our standard generating set for @.., Co. Now
note that {f, : z € Z} corresponds to a basis for Hz when thinking of Hz as a vector
space over Fo. Importantly the rank of a vector space over a field is well defined i.e. the
size of the basis completely determines the vector space up to isomorphism. Moreover
the map Z — Hyz, z — f, can be extended to an epimorphism ¥y : F'(Z) — Hz. Now,
if $: F(X)— F(Y) is an isomorphism, then ((X)¢)WUy generates Hy . This is because

(X) = F(X) = (X)9) = F(Y) = (X)) ¥y = ((X)9)¥y) = Hy

and so | X| > |Y|. Running the argument with ¢~! then yields that Y| > | X]|. O

One way to think about the universal property is as follows. Consider all groups which
can be generated by a set X. We could consider a partial order < on all such groups,
which is produced by G = (X | S) = (X | §’) = G’ if and only if there is a set T such
that G’ = (X | SUT) (intuitively the size of the set of relators dictates the number of
equations which the generators in the presentation satisfy). With this ordering, the free
group on X is maximal, whilst the trivial group is minimal. In some sense the universal
property captures the free group on X being maximal (since it surjects onto any other

group generated by X).
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Example. Again we consider |X| = 1. In this case all groups generated by X will be
cyclic, and there will be a group between C), and the trivial group if and only if n is
composite i.e. not prime. Moreover, from the universal property, Z is comparable with

all other groups generated by X (indeed, it is greater than them all).

For what follows, we usually place restrictions on G = (S | R) through conditions on
S and R. In order to work with Turing machines we require our inputs to be recursive
and so will nearly always consider recursively presented groups (see Definition 2.4.4).
Often this is achieved by S and R being finite. If there exists a finite set S such that
G = (S | R) we say that G is finitely generated and if R is finite then we say that G
is finitely related. If G is finitely generated and finitely related then we say that G is
finitely presented.

2.2 Decision Problems

In 1911, Max Dehn (a student of David Hilbert) asked three questions regarding pre-
sentations of a group. As with many topics studied within group theory, they have an

underlying topological flavour which we will discuss on the next page.

1) The word problem: given a group presentation (S | R), can one determine whether
any two words ay . ..a, and by ... b, (where ay,...,an,by,...by € ST1) represent the
same group element? Equivalently, does aj . ..an (b1 ...by) ! represent the identity

element in G?

2) The conjugacy problem: given a group presentation (S | R) and two words a; ...a,
and by ...b,, (where ai1,...,an,b1,...,b € ST!) can one determine whether, as

elements of G, ay ...a, and by ... b,, are conjugate in G?

3) The isomorphism problem: given group presentations G := (S | R) and G := (S | R),

can one determine whether G and G are isomorphic?

Throughout we will denote the word problem for G by WP (G) and the conjugacy problem
for G by CP(G). Note that if CP(G) can be solved, a solution for WP(G) is obtained

since {1} is its own conjugacy class.

At the time of phrasing the questions, “can one determine” was presumably via human
computation and thought. The questions were given more mathematical formalism by
Turing’s work on decidability. The modern interpretation of Dehn’s questions is given
by replacing “can one determine” with “is it Turing decidable”. To be Turing decidable
a question must involve inputs A which must be recursive (and so countable) so that
there is a Turing Machine which, for any input A, answers the question correctly by
outputting information B (which again must be recursive). Thus by phrasing Dehn’s

problems in this way they only apply to recursively presented groups. Importantly we
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then obtain that, if any of these problems has a solution for one finite presentation,
then for any other finite presentation there exists a Turing machine to solve the problem
(this can be achieved by using Tietze transformations, see, for example, [LS01, Chp. 2]).
This means that one can work with one fixed finite presentation in order to solve these
problems for a given group. In order for a group to have unsolvable word or conjugacy
problem, it is therefore sensible to impose that G is finitely presented: it will then have
unsolvable word or conjugacy problem for all finite presentations. Throughout this thesis
we will use the modern interpretation of Dehn’s questions, though we will not provide
an introduction to Turing machines, choosing rather to treat them as a black box. Both
[Rot95] and [Coo04] provide details for the interested reader.

Every space has a group associated to it by the m; functor. In this topological framework

the three questions above can be thought of as asking if one can decide whether:
1) a loop in the space is contractible;
2) two loops in the space are freely homotopic;

3) two spaces have non-isomorphic fundamental group

(implying that they are not homotopy equivalent).

These questions seem reasonable both from their group theoretic and topological phras-
ing; however answering the word problem in the negative for semigroups was achieved
in [Mar47| and [Pos47]. It was some time later before the word problem was answered
in the negative for a finitely presented group in [Nov55] and [Boob9|. A general solution
to the word problem (one which takes any input for S and R) even for finitely presented
groups is therefore impossible (and so this means that a general solution to the strictly
harder conjugacy problem is also impossible). A general solution to the isomorphism
problem is also impossible. This was achieved in [Ady55] and [Rab58] by showing that
for any Markov property P, there is no Turing machine which, on input of any finite
presentation, decides whether the group produced satisfies P. A property P is Markov
if and only if there is a finitely presented group G4 satisfying P and a finitely presented
group G_ such that for any finitely presented group H with G_ — H, H does not sat-
isfy P. Since the property of ‘being the trivial group’ is Markov, there can be no Turing
machine which decides whether a group presentation represents the trivial group. This
problem is clearly as difficult as the isomorphism problem. But there are groups where
these problems can be solved. Therefore much research has been conducted in order to
find classes of groups for which these problems are decidable. One such class where all
three problems are solvable is hyperbolic groups. This means that there exists an algo-
rithm which, given a group presentation which is known to produce a hyperbolic group,
the algorithm can decide whether any two words given with respect to this presentation
are equal and whether they are conjugate. Moreover there is an algorithm (see [DG11])
which, given any two presentations which are known to produce hyperbolic groups, de-

cides whether the two groups are isomorphic. Since being posed by Dehn, many more
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questions regarding presentations of groups have been posed, and these are generally
known as decision problems. Examples of these can be found at the beginning of the
first paper within this thesis (on page 51). For a more detailed introduction to decision
problems, see [Mil92].

2.3 A partial solution to the word problem

It is worth noting that one part of the word problem and conjugacy problem can always

be solved (for recursively presented groups). Let G = (S | R) be a recursive presentation.

Now enumerate

Id(S,R) := {H(wk_lnkwk) | s €N; ryp, ... 1, € R*: wy, ..., ws words in S}.
k=1

We therefore have that Id(S, R) consists of all words in (S | R) which represent the
identity. Let aj...aq be a word with respect to the presentation (S | R). We may
assume this word is reduced (that a;a;4+1 # 1 for any i € Z,_1) since the word has finite
length. Hence, if a; ...aq represents the identity in G, then a; ...aq will appear as an
element of Id(S, R). Since we may enumerate the elements of Id(.S, R), we may therefore
decide which elements of (S | R) represent the identity. Note however that this does not
mean that we can decide which elements do not represent the identity. We now provide

examples where this other ‘half’ of the word problem is also possible.

Example 2.3.1 (Lamplighter groups have solvable word problem). We will take a com-
binatorial approach to solving the word problem for G = C'!Z, where C'is a cyclic group.
Fix the presentation with generating set {a,t}, where a generates the cyclic group which
moves the point (0,0) and ¢ generates the copy of Z which moves all points of the set
C X Z (so that t is a generator of the head of CZ). Given a word g in these generators,
one can first check whether ¢ is in the base: simply compute the image of g under the
map G — Z, a — 0 by summing all of the exponents of the t’s. Then g is in the base
if and only if this sum is 0. Now, the length of g bounds the furthest lamp that can
be switched on by g. Let n denote the length of g with respect to our generating set.
Deciding whether each point in {(0,7) : —n < ¢ < n} is fixed therefore decides whether
or not g is trivial. This approach also applies to all groups of the form FZ where |F)|
is finite (by using the presentation which consists of the elements of F' acting on (0, 0)
and the generator ¢ used for C 1 Z).

Definition 2.3.2. A group G is said to be residually finite if, for any g € G \ {1}, there
exists a finite index normal subgroup IV such that g € N.
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Example 2.3.3 (Examples of residually finite groups). Every finite group F' is residually
finite (since the trivial group is both normal and finite index in F'). Also Z is residually
finite, since for any n € Z, (n+1)Z ={a € Z | a = 0 mod |n| + 1} is finite index in Z.

Lemma 2.3.4. If G contains an infinite simple group, then G is not residually finite.

We prove this in two stages. First, note that any infinite simple group cannot be resid-
ually finite.
Lemma 2.3.5. If H is not residually finite and H < G, then G is not residually finite.

Proof. Since H is not residually finite, let g € H be chosen such that for all N <y H,
g € N. Now, by Lemma 1.3.5, if M <y G, then M N H <y H. Moreover if M <; G,
then M N H <y H. Hence for all M <y G, g € M and G is not residually finite. O

Note that, if X is infinite, then FAlt(X) is an infinite simple group. Thus all of the
groups studied in paper 2 are not residually finite. The lamplighter groups however are

residually finite.

Lemma 2.3.6. Let G = F 1 Z where F is finite. Then G is residually finite if and only
if F is abelian.

Proof. Let F := (Sp | Rp) be the presentation for F' with generating set equal to the
non-trivial elements of F' and relations given by the entries of the Cayley table for F'.
Also let

G = (Sp,t| Rp, [t let’,t 7 ft)] = 1 for all e, f € Sp and i # j).
Consider G / ). - This has presentation

(Sp,t | Rp, [t tet’, t 77 ft)] =1 for alle, f € Sp and i # j, t" = 1)

*

where * gives us that [e,t7" ft"] = 1 i.e. the derived subgroup of F'. Thus
G/<t”> = (F /) Cn.
Now, if @) is a finite quotient of GG, then there exists an n € N such that
G— F/p)C,—Q (4)

i.e. any finite quotient factors through a group formed by taking the quotient of G by
(t™). Thus, if F’ is non-trivial, then by choosing an element in F’ it will not survive in
any finite quotient. Hence if F' is not abelian then F'? Z will not be residually finite. If
F is abelian then any non-trivial element will survive in F'? C), for some n € N and so
F 7 is residually finite. O
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Note that if we drop the condition that F'is finite, (4) still implies that if F'is non-abelian,
then F'QZ is not residually finite.

The following can be found in [LS01, Ch. 4, Thm. 4.6], which lists as its motivation
[McK43] and [Dys64]. Note the earlier dates of these papers compared to the usual
references ([Mal58] and [Mos66]). This is probably an example of a result proved inde-

pendently by different mathematical communities.

Example 2.3.7 (The word problem for finitely presented, residually finite groups). Let
G = (S | R) be a finite presentation for G, a residually finite group, and let w be
a word in S. From the above, we may enumerate all words in S that represent the
identity element of G. If we may also decide if w represents a non-trivial element in
G, then we have solved the word problem. One way to do this is as follows. For each
n € N, enumerate all possible homomorphisms from G to S,,. We do this by choosing
|S| elements from S,, and checking whether they satisfy the relations R of G. Since G
is finitely generated, for each n € N there are only finitely many such homomorphisms.
If w represents a non-trivial element of G, we therefore have (from our assumption that
G is residually finite) that, for some n € N, there is a homomorphism ¢,, from G to
Sp such that (w)¢, # 1 ie. w & ker(¢,). We may decide whether (w)¢ = 1 for any
homomorphism ¢ : G — S, since finite groups have solvable word problem. Thus, in
order to decide whether or not w is trivial, we enumerate all words equal to the identity
in order to check if w is trivial in G and compute the image of w under each of the
homomorphisms enumerated from G to finite symmetric groups. One of these processes
will terminate, and so we have an algorithm for deciding whether or not w represents a

trivial element in G.

In [MO11], they discuss whether the finitely related assumption is necessary. Thus,
despite the lamplighter groups being residually finite, since they are not finitely related
this proof cannot be directly applied to them. In [KMM12] it was shown that the word
problem for finitely presented, residually finite groups could be arbitrarily difficult.

There is an analogous definition to residually finite, known as conjugacy separable, which
means that there is a finite quotient in which non-conjugate elements are also not con-
jugate. In the same way as the previous example, every finitely presented conjugacy
separable group has solvable conjugacy problem (since it is always possible to decide if
two words are conjugate, and by enumerating all homomorphisms to S, for all n € N one
also has a process which terminates only when the elements are not conjugate). Finding
groups and classes of groups which are conjugacy separable is a current area of research,
see for example [Minl12| and [BB14].
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Conjugacy classes in (21 Z

We will use the generating set from paper 3. Consider C52Z as acting on {0,1} xZ =: X.
Let a denote the generator of Cy such that a : (0,z) — (1,2) and (1, z) — (0, 2z) for one
fixed z € Z. Let t denote the generator of Z such that ¢ : (4,2) — (4,2 + 1) for all
§€{0,1} and all 2 € Z.

Note that, with this action, if g, h € Cy 1 Z are not conjugate in Sym(X), then g and h
cannot be conjugate in Cy ¢ Z. Let us start by assuming that g is in the base of C91Z,
which we will denote by B. Since g then contains no infinite orbits, neither can h (since
conjugacy in Sym preserves cycle type). Thus, if g ~ h, then h must also be in B. Again
using cycle type, we must have that | supp(g)| = |supp(h)|. For g, h € B to be conjugate
in Sym(X), this is also a sufficient condition. However for them to be conjugate in C21Z,
this is not the case. First, if b € B, then b~ 'gb = g. Thus if g ~ h, then there is a
conjugator of the form t¥ where k € Z (see Lemma 4.17 on page 67). Hence g and h must
have the same ‘structure’ in the following sense. Let ymin denote the smallest number
k such that (0,k)y = (1,k"), and let ¢/ := t~9mingtgmin and b/ := t~Fmin ht'min . Hence
= h

min

= 0. Now g ~ h if and only if ¢’ = h/.

g;nin
We now consider the case where g € B. Again, g and h must have the same number
of infinite orbits in order to be conjugate (since cycle type is preserved by conjugacy in
Sym(X)). Thus, if g = wt® where w € B, then h = w't** where w’ € B. One can then
check that wt* and w't~* are not conjugate in CyZ for any w,w’ € B and any k € N.

We now claim that there are 2/¥l conjugacy classes in Cy 1 Z for elements of the form
{vtk | v € B}.

First we deal with the case where ¢ = wt with w € B. Let ¢ := t WmingfWmin g

that ¢’ = w't with w' € B and w/,, = 0. Note that for any ¢ € Z, we have that
ai_l(w’t)ai = q;w'ta;t 't = a;w'a;_1t = a;a;_1w't. Now |supp(w’)|/2 is either odd or

even. Conjugation by the appropriate a;’s therefore allows us to conjugate ¢’ to either

aot or t respectively. This provides the two distinct conjugacy classes.

The case where g = wt® (with w € B and k > 1) is similar. We partition X into
Xo,...,Xk_1, where for each i € Z, X; := {(,2) : 6 € {0,1} and z =i mod k}. Now

note that a;lwtkai = aja;_pwt®. The arguments for k < 0 follow by symmetry.

We may use that the conjugacy classes are known to show that the conjugacy problem
for Cy 1 Z is solvable. Let g, h € Cy ! Z. First note that we can compute w,w’ € B such
that ¢ = wt* and h = w't/. If j # k, then g o h. Moreover the supports of w and w’
are computable, and so we can decide whether or not g and h lie in the same conjugacy

class.
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2.4 A group with unsolvable word problem

We now construct a group with unsolvable word problem. Historically this was done via
two different methods first, but we provide Higman’s solution since it is less technical.
We must still begin by introducing some notation. For a more rigorous treatment of
these ideas, see [Rot95] or [Coo04].

Definition 2.4.1. (Recursive and recursively enumerable sets) We say that a subset A
of Z is recursively enumerable (or semi-decidable) if there is a Turing Machine which
outputs A. If there is also a Turing Machine which outputs Z \ A then we say that the

set A is recursive (or decidable).

Example. The set of prime numbers is recursive, since for any integer one can decide

(however inefficiently) whether it has any non-trivial factors or not.

Theorem 2.4.2. [Coo04, Thm. 5.3.1] There exists a recursively enumerable set which

15 not recursive.

Definition 2.4.3. Let R be a ring. Then the polynomial ring R[z] is the set of all
elements of the form {7 ja;2z’ | n € NU {0} and aq,...,a, € R} where

n m max(n,m)
(Z aia:i> + (Z bz-aci> = Z (a; + b;)z’
=0

i=0 i=0
n m n+m k
(Z aixi> X <Z bixl) = Z c;x* where ¢, := Zajbk—j
=0 =0 =0 7=0

with all undefined terms being considered to be equal to 0. Elements of R[z] are known

as polynomials in one varitable over R, or sometimes just polynomials over R.

Example. For any f € Z[z], the set of solutions of f which lie in Z is recursive since,

via direct computation, one can decide whether or not f(n) =0 for any n € Z.

Definition 2.4.4. Given a countable generating set S, a Turing machine can enumerate
the countable set of elements F'(S). We then say that G = (S | R) is a recursive
presentation if there is a Turing machine which takes F'(S) and outputs the set R i.e. if
the set R is recursively enumerable. We then say that G is recursively presented. This
definition may seem strange (since it may seem to be correct to call this a recursively
enumerable presentation) however one can prove that if G = (S | R) is a presentation
such that R is recursively enumerable, then there exists a set S’ such that G = (S" | R')

and R’ is recursive.

The aim of the next example is to show how to take a set which is recursively enumerable

and show that it is recursive.
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Example. A polynomial over Z can be thought of as an element of @ Z, and so there
exists a bijection from ‘the set of polynomials over Z’ to the set Z. Omne can then
consider those polynomials which have integer solutions. The set of all such polynomials
is recursively enumerable by the previous example. Moreover it is recursive i.e. it is
possible to enumerate all f € Z[x] which have no solutions in Z. This can be done using
the rational root theorem: given a polynomial f(x) = a,x™ + ...+ a1 + ag, we have
that f(p/q) = 0 if and ounly if ¢ divides a,, and p divides ag (where p and ¢ are coprime

integers). Thus our algorithm is simply to compute f(+r) for each divisor r of ay.
The picture changes when looking at polynomials over Z with more than one variable.

Definition 2.4.5. We say that a set S C N is Diophantine if there is a polynomial
flx1,...,xm) € Z[xy, ..., 2] with a € S if and only if there exists yi,...Ym—1 € Z such
that f(yi,...,Ym—-1,a) = 0.

Theorem 2.4.6 (Matiyasevich’s). Let S C N be a recursively enumerable set. Then S

is a Diophantine set.

Clearly every Diophantine set is recursively enumerable. The fact that every recursively
enumerable set can be realised as a Diophantine set of some polynomial over Z means

that in some way the Diophantine sets ‘characterise’ recursively enumerable sets.

Recall that in order to show that the word problem is truly unsolvable, we wish to find a
finitely presented group with unsolvable word problem. The finitely presented condition
is important here since it means that all other finite presentations of the group will also

have unsolvable word problem.

Theorem 2.4.7 (Higman’s Embedding Theorem). A finitely generated group H can be
embedded in a finitely presented group G if and only if H is recursively presented.

In the following proof, free products and amalgamated free products are used. For an

introduction to these, see [Ser03].

Theorem 2.4.8 (|[Nov55|, [Boob9]|, [Higbl]). There exists a finitely generated group with

unsolvable word problem.

Proof. We will explain Higman’s approach. We start with a set S C N which is recur-

sively enumerable but not recursive. Define

Hg :=(a,b,c,d | a'ba’ = c¢'dc" for all i € S)
>~(a,b) xR (c,d) where R = (xz™'yz" | i € S).

Now, given a word w; = a~Jba’cId~1¢?, where j € N, we have that if j € S then wj
represents a trivial element in Hg. By construction, there is no Turing machine that
can enumerate the elements of N\ S. Hence if j ¢ S, then we cannot decide whether

w; is non-trivial. Although this group is not finitely presented, by the previous theorem
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it embeds into a finitely presented group. Such a group has unsolvable word problem
since otherwise Hg would have solvable word problem. We now give a brief proof of this
based on [Mil92, Lem. 2.1].

Let us assume that G has solvable word problem where G is a finitely presented group
containing Hg as a subgroup. Thus there exists ¢ : Hg — G and w = 1 in H if and only
if (w)p =1 in G. We assumed that we may decide whether (w)¢ =1 in G, and so we
may decide if w = 1 in H. Hence, should G have solvable word problem, then so does
Hg. This contradicts the above (that Hg has unsolvable word problem) and so G is a

finitely presented group with unsolvable word problem. O

2.5 History relating to the conjugacy problem

The word problem is ‘well behaved’ regarding finite index subgroups and finite extensions:
if G has solvable word problem, then all groups commensurable to G also have solvable
word problem (where G' is commensurable to H if and only if there exists N < G, H).
By contrast the conjugacy problem is not well behaved. Moreover, one cannot even say
in general that the conjugacy problem is preserved by index two subgroups or degree
two extensions, since explicit examples are constructed in both [CM71] and [GKT75]. It
is therefore sensible to investigate under what conditions the solvability of the conjugacy
problem is preserved, which is a principle aim of [BMV10]. This paper generalises the
examples produced in [CMT71], and its main theorem is used in paper 1 in order to
investigate whether the solvability of the conjugacy problem for Houghton’s groups is

preserved by commensurable groups.

Another natural question is, if a group H has unsolvable conjugacy problem, does it
embed into a group G with solvable conjugacy problem? Clearly this is not possible if
the word problem for H is unsolvable. After considering this question, I discovered that

it had been asked much earlier by Donald Collins, my supervisor’s supervisor.

Question. ([KT76, Problem 5.21|, Collins) Can every torsion-free group with solvable
word problem be embedded in a group with solvable conjugacy problem? An example
due to A. Macintyre shows that this question has a negative answer when the condition

of torsion-freeness is omitted.

This question is answered by the following theorem. The solution depends on the power
problem, which asks whether there is an algorithm taking as inputs a recursively pre-
sented group G = (S | R) and any words u and v in S, and correctly outputs ‘yes’ or

‘no’ as to whether there is an n € N such that " = v in G.

Theorem. [0S05, Thm. 1] Every countable group with solvable power problem is
embeddable into a 2-generated finitely presented group with solvable conjugacy and

power problems.
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2.6 The word problem and conjugacy problem for Houghton’s groups

We will essentially review [ABMI15]|, where the following solutions for WP(H,,) and
CP(H,,) can be found.

Definition 2.6.1. Fix an n € N, and let X,, := {1,...,n} x N. Then the n'® Houghton
group, denoted H,, is a subgroup of Sym(X,,). An element g € Sym(X,,) is in H,, if and
only if there exist constants 2z1(g),...,2n(g9) € N and (¢1(g),...,tn(g)) € Z™ such that,
for all ¢ € Zy,

(i,m)g = (i, m + t;i(g)) for all m > z(g). (5)

Further discussions for these groups can be found on page 53. For the interested reader
we provide an alternative definition for the Houghton groups which has a more algebraic

flavour.

Definition 2.6.2. The n'" Houghton group H,, is the set of all ‘almost’ order preserving
symmetries of the set X, (in the sense that there is an ordering of X,, such that, for any
g € H,, for all but finitely many pairs z,y € X, if z < y, then zg < yg). Given points
(i,m),(#',m") € {1,...,n} x N=: X,,, the ordering is the lexicographic one:

1 <1 or

i=4¢ and m<m/

(i,m) < (i',m) & {

where < denotes the usual ordering of N inherited from R.
First, let us mention a key result for computations for Houghton’s groups.

Lemma 2.6.3. [ABM15, Lem 2.1] Let n > 2, let w be a word in the standard generating
set S of H,, and suppose that w represents g € Hy,. Then z;(g) < |w|s for all i € Z,.

This is proved by induction on the length of w. Since for any ¢ € H, and any point
(i,m) € X,, we may compute (i,m)g, we may therefore compute (i, |w|s)g in order to
determine t;(g) for all i € Z,. We may then compute the image under g of all points
within the set {(i,m) | i € Z,, and m < |w|s} =: Z(g) and so may describe the action of
g on X, (from only the word w). This description will be given by equations describing

the action of g on Z(g) and then finitely many statements of the form
(i,m)g = (i,m + t;(g)) for all m > z(g). (6)

This computable nature of the permutation induced by a word w allows for the hands
on approach to the word problem, conjugacy problem, and twisted conjugacy problem
for the Houghton groups H,, (where n > 2). For example the word problem can now

be solved since given any word w, we may decide if it represents the identity in H,
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(as we can describe how it moves all points of X,, using equations of the form (6) and
equations describing xg for all x € Z(g)). Thus, in order for our word to represent the
identity, it must fix all points in X,, and it is sufficient to check if a word fixes all points

in {(i,m) | i € Zy, and m < |w|g} to determine if the word fixes all points in X,.

Our main aim for this section is to describe how the conjugacy problem can be solved
for H,. We consider conjugacy in Sym(X,), and note that conjugacy in H,, < Sym(X,)
has the further restriction that any element of H,, sends, for each i € Z,,, almost all (all
but finitely many) points in the set {(i,m) | m € N} to {(i,m) | m € N}. Thus the
number of orbits with infinite intersection with each branch is a conjugacy invariant i.e.
if g ~ hin Hy,, then t;(g) = t;(h) for all i € Z,,. Clearly the converse is false: elements
in FSym(X,,) with different cycle types cannot be conjugate in Sym(X,,) and so cannot

be conjugate in H,.
The strategy in [ABM15] to show that CP(H,,) is solvable is as follows:
i) decide, for any g,h € H,, whether they are conjugate in FSym(X,,);

ii) show that, should a,b € H, be conjugate in H,, then there exists a conjugator
xr € Hy, with > | [ti(x)| < M(a,b), where M (a,b) is a number computable from

only a and b;

iii) use the algorithm from (i) for the finite number of pairs {(a, gy 'bgy) : v € V'} where
gv are elements such that ¢(gyv) = v and V consists of all vectors which sum to 0

and whose absolute values sum to less than or equal to M(a,b).

Part (ii) is completed by first showing that the translation lengths of any conjugator are a
bounded distance from each other, which depends only on a and b (|ABM15, Prop. 4.3])
and then, using a centraliser argument, showing that there is a conjugator with certain
translation lengths being 0. This shows that there is a conjugator whose translation
lengths are bounded by a computable number. This method was adapted in paper 1 in

order to solve the twisted conjugacy problem for H,.

2.7 Generalising the algorithms of [ABM15]

In paper 1 we generalise the algorithm of [ABM15] to twisted conjugacy for Houghton’s
groups. Whilst doing this work, I considered some possible variations. Recall that, for
each n € N,

1 — FSym(X,) — H, —>z"! —1

where 7 : g — (t1(9),t2(g), ..., tn_1(g)), defines the n*® Houghton group.

Question 1. If G is a group which lies in a short exact sequence of the form

1 —FSym —G — 72" —1
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then does G have solvable conjugacy problem?

Another option is to replace Z™ with another group where the conjugacy problem is

solvable.

Question 2. Consider the short exact sequence
1—FSym — G — F, — 1

where F), denotes the free group of rank n. Then does G have solvable conjugacy

problem?

The braided Houghton group HY" is defined by replacing the permutations of X,, with
braids. This group was introduced in [Deg00] where questions regarding the finiteness
conditions of this group were posed. For any n € N, let B,, denote the braid group on n
strands. Since CP(B,,) is well understood, the approach outlined in the previous section
for CP(H,,) could potentially be adapted to solve CP(H?").

Question 3. Consider permutational wreath products of the form H,, lx, H, or even

finite iterations of this i.e.

(. .. ((Hn ZXn Hn) ZXn . ZXn Hn> ZX,,, Hn.

Do such groups have solvable conjugacy problem?

The finiteness conditions of such groups were studied in [KM16]. We solve the word

problem for such groups below.

After studying the conjugacy problem for finite index subgroups of Houghton groups,
another (similar) family of groups were introduced to me by preliminary work carried
out by my supervisor (Armando Martino) and Peter Kropholler. They investigated the
finiteness conditions of this family of groups. Recall the homomorphism 7 : H, — Z"~!
defined by g — (t1(g),t2(9),...,tn—1(g9)). Now consider a subgroup K of H,, such that
[Z"=1 . (K)7], the index of (K)x in (H,)m, is finite. Note that K need not have finite

index in H,, in order to satisfy this property.

Definition 2.7.1. Let G and H be finitely presented groups and let H < G. Then
the membership problem for G and H, denoted MP(G, H), asks whether there exists an
algorithm which takes as inputs the finite presentations for G and H and a word w in

G, and outputs yes or no depending on whether or not w represents an element of H.
Note that MP(G, {1}) is WP(G). Two possible questions present themselves.
Question 4. Let K < H, satisfy [Z"! : (K)7n] < co. Then is MP(H,,, K) solvable?

Question 5. Let K < H, satisfy [Z"! : (K)r] < co. Then is CP(K) solvable?
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Question 4 could be extended to all recursively presented subgroups of H,. This then
relates to a question of Collin Bleak, who asked whether the membership problem for
Thompson’s group V is solvable for all finitely presented subgroups. This is because

Thompson’s group V' contains, as a subgroup, each Houghton group H,, (for all n € N).

Remark 2.7.2. We may now extend the curiosity discussed in Section 1.1. We introduce
this via an example. Let Ha, the 2" Houghton group, act on 7 where t corresponds to
the element of Sym(Z) which sends z to z + 1 for all z € Z so that Hy = (t,(0 1)).
Now (t2,(0 1), (0 2)(1 3)) is a subgroup of Hy which is isomorphic to Colx Ho for some
set X. Moreover, for any n > 2 and any finite group F, there exists a subgroup of Hy
isomorphic to Fly Hy for some set Y. Since these groups do not act primitively on X,,

the cannot contain FAIt(X,,) and so cannot be of finite index in H,.

We now produce an algorithm to solve the word problem for the groups in Question 3
above. In fact we will solve the word problem for a larger class of groups. Throughout
we will work with a fixed n > 2, and so let H := H,,. Thus H acts on X := X,,. Now,
for any recursively presented group G with solvable word problem we will solve the word
problem for Gix H.

Let us first choose a finite generating set. Let G = (S | Rg) be a recursive presentation
for G with solvable word problem and let (Si | Rp) be our standard presentation for H
(the one used throughout paper 1, see page 53). We will use Sg LI Sg as our generating
set for G x H, where the elements of Sg correspond to the copy of G at (1,1) € X.
Recall that the base of G i1x H is equal to

D Gum:

(i,m)eX

Lemma 2.7.3. The word problem for Gix H is solvable.

Sketch Proof. Let g € Gix H. Our aim is to decide whether g is trivial. The three steps

of our algorithm are as follows.

i) From above, the word problem for H is solvable. Hence, given a word which repre-

sents g, we can decide whether or not this word lies in the base of Gix H.

ii) Let this word be written as ujviugvs ... Upyvy where u; € Sy and v; € S for all
i € Zp,. We may rewrite this as (ulvlufl)(uluQvguglufl)(ulungvgugluglufl) .
in order to express g as a product of elements in finitely many different G; .,y (where

each (i,m) is in X).

iii) Solving the word problem for G in each of these is therefore sufficient to decide
whether or not the given word represents the identity. This is possible by our

assumption that G had solvable word problem. O

Note that this proof only relies on H having solvable word problem. For the conjugacy

problem, there is the following result for standard wreath products.
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Theorem. [Mat66, Thm. B| Let W = G ¢ H be a (restricted) wreath product of two
nontrivial groups G and H with CP(G) and CP(H) solvable. Then CP(W) is solvable
if and only if the group H has a solvable power problem.

2.8 Decision problems and cryptography

I thank Michal Ferov for explaining the following to me whilst he was a PhD student at

Southampton.

e The conjugator search problem for a recursively presented group G asks for an
algorithm which, given any pair a,b € G of conjugate elements in G, findsa g € G
such that g lag = b.

We start with two parties, say Alice and Bob. The aim of a key-exchange method
is, via a prearranged strategy, to enable Alice and Bob to both gain access to a key
using communication which, if intercepted, will not allow a rogue party to have access
to the key. An example of such a method is the Diffie-Hellman key exchange method.
The following is an example of producing a key-exchange method using a recursively
presented group. This method can be found in [AAG99|.

Certain information is made public: a group G with presentation (S | R); a set A’ :=
{ay,a2,...,anm} C G; a subgroup A := (A") of G; a set B := {b1,bo,...,b,} C G; and
a subgroup B := (B’) of G.

Alice now chooses some « € A and Bob chooses some § € B. These will be their private
keys. Alice then computes {a~'bia, a thaa, ..., a tb,a} =: Cx and sends this set, with
this given ordering, to Bob. Bob computes the set {37 1a13, 3 'as3,...,8 tanp} =:
Cp and sends this set (again ordered) to Alice.

The key which they both now wish to compute is [, 8] :== a8~ ta. This is achieved
as follows. Alice’s key « is given as a word in A’. Thus, by replacing each generator a; in
a with 371a;3, she may compute 3~ 1aB. This allows her to compute [a, 3]. Similarly,
Bob can replace each generator b; in 8 with a~'b;a. Hence Bob has computed o' Ba,
allowing him to compute [a, 8] = (a™!Ba)~!B. In order to use such a key, the word
problem for G should be solvable (since the word computed for the commutator by each
party may be different). It is also useful for elements in G to have some kind of normal
form, since this means that the simplifications to the elements o~ 'b;a do not provide

any information about a.

Now, consider a rogue agent. They will have access to the ordered sets A’, B, Cs/, and
Cp. In order to compute [«, 5] however, they must find a and 8 from these sets. One
way to do this would be to solve the conjugator search problem for each pair a; and

B~ ta;B. By choosing a group where this problem is computationally difficult, the rogue
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agent can be stopped from being able to easily compute the private key [«, 5]. The

theorem below shows that there are many possible candidates for such a group.

Theorem 2.8.1 (|Col72]). Let D; and D3 be recursively enumerable degrees of unsolv-
ability such that D1 <p Ds. Then there is a finitely presented group G such that WP(G)
has degree D1 and CP(G) has degree Dy. In particular, there is a finitely presented group

with solvable word problem but unsolvable conjugacy problem.

Thompson’s group F' has also been investigated as a possible candidate to be used
with encryption methods, since certain extensions of it have solvable word problem and
unsolvable conjugacy problem (see [SU05|). This was shown to be insecure in [Mat06].

Recent discussions on this can be found in [Abd16].

3 Background for Paper 2

We begin with a topic touched upon in paper 1 and prevalent in paper 2.

3.1 Twisted Conjugacy

The notion of twisted conjugacy generalises that of conjugacy. Let G be a group and let
¢ € Aut(G). Then a,b € G are ¢-twisted conjugate if and only if (z71)¢az = b. For any
automorphism of G this produces an equivalence relation. My interest in this began in
my first paper where it occurs as a condition related to the solvability of the conjugacy
problem for extensions of a group. It then featured in paper 2 since it is the foundation
of the R, property. We say a group has the R, property if, for every automorphism ¢,

the number of ¢-twisted conjugacy classes is infinite.

3.2 A brief history of the R, property

The property first became of interest when it arose in Nielsen fixed point theory. For
more information, see |[BFGJ05| or [Jia83]. The property has also been used in other
fields, such as algebraic geometry and number theory, but has since become a subject in
its own right, with many papers focussing on groups or families of groups which either

have or do not have the property.

Example. For an example of a group without the R, property, consider Z. In general
it is more difficult to show a group has the property since it involves checking that there
are infinitely many ¢-twisted conjugacy classes for all automorphisms. Any free group
of rank n, where n € N\ {1}, provides an example of a group with the R, property. See

[Fell0] for a list of many families of groups for which this property has been investigated.
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A key motivation for the subject was the following conjecture, which sets R, in a more

general context. The concept of exponential growth can be found in Section 4.1.

Conjecture ([FH94|). Let G be a finitely generated group of exponential growth and
¢ : G — G. If ¢ is injective, then G has infinitely many ¢-twisted conjugacy classes.

This conjecture was shown to be false in [GWO03|, with an example where ¢ is an auto-
morphism of G. In fact we have already seen an example of such a group (by [GW06)):
given a lamplighter group G = C 1 Z, G has R« if and only if |C| is coprime to 6.

In paper 2 I studied this property for groups FAIt(X) < G < Sym(X), where X is
an infinite set. We will see that no such group has polynomial growth, and any group
containing an element with an infinite cycle will have exponential growth. This work
was possible because the automorphisms of any such group are of a particular form,
specifically that Ngyp,(x)(G) =y Aut(G) where ¥ @ p = ¢,. A proof of this result can

be found in the next section.

In group theory it is often natural to ask whether properties are preserved by finite
index subgroups or by finite extensions, a question asked about the R, property in, for

example, [TWO06]. This is also investigated for the groups in paper 2.

3.3 Automorphisms of groups fully containing FAIlt

Throughout this section we shall assume that X is an infinite set. We say that a group
G < Sym(X) fully contains FAIt(X) if FAIt(X) < G. Paper 2 deals with such groups.
Preliminary observations are that if a group fully contains FAIlt then it will have FAIt as
a normal subgroup (actually it will be a characteristic subgroup, as stated in Proposition
2.2 of paper 2) and cannot be residually finite (as proved in Lemma 2.3.4 on page 19).
Although growth of groups will be discussed in the next section, it is also worth mention-
ing that no group fully containing FAlt can have polynomial growth (by a theorem of
Gromov). Below is a statement about the structure of the automorphism group of such
groups.A similar proof was contained in Section 2.2 of the first version of paper 1 to ap-
pear on the arXiv, and this proof actually applies to any group FSym(X) < G < Sym(X)
where FSym(X) is characteristic in G. We now outline this proof with the necessary
changes for it to apply to such groups. It can be further adapted to work for FAIt(X)
rather than FSym(X) (by replacing 2-cycles with 3-cycles). In paper 2 we show that
any group fully containing FAIt(X) has FAIt(X) as a characteristic subgroup.

Proposition 3.3.1. Let n > 2. Then Ngym(x,,)(Hn) =y Aut(H,), where ¥ : p > ¢,
and H, denotes the n'* Houghton group.

We will show that any automorphism of FSym(X) < G < Sym(X) can be realised by
conjugation by an element of Sym(X). Similar arguments may be found in [BCMR14]
and [GP14].
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Lemma 3.3.2. Let FSym(X) < G < Sym(X). Moreover, let 1) be a monomorphism
from G to Sym(X). If v is the identity when restricted to FSym(X), then 1 is the
identity on G.

Proof. Let g € G and ¥ be a monomorphism from G to Sym(X) which restricts to the
identity on FSym(X). Conjugation by any element of Sym(X) preserves cycle type.
Thus, for any 7,7 € X,

((1)g¥ (j)g¥) = (g¥) ' (i §)(g®) = (¢ ¥)((i j)¥)(g¥)
= (g ' 7)9)¥ = (())g ())9)¥ = ((i)g (5)g)

and so (i)g¥ € {(i)g, (j)g}. Running this argument for the transposition (j k) where

k # i shows that (j)g¥ € {(j)g, (k)g} N {(1)g, (j)g} and so (j)g¥ = (j)g. Notice that
this argument holds for all ¢,5 € X, and so g¥ and g produce the same bijection on

X. O

Lemma 3.3.3. Let G < Sym(X) with FSym(X) a characteristic subgroup of G. Then
Ngym(x)(G) Zp Aut(G) where U p i ¢
Proof. Let ¢ € Aut(G) and recall that every automorphism of FSym(X) can be achieved
through conjugation by some p € Sym(X).

1) conjugation by p~!

GG sy

U, where ¥|pgym(x)=idpsym(x)

FIGURE 1: The interactions between ¢, p, and W.

Figure 1 and Lemma 3.3.2 together imply, for any ¢ € Aut(G), that

(¢¢p*1)|FSym(X) - idFSym(X) and so qusp*l =idg.

Thus every ¢ € Aut(G) can be achieved through conjugation by some p € Sym(X) and
we have an epimorphism from Ngyn,(x)(G) to Aut(G).

We now show that this epimorphism is injective. We will show that Cgym(x)(FSym(X))
is trivial which will imply Cgym(x)(G) is trivial. Assume there is a p # 1 in Sym(X)
such that for all ¢ € FSym(X), pg = gp. Let i € supp(p). Pick j & {p(i),i}. Setting
f = (i j) we have, by our assumption, that p='(i j)p = ((i)p (j)p) = (i j). This is a
contradiction as (i)p # i or j. Since the centraliser is trivial, our epimorphism has trivial

kernel and so is injective. O

Remark 3.3.4. Notice that both Lemma 3.3.2 and Lemma 3.3.3 work with FAIt(X)
characteristic in G rather than FSym(X) (since Aut(FAlt(X)) = Sym(X), see [DMI6]
or [Sco87]). Other conditions on the torsion elements of G which form a subgroup may

also provide the assumptions used.
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4 Background for Paper 3

In this section we see how questions of a type usually asked in Analysis can be asked about
finitely generated groups. Given a group G and a generating set S, there is a natural
graph one may associate to G with respect to S. The vertices of this graph are formed
from the elements of GG, and so are independent of S. We introduce a directed edge from
a vertex x1 to a vertex xo if and only if there is an s € S such that z1s = x5. This is
called a Cayley graph and we will denote it by Cay(G, S). Note that this will always be a
connected graph, and that cycles in this graph provide relationships between elements in
G with respect to S. If S is finite, then such a graph will be locally finite. Furthermore,
we may produce a metric space from this graph in a canonical way: the distance between
two vertices x1 and x5 is equal to the shortest path from 7 to xo (where every edge
in our graph is defined to have length 1). This distance can depend on S: consider
different generating sets for Z. Algebraically we have that dg(z1,22) = |z] *z2|s, where
lgls denotes the length of the shortest word representing g using the generating set S.
Details on when Cay(G, S) is a tree can be found in [Ser03]. It may be intuitively clear
that Cay(G, S) is an infinite tree if and only if G is a free group and S is a basis for G.
If Cay(G,S) is a finite tree then G is finite and so G must be trivial.

If S and S are two finite generating sets of G, then Cay(G, S) and Cay(G, S’) may not
be isometric metric spaces. However Cay(G, S) and Cay(G,S’) will be quasi-isometric
metric spaces. This means that there is a quasi-isometry between them, which really is
an ‘almost isometry’ in that two metric spaces X and Y with metrics dx and dy are

quasi-isometric if and only if the following conditions hold.

i) There exists a function ¢ : X — Y and constants A € R-, B € R such that for all
11,32 € X: Sdx(z1,22) — B < dy((21)9, (22)9) < A-dx(z1,22) + B;

ii) there is a constant C' € R such that for any y € Y there exists an = € X satisfying

dy ()¢, y) < C.

If S ={x1,...,2,} and S’ = {y1,...,ym}, then Cay(G,S) and Cay(G,S’) are quasi-
isometric since the generators in S’ are elements of G, and so can be written as words
in S. Then ¢ may be the identity (the vertex sets of the graphs are the same) and we
may set C':= 0, B:= 0, and A :=max{|z|,,, |yj|s : 1 € Zn,j € Zm}.

4.1 Growth of groups

In a similar way to when working with metrics in R”, for a group G with generating set
S let Bs(n) denote the ball of radius n within Cay(G, S).

Bg(n) := {vertices z € Cay(G, S) | ds(1,x) < n}
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It may be that more can be said of the form of elements in Bg(n) for any given n, for
example when working with Z with the standard (single element) generating set. We
may then look at how the size of Bg(n) varies with respect to n. For a group G with

finite generating set S, let
fG’S(TL) = |Bg(n)| for alln € N.

We therefore have, for all n € N, that fz,(n) = 2n + 1. Using a different finite
generating set for Z also gives a polynomial function, and in fact one can prove that
these functions will always be linear i.e. be of the form a1n + as for some aq,as € R. By
sketching the Cayley graph for Z? with the standard generating set S = {(1,0)7, (0,1)7}
one can see, for n > 1, that |Bg(n)\Bs(n—1)| = 2(n+1)+2(n—1). Simple computations
then show that fz2 ¢(n) = 2n? 4+ 2n + 1. Note that this could also be seen geometrically
as (n+1)2+n? by separately considering those points which are an even or odd distance

from the identity.

It is now less obvious that there could be a similar formula if a different generating set

S’ were used i.e. can we determine the form of fz2 ¢ (n)?

Definition 4.1.1. Given functions f,g : R — R, we say that f and g have the same
growth type if there exists a C' € R\ {0} such that, for alln € R, g(n/C) < f(n) < g(Cn).

From the fact that different finite generating sets produce quasi-isometric Cayley graphs,
we have for any finite generating sets S and S’ that fg g and fg g will be functions with
the same growth type. Hence, despite it being possible to use different finite generating
sets to produce different growth functions, the growth i.e. the growth type of the growth
function of a group, is well defined. One could then ask whether there is a ‘minimal’
growth function in some respect i.e. whether, for a given group, there is a generating set
which produces a function which grows slower (asymptotically) than any other growth
function for the group. This can be very complex, since all generating sets need to be
considered. It may also be that the infimum of all growth rates of the growth functions

of a group is not realised by any generating set of a group, for example see [Wil04].

Not all groups have polynomial growth, with the simplest example probably being free
groups. Let G be a free group of rank 2 and let S = {a,b} generate G. Given a
vertex x in Cay(G,S) \ {1}, there is an n € N such that z € Bg(n) \ Bs(n — 1).
Now, exactly 3 of za,za™!, xb,zb~ !, lie in Bg(n + 1) \ Bg(n). Hence, for all n € N,
Bs(n+ 1)\ Bg(n)| = 3|Bs(n) \ Bs(n — 1)|. It is then straightforward to see that
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Bs(n+ 1) = [Bs(0)] + Bs(1) \ Bs(0)] + Y _ [Bs(k + 1)\ Bg(k)|
k=1

B3 (0)] + [Bs(1) \ Bs(0)| +3) _ [Bs(k + 1)\ Bs(k)|
k=0

n—1

0
= [Bs(0)] + > _(3'Bs(1) \ Bs(0))) + 3" > _ [Bs(k + 1) \ Bs(k)|
=0 k=0
=-1+42-3""

From this computation we make two elementary observations.

Lemma 4.1.2. Let S be a finile generating set for a group G. Then fa.s(n) == Bg(n)\
Bs(n — 1) has exponential growth if and only if fa.s does. Moreover, f and f have the
same growth rate (i.e. fa.s(n)/fa.s(n) is of subezponential growth,).

Lemma 4.1.3. Let S be a finite generating set for G. Then fg s(n) has at most expo-

nential growth with growth rate less than or equal to |ST| — 1.

In [Gro81lb, Exam. 5.13], Gromov remarked that this growth rate has the smallest
exponent amongst all finite generating sets for a free group. Also, in [AGGO05], it is
shown that there is a set of amenable groups whose growth functions tend to this bound

(despite the fact that no amenable group can contain a non-abelian free group).

A natural aim is to classify those groups with polynomial growth. Its elegant and well

known answer is given below. We require two definitions.

Definition 4.1.4. Let P be a property of groups, for example abelian. Then a group G
is virtually P if and only if there exists a finite index subgroup of G that satisfies P.

There are several equivalent definitions of the following.

Definition 4.1.5. Let G be a group. We first define the lower central series of G.
Let G := @ and, for each k € N, let G®) := [G, G*~D] the group generated by all
commutators [g, g'] where g € G and ¢’ € G, Then a group is nilpotent if and only
if there is an n € N such that G is the trivial group.

Theorem 4.1.6 (|Gro8la]). Let G be a finitely generated group. Then G has polynomial
growth if, and only if, G is virtually nilpotent.

Another natural question is whether there is a group which has neither polynomial nor
exponential growth. From Lemma 4.1.3, no finitely generated group can have growth
rate faster than exponential. There is a class of functions between polynomial and
exponential however. We shall say subexponential growth to identify any function which

grows slower than any exponential.
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Example. Let a be a real number greater than 1. Then aV” is a function (of n) with

subexponential growth but not of polynomial growth.

Question. Is there a finitely generated group of subexponential growth that does not

have polynomial growth?

The Grigorchuk group, which was introduced in [Gri84|, answers this question in the
affirmative, though this group (and the many generalisations) have been found to not be

finitely related.
Question. Is there a finitely presented group of subexponential growth?
Perhaps surprisingly, this question is open at the time of writing this thesis.

Paper 2 deals with groups containing FAIt(X) for some infinite set X. Such groups are
not virtually nilpotent (and so finitely generated examples of such groups cannot have

polynomial growth by Theorem 4.1.6).

Lemma 4.1.7. If G > FAIt(X) for some infinite set X, then G is not virtually nilpotent.

Proof. From Lemma 1.3.6 on page 14, if H <; G, then FAlt(X) < H. Now we note that

any group containing FAIt(Y') where Y is infinite cannot be nilpotent, since
[FAIt(Y), FAlt(Y)] = FAIt(Y) (7)

and so [H,H| > [H,FAIt(X)] > FAlt(X). We now show that (7) holds. By direct
computation, for any distinct ay,...,a6 € Y, [(a1 a2 a3), (a1 a4)(as ag)] = (a1 aq a2).
Now note that we are free to choose ay,...as and that FAIt(Y) can be generated by
3-cycles (from Lemma 1.1.3). O

An alternative proof of the following can be found in [BCMR14]. It also follows from
[GS10, Exam. 2.3.], which shows that the conjugacy growth function of Hj is exponential
(since for any finitely generated group the growth function is bounded below by the

conjugacy growth function).

Lemma 4.1.8. Let n > 2. Then H,, the n"* Houghton group, has exponential growth.

Proof. Let F' < G be finitely generated groups. Then G has growth at least that of
F, since we may choose a generating set of G which contains the generating set of F.
Importantly, if F' has exponential growth, then so will G. Thus we need only show that
H> has exponential growth. We consider Hy acting on the set Z. Also, let ¢t denote the
element of Sym(Z) which sends z to z+ 1 for all z € Z. Now, {¢,(0 1)} is a generating
set for Hy. But (t2, (0 1)) is the lamplighter group C31Z, which has exponential growth
(see, for example, [BT15]). O
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Random Walks on a Cayley graph

A random walk on a Cayley graph can probably only have one interpretation. Let
G = (S | R). We start at 1, the identity element of G. A random walk of length
n on Cay(G,S) is then given by a group element ajas...a, where, for each i € Z,,
a; € S*1. Choosing each a; from S*! with equal probability provides a finite process
for picking elements of G. One could then study, for example, the probability that a
random walk ends at the vertex 1. By varying n, asymptomatic behaviour of random
walks on Cay(G, S) can be studied.

4.2 Degree of Commutativity

The degree of commutativity for a finite group is the probability of choosing two elements
in the group which commute i.e. for a finite group G, the degree of commutativity of G,
denoted dc(G), is given by

a,b) € G%: ab = ba}|

de(G) = 1

There has been much work towards computing which values between 0 and 1 can be
taken by a group and computing (8) for families of groups. The third paper in this
thesis extends the work of [AMV] where the definition for the degree of commutativity
of a group is extended to finitely generated infinite groups. We will start by looking at

well known results from the literature for finite groups.

Computing the degree of commutativity for D,

We will compute dc(Dy) by brute force. Let
Dy:=(rs|rt=s*=1srs=r"1)

where each element of Dy can be written uniquely as t/s* for some j € {0,1,2,3} and
k € {0,1}. Thus, as sets,

Dy ={1,r, r2,r3,s,rs, rs, 7‘33}.

k

Simple computation shows that each reflection r*s commutes with 1,72, 7%s, and r—Fs.

Similarly if a rotation and reflection commute then we have r*(ris) = (r/s)rt = rir=
from which we obtain that ¢ must be 0 or 2. To summarise: |Cp,(1)] =8; |Cp,(r)| = §;

Cp, (r®)] = 8; |Cp,(r?)| = 8; and |Cp, (r*s)| = 4.

Thus 40 of the 64 possible pairs in Dy commute, and so de(Dy) = 3.
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Results for finite groups

A result which may seem surprising is that, if dc(G) > %, then de(G) = 1. The proof
does not require sophistigated tools, and can be found in [Gus73]. Note that this bound
is sharp, since we have just computed that dc(Ds) = 2. The definition labelled (8)
above can also be used for finite semigroups, since all that it requires is a set G equipped
with a binary operation. In this case the degree of commutativity can take any value in
(0,1] N Q (see [PS12]). The following result is helpful to shorten the computations for
dc(G), and has seen much use in the literature. It is proved in [Gus73| (where degree of
commutativity was first introduced) but with reference to [ET68, Thm. IV], since all of

the ingredients of the proof can be found there.
Lemma 4.2.1. Let G be a finite group. Then

# conjugacy classes of G
de(G) = c

Proof. By definition,
1
4e(G) = = 37 [Cal)].
|G|
xeG
Now, if z ~ y, then |Cg(z)| = |Cq(y)| since (z)¢py =y for some g € G. Let C4,...,C,

be distinct conjugacy classes of G with representatives xz1,...x,, respectively. Then

de(G) = @D@Hoaw (9)

We may now use the orbit stabiliser theorem since G acts, by conjugation, on itself.
Thus, for each i € Z,y,,

Gl =1G /| Co(a)

and so (9) becomes
m|G] m
= —. O
Gl 1G]

It may also interest the reader whether information about the degree of commutativity

of normal subgroups of G is related to the degree of commutativity of G.

Lemma 4.2.2 (|Gal7l]). Let G be a finite group and N a normal subgroup of G. Then

de(G) < de(N) - de(G/N).

Generalising the definition to infinite groups

In [AMV], the degree of commutativity of infinite groups was investigated. The main

challenge is deciding how to choose two ‘random’ elements in the group. Two possibilities
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present themselves if G is finitely generated: to either use random walks on the Cayley
graph, or to use the balls of radius n on the Cayley graph. In [AMV] they use the
second option and so we will give more detail on this. Fix a generating set S. Let
Bs(n) :={g € G : |g|s < n}. Now define

{(a,b) € Bg(n)?: ab = ba}|
Bs(n)[?

des(G,n) ==

Notice the similarity to (8) on page 37. If the numbers dcg(G, n) converge as n tends to
infinity, we could then say that this is the degree of commutativity of G with respect to

S. In order to guarantee this, let

dcg(G) := limsup(deg(G, n)). (10)
n—oo
Similarly one could take the liminf of this sequence. They also pose the following

conjecture.

Conjecture. [AMV, Conj. 1.6] Let G be a finitely generated group, and let S be a
finite generating set for G. Then: (i) dcg(G) > 0 if and only if G is virtually abelian;
and (ii) deg(G) > 5/8 if and only if G is abelian.

Note that any finitely generated and virtually abelian group is virtually Z™ for some n >
0. Hence, if the conjecture is correct, then all groups G with dcg(G) > 0 are amenable.
From this it therefore seems reasonable that the value of dcg(G) is independent of S i.e.
if S is another finite generating set for G, then dcg(G) = dcg(G). However it is currently
unknown as to whether the value of (10) depends on the finite generating set used. Note
that if dcg(G) is 0, then lim inf,,_,(dcg(G, n)) is also 0, and so this alternative definition

for dcg(G) produces a weaker conjecture.
Within the paper they verify their conjecture for groups of polynomial growth.

Theorem. [AMV, Cor. 1.5] Let G be a finitely generated group of polynomial growth,
and let S be a finite generating set for G. Then:

i) des(G) > 0 if and only if G is virtually abelian; and

ii) deg(G) > 5/8 if and only if G is abelian.

One of the key ingredients of their proof is a generalisation of Lemma 4.2.2 above.

Proposition 4.2.3. [AMYV, Prop. 2.3] Let G be a finitely generated subezponentially
growing group, and let S be a finite generating system for G. Then, for any finite
quotient G /N, we have

des(G) < de(G/N).
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They also produce a lower bound for deg(G), which is independent from the choice of
S. Note that if G = (S) and H < G, then

Y {(a,b) € (Bs(n) N H)?: ab = ba}|
deg(H) = hTILILsgp Bs(n) A AP '

Lemma 4.2.4. [AMV, proof of Thm. 1.3] Let G be a finitely generated polynomially
growing group, H < G a finite index subgroup, and take finite generating sets G = (X)
and H=(Y). Then,
dCX(H)
> —.
dex (@) 2 |G : H|?

In particular, dey (H) > 0 implies dex (G) > 0.

They also verify their conjecture for hyperbolic groups.

An example: dcg(Dy)

Much of this section came about from a short meeting with my supervisor: many of
the ideas are his. We will compute the degree of commutativity for Do, the infinite
dihedral group, and show that the value we obtain is independent from the choice of

finite generating set.

We first use Lemma 4.2.4 to produce a lower bound on dcs(Ds) which does not depend
on our choice of finite generating set. We note that Do, = Z x Cs, and so it is virtually
Z. Thus

des(Doo) 2 ——5 = -

¢s(Do) 2 5 —72 = 1

Note that, for every n € N, there exists a normal finite index subgroup U, of Dy, such
that Doo /U, = Dy. We will now compute de(Doy) for all k € N since Proposition 4.2.3
states, for all k£ € N, that

dcs(Doo) < de(Doo/Uak) = de(Dag).-

Lemma 4.2.1 can now be used.

# conjugacy classes of G

dC(DQk) = ’G|

Computing the number of conjugacy classes for D,, is a common undergraduate exercise
(with the main point being that the form of the answer depends on whether n is odd
or even: this is why we restricted ourselves to the case where n is even). By direct
computation, there will be a conjugacy class for the identity, £ conjugacy classes of

rotations, and 2 conjugacy classes for the reflections. Geometrically this occurs since
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each line of reflection either intersects two vertices or two edges of the n-gon. We can

also see this algebraically. Let D,, be generated by a reflection b and a rotation a. Then
[b] = {a'ba"" | i € N} = {a’ba""bb | i € N} = {a*b | i € N}

which is disjoint from the conjugacy class of [ab], and so [ab] can be the only other

conjugacy class containing a reflection.

Thus Do has k + 3 conjugacy classes. Hence, for all k € N,

k—+3
de(Dgy) = ——.
o(Par) = =3
This provides us with an upper bound of 1/4 for dcg(Dso), which does not depend on

the choice of finite generating set. Hence, for any finite generating set .S,
des(Ds) = 1/4.

From this example, if G is virtually abelian, then the abelianization of G can be identified
witha finite index subgroup of G. If we denote this by H then, for any finite set .S which

generates (G, we have that

des(G) > [GIH]Q (11)
If [AMV, Conj. 1.6] is true, then only polynomial growing groups have non-zero degree of
commutativity (since such groups are virtually Z" for some n > 0). Thus (11) provides
some evidence that the value of dcg(G) does not depend on the choice for S. Note that
the definition could be changed if it depends on the generating set to be the supremum
or infimum over all finite generating sets, and that from the example above, Proposition
4.2.3 is sharp. There are a few other implications that follow from the conjecture being
true. First, if de(G) = 0, then any finite extension or finite index subgroup of G also has
degree of commutativity zero. Moreover, if d¢(G) = 0 and G < H, then dc(H) = 0. If
this last statement and the independence of dcg(G) on S could be proved, then paper 3
would mean that any group of the form GV H where G is non-trivial and H is not torsion

would have degree of commutativity 0.

Other possible questions

We discuss the first two questions posed in paper 3. These relate to another possible
formulation for defining the degree of commutativity for an infinite group. Let G be a

finitely generated group and S be a finite generating set for G. Then

deg(@) := limsup ( (12)

the number of conjugacy classes meeting IB%s(n)>
n—oo

Bs(n)|
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where the numerator is known as the conjugacy growth function of G with respect to
S. It was first studied by Efremovich in [Efr53]. The definition can also be extended
to groups which are not finitely generated, with [BdIH16]| recently investigating the
conjugacy growth series for FSym. Lemma 4.2.1 motivated the definition (12), since
it stated a relationship between the degree of commutativity of a finite group and the
number of conjugacy classes the finite group has. Natural questions are then whether the
conjecture of [AMV, Conj. 1.6] holds and whether, for every finitely generated group G
with finite generating set S, we have deg(G) = deg(G). We now compute dAC{m}(Doo).

Example 4.2.5 (The Conjugacy Growth Function for D). We will work with a fixed

presentation (unlike our work for dcg(Doo) above). Let
Dy = (r,s| s srs =771
and let us write the elements of D, using the standard normal form so that, as sets,
Do = {sr* 7% | k € Z}.

Computing conjugate elements in this group is again an undergraduate level exercise.
We note that [s] = {sr? | i € Z}, that [sr] = {sr?**1 | i € Z}, and for all k € Z that
=14,

Using that [By, 4 (n) N (r)| = 2n + 1 and [By, () N ([s] U [s7])] = 2n — 1 we see that
IDeo fr,s3(n) = 4n. The conjugacy growth function (when n > 2) is n + 3 by similar

logic. Now the quotient of these functions is

n—+3
4n

which approaches i asymptomatically. Note that the same answer was found above

when computing dcg(Doo) using the definition of [AMV].

Translation Lengths

These are used in paper 3. Let GG be a finitely generated group with finite generating set
S and let g € G. Then

s -

are the translation lengths of G with respect to S.

We first recall Fekete’s Lemma, which is of great use in this field. A sequence {a; }ien is
subadditive if, for all m,n € N, ap4m < ap + ap,. Note that (13) provides a subadditive

sequence by setting a; := |g‘|4 for each i € N.
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Lemma 4.2.6 ([Fek23]). Let {a;}icn be a subadditive sequence. Then lim,, o 5 erists

and is equal to inf .

Thus (13) is a real limit and we need only consider the infimum of the sequence. Obvious
questions are whether the set {75(g) | ¢ € G} contains points in R\ Q, whether the non-
zero points are uniformly bounded away from 0, and the structure of such a set for a
particular group or families of groups. These questions have been investigated by Conner
(for example in [Con97] and [Con98|). We now prove a result which is remarked upon

in paper 3.

Lemma 4.2.7. Let S’ be a finite generating set for a group H such that To/(H) C NU{0}.
If S is a generating set for HVZ consisting of the generating set S’ for Hy and a generator
of the head of HVZ, then Ts(H 1 7Z) C N.

Proof. Let B denote the base of H?Z. If h € B, then
h € @ H;
i€l

where |I| is finite and so 7g(h) € N U {0}. Now consider ¢ € (H1Z) \ B, and let
g = wtk where k € N (the case where k is negative follows since we always have that
7s(g) = 7s(9™")). Thus

UJ:HC% (14)

el

where |I| finite and, for each i € I, we have that a; € H;. Without loss of generality we

may assume that min{/} = 0 since

o gls [t s
hm —_— = hm _—
n—oo n n—o00 n

for any d € Z.

We first deal with the case where I C {0,1,...,k — 1}. In this case, from (14), we have
that I and It* are disjoint. Hence

icl iel
meaning that 75(g) = k + >,/ |ai|s/, which is in N from our hypotheses.

Now let g = wt* with

w:”al
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where, for each i € I, a; € H; and max{I} > k. Let I' := {0,1,...,k — 1} and let
jeI\I'. Then j=j + dk for some j/ € I’ and d € N. Consider

!
w = H a; | ajr.

ie\{j}

Our claim is that 75(w't*) = 75(wt*). This can be seen, for example, by the fact that

/tk n tk n /tk n 2dk
b @ s Lt s )+ 2dk
n—00 n n—00 n n—00 n

N

O]

Example. We consider the group C!Z with generating set S consisting of a generator
of the Cs located at the vertex 0 and a generator of the head of Cy 1 Z. Let g = wt?
where supp(w) = {(0,1),(1,7) | i = 0,2,3}. Computing powers of g one sees that there
is much cancellation. This corresponds to the fact that, for all n € N, ¢g" is close (in

the sense of the metric from Cay(G,S)) to the element (¢')", where ¢’ := w't? and
supp(w’) = {(0,1), (1,1)}.

The previous lemma can in fact be extended. Without any hypotheses on the translation
lengths of H we have that 7¢/(H 1 Z \ B) = N, where B denotes the base of H!Z. If
Ts/(H \ {1}) is uniformly bounded away from 0, then so is 7¢(H 1 Z \ {1}). Finally, if
Ts/(H) C Q for some finite generating set S’ of H, then, using the generating set S from
the lemma above, 7s(H1Z) C Q.

4.2.1 Author’s note

In paper 1 and paper 2, it is useful to consider permutations restricted to a particular
set. This can be achieved in two different ways. Given g € Sym(X) and a subset Y of
X such that Yg =Y, we could interpret ¢g|Y as either: the element of Sym(X) which
fixes all points in X \ Y; or the element of Sym(Y’) which acts as g on the set Y. The

notation g|Y" is given the first meaning in paper 1 and the second meaning in paper 2.



Bibliography

[AAGY9]

[Abd16]

[ABM15]

[Ady55]

[AGGO3]

[AMV]

[Bau93]

[BB14]

[BCMR14]

[BdIH16]

[BFGJ05]

[BH15]

Iris Anshel, Michael Anshel, and Dorian Goldfeld, An algebraic method for
public-key cryptography, Math. Res. Lett. 6 (1999), no. 3-4, 287-291. MR
1713130

Ali Abdallah, Public key cryptography based on some extensions of group,
arXiv:1604.04474 (2016).

Y. Antolin, J. Burillo, and A. Martino, Conjugacy in Houghton’s groups,
Publ. Mat. 59 (2015), no. 1, 3-16. MR 3302573

S. I. Adyan, Algorithmic unsolvability of problems of recognition of certain
properties of groups, Dokl. Akad. Nauk SSSR (N.S.) 103 (1955), 533-535.
MR 0081851

G. N. Arzhantseva, V. S. Guba, and L. Guyot, Growth rates of amenable
groups, J. Group Theory 8 (2005), no. 3, 389-394. MR 2137976

Y. Antolin, A. Martino, and E. Ventura, Degree of commutativity of infinite

groups, Proceedings of the American Mathematical Society (to appear).

Gilbert Baumslag, Topics in combinatorial group theory, Lectures in Math-
ematics E'TH Zirich, Birkhduser Verlag, Basel, 1993. MR 1243634

Oleg Bogopolski and Kai-Uwe Bux, Subgroup conjugacy separability for sur-
face groups, arXiv:1401.6203 (2014).

J. Burillo, S. Cleary, A. Martino, and C. E. Réver, Commensurations and
Metric Properties of Houghton’s Groups, arXiv:1403.0026 (2014).

Roland Bacher and Pierre de la Harpe, Conjugacy growth series of some
infinitely generated groups, arXiv:1603.07943 (2016).

R. F. Brown, M. Furi, L. Gorniewicz, and B. Jiang (eds.), Handbook of
topological fixed point theory, Springer, Dordrecht, 2005. MR, 2170491

T. Banakh and M. Heike, Cardinal invariants distinguishing permutation
groups, arXiv:1506.08969 (2015).

45



46 BIBLIOGRAPHY

[BMV10] O. Bogopolski, A. Martino, and E. Ventura, Orbit decidability and the con-
jugacy problem for some extensions of groups, Trans. Amer. Math. Soc. 362
(2010), no. 4, 2003-2036. MR 2574885 (2011e:20045)

[Bog08] Oleg Bogopolski, Introduction to group theory, EMS Textbooks in Mathe-
matics, European Mathematical Society (EMS), Ziirich, 2008, Translated,
revised and expanded from the 2002 Russian original. MR 2396717

[Boo59|  William W. Boone, The word problem, Ann. of Math. (2) 70 (1959), 207-265.
MR 0179237 (31 #3485)

[BT15] Michelle Bucher and Alexey Talambutsa, Minimal ezponential growth
rates of metabelian Baumslag-Solitar groups and lamplighter groups,
arXiv:1506.03569 (2015).

[Cam99]  Peter J. Cameron, Permutation groups, LMS Student Texts, vol. 45, Cam-
bridge University Press, Cambridge, 1999. MR 1721031 (2001¢:20008)

[CMT1] Donald J. Collins and Charles F. Miller, III, On group-theoretic decision
problems and their classification, 1971, Annals of Mathematics Studies, No.
68. MR 0310044 (46 #9147)

|Col72] Donald J. Collins, Representation of Turing reducibility by word and conju-
gacy problems in finitely presented groups, Acta Math. 128 (1972), no. 1-2,
73-90. MR 0392539

[Con97| Gregory R. Conner, A class of finitely generated groups with irrational trans-
lation numbers, Arch. Math. (Basel) 69 (1997), no. 4, 265-274. MR 1466819

[Con9s]| , Properties of translation numbers in nilpotent groups, Comm. Alge-
bra 26 (1998), no. 4, 1069-1080. MR 1612184

[Coo04] S. Barry Cooper, Computability theory, Chapman & Hall/CRC, Boca Raton,
FL, 2004. MR 2017461

[Cox14] C. Cox, Twisted Conjugacy in Houghton’s groups, arXiv:1410.7051 (2014).

[Cox16a] , A note on the Ry property for groups FAIt(X) < G < Sym(X),
arXiv:1602.02688 (Feb. 2016).

[Cox16b] ., The degree of commutativity and lamplighter groups,
arXiv:1605.04829 (May 2016).

[CT05] Sean Cleary and Jennifer Taback, Dead end words in lamplighter groups and
other wreath products, Q. J. Math. 56 (2005), no. 2, 165-178. MR 2143495

[Deg00] F. Degenhardt., Endlichkeitseigenschaften gewisser Gruppen zon Zdpfen un-

endlicher Ordnung, PhD Thesis, Frankfurt (2000).



BIBLIOGRAPHY 47

[DG11]

[DM96]

[Dys64]

[Efr53]

[ET68|

[Fek23]

[Fel10]

[Fenl14]

[FHY4|

[Gal71]

[GK75)

[GP14]

[Grig4]

|Gro81a]

Francois Dahmani and Vincent Guirardel, The isomorphism problem for all
hyperbolic groups, Geom. Funct. Anal. 21 (2011), no. 2, 223-300. MR 2795509

John D. Dixon and Brian Mortimer, Permutation groups, Grad. Texts in
Math., vol. 163, Springer-Verlag, New York, 1996. MR 1409812 (98m:20003)

V.H. Dyson, The word problem and residually finite groups, Notices Amer.
Math. Soc 11 743 (1964).

V.A. Efremovich, The prozimity geometry of Riemannian manifolds (Rus-
stan), Uspekhi Mat. Nauk 8 (1953), 189.

P. Erdés and P. Turan, On some problems of a statistical group-theory. IV,
Acta Math. Acad. Sci. Hungar 19 (1968), 413-435. MR 0232833

M. Fekete, Uber die Verteilung der Wurzeln bei gewissen algebraischen Gle-
ichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), no. 1, 228-249.
MR 1544613

Alexander Fel’shtyn, New directions in Nielsen-Reidemeister theory, Topol-
ogy Appl. 157 (2010), no. 10-11, 1724-1735. MR 2639839

Tony Feng, Topics in infinite groups, 2014, (Lectures by Jack Button).

Alexander Fel’shtyn and Richard Hill, The Reidemeister zeta function with
applications to Nielsen theory and a connection with Reidemeister torsion,
K-Theory 8 (1994), no. 4, 367-393. MR 1300546

P. X. Gallagher, The number of conjugacy classes in a finite group, Rep-
resentation theory of finite groups and related topics (Proc. Sympos. Pure
Math., Vol. XXI, Univ. Wisconsin, Madison, Wis., 1970), Amer. Math. Soc.,
Providence, R.I., 1971, pp. 51-52. MR 0314955

A. V. Gorjaga and A. S. Kirkinskii, The decidability of the conjugacy problem
cannot be transferred to finite extensions of groups, Algebra i Logika 14
(1975), no. 4, 393-406. MR 0414718 (54 #2813)

D. Gongalves and S. Parameswaran, Sigma theory and twisted conjugacy-11:
Houghton groups and pure symmetric automorphism groups, arXiv:1412.8048
(2014).

R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory
of invariant means, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 5, 939—
985. MR 764305

Mikhael Gromov, Groups of polynomial growth and erpanding maps, Inst.
Hautes Etudes Sci. Publ. Math. (1981), no. 53, 53-73. MR 623534



48 BIBLIOGRAPHY

|Gro81b| , Structures métriques pour les variétés riemanniennes, Textes Math-
ématiques [Mathematical Texts|, vol. 1, CEDIC, Paris, 1981, Edited by J.
Lafontaine and P. Pansu. MR 682063

[GS10] Victor Guba and Mark Sapir, On the conjugacy growth functions of groups,
[linois J. Math. 54 (2010), no. 1, 301-313. MR 2776997

[Gus73| W. H. Gustafson, What is the probability that two group elements commute?,
Amer. Math. Monthly 80 (1973), 1031-1034. MR 0327901

[GWO03] D. Gongalves and P. Wong, Twisted conjugacy classes in exponential growth
groups, Bull. London Math. Soc. 35 (2003), no. 2, 261-268. MR 1952405

[GWO06] Daciberg Gongalves and Peter Wong, Twisted conjugacy classes in wreath
products, Internat. J. Algebra Comput. 16 (2006), no. 5, 875-886. MR
2274719

[Hig61] G. Higman, Subgroups of finitely presented groups, Proc. Roy. Soc. Ser. A
262 (1961), 455-475. MR 0130286

[HO15] M. Hull and D. Osin, Transitivity degrees of countable groups and acylindrical
hyperbolicity, arXiv:1501.04182 (2015).

[Jia83] Bo Ju Jiang, Lectures on Nielsen fized point theory, Contemporary Mathe-
matics, vol. 14, American Mathematical Society, Providence, R.I., 1983. MR
685755

[KM16] P. H. Kropholler and A. Martino, Graph-wreath products and finiteness con-
ditions, J. Pure Appl. Algebra 220 (2016), no. 1, 422-434. MR 3393469

[KMM12| O. Kharlampovich, A. Myasnikov, and Sapir M., Algorithmically complex
residually finite groups, arXiv:1204.6506 (2012).

[KT76] KT, Kourovka notebook. unsolved problems in group theory., 5th ed., 1976,
Novosibirsk.

[LPP96]  Russell Lyons, Robin Pemantle, and Yuval Peres, Random walks on the lamp-
lighter group, Ann. Probab. 24 (1996), no. 4, 1993-2006. MR 1415237

[LSO01] Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Classics
in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1977 edition.

[Mal58| A. 1. Mal’cev, On homomorphisms onto finite groups (Russian), Uchen. Zap.
Ivanovskogo Gos. Ped. Inst. 18 (1958), 49-60.

[Mar47| A. Markoff, On the impossibility of certain algorithms in the theory of asso-

ciative systems, C. R. (Doklady) Acad. Sci. URSS (N.S.) 55 (1947), 583-586.
MR 0020528



BIBLIOGRAPHY 49

[Mat66]

[Mat06]

[McKA43]

[Mil92]

[Min12]

[MO11]

| Mos66|

[Novb5|

[0S05]

[Par92]

[Pos47]

[PS12]

[Rabb8|

[Rot95]

[Sco87]

Jane Matthews, The conjugacy problem in wreath products and free
metabelian groups, Trans. Amer. Math. Soc. 121 (1966), 329-339. MR
0193130

Francesco Matucci, Cryptanalysis of the Shpilrain-Ushakov Protocol in
Thompson’s Group, arXiv:math /0607184 (2006).

J. C. C. McKinsey, The decision problem for some classes of sentences with-
out quantifiers, J. Symbolic Logic 8 (1943), 61-76. MR 0008991

Charles F. Miller, II1, Decision problems for groups—survey and reflections,
Alg. and class. in comb. group theory (Berkeley, CA, 1989), Math. Sci. Res.
Inst. Publ.; vol. 23, Springer, New York, 1992, pp. 1-59. MR 1230627

Ashot Minasyan, Hereditary conjugacy separability of right-angled Artin
groups and its applications, Groups Geom. Dyn. 6 (2012), no. 2, 335-388.
MR 2914863

Alexei Miasnikov and Denis Osin, Algorithmically finite groups, J. Pure Appl.
Algebra 215 (2011), no. 11, 2789-2796. MR 2802165

A. Wlodzimierz Mostowski, On the decidability of some problems in special
classes of groups, Fund. Math. 59 (1966), 123-135. MR 0224693

P. S. Novikov, Ob algoritmiceskoi nerazresimosti problemy toZdestva slov v
teorii grupp, Trudy Mat. Inst. im. Steklov. no. 44, Izdat. Akad. Nauk SSSR,
Moscow, 1955. MR 0075197 (17,706b)

Alexander Yu. Olshanskii and Mark V. Sapir, Subgroups of finitely presented
groups with solvable conjugacy problem, Internat. J. Algebra Comput. 15
(2005), no. 5-6, 1075-1084. MR, 2197822

Walter Parry, Growth series of some wreath products, Trans. Amer. Math.
Soc. 331 (1992), no. 2, 751-759. MR 1062874

Emil L. Post, Recursive unsolvability of a problem of Thue, J. Symbolic Logic
12 (1947), 1-11. MR 0020527

V. Ponomarenko and N. Selinski, Two semigroup elements can commute with

any positive rational probability, College Mathematics Journal 43(4) (2012).

Michael O. Rabin, Recursive unsolvability of group theoretic problems, Ann.
of Math. (2) 67 (1958), 172-194. MR 0110743

J. J. Rotman, An introduction to the theory of groups, 4th ed., Grad. Texts
in Math., Springer-Verlag, New York, 1995. MR 1307623 (95m:20001)

W. R. Scott, Group theory, second ed., Dover Publications, Inc., New York,
1987. MR 896269 (88d:20001)



50 Twisted conjugacy in Houghton’s groups

[Ser03] Jean-Pierre Serre, Trees, Springer Monographs in Mathematics, Springer-
Verlag, Berlin, 2003, Translated from the French original by John Stillwell.
MR 1954121 (2003m:20032)

[SU05] V. Shpilrain and A. Ushakov., Thompson’s group and public key cryptography,
ACNS 2005 3531 (2005), 151-163.

[TWO06] Jennifer Taback and Peter Wong, A note on twisted conjugacy and general-
ized baumslag-solitar groups, arXiv:math /0606284 (2006).

[Wil04] John S. Wilson, On exponential growth and uniformly exponential growth for
groups, Invent. Math. 155 (2004), no. 2, 287-303. MR 2031429



TWISTED CONJUGACY IN HOUGHTON’S GROUPS

CHARLES GARNET COX

ABSTRACT. For a fixed n > 2, the Houghton group H,, consists of bijections of
Xpn =A{1,...,n} x N that are ‘eventually translations’ of each copy of N. The
Houghton groups have been shown to have solvable conjugacy problem. In gen-
eral, solvable conjugacy problem does not imply that all finite extensions and
finite index subgroups have solvable conjugacy problem. Our main theorem is
that a stronger result holds: for any n > 2 and any group G commensurable
to Hy,, G has solvable conjugacy problem.

1. INTRODUCTION

Given a presentation (S | R) = G, a ‘word’ in G is an ordered f-tuple a; ...ay
with f € N and each a; € SU S~!. Dehn’s problems and their generalisations
(known as decision problems) ask seemingly straightforward questions about finite
presentations. The problems that we shall consider include:

e the word problem for G, denoted WP(G): show there exists an algorithm
which given two words a,b € G, decides whether a =g b or a #g b i.e.
whether these words represent the same element of the group. This is
equivalent to asking whether or not ab=! =g 1. There exist finitely pre-
sented groups where this problem is undecidable (see [Nov58] or [Boo59]).

e the conjugacy problem for G, denoted CP(G): show there exists an algo-
rithm which given two words a,b € G, decides whether or not there exists
an z € G such that x~lax = b. As 1¢ has its own conjugacy class, if CP(G)
is solvable then so is WP(G). CP(G) is strictly weaker than WP(G) since
there exist groups where WP(G) is solvable but CP(G) is not (e.g. see
[Mil71]).

e the ¢-twisted conjugacy problem for G, denoted TCP4(G): show there exists
an algorithm which for a fixed ¢ € Aut(G) and any two words a,b €
G, decides whether or not there exists an z € G such that (z7!)gaxr =
b (meaning that a is ¢-twisted conjugate to b). Note that TCP;4(G) is
CP(G).

e the (uniform) twisted conjugacy problem for G, denoted TCP(G): show
there exists an algorithm which given a ¢ € Aut(G) and two words a,b € G,
decides whether or not they are ¢-twisted conjugate. There exist groups G
such that CP(G) is solvable but TCP(G) is not (e.g. see [BMV10]).

Should any of these problems be solved for one finite presentation, then they
may be solved for any other finite presentation of that group. We therefore say
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Key words and phrases. uniform twisted conjugacy problem, Houghton group, permutation
group, orbit decidability, conjugacy problem for commensurable groups.
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that such problems are solvable if an algorithm exists for one such presentation.
Many decision problems may also be considered for any group that is recursively
presented.

We say that G is a finite extension of H if H <G and H is finite index in G. If
CP(G) is solvable, then we do not have that finite index subgroups of G or finite
extensions of G have solvable conjugacy problem, even if these are of degree 2.
Explicit examples can be found for both cases (see [CM77] or [GK75]). Thus it is
natural to ask, if CP(QG) is solvable, whether the conjugacy problem holds for finite
extensions and finite index subgroups of G. The groups we investigate in this paper
are Houghton groups (denoted H,, with n € N).

Theorem 1. Letn > 2. Then TCP(H, ) is solvable.

We say that two groups A and B are commensurable if there exists Na = Np
where N4 is normal and finite index in A and Np is normal and finite index in B.

Theorem 2. Let n > 2. Then, for any group G commensurable to H,,, CP(G) is
solvable.

We structure the paper as follows. In Section 2 we introduce the Houghton
groups, make some simple observations for them, and reduce TCP(H,,) to a problem
similar to CP(H,, x S,), the difference being that, given a,b € H, % S, we are
searching for a conjugator x € H,,. This occurs since, for all n > 2, H, x S, =
Aut(H,,). In Section 3 we describe the orbits of elements of H,, x S,, and produce
identities that a conjugator of elements in H, x S, must satisfy. These are then
used in Section 4 to reduce our problem of finding a conjugator in H,, to finding
a conjugator in the subgroup of H,, consisting of all finite permutations (which we
denote by FSym, see Notation 2.1 below). Constructing such an algorithm provides
us with Theorem 1. In Section 5 we use Theorem 1 and [BMV10, Thm. 3.1] to
prove our main result, Theorem 2.

Acknowledgements. I thank the authors of [ABM13] whose work is drawn upon
extensively. I especially thank the author Armando Martino, my supervisor, for
his encouragement and the many helpful discussions which have made this work
possible. I thank Peter Kropholler for his suggested extension which developed into
Theorem 2. Finally, I thank the referee for their many helpful comments.

2. BACKGROUND

As with the authors of [ABM13], the author does not know of a class that contains
the Houghton groups and for which the conjugacy problem has been solved.

2.1. Houghton’s groups. Throughout we shall consider N := {1,2,3,...}. For
convenience, let Z, := {1,...,n}. For a fixed n € N, let X,, := Z,, x N. Arrange
these n copies of N as in Figure 1 below (so that the &' point from each copy of N
form the vertices of a regular n-gon). For any i € Z,,, we will refer to the set i x N
as a branch or ray and will let (i,m) denote the m*™ point on the i*" branch.

Notation 2.1. For a non-empty set X, the set of all permutations of X form a
group which we denote Sym(X). Those permutations which have finite support (i.e.
move finitely many points) form a normal subgroup which we will denote FSym(X).
If there is no ambiguity for X, then we will write just Sym or FSym respectively.
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Note that, if X is countably infinite, then FSym(X) is countably infinite but is
not finitely generated, and Sym(X) is uncountable and so uncountably generated.

Definition 2.2. Let n € N. The n'® Houghton group, denoted H,,, is a subgroup
of Sym(X,,). An element g € Sym(X,,) is in H,, if and only if there exist constants
21(9),--.,2n(g9) € Nand (t1(g),...,tn(g)) € Z™ such that, for all i € Z,,

(1) (i,m)g = (i,m + t;(g)) for all m > z;(g).

For simplicity, the numbers z1(g), ..., 2,(g) are assumed to be minimal i.e. for
any m' < z(g), (im')g # (i,m’ + ti(g)). The vector t(g) i= (ta(g)...+tn(g))
represents the ‘eventual translation length’ for each ¢ in H,, since t;(g) specifies
how far g moves the points {(i,m) | m > z;(g)}. We shall say that these points are
those which are ‘far out’, since they are the points where g acts in the regular way
described in (1). As g induces a bijection from X,, to X,,, we have that

2 OE

Given g € H,,, the numbers z;(g) may be arbitrarily large. Thus FSym(X,,) < H,.
Also, for any n > 2, we have (as proved in [Wie77]) the short exact sequence

(3) 1 — FSym(X,,) — H, — Z"' — 1

where the homomorphism H,, — Z"~! is given by g = (t1(9), ..., tn_1(9)).
These groups were introduced in [Hou78] for n > 3. The standard generating

set that we will use when n > 3 is {¢2, 93, ..., gn} where for each i,
(I,m+1) ifj=1
N I C Y if j=i,m=1
4 Umgi=\ (iim—1) itj=im>1
(7,m) otherwise.

Notice that for each i, we have t;(g;) = 1 and t;(g;) = —6;; for j € {2,...,n}.
Figure 1 shows a geometric visualisation of g2, g4 € Hs. Throughout we shall take
the vertical ray as the ‘first ray’ (the set of points {(1,m) | m € N}) and order the
other rays clockwise.

We shall now see that, for any n > 3, the set {g; | i = 2,...,n} gener-
ates H,. First, any valid eventual translation lengths (those satisfying (2)) can
be obtained by these generators. Secondly, the commutator (which we define as
[9,h] := g~ 'h~1gh for every g,h in G) of any two distinct elements g;,g; € H, is a
2-cycle, and so conjugation of this 2-cycle by some combination of g;’s will produce
a 2-cycle with support equal to any two points of X,,. This is enough to produce any
element that is ‘eventually a translation’ i.e. one that satisfies condition (1), and so
is enough to generate all of H,,. An explicit finite presentation for Hs can be found
in [Joh99], and this was generalised in [Leel2] by providing finite presentations for
H,, for all n > 3.

We now describe Hy and Hs. If g € Hy, then ¢1(g) = 0 (since the eventual
translation lengths of ¢ must sum to 0 by condition (2)) and so H; = FSym(N). For
H; we have (go) = Z. Using a conjugation argument similar to the one above, it can
be seen that a suitable generating set for Hy is {g2, ((1,1) (2,1))}. These definitions
of H; and H; agree with the result for H,, in [Bro87], that (for n > 3) each H,, is
FP,_1 but not FP, i.e. H; is not finitely generated and H, is finitely generated
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#A
x\\i\f/

FIGURE 1. Part of the set X5 and a geometrical representation of
the action of the standard generators g,, g, € Hs.

but not finitely presented. Since H; = FSym(N) and Aut(FSym(N)) = Sym(N)
(see, for example, [DM96] or [Sco87]) we will work with H,, where n > 2.

2.2. A reformulation of TCP(H, ). We require knowledge of Aut(H,). We
noted above that Aut(H;) = Sym(N), and so will work with n > 2.

Notation. Let g € Sym(X). Then (h)¢, := g~ thg for all h € G.

From [BCMR14], we have for all n > 2 that Ngym(x,)(H,) = Aut(H,) via
the map p — ¢, and that Ngym(x,)(H,) = Hy, x S,. We will make an abuse
of notation and consider H, x S, as acting on X,, via the natural isomorphism
Ngym(x,,)(Hn) < Sym(X,,). Here Inn(H,) = H, because H, is centreless, and
S, acts on X, by isometrically permuting the rays, where ¢ € H, x S, is an
isometric permutation of the rays if and only if there exists a o € S, such that
(i,m)g = (io,m) for all m € N and all i € Z,.

Notation. For any given g € Hyp, x Sy, let ¥ : H, xS, — Sy, g — o4 where
o4 denotes the isometric permutation of the rays induced by g. Furthermore, let
Wy = 909*1. Thus, for any g € Hy, xSy, we have g = wyo, and will consider
wg € Hy,, and o4 € S,,. We shall therefore consider any element g of H,, x S, as
a permutation of X,, which is eventually a translation (denoted wgy) followed by an

isometric permutation of the rays o,.

Definition 2.3. Let G < H, xS, and g, h € H,, x S,,. Then we shall say g and h
are G-conjugated if there is an = € G such that z~ gz = h.

We now relate twisted conjugacy in H,, to conjugacy in H,, X.S,,. Let c € H,, x.5,,.
Then the equation for ¢.-twisted conjugacy becomes:

1

(@7 Ndegr =h = c a7 egr = h = 27 (weoeg)a = weoch.

Thus, for any n > 2, two elements g,h € H,, are ¢.-twisted conjugate if and only
if weoeg and weoch € H, xS, are H,-conjugated. Note that, if g,h € H, X S,
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are H,-conjugated, then o, = oj,. Thus for the remainder of this note a and b will
refer to the elements in H, x 5, that we wish to decide are H,-conjugated, where
0a = 0p. In order to solve TCP(H,,), we will therefore produce an algorithm to
search for an x € H,, which conjugates a to b.

3. COMPUTATIONS IN H,, x S,
Our first lemma provides the generating set that we will use for H,, x S,,.
Lemma 3.1. Letn > 2. Then H, xS, can be generated by 3 elements.

Proof. If n > 3, two elements can be used to generate all of the isometric permu-
tations of the rays. Our third generator will be go, the standard generator for H,.
Conjugating g2 by the appropriate isometric permutations of the rays produces the
set {g; | i =2,...,n}, which can then be used to generate all permutations in H,,.
For Hs x S5 we note that Hs is 2-generated and that S5 is cyclic. O

3.1. The orbits of elements in H, % S5,,. Our main aim for this section is to
describe the orbits of any element g € H,, x S, ‘far out’. For elements of H,,, any
element eventually acted like a translation. In a similar way, any element of H,, X.5,,
eventually moves points in a uniform manner. More specifically, g € Sym(X,,) is in
H,, xS, if and only if there exist constants z1(g), ..., z,(9) €N, (t1(g9),...,tn(g9)) €
Z"™, and a permutation o € S, such that for all ¢ € Z,

(5) (i,m)g = (io,m + t;(g)) for all m > z;(g).

If g € Hy, % Sy, then g = wyo,. Therefore for any g € H, X S,,, 04 (the isometric
permutation of the rays induced by g) will induce the permutation denoted o in
(5), we have that t;(wy) = t;(g) for all i € Z,,, and 2z1(wy), ..., 2n(wy) are suitable
values for the constants z1(g), ..., z,(9)-

Definition 3.2. Let g € H, x S, and ¢ € Z,,. Then a class of o4, denoted [i],
is the support of the disjoint cycle of o, which contains i i.e. [i]; = {@'03 | d e Z}.
Additionally, we define the size of a class [i]; to be the length of the cycle of o,
containing i, i.e. the cardinality of the set [i],, and denote this by |[]4].

We shall choose z1(9g), ..., 2,(g9) € N to be the smallest numbers such that
d—1

6) (i,m)g = (iag,m + th; (9)) for all m > z;(g) and all 1 < d < |[d],].
s=0

Note that, for any g € H, % S,, and all i € Z,,, we have z;(g) > z;(wy). We now
justify the introduction of condition (6). Consider a g € H,, X S,, i € Z,, and
m € N such that

zi(wg) <m < zi(g) and m + t;(wy) < 2io, (Wg).
This would mean (i, m)g = (ioy, m + t;(wy)), but it may also be that
(i, m)g* = (iog,m +1:(9))g # (igy, m +ti(g) + tis, (9))-
Thus the condition (6) above means that, for any ¢ € H, % S,, the numbers
21(9), ..., zn(g) capture the ‘eventual’ way that g permutes the points of a ray.

Let us fix some g € H,, x §,,. Consider if o4 acts trivially on a particular branch
+'. This will mean that this branch has orbits like those occurring for elements of
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H,. If t;(g) = 0, then g leaves all but a finite number of points on this branch
fixed. If t;(g) # 0, then for any given m’ > z;/(g),
{(#",m"g? |dez}>{(',m)|m=>=m and m =m' mod |ty (g)|}.

Notice that, for any g € H,, x Sy, the o4-classes form a partition of Z,,, relating
to the branches of X,,. We now consider the case |[k]4| > 1. We first note, for any
i € [k]y and m; > z(g), that
(7) (iyma)g/Msl € {(i,m) | m € N}
and that for any 1 < p < |[k]4], 7 € [k]g, and my > 2;(g),

(i,m1)g” & {(i,m) | m € N}.
In fact we may compute (i,m)g!*ls! for any i € [k], and m > z(g),
I[k]g|—1

(8) (i,m)g™sl = (i, m + " tigs (9)).

5s=0
In light of this, we introduce the following.

Definition 3.3. For any g € H,, x Sy, class [i|g, and k € [i]; = {i1,42,...,74}, let
q
t(g) = Ztis (9)-
s=1

Hence, if 1 (g9) = 0, then for all 3" € [k], and m' > 24 (g), the point (', m’) will
lie on an orbit of length |[k],|. If £)(g) # 0, then (8) states that for all i’ € [k],
and all m’ > zy(g), that (i, m’)g!*¥lsl # (i',m/). Hence when tiky(g) = 0, almost all
points of the k*" ray will lie on an orbit of g of length |[k],|, and when tj,(g) # 0
almost all points of the k' ray will lie in an infinite orbit of g. Since different
arguments will be required for finite orbits and infinite orbits, we introduce the
following notation.

Notation. Let g € H,, x S,. Then I(g) := {i € Zy | t(g) # 0} consists of
all i € Z,, corresponding to rays of X, which have infinite intersection with some
infinite orbit of g. Let 1°(g) := Zy \ I(g), the compliment of I(g).

Definition 3.4. Two sets are almost equal if their symmetric difference is finite.

For any g € H,, x S,, and any infinite orbit 2 of g, our aim is now to describe
a set almost equal to §2, so to have a suitable description of the infinite orbits of
elements of H, x S,. We work with ¢;;(g) > 0, since if £)(g) is negative, we will
be able to apply our arguments to g~ *. For any i € [k], and my > z;, (g), we shall
compute the orbit of (i1,m1) under g. First,

{(i1,m1)g™lsl | @ € N} = {(i1,m) | m > m1,m = mq mod |t (g)]}-
Similarly, {(i1,m1)g%*lsI+1 | d € N} is equal to

(9) {(i1og,m) | m >m1 +t;,(g), m = my + t;,(g) mod [t (9)]}-
s—1

For every 2 < s < |[k],], setting iy := 4105 and mg := m1 + Y t;,(g) we have,
d=1

for any 0 < r < |[k]4], that

{(i1,m1)gMlsT | d € N} = {(i,41,m) | m > m,41,m = m,41 mod [t (g)|}
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and hence {(i1,m1)g? | d € N} is equal to
Il
(10) |_| {(ig,m) | m > mg, m = my mod |t[k]( )

In the case where t[k] (9) < 0, we can use similar arguments to those above to
compute, for iy € I(g) and m} > z(g), the set {(i{,m})g~% | d € N}. It is
therefore natural to introduce the following.

Definition 3.5. Let g € H,, x S, i1 € I(g), and m; € N. Then

Xil,m1 (g) = {(i17m) € X, ’ m = my mod ’t[ll](g)’}

s—1
Furthermore, for every 2 <'s < |[k]g| let i, := 1057, ms :=m1 + Y t;,(g), and
d=1
[i1]g
X[zl] m1 |_| qu Mg g
Note that suppressing ma, ..., m[,| from the notation is not ambiguous since these

are uniquely determined from i1, mq, and g.
Let us summarise what we have shown.

Lemma 3.6. Let g € H, xS, and i € I(g). Then, for any infinite orbit Q of
g intersecting {(i,m) € X,, | m > z;i(g9)}, there exists i’ € I(g) and constants
dy,e1 € N such that the set

X[i],d1( )l—lX[ },61( )

18 almost equal to Q.
We may now show that the action of elements of H, x S, is computable.

Lemma 3.7. Let G = (S | R) be the presentation for H, x S, as described in
Lemma 3.1. Then there is an algorithm which, given a word w over ST' represent-
ing g € H, xS, outputs finitely many equations which describe the image of (i,m)
under g for every point (i,m) € X,,.

Proof. From [ABM13, Lem 2.1}, the numbers t1(wy), ..., tn(wg), 21(wg), - - - 2n(wy)
are computable. Hence the action of o, is computable, as are the classes [i], and
the numbers #(;(g). This means that the action of g on the set

{(i,m) | i € Zp and m > z;(wy)} =Y

is defined by finitely many computable equations. For each i € Z,, we have the
equation

(1,m)g := (iog, m + ti(wgy)) for all m > z;(wy,).
Since X, \ 'Y is finite, one can compute the action of g on each point in this set and
then describe this action with finitely many equations. O

It is possible to solve WP(H,, x S,,) in quadratic time. From [ABM13, Lem 2.1],
the size of {(i,m) | i € Z,, and m < z;(wgy)} is bounded by a linear function in
terms of |g|s (the word length of g with respect to S). Then, for each point in this
set one may compute the action of g which involves |g|s computations. We then
have that ¢ is the identity if and only if g acts trivially on this set. Moreover, for
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any g € H, x S,,, the numbers z1(g), ..., z,(g) are computable (using, for example,
the previous lemma).

3.2. Identities arising from the equation for conjugacy. In Section 2.2 we
showed that TCP(H,,) was equivalent to producing an algorithm which, given any
a,b e H, xS,, decides whether or not a and b are H,-conjugated. In this section
we shall show some necessary conditions which any z € H,, must satisfy in order to
conjugate a to b. First, some simple computations to rewrite ¢;(o,z0, ') are needed.
Note that, since o, = 0}, is a necessary condition for a and b to be H,,-conjugated
(and o,, 0} are computable), the following will not be ambiguous.

Notation. We will write [i] to denote [i], (which is also a class of o).

Lemma 3.8. For any isometric permutation of the rays o and any y € H,,, we
have that
ti(oc  yo) = tix-1(y) for alli € Zy,.

Proof. Let ¢ = 0105...0, be written in disjoint cycle notation, and let o1 =
(i1 iz ... ig). Since 0 € Ngym(x,)(Hy), we have that o~ 'yo € H,,. We may now
compute t;, (0 ~tyo) by considering the image of (i1, m) where m > max(z;(y)).
(iv,m)o™ yo = (ig,m)yo = (ig,m + ti,(y))o = (ir,m + i, (y))
Similarly, for 1 < s < g,
(is;m)o ™~ yo = (is—1,m)yo = (is—1,m +ti,_, (y))o = (is,m +ti,_, (y)).
Thus t;(c~yo) = t;o-1(y) for any i € Z,,. O
From this lemma, we may rewrite ¢; (0,20, 1) as t;,, ().

Lemma 3.9. Let a,b € H, x S,,. Then a necessary condition a and b to be H,-
conjugated is that, for all [i] classes, ty)(a) = t[; (D).
Proof. From our hypotheses, we have that

WpO g = :E_lwaaaa:

= wp =1 'wa(0az0, ")

1

and so, since wq,wp, z, and o,z0, " can all be considered as elements of H,,, we

have for all 7 € Z,, that

ti(wp) = ti(x™ ") + ti(wa) + ti(oawo, )
which from the previous lemma can be rewritten as
(11) ti(wp) = —ti(x) + ti(wa) + tio, (x).

Now, for any branch i, we sum over all k in [¢']

Z tr(wp) = — Z tre(x) + Z tr(wa) + Z tr(z)

keli] keli’] keli’] keli’]
= > te(wp) = Y te(wa)
keli'] keli’]

= t[lr](b) = t[i/](a)

as required. O
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Thus, ifa,b € H, xS, are H,-conjugated, then I(a) = I(b). For any g € H,, xS,
the set I(g) is computable, and so the first step of our algorithm can be to check
that I(a) = I(b). Hence the following is not ambiguous.

Notation. We shall use I to denote I(a) and I(b).

Intuitively, choosing a value for t;(z) for one k € [i’] should define ¢4 () for all
k" € [i']. A proof of this follows naturally from the computations within the proof
of the previous lemma.

Lemma 3.10. Leta,b € H, xS, be conjugate by x € H,,. Then, for each class [k],
choosing a value for ty(x) for some ¢ € [k] determines values for {t;(x) | i € [k]}.
Moreover, let iy € [k] and, for 2 < s < |[K]|, let is := i105~ L. Then the following
formula determines t; () for all s € Z, ”

t; ( +Z iq wb tiy Wa))

Proof. 1f |[k]| = 1, then there is nothing to prove. From (11) within the proof of
Lemma 3.9, we have for all ¢ € Z,, that

(12) ti(wp) = —ti(z) + ti(wa) + tio, ().
Within (12), set ¢ to be equal to is € [k] (so that s € Z,) to obtain
ti,(wp) = —ti, () + ti, (Wa) + tiso, (©)
= i, (€) = ti, () + b, (wp) — b, (Wa).
Setting s = 1 provides a formula for ¢;,(z). If 2 < s < ¢, then

tiso, (x) = ti, () + ti, (wp) — ti, (wa)
=ti, (@) + i,y (wp) — ti,_, (wa) + Li, (wp) — ti, (Wa)

= +Z iq wb Lig wa))

Thus, for all s € Z,, we have a formula for ¢;_ (x) which depends on the computable
values {t;(a),t;(b) | i € [k]} and the value of ¢;, (x). O

4. AN ALGORITHM FOR FINDING A CONJUGATOR IN H,,

In this section we will construct an algorithm which, given a,b € H, x S, with
0, = 0y, either outputs an € H,, such that 2~ taz = b, or halts without outputting
such an z if one does not exist.

We will often need to make a choice of some i € [k],. For each class [k], we shall
do this by introducing an ordering on [k],. We shall choose this ordering to be the
one defined by i; := inf[k], (under the usual ordering of N) and i, := i; 05_1 for all
2<s< Hk]g‘ Hence [k]g = {il, oo 7i|[k]g|}-
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4.1. An algorithm for finding a conjugator in FSym. Many of the arguments
of this section draw their ideas from [ABM13, Section 3]. By definition, any element
which conjugates a to b will send the support of a to the support of b. If we wish to
find a conjugator in FSym, this means that the symmetric difference of these sets
must be finite, whilst supp(a) N supp(b) can be infinite.

Notation. For any g,h € Sym, let N(g,h) := supp(g) Nsupp(h), the intersection
of the supports of g and h.

Notation. Let g € H, x S,,. Then Z(g) :={(i,m) € X,, | i € Z,, and m < z;(g)}
which is analogous to the Z region which has been used by some authors when
dealing with the Houghton groups.

Definition 4.1. Let g € H, % S,,. Then, for a fixed r € N, let g,- denote the element
of Sym(X,,) which consists of the product of all of the r-cycles of g. Furthermore,
let goo denote the element of Sym(X,,) which consists of the product of all of the
infinite cycles of g.

Our strategy for deciding whether a,b € H,, x S, are FSym-conjugated is as
follows. We will show that, for any r € N, if a,- and b, are FSym-conjugated, then a,
and b, are FSym-conjugated by some x where supp(z) is contained in a computable
finite set. Similarly we will show that if a,, and b, are FSym-conjugated, then
there is a computable finite set such that there is a conjugator of as, and b, with
support contained within this set. In order to decide if a,b € H,, x S, are FSym-
conjugated we may then decide if ao, and by, are FSym-conjugated, produce such
a conjugator ¥, if one exists, and then decide if y; Yay, and b are FSym-conjugated
by deciding whether (y; *ay), and b, are FSym-conjugated for every » € N (which
is possible since b, is non-trivial for only finitely many r € N).

Lemma 4.2. If g,h € Sym are FSym-conjugated, then
|supp (9) \ N(g,h)| = [supp (k) \ N(g, h)| < oco.
Proof. The proof [ABM13, Lem 3.2] applies to our more general hypotheses. U

Lemma 4.3. Let g € H, xS, andr € N. Then g, € H, x S,. Note this means
that g, restricts to a bijection on Z(g,) and X, \ Z(g).

Proof. 1t is clear that g, € Sym(X,). From our description of orbits in Section 3.1,
for all (i,m) € X,,\ Z(g) we have that (i, m) lies either on: an infinite orbit of g; an
orbit of g of length s # r; or on an orbit of g of length r. In the first two cases, we
will have that (i, m)g, = (i,m) for all (i,m) € X,,\ Z(g). In the final case, we have
that (i,m)g, = (i,m)g for all X,, \ Z(g). Hence, g, is an element for which there
exists an isometric permutation of the rays o, and constants t1(g.),...,tn(g.) € Z
and 21(gr), ..., 2n(g-) € N such that for all i € Z,

(i,m)g, = (io,m + t;(g,)) for all m > z;(g,)
which was labelled (5) in Section 3.1. Thus, g, € H,, X S,,. O
Lemma 4.4. Let G = (S | R) be the presentation for H, x S, as described in
Lemma 3.1. Then there is an algorithm which, given any r € N and a word w over

SEL representing g € H, % S,, outputs finitely many equations which describe the
image of (i,m) under g, for every point (i,m) € X,,.
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Proof. First, compute the numbers 21(g),. .., z,(g) and t1(g), ..., t,(g) and classes
{lkl]g | k=1...,n}. Then produce equations of the form

(i,m)g = (iog,m +t;(g)) for all (i,m) € X,, \ Z(g).
We now wish to write similar equations for g.. In order to define g,, we keep any
equation relating to the point (i1, m) if and only if
O (i1, ma)| == [{(ir,m1)g" | d € Z}| = 1.
We note that for all (i, m’) € X,,, the number |O4(i’, m’)| is computable. First, let
(i',m'") € X \ Z(g). Then |O4(i',m')| is infinite if ¢;(g) # 0 and is equal to |[i'] ]
otherwise. If (i’,m’) € Z(g), either |O4(i’,m’)| is finite and so (i’,m’)g? = (i',m’)
for some d € N, or (i',m/)g? € X,, \ Z(g) for some d € N and so (i, m’) lies in an
infinite orbit of g. O

Notation. Let g € Sym(X). Given any set Y C X for which Yg =Y (so that g
restricts to a bijection on'Y ), let g’Y denote the element of Sym(X) which acts as
g on the set'Y and leaves all points in X \'Y invariant i.e. for every x € X

| xg fzeY
x(g‘Y) T { T otherwise.

Lemma 4.5. Fiz an r € N and let gh € H, X S,,. If g and h, are FSym-
conjugated, then there exists an x € FSym which conjugates g, to h, such that
supp(z) € Z(gr) U Z(h).

Proof. Since we are working with a fixed g, h, € H, x S,, let N := N(g.,h,),
Z:=2Z(g,)UZ(h,), and Z°¢:= X, \ Z. If g, and h, are FSym-conjugated, then
(13) (i,m)g, = (i,m)h, for all (i,m) € Z°¢.

By Lemma 4.3 and (13), g, and h, restrict to a bijection of Z¢. Thus, g, and h,

must also restrict to a bijection of Z.
Applying Lemma 4.2 to g, and h, we have that

| supp (gr) \ N| = [supp (h,) \ N| < oo
where, from (13), Z¢ N supp(g,) = Z° Nsupp(h,) € N. Thus supp(g,) \ N and
supp(h,) \ N are both subsets of Z. Now, for any finite subset D C N,
[D U (supp (g-) \ N)| = [D U (supp (h) \ N)| < oc.
Setting D := Z N N we have that
(14) | supp(g,|Z)| = |supp(h.|Z)] < oc.

Since g, and h, consist of only r-cycles, gr}Z and hT’Z are elements of FSym with
the same cycle type, and so are FSym-conjugated. Thus there is a conjugator
x € FSym with supp(z) C supp(gr‘Z) U supp(hT‘Z). Therefore supp(z) C Z, as
required. O

Lemma 4.6. If goo = hoo and g, h € H, XS, are FSym-conjugated, then there is an
x € FSym which conjugates g to h and has support contained within a computable
set.
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Proof. We use the previous lemma. For each r € N let Z, := Z(g,) U Z(h;).
Moreover, let Y := (U, cy Zr) \SuPP(goo) and Y := X, \ Y. If 2 € FSym conjugates
g to h, then for all r € N, x conjugates g, to h,.. Note that Y is computable. First,
compute which g, are non-trivial by computing 7°(g) (so that for each j € I°(g),
9i1j],] is non-trivial) and then, from the proof of Lemma 4.4, compute the length
of all orbits of points (i,m) € Z(g). This means that, apart from finitely many
r € N, g, is trivial, and so Y is finite. This means that the finite number of
r € N such that Z, # () are known. Finally, supp(g.) N Z(g) is computable (by
Lemma 3.7). As noted in (13) above, (i,m)g = (i,m)h for all (i,m) € Y and
(again from the previous proof) g‘Y and h|Y have the same cycle type. Thus there
is an z € FSym which conjugates g}Y to h‘Y and, since g‘YC = h‘YC, we may
choose z so that supp(z) C Y. Notice that, from our choice of Y, this means that
supp () N supp(geo) = 0. O

We now reduce finding an FSym-conjugator of a and b to the case of Lemma
4.6. In order to do this we require a well known lemma.

Lemma 4.7. Let x € G conjugate a,b € G. Then, ' € G also conjugates a to b
if, and only if, ' = cx for some ¢ € Cg(a).

Lemma 4.8. Let g,h € H, X S,. If goo and ho are FSym-conjugated, then there
exists an x € FSym which conjugates goo 10 hoo with supp(x) C Z(goo) U Z(heo)-

Proof. Let Z := Z(goo)UZ(hoo). We start by using a similar argument to the proof
of [ABM13, Prop 3.1] to show that there is a computable bound for z;(z). We will
assume that ¢;)(g) > 0, since replacing g and h with w; 'oy and w,, o, respectively
will provide an argument for ¢[;(g) < 0. Note that I(ge) = I(g) = I(h) = I(hoo).
For all i € I(gso) and all m > 2;(gso ), We have that (i,m)(geo)!ls! = (i, m+tp1(g))-
Let « € FSym conjugate go, to hoo. We will show for all ¢ € Z,, that

(i,m)x = (i,m) for all m > z;(x).
We first produce a computable bound for z;(z) for all j € I°(g). Let j € I°(g),
(7,m) € X, \ Z, and assume that (j,m) € supp(z). Then (j,m)he = (j,m)
and so (j,m)z " geer = (4,m). If (j,m)r~! & supp(geo), then the 2-cycle v :=
((j,m) (jym)z™!) is in Crsym(goo) and so (by Lemma 4.7) 2’ := vz also conju-
gates g to h. Now, by construction, (j,m) ¢ supp(2’). If (j,m)z~! = (j/,m’) €
supp(gso ), then z sends (j/,m’) to (j,m). But, from the fact that (j,m)r gz =
(4,m), x must send (', m’)gso to (j,m), and so x sends both (j',m") and (5, m')geo
to (j,m), a contradiction. Therefore we may assume that

{(G,m) [J € I°(g)} Nsupp(z) € Z(goo) U Z(hos)-
We now show that there is a computable bound for z;(x) for all i € I(geo)-
Assume, for a contradiction, that for some i € I(g) we have that

zi(x) > max(2;(goo ) 2i(hoo))-

For all m > 0, we then have that z;(z) +m > z;(xz) > max(z;(geo), zi(hoo)). Hence,
forallm >0

(i, zi(z) + m) (z 7  goo) Tl = (4, 2 () + m) (hoo ) ~IlHs!
=i, zi(2) +m = tpi)(hoo)) = (i, 2i(2) +m — 131 (9o0))-
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Similarly,
(i, 2zi(x) + m) (27 goow) 1) = (4, 2 () + M)z (goo) TIel2
=0 zi(@) + )goo) o, o = (i, 2i(x) + m by (900))2

and so (i, z;(z) +m — t[;1(9o0))® = (4, 2i(x) + m — t[;)(goo)), Which contradicts the
minimality of z;(z). We may therefore enumerate all possible bijections of the set
Z(go) U Z(hso) to decide whether or not g, and ho are FSym-conjugated. O

(™
(

We will now produce an element which conjugates a to b using the conjugators
computed in Lemma 4.5 and Lemma 4.8.

Proposition 4.9. Given a,b € H, x S,, there is an algorithm which decides
whether or not a and b are FSym-conjugated, and produces a conjugator in FSym
if one exists.

Proof. First, we may compute a., and b, and so use Lemma 4.8 to decide whether
or not they are FSym-conjugated. If a., and b, are not FSym-conjugated, then a
and b are not FSym-conjugated since such a conjugator would also conjugate aso
t0 bso. Thus, let y; € FSym conjugate ao t0 boo

Now, a necessary condition for elements a,b € H, x S, to be conjugate in
Sym(X,,) is that they have the same cycle type. Let M := {r € N| g, # id}. Then
a = Goo [[4eps @a and b := boo [[ 425 ba- Note that |M] is finite and that M is
computable by the process described for computing Y in Lemma 4.6. From Lemma
4.8 we may produce an element y; € FSym such that

v tayr = (y1 taceyn) (i (] aa)mn) =t a
deM
Importantly this means that a’ = bs. We now describe how to compute finitely
many equations to describe the action of a’ on X,,. Note that y; was computed
by enumerating bijections of a computable finite set. Hence the bijection induced
by y1 is known. Now, compute (i,m)y; ‘ay; for each point (i,m) € supp(y;) U
supp(y1)a~! =: Yi. Finally, note that (i,m)a = (i,m)a’ for all (i,m) € X,, \ V1
since
(i,m)y; fayr = (i,m)ay, = (i,m)a for all (i,m) € Y7.

Now, from Lemma 4.6, it is decidable whether there exists yo € FSym which
conjugates a’ to b with supp(y2) Nsupp(be) = 0. Note that, if there is an element
Y2, then it also conjugates a’(bso) ™! to b(bso)™!. Hence

(192) " talyry2) = y3 'a'ys
= y51a’(b )~ ooy
=Yy 'a (boo) 1y2boo
= b(bm)_lboo
=b. O
4.2. Reducing the problem to finding a conjugator in FSym. The previous
section provided us with an algorithm for deciding whether a,b € H, x S, are

FSym-conjugated. Our problem is to decide if ¢ and b are H,-conjugated. We
start with a simple observation.



Twisted conjugacy in Houghton’s groups

Definition 4.10. Given g,h € H, x S,, and a group G such that FSym(X,,) <
G < H,, a witness set of G-conjugation is a subset V(g,h,G) of Z" satisfying
that if g, h are G-conjugated, then there is an z € G such that ¢ = z~'hz and
t(x) € V(g, h, Q).

Lemma 4.11. Let FSym(X,,) < G < H,,. If, for any g,h € H,, X S,, it is possible
to compute a witness set of G-conjugation V(g,h,G), then there is an algorithm
which, given any a,b € H, X S,, decides whether they are G-conjugated.

Proof. We use, from the previous section, that there exists an algorithm for deciding
if g,h € H, x S, are FSym-conjugated. For any v € Z" with >_"" ; v, =0 let

n
(15) Ty = 9 =

=2
so that t(zy) = v. Thus, if ¢ and h are G-conjugated, then there exists v €
V(g,h,G) and = € FSym such that zyz conjugates g to h. Now, to decide if g and
h are G-conjugated, it is sufficient to check whether any of the pairs {(zg'gzy, h) |
v € V(g,h,G)} are FSym-conjugated. This is because ;

$_1(Z’;19$X)Z’ =h&s (xxm)_lg(xxx) =h
and so a pair is FSym-conjugated if and only if g and h are G-conjugated. O

From this lemma, if, for any g, h € H,, xS, the set V (g, h, H,,) was computable
(from only g and h), then TCP(H,,) would be solvable. We shall show that solving
our problem can be achieved by producing an algorithm to decide if elements are
G-conjugated where GG is a particular subgroup of H,. We restrict our attention
to searching for a conjugator x such that ¢;(x) = 0 mod |t;(g)| for all i € I(g),
since this will mean that any infinite orbit O4 of g will be almost equal to (O,)z.
Let |o4| denote the order of o, (the isometric permutation of the rays induced by
g). We will impose the condition that t;(z) = 0mod |t;(g!?!)| for all i € I(g)
to use in the next section. This is a stronger condition since, for any i € I(g),

It (9)] = [ti(g!sl).
Definition 4.12. Let g € H,, X Sy, |o4| denote the order of o4 € S, and
H!(g) :={x € H, | ti(z) = 0 mod !ti(gm')! for alli € I(g)}.

Recall that if a,b € H,, x S, are H,-conjugated, then o, = 0. Also, from
Lemma 3.9, tf;(a) = t[;(b) for all i € Z,. Hence, if a and b are H,-conjugated,
then H(a) = H}(b).

Lemma 4.13. Assume there exists an algorithm which, given any g,h € Hy, X Sy,

decides whether g and h are H}(g)-conjugated. Then there exists an algorithm
which, given any g,h € H, xS, decides whether g and h are H,-conjugated.

Proof. Given g € H,, x S,, construct the set

Py={(vy,...,v,)€Z":0<v; < ‘ti(g“’ﬂ')‘ for all i € I(g) and v;, = 0 otherwise}.
Note that, for any y € H, x S,,, P, will be finite. Define zy as in (15) above. Note
that Hy, = | |,cp #vH;(g) and so any element of Hy, is expressible as a product of
xy for some v € P, and an element in H}(g). Thus, deciding whether any of the

finite number of pairs {(z;'gzy,h) | v € P,} are H;(g)-conjugated is sufficient to
decide whether g and h are H,-conjugated. O
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Remark 4.14. From Lemma 4.11, if for any g,h € H, X S,, a set V(g,h, H(g))
is computable, then it is possible to decide whether any g,h € Hy,, x S, are H*(g)-
conjugated. By Lemma 4.13, it will then be possible to decide whether any g, h €
H, xS, are H,-conjugated. From Section 2.2, this will mean that TCP(H, ) is
solvable.

In the following two sections we will show that for any g,h € H, x S,, a witness
set of H(g)-conjugation is computable from only g and h. In Section 4.3 we show
that the following is computable.

Notation. Let g,h € H, xS, andn > 2. Let M;(g,h) denote a number such that,
if g and h are H}(g)-conjugated, then there is a conjugator x € H}(g) with

S @) < Mi(g, h).

i€l(g)

In Section 4.4 we show that for any g, h € H,, x.S,,, numbers {y;(g,h) | j € I°(9)}
are computable (using only g and h) such that if there exists an = € H}(g) which
conjugates g to h, then there is an ' € H}(g) which conjugates g to h such that
ti(z') =t;(x) for all ¢ € I(g) and t;(2") = y;(g,h) for all j € I°(g).

Remark 4.15. Note that if the numbers My(g,h) and {y;(g,h) | j € I°(g)} are
computable using only g and h then the set V (g, h, H}(g)) is computable from only g
and h. This is because defining V (g, h, H}(g)) to consist of all vectors v satisfying:
i) Dier Il < Mi(g, h);
ii) v, =y; for all i € I°(g);
i) Yoo, v, =0.
provides us with a finite set such that if g and h are H)(g)-conjugated, then they
are conjugate by an x € H(g) with t(x) € V(g,h, H:(g)).

4.3. Showing that M/(g,h) is computable. Let g,h € H, x S, and = € H}(g)
conjugate g to h. In this section we will show that a number M;(g, h) is computable
from only the elements g and h.

Notation. Let x € H}(a) conjugate a,b € H, x S,,. Then, for each i € I, let l;(x)
be chosen so that t;(x) = l;(x)|t;;)(a)]. Note, since t;(z) = 0 mod ’tm(a)‘ for all
i€, that l;(x) € Z for each i € I.

Recall that o, = o0, and that Lemma 3.9 tells us that, if a and b are H,-
conjugated, then fj;(a) = t};)(b) for every [i] class of o,. Thus, for every i € I and
dy € N, we have that X;, 4,(a) = X;, 4,(b) (the sets from Definition 3.5). Also,
(Xi; 4, (@))z is almost equal to X;, 4, (a) since the set X;, 4, (a) consists of all points
(i1,m) € X,, where m = dy mod |[t};,(a)|. Moreover (X;,)4,(a))z is almost equal
to X[;,1,4, (@) since X4, (a) is the union of sets X;, 4, (a) where for each i, € [i1]
we have that (X 4, (a))z is almost equal to X;, 4, (a).

Remark 4.16. From (11) in the proof of Lemma 3.9, we have for any H,,-conjugated
g,h € Hy xS, and any i € I1(g) that tis, (v) —t;(x) = t;(wn) —ti(wy). If we assume
that x € H}(g), we then have that t;(w,) = t;(wn) mod [t (g)|. Hence if g and h
are H(g) conjugate, then for any infinite orbit Oy of g, there must be an infinite
orbit of h which is almost equal to O,4. It will therefore not be ambiguous to omit a
and b and simply write X;, 4, and X q, -
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Definition 4.17. Given g € H, x S,, we define an equivalence relation ~, on
{lklg | k € I(g)} as the one generated by setting [i], ~4 [j], if and only if there
is an orbit of g almost equal to X 4, (9) U X[j},¢, (9) for some dy,e; € N. Writing
[i] ~4 [j] will not be ambiguous since the relation ~, will always be used with
respect to the o4-classes of g. Note that if a,b € H,, x S,, are H,-conjugated, then
0. = 0p and a and b produce the same equivalence relation.

Proposition 4.18. Let a,b € H,, x S, be H}(a)-conjugated. Then there exists a
computable constant K (a,b) (computable from only on a and b) such that for any
x € H(a) which conjugates a to b and any given i,j where [i] ~ [j], we have that

[[a]112: ()] = 1[1]117;(2)]| < K (a,D).

Proof. We follow in spirit the proof of [ABM13, Prop 4.3]. For convenience, we
introduce notation to describe a set almost equal to X[;) 4, -

Notation. For any set Y C X,,, and any q := (q(1),q(2),...,q(n)) € N, let
Y‘q =Y \{(i,m) | i€ Zn and m < q(i)}.

We will assume that a,b € H, xS, and x € H}(a) are known. Let i,j € I
satisfy [i] ~, [j]. Then there exist di,e; € N such that Xp;) 4, U X[j1¢, is almost
equal to an infinite orbit of a and hence, by Remark 4.16, is almost equal to an
infinite orbit of b. Denote these infinite orbits by O, and Oy respectively.

Let €, be the smallest integers such that

i) for all k € [1] U [j], ex = max(zk(a), zk(b));
ii) for all k € [1], ex = dx mod [t (a)l;
iii) for all k € [j], ex = e, mod [t;)(a)]
e if ke [i]U[j]

and define v € Z" by v, = 1  otherwise

We now have that
Xiitar |, € Xiitar 0 Oas Xiigas |, € Xig,ar N O
X[i},dl‘v C Xjl,e; N Og; and X[i]7d1|v C Xpjer N O
This allows us to decompose O, and Oy:
Ou = Xjias |, U Xjhier |, U Sig
O = Xiitas |, U X e, U Tog

where S; ; and T; ; are finite sets. Define €}, to be the smallest integers such that
for all k € [i] U [4]

i) €, = zk(x);

i) €, > ex + [te(2)];

iii) €, = e, mod |t (a)l
€, if ke i]ulj]
1  otherwise.
These conditions for €, imply that z restricts to a bijection from

Xi)ar

and X[

and define v' € Z™ by v}, =

v’ to X[i],d1 v/ +t(x)

o to X[

j]751 j]uel v’—l—t(ac)'

Hence z restricts to a bijection between the following finite sets
(16) (Xt |, \ X [,) U (Xpgrea [, \ Xea ) U Sl
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(17) and (X[i],dl ‘U \ X(if,dy

Uf+t<x)) U (Xpjen |y \ Xiex ) U T .

By definition, x eventually translates with amplitude 3 (z) = lx(x)- |t (a)| for each
k € [i{] U [j]. Thus
Y bt

)(Xm,dllv \ Xm,dllvf+t<z))) = ’(Xm,dllv \ X o)
keli]

£ e

k' €[7]

v/ +t(x)

and | (Xpp.e, o\ Xpea o1 )| = | (Kieabo \ Xigpeabor)

Now, since (16) and (17) have the same cardinality, we have
(18) Z le(z Z e (@) + ‘TlJ’ - ’Sw’
keli] krelj]

Using Lemma 3.10 we may rewrite each element of {l(z) | k € [i]} as a computable
constant plus /;(z) and each element of {lx/(z) | k € [j]} as a computable constant
plus lj(z). Let A;; denote the sum of all of these constants (which ‘adjust’ the
values of the translation lengths of x amongst each o, class). Now (18) becomes

|10 (=) + |51 (%) + Aiy + [ T5 5] = 15651
By the generalised triangle inequality we have

|18 ()] < {1 () + [Ad sl + 8551 + [T 51

and |[j[[1; ()| < [[i]]1:(x)| + |Ai ;] + 1Si4] + T 51-
Thus
[)112:@)| = |11 ()] < [Aig| + 1Si5] + T 5] =: C(i, 5)
1112 ()] = [[a)]]2: ()] <|A”r+\sur+|T,]|— C(5.1)
= ||[ill1s ()] = [[]l1L(2)]] < C(

We may then complete this process for all pairs of rays ¢, j’ € I such that there
exist dj, e} € N such that Xy 4 U X[j,e; is almost equal to an infinite orbit of a.
Let C(a,b) denote the maximum of all of the C(#/, j).

Now, consider if k, k" € I satisfy [k] ~, [k']. This means that there exist
KO k@ kD e I and dP,dP, . d e el Y e N such that
forallpe Zy_4

X FO) X
1

K], (p+1) and X

[k(],el X[k(p)],dgm U X[k<p+1>],el [k(H],dlP) U X[kq,egf“)

are almost equal to orbits of a. We wish to bound ||[k]||lx ()| — |[¥']||lx (2)]|, and
will do this by producing bounds for

(B2 ()| = [[K']] |l ()] and [[E][[Le: ()] = |[E]] |k ()]
We start by rewriting |[k]||lx(x)| — |[£]||lx (x)] as
(&2 ()] = 1RO @)]) + (F Do @)] = 1ED] e (@)]) + ..

+ (IR0 @) = 1RO en @)]) + (BN (@) = 1R (2)1)
which by definition is bounded by
-1
C(k, kW) + Z C (kD klatD)y 4 C kW, k')

q=1
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and so
f—1
Bk ()] = [l (2)] < C(k, kM) + Y CRD, BHD) + 0 (kD) K

q=1

< (f+1)C(a,b)
<n-Ca,b)
Similarly, |[¥] 1l (2)| = [K)[[1s@)] < (f+1)C(a,b) < n-C(a,b). Thus n-C(a,b)+1
is a suitable value for K (a,b).
Now we note that, without knowledge of the conjugator z, for all k, ¥’ such that
X(k),dy U X[rr),e, is almost equal to an infinite orbit of a, the sets S and Ty x/ are

computable, and so the constants C'(k, k") are also computable. Hence C (a,b) and
so K(a,b) are computable using only the elements a and b. O

We shall now show that, if @ is conjugate to b in H;:(a), then there is a conjugator
x € H(a) such that for all ¢ € I there exists a j € I such that [j] ~, [i] and
tj(z) = 0. This will allow us to use the previous proposition to bound |¢;(x)| for all
[k] ~¢ [j]. We will produce such a conjugator using an adaptation of the element
defined in [ABM13, Lem 4.6]. As with their argument, we again use Lemma 4.7,
which stated that if x € G conjugates a to b then y € G also conjugates a to b if
and only if there exists a ¢ € Cg(a) such that cx = y.

Notation. Let g € H,, X S,, and i € I(g). Then €4([i]) == {k | [k] ~4 [i]} C I(g).
This is the set of all k € Z,, corresponding to rays of X,, whose o4-class is related
to [ilg.

Definition 4.19. Let g € H, x S, and fix an i € I(g). Then gj; is defined to
be equal to the product of all cycles of g., which have support almost equal to
X[j/]7d1 (g) LJ X[j”],el (g) where j/,j// S Q:g([l]) and dl, e;1 € N.

An element g € Sym(X,,) is in H,, x S, if and only if there exists an isometric
permutation of the rays ¢ and an element h € H,, such that ¢ = ho. Also, since
(H,)m = Z" 1 (where 7 : g — (t1(9),t2(9),...,tn(g))), we have for any choice of
ai,...,an—1 € 7Z that there exists an h € H,, with ¢;(h) = a; for all i € Z,,_; and

n—1
tn(h) == 1 ts(h).
Lemma 4.20. Let g € H,, x S,. For every i € I, gy, lies in Cp, xs,(9)-

Proof. Fix an i € I(g). By considering gj; and g in Sym(X,,), the commutativity
follows since we are choosing disjoint cycles from g.,. Notice that we will only
choose finitely many disjoint cycles from ¢ since it only has finitely many infinite
orbits. Thus supp(gp;) and {(k,m) | k € I°(g), m € N} have finite intersection. Let
[j] ~g¢ [i]. Then any infinite orbit of g containing a subset almost equal to X{;; 4
(for any d € N) will be an infinite orbit of gj;. Thus if gj; has an orbit almost equal
to Xji),a; U X[jrp,e; for any 4', j' € I(g) and some dj, e} € N, then for every d € N
there is an orbit of g;; containing a subset almost equal to X[y 4 and an orbit of
gpi) containing a subset almost equal to X[ 4. Let (k,m) € X, with m > zr(g).
e (k,m)g if [}~ [i] and m > z(9)

,m)g 1 ~g i) and m = zx(g

(k,m)gp) = { (k,m) otherwigse.
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Now let h and o satisfy
= { 0 I 0 11 g g = [ (oo 1~

0 otherwise (k,m) otherwise.

Now, since h restricts to a bijection on X,,, we have that > ., ¢;(h) = 0. Hence
we may choose h such that g;) = ho with h € H,, and o an isometric permutation
of the rays. O

An immediate consequence of this lemma is that for any g € H,, x.S,,, the element
(g)'7¢! is in C, (9).

Lemma 4.21. Let a,b € H, X S, be conjugate by some v € H}(a). Then there
exists a conjugator ' € H}(a) which, for eachi € I, there is a j such that [j] ~q [7]
and tj(z') = 0.

Proof. Let x € H}(a) conjugate a to b. From the definition of H(a), we have for
all i € T that t;(x) = 0 mod |t;(a!?)|. Thus there exist constants my,...,m, € Z
such that, for all 4 € I,

tl(l‘) = mi‘ti(CL'Ja')‘.
Also recall that, for any i € I, €,([7]) := {k | [k] ~a [{]}. The sets €,([i]) partition
I. Let R(a) := {j',...7%} C I be representatives of ~,-classes (so that a,, =
[1,_, ajj«;). Thus, for any given i € I, there is a unique d € {1,...,u} such that

[7%] ~q [i]. Choose some j € R(a) and consider
(agy) ™1™z

First, by Lemma 4.20, (af;))!°l € Cp, (a). Moreover, (aj;7)!°«! € H};(a). Hence, for
any d € Z, (a[j])|‘7“|d € CH=(a)(a). We now note that
tj(aﬁ]‘%‘mjx) =0

—|oalm;

and that ag x conjugates a to b by Lemma 4.7. Thus a suitable candidate for
' is
_|Uu, |m .
H a) .
JER(a)

O
Recall that Mj(a,b) was a number such that, if a,b € H, x S, are H}(a)-
conjugated, there exists an x € H)(a) which conjugates a to b and > |t;(x)| <

i€l
M[ ((1,, b)

Proposition 4.22. Let a,b € H, x S, be H}(a)-conjugated. Then a number
M;i(a,b) is computable.

Proof. Let S(a) := {i',...,i"} C I be representatives of I, so that Wies@lil =1
and, for any distinct d,e € Z,, we have [i%] # [i®] . We work for a computable
bound for {|l;(z)| | i € S(a)} since t;(x) = l;(z)[t;;)(a)| and the numbers |t};(a)]
and |o,| are computable. Lemma 3.10 from Section 3.2 will then provide a bound

for |l;(x)| for all ¢ € I. Proposition 4.18 says that there is a computable number
K(a,b) =: K such that for every i, j € I where [i] ~, [j], we have

[ [i][12: ()] = 1131115 ()| < K.
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By Lemma 4.21, we can assume that for any given i € S(a), either ¢;(x) = 0 or
there exists a j € I such that [j] ~, [i] and ¢;(z) = 0. If t;(x) = 0, then we are
done. Otherwise,

[ [E]112: ()] = |11 ()] < K =||[i]]]1:(= )H<K:>|li(35)’<|[[;]'|<K-

Continuing this process for each i € S(a) (of which there are at most n) implies

that
Z |li(x)] < nK.
i€S(a)

We may then compute, using Lemma 3.10 from Section 3.2, a number K’ such that

> Jlix)] < K.

i€l
A suitable value for Mj(a,b) is therefore K’ - max {|tj;(a)| : i € I}. O

4.4. Showing that the numbers {y;(g,h) | j € I°} are computable. In this
section we will show, given any g,h € H,, x S,, numbers {y;(g,h) | j € I°(9)}
are computable such that if there exists an x € H(g) which conjugates g to h,
then there is an o’ € H(g) which conjugates g to h such that ¢;(z’) = t;(x) for
all i € I(g) and t;(2’") = y;(g,h) for all j € I°(g). From the previous section,
the number Mj(g,h) is computable. From the arguments of Section 4.2, it is now
sufficient to show that such numbers {y;(g,h) | j € I°} are computable for any
g,h € Hy, x S, in order to solve TCP(H,,) for any n > 2.

Note that the condition on elements to be in H;( ) provides no restriction on
the translation lengths for the rays in 1¢(g). This means that the arguments in this
section work as though our conjugator is in H,,.

From Section 3.1 we have that for any g € H,, ¥ S,,, any point (j, m) such that
Jj € I°(g) and m > z;(g) lies in an orbit of g of size |[j]|.

Notation. Let g € H,, X S,, andr € N. Then IS(g) :={j € I°(9) | |[J]| =r}. Also,
we may choose L, ..., j% such that [jL]U[j2]U...U[j*] = I¢(g) and [jF]N[j¥] =0
for every distinct k,k' € Z,. We shall say that jl,...,j% are representatives of

I3(9)-

Lemma 4.23. Let g,h € H, x S,, and r € N. If 1,25 € H, both conjugate g to
h and jl,...,j% are representatives of I¢(g), then

u u
D tia(m) =Y ta(aa)
s=1 s=1

Proof. Fix an r € N and let j!,... j* be representatives of I(g). Let d,d be
distinct numbers in Zy, [j4] = {ki,..., ko}, [5%] := {k|,..., K.}, and let Cja jar €
Sym(X,,) be defined by

(i,m+1) ifie [f] and m > z;(g)

o (i,m —1) ifie['r]andm>2’z(9)

(1, m)cﬂuﬁ’ ) (ke, 2, (g) ifi=k. andm = 2k, (9)
(i,m) otherwise.

Note that ¢4 ;o0 € Cp,(g). Thus, given z1, 22 € H,, which both conjugate g to h,
it is possible to produce, by multiplying by an element of the centraliser which is a
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product of elements ¢;1 , (with k € {j2,...,j4}), elements z/, 2% € H, which both
conjugate g to h and for which t;s(2]) = 0 = t;:(25) for all s € {2,...,u} and so
by Lemma 3.10, t;(z}) = t;(x}) for all j € I¢(g) \ [j}]. By construction we then
have that

u u
ti(zy) = thﬁ (z1) and tj1(z5) = th;‘i (z2).
s=1 s=1

Now consider y := z}(z4)~!. By construction t;(y) = 0 for all j € IS(g) \ [j}]
since t5(z}) = t;(a}) for all j € I2(9) \ [jL]. Also t;(y) = t;s(y) Tor all j € [j1]
since y conjugates g to g (and so we also have that y € Cp, (g9)). If t;1(y) # 0,
then y contains an infinite cycle with support intersecting the branch j! and a
branch j, € I°(g) \ IS(g) so that |[j,]| = p # r i.e. the infinite cycle contains
(3}, m1), (jp, m2) € X,,. This means there exists an e € Z such that (j}, mi)y® =
(jp,m2). But then y©¢ € Cy, (¢9) and y© sends an r-cycle to an p-cycle where r # p,
a contradiction. Hence for any x,z’ € H, which both conjugate g to h,

D ti(a) =)ty ().

From this proof, the following is well defined.

Notation. Let g,h € H, x S,, r € N and j.,...,j* be representatives of I¢(g).
Then M, .. juy(g,h) denotes the number such that, for any x € H;(g) which
conjugates g to h, > y_, ja(x) = Mg . juy(g,h). Since we will fiz a set of repre-
sentatives, we will often denote M1 . juy(g,h) by My(g,h).

Also from this proof, if g and h are H,-conjugated, then for any values y1, ..., %, €
Z such that Y7 yq = M1 . juy(g,h), there exists an z € H}(a) which conju-
gates g to h with t;a(z) = yq4 for all d € Z,,. We will show that one combination
{ya € Z | d € Z,} is computable in order to show, for any g, h € H,, x S,, and any
r € N, that M, (g,h) is computable. The following will be useful for this. Recall
that for any g € Hy, x Sy, Z(g) :={(i,m) € X,, | i € Z, and m < z;(g)}.

Notation. Let g € H, xS, and r > 2. Then n,(g) := |supp(9-|Z(9:))|/r denotes the
number of orbits of g, ‘Z(gr) of length r. This is well defined since Lemma 4.8 states
that g, restricts to a bijection on Z(g,). Also, let n1(g) := Z(g) \ (supp(g‘Z(g)).
Since Z(gy) 1is finite for all r € N, we have that n,.(g) is finite for all r € N.

are computable. Within the proof we also choose the values for {y;(g,h) | j € I°(9)}
which we shall use, but note that any combination of values which sum to M, (g, h
would be suitable.

We now prove that, for any » € N and any g, h € H,, x S,,, the numbers M, (g, h)
)

Lemma 4.24. Let g,h € H, xS, r € N and j.,...,j* be representatives of I¢(g).
Then Myji .. juy(g,h) is computable (using only the elements g and h).

Proof. For each r € N, x must send the r-cycles of g to the r-cycles of h. First, we
fix an r € N and let j!, ..., j% be representatives of I¢(g). Consider the case where
nr(9) = nr(h) = 0 and g and h are conjugate by some xz € H(a). This means that
all of the r-cycles of g and h lie outside of Z(g) and Z(h) respectively. One way
for a potential conjugator to therefore act is to restrict to a bijection between the
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r-cycles of g on the ray j¢ and the r-cycles of h on the ray j¢ for each d € Z,.
Thus suitable values for {yq4(g,h) | d € Z,} such that x € H,, conjugates g to h
and t;¢(z) = ya(g, h) for all d € Z,, are given by:

(19) yk(g7 h) = Zk<h) - Zk(g) for all k € {J%? s a]:f}
We now wish to generalise this. Given any g, h € H,, x.S,, which are H,,-conjugated,
let

(20) yk(g7h) - Zk(h) - zk(g) for all k € {]37 ce 7]1?}

For each cycle in Z(g,), increase t;:(x) by 1. Similarly, for each cycle in Z(h,.),
decrease t;1(x) by 1. This means that

(21) Yjr (g, h) = zk(h) — 2k(g) + 1r(g) — nr(R).

We work towards proving that the values for yx(g,h) defined in (20) and (21)
are suitable in 3 steps. First, consider if 7,.(¢9) = n,(h). This means that there
is a conjugator in FSym which conjugates gT‘Z(gr) to hr’Z(hr) i.e. the eventual
translation lengths defined in (19) are sufficient. Second, consider if n,(g) = n,(h)+
d for some d € N. In this case, first send 7n,.(g) — n.(h) r-cycles in Z(g,) to those
in Z(h,). Then send the d remaining cycles in Z(g,) to the first d r-cycles on the
branches [j!] by increasing y;j1(g,h) by d. Finally, if .(g9) = n.(h) — e for some
e € N, then send the 7,(g) r-cycles in Z(g,) to r-cycles in Z(h,) and then send
the first e r-cycles of g on the branches [j!] to the remaining r-cycles in Z(h,.) by
decreasing y;1(g,h) by e. With all of these cases, the values defined in (20) and
(21) are suitable. U

Proof of Theorem 1. From Remark 4.14 and Remark 4.15 of Section 4.2, TCP(H,,)
is solvable if, given a,b € H,, x S,, the numbers M(a,b) and {y;(a,b) | j € I°}
are computable from only a and b. Thus, from the work of this section and the
previous section, TCP(H,,) is solvable. O

5. APPLICATIONS OF THEOREM 1

Our strategy is to use [BMV10, Thm. 3.1]. We first set up the necessary notation.

Definition 5.1. Let H be a group and G < H. Then Ag<n denotes the subgroup
of Aut(G) consisting of those automorphisms induced by conjugation by elements
of H i.e. AGng = {(Z)h ’ h € H}

Definition 5.2. Let G be a finitely presented group. Then A < Aut(G) is orbit
decidable if, given any a,b € G, there is an algorithm which decides whether there
is a ¢ € A such that ap = b. If Inn(G) < A, then this is equivalent to finding a
¢ € A and x € G such that = conjugates a¢ to b.

The algorithmic condition in the following theorem means that certain compu-
tations for D, FE/, and F' are possible. This is satisfied by our groups being given by
recursive presentations, and the maps between them being defined by the images
of the generators.

Theorem 5.3. (Bogopolski, Martino, Ventura [BMV10, Thm. 3.1]). Let
l1—D—F-—F-—1

be an algorithmic short exact sequence of groups such that

(i) D has solvable twisted conjugacy problem,
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(ii) F' has solvable conjugacy problem, and

(iii) for every 1 # f € F, the subgroup (f) has finite index in its centralizer
Cr(f), and there is an algorithm which computes a finite set of coset rep-
resentatives, zf1,...,2ft, € F,

Cr(f) = {Hzpa - Uz,
Then, the conjugacy problem for E is solvable if and only if the action subgroup
Ap<ar ={¢g | g € E} < Aut(D) is orbit decidable.

Remark. For all that follows, the action subgroup Ap<p is provided as a recursive
presentation where the generators are words from Aut(D).

5.1. Conjugacy for finite extensions of H,,. Note that when we say that B is
a finite extension of A we mean that A < B and that A is finite index in B. The
following is well known.

Lemma 5.4. If G is finitely generated and H is a finite extension of G, then H is
finitely generated.

Proposition 5.5. Let n > 2. If E is a finite extension of H,, then CP(E) is
solvable.

Proof. Within the notation of Theorem 5.3, set D := H,, and F' to be a finite group
so to realise F as a finite extension of H,. Since F' is finite, it is well known that
conditions (ii) and (iii) of Theorem 5.3 are satisfied (see, for example, [TC36]).
The main theorem of the previous section (Theorem 1) states that condition (i) is
satisfied. Thus CP(FE) is solvable if and only if Ay, «p = {¢. | e € E} is orbit
decidable. We note that Ay, <g contains a copy of H,, (since H,, is centreless).
Moreover, it can be considered as a group lying between H,, and H, x S,. Hence
Ap, < is isomorphic to a finite extension of H,,, and so by Lemma 5.4 is finitely
generated. Thus Ay, <p = (¢e,, Peys - - -, Pe, ) Where {e1, ..., er} is a finite generat-
ing set of £. From Lemma 3.7, given any g € Ngym(x,,)(Hy) = Aut(H,), we may
compute o,: the isometric permutation of the rays induced by g. Thus we may
compute (o., | i € Zy) =: FE,. Now, given a,b € H,, our aim is to decide whether
there exists ¢. € Ay, <r such that (a)¢. = b. Since Inn(H,) < Ay, <p, this is
equivalent to finding a 7 € E, and x € H,, such that (x7)"ta(z7) = b, which holds
if and only if 2 'ax = 7b7 1.

Finally, since F, is finite (there are at most n! permutations of the rays), search-
ing for an x € H,, which conjugates a to o.bo_ L for all o, € E, provides us with a
suitable algorithm. Searching for such a conjugator can be achieved by Theorem 1
or [ABM13, Thm. 1.2]. O

5.2. Conjugacy for finite index subgroups of H,,. Recall that g, ..., g, were
elements of H, such that g;: translates the first branch of X,, by 1; translates
the i*" branch by -1; sends (4,1) to (1,1); and does not move any points of the
other branches (which meant that, if n > 3, then H, = (¢; | i = 2,...,n)). For
any given n > 2, the family of finite index subgroups U, < H,, were defined (for
p € N) in [BCMR14] as follows. Note that FAIt(X) denotes the index 2 subgroup
of FSym(X) consisting of all even permutations on X.

U, := (FAIt(X,,),¢" | i € {1,...,n})
Notation. Let A <; B denote that A has finite index in B.
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Let n > 3. If p is odd, then U, consists of all elements of H,, whose eventual
translation lengths are all multiples of p. If p is even, then U, consists of all elements
u of H, whose eventual translations are all multiples of p and

(22) u H g™ ¢ FAIL(X,,)

i.e. FSym(X,) < U, if and only 1f p is odd. This can be seen by considering, for
some i,j € Zy, the commutator of g7 and g7. This will produce p 2-cycles which
will produce an odd permutation if and only if p is odd. If n = 2, then for all p € N
all u € U, < Hy will satisfy (22).

Lemma 5.6 (Burillo, Cleary, Martino, Réver [BCMR14]). Let n > 2. For every
finite index subgroup U of H,,, there exists a p > 2 with

FAIt(X,) =U, <U, <; U <; H,.
where Uzlz denotes the commutator subgroup of Up,.

Alternative proof. Let n > 2 and let U <y H,,. Thus FAIt N"U < FAIlt. Since FAIt
is both infinite and simple, FAlt < U. Let 7, : H, — Z"" 1, g+ (t2(9),-..,tn(9)).
Thus (U)r, <y Z" ' and so there is a number d € N such that (dZ)"~ < (U)m,
([(U)my, Z”_l] is one such value for d). Choose this d to be minimal (so that if
d' < d then (d'Z)"! £ (U)m,). This means that for any k € Z,, \ {1} there exists
a u € U such that t;(u) = —d, t1(u) = d, and t;(u) = 0 otherwise. Moreover, for
each k € Zy, \ {1} there is a 0 € FSym such that g{o € U. First, let n > 3. Since
FAlt < U, we may assume that either o is trivial or is a 2-cycle with disjoint support
from supp(g;). Thus (go)? = ¢2? € U. If n = 2, we may assume that o is either
trivial or equal to ((1,s) (1,s 4+ 1)) for any s € N. Now, by direct computation,
GB((1,1) (1,2))g8((1,d+ 1) (1,d +2)) = g3%. Thus, for any n > 2,

(g2, ..., g2 FAIt(X,)) <U
Hence, if p := 2d, then U, < U. U

Remark. {(U,)m, | p € N} are the congruence subgroups of Z" 1.

Now, given U <; H,, our strategy for showing that CP(U) is solvable is as
follows. First, we show for all p € N that TCP(U,) is solvable. Using Theorem 5.3,
we then obtain that all finite extensions of U, have solvable conjugacy problem.
By the previous lemma, we have that any finite index subgroup U of H,, is a finite
extension of some U, (note that U, <U since U, < H,,). This will show that CP(U)
is solvable.

TCP(U,) requires knowledge of Aut(U,). From [Cox16, Prop. 1], we have that
any group G for which there exists an infinite set X where FAIt(X) < G < Sym(X)
has Ngym(x)(G) = Aut(G) by the map p — ¢,. From the proof of Lemma 5.6, we
have that any finite index subgroup of H,, contains FAlt(X,,). Thus, if U <y Hy,
then Ngym(x,)(U) = Aut(U) by the map p — ¢,. In fact we may show that a
stronger condition holds.

Lemma 5.7. If 1 # N < H,, then FAlt(X,) < N.

Proof. We have that N N FAlt(X,,) < H,. Since FAIt(X,,) is simple, the only way
for our claim to be false is if N N FAlt(X,,) were trivial. Now, N < H,,, and so
[N,N] < FSym(X,,). Thus [N, N] must be trivial, and so N must be abelian. But
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the condition for elements «, € Sym(X,,) to commute (that, when written in
disjoint cycle notation, either a power of a cycle in « is a power of a cycle in 3 or
the cycle in « has support outside of supp(f)) is not preserved under conjugation
by FAlt(X,,), and so cannot be preserved under conjugation by H, i.e. N is not
normal in H,,, a contradiction. O

Remark. [t follows that all Houghton groups are monolithic: each has a unique
minimal normal subgroup which is contained in every non-trivial normal subgroup.
The unique minimal normal subgroup in each case will be FAlt(X,,).

For any U <y H, we now describe Ngyy,(x,)(U) in order to describe Aut(U).
For each U <y H,, we will show that there exists an m € N such that U,, < U and
Ngym(x,,)(U) < Nsym(x,,)(Um). This will mean that U, is characteristic in U.

Proposition 5.8. Letn > 2 and U <y H,,. Then there exists an m € N such that
Un<U and NSym(Xn)(U) < NSym(Xn)(Um)'

Proof. Let n > 2 and U <y H,,. We first introduce notation to describe U.

Notation. For each i € Z,, let T;(U) := min{t;(u) | v € U and t;(u) > 0}.
Furthermore for all k € Zy, let TF(U) := Zle T:(U) and let T°(U) := 0.

We will now introduce a bijection ¢y : X, — Xpn(y) which will induce a
monomorphism ¢y : U — Sym(Xn(ry). Our bijection ¢y will send the i*" branch
of X, to T;(U) branches in Xgn (. For simplicity let g, := g5 . Now, for any
1 €72, and d € N,

Xia(g;" ") 1= {(i,m) [ m = d mod [t:(g]" )]}

7

where |ti(giTi(U))] = T;(U) by the definition of g;.

Thus the i** branch of X,, may be partitioned into T;(U) parts:
Xia(gl " U Xin(gl Pyu. U Xi,Ti(U)(g;Fi(U))'

We will now define the bijection ¢y by describing the image under ¢ of all points
in each set X; 4(g7"")) where i € Z, and d € Zg, ). Let (i,m) € X;.a(g ™).
Then J
‘ = (TN U)+d, - +d
(i, m)bu ( O)+d s + )
T3 (U)

i.e. ¢y sends, for all i € Z, and d € Zr, (), the ordered points of X; 4(g; ) to
the ordered points of the (T"~1(U) + d)'" branch of Xru (). An example of this
bijection with n = T4 (U) = T2(U) = T3(U) = 3 is given below.

We now describe the image of U under qBU. First, (gU preserves cycle type.
Thus FAIt(X7n ) < (U)¢y. Moreover FSym (X7 () < (U)¢y if and only if
FSym(X,) < U. Secondly, by construction, for each i € Zpn ) there exists a
g € (U)¢y such that t;(g) = 1.

Notation. For any n € N and any i € Zy, let R; := i x N, the i* branch of X,,
or Xpn(y, and Q; := (R;)dy, so that Q; consists of T;(U) branches of Xpn (.

Using this notation we have that, for any g € (U)dy,
(23) ift;(g) = k, then t;(g) = k for all j such that R; C Q;
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\ ‘\\‘\
4 AN
The set X, The set Xpn ()

FIGURE 2. Our bijection between X,, and Xrn (g, which can be
visualised by rotating the rectangles 90 degrees clockwise.

i.e. for any u € U and any ¢ € Z,, the eventual translation lengths of (u)g?) for the
branches in (); must be the same.

We now describe Nsym(Xan))((U)(gU) =: G in order to describe Ngyu(x,,)(U).
Consider if p € G sent an infinite subset of R; C Xpn () to infinite subsets of
Rj,Rjy C Xpnyy with j # j'. Let g € (U)(ﬁU be chosen so that ¢;(g) = 1. Thus
¢ has an infinite cycle containing {(i,m) | m > z;(¢g)}. Conjugation by an element
T € Sym changes the support of a permutation exactly by 7 i.e.

1 ..o d)T = ()7 ... (d)7).

Thus p~lgp has an infinite cycle containing the set {(i,m)p | m > zi(g)}. Let
(i',m') = (i,2;(g))p. Then {(i’,m')(p~tgp)? | d € N} has infinite intersection with
R; and Rj:. But from the description of orbits of H,, in [ABM13], p~'gp & Hrn ()
and so (p_lgp)gzgr}l ¢ U ie. p ¢ G. Now imagine if (R;)p and R; had infinite
intersection but were not almost equal. Then there must be a k& # i such that
(Ry)p has infinite intersection with R;. This is a contradiction since (R;)p~! would
then have infinite intersection with R; and Rj. Hence if (R;)p and R; have infinite
intersection (where 4,5 € Zpn (), then (R;)p and R; are almost equal.

We now consider necessary and sufficient conditions on the branches of X7 ()
for there to be a ¢ € G which produces an isometric permutation of those branches.
Let us assume that o is an isometric permutation of the rays and sends R; C Qy,
to Rjy C Qu. If k =k’ then for all g € (U)du, t;(g) = t;(g); hence all isometric
permutations of the branches in @ will lie in G. If k # k' then let g € U be such
that ¢;(g) > 0, t;:(g9) <0, and t;(g) = 0 for all branches i in Xzn ) \ (Qr U Q).
Such an element exists by Lemma 5.6: there is a p € N such that U, < U. Thus
tir(c~'go) > 0 and so, by (23), if 0-'go € (U)¢y then we must have for all
branches i’ in Qs that t;y(c71go) > 0. From our choice of g, we may conclude
that Q) cannot contain fewer branches than Q. Similarly ¢;(cgo™!) < 0 and
so for all rays i in Qg, t;(cgo™!) < 0 meaning that Qu cannot contain fewer
branches than (). Hence (J; and Qi are of the same size and so we must have
that Tk(U) =Ty (U).

Since the above arguments hold for any element of G which may permute the
branches of Xrpn (), we may assume without loss of generality that p € G sends
almost all of each branch to itself (by replacing p with ,00;1 if necessary). Since,
for each branch, p preserves the number of infinite orbits induced by g, we have
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for all i € Zpn(yy and all g € (U)dy that t;(p~tgp) = ti(g). Fix a k € Zpn ()
and choose g € H,, so that t,(g) = 1. Note that g !pgp~! € FSym. Thus there
is a d € N such that, for all m > d, (k,m)g ‘pgp~! = (k,m). For some m’' > d,
consider if (m')p = m’/ + s. There must be such an m’ since p sends only finitely
many points of R; to another branch. Without loss of generality we may assume
that s is positive (since we may replace p with p~!). Hence

(k,m' +1)g™ pgp™" = (k,m")pgp™" = (k,m' + 5)gp™" = (k,m/ + s+ 1)p™"
But, from our assumptions, (k,m’ + 1)g 'pgp~! = (k,m’ +1). Hence
p:(k,m' +1)— (k,m' +s+1)
ie. p: (k,m) — (k,m + s) for all m > m’. Running this argument for each
i € Zpn(uy we have for any p € G that po, ' € Hpn (). Note that Hpnyy < G,
since conjugation by elements of Hrpn(rr) preserves cycle type and the eventual
translation lengths. Hence G < Hpn () X S7n(v)-

To summarise, given U <; H,,, we first compute T'(U) := (T1(U),...T,(U)).
We have that

Hrowy < (Nsym(x,)(U)ou < Hrn(ry ¥ Spa().-
Moreover, we may produce a ﬁnlte a generating set for the isometric permutations
of the rays of (Ngym(x,)(U))ou by the following process.
i) Let i,j € Z,, so that
T;(U) T;(U)

= |J Ri,and Q; = |J R,
s=1 s=1

for some branches {i1,i2,...,i7,w),J1,72,-- > Jr;0)} of Xrnqwy. I Ti(U) =
T;(U) (i.e. Q; and Q5 contain the same number of branches of Xpn (), then
define ¢(Q;,Q;) to have support equal to @); U Q; and to swap the branches
is and j, for all s € Zg, () i.e. as a permutation of Szn (1), 0(Qs, Q;) can be
thought of as
(i1 j1)(i2 j2) - - - (i1, vy JTo(U))-
ii) Let i € Z,, so that
T (U)

= U R;..

Then for any distinct d,e € Zg, (v, deﬁne o(R;,, R;,) to have support equal
to R;, U R;_ so that o(R;,, R; ) swaps the branches R;, and R;_ of @Q;. Thus
o(Ri,;, R;,) can be thought of as a transposition in Spn () and by choosing
the appropriate generators of type (ii) one can produce, for any s € Z,, any

permutation of the branches T°(U) +1,...,T*T1(U).

Now consider the image of these elements under ngSL_,I. For those of type (i) described
above, if T;(U) = T;(U) we have that there is an isometric permutation of the rays
of X,, which swaps the branches R; and R; and fixes all other branches. In order to

describe the action of elements of type (ii) under q@ljl, we introduce some notation.
Notation. Let Y;o(U) := {(i,m) | 1 < m < T;(U)} and, for any s € N, let
Yis(U) = {(im) | sTL(U) +1 < m < (s + DT(U)} = Yio(U)g; .
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Thus R; = || Yis(U) = | Y;,()(U)gi_ST"(U). We then have that, for any ¢ € Z,
s=0 s=0

and permutation o € FSym(X,,) with support contained within Y; o(U), there exists
an element u, in Ngyp(x,,)(U) such that for every s € NU {0},

sT; (U —sT; (U
ua‘Yvi,s(U) =9; ( )Ugi @)

i.e. u, consists of the permutation o on every set Y; (U).
Finally, note that for any standard generator g; € Hypn (), supp((9:)9y') =
Xl,l(gfi(U)) U Xj,d(g;fp"(U)) C X, for some j € Z,, and d € N.

Notation. Let G and H be groups and H act on a set X. Then G i1x H denotes
the permutational wreath product with base B := @, x G and head H.

For any m € N and U, < H,, we have that T'(U,,) = (m,m,...,m). Thus the
sets {Q; | i € Zy,} are all of the same size and so

NSym(Xnm)((Um)(ﬁUm) = Hpm X (Sm 1)

Note that, for any s € N, Ngym(x,)(Un) < Nsym(x,,)(Unms). Now, given U <; H,,
choose p € N such that U, < U (this is possible by Lemma 5.6). We end by
showing that the generators of Ngym(x,)(U) all lie within Ngyu(x,,)(Up). First,
note that any isometric permutation of the rays of X, lies in Ngym(x,)(Up). Sec-

ond, the permutations u, introduced above lie in Ngyu(x,,)(Up) since for every
i € Zy, T;(U) divides T;(Up) and so for any i € Z,, there is an f € N such that

YiolUp) = |_|£:0 Y s(U). Finally, for any standard generator g; € Hpn (), we have
that (gi)qgal € Nsym(x,)(Up), since T;(U) divides T;(U,) implies that there is a
J € Zpn(y,) and an e € N such that (gz)él}l = (g;)é;]; O

In our final section we will show that there exists an algorithm which, for any
n > 2, p € N, and H,y-conjugated a,b € H,, x S, decides whether a and b are
(Up)du,-conjugated.
Proposition 5.9. Letn > 2,p € N and U, < H,,. Then TCP(U,) is solvable.
Proof. Our aim is to produce an algorithm which, given a,b € Uy, and ¢, € Aut(Up),
decides whether there exists an u € U, such that (u™!)¢,au = b i.e. upau = pb.

Let ¢ := QASUP. Let us rephrase our question in (Up)gﬁ:
u™ pau = pb

& (u™'pauw)d = (pb)d

& (uh)d(pa)d(u)é = (pb)d

where (pa)é, (pb)d € Hyp, »x Spp and (u)¢ € (Up)qg < H,,), from the proof of Propo-
sition 5.8. The algorithm for TCP(H,,;) in Section 4 may be used to produce a
conjugator x € H,, if one exists. Given such a x, Proposition 6.1 decides whether

there exists a y € (Up)q% which conjugates (pa)é to (pb)g. O

Proposition 5.10. Letn > 2, p e N, and U, < H,. If E is a finite extension of
Up, then Ay,<k is orbit decidable.
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Proof. Recall that for Ay <« = {¢ | e € E} to be orbit decidable, there must exist
an algorithm which decides, given any a’, b’ € U, whether there exists a ¢ € Ay, <k
such that

(24) (a)yp =V

Since Aut(U,) = Ngym(x,)(Up), we may rewrite (24) as searching for an element
¢, € Aut(U,) such that

()¢, =0b"and ¢, € Ay, <B

i.e. searching for a p € F such that p~ta/p = ¥'.

Now we rephrase this question using the map <£ = ngbUp:
(p~")d(d)b(p)d = (V).
Let a:= (a')$, b:= ()¢, and y := (p)¢p. Thus a,b € (Up)(ﬁ < H,,, are known, and
y must be chosen to be any element in (E)(% so that y~'ay = b. Recall that

an < (Ej)(;S < an X Snp-

As with the proof of Proposition 5.5, let E, := (0. | e € (F)¢). For each isometric
permutation of the rays 7 € E,, we may then decide whether there is an x € H,,,
such that 27 taz = 767! by Theorem 1 or [ABM13, Thm. 1.2]. O

Proposition 5.11. Let n > 2 and U, <y G. Then CP(G) is solvable.

Proof. We again use [BMV10, Thm. 3.1]. G is a finite extension of U, by F, some
finite group. TCP(U,) is solvable by Proposition 5.9. Ay, «¢ is orbit decidable by
Proposition 5.10. Hence CP(G) is solvable. O

5.3. Conjugacy for groups commensurable to H,. Recall that A and B are
commensurable if and only if there exist N4 = Npg with N4 finite index and normal
in A and Np finite index and normal in B. Our aim is to prove Theorem 2, that,
for any n > 2 and any group G commensurable to H,,, CP(G) is solvable.

Proof of Theorem 2. Fix an n > 2 and let G and H,, be commensurable. Then
there is a U <y G, H,,. Let p € N be chosen as in our proof of Lemma 5.6, so
that U, <y U. We therefore wish to show that U, < G so that we may apply
Proposition 5.11 to obtain that CP(G) is solvable. It is a well know result that if
A is characteristic in B and B is normal in C, then A is normal in C.

In the proof of Proposition 5.8 it is shown that Ngym(x,)(U) < Nsym(x,,)(Up)-
Hence every automorphism of U is an automorphism of U, (since if ¢, € Aut(U)
then ¢, € Aut(U,)). Thus U, is characteristic in U and so U, <G and G is a finite
extension of Up,. O
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6. COMPUTATIONAL RESULTS ABOUT CENTRALISERS IN an

Our main aim for this section is to prove the following. Recall, from Section 5.2,
that (Up)¢u, < Hpp. For any U < Hyp, let t(U) := {t(u) |u € U}.

Proposition 6.1. Letn > 2, p € N, and a,b € H,, x Sy, be H,,-conjugated.
Then there is an algorithm which, given a,b € H,, x Sy, and an x € H,, which

conjugates a to b, decides whether a and b are (Up)fﬁUp-conjugated.

Our main tool will be Lemma 4.7, which stated that if x € H,, conjugates a
to b then y € H,, also conjugates a to b if and only if there exists a c € Cy,,,(a)
such that cx = y. From this lemma, if a and b are conjugate by x € H,,, then
a and b are (Up)QAﬁUp—conjugated if and only if there is a ¢ € Cp,,(a) such that
cx € (Up)pu,. When p is odd, FSym(X,,) < (Up)év,, and so cx € O, (a) if and
only if t(cx) € t((Up)qup). Our first aim is to reduce to this case. More specifically

to prove, when p is even, that one can decide whether z([];%, g;ti’(z)) € FAIt(X,,))
and moreover one can decide whether Cp, ,(a) contains an odd permutation.

Remark 6.2. If t(z) € (2Z)", then the condition x(][.2, g;t"’(x)) € FAIt(X,,)
implies that © € Uy = (g3,...,9%,, FAlt(X,p)). This condition exactly captures
when an element, with suitable eventual translation lengths, lies in a subgroup Usg.

We will then work to decide whether there exists a ¢ € Cpg,,(a) such that

t(cx) € t((Up)qup). We will do this by proving that there is an algorithm which,
given a € Hy, x Syp, outputs a finite generating set for ¢(Cq,, (a)). To set the
scene we begin by briefly describing the structure of such centralisers.

6.1. A description of the structure of Cpy, (a) where a € H,, x Spp. It
is possible to develop structure theorems for Cy, (a) for a € H,, x Sy, using
the arguments from [JG15]. We will take more of a ‘local’ view since we wish to
describe a generating set for ¢(Cp,,, (a)). In order to do this, the key observation
is that elements of Cp,,,(a) conjugate a to a. Therefore, for each r € N, they send
the r-cycles of a to the r-cycles of a. This means that any element of Cp,  (a)

decomposes are a product a(°°) [Licn a(") where

i) supp(a(*)) C supp(ano);

i) supp(aV) C X, \ supp(a); and

iii) supp(a(™) C supp(a,) for each r € N\ {1}.
Importantly, we always have that a(>) and {a(") | r € N} are all elements of H,,,.
This means that a suitable generating set for ¢(Cp,, (a)) consists of elements whose
support lies in exactly one of (i), (ii), or (iii) above. It may be immediately clear
that the elements c;r jr defined in Lemma 4.23 are suitable generators of t(Cy,,, (a))
which have zero entries for each coordinate in I. We will give details in Section 6.3
below. The generators for ¢(Cp, ,(a)) which have zero entries for each coordinate
in I¢ will be similar to the elements {a;) | i € I} (see Definition 4.19, Section
4.3). An idea of what is meant by ‘similar’ is best given by an example. Consider
if @ = g5 € Hy. Then apy) = ap) = g5. But Cp,(a) = (g2), so that g may be
considered as a ‘root’ of g5. The main aim of Section 6.3 will be to prove that such
‘roots’ are suitable to provide our generating set and are computable from only the
element a.



Twisted conjugacy in Houghton’s groups

6.2. Reducing the problem to showing that ¢(Cpy, (a)) is computable. Let
p be even and let a,b € H,, x Sy, be conjugate by x € H,,. Our first aim is

to decide whether or not z([[;2, g, ti(w)) € FAlt(X,,). This follows immediately
from the solution to WP(H,,) in [ABM13, Lem 2.1], since this states that for any
g € H,,, a finite set is computable such that each point outside of this set is either
fixed by g, or lies in an infinite orbit of g. Since z(];Z, g;ti(x)) € FSym(X,,) by
construction, we may use their lemma to determine the cycle type of this element.
We now need to be able to decide whether there exists a ¢’ € Cp,, (a) such that
¢ € FSym(X,,) \ FAIt(X,,).

In order to decide whether such a ¢ exists consider, for our given a € H,,;, X Sy,
whether there are any branches j € I°. If so, either |[j]| is odd or even. If |[j]] is
even, then we have that the first |[j]|-cycle on this branch is a finite order element
of the centraliser which lies in FSym(X,,,) \ FAlt(X,,,). Alternatively if |[j]| is odd,
then the element that permutes only the first two |[j]|-cycles of the branches [j]
provides an element of the centraliser which lies in FSym(X,,) \ FAIt(X,,). If
there are no such branches (i.e. if I = Z,,;), then from Section 3.1, all of the finite
permutations of a lie inside a finite subset of X,,,. This set is also computable (by
again using [ABM13, Lem 2.1} or by computing the numbers 21 (a), . .., znp(a) using
Lemma 3.7). We may therefore search for an odd permutation within this set to
decide whether there is a ¢ € Cp,, (a)N (FSym(X,,)\FAIt(X,,)). An even length
cycle in Z(a) will be a suitable candidate for ¢/, and if there are two m-cycles in
Z(a), then the element which permutes these two cycles is also a possible candidate.
Since, for every r € N, centralisers must restrict to a bijection on r-cycles, it is
exactly in these specific circumstances that Cp,, (a) N (FSym(X,,) \ FAIt(X,,))
is empty i.e. the case where p is even, I = Z,,, there are no even length cycles in
Z(a), and for each odd number m > 1 there is at most one cycle of length m in
Z(a).

We now prove that producing a finite generating set for t(Cp,, , (a)) is sufficient to
produce an algorithm for Proposition 6.1. Let {d1,..., 0.} denote a finite generating
set of t(Cy,,(a)), and let 01,...,0c € CHh,,(a) be chosen such that t(0;) = 0;
for each j € Z.. We will show that such elements are computable from only
a. Let x € Hy, conjugate a to b. For now let us also assume that there is a
d € Cy,,(a)N(FSym(X,,)\FAIt(X,,)). Deciding whether there is a ¢ € Cp,,, (a)
such that t(cx) € t((Up)QASUp) is equivalent to finding powers «; of the generators
d; € Z" such that

(25) t(z) + Y aidi € t((Up)u, )-
i=1
Hence we must decide whether there are constants {ay,...,a,—1} and {a1,..., .}
such that
e n—1
(26) t(x)+ Z a;d;=(ay...a1az...ag...... U ...an)T, where a, = — Z a;.
i=1 i=1

Viewing this as np linear equations, if this system of equations has a solution, then
an element c of Uy, (a) exists such that cx = y € H,,;, where y conjugates a to b and
t(y) € t((Up)gngp) (so that y € (Up)qup). If this system of equations has no solution,
then no such c exists and so there is no conjugator y of a and b such that t(y) €
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t((Up)dsUp) (so that there also cannot be a conjugator of a and b in (Up)qAbUp). We
now deal with the case where there is no ¢’ € Cp, (a) N (FSym(X,,,) \ FAIt(X,,)).
Note that, from above it is decidable whether or not such a ¢’ exists.

Notation. Let sgn: FSym — {0,1} be the sign function for FSym, so that the
preimage of 0 is FAlt. Also, let & : Hy, — {0,1}, b+ sgn(h(T]}%, g;ti(h))).

We must then include the equation
(27) &(z) + Z a;E(6;) = 0 mod 2
j=1

which ensures that for the chosen ¢ € Cp,,, (a) we have {(cx) = 0 i.e. cx € (Up)qup.
From these assumptions, our choice of generating set is arbitrary: if h, h’ € C Hop(a)
satisfy t(h) = t(h'), then we must have that h™'h’ € FAlt(X,,,), since otherwise
Cu,,(a) N (FSym(X,,;) \ FAlt(X,,)) would be non-empty.

By writing these equations as a matrix equation we may compute the Smith
normal form and so decide whether or not the equations have an integer solution
(see, for example, [Laz96]).

6.3. Producing a finite generating set for ¢(Cpy,, (a)). Recall that, for any
i € Zp, the set Q; was defined to be the image of the " branch of Xyp under the
bijection ¢y, (which induced the homomorphism QZBUP). If u (Up)éUp, then for
all i € Z,, and for all k, k" € Q; we have that t;(u) = ¢ (u). We first describe the
possible eventual translation lengths of Cp,, (a). Note, for any p € N, that

n—1

T

t(Up)ou,) = (ar...a1a2...a2...0n...0p)" |G1,...,0n_1 EZ,an:—;ai
P P P =

Our aim for this section is now to show that a finite generating set for t(Cpy,, (a))
is computable from only a. Our generators of Cp, (a) will either act on rays in
I or in I°. We will first prove the elements defined in Lemma 4.23 are suitable
generators of ¢(Cp,, ,(a)) which have zero entries for each coordinate in I. We will
then show that the other generators are computable from only a.

For all » € N, any g € Cp,,(a) restricts to a permutation of the r-cycles of a.

Thus if |[k],] = 1 and tx(a) =0, let X := {(k,m) | m > zx(a)}. We then have that
FSym(X) < Cw,, (a).

If ¥ # k also has |[k]] = 1 and tg/(a) = 0, let X' := {(K',m) | m > zp(a)}.
Note that ¢y i (defined within the proof of Lemma 4.23 in Section 4.4) and the
transposition p with support {(k, zx(a)), (', 21 (@)} lie within Cp, ,(a). Moreover
(Ck, k7, ) 1s & group isomorphic to Hy. In general, if [{j : |[j]| =1 and j € I¢}| = p,
then there are elements of Cp,,  (a) which generate a group isomorphic to H, and
each element has support contained within the fixed points of a. Similar arguments
work (for any r € N) for the r-cycles of a. Recall that IS(g) := {j € I°(g) | |[J]| =}
If |I7(g)| = p, then there are elements of C'y,,, (a) which generate a group isomorphic
to Hy where ¢ = p/r. The factor 1/7 occurs since elements of Cp,, (a) must restrict
to a bijection of the r-cycles of a and so if [[j]| = r and f[;j(a) = O then, for any

d

m > z;j(a), where (j,m) is sent by a defines where (j,m)a” must be sent for all

d € Zy;))-
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Let Aj(a) == {(k,m) | k € [j] and m > zj(a)}. For each r € N, if there
are j,j' € If(a) with [j] # [j'], then we shall have generators of ¢(Cy,,(a)) with
support almost equal to

A]‘(a) L Aj/(a).
The element c; ;s is a suitable candidate for such a generator. Recall that ¢; ;- has
tr(z) non-zero for exactly 2|[j]| entries, corresponding to the branches [j] U [j'].
Choosing representatives j!,...,j* for the classes of IS, we note that all of the
elements of

{¢ja ja | d,d" € Z, where d and d’ are distinct} =: ©,

lie in C'y,,,(a) and that no two elements of this set have the same image under ¢.
Finally we note that, if j € IS(a) and j' € IS(a) with r # ¢/, then for all
m = zj(a) and m' > z;(a), no element of Cp, ,(a) may have an infinite cycle with
support containing (j, m) and (j',m’) as centralisers in Sym must send r-cycles to
r-cycles. Thus generators of t(Cy, (a)) with zero entries in I are given by

(28) aes
reN
which is computable since for almost all » € N, we have that I¢(a) = 0.
We now work towards showing that our generators of ¢(Cy,,, (a)) with zero entries

in 1¢ are computable. We start by showing that they have a ‘similar’ form to the
elements {af; | i € I}.

Lemma 6.3. Let g € Cy, (a) and i € 1. If ty(g) # 0, then t;j(g) # 0 for all

] ~a [i]-
Proof. The proof is similar to that of Lemma 4.20. Fix an i € I. Recall [i] ~, [j] if
and only if there exist i), i) ... (@ ¢ [ and dgo), dgl), . ,dgt"), egl), e eg‘n, equ)

such that for all p € Z,_; each one of the sets
(29) X[Z,],d;o) U X[i(l)]ﬁgn , X[i(p”’dgp) U X[i(p+1)}’egp+1), and X[i(qﬂ,dg") U X[j],egq“)

is almost equal to some infinite orbit of a. Also, if g € Cgym(x,,)(a) then where g
sends a point (i,m) € X,, defines where g must send the points {(i,m)a? | d € Z}.
Hence if g € Cp,,(a) and t;(g) # 0, then g must act non-trivially on all of the
orbits with infinite intersection with the i** branch of Xnp, and hence must act
non-trivially on the orbit of a almost equal to X (i, uX (O], This means that
t;1)(g) must be non-zero and so g must act non-trivially on all orbits of a with
infinite intersection with the branch (). Thus ¢ must also act non-trivially on
the orbit X[Z.(l)m;l) U X[Z'(”Le(lz)' Continuing in this way we have that g must act
non-trivially on any orbit of a which is almost equal to one of those in (29). Thus
ti(g) # 0, as required. O

Remark 6.4. Let i € I. Consider if g,h € Cp,,(a) are such that t;(g),t;(h) # 0.
The previous lemma states that for all [j] ~4 [i], t;(g) and t;(h) are non-zero. Let
g = t(gp)) and h = t(hy). Note that g.h e t(Cu,,(a)). We then have that G, h
are linearly dependent. For assume they were not. Then there exist d,e € Z \ {0}
such that the i coordinate of g+ eh is zero, but for some [k] ~q [i] we would have
that the k™ coordinate of dg + eh is non-zero, contradicting the previous lemma.
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Recall that, for any i € I(g), €,([i]) = {k | [k] ~4 [i]}. We may impose an
ordering on these sets by saying that Cy([7]) is less than ¢4([7]) if and only if

min (€, ([i])) < min(&,([5])).

Denote this orderlng by <. Let €,([i']) be the smallest set under <, and then
choose i?,...,i° such that

(30) C([1']) <€ ([P - .. &y ([i]) and | | € ([i%) = I(9).

In the following lemma we will show that particular generators of ¢(Cp,,(a)) are
computable. We will denote these by vy, with f € Z.. Each vy € Cp, (a) will
satisfy

i) tis(v7) €N;

ii) t;s(7y) is minimal i.e. for any g € Cp,,,(a), t;s(7y) divides |t;r(g)];

i) for all k & &,([i/]), tx(vs) = 0;

iv) 7y only consists of infinite cycles i.e. vf = (Vf)so
Note that, from Remark 6.4, if g € Cq, ,(a), then t(g;s1) = d-t(7y) for some d € Z
(since they are linearly dependent and ¢;s () is minimal). We shall now show, for
all f € Z, and for all k € €,([i/]), that the numbers ¢ () are computable, which
will mean that {t(v¢) | f € Z.} is computable.

Lemma 6.5. Let a € Hy,, x S, be given as a word in the standard generating
set described in Lemma 3.1 and i*,...,i¢ be chosen as in (30) above. Then there
is an algorithm which takes this word and outputs a set of elements {vs | f € Z.}
satisfying the properties above.

Proof. Fix an f € Z.. We first note, for all k € €,([i/]), that |tx(v/)| < |t(a |Zf’]‘)|
This is because (a[if])“’a' € Cq,,(a) by Lemma 4.20 and that t,;(y;) must be
minimal (condition (ii) above). Thus, for all k € €,([if]),

|Ua|

6D ()] < el = [t = 75 (@] < ol - g (@)

where |0, - |tz (a)| is computable by Lemma 3.7. Secondly, for all k£ € I¢, we have
that t(vf) = 0. Thus for all j € I¢ we have that z;(f) is bounded by z;(a).

We shall now show that, for each k € I, zx(vs) < zx(a) + [tx(vf)|. Since we
showed above that |tx(7vy)| is bounded above by [oq| - [t)(a)|, we will then have
that zi.(a) + |oa| - |t (a)| is a computable upper bound for z (7).

Recall that Lemma 3.10 states that if a,b € H,, x Sy, are conjugate by some
x € H,,, then for each class [i] = {i1,...,i,} there is a formula for ¢; (z) for all
s € Zq given by

ti (2) = t;, (x +Z i, (wp) — ti, (wa))-

Thus, since elements of Cy, () conJugate a toa, if g € Cp,, (a) and i € I, then
for all 4',4" € [i], we have that t;(g) = tiv(g).

Let k € I. We shall now assume, for a contradiction, that zj(v) is minimal and
that zx(vy) > zr(a) + |tk (vr)|. Since vy € Ch,,,(a), we have

(32) (i,m)ayy = (i,m)yra for all (i, m) € Xyp.
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We may assume that t;)(a) > 0, since replacing a with a~! yields a proof for when
tiky(a) < 0. Let m > zx(a) + [tr(7y)|. Note that

(k,m)a™ Ml = (k,m — tyg(a))vy
and also that
(k,m)a™ Wy g = (k, m)ypa™ W = (kym o+t (y))a™ I = (kym =t (a) + ()
Thus (k, m —ty(a))yy = (k,m—tp)(a) +tx(vy)), which contradicts the minimality

of zi ().
We now show that ¢(7y) is computable. From (31) above, t;7(vy) < |oal-[tjir)(a)].

Therefore we must decide whether there is a g € Cp,,, (a) with
tir(g) = s for some s € {1,...,|og| - [t (a)] — 1}
Starting with s = 1 (since we want to find a g € Cp,,,(a) with ¢;;(g) minimal)

(s)
f

define v, to be the partial bijection

(33) (i ,m)y) = (i ,m + s) for all m > 2i,(a) + |oa| - [tyg(a)]
J(f) on almost all points in the ray i/ (using our bound
(s)

which defines the action of ~

for z;(y¢)). This is so that ’y(s) will satisfy condition (ii) above. We also want -y

to be in the centraliser of a. Hence, for all (i,m) € X,,, 7](;9) must satisfy,

(34) (i,m)any” = (i,m)yVa and (i, m)a=9} = (i,m)y{Ya,

Deciding if there exists a g € Cp,,,(a) with ¢;s(g) = s is therefore achieved if one

can decide whether there is an element fyj(f) € H,, satisfying (33) and (34).

From (34), if the image of (i’,m’)'y](cs) is known, we may compute (i’,m’)’y](cs)a

to determine where ’yj(cs) sends (i, m’)a. This is because ’y}(cs) must send (i, m’)a

to (¢, m')’y](cs)a. Similarly we may compute (i, 77”L')'y](cs)cf1 to determine where 'y](cs)

sends (i’,m")a~!. Iterating this process, we obtain how ’y](f) permutes all points
{(i',m")a | d € Z}. Recall that we have bounded zx(7y;) for all k € Z,,, and so

it is enough to define ’yj(cs)

on a finite subset of X, i.e. on all points (i, m) where
m < 2zi(vf) + ti(yy). From (33), the image of almost all points {(i/,m) | m € N}
under ”y}s) have been defined. Also, for all i € [i/] we have that ti(’y](cs)) =t;r ("y](cs)),
and so the image of almost all points {(i,m) | i € [if] and m € N} under 7}5)
has been defined. From Lemma 6.3, we have that t;(vs) # 0 for all k such that
[k] ~q [i7]. Using (34) we may determine how 7;8) permutes points on every orbit
of aj;s; with subset almost equal to X{;s) 4, for each d; € N. Each of these orbits of
a will be almost equal to X;r) 4, U X[j).¢, for some [j] ~4 [i/] and e; € N. For each
j we have therefore defined ¢; ('y](cs)) and so by using (34) again, we may define 'yj(f)
on any orbit of aj;s; with subset almost equal to X;) 4; for all d} € N. Continuing

in this way (as we did within the proof of Lemma 6.3) will define ’y](cs) for almost all
points of every branch j such that [j] ~ [if]. For each choice of s, we may decide
if there exist constants ¢y (7(3)) such that for all £ € Z,,;, and m in

{z2(a) + |oal - tpg (@)l - .., z(a) + |oal - [tg(a)] + ta(3$) — 1},
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7(3) satisfies (k,m)"yj(f) = (k,m + tk(’y(s))). From the way that 7(3) has been

constructed, we must have that ¢; (%(f)) = 0 for all [j] %4 [i¥] meaning that ’y](f)

will satisfy condition (iii) above. It will also satisfy tk(’y](es)) < |oa| - |t (a)| for all
[k] ~q [if]. Tt is then decidable whether the finite number of equations defining the

(s)

action of fyfs produce a bijection from

{(@,m) | i € Zpnp and m < zi(a) + |o4| - [t (a)]}
to {(i,m) | i € Zny and m < zi(a) + |oa| - |t (a)] + (4§}

and so it is decidable whether the equations defining 7}8) produce a bijection on

Xyp i.e. whether ’yj(cs) € Sym(X,,,). If so, 'y(s) € H,,, since we have constructed the
equations which an element of Sym(X,,) satisfies if and only if it is an element in

H,,. Note that, when the process can be completed, the element 7}5) € Cpy, (a)

satisfies supp(q/(s)) = supp(ay;s)), meaning that 7(5) satisfies condition (iv) above.
The smallest s for which this process produces an element in H,,, will be the element
v¢. Hence the vectors {t(v,) | p € Z.} are computable. O

Proof of Proposition 6.1. Given a € Hy, X Sy,,, we may compute a finite generating
set for ¢(Cy,,,(a)) by computing the sets {t(v,) | p € Z.} (using the previous
lemma) and ¢(| |, .y ©r) (which was labelled (28) above).

From Section 6.2, we may use these values to decide if there is a conjugator in
(Up)éf;Up by the solvability of equation (26) and, under certain computable circum-

stances, equation (27). O
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A NOTE ON THE R.,, PROPERTY FOR GROUPS
FAIt(X) < G < Sym(X)

CHARLES GARNET COX

ABSTRACT. For any group G, let G < Sym(G) be obtained by the regular
action of G on itself. In this note we show, for any infinite group G (of any
cardinality) that H := (é, FAlt(G)) has the R property. Also, if G is finitely
generated, then we show that all groups commensurable to H have the R
property. As a corollary, we obtain that any countable group G embeds into
a group H such that all groups commensurable to H have the Roo property.
We also have a result for the Houghton groups, which are a family of groups
we denote H,, where n € N. We show that, given any n € N, any group
commensurable to H;,, has the Ro, property.
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1. INTRODUCTION

The notion of twisted conjugacy and its relationship to fixed point theory has
attracted significant attention. For any group G and any ¢ € Aut(G), we say that
two elements a,b € G are ¢-twisted conjugate (denoted a ~¢ b) if there exists an
x € G such that

(1) (z™ Y pax = b.

Notice that when ¢ = idg this becomes the equation for conjugacy. Now, given any
¢ € Aut(G), define the Reidemeister number of ¢, denoted R(¢), to be the number
of ¢-twisted conjugacy classes in G. Thus R(id¢g) records the number of conjugacy
classes of G and deciding whether this is infinite has been studied for some time

(e.g. [HNN49] where an infinite group with R(id¢) finite was constructed). We say
that G has the R, property if R(¢) = oo for every ¢ € Aut(G).
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A note on the Ry property for groups FAIt(X) < G < FSym(X)

Notation. For a non-empty set X, let Sym(X) denote the group of all permuta-
tions of X. Furthermore, let FSym(X) denote the group of all permutations of X
with finite support, and let FAIt(X) denote the group of all even permutations of
X with finite support.

A first example one may consider for the R., property is Z. Although this has
infinitely many conjugacy classes, the only non-trivial automorphism has Reide-
meister number 2. Similarly, for any m € N := {1,2,...}, the automorphism 1 of
Z™ which sends a to a™! for all a € Z™ has Reidemeister number 2. In [JLS14]
and [GP14] however, the family of Houghton groups, which (for any n € N) are
denoted H,,, act on {1,...,n} x N =: X,/ and which lie in the short exact sequence

1 — FSym(X,) — H, — Z"' — 1

were shown to have the R., property. In this note we start with a simpler, more
general proof of their theorem, and then develop this to a large family of groups.

Definition. A group G fully contains FAlt if there is an infinite set X and monomor-
phism © : G — Sym(X) such that FAIt(X) < (G)O. If FAIt(X) < G < Sym(X),
then we shall say that G fully contains FAIt(X).

Note that any Houghton group H,, fully contains FAlt(X,,), but let us justify that
this is a large class of groups. For any infinite group G, we have that G < Sym(X)
for some X (with the possibility that X = G since G can always be embedded into
Sym(G) using a regular representation of G). Then (G,FAlt(X)) fully contains
FAlt(X). A natural question is then whether (G, FAlt(X)) has the R, property.
We are able to make some progress with this question. We first answer it positively
for the case when G is torsion i.e. we show that (G, FAlt(X)) has the R, property
for any torsion group G. We then show a surprisingly general result. For any infinite
group G (of arbitrary cardinality) we show that (G, FAIt(G)), where G < Sym(G)
is the regular representation of G, has the R, property. Let us now summarise the
route which this note takes and the results we obtain.

Note that if G fully contains FAIt(X), then G is centreless and is not residually
finite (since for any infinite set X, FAlt(X) is not residually finite). Also, given
any infinite set X, any group G fully containing FAlt(X) will have FAIt(X) as
a normal subgroup. Thus, unless G = FAlt(X), G will not be simple. We first
investigate such groups, with an emphasis on describing their automorphism group
so to approach twisted conjugacy.

Definition. A group G is monolithic if it has a non-trivial normal subgroup that
is contained in every non-trivial normal subgroup of G i.e. if it has a minimal
non-trivial normal subgroup.

Let Ngym(x)(G) denote the normaliser of G in Sym(X).

Proposition 1. (Lem. 2.1, Prop. 2.2). Let G fully contain FAIt(X). Then
FAIt(X) is characteristic in G, Aut(G) = Ngym(x)(G), and G is monolithic.

We then work with arguments using cycle type (using that the conjugacy classes
of Sym(X) are well know: each consists of all elements of the same cycle type).

Definition. Let g € Sym(X). Then an orbit of g is {zg? | d € Z} where z € X.
Also, g has an infinite orbit if there is a y € X such that {yg? | d € Z} is infinite.
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Proposition 3.2. Let G fully contain FAIt(X). If for every p € Ngym(x)(G),
there is an s € N such that p has finitely many orbits of size s, then G has the R
property.

From the structure of Aut(H,), where H, denotes the n*® Houghton group,
Proposition 3.2 immediately yields that, for any n > 2, H,, has the R, property.

Corollary 3.4. Let G fully contain FAIt(X). If for every g € G, g does not have
an infinite orbit, then G has the Ro, property.

Clearly torsion groups satisfy Corollary 3.4.

Corollary 3.5. Let G be an infinite torsion group which fully contains FAlt. Then
G has the Ry property.

This means that any torsion group 7' can be embedded into an infinite torsion
group (of any cardinality greater than or equal to |T'|) which has the R, property.
It is in fact easy to construct an uncountable family of such groups.

Corollary 3.7. There exist uncountably many countable torsion groups which have
the Ry, property.

Focusing our attention towards actions satisfying (2) provides a stronger result.
Note that this condition applies to the regular representation of any group.

(2)

Theorem 5.2. Let G satisfy condition (2) and fully contain FAIt(X). Then G has
the Roo property.

For all g € G < Sym(X), if g has an infinite orbit, then
all but finitely many points in X lie in an infinite orbit of g.

In the final section we focus on results relating to commensurable groups.

Lemma. Let G be a finitely generated group. If G and all finite index subgroups of
G have the Ry property, then all groups commensurable to G have the R~ property.

Condition (2) is preserved under taking subgroups. We therefore obtain.

Corollary 6.5. Let G satisfy condition (2) and fully contain FAlt(X). Then all
groups commensurable to G have the Ro, property.

We show that if G < Sym(X) satisfies condition (2), then so does (G, FAlt(X)),
and so obtain Corollary 5.3 using the following proposition. Note that, from [Fell0,
Thm 3.3], a similar result to Corollary 5.3 can be obtained.

Proposition. [HO15, Prop 5.13] For every finitely generated infinite group Q,
there exists a finitely generated group G such that FSym(N) < G < Sym(N) and
G/FSym(N) = Q.

Corollary 5.3. Let G be any countably infinite group. Then there exists a group
H which

i) contains an isomorphic copy of G;
i) 1is finitely generated;
i11) has the R, property, and all groups commensurable to H also have the Ro
property.
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In [GK10], sigma theory is used to prove (for certain groups G) the existence
of a finite index subgroup of Aut(G) which has the R, property. Our final result
is that, for the Houghton groups, in fact all commensurable groups have the R,
property. We do this by using Proposition 3.2.

Theorem 6.6. Let n € N. If G is any group commensurable to H,, the n'*
Houghton group, then G has the R, property.

A few conventions will be used throughout this note:

i) we shall always work with right actions;
ii) unless specified, X will refer to an infinite set;
iii) we shall always consider elements to be written in disjoint cycle notation;
iv) for all of the results in this note, the same proofs can be used if FAlt is replaced
with FSym.

Remark. Let g € Sym(X). We shall say ‘a cycle of g’ to refer, for some x € X, to
an orbit {xg? | d € Z}. If there is an x € X such that this set is infinite, then this is
an infinite cycle of g and g contains an infinite cycle. If there is an x € X such that
this set has cardinality r, then this is an r-cycle of g and g contains an r-cycle. If,
for some s € N, there are only finitely many © € X such that |{xg? | d € Z}| = s,
then we shall say that g has finitely many s-cycles. Similarly g may have finitely
many infinite cycles.

Acknowledgements. I thank the authors of [JLS14] and [GP14], whose papers
drew my attention to the R, property. I thank my supervisor Armando Martino
for his continued guidance and encouragement. Finally I thank Hector Durham,
also of the University of Southampton, for the numerous interesting discussions,
especially those regarding monolithic groups.

2. PRELIMINARY OBSERVATIONS

The groups FAIt(X), FSym(X), and Sym(X) often arise when considering per-
mutation groups (see, for example, [Cam99] and [DM96]). Note that any countable
group can be considered as a subgroup of Sym(X) where X is countable (for ex-
ample set X := G and use the regular representation of G).

Notation. Let G < Sym(X). For any given p € Ngym(x)(G), let ¢, denote the
automorphism of G induced by conjugation by p i.e. ¢,(g) :== p~'gp for all g € G.

The three groups FAIt(X), FSym(X), Sym(X) have the property that
(3) Ngym(x)(G) — Aut(G), p = ¢, is an isomorphism.

This means that Aut(FAIt(X)) 2 Ngym(x)(FAIt(X)) = Sym(X) = Aut(FSym(X))
and that FAlt(X) is characteristic in FSym(X) which is characteristic in Sym(X).
Our first aim is to show that any group G fully containing FAlt(X) satisfies (3).
We do this by showing that FAIt(X) is characteristic in such a G and then apply
the following lemma.

Lemma 2.1. Let G < Sym(X) and FAIt(X) be a characteristic subgroup of G.
Then Nsym(x)(G) =g Aut(G) where ¥ :p— ¢,.

Proof. Running the proof of [GP14, Cor. 3.3] using 3-cycles rather than 2-cycles
yields the result. 0
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For any group G satisfying (3), we may use the following reformulation of twisted
conjugacy, which has been used extensively by many authors working with the R,
property. Recall that ¢, denotes the automorphism induced by conjugation by
p € Sym(X). Thus,

(4) (7 Yppaz =b= p (7" )paxr = b= " pax = pb.

We may then show that R(¢,) = oo by finding a set of elements {a;, | k € N} such
that

(5) pa; ~ paj & i = j.
This is because, if such a set of elements exist, then each aj lies in a distinct
¢,-twisted conjugacy class, and so R(¢,) = co. Thus in our case, showing that a

set of elements {a) | ¥ € N} where (5) holds for each p € Ngym(x)(G) will show
that G has the R, property.

Proposition 2.2. If G fully contains FAIt(X), then FAIt(X) is a characteristic
subgroup of G.

Proof. We first show that FAIt(X) is a unique minimal normal subgroup of G,
known as the monolithic property. Clearly FAIt(X) is normal in G, since it is
normal in Sym(X) (conjugation in Sym(X) preserves cycle type).

Consider N <G. We have N NFAlt(X) <FAlt(X), and since FAIt(X) is simple,
N N FAIt(X) must either be trivial or FAlIt(X). Consider an element g € N. This
must either: be in FSym(X); contain infinitely many finite cycles; or contain an
infinite cycle. We now show that there exists a o € FAlt(X) such that 0 ~tgog™" €
FAlt(X) \ {1}. Since N is normal, g and o~ !go are in N and so this will prove
the claim. For the case where g € FSym(X), choose o so that 0~ 1go and g have
disjoint supports. For the case where g contains infinitely many finite cycles, pick
4 distinct cycles (each of length greater than 1) of g and points by, bo, b, by: one
from each cycle. A suitable o is then (b; b2)(bs by). Finally, assume that g contains
an infinite cycle. Let x be a point within this cycle and define the homomorphism

(6) fi{zg?|deZy = Z, xg" — kfor all k € Z.
Thus the image of f is
(..—3-2-10123...) =:a.

Let p:= (—=101) so that p~tapa™! equals (=2 — 1 1). Thus (u)f~! is a suitable
candidate for ¢ in this case.

Now, let ¢ € Aut(G) and consider FAIt(X) N (FAlt(X))¢. As above, this must
be trivial or FAIt(X). If it were trivial, this would contradict the uniqueness of
FAlt(X) as a minimal, non-trivial, normal subgroup in G, and hence FAIt(X) is
characteristic in G. dJ

We may use Lemma 2.1 and Proposition 2.2 to prove that all automorphisms
of Sym(X) are inner. Also, consider if FSym(X) < G < Sym(X). Then, for all
p € Nsym(x)(G) and all g € FSym(X), we have that (g)¢, has the same cycle type
as g. Thus FSym(X) is characteristic in G.

We are now ready to produce conditions on the cycle type of elements in G and
in Ngym(x)(G) for automorphisms to have infinite Reidemeister number. In order
to do this we will use the condition equivalent to showing that R(¢,) = oo (labelled
(5) above) and well known facts about Sym(X) regarding cycle type.
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3. RESULTS USING FACTS ABOUT CONJUGACY IN Sym

Lemma 3.1. Let G fully contain FAIt(X). Then R(idg) = oco.

Proof. All that needs to be done is to produce an infinite family of elements which
all lie in distinct conjugacy classes. We have the equation 2 'az = b. Conjugation
by elements of G cannot change the cycle type of elements of Sym(X). Thus
choosing aj to be a cycle of length 2k + 1 (or any infinite family of elements of
FAlt(X) with distinct cycle types) proves the claim. O

Notation. For any g € Sym(X) and x € X, let O,(g) := {xg? : d € Z}. Also,
let n.(g) == {z € X :|0.(9)| =7} /1, the number of r-cycles in g. We shall use
m(g) to denote the number of fized points of g and n-(g) to denote the number of
distinct infinite orbits induced by g. If any of these values is infinite then, since our
arquments will be unaffected by the size of this infinity, we shall write n,.(g) = oo.

From the previous section, for any group fully containing FAlt(X) we have that
the map W : Aut(G) — Nsym(x)(G), ¢, — p is an isomorphism. We may therefore
consider elements of Aut(G) as elements of Sym(X).

Proposition 3.2. Let G fully contain FAIt(X) and p € Ngymx)(G). If n.(p) is
finite for some r € N, then R(¢,) = co.

Proof. We shall work with the reformulation of twisted conjugacy in (5) above and
argue for any p € Ngym(x)(G) using three cases. Let s € N be the smallest number
such that 74(p) is finite.

Case A: s =1 and 75(p) > 0. As in (6) in the proof of Proposition 2.2, let f be
a homomorphism from an infinite cycle of p to the element of Sym(Z) which sends
zto z+ 1 for all z € Z. For each k € N let

k—1

[ @i 2i+1) = a) € FSym(z).

i=0
Now, for each k € N, let (a},)f~! =: ar, € FSym(X). The set of elements lying in
disjoint ¢,-twisted conjugacy classes is then given by {asx | k£ € N} C FAIt(X).
This is because 71 (pay,) is finite for all £ € N, and is strictly increasing as a function
of k. Thus, if ¢ # j, the elements pa; and pa; have a different number of fixed points
and hence are not conjugate in G < Sym(X).

Case B: s = 1 and 7n(p) = 0. Since p has finitely many fixed points and no
infinite cycles, p contains infinitely many finite cycles. Thus p has infinitely many
odd length cycles or infinitely many even length cycles. First assume that p has
infinitely many odd length cycles and index a countably infinite subset of these by
the natural numbers. Let p = p'[],. pi, Where each p; is a finite cycle of odd
length and p’ € Sym(X) has cycles with disjoint support from all of the p;’s. Now,
for any m € N, p(p,,)~! has more fixed points than p. Defining

k
Hp;l =: a) € FAIt(X)
i=1
means that ¢ < j = ni1(pa;) < m(pa;) and so {a; | k € N} provides our infinite

family of elements which are pairwise not ¢,-twisted conjugate. Similarly, if p
has infinitely many even length cycles, complete the same construction with p =
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p' I1;en pi where each p; is a finite cycle of even length and p’ € Sym(X) has cycles
with disjoint support from all of the p;’s.

Case C: s > 1. All we shall use is that p has infinitely many fixed points. For
any k € N let aj consist of 2k s-cycles such that supp(ax) C X \ supp(p). We then
have, for all k € N: that a;, € FAIt(X); that ns(pay) is finite; and that ns(pay) is
strictly increasing as a function of k. O

Proposition 3.3. Let a,b € Sym(X), supp(b) C supp(a), and x € Sym(X) satisfy
x7Yaz = b. Then ns(z) > 0.

Proof. We assume, for a contradiction, that 7. (2) = 0. Since z~1

restrict to a bijection from supp(a) to supp(b) i.e.

ar = b, x must

(supp(a) Usupp(b)) \ (supp(a) Nsupp(b)) C supp(z)

which from our hypotheses is equivalent to

supp(a) \ supp(b) < supp(z).
Thus z sends some n € supp(a) \ supp(b) to some m € supp(b). Now, since all
of the cycles in x are finite, there is a k¥ € N such that (m)z* is in supp(b) but
(m)z**+1 is in X \ supp(b) i.e. z sends a point in supp(b) to a point in X \ supp(b).
Hence 2 'ax and b have different supports, a contradiction. O

Corollary 3.4. Let G be a group fully containing FAIt(X). If no(g) = 0 for all
g € G, then G has the R property.

Proof. By Proposition 3.2, if ¢, € Aut(G) has ns(p) < oo for any s € N, then
R(¢,) = co. We may therefore assume that 7,(p) = oo for all » € N. This means
that X \ supp(p) is an infinite set.

Our aim is to show that there is an infinite set of elements in G which are not
¢,-twisted conjugate. Let by := 1, the identity element of G. For each k£ € N,
let by := bj,by—1 where 12(b},) = 2, |supp(b},)| = 4, supp(b;,) C X \ supp(p), and
supp(b},) Nsupp(bx_1) = 0. Thus, for each k € N, by, € FAIt(X) and n2(by) = 2k.
For i < j we have that supp(pb;) C supp(pb;). Since 7s(g) = 0 for all g € G,
Proposition 3.3 implies that pb; ¢ pb; i.e. R(¢,) = occ. O

Notice that this provides an alternative proof to [JLS14] and [GP14] that FSym(X)
has the R, property. We also have the following.

Corollary 3.5. Let G be an infinite torsion group which fully contains FAlt. Then
G has the Rs property.

Corollary 3.6. Let G be a torsion group. For every a > |G|, there exists a torsion
group Hy of cardinality o which has the Ro, property and contains an isomorphic
copy of G.

Of course, there are also groups which are not torsion and have no infinite cycles.
This is because an element p € Sym(X) with 7,(p) non-zero for infinitely many
r € N will have infinite order but need not contain an infinite cycle.



96

A note on the Ry property for groups FAIt(X) < G < FSym(X)

Corollary 3.7. There exist uncountably many countable torsion groups which have
the Ry, property.

Proof. We will work within Sym(N x N). For each n > 2, define
o™ : Cp = Sym(Nx N), (1 ... n)—p
where supp(p) = {(m,n) | m € N} and

( )p = (m—n+1,n) ifm=0modn
P = (m+1,n) otherwise

i.e. p consists of n-cycles ‘all the way down’ the n*® copy of N.
Let P denote the set of all prime numbers. Then, for any subset S C P, let
Gg = 69;06 5 Cp. Note that there are uncountably many choices for S. Also,

B C, — Sym(N x N)

peES
by using the maps ¢(™) defined above. For any S C P, let Gg := (Gg, FAIt(N x N)).
Note that Gg is torsion and fully contains FAlt and so, by Corollary 3.5, G has
the R, property. Our final aim is therefore to show that if S # S’, then Gg and
Gg are not isomorphic. By Proposition 2.2, Gg and Gg each have FAIt(N x N)
as a unique minimal normal subgroup. Since GGg and Gg contain no non-trivial
elements of finite support,

Gs / FAIt(N x N) = G and Gs' / FAIt(N x N) = Gsr.

Hence if Gg and Gy are isomorphic, then Gg and Gg/ are isomorphic. But since
S # S, there is a p € P in one set that is not in the other. Without loss of
generality let p € S\ S’. By construction, Gg has p-torsion but Gg: does not.
Hence Gg % Gg. O

4. RESULTS REGARDING CENTRALISERS IN Sym

Before working with actions satisfying condition (2) (on page 91) we require
some well known results about centralisers. This is because of the following lemma.
Throughout this section we shall say that g conjugates a to b if g~tag = b.

Lemma 4.1. Let a,b,g,9' € G and g conjugate a to b. Now, g’ conjugates a to b
if, and only if, g’ = cg for some c € Cg(a).

We start with a simple observation. It applies to centralisers since Cg(a) consist
of all elements of G which conjugate a to a.

Lemma 4.2. Let a,b € Sym(X) be conjugate in Sym(X) and let z € X. If
g € Sym(X) conjugates a to b and g : x v ', then g : xa® — 2'b* for all k € 7Z.

Proof. Let g: x+ 2’ and g~ tag = b. For all k € Z,
(') (g™ ag)" = (¢')g " abg = (za")g.
But g~ lag = b, and so (za¥)g must be equal to (z’)b". O

We must first describe centralisers in Sym(X ). Throughout we shall work with
a fixed p € Sym(X).
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Notation. Let o, ;(p) denote the it r-cycle of p, and for every valid r and i let
ari(p) = (a gll) Qa”) where a( ) e supp(ai(p)) for all 1 < k < r. Note
that 1-cycles denote fixed points. Also, for each r € N, let I,(r) be the indexing set
for the r-cycles of p. Similarly let z;(p) :== (.. zl-(_l) zgo) zi(l) zi(2) ...) denote the i*"
infinite cycle of p where, for all k € Z, z( )
the indexing set for the infinite cycles ofp

€ supp(zi(p)). Finally, let I, denote

Lemma 4.3. Let g € Sym(X) consist of a single r-cycle i.e. be defined so that
ar1(9) = (a1 ...ay), and oy k41(9), as.x(9), and zi(g) are not defined for any k > 1.
Then Csym(x)(9) = Sym(X \ {a1,...,ar}) x (g).

Sketch proof. We note that, for any x € Sym(X),
(7) tlgr =2 ay...a.)r = ((a1)z (az)z ... (a,)x).

Thus all elements of Sym(X) with disjoint support from g lie in Csym(x)(g). Fur-
thermore, if x : a1 — a14k, then, by the previous lemma, this uniquely determines
where = sends as,...,a,. Using the proof of Lemma 4.2 we see that, mod r,
x:a; > aipp forallie {1,...,r}. O

If g = [[,c; 9i where the g; are disjoint cycles, then r lgr = [Lic: x lg;x and
we may apply (7) to see that conjugation by any = € Sym(X) again changes the
support exactly by the action of . This allows us to generalise the previous lemma.

Lemma 4.4. Let p € Sym(X). Then Csym(x)(p) is generated by elements

i) of the form T aui(p)®i]] 2;(p)% for some constants d, i, e; € Z;
reN jel,
1€l,(r)
i1) which permute the cycles of the same length within p, i.e. are elements of
Sym(X) containing cycles of the form

(a) H(a(j-) al) oY) ) for some distinct {iy, ..., ir} C I,(r);

rir Yrio Tyig
(b) HZ( i 12 zZZ ) for some distinct {i1, ..., ir} C Ip;
i€
(c) H( gjz ) aif?o agi)l ...) for some distinct {i,, | m € Z} C I1,(r);
(d) HZ(.. : )1 zg) zgf) ...) for some distinct {i,, | m € Z} C I,.
Thus, jCGSym( x)(p) is an unrestricted wreath product with base consisting of all

elements of type (i) and head consisting of all elements of type (ii).

Proof. The only reference the author is aware of is [anon|, but the result follows
from the ideas of the previous lemma. O

Notation. Let g € Sym(X). Given any set Y C X for which Yg =Y (so that g
restricts to a bijection on'Y'), let g‘Y denote the element of Sym(Y') which acts as

g on the setY i.e. for everyy €Y, y(g|Y) :=yg.
The following lemma is included for interest, and will not be used in this note.

Lemma 4.5. Let g € Sym(X). Then Csym(x)(g) is either uncountable or virtually
free abelian of finite rank.

Proof. Since X is infinite, g must either have
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i) 7Moo (g) non-zero;

ii) m,(g) infinite for at least one r € N;

iii) 7,(g) non-zero for infinitely many r € N.
If either (ii) or (iii) occurs, then from the previous lemma we have that Cgym(x)(9)
is uncountable. In case (i), if 7oo(g) is infinite, again Cgym(x)(g) is uncountable.
If 7o (g) = n and cases (ii) and (iii) do not apply, then the centraliser contains a
wreath product with base including Z™ (corresponding to the n infinite cycles of g)
and head corresponding to a copy of S,, permuting these n infinite cycles. Denote
this virtually Z™ group by G. Since (ii) and (iii) do not occur, there are only
finitely many points outside of the support of the infinite cycles of g. Denote these
points by Y. Now let ¢’ := g!Y. Thus Cgym(y)(g') is finite and so Cgym(x)(9) =
G x Cgym(y)(g'), a virtually Z" group. O

Notation. Let g € Sym(X). Then, for a fired r € N, let g‘r denote the ele-
ment of Sym(X) which consists of the product of all of the r-cycles of g, so that
nT(g(g‘T)_l) =0, and for all s # r, supp(gm N supp(g|s) = 0. Similarly let g‘oo
denote the element of Sym(X) which consists of the product of all of the infinite
cycles of g.

The last results of this section will be needed in the next section, where we will
work with groups satisfying the following condition.

(8) Let G < Sym(X). For all g € G, if no(g) > 0, then X \ Supp(g‘oo) is finite.

Lemma 4.6. Let G < Sym(X), g € G, and 0 € FSym(X). Also, fir some s € N.
i) if Noo(g) > 0 and n.(g) = 0 for all r € N, then ) _yn-(go) is finite.
i) if ns(g) = oo and n-(g) =0 for all v € N\ {s}, then ns(go) = oo,
>rem\(s} r(g0) is finite, and nec(go) = 0.
Thus, if G satisfies condition (8), then (G,FSym(X)) also satisfies condition (8).

Proof. We first deal with case (ii). Let

F:= || supp(g~*ogh).
1<k<s

Outside of F, the element go consists of s-cycles. Notice that F' is finite (it has
size at most s x |supp(o)|). Hence ns(go) = oo, ZreN\{s} n-(go) is finite, and
Moo (go) = 0, as claimed.

We now deal with case (i). For any k € I,, recall that zx(g) is the k™ infinite
cycle of g, and that zx(g) = (.. .zl(;l) z,(co) zlil) z,(f) ce).

Record those i € I, such that supp(z;(g)) Nsupp(c) # 0. Since o has finite
support, there will be only finitely many such i. Label these i1, ...,i4. Note that

d
mg = mgo for allm € X \ |_| supp(zi, (9))
j=1
Now, for each j € {1,...,d}, record numbers min(i;) and max(i,) such that:

i) (minis) | (max(i)

| € supp(0);
ii) for all d < min(i;), 2" ¢ supp(o); and

I

iii) for all d > max(i;), zi(;l) & supp(o).
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Finally, define
d
F = |_|{m € supp(zi,(g)) | min(i;) — 1 < m < max(ij;)}.
j=1
Now, for all m € X \ F, mg = mgo. Hence, for all m € X \ F, we must have that

m € supp((ga)‘oo) i.e. that m lies within an infinite cycle of go. Thus, all of the
finite cycles of go lie within F', a finite set. This proves the claim. O

Lemma 4.7. Let p € Sym(X). If g € Csym(x)(p) is an element which, apart from
on a finite set consists of infinite cycles, then pg((pg)|oo)_1 € FSym(X).

Proof. We note that, by definition, p € Cgym(x)(9). Hence, p restricts to a bijection
of the r-cycles of g (for all » € N) and the infinite cycles of g. For each r > 2, let
Y, = supp(g’r). Also, let Y7 := X \ supp(g) and Y, = supp(g|oo). From our
hypotheses, we have that the set | |, .Y is finite. Hence, so is

SN na(lpg)|Ya).

reN seN

Let g|Yoo = [T;c; 9 where |I| = noo(g) and the g; are the disjoint infinite cycles
of g. Lemma 4.4 describes the structure for the cycles that p’Yoo contains. We
consider each possibility (i), (ii)(b), and (ii)(d) from Lemma 4.4.

Denote the product of all cycles of p‘YC>O of type (i) by R, Any h € Csym(x)(9)
which (when written in disjoint cycle notation) contains gj_1 for some j € I, satisfies
m(hg) = oo. Similarly, if h =], g;-ij where J C I and d; € Z\{—1}, then clearly
hg consists only of infinite cycles. Next, denote the product of all cycles of p‘Yoo of
type (ii)(b) by A®. Then h(?| consists of those cycles of p|Yas of type (ii)(b) of
length s € N, and h(® ‘S € Csym(x)(9). Hence, for any m € supp(h(? ’8),

{(m)(n®] 9)" | d € Z} = {(m)g"(h®| )" | d € Z} 2 {(m)g** | e € Z}

and so m lies in an infinite orbit of g(h‘s). Finally, denote the product of all
cycles of p|Yoo of type (ii)(d) by h®. Let us assume that there is a d € Z and
m € supp(h'®) such that (m)(h®g)¢ = (m). Now, h® € Cgym(x)(G), and so
(m) (K3 g)? = (m)(h®))4g?. Thus (h®)? : m +— m’ and g : m’ — m. But then
there are infinite cycles of g and k(3 whose intersection contains at least 2 points,
which contradicts that h(® is of type (ii)(d). Hence Y -, m((pg)’Yoo) is finite.
Together with our observations of the possible cycles of pg within each set Y,., we

have that 3 -, n-(pg) is finite i.e. pg((pg)!oo)_1 € FSym(X). O

We end this section by describing more specifically how any element which con-
jugates pb; and pb; (as defined in Corollary 3.4) may act.

Proposition 4.8. Let:

i) G fully contain FAIt(X) and satisfy condition (8);

ii) p € Nsym(x)(G) satisfy n.(p) = oo for all r € N;

i11) {by | k € N} be the elements defined in the proof of Corollary 3.4;
i) and g € G conjugate pb; to pb; for some j < i.

Then 1o (pg) > 0 and 3,5, 1(pg) < oc.
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Proof. Let l;; := supp(b;) \ supp(b;). If « conjugates pb; to pb;, then n..(x) > |1;;].
This is because each point of /;; must lie on an infinite cycle of « (from the proof
of Corollary 3.4) and no two of these points may lie within the support of the same
infinite cycle of x (since  must send these points to within supp(pb;) in order to
conjugate pb; to pb;). Furthermore, for each infinite cycle (...a_2 a_1 ag a1 ...) of
x which intersects [;;, there must exist a d € Z such that

1) aq € lij;

ii) for all & > d, aj, € supp(pb;);

iii) and for all ¥’ < d,ar € X \ supp(pb;).
Let g € G conjugate pb; to pb;, and let y consist of all infinite cycles of g which
have non-trivial intersection with /;;. Since y~! conjugates pb; to pb;, Lemma 4.1
states that gy~" € Csym(x)(pbi). Lemma 4.7 states that Y- -, nr(pgy~") is finite.

We end by making some observations about how y may act. Recall that y consists

of |l;;| infinite cycles. Let
y1 = (. “mg—z) mg_l) mgo) mgl) m§2) o)

be one such infinite cycle of y. Thus supp(y;) = {mgk) | k € Z} and, for all
kelZ, (mgk))yl = mng). For simplicity let m§°) € l;;. Lemma 4.2 can be used to
determine where y sends (supp(y1))pb;. Recall that y conjugates pb; to pb;, and so

for all k € Z,
k) . — k
(") pbiy) = (mi)oby;.
Simplifying the left hand side of this expression we see that (mgk_l) pb)y = (mgk) pb;).
Thus y contains an infinite cycle ¢s such that

{m* Y pb; | k € N} C supp(y2)

and for all k > 1, (mgk_l)pbi)y = (mgk)pbi). Let

Y2 = (. “mg—z) mé_l) méo) mél) mgz) o)

where, for all £ > 0, mgk) = mgk)pbi. Importantly méo) = mgo)pbi € ljj. Thus,
from the structure of the infinite cycles of x which intersect /;; non-trivially, we
have for all d € N that m$™¥ € X \ supp(pb;). Note that y; # y2. One way to see
this is that

supp(y1) N1y = {m”} and supp(y2) Ny = {mi”pbi} = {m{bi} # {m{”})
meaning that supp(y1) # supp(yz).
We may now compute that the orbit of mgo) under py is equal to the set
(mP | ke Y UMY |k ez}
2k 2k+1 2k—1
(2k) mé ) é )

where, for all k € Z, (my"")py =
)

and (m )py = mg%). Similarly, the

orbit of mgl under py is equal to the set

(P ke zy u{mi |k ez}

where, for all k € Z, (mg%_l))py = mgzk) and (mézk))py = mfk“). Hence py con-
tains infinite cycles §; and g such that supp(g1) Usupp(g2) = supp(y1) Usupp(ys).
Thus, given a point m € supp(y) \ supp(pb;), we have (m)py = (m)y and so m
lies on an infinite cycle of py. Given a point n € supp(pb;) Nsupp(y) we have that
n € supp(yx) for some infinite cycle of y and that there exists an infinite cycle of
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py containing n. Hence all points of supp(y) lie in an infinite cycle of pyy (where
Yk is some infinite cycle of y) and so n,.(py | supp(y)) = 0 for all r € N. Together
with the discussions above of how gy~! must act we obtain the result. O

5. RESULTS FOR ACTIONS SATISFYING CONDITION (2)

In this section we will consider groups satisfying condition (9) below, which was
labelled (2) on page 91 and (8) on page 98.

(9) Let G < Sym(X). For all g € G, if no(g) > 0, then X \ Supp(g‘oo) is finite.
The following is well known.

Lemma 5.1. Let G be any group. Then, for any ¢ € Aut(G) and ¢ € Inn(G), we
have that R() = R(1¢).

We may now prove the main result of this note.

Theorem 5.2. Let G fully contain FAIt(X) and satisfy condition (9). Then G has
the Roo property.

Proof. Much of the work is in Proposition 4.8. Let p € Ngym(x)(G). From Proposi-
tion 3.2, if ns(7) is finite for some s € N, then R(¢,) = co. We may therefore assume
that 7, (p) is infinite for all » € N. As stated within the proof of Corollary 3.4, there
exist an infinite family of elements {by | ¥ € N} whose support is contained within
the fixed points of our chosen p i.e. for all k& € N, supp(bx) € X \ supp(p). Let
i,j € N be such that supp(pb;) C supp(pb;) and pb;, pb; are conjugate in G. Note
that if no pair is conjugate, then R(¢,) = oo since {pbs, | k € N} is an infinite family
of non-conjugate elements. Thus there exists a g € G which conjugates pb; to pb;.
In Proposition 4.8 it was shown that ) -, 7.(pg) is finite. Thus 12(pg) is finite and
Proposition 3.2 states that R(¢,,) = o0. By Lemma 5.1, R(¢,) = R(¢pg) = 00. O

We obtain the following corollary. This result can also be obtained using [Fell0,
Thm. 3.3].

Corollary 5.3. Let G be any countably infinite group. Then there exists a group
H which

i) contains an isomorphic copy of G;

ii) is finitely generated;

i11) has the R, property, and all groups commensurable to H also have the Ry

property.

Proof. Embed G into a finitely generated group F. Let F < Sym(F') denote the
regular representation of F'. Thus F satisfies condition (9). From [HO15, Prop 5.13],
(F,FSym(F)) =: H is finitely generated. By Lemma 4.6, H satisfies condition (9).
By Theorem 5.2, H has the R, property. Corollary 6.5 of the next section then
states that all groups commensurable to H have the R., property. O

6. THE R., PROPERTY AND COMMENSURABLE GROUPS
This final section involves results for commensurable groups.
Notation. Let N d; G denote that N is normal and finite index in G.

Definition 6.1. Let G and H be groups. We say that G is commensurable to H
if and only if there exist Ng = Ny with Ng <y G and Ny <y H.
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We will work towards two results. The first deals with the R., property for
groups commensurable to those appearing in Theorem 5.2 (which are those which
fully contain FAlt and satisfy condition (9) on page 101). The second result applies
to the Houghton groups, a family of groups H, indexed over N where, for each
n € N, H,, acts on a set X,, and FSym(X,,) < H, < Sym(X,). Each group H,
therefore fully contains FAlt(X,,). These were first introduced in [Hou78], but we
rely heavily on [Cox14] where an introduction to these groups can be found and a
description, for all n > 2, of the structure of the automorphism group for all finite
index subgroups of H,, is given. We start with two well known results.

Lemma 6.2. If H <; G and G is finitely generated, then 3 K <y G which is
characteristic in G.

Lemma 6.3. [MS14, Lem 2.2(ii)] Let D be a group with the R, property and
l—D—F-—F-—1

be a short exact sequence of groups. If D is characteristic in E and F is any finite
group, then E has the Ro, property.

Combining the previous two results provides an easier condition to check in order
to show that all commensurable groups have the R, property.

Lemma 6.4. Let G be a finitely generated group. If G and all finite index subgroups
of G have the Ry, property, then all groups commensurable to G have the R
property.

Proof. Let H be commensurable to G. Then 3 N <4y G, H. By Lemma 6.2, there
exists a group U which is characteristic in H and such that U <y G, H. From our
assumption that all finite index subgroups of G have the R, property, U has the
R property. Hence, by Lemma 6.3, H has the R., property. O

From this lemma we need only investigate finite index subgroups. This leads to
our first aim for this section.

Corollary 6.5. Let G be finitely generated, fully contain FAIt(X), and satisfy
condition (9). Then all groups commensurable to G have the R, property.

Proof. Note that condition (9) is preserved by subgroups. Let F' <; G. It is well
known that if A < C and B <y C then BNA <; A. Hence FNFAIt(X) <; FAIt(X).
Moreover there is a finite index subgroup of FNFAIt(X) which is normal in FAIt(X).
But since FAlt(X) is both infinite and simple, FAlt(X) < F. Thus F satisfies
condition (9) and fully contains FAlt(X). Theorem 5.2 therefore states that F' has
the R property, and so Lemma 6.4 yields the result. O

Our final aim is the following.

Theorem 6.6. Let n € N. If G is any group commensurable to H,, the n'’

Houghton group, then G has the Ro, property.

Proof. We first work with FAlt. If G is commensurable to FAlt(X), then there
exists V <y FAIt(X), G. Now, since FAIt(X) is simple and infinite, N = FAIt(X).
Hence we have the short exact sequence

1 —FA(X) — G — F — 1
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where F' is some finite group. Let ¢ € Aut(G) and consider FAIt(X) N (FALIt(X))e.
This has finite index in FAIt(X). Since FAIt(X) is simple, we have (FAIt(X))¢ =
FAlt(X) i.e. that FAlt(X) is characteristic in G. Lemma 6.3 states that G has the
R property.

We now work with n > 2. From Lemma 6.4, it is sufficient to show that, for any
n > 2, all finite index subgroups of H,, have the R., property.

Fix an n > 2. There are a family of finite index, characteristic subgroups of H,
defined in [BCMR14] and denoted U, where p € N. In [Cox14, Prop. 5.8] it was
shown that, for any U <; H,,, there exists an m € N such that

Aut(U) \p% NSym(Xn)(U) < NSym(Xn)(Um) g\y Aut(Um)

where W : Ngym(x,)(G) = Aut(G) is defined by (g)¥ = ¢,. Furthermore, there is
an isomorphism g : Ngym(x,)(Um) = S < Nsym(H,) (Hnm) where, for all £ > 2,
Ngym(x,,)(Hr) = Hj x Sg. Importantly, this isomorphism preserves cycle type.
We shall apply Proposition 3.2 to show that any group with automorphism group
contained within Ngym (g, )(Hy) for some & > 2 has the R, property.

Fix a k > 2. Notice that for all » € N\ {1} and for all g € Hy, n,(g) is
finite. Given a p € Hy X Sk, which is isomorphic to Aut(Hj) via the map p —
¢,, we have that n,(p) is infinite if and only if p induces a cyclic permutation
of r branches of Xj. Thus, for all p € Nsym(x,)(Hy) and all » > k we have
that n,(p) is finite. Now, for any U <; H,, there exists an m € N such that
Nsym(x,)(U) € Nsym(x,)(Um). Consider if p € Ngym(x,)(Un). Using the above
homomorphism 4 : Ngym(x,,)(Um) = Nsym(x,m) (Hnm), we have that n,.((p)p) is
finite for all » > nm. Since u preserves cycle type, ,-(p) is also finite for all r > nm.
Hence, by Proposition 3.2, R(¢,) = oo and so all automorphisms of U have infinite
Reidemeister number. Thus all finite index subgroups of H,, have the R, property
and so Lemma 6.4 yields the result. O
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THE DEGREE OF COMMUTATIVITY AND LAMPLIGHTER
GROUPS

CHARLES GARNET COX

ABSTRACT. The degree of commutativity of a group G measures the proba-
bility of choosing two elements in G which commute. There are many results
studying this for finite groups. In [AMV], this was generalised to infinite
groups. In this note, we compute the degree of commutativity for wreath
products of the form Z!7Z and F ! Z where F is any finite group.

1. INTRODUCTION

Let F be a finite group. Then the degree of commutativity of F', denoted dc(F'),
is the probability of choosing two elements in F' which commute i.e.

_ {(a,b) € F?: ab = ba}|
- |F]?

This definition was generalised to infinite groups in [AMV] in the following way.
Let G be a finitely generated group and S a finite generating set for G. Let |g|s
denote the length of g with respect to the generating set S i.e. the infimum of all
word lengths of words in S which represent g. For any n € N, let the ball of radius
n in the Cayley graph of G with respect to the generating set S be denoted by
Bg(n). Thus Bg(n) = {g € G : |g|ls < n}. Then the degree of commutativity of G
with respect to S, as defined in [AMV], is

) {(a,b) € Bs(n)? : ab = ba}|
(1) 117rln_>sotip Bs(n)2

and is denote by dcg(G). They also pose an intriguing conjecture.

de(F) :

Conjecture. [AMV, Conj. 1.6] Let G be a finitely generated group, and let S be
a finite generating set for G. Then: (i) dcs(G) > 0 if and only if G is virtually
abelian; and (ii) des(G) > 5/8 if and only if G is abelian.

They verify this conjecture for hyperbolic groups and groups of polynomial
growth (see [Gri91] for an introduction to the growth of groups). In this note
we will investigate the conjecture for groups which are wreath products.

Perhaps the best known examples of infinite wreath products are the lamplighter
groups C7Z where C' is cyclic. Such groups are sensible to investigate with respect
to the conjecture since they have exponential growth and yet all elements in the
base of C'{ Z commute. We obtain the following.

Date: June 17, 2016.
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Theorem 1. Let G = C1Z where C' is a non-trivial cyclic group. Then there is a
generating set S of G such that dcg(G) = 0.

This work generalises to allow us to replace ‘cyclic’ with ‘finite’.

Theorem 2. Let G := F7Z where F' is a non-trivial finite group. Then there is a
generating set S of G such that dcg(G) = 0.

Note that the groups of Theorem 2 include the first known examples of non-
residually finite groups with degree of commutativity 0, since it is currently open
as to whether there exists a non-residually finite hyperbolic group.

Remark. In the case where G is finite, it is well known that
de(G) = # Conjugac’yGTlasses of G

One could therefore define the degree of commutativity for any finitely generated
infinite group with respect to a finite generating set S to be

# conjugacy classes intersecting Bg(n)

lim su
nne [Bs(n)
Such a limit may not be a real limit. Note that this definition includes the conjugacy
growth function of G, which was introduced in [Bab88] and studied, for example, in
[GS10] and [HO13].

Two questions then present themselves.

Question 1. With this definition for degree of commutativity, does the conjecture
above (from [AMV]) hold?

Question 2. Does this definition for the degree of commutativity coincide with (1)
above?

The author is unaware of such questions having been posed before, and these
questions are not discussed further in this note.

Acknowledgements. This work would not have been completed without the
guidance of my PhD supervisor, Armando Martino. I also thank the other authors
of [AMV] for a paper filled with so many ideas.

We now introduce wreath products from an algebraic viewpoint, but will provide
intuition (using permutations) below.

Definition. Given groups G and H, the unrestricted wreath product of G and H
has elements consisting of an element h € H and a function f : H — G. Let B’
be the set of all such functions. If fi, fo € B’ then (f1 x f2)(h) := fi(h) - fa(h)
for all h € H, where - denotes the binary operation of G. Moreover if k € H then
E=Y(f(h))k := f(hk™!) for all h € H. This is equal to the semidirect product
B’ x H. The restricted wreath product, denoted G H, is defined analogously as the
semidirect product B x H where H is the head of Gt H and B, the base of Gl H, is
the subgroup of B’ consisting of functions with finite support i.e. functions f € B’
such that f(h) # 1 for only finitely many h. Since the base is a direct sum of |H|
copies of G, for any h € H let GGj, denote the copy of G corresponding to h.
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It may be useful to provide some of the intuition used when thinking about
lamplighter groups i.e. groups of the form C{Z where C is cyclic. Each of these
groups acts naturally on the corresponding set C'xZ. We shall picture C' as addition
modulo n if |C| = n and as Z otherwise. Hence C' = {0,1,...,n — 1} or C = Z.
A well used generating set is {ag, t} where supp(ag) = {(0,0), (1,0),...,(n—1,0)}
and supp(t) = C x Z with t : (m,n) — (m,n+ 1) for all m € C and n € Z. In the
case where |C| = 2, the base of C1Z can be thought of as a countable collection of
street lamps, with each lamp having an ‘off” or ‘on’ setting. If 2 < |C| < oo, then we
can consider each ‘lamp’ to have a finite number of settings (possibly corresponding
to different levels of brightness). In the case of Z{Z, the base can be thought of
as lamps, where each lamp has an associated ‘voltage’ which takes a value in Z.
Although this intuition will not be taken any further, it can also be seen to apply
to subgroups of R R.

2. PROVING THEOREM 1

The key result we shall draw upon is the following. For the group G = H17Z we
shall use the base of H!Z as the set N.

Lemma 2.1. [AMV, Lem. 3.1] Let G be a finitely generated group, and let S be a
finite generating system for G. Suppose that there exists a subset N C G satisfying
the following conditions:

i) N is S-negligible, i.e. lim,, % =0;

i) limy, 00 W = 0 uniformly in g € G\ N.

Then, dcs(G) = 0.

Remark. Throughout we will restrict ourselves to generating sets which are the
union of a generator of Z and a generating set for G; for some fized i € Z.

2.1. Proving that groups CZ satisfy (ii) of Lemma 2.1. This is the simpler
of the two conditions to prove for such groups. We first introduce the translation
lengths of a group. For more discussions on these, see [Con97] and the references
therein.

Definition 2.2. Let G be a finitely generated group with finite generating set S
and let ¢ € G. Then 75(g) := limsup,,_, ‘92‘5, the translation length of g. Let
F(G) denote the set of non-torsion elements in G. If there is a finite generating
set S’ of G such that {7s/(¢g) : g € F(G)} is uniformly bounded away from 0, then
we say that G is translation discrete. If a group is translation discrete with respect
to one finite generating set, it is translation discrete with respect to all generating

sets (see [Con98, Lem. 2.6.1])

We shall use the following.

Lemma 2.3. Let G be finitely generated, S a finite generating set for G, and
IBs(n)| = f(n) for all n € N, where f is a polynomial of degree 2. Let N C G.
If (i) Ca(g) is cyclic for all g € G\ N; and (ii) the translation lengths of G

|Ca(g)NBs(n)|

are uniformly bounded away from 0, then lim, B ()]

ge G\ N.

= 0 uniformly in
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Proof. This argument can be found within the proof of [AMV, Thm. 1.7]. From
(ii), there exists a constant A € R such that 75(g) > 1/ for all g € G.

Let h € G\ N. By (i), Cg(h) = (g) for some g € G. We now consider how
Cc(h) NBg(n) grows with respect to n. If g* € Cg(h) NBg(n), then |gF|, < n and
l9%|s = |k|Ts(g9) = |k|/X. Thus |k| < M and

IC(h) NBs(n)| < 22n + 1.

Hence, since Bg(n) grows faster than any linear function, the claim follows. U

We must therefore show the two conditions in this lemma are satisfied. Note
that they are independent of the choice of finite generating set used.

Definition 2.4. Let A denote the base of G = H1Z where H is a finitely generated
group. If g € A, then g = [],.; g; where I is a finite subset of Z and g; € H; for
each i € I. NOowW gmin = inf{I} and gpax := sup{/}, the infimum and supremum
of I, respectively.

Lemma 2.5. Let G := H1Z and let A denote the base of G. If g € A, then
Ca(g) < A (and if H is abelian, then Ca(g) = A). If g € G\ A, then Cg(g) is
cyclic.

Proof. The first claim is clear. For the second, let ¢ € G\ A, so that g = wt” for
some w € A and k € Z \ {0}. Now, for any v € A,

v wtFy = wtk
s lwthot™F = w
(2) sthut™ = w low

and so, if v is non-trivial, then (w™'vw)min > (¥t %) and so v € Cg(wt®).
Now assume that vt® € Cg(wt?). If v't* € Cg(wt®), then v't*(vt*)~1 = v'v~! and
so by (2), v'v™! = 1i.e. v/ = v. Thus for each s € Z such that vt* € Cg(wt*) there
is no v’ # v such that v't® € Cg(wt*). Now assume that « is the smallest positive
integer such that there exists a v € A with vt® € Cg(wt*). If, for some 3 € Z there
is a u € A such that ut® € Cg(wt*), then, by the division algorithm, 8 = na for
some n € Z. Thus ut? = (vt®)" since for each s € Z there is at most one v € A
such that vt* € Cg(wt*). O

Lemma 2.6. Let G = H17Z where H is a finitely generated group and let A denote
the base of G. Then {15(g) : g € G \ A} is uniformly bounded away from 0 i.e. G
is translation discrete.

Proof. Let Sy denote a finite generating set for Hy. We work with the generating
set S := Sy U{t} of G.

If g € G\ A, then g = wt® where w € A and t € Z \ {0}. Thus for any n € N,
lg™|s = |kln > n and so 75(g) > 1. O

Let H be finitely generated with 7¢(H) C NU {0} for some finite generating set
S. Then one can prove, with S’ as a finite generating set consisting of the generating
set S for Hy and a generator of the head of HZ, that 7¢/(H ! Z) = NU {0} and
that 75,'(0) is equal to {w € @,c; Hi | I is a finite subset of Z and w is torsion}.

Moreover, if we drop the condition on the translation lengths of H and let A denote
the base of H1Z, then 7¢/(HU1Z\ A) = N.
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2.2. Proving that groups C!Z satisfy (i) of Lemma 2.1. The author is un-
aware of how to show that the negligibility of a set is independent of the generating
set used. When working with groups of exponential growth, it seems that the ‘den-
sity’ of a set A C G may depend on the choice of generating set. Here, density of
a subset A of G = (S) is thought of as the number

lim sup 7’A NBs(n)|
(so that a set is negligible if and only if it has density 0). Note that if the negligibility
of a set is independent of the finite generating set used, then the results that follow
would apply to any finite generating set.

Remark. We shall work with the generating set (ag,t) where ag is a generator of
Co and t is a generator of Z. The arguments also work for C; for any i € Z.

Essentially we reduce counting the number of elements in the base in Bg(n) to
known results regarding the number of possible compositions of a number.

Definition 2.7. A multiset, denoted |...], is a collection of objects where repeats
are allowed e.g. [1,2,2,3,5]. An ordered multiset, denoted |[...]Jord, is a multiset
with a given ordering. Thus [1,2,2,3,5]ora # [1,2,3,2, 5]ord-

Definition 2.8. Let n € N. Then a composition of n is an ordered collection of
natural numbers that sum to n. Thus there is a natural correspondence between
compositions of n and ordered multisets whose elements lie in N and sum to n. A
weak composition of n is a collection of non-negative integers that sum to n. There
is a natural correspondence between weak compositions of n and ordered multisets
whose elements lie in NU {0} and sum to n.

The following are well known.
Lemma 2.9. Let n € N. Then the number of compositions of n is 2" 1.
Proof. We consider a multiset with elements in N, which sum to n, and where each
box either represents a plus or a comma.
[10101...101]ora

Now, for each box a choice of a comma or a plus provides a unique ordered multiset
consisting of elements in N. O

Lemma 2.10. Let n € N. Then the number of weak compositions of n into exactly
k parts is give by the binomial coefficient

n+k—1
k—1 ’

Proof. From the previous proof the number of compositions of n into exactly k
parts is given by the number of ways of placing exactly £k — 1 commas into n — 1

boxes i.e.
n—1
k—1)"°

Now, each composition of n+k into k parts can be thought of as a weak composition
of n into k parts by mapping k element multisets which sum to n+ k and consist of
natural numbers to k£ element multisets which sum to n and consist of non-negative
integers i.e. the map [my, ma, ..., Mglord = [M1 —1,ma — 1...,mg — 1]ora. O
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We are now ready to prove our first theorem.

Theorem 1. Let G = C17Z where C is a non-trivial cyclic group. Let S := (a,t)
be a generating set for G with a € C; (for some i € Z) and t € Z, the head of G.
Then dcs(G) = 0.

Proof. From Lemma 2.1 and our work above, all that remains to be done is to show
that the base A of G is negligible in G.

Fix an n € N. Our aim is to produce a bound for |Bg(n) N A|. For discussions
on normal forms for elements of C ! Z, see [CT05]. Let k < n/2. If |g| = n and
Jmin = 0, then there is a word of length n of the form below which represents g

(3) w0t LMt k=D (R) (k4D gy (2R)

where, for each ¢ € {0,1,...,2(}, w® = a% for some d; € Z. Now, any word
g € |Bg(n) N A| with gmin = 0 can be expressed in the form (3) and must satisfy

2k
Z |w(’)|{a} <n-— 2k.
=0

We now justify why it is sufficient to look at only those ¢ € A with gnin > 0. Let
As :={g € A: gmin = s}. By conjugating a word of the form (3) by ¢~%, we have,
for any s € Z \ N, that

Bs(n) N (As \ Asta)| < [Bs(n) N Ao.
Also, for any s < —n, |Bs(n) N (A5 \ As+1)| = 0. Thus

Bs(n) N Al < U Bs(n) N (A5 \ Agia)| | U [Bs(n) N Al
—n<s<—1
< (n+1)[Bg(n) N Agl.
Since groups of the form C'Z (where C is a non-trivial cyclic group) are of ex-
ponential growth, producing a bound for [Bg(n) N Ag| will be sufficient to bound
|Bs(n) N Agl. 4
In (3), the words {w®) : j = k4 1,k +2,...,2k} are redundant since
w Ot LML =Dy R gy Dy -y (20)

(O R =1y (D) k=1 =1 (k1) (b 1) =1, (k) k-

Thus any word g € [Bg(n) N A| with gmin > 0 can be expressed in the form
(4) w Ot M=t k=D 1yy(R)gk

where, for each i € {0,1,...,k}, w® = g% for some d; € Z.

From [BT15], the growth of C'?Z with our generating set is greater than 2" if
O] =3 and is Y5 if [C] = 2.

We first work with |C| = 2. In this case each w(” has length 0 or 1. Thus,
for each k, there are at most 281 choices for the values of {w(i) :1=0,1,...,k}.
Hence the size of [Bg(n) N Ag| is bounded by

Ln/2] "
, 1
E :2]+1<4.(\/§)n<4.< +2\/5>

j=0
and so the base of C3Z is negligible.
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For the case where |C| > 2, we shall use Lemma 2.10. Our aim is to show that
|(Bs(n)\Bg(n—1))NAp| is bounded by a function which has growth rate 2" (since
this will mean that |Bg(n)NAy| is also bounded by a function which has growth rate
2"). Fixan k € {0,1,..., L%J }. We note that all such elements can be represented
by a word of the form (4), where |w"| < n — 2k for all i € {0,...,k}. Each word
is in bijection with a multiset

(5) @, 0 O )y ) 8 )

where for each i € {0,...,k} we have that v(?),v(® € NU{0} and that u(Dv(® = 0.
This is therefore bounded by the number of weak compositions of n — 2k into 2k + 2
parts. From Lemma 2.10 this is equal to

n—2k+2k+2-1\ [(n+1
2k+2 -1 S \2k+1/°
Now we sum over all viable k:

S ()< () =

k=0 j
Hence |(Bs(n) \Bs(n —1))NA| < (n+1)|(Bs(n) \Bs(n—1))N 4| < (n+1)- 27,
and so is negligible in C Z. O

Note that from this proof it immediately follows that (Co x C3) 1 Z, with the
generating set consisting of two generators of (Co x C3)g and a generator of the
head, has degree of commutativity 0.

Theorem 2. Let G := F7Z where F' is a non-trivial finite group. Then there is a
generating set S of G such that dcg(G) = 0.

Proof. Let |F| =m > 1 and let A denote the base of G. Then A := P, F; where
F; = F for each i € Z. Let S denote the generating set consisting of the non-trivial
elements of Fj and a generator t of the head of G. From Section 2.1 we need only
show that the base of G is negligible in G.

First we produce a lower bound on the growth of G. Consider words of the form

witwotws . . . twyte

where, for each 4, w; € S and € € {0,1}. There are m* such words (since |S| = m)
and so |Bg(n)| > |Bs(n) \ Bs(n — 1)| > m[?/21,

We now produce an upper bound on the growth of A, the base of G. As with the
previous proof, we produce an upper bound for words g € AN (Bg(n) \ Bs(n — 1))
with gmin = 0. Such words are of the form

th_l’wlt_let_l e wk_lt_lwktk
where each wj is either trivial or in S\ {t} and | 25*

be at least 1 non-trivial w; and at most VLT_lJ non-trivial w;. This produces the
bound

J < k < n—1 since there must

3 ()
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since, for each k, n — 2k of the {w; | i = 0,...,k} may be chosen from S\ {¢t} and
the other w; are trivial. Now

”Z‘:l <7f—+21k> (m = 1) < nil <n f2k> (m —1)"

k=[5 ] k=[5 ]

oS (%) m -1y

j=0
<(m—-1)2%-(m—1+1)/3
and so the base of G is negligible in G. U

We end by posing two questions, both of which could represent future work.
These seem natural in the context of Theorem 1 and Theorem 2.

Question 3. To what extent can the approach used above apply to more groups?
For example, taking a group G := F 1T where |F| < oo and T is torsion free
(possibly Z™ for some n € N) can one state that the base of G is negligible in G ¢

Question 4. Given a finitely generated group H, is the base of G := H1Z negligible
in G? Moreover, what if Z is replaced with another finitely generated infinite group?
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