
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF SOCIAL, HUMAN AND MATHEMATICAL SCIENCES

Mathematical Sciences

Numerical Methods for Constrained Euclidean Distance

Matrix Optimization

by

Shuanghua Bai

Thesis for the degree of Doctor of Philosophy

July 2016

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL, HUMAN AND MATHEMATICAL SCIENCES

Mathematical Sciences

Doctor of Philosophy

NUMERICAL METHODS FOR CONSTRAINED EUCLIDEAN DISTANCE

MATRIX OPTIMIZATION

by Shuanghua Bai

This thesis is an accumulation of work regarding a class of constrained Euclidean

Distance Matrix (EDM) based optimization models and corresponding numerical

approaches. EDM-based optimization is powerful for processing distance informa-

tion which appears in diverse applications arising from a wide range of fields, from

which the motivation for this work comes. Those problems usually involve min-

imizing the error of distance measurements as well as satisfying some Euclidean

distance constraints, which may present enormous challenge to the existing algo-

rithms. In this thesis, we focus on problems with two different types of constraints.

The first one consists of spherical constraints which comes from spherical data rep-

resentation and the other one has a large number of bound constraints which comes

from wireless sensor network localization.

For spherical data representation, we reformulate the problem as an Euclidean dis-

tance matrix optimization problem with a low rank constraint. We then propose

an iterative algorithm that uses a quadratically convergent Newton-CG method

at its each step. We study fundamental issues including constraint nondegeneracy

and the nonsingularity of generalized Jacobian that ensure the quadratic conver-

gence of the Newton method. We use some classic examples from the spherical

multidimensional scaling to demonstrate the flexibility of the algorithm in incor-

porating various constraints.

For wireless sensor network localization, we set up a convex optimization model

using EDM which integrates connectivity information as lower and upper bounds

on the elements of EDM, resulting in an EDM-based localization scheme that

possesses both efficiency and robustness in dealing with flip ambiguity under the

presence of high level of noises in distance measurements and irregular topology

of the concerning network of moderate size.

iv

To localize a large-scale network efficiently, we propose a patching-stitching local-

ization scheme which divides the network into several sub-networks, localizes each

sub-network separately and stitching all the sub-networks together to get the re-

covered network. Mechanism for separating the network is discussed. EDM-based

optimization model can be extended to add more constraints, resulting in a flexible

localization scheme for various kinds of applications. Numerical results show that

the proposed algorithm is promising.

Contents

Declaration of Authorship xi

Acknowledgements xiii

1 Introduction 1

1.1 Background on Euclidean Distance Matrix 2

1.1.1 Squared Euclidean Distance Matrix 3

1.1.2 Characterizations of EDM 5

1.1.3 Coordinates recovery from EDM 6

1.1.4 Related methods . 9

1.2 Background on semismooth Newton method 12

1.3 Background on alternating direction method of multipliers 18

1.3.1 2-block semi-proximal ADMM 19

1.3.2 Schur complement based semi-proximal ADMM 21

2 Best Euclidean distance embedding on a sphere 31

2.1 Introduction to spherical data representation 32

2.2 EDM-based optimization formulation 35

2.3 Convex relaxation . 39

2.3.1 Constraint qualifications . 40

2.3.2 Semismooth Newton method for convex relaxation 50

2.4 Majorized penalty method . 64

2.5 Numerical examples by FITS . 68

2.6 Summary . 81

3 EDM-based optimization approach for sensor network localiza-
tion 83

3.1 Introduction to sensor network localization 84

3.2 EDM-based localization scheme . 89

3.2.1 SNL problem statement . 90

3.2.2 EDM-based optimization reformulation 91

3.2.3 Regularization to dealing with the rank constraint 95

3.2.4 Global coordinates recovery and EDM-SNL scheme 98

3.3 A convergent 3-Block ADMM algorithm 99

3.3.1 Reformulation and Lagrangian dual problem 99

v

vi CONTENTS

3.3.2 Implementation of 3-block ADMM 102

3.4 Experimental results by EDM-SNL 106

3.4.1 Benchmark methods . 107

3.4.2 Test examples . 108

3.4.3 Performance comparison on quality of localizations 109

3.4.4 Performance comparison on computation time 113

3.5 Summary . 119

4 Implication for large-scale network and future work 121

4.1 Backgroud on patching method . 122

4.2 EDM-SNL based localization scheme for large-scale network 128

4.2.1 Grouping strategy to divide network into patches 129

4.2.2 Localization and stitching methods for patches 131

4.2.3 Primary experimental results by LSEDM-SNL 133

4.3 Discussion and future work . 137

5 Conclusions 141

References 143

List of Figures

1.1 A set of points in IR2 that generate an example of EDM 4

2.1 Comparison between the two circular fitting of Ekman’s 14 color problem

with and without pole constraints. 72

2.2 Spherical representation for trading data in 1986 between countries {Argentina,

Australia, Brazil, Canada, China, Czechoslovakia, East Germany, Egypt,

France, Hungary, India, Italy, Japan, New Zealand, Poland, Sweden, UK,

USA, USSR, West Germany}. 73

2.3 Spherical embedding of HA30 data set with radius R = 39.5916. 76

2.4 Circle fitting of 6 points with R = 6.5673. The known points and their

corresponding points on the circle by FITS are linked by a line. 78

2.5 Synthetic data with n = 200 points randomly distributed 79

2.6 Variation of RMSD with varying number of noise factor nf 81

3.1 Illustration of flip ambiguity, a small network with 6 nodes, com-
munication radius R = 2.1, blue lines indicate the existence of com-
munication between two nodes. 88

3.2 Ground truth Corridornetwork with n = 494 nodes in total, among
which are m = 24 anchor nodes randomly distributed (colored in
black). 109

3.3 Ground truth EDM network with n = 511 nodes in total, among
which are m = 25 anchor nodes randomly distributed (colored in
black). 109

3.4 Network generated in Example 3.1 with n = 200 and m = 10 an-
chors randomly distributed. Noise factor nf = 0.1. Communication
radius R = 20. (a) EDM-SNL: Localization Error = 3.93%R. (b)
SFSDP: Localization Error = 52.62%R. (Blue diamond: anchor
position. Green circle: original sensor position. Red star: esti-
mate sensor position. Blue line: error offset between original and
estimate sensor position.) . 110

3.5 Variation of localization error with varying noise factor and anchor
distribution type. Networks of totally 200 nodes with communi-
cation radius R = 20. (a) 4 anchor nodes distributed at corners.
(b) 10 anchor nodes randomly (uniformly) distributed. (c) 20 an-
chor nodes randomly (uniformly) distributed. (d) 40 anchor nodes
randomly (uniformly) distributed. 112

vii

viii LIST OF FIGURES

3.6 Variation of localization error with varying noise factor. Networks
of totally 494 nodes, among which are 24 anchor nodes distributed
randomly. Communication radius R = 12. 113

3.7 Variation of localization error with varying noise factor. Networks
of totally 511 nodes, among which are 25 anchor nodes distributed
randomly. Communication radius R = 10. 113

3.8 Qualitative localization results of EDM network, comparing EDM-
SNL, ARAP, SFSDP with different noise level 114

3.9 Computation time comparison in Square Network. (a) The number
of anchors is 5% of the number of sensors. (b) The number of
anchors is 10% of the number of sensors. (c) The number of anchors
is 20% of the number of sensors. 115

3.10 Computation time comparison in Corridor Networks. (a) The num-
ber of anchors is 5% of the number of sensors. (b) The number of
anchors is 10% of the number of sensors. (c) The number of anchors
is 20% of the number of sensors. 115

4.1 Sparsity pattern of distance matrix D after Cuthill-McKee permu-
tation . 130

4.2 Localization process for network with n = 800 points in total, num-
ber of anchors m = 30, the radio range R = 15. Number of points
in each patch np = 300, number of points in the intersection region
of two patches mp = 100. Total CPU time t = 27.43s. 132

4.3 Variation of localization error with varying number of anchors. Net-
works of totally 800 nodes. Noise factor nf = 0.1. Communication
radius R = 15. 133

4.4 Variation of localization error with varying noise factor. Networks
of totally 2000 nodes, among which are 100 anchor nodes distributed
randomly. Communication radius R = 15. 135

4.5 Variation of localization error with varying number of points in the
network. 136

4.6 Localization result of Network with n = 3000 and m = 100 anchors
randomly distributed. Noise factor nf = 0.1. (a) np = 300, mp =
100, localization error RMSD = 2.61E + 00, CPU time t = 185.80
seconds. (b) np = 500, mp = 100, localization error RMSD =
2.48E− 01, CPU time t = 239.17 seconds. (Blue diamond: anchor
position. Green circle: original sensor position. Red star: estimate
sensor position. Blue line: error offset between original and estimate
sensor position.) . 137

List of Tables

2.1 Similarities of colors with wavelengths from 434 nm to 674 nm (Ek-
man, 1954) . 71

2.2 Nations’ trading data from New Geographical Digest (1986) 74

2.3 Execution Time and Quality Results on Sphere Data 80

2.4 Execution Time and Quality Results on Circle Data 80

3.1 Execution Time Results of Square Network 117

3.2 Execution Time Results of Corridor Network 118

4.1 Execution Time and Quality Results by LSEDM-SNL 136

ix

Declaration of Authorship

I, Shuanghua Bai, declare that the thesis entitled Numerical Methods for Con-

strained Euclidean Distance Matrix Optimization and the work presented in the

thesis are both my own, and have been generated by me as the result of my own

original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research

degree at this University;

• where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has

been clearly stated;

• where I have consulted the published work of others, this is always clearly

attributed;

• where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself;

• parts of this work have been published as: (Bai et al., 2015; Bai and Qi,

2016)

Signed:...

Date:..

xi

Acknowledgements

First of all, I would like to state my sincerest thanks to my supervisor Professor

Houduo Qi for his continuous support and guidance throughout my postgraduate

studies. His excellent mathematical knowledge and invaluable advice contributed

enormously to the accomplishment of this work. I feel very fortunate to have him

as my supervisor and mentor.

I am also grateful to my advisers Dr. Tri-Dung Nguyen and Professor Huifu Xu for

their help and suggestions during my studies. I would like to thank my examiners

Prof. Michal Kočvara from University of Birmingham and Dr. Tri-Dung Nguyen

for their careful reading, supports as well as their comments, which have greatly

improved this thesis.

My thanks also go to the previous and present members in the Operational Re-

search Group. I specially thank former research fellow Chao Ding for his enlight-

ening suggestions and numerous discussions regarding the technical aspects in the

research on sensor network localization. I am grateful to the optimization research

group in National University of Singapore for their generous sharing and patient

discussion which help me a lot in developing my coding skills. I would also like to

thank the research group in Beijing Jiaotong University led by Professor Naihua

Xiu for their sharing on the research trend and information in many interesting

optimization topics. I also place my sense of gratitude to my office mates and

fellow PhD students for their company over the years.

Finally and most importantly, I would like to thank my parents and my brother

Shunhua for their endless and unconditional love and support all through my life.

xiii

Chapter 1

Introduction

In this thesis, we focus on designing algorithms for a class of Euclidean Distance

Matrix (EDM) based optimization problems. In particular, we are interested in

EDM-based optimization problems with two types of constraints: spherical con-

straints and bound constraints. Let {x1, . . . ,xn} be n points in IRr, where r > 0

is known as the embedding dimension of those points. The primary information

that is available for those points is the measured Euclidean distances among them

dij ≈ ‖xi − xj‖, for some pairs (xi,xj), (1.1)

which may be incomplete or noisy, or both. The aim of EDM-based optimization is

to recover the (relative or global) coordinates of these points in a target space IRr

purely based on those available distances. Such problems are usually encountered

with cone constraints and rank constraints, which would bring nonsmoothness and

nonconvexity to the optimization model. So algorithms need to be designed for

solving the problems with specific constraints accurately and efficiently.

This chapter is split into three sections. In Section 1.1, we cover the background to

Euclidean Distance Matrix which is the fundamental concept of our modelling pro-

cess and algorithm design. In Section 1.2, we give an introduction to semismooth

1

2 Chapter 1 Introduction

Newton method that is the main approach to deal with spherical constraints. In

Section 1.3, we cover a novel convergent Alternating Direction Method with Mul-

tipliers (ADMM) which allows us to deal with large amount of bound constraints

in conic programming.

1.1 Background on Euclidean Distance Matrix

Let Sn denote the space of n× n symmetric matrices equipped with the standard

inner product 〈A,B〉 = Tr(AB) for A,B ∈ Sn. Let ‖ · ‖ denote the induced

Frobenius norm. Let Sn+ denote the cone of positive semidefinite matrices in Sn

(often abbreviated as X � 0 for X ∈ Sn+). The so-called hollow subspace Snh is

defined by (“:=” means define)

Snh := {A ∈ Sn : diag(A) = 0} ,

where diag(A) is the vector formed by the diagonal elements of A. For subsets α,

β of {1, . . . , n}, denote Aαβ as the submatrix of A indexed by α and β (α for rows

and β for columns). Aα denotes the submatrix consisting of columns of A indexed

by α, and |α| is the cardinality of α. Throughout the thesis, vectors are treated

as column vectors. For example, xT is a row vector for x ∈ IRn. The vector e is

the vector of all ones and I denotes the identity matrix, whose dimension is clear

from the context. When it is necessary, we use In to indicate its dimension n.

Let ei denote the ith unit vector, which is the ith column of I. We also need the

following two important linear transformations.

The first one is Householder transformations, which are orthogonal transforma-

tions that describe reflections about hyperplanes containing the origin. Let

v := [1, . . . , 1, 1 +
√
n]T = e+

√
nen.

Chapter 1 Introduction 3

Then

Q = In −
2

vTv
vvT

is the Householder transformation that maps e ∈ IRn to the vector [0, . . . , 0,−
√
n]T ∈

IRn.

The second one is the geometric centering transformation, which centers a set of

points at their geometric center. Consider a collection of n points in IRr, ascribed

to the columns of matrix X ∈ IRr×n, X = [x1,x2, . . . ,xn], xi ∈ IRr. The centroid

is the mean of all the points

xc =
1

n

n∑
i=1

xi =
1

n
Xe.

By subtracting this vector from all the points in the set, we have the set of cen-

tralized points as

Xc = X − xce
T = X(In −

1

n
eeT).

Then the geometric centering transformation is defined as

J := In −
1

n
eeT . (1.2)

We often use the following properties:

J2 = J, Q2 = I and J = Q

 In−1 0

0 0

Q. (1.3)

1.1.1 Squared Euclidean Distance Matrix

A matrix D is a (squared) EDM if D ∈ Snh and there exist points {x1, . . . ,xn} in

IRr such that Dij = ‖xi − xj‖2 for i, j = 1, . . . , n. IRr is often referred to as the

4 Chapter 1 Introduction

embedding space and r is the embedding dimension when it is the smallest such

r. Consider the following example of EDM for the case n = 3.

Example 1.1. It is easy to check the following matrix D is an EDM. One of the

sets of points in IR2 that generate D is depicted in Figure 1.1

D =


D11 D12 D13

D21 D22 D23

D31 D32 D33

 =


0 D12 D13

D21 0 D23

D31 D32 0

 =


0 1 5

1 0 4

5 4 0



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

 x
1

 x
2

 x
3

1

2
√

5

Figure 1.1: A set of points in IR2 that generate an example of EDM

We note that any rotation, reflection or translation of a set of points {x1, . . . ,xn}

would give the same D (i.e. the Euclidean distances between points remain un-

changed under rigid transformation). In other words, there are infinitely many

sets of points that correspond to the same D. Therefore, given the EDM, only

relative coordinates of points can be recovered. To achieve global coordinates in a

desired coordinate system, additional information (points with known positions)

and procedure (Procrustes analysis) are required. We will introduce the details in

the following sections.

Chapter 1 Introduction 5

1.1.2 Characterizations of EDM

It is well-known that a matrix D ∈ Sn is an EDM if and only if

D ∈ Snh and J(−D)J � 0. (1.4)

The origin of this result can be traced back to Schoenberg (1935) and an inde-

pendent work by Young and Householder (1938). See also Gower (1985) for a

nice derivation of (1.4). Moreover, the corresponding embedding dimension is

r = rank(JDJ).

From the definition in (1.2), it is noted that the matrix J , when treated as an

operator, is the orthogonal projection onto the subspace e⊥ := {x ∈ IRn : eTx =

0}. Characterization (1.4) simply means that D is an EDM if and only if D ∈ Snh

and D is negative semidefinite on the subspace e⊥:

−D ∈ Kn+ :=
{
A ∈ Sn : xTAx ≥ 0, ∀ x ∈ e⊥

}
.

It follows that Kn+ is a closed convex cone (known as the almost positive semidefi-

nite cone). This gives us a window of using conic programming in dealing with dis-

tance related problems. Let ΠKn+(D) denote the orthogonal projection of D ∈ Sn

onto Kn+:

ΠKn+(D) := arg min ‖D − Y ‖ s.t Y ∈ Kn+.

A nice property is that this projection can be done through the orthogonal pro-

jection onto the positive semidefinite cone Sn+ and is due to Gaffke and Mathar

(1989)

ΠKn+(D) = D + ΠSn+(−JDJ) ∀ D ∈ Sn. (1.5)

6 Chapter 1 Introduction

The other formula for computing ΠKn+ is due to Hayden and Wells (1988, Thm.

2.1):

D ∈ Kn+ ⇐⇒ QDQ :=

 D̂ d̂

d̂T d̂0

 and D̂ ∈ Sn−1
+ , (1.6)

and

ΠKn+(D) = Q

 ΠSn−1
+

(D̂) d̂

d̂T d̂0

Q, ∀D ∈ Sn. (1.7)

Because of (1.7), the cone Kn+ can be described as follows:

Kn+ =

Q
 Z z

zT z0

Q :
Z ∈ Sn−1

+

z ∈ IRn−1 z0 ∈ IR

 . (1.8)

Its polar cone (Kn+)◦ is then given by

(Kn+)◦ =

Q
 Z 0

0 0

Q : Z ∈ −Sn−1
+

 . (1.9)

We will use (1.5) for the implementation of our algorithm and (1.8) and (1.9) for

theoretical analysis.

1.1.3 Coordinates recovery from EDM

In this section, we mainly introduce process for recovering the coordinates of points

from EDM. If D is an EDM, from the definition introduced in section 1.1.1,

Dij = ‖xi − xj‖2 = (xi − xj)
T (xi − xj) = xTi xi − 2xixj + xTj xj.

Let X ∈ IRr×n, X = [x1,x2, . . . ,xn] be a collection of n points, then

D = ediag(XTX)T − 2XTX + diag(XTX)eT , (1.10)

Chapter 1 Introduction 7

which is an obvious relation between coordinates of points X and the EDM D.

Define the matrix

G := XTX, (1.11)

which is always called Gram matrix. From Gower (1982), the set of coordinates

can be obtained through the decomposition:

− 1

2
JDJ = XTX. (1.12)

We note that the decomposition is possible because the matrix (−JDJ) is positive

semidefinite according to (1.4).

The results in (1.4) and (1.12) are true when D is a true EDM. What should one do

ifD is not a true EDM? The most popular method is the classical Multidimensional

Scaling (cMDS) (Cox and Cox, 2000; Borg and Groenen, 2005), which simply

computes the nearest positive semidefinite matrix from (−JDJ) and is obtained

through the following optimization:

min
Y
‖J(Y −D)J‖2 s.t. − JY J � 0 and Y ∈ Snh . (1.13)

The optimal solution is just the orthogonal projection of (−JDJ) onto Sn+ and is

denoted by ΠSn+(−JDJ)). cMDS then uses this projection in replace of (−JDJ) in

(1.12) to get the embedding points in X. This method is also known as principal

coordinate analysis by Gower (1966). We summarize the cMDS algorithm as

Algorithm 1. We need to point out here that cMDS works well when D is close to

a true EDM. Otherwise it may perform poorly in terms of embedding quality due

to the rank of Gram matrix being too high.

As introduced in Section 1.1.1, any rigid transformation of X would yield the same

distance matrix D. In order to find a desired set of points that match positions

of certain existing points, one needs to conduct the Procrustes analysis, which is

8 Chapter 1 Introduction

Algorithm 1 Classical MDS

1: Input: Distance matrix D and embedding dimension r.
2: Compute Gram matrix G = −1

2
JDJ .

3: Conduct eigenvalue decomposition on G: G = PΛP T , where Λ = Diag (λ),
λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of G being arranged in the non-
increasing order. P := [p1,p2, . . . ,pn] ∈ On with On being the set of all n×n
orthogonal real matrices.

4: Output: X =
[
diag

(√
λ1, . . . ,

√
λr
)
,0r×(n−r)

]
P T .

a computational scheme and often has a closed-form formula. In the following

part of this section, we briefly introduce the method, more details can be found in

Gower (1975).

Suppose the coordinates of the first m points are known in advance, denoted as

{a1, a2, . . . , am}, and this kind of known points is always referred to as anchor

node in the research of sensor network localization. Let X be the result obtained

by Algorithm 1. Denote

X = [X1, X2], with X1 ∈ IRr×m, X2 ∈ IRr×(n−m),

where X1 contains m points corresponding to the m points with known positions,

whose true positions are collected in A = [a1, . . . , am]. Our first task is to match

X1 to A. To do this, we first centralize the points in X1 and A by

X
c

1 := X1Jm and Ac := AJm.

Denote

a :=
1

m

m∑
i=1

ai and x :=
1

m

m∑
i=1

xi.

We then find the best rotation matrix Q by solving

min
Q∈IRr×r

f = ‖QXc

1 − Ac‖, s.t. QTQ = Ir. (1.14)

Problem (1.14) has a closed form solution Q = UΣV
T

Σ , where UΣ and VΣ are from

Chapter 1 Introduction 9

the singular-value-decomposition of Ac(X
c

1)T = UΣΣV T
Σ . Then the remaining

n−m points will be mapped to

xi = Q(xi − x) + a, i = m+ 1, . . . , n, (1.15)

which are the positions of points in the same coordinate system as anchors.

1.1.4 Related methods

Over the past decade, Euclidean Distance Matrix has been receiving increased

attention from researchers for two main reasons. The first one is that it cov-

ers many application areas such as Multidimensional Scaling (MDS) (Cox and

Cox, 2000; Borg and Groenen, 2005), Sensor Network Localization (SNL) (Biswas

and Ye, 2004; Biswas et al., 2006; Kim et al., 2012; Wang et al., 2008; Zhang

et al., 2010; Alfakih et al., 2011; Ding et al., 2010), and Dimensionality Reduction

(DR) (Weinberger and Saul, 2006; Weinberger et al., 2006; Liberti et al., 2014)

in feature extraction and machine learning. More applications can be found in

(Al-Homidan and Wolkowicz, 2005; Alfakih and Wolkowicz, 1998; Krislock and

Wolkowicz, 2010), see also (Krislock and Wolkowicz, 2012) for detailed summary.

The second reason is that EDM has a close relation with semidefinite matrix, and

by reformulating EDM-based optimization as Semidefinite Programming (SDP),

using the relation in (1.10) and (1.11), one can solve some of the problems very

efficiently using powerful SDP solvers such as SDPT3 (Toh et al., 1999), SDPNAL

(Zhao et al., 2010), and PENNON (Kočvara and Stingl, 2003).

As discussed in the above section, Algorithm 1 requires the distance matrix D

to be close to a true EDM to work well, which narrows down the applications

in which it can be used, since in many circumstances the matrix D is noisy and

incomplete. Lots of works have been done to tackle such problem. A well-known

10 Chapter 1 Introduction

approach is called SMACOF (De Leeuw and Mair, 2009), which minimizes the

sum of squares, commonly called stress, which is defined as

σ(X) :=
n∑

i,j=1

hij(dij − ‖xi − xj‖)2. (1.16)

Here, H is a known n × n matrix of weights hij. For example H can be used

to indicate whether a distance between two points is acquired or not by defining

hij = 1 for known distance and hij = 0 for missing distance. Since σ(X) is a

nonconvex function, De Leeuw and Mair (2009) proposed a majorization func-

tion to linearize the concave part in σ(X). Moreover, SMACOF is capable to

recover points on quadratic surfaces such as ellipse, hyperbola, parabola in IR2

and ellipsoids, hyperboloids, paraboloids, and cylinders in IR3.

Another approach is to first find an EDM that is as close as possible to the given

matrix D, which involves a matrix completion problem, then use Algorithm 1

to recover the points’ positions. Matrix completion is the task of filling in the

missing entries of a partially observed matrix. In specific, Euclidean distance

matrix completion problem is to find the nearest Euclidean distance matrix to the

given data matrix D. Define En := Snh ∩ (−Kn+) as the cone of Euclidean distance

matrices, as introduced by Krislock and Wolkowicz (2012), the Euclidean distance

matrix completion problem can be posed as

find D̂ ∈ En

s.t. H ◦ D̂ = H ◦D,
(1.17)

where H is defined in (1.16) indicating whether the distance information is ac-

quired and ◦ denotes the Hadamard product among matrices. Several methods

have been proposed to solve (1.17), one of them is via Semidefinite Program-

ming (SDP) proposed by Alfakih et al. (1999), which introduced a linear mapping

Chapter 1 Introduction 11

KV : Sn−1
+ → En defined by

KV (Y) = diag(V Y V T)eT + ediag(V Y V T)T − 2V Y V T ,

where V ∈ IRn×(n−1) satisfies V TV = In−1 and V T e = 0. KV is a bond connecting

semidefinite matrices and EDM, and formulated the EDM completion problem as

the following SDP problem

min
Y
‖H ◦ (KV (Y)−D)‖2/2 s.t. Y ∈ Sn−1

+ , (1.18)

where ◦ denotes the Hadamard product among matrices. Alfakih et al. designed

a primal-dual interior point algorithm based on Gauss-Newton direction to solve

problem (1.18), whose number of variables is O(n2). This method can only deal

with problems with size up to a hundred as when the scale of the problem goes

large, much computational effort and storage capacity are required. For convex

quadratic SDP problem like (1.18), Toh (2008) proposed an inexact primal-dual

path following algorithm and the problem scale can go to a couple of thousands.

Reformulating EDM completion problem as SDP can avoid dealing with the Kn+

cone, but the objective function becomes more complicated. A direct approach is

to model the problem based on Kn+ cone:

min
Y
‖H ◦ (D − Y)‖2/2 s.t. Y ∈ Snh ∩ (−Kn+). (1.19)

Different methods are proposed to solve problem (1.19), such as alternating pro-

jection methods of Dykstra-Han type (Dykstra, 1983; Han, 1988), the Modified

Alternating Projection (MAP) by Glunt et al. (1990), and an independent work

by Gaffke and Mathar (1989). Qi (2013) first proposed a semismooth Newton-CG

12 Chapter 1 Introduction

method for its dual problem

min
y∈IRn

‖ΠKn+(D + Diag(y))‖2/2 (1.20)

for the case H = E, then extend it to deal with problem with a general H using a

majorization approach. Based on this work, by putting it in the framework of Ma-

jorized Penalty Approach (MPA) proposed by Gao and Sun (2010), Qi and Yuan

(2014) successively extended the Newton-type method for the EDM completion

problem with rank constraint

minY
1
2
‖H ◦ (Y −D)‖2

s.t. Y ∈ Snh ∩ (−Kn+),

rank(−JY J) ≤ r.

(1.21)

Some equality constraints may also be added to (1.19) and (1.21), but as pointed

out in Qi (2013), if we have too many extra constraints in (1.19), we may lose the

property of constraint nondegeneracy, which may destroy the quadratic conver-

gence of the Newton method.

1.2 Background on semismooth Newton method

Consider the following unconstraint optimization problem:

min
x
f(x), (1.22)

where x ∈ IRn is a real vector with n ≥ 1 components and f : IRn → IR is (at least)

once continuously differentiable. The first-order optimality condition for x∗ to be

Chapter 1 Introduction 13

a local minimizer is that x∗ is a solution of the system of nonlinear equations:

F (x) := ∇f(x) = 0, (1.23)

where F : IRn → IRn is the gradient of f . To design Newton-type algorithm to

solve (1.23), one needs to make assumptions on the function F .

Assume F is (at least) once continuously differentiable, the traditional approach

for designing Newton’s method is based on replacing the complicated nonlinear

map F by its first order Taylor expansion about a given estimation xk ∈ IRn:

F (xk + d) ≈ F (xk) + F ′(xk)d =: mk(d), (1.24)

where F ′ : IRn → IRn×n is the Jacobian matrix of F . then the Newton direction

dk ∈ IRn for the kth iteration can be obtained by solving

mk(d) = 0.

Obviously this step is only well-defined if F ′(xk) is non-singular. We summarize

the classical Newton’s Method, see e.g. Bertsekas (1999), in Algorithm 2. Theorem

1.1 gives the local rate-of-convergence properties of Newton’s method.

Algorithm 2 Newton’s Method

1: Given f : IRn → IR twice continuously differentiable and x0 ∈ IRn, k = 0.
2: Unless a stopping criteria is satisfied, solve

∇2f(xk)d = −∇f(xk)

to get Newton direction dk.
3: set xk+1 = xk + dk and go to 2.

Theorem 1.1. (Nocedal and Wright, 2006, Thm. 3.5). Suppose f is twice differ-

entiable and that the Hessian ∇2f(x) is Lipschitz continuous in a neighbourhood

of a local minimizer x∗ at which ∇f(x∗) = 0 and ∇2f(x∗) � 0. Consider the

sequence {xk} generated by Algorithm 2. Then we have the following results.

14 Chapter 1 Introduction

(i) If the starting point x0 is sufficiently close to x∗, then the sequence of iterates

converges to x∗.

(ii) The rate of convergence of {xk} is quadratic.

(iii) The sequence of gradient norms {‖∇fk‖} converges quadratically to zero.

Newton’s method enjoys a fast convergence rate but it also has some drawbacks.

Unless the initial point is sufficiently close to the local minimizer, the Hessian

may not be invertible and may not be positive definite, which makes the Newton

direction not be a decreasing direction. One of the methods to compensate this

drawback is to conduct a line search method to choose a step length αk at each

iteration k instead of using 1 as the step length throughout the algorithm and

update xk+1 as

xk+1 = xk + αkdk.

By combining the Armijo condition which stipulates that αk should give sufficient

decrease in the objective function f , a backtracking line search method, see e.g.

Bertsekas (1999), is summarized in Algorithm 3

Algorithm 3 Backtracking Line Search

1: Choose ᾱ > 0, ρ ∈ (0, 1), c ∈ (0, 1); Set α← ᾱ;
2: while f(xk + αdk) > f(xk) + cα∇fTk dk do
3: α← ρα
4: end while
5: Terminate with αk = α.

Algorithm 2 and 3 form a framework of Newton’s method to solve unconstraint

optimization problem with objective function being twice continuously differen-

tiable. However, very often the nonlinear mapping ∇f(x) : IRn → IRn is not

necessarily differentiable in the classical (Fréchet) sense. This in fact coins the

name ”nonsmooth” in connection with analytical (nonsmooth analysis) as well as

numerical issues (nonsmooth or generalized Newton’s method). In the following

Chapter 1 Introduction 15

part of this section, we introduce some background of a special kind of nonsmooth

function which is called semismooth function and its properties.

Definition 1.2. Let F : IRn → IRm and x, h ∈ IRn. The directional derivative of

F at x along h is the following limit (if it exists at all):

F ′(x;h) = lim
t→0+

F (x+ th)− F (x)

t
.

F is said to be directionally differentiable at x if F ′(x;h) exists for all h.

Let F : IRn → IRm be a Lipschitz continuous function. By Rademacher’s the-

orem (Rockafellar and Wets, 2009, Sect. 9.J), F is Fréchet differentiable almost

everywhere. Let

DF := {x ∈ IRn|F is differentiable at x}.

be the set of points in IRn where F is differentiable. Let F ′(x) denote the Jacobian

of F at x ∈ DF . The the Bouligand subdifferential of F at x ∈ IRn is defined by

∂BF (x) := {V ∈ IRm×n|V is an accumulation point of F ′(xk), xk → x, xk ∈ DF}.

The Clark’s generalized Jacobian (Clarke, 1990) is the convex hull of ∂BF (x), i.e.,

∂F (x) = conv{∂BF (x)}.

Then the generalized Newton’s method, see e.g. Bertsekas (1999), for nonsmooth

systems is give in Algorithm 4.

Without requiring further properties of F , one can only expect linear convergence

of Algorithm 4 at best if it converges at all, presumed that the iteration is well-

defined. However, if the gradient F enjoys nice properties such as semismoothness

16 Chapter 1 Introduction

Algorithm 4 Generalized Newton’s Method

1: Given f : IRn → IR continuously differentiable and its gradient F : IRn → IRn

locally Lipschitz continuous, x0 ∈ IRn, k = 0.
2: Unless a stopping criteria is satisfied, solve

Vkd = −F (xk)

to get Newton direction dk, where Vk is an arbitrary element of ∂F (xk).
3: set xk+1 = xk + dk and go to 2.

or strong semismoothness, Algorithm 4 will have superlinear or even quadratic

convergence rate under some conditions.

First introduced by Mifflin (1977) for functionals, the following concept of semis-

moothness was extended by Qi and Sun (1993) for vector-valued functions which

are not differentiable, but locally Lipschitz continuous. Moreover, by the work

from Sun and Sun (2002), the concept of semismoothness was pushed further to

the case when a function is matrix-valued, which contains a very important type

of function that is the function of semidefinite projection, which plays an im-

portant role in developing semismooth Newton methods and smoothing methods

for semidefinite programming. Let X and Y be finite dimensional real Euclidean

spaces each equipped with an inner product 〈·, ·〉 and its norm ‖ · ‖.

Definition 1.3. Let F : U ⊂ X → Y be a locally Lipschitz continuous function

on the open set U . F is said to be semismooth at a point x ∈ U if

1. F is directionally differentiable at x; and

2. for any V ∈ ∂F (x+ h) and h→ 0,

F (x+ h)− F (x)− V h = o(‖h‖), h ∈ U .

Furthermore, F is said to be strongly semismooth at a point x ∈ U if

F (x+ h)− F (x)− V h = o(‖h‖2), h ∈ U .

Chapter 1 Introduction 17

With F being semismooth, the Algorithm 4 is called semismooth Newton’s method.

Qi and Sun (1993) showed that the iterate sequence generated by Algorithm 4 con-

verges superlinearly under nonsingular condition. The following convergence result

is essential.

Theorem 1.4. ((Qi and Sun, 1993, Thm. 3.2)). Let x∗ be a solution of the equa-

tion F (x) = 0 and let F be a locally Lipschitz function which is semismooth at x∗.

Assume that all V ∈ ∂F (x∗) are nonsingular matrices. Then every sequence gen-

erated by Algorithm 4 is superlinearly convergent to x∗, provided that the starting

point x0 is sufficiently close to x∗. Moreover, if F is strongly semismooth at x∗,

the convergence rate is quadratic.

In fact, many functions such as convex functions and smooth functions are semis-

mooth everywhere. Moreover, showed by Sun and Sun (2002) in their paper, the

function of semidefinite projection ΠSn+(·) is strongly semismooth everywhere in

Sn. This result together with the projection relation (1.5) opens the gate to design

semismooth Newton’s method for EDM based optimization problems.

One key issue to implement Algorithm 4 is to compute the element in ∂F (xk).

Given X ∈ Sn, assume X has the following eigenvalue decomposition

X = PΛP T ,

where Λ is the diagonal matrix with diagonal element being the eigenvalues λ1 ≥

λ2 ≥ · · · ≥ λk > 0 ≥ λk+1 ≥ · · · ≥ λn of X and P ∈ O is the corresponding

orthogonal matrix of eigenvectors. Then the semidefinite projection function is

given by

ΠSn+(X) = PΛ+P
T ,

where Λ+ = max{Λ, 0}. Define the operator W : Sn → Sn, by

WH = P (Ω ◦ (P THP))P T , H ∈ Sn, (1.25)

18 Chapter 1 Introduction

where

Ω =

 Ek Ω

Ω
T

0

 ,Ωij =
λi

λi − λj
, i ∈ {1, 2, . . . , k}, j ∈ {k + 1, . . . , n}.

where Ek is the matrix of ones with dimensional k. It has been proved by Pang

et al. (2003) that WH is actually an element of the set ∂ΠSn+(X)H

1.3 Background on alternating direction method

of multipliers

In this section, we provide background to a kind of first-order methods called alter-

nating direction methods of multipliers (ADMM), which are often more suitable,

and sometimes the only practical choice for solving large-scale problems. Further-

more, ADMM are capable to find a solution of low to medium accuracy and makes

it efficient to deal with large amount of equality and inequality constraints, which

brings difficulty to the semismooth Newton’s method since the dual problem is no

longer unconstraint.

Let f : X → (−∞,+∞] and g : Y → (−∞,+∞] be closed proper convex func-

tions, and F : X → Z and G : Y → Z are linear operators, where X , Y and Z be

real finite dimensional Euclidean spaces with inner product 〈·, ·〉 and its induced

norm ‖ · ‖. Let ∂f and ∂g be the subdifferential mappings of f and g, respec-

tively. Since the subdifferential mappings of the closed proper convex functions

are maximal monotone (Rockafellar and Wets, 2009, Theorem 12.17), there exist

two self-adjoint and positive semidefinite operators Σf and Σg such that for all

x, x̂ ∈ dom(f), u ∈ ∂f(x), and û ∈ ∂f(x̂),

f(x) > f(x̂)+ 〈û, x− x̂〉+ 1

2
‖x− x̂‖2

Σf
and 〈u− û, x− x̂〉 ≥ ‖x− x̂‖2

Σf
, (1.26)

Chapter 1 Introduction 19

and for all y, ŷ ∈ dom(g), v ∈ ∂g(y), and v̂ ∈ ∂g(ŷ),

g(y) > g(ŷ) + 〈v̂, y − ŷ〉+
1

2
‖y − ŷ‖2

Σg and 〈v − v̂, y − ŷ〉 ≥ ‖y − ŷ‖2
Σg . (1.27)

1.3.1 2-block semi-proximal ADMM

Consider the 2-block convex optimization problem with the following separable

structure:

min
x,y

f(x) + g(y)

s.t. F∗(x) + G∗(y) = c.

(1.28)

And its dual problem is given by

min {〈c, z〉+ f ∗(s) + g∗(t) | F(z) + s = 0, G(z) + t = 0} . (1.29)

Let σ > 0 be a parameter. The augmented Lagrangian function for problem (1.28)

is given by (e.g., see Rockafellar and Wets (2009, Sec. 11K))

Lσ(x, y; z) = f(x) + g(y) + 〈F(x) + G(y)− c, z〉+
σ

2
‖F(x) + G(y)− c‖2. (1.30)

The classical augmented Lagrangian method (Hestenes, 1969; Powell, 1967; Rock-

afellar, 1976) consists of the following two steps on the kth iteration:

(
xk+1, yk+1

)
= arg min

x,y
Lσ(x, y; zk) (1.31)

zk+1 = zk + τσ
(
F(xk+1) + G(yk+1)− c

)
, (1.32)

where τ > 0, e.g., τ ∈ (0, 1+
√

5
2

), is a positive constant that controls the step length

in (1.32). To solve subproblem (1.31) exactly or approximately with high accuracy

can be a challenging task in many situations. To tackle this challenge, one may

try to solve (1.32) in terms of x and y alternately other than simultaneously.

20 Chapter 1 Introduction

In the following part of this section, we mainly discuss a semi-proximal ADMM

proposed by Fazel et al. (2013), which is more general and applicable than most of

the previous works on ADMM. We summarize the semi-proximal ADMM in the

following Algorithm 5. Since the proximal terms that be added can be positive

semidefinite other than positive definite, the corresponding method is called semi-

proximal ADMM instead of proximal ADMM.

Algorithm 5 Semi-Proximal ADMM

1: Set initial points (x0, y0, z0) ∈ domf×domg×Z. Choose σ > 0 as the penalty

parameter, τ ∈ (0, 1+
√

5
2

) is the step length, and S and T are two self-adjoint
positive semidefinite, not necessarily positive definite, operators on X and Y ,
respectively.

2: Compute

xk+1 = arg min
x∈X
Lσ(x, yk, zk) +

σ

2
‖x− xk‖2

S, (1.33)

3: Compute

yk+1 = arg min
y∈Y
Lσ(xk+1, y, zk) +

σ

2
‖y − yk‖2

T , (1.34)

4: Compute
zk+1 = zk + τσ

(
F(xk+1) + G(yk+1)− c

)
. (1.35)

5: If a termination criterion is not met, go to step 2.

Algorithm 5 will reduce to the classical ADMM introduced by Glowinski and Mar-

roco (1975) and Gabay and Mercier (1976) when S = 0 and T = 0. The presence

of S and T can help to guarantee the existence of solutions for the subproblem

(1.33) and (1.34). Moreover, they can ensure the boundedness of the two gener-

ated sequences {xk+1} and {yk+1}. The choices of S and T depends very much

on the problem, the basic principle is that S and T should be as small as possible

while {xk+1} and {yk+1} are still easy to compute.

For the convergence of Algorithm 5, we need the following assumptions on the

constraint qualification (CQ).

Chapter 1 Introduction 21

Assumption 1.5. There exists (x0, y0) ∈ ri (dom f × dom g) that F(x0)+G(y0) =

c.

Based on the result in Fazel et al. (2013), we have the convergence result below,

see also Sun et al. (2014) for details.

Theorem 1.6. Let S and T be the self-adjoint and positive semidefinite opera-

tors defined by (1.26) and (1.27), respectively. Suppose that the solution set of

the problem (1.28) is nonempty and Assumption (1.5) holds. Assume that S and

T are chosen such that the sequence {(xk, yk, zk)} generated by Algorithm 5 is

well defined. Then under the condition either (a) τ ∈ (0, 1+
√

5
2

) or (b) τ ≥ 1+
√

5
2

but
∑∞

k=0

(
‖G∗(yk+1 − yk)‖2 + τ−1‖F∗(xk+1) + G∗(yk+1)− c‖2

)
< ∞, the follow-

ing results hold:

(i) If (x∞, y∞, z∞) is an accumulation point of {(xk, yk, zk)}, then (x∞, y∞)

solves problem (1.28) and z∞ solves problem (1.29).

(ii) If both σ−1Σf + S + FF∗ and σ−1Σg + T + GG∗ are positive definite, then

the sequence {(xk, yk, zk)}, which is automatically well defined, converges to

a unique limit, say, (x∞, y∞, z∞) with (x∞, y∞) solves problem (1.28) and

z∞ solves problem (1.29).

(iii) When the y-part disappears, the corresponding results in parts (i) and (ii)

hold under the condition either τ ∈ (0, 2) or τ ≥ 2 but
∑∞

k=0 ‖G∗yk+1−c‖2 <

∞.

1.3.2 Schur complement based semi-proximal ADMM

The problem will be more complicated when it comes to be multi-block. The

motivation for reviewing ADMM for multi-block problems comes from interests

in the sensor network localization problem which is thoroughly investigated in

22 Chapter 1 Introduction

Chapter 3. The sensor network localization problem is an important special case

of the following convex quadratic conic programming

min 1
2
〈X,QX〉+ 〈C,X〉

s.t. AEX = bE,AIX ≥ bI , X ∈ Kn+ ∩ K,
(1.36)

where Kn+ is the almost positive semidefinite cone introduced in Section 1.1.2, Q is

a self-adjoint positive semidefinite linear operator from Sn to Sn, AE : Sn → IRmE

and AI : Sn → IRmI are two linear maps, C ∈ Sn, bE ∈ IRmE , bI ∈ IRmI are given

data, K is nonempty simple closed convex set, e.g., K = {W ∈ Sn : L ≤ W ≤ U}

with L,U ∈ Sn being given matrices. The dual of problem (1.36) is given by

max −δ∗K(−Z)− 1
2
〈X ′,QX ′〉+ 〈bE, yE〉+ 〈bI , yI〉

s.t. Z −QX ′ + S +A∗EyE +A∗IyI = C,

X ′ ∈ Sn, yI ≥ 0, S ∈ (Kn+)∗,

(1.37)

where (Kn+)∗ is the dual cone of Kn+ and δ∗K(·) is the conjugate function of δK(·)

given by

δ∗K(−Z) = sup
W∈K
〈−Z,W 〉 = − inf

W∈K
〈Z,W 〉 . (1.38)

By introducing a slack variable u ∈ IRmI and indicator function, one can always

reformulate problem (1.37) as

min (δ∗K(−Z) + δIR
mI
+

(u)) + 1
2
〈X ′,QX ′〉+ δ(Kn+)∗(S)− 〈bE, yE〉 − 〈bI , yI〉

s.t. Z −QX ′ + S +A∗EyE +A∗IyI = C,

u− yI = 0, X ′ ∈ Sn,
(1.39)

where δIR
mI
+

(·) is the indicator function over IRmI
+ , i.e., δIR

mI
+

(u) = 0 if u ∈ IRmI
+

and δIR
mI
+

(u) = ∞ otherwise. It is not difficult to verify that problem (1.39) fits

Chapter 1 Introduction 23

the following general convex composite quadratic optimization model:

min f(u) +
∑p

i=1 θi(yi) + g(v) +
∑q

j=1 ϕj(zj)

s.t. F∗u+
∑p

i=1A∗i yi + G∗v +
∑q

j=1 B∗j zj = c,

(1.40)

where p and q are given nonnegative integers, f : U → (−∞,+∞], g : V →

(−∞,+∞] are closed proper convex functions, θi : Yi → (−∞,+∞], i = 1, 2, . . . , p,

and ϕj : Zj → (−∞,+∞], j = 1, 2, . . . , q are convex quadratic functions, F : X →

U , G : X → V , Ai : X → Yi, i = 1, 2, . . . , p, and Bj : X → Zj, j = 1, 2, . . . , q

are linear maps, U ,V ,Y1, . . . ,Yp,Z1, . . . ,Zq and X are all real finite dimensional

Euclidean spaces each equipped with an inner product 〈·, ·〉 and its induced norm

‖ · ‖. Without loss of generality, we use the adjoint form of the linear maps in

the constraint of model (1.40) since in general we are more interested in solving

the dual problem of a matrix optimization model with linear constraints and the

dual problem often involves the adjoint of linear maps. Model (1.40) covers a

wide range of applications involving matrix completion such as EDM completion

problem (1.18). We must point out that model (1.40) is a very general model and

the dimension of the Euclidean spaces U ,V ,Y1, . . . ,Yp,Z1, . . . ,Zq and X depend

on the special structure of the models in different application areas. For example,

in our case described in Chapter 3, we only need the 3-block version of the model

(1.40) resulting in p = 1, q = 0, U ,V are the space of n × n symmetric matrices

Sn and y1 in the vector space Y1 with dimension depending on the context.

An efficient algorithm for (1.40) is essential to many large scale problems with

large amount of equality and inequality constraints. In this section, we mainly

review a Schur complement based semi-proximal ADMM proposed by Li et al.

(2014), which is an efficient and convergent ADMM that provides a solution of

low to medium accuracy to problem (1.40). We will integrate this algorithm in

our sensor network localization scheme. Details can be found in Chapter 3.

24 Chapter 1 Introduction

To write problem (1.40) in a compact form, define Y := Y1 ×Y2 × · · · × Yp, Z :=

Z1 × Z2 × · · · × Zq. Denote y ≡ (y1, y2, . . . , yp) ∈ Y and z ≡ (z1, z2, . . . , zq) ∈ Z.

Define the linear map A : X → Y such that its adjoint is given by

A∗y =

p∑
i=1

A∗i yi ∀y ∈ Y ,

where A∗i is the adjoint of Ai. For example, if Ai : Sn → IRm is a linear operator,

we call the adjoint of Ai, the linear operator A∗i : IRm → Sn such that

〈Ai(X), y〉 = 〈X,A∗i y〉, for all X ∈ Sn, y ∈ IRm.

Similarly define the linear map B : X → Z such that its adjoint is given by

B∗z =

q∑
i=1

B∗j zi ∀z ∈ Z.

Let θ(y) :=
∑p

i=1 θi(yi), y ∈ Y and ϕ(z) :=
∑q

j=1 ϕj(zj), z ∈ Z. Then problem

(1.40) is equivalent to the following form:

min f(u) + θ(y) + g(v) + ϕ(z)

s.t. F∗u+A∗y + G∗v + B∗z = c,

(1.41)

which is a special case of the following block-separable convex optimization prob-

lem:

min

{
n∑
i=1

φi(wi) |
n∑
i=1

H∗iwi = c

}
, (1.42)

where for each i ∈ {1, . . . , n}, Wi is a finite dimensional real Euclidean space

equipped with an inner product 〈·, ·〉, φi : Wi → (−∞,+∞] is a closed proper

convex function, Hi : X → Wi is a linear map and c ∈ X is given. The augmented

Chapter 1 Introduction 25

Lagrangian function for (1.42) is

Lσ(w1, w2, . . . , wn;x) =
n∑
i=1

φi(wi) + 〈x,
n∑
i=1

H∗iwi − c〉+
σ

2
‖

n∑
i=1

H∗iwi − c‖2

for wi ∈ Wi, i = 1, . . . , n, x ∈ X and σ > 0 being a given parameter. A di-

rect extension of 2-block semi-proximal ADMM in Algorithm 5 has the following

updating process:

wk+1
1 = arg minLσ(w1, w

k
2 , . . . , w

k
n;xk),

...

wk+1
i = arg minLσ(wk+1

1 , . . . , wk+1
i−1 , wi, w

k
i+1, . . . , w

k
n;xk),

... (1.43)

wk+1
n = arg minLσ(wk+1

1 , . . . , wk+1
n−1, wn;xk),

xk+1 = xk + τσ

(
n∑
i=1

H∗iwk+1
i − c

)
.

There has no clear results on the convergence of the n-block ADMM (1.43) above.

Wen et al. (2010) designed an efficient software for solving some large scale SDP

problems using the 3-block ADMM with τ = 1.618. However, Chen et al. (2014)

showed that the direct extension of the ADMM to the 3-block convex problem is

not necessarily convergent. By thoroughly exploiting the special quadratic struc-

ture in the convex quadratic problem (1.41), Li et al. (2014) proposed a conver-

gent Schur complement based semi-proximal ADMM called SCB-SPADMM with

a competitive numerical efficiency to the direct extended ADMM (1.43).

In the following part of this section, we focus on the problem (1.40), with all θi

and ϕj being assumed to be convex quadratic functions:

θi(yi) =
1

2
〈yi,Piyi〉 − 〈bi, yi〉, i = 1, . . . , p,

ϕj(zj) =
1

2
〈zj,Qjzj〉 − 〈dj, zj〉, j = 1, . . . , q,

26 Chapter 1 Introduction

where Pi and Qj are given self-adjoint positive semidefinite linear operators. The

dual problem of (1.40) can be written as

min 〈c, x〉+ f ∗(s) +
∑p

i=1 θ
∗
i (ri) + g∗(t) +

∑q
j=1 ϕ

∗
j(wj)

s.t. Fx+ s = 0, Aix+ ri = 0, i = 1, . . . , p,

Gx+ t = 0, Bjx+ wi = 0, j = 1, . . . , q.

(1.44)

Define

Tθi := Eθi − σ−1Pi −AiA∗i � 0, i = 1, . . . , p, (1.45)

where Eθi is a self-adjoint positive definite linear operator on Yi such that it is a

majorization of σ−1Pi +AiA∗i , i.e.,

Eθi � σ−1Pi +AiA∗i .

Similarly, denote

Tϕj := Eϕj − σ−1Qj − BjB∗j � 0, j = 1, . . . , q, (1.46)

where Eϕj is the majorization of σ−1Qj + BjB∗j . For computational efficiency, Tθi

and Tϕj need to be as small as possible for each i and j, respectively. Eθi and Eϕj

need to be chosen such that the inverse can be computed at a moderate cost.

For notational convenience, we also define

y≤i := (y1, y2, . . . , yi), y≥i := (yi, yi+1, . . . , yp), i = 0, . . . , p+ 1

Chapter 1 Introduction 27

with the convention that y0 = yp+1 = y≤0 = y≥p+1 = ∅. For i = 1, . . . , p, define

the linear operator A≤i : X → Y by



A1x

A2x

...

Aix


≡ A≤ix := A1x×A2x× · · · × Aix ∀x ∈ X .

Similarly, we can define z≤j, z≥j for j = 0, . . . , q + 1 and linear operator B≤j for

j = 1, . . . , q. To simplify the augmented Lagrangian function of (1.41), we need

define the following affine function Γ : U × Y × V × Z → X by

Γ(u, y, v, z) := F∗u+A∗y+G∗v+B∗s− c ∀(u, y, v, z) ∈ U ×Y ×V ×Z. (1.47)

Then the augmented Lagrangian function of (1.41) is

Lσ(u, y, v, z;x) = f(u) + θ(y) + g(v) + ϕ(z) + 〈x,Γ(u, y, v, z)〉+
σ

2
‖Γ(u, y, v, z)‖2.

(1.48)

By the definitions above, we can summarize the SCB-SPADMM in Algorithm 6.

Compared to the direct extension of 2-block semi-proximal ADMM, SCB-SPADMM

requires two extra updating processes, which are step 2 and step 4 that solve the

proximal augmented Lagrangian function backwards with respect to y and z. By

doing this, the convergence of algorithm SCB-SPADMM is guaranteed. Genuinely,

SCB-SPADMM firstly splits problem (1.41) into a 2-block framework with the

(u, y)-block and (v, z)-block. For each block, the semi-proximal augmented La-

grangian method is applied to get the solution of the subproblem simultaneously.

That is, for example, the step 2-3 are actually solving the problem

(uk+1, yk+1) = arg min
u,y
Lσ(u, y, vk, zk;xk)+

σ

2
‖(u, y≤p−1)−(uk, yk≤p−1)‖2

T̂fp
+
σ

2
‖yp−ykp‖2

Tθp ,

28 Chapter 1 Introduction

Algorithm 6 SCB-SPADMM

1: Set initial points (u0, y0, v0, z0, x0) ∈ domf×Y×domg×Z×X . Choose σ > 0
as the penalty parameter, τ ∈ (0,∞) is the step length, and Tf and Tg are two
self-adjoint positive semidefinite operators defined on U and V respectively.
For k = 0, 1, . . ., generate (uk+1, yk+1, vk+1, zk+1) and xk+1 according to the
following iteration.

2: Compute for i = p, . . . , 1,

yki = arg min
yi
Lσ(uk, (yk≤i−1, yi, y

k
≥i+1), vk, zk;xk) +

σ

2
‖yi − yki ‖2

Tθi
, (1.49)

where Tθi is defined in (1.45). Then compute

uk+1 = arg min
u
Lσ(u, yk, vk, zk;xk) +

σ

2
‖u− uk‖2

Tf . (1.50)

3: Compute for i = 1, . . . , p,

yk+1
i = arg min

yi
Lσ(uk+1, (yk+1

≤i−1, yi, y
k
≥i+1), vk, zk;xk) +

σ

2
‖yi − yki ‖2

Tθi
. (1.51)

4: Compute for j = q, . . . , 1,

zkj = arg min
zj
Lσ(uk+1, yk+1, vk, (zk≤j−1, zj, z

k
≥j+1);xk) +

σ

2
‖zj − zkj ‖2

Tϕj
, (1.52)

where Tϕi is defined in (1.46). Then compute

vk+1 = arg min
v
Lσ(uk+1, yk+1, v, zk;xk) +

σ

2
‖v − vk‖2

Tg . (1.53)

5: Compute for j = 1, . . . , q,

zk+1
i = arg min

zj
Lσ(uk+1, yk+1, vk+1, (zk+1

≤j−1, zj, z
k
≥j+1);xk) +

σ

2
‖zj − zkj ‖2

Tϕj
.

(1.54)

6: Compute

xk+1 = xk + τσ(F∗uk+1 +A∗yk+1 + G∗vk+1 + B∗zk+1 − c). (1.55)

7: If a termination criterion is not met, go to step 2.

Chapter 1 Introduction 29

where T̂f1 := Tf + F1A∗1E−1
θ1
A1F∗1 ,

T̂fi :=

 T̂fi−1

Tθi−1

+ FiA∗iE−1
θi
AiF∗i , i = 2, . . . , p. (1.56)

Moreover, the existence of the proximal terms eliminates the quadratic terms con-

taining linear transformations and makes it easier to use the function of projection

onto cone to update in each step. We would like to point out that Algorithm 6 is

to solve multi-block problem other than just 4-block problem, even though we use

θ(y) and ϕ(z) to denote the summation of θi and ϕj respectively, we treat each θi

and ϕj as independent blocks.

Similar to the 2-block semi-proximal ADMM, SCB-SPADMM requires the follow-

ing CQ.

Assumption 1.7. There exists (û, ŷ, v̂, ẑ) ∈ ri(domf) × Y × ri(domg) × Z such

that F∗û+A∗ŷ + G∗v̂ + B∗ẑ = c.

The convergence result is given in the following theorem, see more detail in Li

et al. (2014).

Theorem 1.8. Let Σf and Σg be the two self-adjoint and positive semidefinite

operators defined by (1.26) and (1.27), respectively. Suppose that the solution set

of problem (1.40) is nonempty and that Assumption 1.7 holds. Assume that Tf

and Tg are chosen such that the the sequence {(uk, yk, vk, zk, xk)} generated by

Algorithm SCB-SPADMM is well defined. Recall that Tθi is defined in (1.45) for

1 ≤ i ≤ p and Tϕj is defined in (1.46) for 1 ≤ j ≤ q. Then, under the condition

either (a) τ ∈ (0, (1 +
√

5)/2) or (b) τ ≥ (1 +
√

5)/2 but
∑∞

k=0(‖G∗(vk+1 − vk) +

B∗(zk+1−zk)‖2+τ−1‖F∗uk+1+A∗yk+1+G∗vv+1+B∗zk+1−c‖2) <∞, the following

results hold:

30 Chapter 1 Introduction

(i) If (u∞, y∞, v∞, z∞, x∞) is an accumulation point of {(uk, yk, vk, zk, xk)}, then

(u∞, y∞, v∞, z∞) solves problem (1.41) and x∞ solves (1.44), respectively.

(ii) If both σ−1Σf +Tf +FF∗ and σ−1Σg+Tg+GG∗ are positive definite, then the

sequence {(uk, yk, vk, zk, xk)}, which is automatically well defined, converges

to a unique limit, say, (u∞, y∞, v∞, z∞, x∞) with (u∞, y∞, v∞, z∞) solving

problem (1.41) and x∞ solving (1.44), respectively.

(iii) When the u, y-part disappears, the corresponding results in parts (i)-(ii) hold

under the condition either τ ∈ (0, 2) or τ ≥ 2 but
∑∞

k=0 ‖G∗vk+1 + B∗zk+1 −

c‖2 <∞.

SCB-SPADMM provides a potentially efficient approach to handle large scale and

dense linear constraints. In this thesis, we use it for solving 3-blcok EDM-based

optimization model with equality and inequality constraint in sensor network local-

ization. We integrate the inequality constraints into a closed convex set constraint

which allows us to use projection in the algorithm. Details can be found in Section

3.3. Together with other techniques in modelling and algorithm design, we propose

a new framework for sensor network localization that achieves both robustness and

efficiency.

Chapter 2

Best Euclidean distance

embedding on a sphere

In this chapter, we mainly discuss a class of EDM-based optimization problem with

spherical constraints for data representation on a sphere of unknown radius. This

problem arises from various disciplines such as Statistic (spatial data representa-

tion), Psychology (constrained multidimensional scaling), and Computer Science

(machine learning and pattern recognition). The best representation often needs

to minimize a distance function of the data on a sphere as well as to satisfy some

Euclidean distance constraints. As discussed in Section 1.1.4, those spherical and

Euclidean distance constraints will present an enormous challenge to the existing

algorithms. In this chapter, we introduce a reformulation of the problem as an

EDM-based optimization problem with a low rank constraint. We then propose an

iterative algorithm that uses a quadratically convergent Newton-CG method at its

each step. We study fundamental issues including constraint nondegeneracy and

the nonsingularity of generalized Jacobian that ensure the quadratic convergence

of the Newton method. We use some classic examples from the spherical multidi-

mensional scaling to demonstrate the flexibility of the algorithm in incorporating

various constraints.

31

32 Chapter 2 Best Euclidean distance embedding on a sphere

The section is organized as follows. In Section 2.1, we give a background and

literature review for spherical data representation problem. In Section 2.2, We

first argue that when the EDM is used to formulate the problem, it is necessary

to introduce a new point to represent the center of the sphere. This is due to a

special property arising from embedding an EDM. The algorithmic framework that

we use for the obtained non-convex matrix optimization problem is closely related

to the majorized penalty method of Gao and Sun (2010) for the nearest low-rank

correlation matrix problem. One of the key elements in this type of method is that

the subproblems are convex. Those convex problems are structurally similar to

a convex relaxation of the original matrix optimization problem and they all can

be solved by a quadratically convergent Newton-CG method. We establish that

this is the case for our problem by studying the challenging issue of constraint

nondegeneracy, which further ensures the nonsingularity of generalized Jacobian

used by the Newton-CG method. Those results can be found in Section 2.3 and

ensure that the extension of the majorization method of Gao and Sun (2010)

to our problem is complete. The algorithm is presented in Section 2.4 and its

key convergent results are stated without detailed proofs as they can be proved

similarly as in Gao and Sun (2010). Section 2.5 aims to demonstrate a variety

of applications from classical MDS to the circle fitting problem. The numerical

performance is highly satisfactory with those applications.

2.1 Introduction to spherical data representa-

tion

The problem that we are mainly concerned with is placing n points {x1, . . . ,xn}

in a best way on a sphere in IRr. The primary information that we use is an

incomplete/complete set of pairwise Euclidean distances (often with noises) among

the n points. In such a setting, IRr is often a low-dimensional space (e.g., r takes

Chapter 2 Best Euclidean distance embedding on a sphere 33

2 or 3 for data visualization) and is known as the embedding space. The center

of the sphere is unknown. For some applications, the center can be put at origin

in IRr. Furthermore, the radius of the sphere is also unknown. In our matrix

optimization formulation of the problem, we treat both the center and the radius

as unknown variables. We develop a fast numerical method for this problem and

present a few of interesting applications taken from existing literature.

The problem described above has long appeared in the constrained Multi-Dimensional

Scaling (MDS) when r ≤ 3, which is mainly for the purpose of data visualization,

see Cox and Cox (2000, Sect. 4.6) and Borg and Groenen (2005, Sect. 10.3) for

more details. In particular, it is known as the spherical MDS when r = 3 and the

circular MDS when r = 2. Most numerical methods in this part took advantages

of r being 2 or 3. For example, two of the earliest circular MDS were by Borg and

Lingoes (1980) and Lee and Bentler (1980), where they introduced a new point

x0 ∈ IRr as the center of the sphere (i.e., circles in their case) and further forced

the following constraints to hold:

D01 = D02 = · · · = D0n.

Here D0j = ‖x0−xj‖, j = 1, . . . , n are the Euclidean distances between the center

x0 and the other n points. In their models, the variables are the coordinates of

the (n + 1) points in IRr. In Borg and Lingoes (1980), the optimal criterion was

a stress function widely used in MDS literature (see Borg and Groenen (2005,

Chp. 3)), whereas Lee and Bentler (1980) used a least square loss function as its

optimal criterion.

In the spherical MDS of Cox and Cox (1991), Cox and Cox placed the center of

the sphere at origin and represented the n points by their spherical coordinates.

Moreover, they also argued for the Euclidean distance to be used over the seem-

ingly more appropriate geodesic distance on the sphere. This is particularly the

34 Chapter 2 Best Euclidean distance embedding on a sphere

case when the order of the distances among the n points are more important than

the magnitude of their actual distances. For the accurate relationship between

Euclidean distance and the geodesic distance on a sphere, see Pȩkalska and Duin

(2005, Thm. 3.23), which is credited to Schoenberg (1937). A recent method

known as MDS on a quadratic surface (MDS-Q) was proposed by De Leeuw and

Mair (2009), where geodesic distances were used. As noted in De Leeuw and Mair

(2009, p. 12), ”geodesic MDS-Q, however, seems limited for now to spheres in any

dimension, with the possible exception of ellipses and parabolas in IR2”. For the

spherical case, MDS-Q places the center at origin and the variables are the radius

and the coordinates of the n points on the sphere. The Euclidean distances were

then converted to the corresponding geodesic distances. The optimal criterion is

a weighted least square loss function.

When the center of the sphere is placed at origin, any point on the sphere satisfies

the spherical constraint of the type ‖x‖ = R, where x ∈ IRr and R is the radius.

Optimization with spherical constraints has recently attracted much attention of

researchers, see, e.g., Malick (2007); Ling et al. (2010); Gao (2010); Gao and Sun

(2010); Li and Qi (2011); Zhou et al. (2012) and the references therein. Such

a problem can be cast as a more general optimization problem over the Stiefel

manifold (Wen and Yin, 2013; Jiang and Dai, 2014). One important example is

the nearest low-rank correlation matrix problem, where the unit diagonals of the

correlation matrix yields the spherical constraints (Gao and Sun, 2010; Li and Qi,

2011; Wen and Yin, 2013; Jiang and Dai, 2014). It is noted that the sequential

second-order methods in Gao and Sun (2010); Li and Qi (2011) as well as the

feasibility-preserving methods in Wen and Yin (2013); Jiang and Dai (2014) all

rely on the fact that the radius is known (e.g., R = 1). This is in contrast to our

problem where R is a variable.

Chapter 2 Best Euclidean distance embedding on a sphere 35

2.2 EDM-based optimization formulation

The available information for us to find n points {x1, . . . ,xn} embedded on a

sphere in IRr is the set of approximate (squared) Euclidean distances among the

n points:

D0
ij ≈ ‖xi − xj‖2, i, j = 1, . . . , n.

Denote the center of the sphere by xn+1 (the (n+ 1)th point) and its radius by R.

Since the n points are placed on the sphere, we must have

‖xj − xn+1‖ = R, j = 1, . . . , n.

Although we do not know the exact magnitude of R, we can be sure that twice

the radius cannot be bigger than the diameter of the data set:

2R ≤ dmax := max
i,j

√
D0
ij.

We therefore define the approximate distance matrix D ∈ Sn+1 by (only upper

part of D is defined)

Dij =


1
4
d2

max i = 1, . . . , n, j = n+ 1

D0
ij i < j = 2, . . . , n

0 i = j,

(2.1)

The elements in D are approximate Euclidean distances among the (n+ 1) points

{x1, . . . ,xn+1}. But D may not be a true EDM. Our purpose is to find the nearest

EDM Y to D such that the embedding dimension of Y is r and its embedding

36 Chapter 2 Best Euclidean distance embedding on a sphere

points {x1, . . . ,xn} are on a sphere centered at xn+1. The resulting matrix opti-

mization model is then given by

minY ∈Sn+1
1
2
‖Y −D‖2

s.t. Y ∈ Sn+1
h , −Y ∈ Kn+1

+ , rank(JY J) ≤ r

Y1(n+1) = Yj(n+1), j = 2, . . . , n.

(2.2)

Once we find the nearest EDM Y from which the total deviation of D is the

smallest, combined with the classical MDS Algorithm 1, we will get the positions

of n embedding points.

Problem (2.2) is always feasible (e.g., the zero matrix is feasible). The feasible

region is closed and the objective function is coercive. Let Y be its optimal so-

lution. The first group of constraints in (2.2) implies that Y is an EDM with an

embedding dimension not greater than r. If r < n (i.e., rank(JY J) < n), the

problem is nonconvex. If r = n, then we can drop the rank constraint so that the

problem is convex. This is due to the fact that any EDM of size (n+ 1)× (n+ 1)

has an embedding dimension not greater than (n + 1 − 1) = n. One can easily

check that 0 is always an eigenvalue of JY J and e is the corresponding eigenvec-

tor. Therefore, the rank constraint is automatically satisfied if r = n. The second

group of constraints in (2.2) means that the distances from xi, i = 1, . . . , n to

xn+1 are equal. Hence, {x1, . . . ,xn} lie on a sphere centered at xn+1. We call the

constraints Y1(n+1) = Yj(n+1), j = 2, . . . , n spherical constraints and we note that

they are linear. This is in contrast to the nonlinear formulation of the spherical

constraints in the previous studies (Borg and Lingoes, 1980; Lee and Bentler, 1980;

Cox and Cox, 1991; De Leeuw and Mair, 2009).

Regarding to model (2.2), we have the following two remarks.

Remark 2.1. The idea of introducing a variable representing the center (i.e., one

more dimension in our formulation) is similar to that of Borg and Lingoes (1980);

Chapter 2 Best Euclidean distance embedding on a sphere 37

Lee and Bentler (1980), whose main purpose was for the case r = 2 and the

variables of the optimization problems are the coordinates of the points concerned.

Our model is more general for arbitrary r and is conducive to (second-order)

algorithmic development because the spherical constraints are linear. Furthermore,

as introduce in Section 1.1.3, the actual embedding is left out as a separate issue,

which can be done by Algorithm 1, possibly through Procrustes analysis.

Remark 2.2. The following reasoning further justifies why it is necessary to intro-

duce a new point for the center of the sphere. Let D0 denote the true squared

Euclidean distance matrix among n points on a sphere. From Gower (1982), the

decomposition

− 1

2
JD0J = XTX with X ∈ IRr×n, (2.3)

would provide a set of points {xi : i = 1, . . . , n} such that the distances in D0 are

recovered through D0
ij = ‖xi − xj‖2. In order for those points to lie on a sphere

centered at origin, it is necessary and sufficient to enforce the constraints

‖x1‖ = ‖x2‖ = · · · = ‖xn‖. (2.4)

We note that

‖xi‖2 = eTi (XTX)ei = −1

2
eTi JD

0Jei

= D0
ii +

1

2n

(
eiD

0e+ eTD0ei
)
− eTD0e

2n2

=
1

2n
〈D0, Ai〉 − eTD0e

2n2
,

where Ai := eie
T + eeTi . The spherical constraints are then equivalent to

〈D0, A1 − Ai〉 = 0, i = 2, · · · , n,

which are linear in the Euclidean distance matrix D0. It seems that there is no

need to introduce a new point to represent the center of the sphere. However, there

38 Chapter 2 Best Euclidean distance embedding on a sphere

is a potential conflict in this seemingly correct argument. We note that there is

an implicit constraint we ignored. In (2.3), the embedding points in X have to

satisfy the centralization condition (because of the projection matrix J)

Xe = 0. (2.5)

A potential conflict is that the constraints (2.4) and (2.5) may be contradicting

to each other. Such possible contradiction can be verified through the following

example: Let D0 be from the tree points on the unit circle centered at origin:

x1 = (1, 0)T , x2 = (−1, 0)T , x3 = (0, 1)T .

There exists no X ∈ IR2×3 that satisfies (2.3) (hence (2.5)) and (2.4). Now we

define D by (2.1) and solves problem (2.2), we obtain the following 4 embedding

points:

z1 = (−1, 0.25)T , z2 = (1, 0.25)T , z3 = (0,−0.75)T , z4 = (0, 0.25)T .

The first three points are on the unit circle centered at z4. The original three

points x1, x2 and x3 can be obtained through the simple shift xi = zi − z4 (the

simplest Procrustes analysis). This example shows that it is necessary to introduce

a new point to represent the center in order to remove the potential confliction in

representing the spherical constraints as linear equations.

We now reformulate (2.2) in a more conventional format. By replacing Y by (−Y)

(in order to get rid of the minus sign before Kn+1
+), we obtain

minY ∈Sn+1
1
2
‖Y +D‖2

s.t. Y ∈ Sn+1
h , Y ∈ Kn+1

+ , rank(JY J) ≤ r

Y1(n+1) = Yj(n+1), j = 2, . . . , n.

Chapter 2 Best Euclidean distance embedding on a sphere 39

Define three linear mappings A1 : Sn+1 → IRn+1, A2 : Sn+1 → IRn−1 and A :

Sn+1 → IR2n respectively by

A1(Y) := diag(Y), A2(Y) :=
(
Y1(n+1) − Yj(n+1)

)n
j=2

and A(Y) :=

 A1(Y)

A2(Y)

 .

It is therefore that solving (2.2) is equivalent to solving the following problem

minY ∈Sn+1
1
2
‖Y +D‖2

s.t. A(Y) = 0, Y ∈ Kn+1
+

rank(JY J) ≤ r.

(2.6)

We note that without the spherical constraints A2(Y) = 0, the problem reduces

to the problem (1.21) studied in Qi and Yuan (2014). However, with the spherical

constraints, the analysis in Qi and Yuan (2014), especially for the semismooth

Newton-CG method developed in Qi (2013); Qi and Yuan (2014) is not valid any

more because it heavily depends on the simple structure of the diagonal constraints

A1(Y) = 0. One of our main tasks in this section is to develop more general

analysis that covers the spherical constraints.

2.3 Convex relaxation

The framework of solving our problem (2.6) is based on the majorized penalty

method of Gao and Sun (2010) which involves solving a sequence of convex re-

laxation of (2.6) without the rank constraint. So before we introduce the main

framework, it is important to analyse how to solve the convex relaxation efficiently

and accurately. The convex relaxation is obtained by dropping the rank constraint

40 Chapter 2 Best Euclidean distance embedding on a sphere

from (2.6).

minY ∈Sn+1
1
2
‖Y +D‖2

s.t. A(Y) = 0, Y ∈ Kn+1
+ .

(2.7)

The convex relaxation is not only important on its own right but also plays a

vital role in our algorithm because a sequence of such convex problems will be

solved. This section has two parts. The first part is about two constraint qualifi-

cations that the convex relaxation may enjoy. The second part is about the semis-

mooth Newton-CG method that solves the convex relaxation and it is proved to

be quadratically convergent under the qualification of constraint nondegeneracy.

2.3.1 Constraint qualifications

Constraints qualifications are essential properties in deriving optimality conditions

and effective algorithms for optimization problems, see, e.g., Bonnans and Shapiro

(2013). We only study two of them, which are pertinent to our numerical method

to be developed later on. The first is the generalized Slater condition and the

second is constraint nondegeneracy.

It is easy to see that the linear equations in A(Y) = 0 are linearly independent.

Together with the characterization of EDM in (1.8), we further have

Proposition 2.3. The generalized Slater condition hold for the convex relaxation

(2.7). That is, there exists Y ∈ Sn+1 such that

A(Y) = 0 and Y ∈ intKn+1
+ ,

where intKn+1
+ denotes the interior of Kn+1

+ .

Chapter 2 Best Euclidean distance embedding on a sphere 41

Proof. Let xi = (
√

2/2)(ei − (1/(n + 1))e), i = 1, . . . , n + 1, where ei is the ith

unit vector in IRn+1. Define Y ∈ Sn+1 by

Yij = ‖xi − xj‖2 =


1 if i 6= j

0 if i = j.

It follows from (1.12) that

−1

2
JY J =


(x1)T

...

(xn+1)T

 [x1, . . . ,xn+1] and rank(JY J) = n.

Moreover, (−Y) ∈ Kn+1
+ . By formula (1.8), there exist Z ∈ Sn+, z ∈ IRn and

z0 ∈ IR such that

−Y = Q

 Z z

zT z0

Q.
By using the facts in (1.3), we obtain that

JY J = Q

 In 0

0 0

QY Q
 In 0

0 0

Q = −Q

 Z 0

0 0

Q.
Since the rank of JY J is n and Z ∈ Sn+, Z must be positive definite. This proves

that Y ∈ intKn+1
+ . Apparently, A(Y) = 0 by the definition of Y . Hence, the

generalized Slater condition holds. �

The concept of constraint nondegeneracy was first studied by Robinson (1987,

2003) for abstract optimization problems and has been extensively used in Bon-

nans and Shapiro (2013) and Shapiro (2003) for sensitivity analysis in optimization

and variational analysis. It plays a vital role in the characterizations of strong reg-

ularity (via Clark’s generalized Jacobian) in nonlinear semidefinite programming

42 Chapter 2 Best Euclidean distance embedding on a sphere

(SDP) by Sun (2006). For linear SDP, it reduces to the primal (dual) nondegen-

eracy of Alizadeh et al. (1997), see also Chan and Sun (2008) for further deep

implications in SDP. It has been shown fundamental in many optimization prob-

lems, see Qi and Sun (2006); Miao et al. (2012); Qi (2013); Mian (2013); Laurent

and Varvitsiotis (2014). Our main result is that constraint nondegeneracy holds

for the convex problem (2.7) under a very weak condition and it further ensures

that the Newton-CG method is quadratically convergent. For problem (2.7), con-

straint nondegeneracy is defined as follows (note that the problem has 2n linear

constraints).

Definition 2.4. We say that constraint nondegeneracy holds at a feasible point

A of (2.7) if

A
(

lin(TKn+1
+

(A))
)

= IR2n, (2.8)

where TKn+1
+

(A) is the tangent cone of Kn+1
+ at A and lin(TKn+1

+
(A)) is the largest

subspace contained in TKn+1
+

(A).

Let A ∈ Kn+1
+ and denote

A = Q

 Z z

zT z0

Q, Z ∈ Sn+. (2.9)

We assume that rank(Z) = r and let λ1 ≥ λ2 ≥ . . . ≥ λr > 0 be the r positive

eigenvalues of Z in nonincreasing order. Let Λ := Diag(λ1, . . . , λr). We assume

that Z takes the following spectral decomposition

Z = U

 Λ

0

UT , (2.10)

Chapter 2 Best Euclidean distance embedding on a sphere 43

where U ∈ IRn×n and UTU = In. Let

U :=

 U 0

0 1

 ∈ IR(n+1)×(n+1). (2.11)

Then U
T
U = I. It has been depicted by Qi (2013, Eq. (24)) that

lin(TKn+(A)) =

QU

 Σ1 Σ12

ΣT
12 0

 a

aT a0

UT
Q :

Σ1 ∈ Sr

Σ12 ∈ IRr×(n−r)

a ∈ IRn, a0 ∈ IR

 .(2.12)

which can be proved as follows. Since Kn+ is convex, the tangent cone TKn+(A) of

Kn+ at A ∈ Kn+ can be defined as the polar cone of NKn+(A):

TKn+(A)) := (NKn+(A))◦, (2.13)

where NKn+(A) is the normal cone of Kn+ at A ∈ Kn+ defined by

NKn+(A) := {X ∈ Sn : 〈X,A− A〉 ≤ 0 ∀ A ∈ Kn+}.

The normal cone NKn+(A) is given by Glunt et al. (1990) that

NKn+(A) =

Q

U

 0 0

0 M

UT 0

0 0

Q : −M ∈ Sn−r+

 . (2.14)

According to (2.13), the tangent cone can be written as

TKn+(A) =

QU

 Σ1 Σ12

ΣT
12 Σ2

 a

aT a0

UT
Q :

Σ1 ∈ Sr,Σ2 ∈ Sn−r+

Σ12 ∈ IRr×(n−r)

a ∈ IRn, a0 ∈ IR

 .(2.15)

44 Chapter 2 Best Euclidean distance embedding on a sphere

Then that the largest subspace contained in TKn+(A) is (2.12) is proved.

Consider matrix X of the following form:

X := QU

 Γ −Γq +
√
n+ 1a

(−Γq +
√
n+ 1a)T qTΓq

UT
Q, (2.16)

where

Γ :=

 Σ1 Σ12

ΣT
12 0

 ∈ Sn, q := UT e, a ∈ IRn. (2.17)

Obviously, X ∈ lin(TKn+(A)). Define two linear mappings Ãi : Sn 7→ IRn for

i = 1, 2 respectively by

Ã1(Y) = (Y11, Y22, . . . , Ynn)T

and

Ã2(Y) =
(
Y1(n+1) − Y2(n+1), . . . , Y1(n+1) − Yn(n+1), Y(n+1)(n+1)

)T
.

Note that different fromA1 : Sn+1 → IRn+1 andA2 : Sn+1 → IRn−1, by rearranging

the linear equations, Ã1 and Ã2 are both maps to IRn.

By using the following two lemmas, we can prove the constraint nondegeneracy

result in Proposition 2.7.

Lemma 2.5. For any given y ∈ IRn, there exists a ∈ IRn, independent of the

choice of Γ in X of (2.16), such that

Ã2(X) = y. (2.18)

Proof. Simple calculation can verify that

Qen+1 = − 1√
n+ 1

e and Q(e1 − ej) = e1 − ej for j = 1, . . . , n.

Chapter 2 Best Euclidean distance embedding on a sphere 45

We now calculate the elements of Ã2(X). For j = 1, . . . , n− 1, we have

(
Ã2(X)

)
j

= (e1 − ej+1)TQU

 Γ −Γq +
√
n+ 1a

(−Γq +
√
n+ 1a)T qTΓq

UT
Qen+1

= (e1 − ej+1)TU

 Γ −Γq +
√
n+ 1a

(−Γq +
√
n+ 1a)T qTΓq


 − 1√

n+1
q

− 1√
n+1



= (e1 − ej+1)TU

 −a

−qTa


= (uj+1 − u1)Ta, (using (2.11))

where uj denotes the jth column of UT . Similarly, we can calculate the last element

of Ã2(X):

(
Ã2(X)

)
n

= X(n+1)(n+1)

=
1√
n+ 1

[qT , 1]

 a

qTa


=

2√
n+ 1

qTa.

Then, equation (2.18) becomes the following simultaneous equations


〈uj+1 − u1, a〉 = yj, j = 1, . . . , n− 1

〈UT e, a〉 =
√
n+1
2
yn.

(2.19)

It is easy to verify that the vectors {u2 − u1, . . . , un − u1, UT e} are linearly inde-

pendent. Hence, there exists a unique solution a ∈ IRn to (2.19) for any given

y ∈ IRn. We also note that the solution of a is independent of Γ in X. �

46 Chapter 2 Best Euclidean distance embedding on a sphere

Lemma 2.6. Let A be decomposed as in (2.9). Suppose that there exists an eigen-

vector u ∈ IRn of Z corresponding to one of its positive eigenvalues such that

τi := ui +
1√

n+ 1 + 1
ρ 6= 0 ∀ i = 1, . . . , n with ρ :=

n∑
j=1

uj. (2.20)

Then for any given z ∈ IRn and a ∈ IRn, there exists Γ of the type in (2.17) such

that

Ã1(X) = z, (2.21)

where X is defined by (2.16).

Proof. Let a ∈ IRn and z ∈ IRn be given. Define

X := X1 +X2 +X3 +X4,

with

X1 =

 Γ 0

0 0

 , X2 =

 0 −Γq

−(Γq)T 0

 , X3 =

 0 0

0 qTΓq

 , X4 =
√
n+ 1

 0 a

aT 0

 .
We calculate the first n diagonal elements of X. For i = 1, . . . , n, we have

Xii = eTi QU

 Γ −Γq +
√
n+ 1a

(−Γq +
√
n+ 1a)T qTΓq

UT
Qei

=
〈
U
T
Qeie

T
i QU, X

〉
= 〈Wi, X〉,

where Wi := U
T
Qeie

T
i QU . Then equation (2.21) becomes

〈Wi, X1 +X2 +X3〉 = zi − 〈Wi, X4〉, i = 1, . . . , n. (2.22)

We would like to determine what Γ satisfies (2.22).

Chapter 2 Best Euclidean distance embedding on a sphere 47

Note that for i = 1, . . . , n,

Qei = ei −
1

n+ 1 +
√
n+ 1

v

and

Wien+1 = U
T
Qeie

T
i QUen+1

= U
T
Qeie

T
i Qen+1 = − 1√

n+ 1
U
T
Qei

= − 1√
n+ 1

 UT ei

0

+
1

(n+ 1)(
√
n+ 1 + 1)

 UT e

1 +
√
n+ 1

 .
We derive the following identities

〈Wi, X1〉 = Tr

[UT , 0]QeieiQ
T

 U

0

Γ


=

〈
UT (ei −

1

n+ 1 +
√
n+ 1

e)(ei −
1

n+ 1 +
√
n+ 1

e)TU, Γ

〉
.

〈Wi, X2〉 = −2
〈
Wien+1, [qTΓ, 0]T

〉
=

2√
n+ 1

(qTΓUT ei)−
2

(n+ 1)(
√
n+ 1 + 1)

(qTΓUT e)

=
1√
n+ 1

〈
UT (eeTi + eie

T)U, Γ
〉
− 2

(n+ 1)(
√
n+ 1 + 1)

〈
UT eeTU, Γ

〉
.

〈Wi, X3〉 = qTΓq(eTn+1Qeie
T
i Qen+1) =

1

n+ 1
qTΓq =

1

n+ 1
〈UT eeTU, Γ〉.

The fact q = UT e was used above. We add together the identities above and

simplify to get

〈Wi, X1 +X2 +X3〉 =
〈
UTW iU, Γ

〉
, (2.23)

48 Chapter 2 Best Euclidean distance embedding on a sphere

with

W i :=

(
ei +

1√
n+ 1 + 1

e

)(
ei +

1√
n+ 1 + 1

e

)T
.

Now we assume that condition (2.20) holds. Without loss of generality, we assume

that u is the leading eigenvector of Z corresponding to the largest eigenvalue λ1.

Let γ ∈ IRn and define Γ ∈ Sn by

Γij :=



γ1 if i = j = 1

γj/2 if i = 1, j ≥ 2

γi/2 if j = 1, i ≥ 2

0 otherwise.

Such Γ is consistent with the structure in (2.17). It follows from (2.23) that

〈Wi, X1 +X2 +X3〉 = 〈UTW iUe1, γ〉 = 〈W iUe1, Uγ〉 = 〈W iu, γ〉,

where γ := Uγ and the fact u = Ue1 was used. Then the linear equations in (2.22)

become

〈W iu, γ〉 = zi − 〈Wi, X4〉, i = 1, . . . , n (2.24)

with γ being unknown. To ensure the existence of γ that satisfies (2.24), it is

enough to prove the linear independence of the vectors {W iu}ni=1. Assume that

there exist µi ∈ IR, i = 1 . . . , n such that

n∑
i=1

µiW iu = 0,

Chapter 2 Best Euclidean distance embedding on a sphere 49

which implies (by using the structure of W i)
µ1τ1 + 1√

n+1+1

∑n
i=1 µiτi = 0

...
...

...

µnτn + 1√
n+1+1

∑n
i=1 µiτi = 0.

We must have from the above equations that

µ1τ1 = µ2τ2 = · · · = µnτn = 0.

Under the assumption of (2.20), we have µi = 0 for i = 1, . . . , n. Hence, the

vectors {W iu}ni=1 are linearly independent. There is a unique γ satisfying (2.24).

Therefore, γ = UTγ. Γ is well defined and the resulting X defined in (2.16) satisfies

(2.21). This proves the result. �

Combining the two lemmas together gives our constraint nondegeneracy result.

Proposition 2.7. Let A given by (2.9) be a feasible point of (2.7). Suppose

condition (2.20) is satisfied for A. Then constraint nondegeneracy holds at A.

Proof. By the definition of constraint nondegeneracy, it is sufficient to prove that

for any given x ∈ IR2n there exists X ∈ lin(TKn+1
+

(A)) such that A(X) = x. This

is equivalent to existence of X ∈ lin(TKn+1
+

(A)) such that both (2.18) and (2.21)

hold simultaneously for any given y, z ∈ IRn. Lemmas 2.5 and 2.6 just ensured

this is the case. We can choose a ∈ IRn first in Lemma 2.5 and then choose Γ in

Lemma 2.6 to generate the matrix X of (2.16), which satisfies (2.18) and (2.21)

simultaneously for any given y, z ∈ IRn. Hence, constraint nondegeneracy holds at

A under assumption (2.20). �

Proposition 2.7 means that the feasible points of (2.7) need to satisfy one more

condition (2.20) to enjoy the constraint nondegeneracy property. For example,

we know that A = 0 is feasible and constraint nondegeneracy does not hold at 0

50 Chapter 2 Best Euclidean distance embedding on a sphere

(can be verified directly through definition). Condition (2.20) serves the purpose

of removing such points from the consideration.The following example shows that

condition (2.20) holds everywhere but one point.

Example 2.1. Consider the (squared) Euclidean distance matrix

A =



0 4 2(1− t) 1

4 0 2(1 + t) 1

2(1− t) 2(1 + t) 0 1

1 1 1 0


and − 1 ≤ t ≤ 1.

It corresponds to a triangular embedding on a unit circle with the length of one

edge equal the diameter of 2. The remaining point of the triangle moves around

the circle. Hence rank(JAJ) = 2 (i.e., r = 2). The corresponding matrix Z is

Z =
1

18


37− 12t −35 −5 + 30t

−35 37 + 12t −5− 30t

−5 + 30t −5− 30t 25

 .

It can be verified that condition (2.20) is satisfied for all t except t = 0. When

t = 0, the eigenvectors corresponding to the positive eigenvalues of the correspond-

ing matrix Z are [−0.1925,−0.1925, 0.9623]T and [−0.7071, 0.7071, 0]T , which all

violate condition (2.20).

2.3.2 Semismooth Newton method for convex relaxation

In this subsection, we develop the semismooth Newton method for the convex re-

laxation problem (2.7). The method is shown to be quadratically convergent under

constraint nondegeneracy at the optimal solution. We will use this method to solve

a sequence of subproblems that will appear in solving the nonconvex problem (2.6).

Chapter 2 Best Euclidean distance embedding on a sphere 51

(a) Semismooth Newton Method. The Newton method is actually designed

for the Lagrangian dual problem of (2.7), which is an unconstraint minimization

problem.

For any given set Ω, δΩ(·) is the indicator function over Ω such that δΩ(u) = 0 if

u ∈ Ω and ∞ otherwise. Then problem (2.7) is equivalent to

minY ∈Sn+1
1
2
‖Y +D‖2 + δKn+1

+
(Y)

s.t. A(Y) = 0.

(2.25)

The Lagrangian function of (2.25) is define as

L(Y ; y) =
1

2
‖Y +D‖2 + δKn+1

+
(Y)− 〈Y,A∗(y)〉. (2.26)

where y ∈ IR2n is the Lagrangian multiplier corresponding to the equality con-

straint. The Lagrangian dual problem is

max
y∈IR2n

{
min

Y ∈Sn+1
L(Y ; y)

}
(2.27)

To solve the inner optimization problem, we need to use the following Moreau’s

theorem (Moreau, 1962).

Theorem 2.8. (Moreau, 1962). Let K be a closed convex cone in a Hilbert space

(H, 〈·, ·〉), and K◦ be its polar cone; that is the closed convex cone defined by

K◦ := {a ∈ H | 〈a, b〉 ≤ 0,∀b ∈ K}. For x, y, z ∈ H, the following statements are

equivalent:

1. z = x+ y, x ∈ K, y ∈ K◦, and 〈x, y〉 = 0.

2. x = ΠK(z) and y = ΠK◦(z).

52 Chapter 2 Best Euclidean distance embedding on a sphere

Let

φ(y) := min
Y ∈Sn+1

L(Y ; y)

= min
Y ∈Sn+1

1

2
‖Y +D‖2 + δKn+1

+
(Y)− 〈Y,A∗(y)〉

= min
Y ∈Sn+1

1

2
‖Y +D −A∗(y)‖2 + δKn+1

+
(Y)− 1

2
‖A∗(y)‖2 + 〈D,A∗(y)〉

=
1

2
‖ΠKn+1

+
(A∗(y)−D) +D −A∗(y)‖2 − 1

2
‖A∗(y)‖2 + 〈D,A∗(y)〉

=
1

2
‖ΠKn+1

+
(A∗(y)−D) +D −A∗(y)‖2 − 1

2
‖A∗(y)−D‖2 +

1

2
‖D‖2,

by using Theorem 2.8, we have

A∗(y)−D = ΠKn+1
+

(A∗(y)−D) + Π(Kn+1
+)◦(A

∗(y)−D), (2.28)

substitute (2.28) into the last equation of φ(y) we have

φ(y) =
1

2
‖Π(Kn+1

+)◦(A
∗(y)−D)‖2 − 1

2
‖Π(Kn+1

+)◦(A
∗(y)−D)‖2

−1

2
‖ΠKn+1

+
(A∗(y)−D)‖2 +

1

2
‖D‖2

= −1

2
‖ΠKn+1

+
(A∗(y)−D)‖2 +

1

2
‖D‖2.

Then the Lagrangian dual problem of (2.7) (in the form of minimization) is

min
y∈IR2n

θ(y) :=
1

2
‖ΠKn+1

+
(−D +A∗(y))‖2 − 1

2
‖D‖2, (2.29)

where A∗ : IR2n 7→ Sn+1 is the adjoint operator of A.

As discussed in Section 2.3.1, the linear transformations in A are linearly inde-

pendent and that the generalized Slater condition holds for problem (2.7). It

follows from the general results (Gao, 2010, Prop. 2.20, Prop. 4.11) that the dual

function θ(·) is coercive (i.e., θ(y) → ∞ as ‖y‖ → ∞). Furthermore, because

Kn+1
+ is a closed and convex cone, θ(·) is convex and continuously differentiable

Chapter 2 Best Euclidean distance embedding on a sphere 53

(see Hiriart-Urruty and Lemaréchal (2013, Chp. IV, Example 2.1.4)). Therefore,

the dual problem (2.29) must admit an optimal solution. To obtain the first-

order optimality condition, we need to calculate the gradient of function θ(y). Let

η(y) = −D +A∗(y), we temporarily treat θ(y) as a function of η(y) and have

θ(y) =
1

2
‖ΠKn+1

+
(η(y))‖2 − 1

2
‖D‖2.

According to Theorem 2.8, we know

θ(y) =
1

2
‖η(y)− Π(Kn+1

+)◦(η(y))‖2 − 1

2
‖D‖2

= min
Z∈(Kn+1

+)◦
{1

2
‖η(y)− Z‖2 − 1

2
‖D‖2}

= min
Z∈Sn
{δ(Kn+1

+)◦(Z) +
1

2
‖η(y)− Z‖2 − 1

2
‖D‖2},

where δ(Kn+1
+)◦(·) is the indicator function over (Kn+1

+)◦ such that δ(Kn+1
+)◦(u) = 0 if

u ∈ (Kn+1
+)◦ and∞ otherwise. Thus, θ(y) can be interpreted as the Moreau-Yosida

regularization of δ(Kn+1
+)◦(·). Directly from the Theorem 4.1.4 by Hiriart-Urruty

and Lemaréchal (1993), we have

∇η(y)θ(y) = η(y)− Π(Kn+1
+)◦(η(y)) = ΠKn+1

+
(η(y)). (2.30)

Thus by (2.30) and the chain rule for composition functions, the first-order opti-

mality condition is

F (y) := ∇yθ(y) = A
(

ΠKn+1
+

(−D +A∗(y))
)

= 0. (2.31)

It follows from the introduction of semismooth Newton’s method in Section 1.2

that F (y) is strongly semismooth because it is a composition of linear mappings

and ΠSn+1
+

(·) (due to the relationship between ΠSn+1
+

(·) and ΠKn+1
+

(·) in (1.5)),

which is known to be strongly semismooth. Then the main step of semismooth

54 Chapter 2 Best Euclidean distance embedding on a sphere

Newton’s method summarized in Algorithm 4 is that given y0 ∈ IR2n and let

k := 0, compute Vk ∈ ∂F (yk) and

yk+1 = yk − V −1
k F (yk), k = 0, 1, 2, (2.32)

Since F is the gradient of θ and is nondifferentiable, ∂F is often called the gen-

eralized Hessian of θ, and θ(y) belongs to the class of all C1,1 functions, that is,

the class of all functions which are continuously differentiable and whose gradient

mapping is locally Lipschitz, see (Hiriart-Urruty et al., 1984).

According to Theorem 1.4 for the convergence result of semismooth Newton’s

method, a key condition for it to be quadratically convergent is that the generalized

Jacobian ∂F (y∗) is nonsingular, where y∗ denotes the optimal solution of (2.29).

The optimal solution Y ∗ for the original convex problem (2.7) can be computed

by

Y ∗ = ΠKn+1
+

(−D +A∗(y∗)). (2.33)

To practically implement the semismooth Newton method (2.32), we have to ad-

dress two key issues. One is how to compute a particular matrix V ∈ ∂F (y). This

has led us to use ∂̂F (y) instead (to be developed in part (c) in this subsection

and also see (2.44)). The other issue is how to solve the linear equation in (2.32).

Direct evaluation of V would need O(n4) flops and hence direct methods are very

expensive. We choose to use the well-developed conjugate gradient (CG) method

to solve the Newton equation (see Qi and Sun (2006) and Zhao et al. (2010)). This

results in the Newton-CG method that does not need to explicitly form the matrix

V . The main task below is to show that the nonsingularity of ∂̂F (y∗) (hence of

∂F (y)) under constraint nondegeneracy at Y ∗.

Chapter 2 Best Euclidean distance embedding on a sphere 55

(b) Characterization of Constraint Nondegeneracy. Let A ∈ Kn+1
+ be de-

composed as in (2.9) and let λ1 ≥ λ2 . . . ≥ λr > 0 be the positive eigenvalues of Z

in nonincreasing order. Let α := {1, 2, . . . , r}. We have the following characteri-

zation of constraint nondegeneracy at A.

Lemma 2.9. Let h ∈ IR2n be given. Denote

H =

 H1 h

hT h0

 := Q(A∗(h))Q with H1 ∈ Sn, h ∈ IRn and h0 ∈ IR. (2.34)

Let A ∈ Kn+1
+ be decomposed as in (2.9) and the resulting Z has the spectral

decomposition (2.10). Constraint nondegeneracy holds at A if and only if the

following implication holds

UT
αH1 = 0

h = 0

h0 = 0

 =⇒ h = 0. (2.35)

Proof. By (2.8), constraint nondegeneracy holds at A if and only if

h ∈
{
A
(

lin(TKn+1
+

(A))
)}⊥

=⇒ h = 0. (2.36)

It follows from (2.12) that

{
QBQ : B ∈ lin(TKn+1

+
(A))

}
=




U

 Σ1 Σ12

ΣT
12 0

UT a

aT a0

 :

Σ1 ∈ Sr

Σ12 ∈ IRr×(n−r)

a ∈ IRn, a0 ∈ IR

 .

56 Chapter 2 Best Euclidean distance embedding on a sphere

The left-hand side of (2.36) is equivalent to, for any B ∈ lin(TKn+1
+

(A)),

0 = 〈h,A(B)〉 = 〈A∗(h), B〉

= 〈QA∗(h)Q, QBQ〉 (because Q2 = I)

= 2〈h, a〉+ h0a0 + Tr

UTH1U

 Σ1 Σ12

ΣT
12 0


 .

The above identities are for any a ∈ IRn, a0 ∈ IR, Σ1 ∈ Sr and Σ12 ∈ IRr×(n−r).

Hence, we must have (recall α = {1, 2, . . . , r})

h = 0, h0 = 0 and UT
αH1U = 0.

Because of the nonsingularity of U , the above condition is equivalent to

h = 0, h0 = 0 and UT
αH1 = 0.

Therefore, (2.36) holds if and only if (2.35) holds. �

(c) Structure of ∂̂F (y). For a given y ∈ IR2n, we let

Y := −J(−D +A∗(y))J and A := ΠKn+1
+

(−D +A∗(y)).

Denote Z z

zT z0

 := −Q(−D +A∗(y))Q with Z ∈ Sn, z ∈ IRn, z0 ∈ IR.

Chapter 2 Best Euclidean distance embedding on a sphere 57

We then have from (1.3) that

Y = Q

 Z 0

0 0

Q and ΠSn+1
+

(Y) = Q

 ΠSn+(Z) 0

0 0

Q. (2.37)

We further have

QAQ = QΠKn+1
+

(−D +A∗(y))Q

= Q(−D +A∗(y))Q+QΠSn+1
+

(Y)Q (by (1.5))

= −

 Z z

zT z0

+

 ΠSn+(Z) 0

0 0



=

 ΠSn+(−Z) −z

−zT −z0

 .
We write A as in (2.9). It follows that

Z = ΠSn+(−Z), z = −z and z0 = −z0. (2.38)

Let Z admit the following spectral decomposition

Z = WΛW T ,

with Λ := Diag(λ1, . . . , λn) and λ1 ≥ . . . ≥ λn being the eigenvalues of Z and

WW T = In.

Define

α := {i : λi > 0} , β := {i : λi = 0} and γ := {i : λi < 0} .

The relationship between Y and Z in (2.37) means that {λ1, . . . , λn} are the

58 Chapter 2 Best Euclidean distance embedding on a sphere

eigenvalues of Y . Moreover, Y has just one more eigenvalue, which is zero, than

Z. For those eigenvalues, define the corresponding symmetric matrix Ω ∈ Sn with

entries

Ωij :=
max{λi, 0}+ max{λj, 0}

|λi|+ |λj|
, i, j = 1, . . . , n (2.39)

where 0/0 is defined to be 1. Let

W = [Wα, Wβ, Wγ] and W :=

 Wα Wβ 0 Wγ

0 0 1 0

 . (2.40)

It follows from (2.31) and (1.5) that

F (y) = A(−D +A∗(y)) +A
(

ΠSn+1
+

(−J(−D +A∗(y))J)
)
.

The key part in F (y) is the composite function between ΠSn+1
+

(·) and the linear

operator JA∗(·)J . Because of this feature, it is hard to express ∂F (y) exactly. We

therefore define the following alternative:

∂̂F (y)(·) := AA∗(·)−A
(
∂ΠSn+1

+
(Y)(JA∗(·)J)

)
. (2.41)

Although we do not know whether ∂F (y) is contained in ∂̂F (y), their images of

vectors coincide:

∂F (y)h = ∂̂F (y)h, ∀ h ∈ IR2n (2.42)

which implies that if all elements in ∂̂F (y) are positive definite, so are those in

∂F (y). Thus, by analysing the elements in ∂̂F (y) using (2.41), we can proof the

positive definiteness of the elements in ∂F (y) to proof the convergent result of

Newton’s method. This is the motivation of (2.41). To explain why the relation-

ship holds in (2.42), we need the following corollary.

Chapter 2 Best Euclidean distance embedding on a sphere 59

Corollary 2.10. (Clarke, 1990, p75). Let H : IRn → IRm be Lipschitz near x and

G : IRm → IRk be Lipschitz near H(x). Then, for any v in IRn, one has

∂(G ◦H)(x)v ⊂ co{∂G(H(x))∂H(x)v}.

If G is continuously differentiable near H(x), then equality holds (and co is super-

fluous).

F (·) is the gradient of a convex function and the projection on positive semidefinite

cone is Lipschitz continuous. Thus, Corollary 2.10 implies the relationship in (2.42)

holds for all h ∈ IR2n, see also (Hiriart-Urruty et al., 1984).

The valuable benefit in using ∂̂F (y) is that the set can be completely characterized

because the generalized Jacobian ∂ΠSn+1
+

(·) has a full characterization, take (1.25)

as an example, also see Sun (2006, Prop. 2.2). We describe ∂̂F (y) in the following

result by making use of Sun (2006, Prop. 2.2). Its proof can be patterned after

those in Sect. 3.1 to Sect. 3.3 of Qi (2013) for Qi (2013, Prop. 3.2). We note that

only the submatrix Ωαγ is used in the description.

Proposition 2.11. For every matrix M ∈ ∂̂F (y), there exists Ṽ ∈ ∂Π
S|β|+1

+

(0)

such that

Mh = A(A∗(h))−A(PWhP
T), ∀ h ∈ IR2n (2.43)

where P := QW ,

Wh :=



W T
αH1Wα

[
W T
αH1Wβ 0

]
Ωαγ ◦W T

αH1Wγ W T
β H1Wα

0

 Ṽ


 W T

β H1Wβ 0

0 0


 0

ΩT
αγ ◦W T

γ H1Wα 0 0


and H1 is from the partition in (2.34).

60 Chapter 2 Best Euclidean distance embedding on a sphere

An implementable version of the semismooth Newton method (2.32) takes the

following form

yk+1 = yk −M−1
k F (yk), Mk ∈ ∂̂F (yk), k = 0, 1, 2, (2.44)

To implement the above method, we need to choose an explicit element Mk ∈

∂̂F (yk). The matrix M (subscript k is omitted) used in our implementation is

given by (2.43) with Ṽ = 0. This can be proved by using Proposition 2.11 and

Pang et al. (2003, Lemma 11).

(d) Nonsingularity of ∂̂F (y). Recall the matrices H and W are respectively

defined in (2.34) and (2.40). It is easy to verify that

W
T
HW =



W T
αH1Wα W T

αH1Wβ W T
α h W T

αH1Wγ

W T
β H1Wα W T

β H1Wβ W T
β h W T

β H1Wγ

hTWα hTWβ h0 hTWγ

W T
γ H1Wα W T

γ H1Wβ W T
γ h W T

γ H1Wγ


. (2.45)

We further denote

G1 :=

 W T
β H1Wβ W T

β h

hTWβ h0

 , G2 :=

 W T
β H1Wβ 0

0 0

 .
It is easy to see that ‖G2‖ ≤ ‖G1‖ and

(‖G1‖+ ‖G2‖)(‖G1‖ − ‖G2‖) = ‖G1‖2 − ‖G2‖2 = 2‖W T
β h‖2 + h2

0.

Hence we have

‖G1‖(‖G1‖ − ‖G2‖) ≥ ‖W T
β h‖2 +

1

2
h2

0. (2.46)

Chapter 2 Best Euclidean distance embedding on a sphere 61

It follows from Chan and Sun (2008, Eq (17)) that

〈Z1, Ṽ (Z2)〉 ≤ ‖Z1‖‖Z2‖ ∀ Ṽ ∈ ∂Π
S|β|+1|
+

(0), Z1, Z2 ∈ S |β|+1. (2.47)

From (2.38), the positive eigenvalues of Z are just the opposite of those negative

eigenvalues in γ. Let Γ be the permutation matrix which maps the sequence

{1, 2, . . . , |γ|} to its reverse order. We have,

Z = Wγ(−Λγ)Wγ = (WγΓ)(Γ(−Λγ)Γ)(WγΓ)T .

Hence, Uα, which consists of the eigenvectors of positive eigenvalues in the spectral

decomposition (2.10), can be chosen to be

Uα = WγΓ. (2.48)

Theorem 2.12. Let y be the optimal solution of the dual problem (2.29). Let

A := ΠKn+1
+

(−D +A∗(y)). We assume that constraint nondegeneracy holds at A.

Then every matrix M ∈ ∂̂F (y) is positive definite.

Proof. We continue to use the notation developed so far. Let M ∈ ∂̂F (y). Our

purpose is to prove 〈h, Mh〉 > 0 for all 0 6= h ∈ IR2n. It follows from (2.43)

Mh = A(A∗(h))−A
(
PWhP

T
)
,

where Wh is given in Proposition 2.11.

62 Chapter 2 Best Euclidean distance embedding on a sphere

We now calculate 〈h, Mh〉.

〈h, Mh〉 = ‖A∗(h)‖2 − 〈A∗(h), , PWhP
T 〉 = ‖QA∗(h)Q‖2 − 〈P TA∗(h)P, Wh〉

= ‖H‖2 − 〈W T
HW, Wh〉 (by (2.34) and P = QW)

= ‖W T
HW‖2 − 〈W T

HW, Wh〉 (by W W
T

= In+1)

= 2
{
‖W T

α h‖2 + ‖W T
αH1Wγ‖2 − 〈W T

αH1Wγ, Ωαγ ◦ (W T
αH1Wγ)〉

}
+2
{
‖W T

β H1Wγ‖2 + ‖W T
γ h‖2 + ‖W T

γ H1Wγ‖2/2
}

+‖G1‖2 − 〈G1, Ṽ (G2)〉.

The last equality made use of the structure of Wh and (2.45).

Define τmax := maxi∈α,j∈γ Ωij. By (2.39), 0 < τmax < 1. We continue to simplify

〈h,Mh〉.

〈h, Mh〉 ≥ 2
{
‖W T

α h‖2 + ‖W T
γ h‖2 + ‖W T

β H1Wγ‖2 + (1− τmax)‖W T
αH1Wγ‖2

}
+‖W T

γ H1Wγ‖2 + ‖G1‖2 − ‖G1‖‖G2‖ (by (2.47))

≥ 2

{
‖W T

α h‖2 + ‖W T
γ h‖2 +

1

2
‖W T

β h‖2

}
+ ‖W T

γ H1Wγ‖2

+2
{

(1− τmax)‖W T
αH1Wγ‖2 + ‖W T

β H1Wγ‖2
}

+
1

2
h2

0 (by (2.46))

≥ 0. (2.49)

Hence, the assumption 〈h, Mh〉 = 0 would imply

W T
α h = 0, W T

β h = 0, W T
γ h = 0, and h0 = 0,

and

W T
αH1Wγ = 0, W T

β H1Wγ = 0, W T
γ H1Wγ = 0.

Because of (2.40) and nonsingularity of W , the two equations above yield:

h = 0, h0 = 0 and H1Wγ = 0,

Chapter 2 Best Euclidean distance embedding on a sphere 63

which by (2.48) and the nonsingularity of Γ (Γ is a permutation matrix) leads to

h = 0, h0 = 0 and H1Uα = 0. (2.50)

By assumption, constraint nondegeneracy holds at A. Lemma 2.9 forces h = 0.

The inequality (2.49) implies that 〈h, Mh〉 > 0 for any h 6= 0. Therefore, any

matrix in ∂̂F (y) is positive definite under constraint nondegeneracy. �

(e) Quadratic convergence. The direct consequence of Theorem 2.12 is the

quadratic convergence of the Newton method (2.44). Let y∗ be an optimal solution

of the Lagrangian dual problem (2.29).

Theorem 2.13. The Newton method (2.44) is quadratically convergent provided

that y0 is sufficiently close to the optimal solution y∗ of (2.29) and constraint

nondegeneracy holds at Y ∗ that is defined by (2.33).

Proof. In the general quadratic convergence-rate Theorem 1.4 for semismooth

Newton methods, there are three conditions: (i) The function F is strongly semis-

mooth, which is true for our case because it is a composition of linear mappings

and the strongly semismooth mapping ΠSn+1
+

(·). (ii) Every matrix in the general-

ized Jacobian of ∂̂F (y∗) is nonsingular, which has been proved in Theorem 2.12

under constraint nondegeneracy assumption. Furthermore, ∂̂F (·) is compact and

upper semicontinuous. The last condition is that the initial point y0 stays close

to y∗. This proves our result. �

Since (2.29) is convex, globalization of the Newton method (2.44) is straightfor-

ward. We simply use one of the well-developed globalization method (Newton-CG

method) studied by Qi and Sun (2006) in our numerical experiment.

64 Chapter 2 Best Euclidean distance embedding on a sphere

2.4 Majorized penalty method

In this section, we extend the majorized penalty method of Gao and Sun (2010) to

our problem (2.6). The method has previously been used to compute the nearest

EDM of low embedding dimensions in Qi and Yuan (2014). The situation here is

that we have spherical constraints to deal with. The structure of the extension is

similar to that in Qi and Yuan (2014).

(a) The penalty problem. It has been shown that without the rank constraint

rank(JY J) ≤ r, the convex relaxation problem (2.7) can be solved by the Newton-

CG method (2.44). Problem (2.7) implicitly implies a very important fact that

the matrix (JY J) is positive semidefinite for any feasible point Y . Define

p(Y) :=
n∑

i=r+1

λi(JY J) = 〈In+1, JY J〉 −
r∑
i=1

λi(JY J)

= 〈J, Y 〉 −
r∑
i=1

λi(JY J), (because J2 = J)

where λ1(JY J) ≥ . . . ≥ λn+1(JY J) are the eigenvalues of (JY J). The equivalent

relationship below is obvious.

rank(JY J) ≤ r and JY J � 0 ⇐⇒ p(Y) = 0 and JY J � 0.

Moreover, p(Y) ≥ 0 for any Y satisfying JY J � 0. Therefore, the function p(Y)

can be used as a penalty function for the rank constraint over the feasible region

of (2.6). A similar fact has been used by Gao and Sun (2010) in their majorized

penalty method for computing the nearest low-rank correlation matrix, which is

Chapter 2 Best Euclidean distance embedding on a sphere 65

necessarily positive semidefinite. The resulting penalty problem in our case is

min fc(Y) := f(Y) + cp(Y)

s.t. A(Y) = 0, Y ∈ Kn+1
+ ,

(2.51)

where c > 0 is the penalty parameter and f(Y) := ‖Y +D‖2/2.

Similar to the result in Gao and Sun (2010, Prop. 3.1 and Prop. 3.2), we have

the following result on the relationship between the original problem (2.6) and its

penalty counterpart (2.51)

Proposition 2.14. Let Y ∗c denote a global optimal solution of (2.51), Yr be a

feasible solution of (2.6), and Y ∗ be an optimal solution of the convex problem

(2.7).

(i) If rank(JY ∗c J) ≤ r, then Y ∗c already solves (2.6).

(ii) If the penalty parameter c is chosen to satisfy c ≥ (f(Yr) − f(Y ∗))/ε, for

some given ε > 0, then we have

p(Y ∗c) ≤ ε and f(Y ∗c) ≤ ν∗ − cp(Y ∗c),

where ν∗ denotes the optimal objective vale of (2.6).

Proof. (i) If rank(JY ∗c J) ≤ r, then Y ∗c is a feasible solution to (2.6) and p(Y ∗c) = 0.

Since Yr is also a feasible solution of (2.6), by noting that p(Yr) = 0, we have

f(Y ∗c) = f(Y ∗c) + cp(Y ∗c) ≤ f(Yr) + cp(Yr) = f(Yr).

This shows that the conclusion of (i) holds.

(ii) Since Yr is also a feasible solution of (2.6) and p(Yr) = 0, we have

f(Yr) + cp(Yr) = fc(Yr) ≥ fc(Y
∗
c) = f(Y ∗c) + cp(Y ∗c) ≥ f(Y ∗) + cp(Y ∗c),

66 Chapter 2 Best Euclidean distance embedding on a sphere

which implies

p(Y ∗c) ≤ (f(Yr)− f(Y ∗))/c ≤ ε.

Let X be a global optimal solution to problem (2.6). Then from

f(X) + cp(X) = fc(X) ≥ fc(Y
∗
c) = f(Y ∗c) + cp(Y ∗c)

and the fact that p(X) = 0, we obtain that f(Y ∗c) ≤ f(X)−cp(Y ∗c) = ν∗−cp(Y ∗c).

�

The result in (ii) means that when the rank error measured by p(·) at Y ∗c is less

than ε, the corresponding objective value comes very close to the optimal value

ν∗. Such a solution is referred to as an ε-optimal solution in Gao and Sun (2010).

(b) Majorized Penalty Approach. The focus now is on solving the penalty

problem (2.51). Since p(Y) is concave (i.e., the sum of the first r largest eigenvalues

of a symmetric matrix is a convex function of the matrix), it can be majorized by

the linear function defined by its subgradient: For given Y k ∈ Sn+1 (the current

iterate) and Uk ∈ ∂p(Y k), we have

p(Y) ≤ mp
k(Y) := p(Y k) + 〈Uk, Y − Y k〉 ∀ Y. (2.52)

The function mp
k(Y) is called a majorization of p(Y) at Y k because of (2.52) and

p(Y k) = mp
k(Y

k). The majorized (convex) subproblem to be solved is

min f(Y) + cmp
k(Y), s.t. A(Y) = 0, Y ∈ Kn+1

+ . (2.53)

We now extend the majorized penalty algorithm of Gao and Sun (2010) to our

problem (2.6).

Chapter 2 Best Euclidean distance embedding on a sphere 67

Algorithm 7 Majorized Penalty Algorithm (MPA)

1: Choose a feasible point Y 0 of (2.7). Set k := 0.
2: Solve subproblem (2.53) to get Y k+1 = arg minY {f(Y) + cmp

k(Y) | A(Y) =
0, Y ∈ Kn+1

+ }.
3: If Y k+1 = Y k, stop; otherwise, set k := k + 1 and go to step 2.

We note that in the step 2 in Algorithm 7, subproblem (2.53) can be solved by

the Newton-CG method (2.44). Note that the objective function in (2.53) is

f(Y) + cmp
k(Y) = f(Y) + c(p(Y k) + 〈Uk, Y − Y k〉)

= f(Y) + c〈Uk, Y 〉+ c(p(Y k)− 〈Uk, Y k〉)

= ‖Y +D‖2/2 + c〈Uk, Y 〉+ c(p(Y k)− 〈Uk, Y k〉),

then subproblem (2.53) is equivalent to the following problem, which is the type

of the convex problem (2.7) but with different input D:

min
1

2
‖Y +D‖2, s.t. A(Y) = 0, Y ∈ Kn+1

+ , (2.54)

where D := D+cUk. We note that the feasible region remains unchanged. Hence,

the generalized Slater condition and the constraint nondegeneracy results studied

before hold for those subproblems.

We have the following remarks about the algorithm.

(R1) There are a few choices for the starting (feasible) point Y 0 in (S.1). One of

them is the optimal solution of (2.7) by the Newton-CG method (2.44).

(R2) Algorithm 7 generates a sequence of decreasing objective values {fc(Y k)} for

fixed c. This is because of the majorization property (2.52). In our practical

implementation, the penalty parameter is updated according to some rules.

(R3) The algorithm converges to a B-stationary point of (2.6), which is stated

below and whose proof can be patterned after Gao and Sun (2010, Thm. 3.4).

68 Chapter 2 Best Euclidean distance embedding on a sphere

For the definition of B-stationary point, see Gao and Sun (2010). Roughly

speaking, as problem (2.6) is nonconvex, converging to a B-stationary point

is one kind of global convergence that the algorithm can best achieve. We

omit the details. We also note that if Y f is the final iterate of Algorithm

7, then (−Y f) should be the final output as it is a true Euclidean distance

matrix (put the minus back because we have introduced the minus sign in

the formulation process that led to problem (2.6)).

Proposition 2.15. Let {Y k} be the sequence generated by Algorithm 7. Then

{fc(Y k)} is a monotonically decreasing sequence. If Y k+1 = Y k for some Y k, then

Y k is an optimal solution of (2.51). Otherwise, the infinite sequence {Y k} satisfies

1

2
‖Y k+1 − Y k‖2 ≤ fc(Y

k)− fc(Y k+1), k = 0, 1,

Moreover, the sequence {Y k} is bounded and any accumulation point is a B-

stationary point of (2.51).

2.5 Numerical examples by FITS

In this section, we first briefly describe the Matlab implementation of Algorithm 7.

For ease of reference, we call the resulting code FITS, standing for “FIT data on a

Sphere”. We then test a few well-known examples that have spherical constraints.

Through those examples, it is demonstrated that FITS can provide data visualiza-

tion of high quality and is capable of including extra (linear) constraints such as

the “pole constraints” in Ekman’s color example (Ekman, 1954), which results in

a wheel representation of 14 colors. We are not aware any existing methods that

can deal with such pole constraints. It also provides an alternative method for the

circle fitting problem, recently studied by Beck and Pan (2012).

Chapter 2 Best Euclidean distance embedding on a sphere 69

(a) Termination Criterion. We terminate Algorithm 7 when the following two

conditions are met. The first condition is on the objective function value:

ffrog :=
|
√
f(Y k)−

√
f(Y k−1)|

max{100,
√
f(Y k−1)}

≤ tol, (2.55)

where f(Y) = 0.5‖Y + D‖2 and tol is a small tolerance level (e.g., 1.0 × 10−4).

In other words, whenever there is lack of the relative progress on the successive

objective function values, we believe that the current iterate is a good candidate

subject to the second condition below. This stopping criterion was suggested by

Gao and Sun (2010) for the low-rank nearest correlation matrix problem.

The second condition is on the rank of the current iterate Y k. There are two

ways to monitor the rank. One is to compute the absolute value of the eigenvalue

residue:

rankerror :=
n∑

i=r+1

λi(JY
kJ) ≤ ranktol, (2.56)

where ranktol is a small tolerance (e.g., 10−2) and λ1 ≥ . . . ≥ λn are the eigen-

values of (JY kJ), which is positive semidefinite. This quantity does not scale well

with the magnitude of (JY kJ). To rectify this drawback, we also calculate the

percentage of the first r eigenvalues of (JY kJ) out of all the eigenvalues:

Eigenratio :=
r∑
i=1

λi(JY
kJ)/

n∑
i=1

λi(JY
kJ) ≤ Eigentol, (2.57)

where Eigentol is a high percentage (e.g., 90%). We terminate the algorithm

when (2.55) and either of (2.56) and (2.57) are satisfied.

(b) Initial Point and Updating the Penalty Parameter. The initial point is

computed by the Semismooth Newton-CG method for the convex problem (2.7).

We note that all the subproblems of (2.54) are solved by the same Newton-CG

70 Chapter 2 Best Euclidean distance embedding on a sphere

method. Algorithm 7 solves the penalty problem (2.51) for a fixed penalty parame-

ter c. In practical implementation, we may start from c0 and increase c a few times

before we can find a good solution. The initial c0 = 10 in our implementation. We

update ck (k ≥ 1) as follows

ck :=

 ck−1, if rank(JY k−1J) ≤ r

4ck−1, otherwise.

That is, we keep the penalty parameter unchanged if the current iterate has the

desired embedding dimension. Otherwise, it is increased by 4 times.

(c) Numerical Examples. Five examples were tested. They are (E1) Ekman’s

color example (Ekman, 1954), (E2) Trading globe in Cox and Cox (1991), (E3) 3D

Map of global cities (HA30 data set1) in Hartigan (1975), and (E4) Circle fitting

problem in Beck and Pan (2012). (E5) Points randomly distributed on a sphere

and on a circle. We also show how a Procrustes procedure can be devised to assess

the quality of the final embedding in (E3) or to help to get the final embedding

to match the existing points in (E4).

(E1) Ekman color example. This is a classical example in MDS where data

can be represented on a circle, called circular fitting. Ekman (1954) presents

similarities for 14 colors (wavelengths from 434 to 674 nm). The similarities are

based on a rating by 31 subjects where each pair of colors was rated on a 5-point

scale (0 means no similarity up to 4 meaning identical). After averaging, the

similarities were divided by 4 such that they are within the unit interval. The

resulting similarity matrix (shown in Table 2.1) is denoted by ∆. The initial

distance matrix is obtained from (D0)ij := (1−∆ij)
2.

1Data available from http://people.sc.fsu.edu/∼jburkardt/m src/distance to position sphere.html

Chapter 2 Best Euclidean distance embedding on a sphere 71

T
ab

le
2.

1:
S
im

il
ar

it
ie

s
of

co
lo

rs
w

it
h

w
av

el
en

gt
h
s

fr
om

43
4

n
m

to
67

4
n
m

(E
k
m

an
,

19
54

)

43
4

44
5

46
5

47
2

49
0

50
4

53
7

55
5

58
4

60
0

61
0

62
8

65
1

67
4

43
4

0.
00

0.
86

0.
42

0.
42

0.
18

0.
06

0.
07

0.
04

0.
02

0.
07

0.
09

0.
12

0.
13

0.
16

44
5

0.
86

0.
00

0.
50

0.
44

0.
22

0.
09

0.
07

0.
07

0.
02

0.
04

0.
07

0.
11

0.
13

0.
14

46
5

0.
42

0.
50

0.
00

0.
81

0.
47

0.
17

0.
10

0.
08

0.
02

0.
01

0.
02

0.
01

0.
05

0.
03

47
2

0.
42

0.
44

0.
81

0.
00

0.
54

0.
25

0.
10

0.
09

0.
02

0.
01

0.
00

0.
01

0.
02

0.
04

49
0

0.
18

0.
22

0.
47

0.
54

0.
00

0.
61

0.
31

0.
26

0.
07

0.
02

0.
02

0.
01

0.
02

0.
00

50
4

0.
06

0.
09

0.
17

0.
25

0.
61

0.
00

0.
62

0.
45

0.
14

0.
08

0.
02

0.
02

0.
02

0.
01

53
7

0.
07

0.
07

0.
10

0.
10

0.
31

0.
62

0.
00

0.
73

0.
22

0.
14

0.
05

0.
02

0.
02

0.
00

55
5

0.
04

0.
07

0.
08

0.
09

0.
26

0.
45

0.
73

0.
00

0.
33

0.
19

0.
04

0.
03

0.
02

0.
02

58
4

0.
02

0.
02

0.
02

0.
02

0.
07

0.
14

0.
22

0.
33

0.
00

0.
58

0.
37

0.
27

0.
20

0.
23

60
0

0.
07

0.
04

0.
01

0.
01

0.
02

0.
08

0.
14

0.
19

0.
58

0.
00

0.
74

0.
50

0.
41

0.
28

61
0

0.
09

0.
07

0.
02

0.
00

0.
02

0.
02

0.
05

0.
04

0.
37

0.
74

0.
00

0.
76

0.
62

0.
55

62
8

0.
12

0.
11

0.
01

0.
01

0.
01

0.
02

0.
02

0.
03

0.
27

0.
50

0.
76

0.
00

0.
85

0.
68

65
1

0.
13

0.
13

0.
05

0.
02

0.
02

0.
02

0.
02

0.
02

0.
20

0.
41

0.
62

0.
85

0.
00

0.
76

67
4

0.
16

0.
14

0.
03

0.
04

0.
00

0.
01

0.
00

0.
02

0.
23

0.
28

0.
55

0.
68

0.
76

0.
00

72 Chapter 2 Best Euclidean distance embedding on a sphere

−0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Ekman Color Example

434
445

465
472

490

504
537

555

584

600

610
628
651

674

(a) Circular fitting without any constraints

−0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Wheel Representation of Ekman Color Example

434
445

465

472

490

504
537

555
584

600

610

628

651
674

(b) Circuclar fitting with pole constraints

Figure 2.1: Comparison between the two circular fitting of Ekman’s 14 color

problem with and without pole constraints.

Figure 2.1 (a) (the radius is R = 0.5354) is the resulting circular representation by

FITS with colors appearing on the circle one by one in order of their wavelength.

This figure is similar to De Leeuw and Mair (2009, Fig. 2), where more comments

on this example can be found. A pair of colors (i, j) are said opposing to each

other if their distance equals the diameter of the circle. That is

Yij = 4Y1(n+1), (2.58)

which means that the squared distance between opposing colors is fourfold of the

radius squared. This type of constraints is called “pole constraint”. An interesting

feature is that we assume that the first 7 colors are set to oppose the remaining

7 colors, the resulting circular representation appears as a nice wheel, without

having changed the order of the colors, see Figure 2.1(b) (the radius is 0.5310).

Practitioners in Psychology may have new interpretation of such nice representa-

tion. We emphasize that our method can easily include the pole constraints and

other linear constraints without any technical difficulties. We are not aware any

existing methods that can directly handle those extra constraints.

(E2) Trading globe. The data in this example was first mapped to a sphere (r =

Chapter 2 Best Euclidean distance embedding on a sphere 73

Figure 2.2: Spherical representation for trading data in 1986 between countries

{Argentina, Australia, Brazil, Canada, China, Czechoslovakia, East Germany,

Egypt, France, Hungary, India, Italy, Japan, New Zealand, Poland, Sweden,

UK, USA, USSR, West Germany}.

3) in Cox and Cox (1991) and was recently tested in De Leeuw and Mair (2009).

The data was originally taken from the New Geographical Digest (1986) on which

countries traded with other countries. For 20 countries the main trading partners

are dichotomously scored (1 means trade performed, 0 trade not performed) as

shown in Table 2.2. Based on this dichotomous matrix X the distance matrix D0

is computed using the squared Jaccard coefficient (computed by the Matlab build-

in function pdist(X, ’jaccard’). The most intuitive MDS approach is to project

the resulting distances to a sphere which gives a “trading globe”.

In Figure 2.2 (R = 0.5428), the counties were projected on to a globe with the

shaded points being on the other side of the sphere. The figure is from the de-

fault viewpoint of Matlab. It is interesting to point out that obvious clusters of

countries can be observed. For example, on the top left is the cluster of Com-

monwealth nations (Australia, Canada, India, and New Zealand). On the bottom

right is the cluster of western allies (UK, US, and West Germany) with Japan

74 Chapter 2 Best Euclidean distance embedding on a sphere

T
ab

le
2.2:

N
ation

s’
trad

in
g

d
ata

from
N

ew
G

eograp
h
ical

D
igest

(1986)

A
rge

0
0

1
0

0
0

0
0

0
0

0
1

1
0

0
0

1
0

0
1

A
u
st

0
0

0
0

1
0

0
0

0
0

0
0

1
1

0
0

1
0

1
1

B
raz

1
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

1
0

0
1

C
an

a
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
1

0
1

0
C

h
in

0
1

0
1

0
0

0
0

0
0

0
0

1
0

0
0

0
1

0
0

C
zec

0
0

0
0

0
0

0
1

0
1

0
0

0
0

1
0

0
1

0
0

E
gy

p
0

0
0

0
0

0
0

0
1

0
0

1
0

0
0

0
1

1
1

1
E

.G
e

0
0

0
0

0
1

0
0

0
1

0
0

0
0

1
0

0
1

0
1

F
ran

0
0

0
0

0
0

1
0

0
0

0
1

0
0

0
0

1
0

1
1

H
u
n
g

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

0
1

0
1

In
d
i

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

1
1

1
1

Ital
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

0
0

1
J
ap

a
1

1
1

1
1

0
0

0
0

0
1

0
0

1
0

0
1

0
0

0
N

.Z
e

0
1

0
0

0
0

0
0

0
0

0
0

1
0

0
0

1
0

1
0

P
ola

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

0
1

0
1

S
w

ed
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
1

1
U

S
A

1
1

1
1

0
0

1
0

1
0

1
0

1
1

0
1

0
0

1
1

U
S
S
R

0
0

0
0

1
1

1
1

0
1

1
0

0
0

1
0

0
0

0
0

U
.K

0
1

0
1

0
0

1
0

1
0

1
0

0
1

0
1

1
0

0
1

W
.G

e
1

1
1

0
0

0
1

1
1

1
1

1
0

0
1

1
1

0
1

0

Chapter 2 Best Euclidean distance embedding on a sphere 75

not far on above of them. On the north pole is China, which reflects its isolated

trading situation back in 1986. On the backside is the cluster of countries headed

by USSR. On the left backside is the cluster of Brazil, Argentina, Egypt. We note

that this figure appears different from those in Cox and Cox (1991); De Leeuw

and Mair (2009) mainly because that each used a different method on a different

(nonconvex) model of the spherical embedding of the data.

(E3) 3D Map of global cities in HA30 data set. HA30 is a dataset of spherical

distances among 30 global cities, measured in hundreds of miles and selected by

Hartigan (1975) from the World Almanac, 1966. It also provides XYZ coordinates

of those cities. In order to use FITS, we first convert the spherical distances to

Euclidean distances through the formula: dij := 2R sin(sij/(2R)) where sij is the

spherical distance between city i and city j and R = 39.59 (hundreds miles) is the

Earth radius (see Pȩkalska and Duin (2005, Thm. 3.23)). The initial matrix D0

consists of the squared distances d2
ij. It is observed that the matrix (−JD0J) has

15 positive eigenvalues and 14 negative eigenvalues and 1 zero eigenvalue. There-

fore, the original spherical distances are not accurate and contain large errors.

Therefore, FITS is needed to correct those errors. We plot the resulting coordi-

nates of the 30 cities in Figure 2.3. One of the remarkable features is that FITS is

able to recover the Earth radius with high accuracy R = 39.5916.

We now assess the quality of the spherical embedding in Figure 2.3 through a

Procrustes analysis introduced in Section 1.1.3. The optimal objective f in (1.14)

is f = 0.2782. This small error is probably due to the fact that the radius used

in HA30 is 39.59 in contrast to ours 39.5916. This small value also confirms the

good quality of the embedding from FITS when compared to the solution in HA30.

(E4) Circle fitting. The problem of circle fitting has recently been studied in

76 Chapter 2 Best Euclidean distance embedding on a sphere

Figure 2.3: Spherical embedding of HA30 data set with radius R = 39.5916.

Beck and Pan (2012), where more references on the topic can be found. Let points

{ai}ni=1 with ai ∈ IRr be given. The problem is to find a circle with center x ∈ IRr

and radius R such that the points stay as close to the circle as possible. Two

criteria were considered in Beck and Pan (2012):

min
x, R

f1 =
n∑
i=1

(‖ai − x‖ −R)2 (2.59)

and

min
x, R

f2 =
n∑
i=1

(
‖ai − x‖2 −R2

)2
. (2.60)

Problem (2.60) is much easier to solve than (2.59). But the key numerical message

in Beck and Pan (2012) is that (2.59) may produce far better geometric fitting

than (2.60). This was demonstrated through the following example Beck and Pan

(2012, Example 5.3):

a1 =

 1

9

 , a2 =

 2

7

 , a3 =

 5

8

 , a4 =

 7

7

 , a5 =

 9

5

 , a6 =

 3

7

 .

Chapter 2 Best Euclidean distance embedding on a sphere 77

Model (2.60) produces a very small circle, not truly reflecting the geometric layout

of the data.

The Euclidean distance embedding studied in this paper provides an alternative

model. Let D0
ij = ‖ai − aj‖2 for i = 1, . . . , n and n = 6, r = 2 in this example.

Let Y be the final distance matrix from FITS and the embedding points in X be

obtained from (1.12). The first 6 columns {xi}6
i=1 of X correspond to the known

points {ai}6
i=1. The last column x7 is the center. The points {xi}6

i=1 are on the

circle centered at x7 with radius R (R =
√
Y 1(n+1)). We need to match {xi}6

i=1 to

{ai}6
i=1 so that the known points stay as close to the circle as possible. This can

be done through the orthogonal Procrustes problem (1.14).

We first centralize both sets of points. Let

a0 :=
1

n

n∑
i=1

ai, ai := ai−a0 and x0 :=
1

n

n∑
i=1

xi, xi := xi−x0, i = 1, . . . , n.

Let A be the matrix whose columns are ai and Z whose columns are xi for i =

1, . . . , n. Solve the orthogonal Procrustes problem (1.14) to get P = UV T . The

resulting points are

zi := Pxi + a0, i = 1, . . . , n

and the new center, denoted by zn+1, is

zn+1 := P (xn+1 − x0) + a0.

It can be verified that the points {zi}ni=1 are on the circle centered at zn+1 with

radius R. That is

‖zi − zn+1‖2 = ‖P (xi − xn+1)‖2 = ‖xi − xn+1‖2 = R2.

This circle is the best circle from model (2.2) and is plotted in Figure 2.4 with the

78 Chapter 2 Best Euclidean distance embedding on a sphere

−5 0 5 10

−4

−2

0

2

4

6

8

Circle Fitting

Figure 2.4: Circle fitting of 6 points with R = 6.5673. The known points and

their corresponding points on the circle by FITS are linked by a line.

pair of points {ai, zi} being linked by a line. When the obtained center x = zn+1

and R are substituted to (2.59), we get f1 = 3.6789, not far from the reported value

f1 = 3.1724 in Beck and Pan (2012). The circle fits the original data reasonably

well. The model used by Beck and Pan (2012) is nonconvex and the resulting f

highly depends on a good starting point while our algorithm solves a sequence of

convex relaxations that do not count on a good starting point. We complete this

example by noting a common feature between our model (2.2) and the squared

least square model (2.60) in that the squared distances are used in both models.

But the key difference is that (2.2) used all available pairwise squared distances

among ai rather than just those from ai to the center x as is in (2.60).

(E5) Synthetic data. In this part we generate random data to test the per-

formance of Algorithm 7 with growing dimension. Two types of data are used

as shown in Figure 2.5. The first one contains points randomly distributed on

a sphere and the second one contains points on a circle, both of them have the

radius 1, note that we do not actually use the radius as a given information in our

algorithm. The noise in the distance information is generated following a standard

framework as follows:

D̂ij = Dij × |1 + nf × randn|, i = 1, . . . , n, j = 1, . . . , n, (2.61)

Chapter 2 Best Euclidean distance embedding on a sphere 79

1
0.5

0
-0.5-0.5

0

0.5

-0.5

0

0.5

-1

1

(a) Points randomly distributed on a sphere

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) Points randomly distributed on a circle

Figure 2.5: Synthetic data with n = 200 points randomly distributed

where Dij is the true Euclidean distance between points xi and xj, 0 6 nf 6 1

is the noise factor, randn is the standard normal random variable. The accuracy

measurement of the estimated positions is the root mean square distance (RMSD)

RMSD :=
1√
n

(
n∑
i=1

‖x̂i − xi‖2

) 1
2

, (2.62)

where x̂i is the estimated position and xi is the ground-truth position. Note that

without knowing some points position in advance, only relative positions can be

found. To calculate RMSD, we apply the Procrustes (1.14) to all estimated points

to get the global coordinates.

To test the computation efficiency of Algorithm 7, data with various number of

points from 100 to 1000 are used. The noise factor nf is set to 1. The time and

accuracy results of sphere data are listed in Table 2.3.

The first column is the number of data points that are generated. The second

column is the number of convex subproblems that are solved in the step (2) of

Algorithm 7. The third column contains the total number of iteration in New-

ton method among all subproblems, i.e., the iteration number of the semismooth

Newton method (2.44). We can see that as the scale of problem going large, the

RMSD decreases since the radius of the sphere remains 1 and the density of points

80 Chapter 2 Best Euclidean distance embedding on a sphere

Table 2.3: Execution Time and Quality Results on Sphere Data

n Subproblem Total iteration RMSD Time

100 5 25 4.05E-02 5.80
200 5 26 2.89E-02 11.90
300 5 31 2.39E-02 23.05
400 5 34 2.09E-02 41.14
500 5 35 1.91E-02 57.75
600 5 38 1.75E-02 86.01
700 5 40 1.64E-02 103.57
800 5 41 1.56E-02 144.18
900 5 43 1.47E-02 170.94
1000 5 44 1.41E-02 209.07

is increasing. For problem with small scale, our method only takes seconds to get a

result with RMSD around 10−2. For problem with 1000 points, it takes Algorithm

7 around 3 minutes to solve it. Similar observation can be obtained for circle data

shown in Table 2.4.

Table 2.4: Execution Time and Quality Results on Circle Data

n Subproblem Total iteration RMSD Time

100 5 24 2.55E-02 5.13
200 5 28 2.06E-02 11.97
300 5 33 1.69E-02 22.15
400 5 35 1.45E-02 38.11
500 5 37 1.32E-02 58.39
600 5 40 1.20E-02 77.61
700 5 40 1.13E-02 100.70
800 5 40 1.07E-02 124.75
900 5 41 1.04E-02 144.65
1000 5 44 1.01E-02 186.20

To test the influence of noise factor nf on the accuracy of FITS, we vary nf from

0.1 to 0.5, the resulting RMSD on sphere and circle data are depicted in Figure

2.6. we can see that our algorithm achieved better RMSD on circle data than on

sphere data, and the RMSD on both data sets are less than 20% of the radius even

when the noise factor is as large as 0.5.

Chapter 2 Best Euclidean distance embedding on a sphere 81

Noise factor nf
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
M

S
D

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sphere data
Circle data

Figure 2.6: Variation of RMSD with varying number of noise factor nf

2.6 Summary

In this section, we proposed a matrix optimization approach to the problem of

Euclidean distance embedding on a sphere. We applied the majorized penalty

method of Gao and Sun (2010) to the resulting matrix problem. A key feature we

exploited is that all subproblems to be solved share a common set of Euclidean

distance constraints with a simple distance objective function. We showed that

such problems can be efficiently solved by the Newton-CG method, which is proved

to be quadratically convergent under constraint nondegeneracy.

Constraint nondegeneracy is a difficult constraint qualification to analyze. We

proved it under a weak condition for our problem. We illustrated in Example

2.1 that this condition holds everywhere but one point (t = 0). This means that

constraint nondegeneracy is satisfied for t 6= 0. For the case t = 0, we can verify

(through verifying Lemma 2.9) that constraint nondegeneracy also holds. This

motivates our open question whether constraint nondegeneracy should hold under

a weaker condition.

82 Chapter 2 Best Euclidean distance embedding on a sphere

In the numerical part, we used 4 existing embedding problems on a sphere to

demonstrate a variety of applications that the developed algorithm can be applied

to. The first two examples are from classical MDS and new features (wheel repre-

sentation for E1 and new clusters for E2) are revealed. For E3, despite the large

noises in the initial distance matrix, our method is remarkably able to recover the

Earth radius and to project accurate mapping of the 30 global cities on the sphere.

The last example is different from the others in that its inputs are the coordinates

of known points (rather than a distance matrix). Finding the best circle to fit

those points requires localization of its center and radius. The resulting visualiza-

tions are very satisfactory for all the examples. Since those examples are of small

scale, our method took less than 1 second to find the optimal embedding. Hence,

we omitted reporting such information.

Chapter 3

EDM-based optimization

approach for sensor network

localization

In this chapter, we introduce an EDM-based optimization model with bound con-

straints to develop a new scheme for sensor network localization. Compared to the

previous work on problem (1.21) and results in the last chapter, the model to be

discussed in the chapter contains a large number of inequality constraints, which

will cause difficulties for previous methods to work efficiently. And efficiency is a

fundamental requirement for any sensor network localization scheme. Moreover, A

robust and fault-tolerant localization system is also essentially required in many

monitoring applications such as environment monitoring and industrial control.

There have been significant advances in range-based numerical methods for sensor

network localizations over the past decade. However, there remain a few chal-

lenges to be resolved to satisfaction. Those issues include, for example, the flip

ambiguity, high level of noises in distance measurements, and irregular topology

of the concerning network. Each or a combination of them often severely degrades

the otherwise good performance of existing methods. Integrating the connectivity

83

84 Chapter 3 EDM-based optimization approach for sensor network localization

constraints is an effective way to deal with those issues. However, there are too

many of such constraints, especially in a large and sparse network. In our model,

the connectivity constraints can be simply represented as lower and upper bounds

on the elements of EDM, resulting in a standard 3-block quadratic conic program-

ming, which can be efficiently solved by the 3-block alternating direction method

of multipliers, which is a special case of Algorithm 5. Numerical experiments show

that the EDM model effectively eliminates the flip ambiguity and retains robust-

ness in terms of being resistance to irregular wireless sensor network topology and

high noise levels.

The rest of the chapter is organized as follows. In the first section, we give a brief

introduction to sensor network localization and basic modelling technique using

EDM. Our EDM-based localization scheme is described in Section 3.2, where we

describe the convex optimization model, deal with the rank constraint as well as

discuss the global coordinate recovery. In Section 3.3, we introduce a convergent

3-block ADMM algorithm for our convex optimization model to retrieve missing

distance information. Numerical comparison with existing state-of-art methods

is reported in Section 3.4, which demonstrates the robustness of our model in

handling the issues reviewed in Section 3.1.

3.1 Introduction to sensor network localization

Wireless Sensor Networks (WSNs) consist of a collection of spatially distributed

autonomous sensor nodes, which can sense, measure, gather and transmit infor-

mation from a geographical area (Patwari et al., 2005). WSNs play an important

role in a variety of applications such as environmental/earth sensing and industrial

monitoring, in which an accurate realization of sensor positions with respect to

a global coordinate system is highly desirable for the data gathered to be geo-

graphically meaningful. One way to locate sensor nodes is by equipping each of

Chapter 3 EDM-based optimization approach for sensor network localization 85

them with a global positioning system (GPS) device, which could be very costly

and significantly energy consuming for networks with numerous sensors. Thus, a

common approach is to firstly acquire only a small portion of sensor positions by

manual deployment or by GPS, and they are known as anchor nodes. It is then

to locate the rest of nodes in the network using the connectivity or pairwise dis-

tance information from typical range measurements such as time-of-arrival (ToA).

We refer to the book by Akyildiz and Vuran (2010) for the details of hardware

technologies. Localization with only connectivity information is categorized as

range-free localization. It often provides less accurate positions than the range-

based localization, in which both connectivity and pairwise distance information

are used. The main focus of this section lies in the latter category as we assume

that partial information on pairwise distances is provided.

Suppose there are n sensors x1, . . . ,xn in IRr (r = 2 or 3). Some of them may

be anchors. Assume that Euclidean distance among some of the sensors can be

observed:

d̂ij = ‖xi − xj‖+ εij, (3.1)

where ‖ · ‖ is the Euclidean norm in IRr, εij are errors, and d̂ij are observed dis-

tances. The sensor network localization (SNL) problem is to recover the sensor

positions through those distances. The most popular method may be the classical

Multidimensional Scaling (cMDS) summarized in Algorithm 1. It works well when

a large number of d̂ij are close to their true distances (i.e., εijs are relatively small).

Otherwise, one has to opt for many of its variants. An alternative method called

SMACOF (De Leeuw and Mair, 2009) is proposed to recover node positions from

incomplete distance information, which minimizes a nonconvex stress function it-

eratively using majorization. Based on SMACOF, a distributed weighted-MDS is

developed by Costa et al. (2006). Another well known example of metric MDS is

MDS-MAP proposed by Shang et al. (2003), which tries to estimate all missing

distance information by computing the shortest paths between all pairs of nodes.

86 Chapter 3 EDM-based optimization approach for sensor network localization

Theoretical analysis on the performance of MDS-MAP can be found in Karbasi

and Oh (2013); Drineas et al. (2006). MDS-MAP often works when nodes are

positioned relatively uniformly in the space, but does not perform well on net-

works with irregular topology, where the shortest path distance does not correlate

well with the true Euclidean distance. To compensate for this drawback, several

“patching” algorithms, such as MDS-MAP(P) (Shang and Ruml, 2004), PATCH-

WORK (Koren et al., 2005) and As-Rigid-As-Possible (ARAP) (Zhang et al.,

2010), are proposed, which starts by first localizing small patches and then stitch-

ing them together to recover the global coordinates. Gepshtein et al. proposed an

anchor-based sensor networks localization scheme called ADESR in Gepshtein and

Keller (2015) that utilizes a dual spectral embedding. It is experimentally shown

that ADESR outperforms ARAP in terms of robustness to noise and localization

accuracy, but it may suffer from the increasing computational complexity.

Another important class of methods is the Semi-Definite Programming (SDP)

relaxation-based, initially introduced by Biswas and Ye (2004) to SNL, which

draws much attention in the WSN society due to their global convergence prop-

erty. The major modelling procedure in many papers in this class of methods is

first to formulate the SNL problem as a quadratic optimization problem and then

to relax it as SDP, which can be efficiently solved by interior point methods such

as SDPT3 in Toh et al. (1999). Important techniques have been introduced in or-

der to improve the quality and/or computational efficiency of various relaxations.

For example, techniques of regularization and refinement have been employed in

Biswas et al. (2006). Edge-based SDP (ESDP) and node-based SDP (NSDP) re-

laxations of the full SDP (FSDP) (Biswas and Ye, 2004) are studied in Wang et al.

(2008). These further relaxation approaches are weaker than the original SDP re-

laxation in theory, but computational results show that the quality of solutions

may not be influenced. A sparse version of FSDP has been implemented as SFSDP

by Kim et al. (2012) and it requires much less computational time than most of

Chapter 3 EDM-based optimization approach for sensor network localization 87

the SDP relaxation methods. Besides SDP techniques, second-order cone pro-

gramming (SOCP) relaxation is also studied by Tseng (2007) to handle thousands

of sensors, however it is less inaccurate compared to SDP-based algorithms (Kim

et al., 2012). SDP relaxation based methods work well on most types of networks.

However, numerical simulation shows that they are very sensitive to networks with

randomly deployed anchor nodes, and often suffer from flip ambiguity, which may

induce large errors to the final localization.

As lightly touched above and already reported in existing literature, the issues such

as high level of noises (i.e., εij in (3.1) are relatively large), irregular topology (e.g.,

sensors are not uniformly distributed over a convex region) and flip ambiguity can

severely degrade the performance of existing methods. In particular, flip ambiguity

is one of the major challenges brought up by ranging errors. It arises when the

neighbours of a node lie almost in a line such that the node can be mirror reflected

across the line while still satisfying the distance constraints from its neighbours

(Kannan et al., 2010), as illustrated in Figure 3.1. In this small network, node

A could be mirror reflected to the position of A′ when there exists error in the

distance measurements, while the distances under the same connectivity states, i.e.

A′B, A′C, A′D, can still remain unchanged, thereby causing a large localization

error. Moreover, the error may transmit and a large part of the sensors could be

folded over. For a larger network example, see Figure 3.4(b).

Several heuristic methods have been purposefully proposed to tackle the issue of

flip ambiguity such as the two-phase simulated annealing algorithm by Kannan

et al. (2006) and the two-step tabu search algrithm by Shekofteh et al. (2010).

These methods can be robust and efficient if the parameters are well controlled.

However, tuning parameters for networks of various sizes and topologies is very

time consuming with no guarantee of success. Most of the patching and stitching

methods (Shang and Ruml, 2004; Koren et al., 2005; Zhang et al., 2010) can resist

88 Chapter 3 EDM-based optimization approach for sensor network localization

-1 -0.5 0 0.5 1 1.5 2
-0.5

0

0.5

1

1.5

2

2.5

A

C

B

F

E

D

A‘

Figure 3.1: Illustration of flip ambiguity, a small network with 6 nodes,
communication radius R = 2.1, blue lines indicate the existence of com-
munication between two nodes.

flip ambiguity quite well, however, as discussed above, they are either encountered

with inaccurate positions or inefficient calculation.

The strategy we propose here is more direct and is geometric. Take the case in

Figure 3.1 for example, we note that point A has no connection with both points

E and F . If we enforce the (dis)connectivity constraints

‖xA − xE‖ > R and ‖xA − xF‖ > R, (3.2)

then the possibility of point A flipping to point A′ would be removed because A′

would fall within the communication range of points E and F . For this strategy

to be effective, the following three elements have to be taken into consideration.

(i) There are a large number of such connectivity constraints as in (3.2). The

order is O(n2). The more sparse the network is , the more of such constraints

there are. (ii) The connectivity constraints such as (3.2) should be satisfied in the

embedding space IRr, which is a low-dimensional space. This essentially introduces

nonconvexity to the problem. (iii) The computational model of localization, as

Chapter 3 EDM-based optimization approach for sensor network localization 89

done in SDP relaxation methods reviewed above, should be of convex optimization

in order to develop fast algorithms. The consideration of the three elements all

together will result in robust localization and this is where our research departs

from most of the existing ones.

By employing the concept of EDM, we can effectively address the three elements

above. Namely, the connectivity constraints will be simply represented as lower

and/upper bounds constraints. It is those bound constraints that play an impor-

tant role in mitigating flip ambiguity and obtaining robustness under presence of

large noises in the distance measurements. The nonconvexity concerning the em-

bedding space is formulated as a rank constraint, which is further approximated

by a (heuristic) linear function to induce a low rank solution. The final computa-

tional model belongs to the class of convex EDM optimization model (1.21) with

additional bound constraints. Both primal and dual problem of our model has 3

separate block-variables. It is this nice and tidy structure that makes it possible

to implement an efficient algorithm of Alternating Direction Method of Multiplier

(ADMM). The algorithm is derived based on Algorithm 6 introduced in Section

1.3.2, which allows us to handle millions of inequality constraints efficiently when

the sensor number grows to thousands. Numerical comparison will demonstrate

that, with less computational complexity, our approach outperforms the existing

state-of-art methods in terms of flip ambiguity elimination, being resistance to

irregular WSN topology and presence of large noises in ranging measurements.

3.2 EDM-based localization scheme

In this section, we first state the SNL problem, especially on what types of con-

straints we intend to address. We then describe how we reformulate the problem

as a convex EDM optimization. The final part is about placing the recovered

90 Chapter 3 EDM-based optimization approach for sensor network localization

sensors to the coordinate systems used by the existing anchors. If there exist no

anchors, this part will not be necessary.

3.2.1 SNL problem statement

Assume a sensor network in IRr (r = 2 or 3) has n nodes in total, with m known

anchor nodes and n−m sensor nodes whose locations are unknown (m may take

0). Let xk = ak ∈ IRr, k = 1, 2, . . . ,m denote the location of kth anchor node,

and xi ∈ IRr, i = m + 1, . . . , n denote the location of ith sensor node. The

maximum communication range is R, which determines two index sets Nx and Na

that indicates the connectivity states of nodes. For any (i, j) ∈ Nx, the Euclidean

distance dij between sensor nodes xi and xj is not greater than R. Hence, the two

sensor nodes are able to transmit signal between each other. Similarly, for any

(i, k) ∈ Na, a sensor xi and an anchor node ak can communicate with each other

and their Euclidean distance dik ≤ R. Therefore, we have

Nx := {(i, j) : m+ 1 ≤ i < j ≤ n, ‖xi − xj‖ ≤ R} ,

Na := {(i, k) : m+ 1 ≤ i ≤ n, 1 ≤ k ≤ m, ‖xi − ak‖ ≤ R} .

To indicate a pair of nodes that are too far away to communicate with each other,

we define

N x := {(i, j) : m+ 1 ≤ i < j ≤ n, ‖xi − xj‖ > R} ,

N a := {(i, k) : m+ 1 ≤ i ≤ n, 1 ≤ k ≤ m, ‖xi − ak‖ > R} .

For any sensor nodes xi and xj, (i, j) ∈ Nx ∪ Na, a noisy range measurement d̂ij

is taken. We assume that the distance estimations are symmetric, i.e., d̂ij = d̂ji.

Then the range-based sensor network localization problem can be described as to

Chapter 3 EDM-based optimization approach for sensor network localization 91

recover xm+1,xm+2, . . . ,xn such that

‖xi − xj‖2 ≈ d̂2
ij, ∀(i, j) ∈ Nx, (3.3a)

‖xi − xj‖2 > R2, ∀(i, j) ∈ N x, (3.3b)

‖xi − ak‖2 ≈ d̂2
ik, ∀(i, k) ∈ Na, (3.3c)

‖xi − ak‖2 > R2, ∀(i, k) ∈ N a. (3.3d)

(3.3a) and (3.3c) come from the incomplete distance information, and (3.3b) and

(3.3d) come from the connectivity information due to the limitation of radio range.

That is, if there is no distance information measured between two nodes, then their

Euclidean distance is greater than R. Many existing localization schemes neglect

all the inequality constraints (3.3b) and (3.3d). However, as some of the existing

research demonstrated, those bound constraints can actually improve the robust-

ness and accuracy of localization. In particular, Biswas and Ye (2004) suggest to

select some of these lower bound constraints based on an iterative active-constraint

generation technique. We note that the total number of the constraints is order

of O(n2).

3.2.2 EDM-based optimization reformulation

Let Y be such an EDM that it satisfies

Yij ≈ d̂2
ij, ∀(i, j) ∈ Nx or Na, (3.4a)

Yij > R2, ∀(i, j) ∈ N x or N a, (3.4b)

Yij = ‖ai − aj‖2, ∀i, j ∈ {1, 2, . . . ,m} , (3.4c)

rank(−JY J) = r. (3.4d)

92 Chapter 3 EDM-based optimization approach for sensor network localization

The first two constraints in (3.4) are to accommodate the constraints in (3.3).

The third constraint includes the fixed distances among the m anchors and the

last constraint enforces that the embedding points from Y should be in the low-

dimensional space IRr. Our EDM optimization seeks for a best Y from all matrices

of satisfying those constraints in (3.4).

For the constraints in (3.4a), we use the principle of least-squares to get our objec-

tive. For other constraints, we keep them. This leads to the following optimization

problem:

min
∑

(i,j)∈Nx∪Na

(
Yij − d̂2

ij

)2

s.t. Yij ≥ R2, ∀(i, j) ∈ N x ∪N a

Yij = ‖ai − aj‖2, ∀ i, j ∈ {1, 2, . . . ,m}

rank(−JY J) = r, Y ∈ (−Kn+) ∩ Snh .

(3.5)

Compared to problem (1.21), (3.5) has additional equality and extra inequality

constraints. For this problem to be well defined, we consider the graph G formed

by n nodes with its edges being (i, j) ∈ Nx ∪ Na. We assume that G is con-

nected. Otherwise, problem (3.5) can be separated into smaller subproblems each

corresponding to a connected subgraph in G. The following result ensures that our

problem is well defined and its effective region which contains all optimal solutions

can be bounded.

Proposition 3.1. Assume that G is connected. Then the optimal solution of

(3.5) is attained. Moreover, the effective feasible region that contains all optimal

solutions is bounded.

Proof. Consider the following embedding points xi = ai, for i = 1, . . . ,m and

xi = i(R + c)e, for i = m + 1, . . . , n, where e ∈ IRr is the vector of all ones and

c := max{‖ai‖}. Let D be the corresponding EDM generated by those points in

IRr. It is easy to verify that all constraints in (3.5) are satisfied. For example, for

Chapter 3 EDM-based optimization approach for sensor network localization 93

(i, j) ∈ N x, we have

‖xi − xj‖ = (R + c)
√
r ≥ R,

and for (i, k) ∈ N a, we have by triangle inequality

‖xi − xk‖ ≥ ‖xi‖ − ‖xk‖ ≥ i
√
r(R + c)− c ≥ R.

The rank of (−JDJ) obviously is r. Hence, the feasible region is nonempty.

Let fopt be the optimal objective value of (3.5). Then

fopt ≤ fbound :=
∑

(i,j)∈Nx∪Na

(
Dij − d̂2

ij

)2

,

where D is any (fixed) feasible point. Let

Ω :=
{
D ∈ Sn | D ≥ 0, Dij ≤ d̂2

ij + c,∀(i, j) ∈ Nx ∪Na
}
,

where c ≥
√
fbound is a sufficiently large number so that it intersects the feasible

region of (3.5). It is easy to see that any optimal solution (if exists) would have

to be in Ω. Otherwise the optimal objective will be larger than fbound. Hence,

the effective region F ∩Ω contains all the optimal solutions, where F denotes the

feasible region of (3.5). Now consider any matrix D in this effective region. For

any pair of nodes (i, j), the distance dij is bounded by the shortest path in the

graph G since G is connected. This means that D is bounded by the elements

in Ω. Hence, the effective region is bounded and closed. The optimal solution of

(3.5) is attained. �

Let us temporarily ignore the rank constraint (3.4d). Then problem (3.5) becomes

convex. We put it in a more general and compact form. Define symmetric matrices

94 Chapter 3 EDM-based optimization approach for sensor network localization

D̂,H ∈ Sn respectively by

D̂ij :=

 d̂2
ij, if (i, j) ∈ Nx ∪ Na,

0, otherwise,

Hij :=

 1, if (i, j) ∈ Nx ∪ Na,

0, otherwise,
(3.6)

and two matrices L,U ∈ Sn being lower bound and upper bound for D respectively

as

Lij :=


‖ai − aj‖2, if i, j ∈ {1, 2, . . . ,m}

R2, if (i, j) ∈ N x ∪ N a,

0, otherwise,

Uij :=


‖ai − aj‖2, if i, j ∈ {1, 2, . . . ,m}

R2, if (i, j) ∈ Nx ∪ Na,

M2, otherwise,

(3.7)

where M is a large number (e.g., M = nmax{d̂ij, R, ‖ai‖, c}, where c is the con-

stant used in the proof of Proposition 3.1). Let “◦” denote the Hadamard (compo-

nentwise) product of two matrices of same size, the convex relaxation of problem

(3.5) takes the form:

minY ∈Sn
1
2
‖H ◦ (Y − D̂)‖2

s.t. L ≤ Y ≤ U,

Y ∈ Snh , − Y ∈ Kn+.

(3.8)

Compared to problem (1.21), (3.8) has extra lower and upper bounds constraints

and the number of them is of the order O(n2). These inequality constraint will

bring the semismooth Newton’s method used in the last chapter into difficulty

Chapter 3 EDM-based optimization approach for sensor network localization 95

since the Lagrangian dual problem of (3.8) is no longer unconstrained.

3.2.3 Regularization to dealing with the rank constraint

Another potential issue for the convex model (3.8) is from dropping the rank con-

straint. In order for those distances in Y to be “closer” to the distances in D̂, the

points would have to be embedded in a higher dimensional space. The found posi-

tions can then be seen as the projections from this higher dimensional embedding,

resulting in a network in which the sensors always tend to be crowded around the

center. Weinberger and Saul (2006) proposed a strategy for the embedding points

xi to be pushed away from each other. In fact, the term
∑

i,j ‖xi − xj‖2 (called

the variance in Weinberger and Saul (2006)) is maximized. Biswas et al. also used

the similar idea in Biswas et al. (2006) to add a regularization term in their SDP

model.

Let us explain this term a bit more. In the SDP models in both Weinberger and

Saul (2006); Biswas et al. (2006), the positive semidefinite (Gram) matrix G ∈ Sn+

takes the form, as defined in (1.11):

G = XTX, with X := [x1, . . . ,xn],

under the condition that those points are centralized

x1 + . . .+ xn = 0. (3.9)

Then it is easy to verify that

∑
i,j

‖xi − xj‖2 = 2n
n∑
i=1

‖xi‖2 = 2n〈I,G〉 = 2nTr(G).

96 Chapter 3 EDM-based optimization approach for sensor network localization

Using the above fact, the minimization SDP models in Weinberger and Saul (2006);

Biswas et al. (2006) add the term −Tr(Y) to their objective. In other words, they

try to maximize the trace. In convex optimization, it is widely known (Candès and

Recht, 2009) that maximizing trace intends to maximize the rank since trace can

be used in the nuclear norm minimization in positive semidefinite programming,

which is a heuristic introduced by Fazel (2002) to minimize the rank. Thus it is a

contradiction to the original purpose of minimizing the rank.

Now coming back to the distances, we know from (1.12) that the embedding points

in X satisfy

2Tr(G) = 2Tr(XTX) = Tr(−JY J) = −〈J, Y 〉, (3.10)

where we used the fact J2 = J . We also note that it follows from (1.12) that the

centralization condition (3.9) is met for those points in X.

Based on the reasoning above, maximizing the variance (trace) can only be inter-

preted as pushing the embedding points far from each other and cannot be used

to minimize rank. We introduce below a new technique to reduce the rank. Our

intention here, under the condition that the variance Tr(−JY J) is made as large

as possible, is to decrease the rank of (−JY J). To describe the technique, we need

the following Fan’s inequality.

Theorem 3.2. (Borwein and Lewis (2000, Thm. 1.2.1)) Any matrices X and Y

in Sn satisfy the inequality

Tr(XY) ≤ λ(X)Tλ(Y). (3.11)

Equality holds if and only if X and Y have a simultaneous ordered spectral decom-

position: there is a matrix U ∈ On with

X = UT (Diagλ(X))U and Y = UT (Diagλ(Y))U. (3.12)

Chapter 3 EDM-based optimization approach for sensor network localization 97

It follows from Theorem 3.2 that

〈V, −JY J〉 ≤
r∑
i=1

µi(V)λi(−JY J),

where µi(V) ≥ . . . ≥ µr(V) and λ1(−JY J) ≥ . . . ≥ λn(−JY J) are respectively

the eigenvalues of V and (−JY J) in nonincreasing order. And the equality holds

if and only if both V and (−JY J) achieve simultaneous ordered spectral decompo-

sition. If we maximize the term 〈V, −JY J〉 under the constraints in (3.5) (recall

its feasible region is bounded from Proposition 3.1), then the matrix (−JY J) is

likely to be a low-rank matrix.

Let us consider the possible choice of V . Suppose we have an initial solution Ỹ ,

which, for example, may be obtained by the shortest path distances in G, as used

in MDS-MAP. Let

V = P1P
T
1 with P1 = [p1, . . . ,pr],

where pi is the orthogonal eigenvector of (−JỸ J) corresponding to its ith largest

positive eigenvalue. Since e is an eigenvector of (−JỸ J) due to Je = 0, we have

JV J =
(
I − 1

n
eeT
)
P1P

T
1

(
I − 1

n
ee
)

= P1P
T
1 = V.

Hence,

〈V, −JY J〉 = 〈JV J, −Y 〉 = 〈V, −Y 〉. (3.13)

By subtracting the regularization term (3.10) (to achieve maximal variance) and

the term (3.13) (to reduce the rank) from the objective function of (3.8), we have

98 Chapter 3 EDM-based optimization approach for sensor network localization

our final convex optimization model:

minY ∈Sn
1
2
‖H ◦ (Y − D̂)‖2 + ν 〈J, Y 〉+ 〈V, Y 〉

s.t. L ≤ Y ≤ U,

Y ∈ Snh , − Y ∈ Kn+,

(3.14)

where ν ≥ 1 is the parameter that balances the trade-off between preserving the

local distances, maximizing the variance, and reducing the rank. Our numerical

experiment will show that the solution compared to (3.8) always enjoys the low

rank property.

3.2.4 Global coordinates recovery and EDM-SNL scheme

After obtaining a solution Y of (3.14), cMDS in Algorithm 1 is then applied to

obtain the coordinates of the sensors. If there are anchors (m > 0), then the

matching procedure introduced in Section 1.1.3 must be carried out to place the

found coordinates to the coordinate system used by the anchors.

Integrated all the procedures, we summarize our EDM-based localization scheme

as algorithm EDM-SNL below.

Algorithm 8 EDM-SNL

1: Distance Reconstruction: Set D̂ and H by (3.6), L and U by (3.7) as input
data, solve (3.14) to get estimated full distance matrix Y .

2: cMDS: Compute the sensor positions X by cMDS Algorithm 1
3: if Anchors exist then
4: Solve (1.14) to get rotation matrix Q and compute sensor positions by (1.15).

Return X2 as recovered sensor coordinates.
5: end if

In the next section, we will show that problem (3.14) in the first step of the above

algorithm can be efficiently solved by an alternating minimization method.

Chapter 3 EDM-based optimization approach for sensor network localization 99

3.3 A convergent 3-Block ADMM algorithm

The key difference of the problem (3.14) from (1.21) is that (3.14) has a large

number of lower and upper bounds constraints. Coupled with the conic constraints

Y ∈ (−Kn+)∩Snh , those key differences make the existing methods (Qi, 2013; Qi and

Yuan, 2014) for (1.21) not applicable anymore since the dual problem is no longer

unconstrained and we may lose the property of constraint nondegeneracy. Here, we

choose to apply a recent ADMM (alternating direction method of multipliers) of

Sun et al. in Algorithm 6 for general convex quadratic programming. To describe

this method, we need to reformulate (3.14).

3.3.1 Reformulation and Lagrangian dual problem

Let N := Nx ∪Na. Note that Nx ∩Na = ∅, so we have |N | = |Nx|+ |Na|, where

|N | is the cardinality of set N . To simplify our notation, we denote |N | = N and

N = {(i1, j1), (i2, j2), . . . , (iN , jN)} .

Define the linear operator A1 : Sn → IRN by

A1(X) := (〈A1, X〉 , 〈A2, X〉 , . . . , 〈AN , X〉)T , (3.15)

where Ak is the symmetric selection matrix defined as

Ak :=
1

2
(eike

T
jk

+ ejke
T
ik

), (ik, jk) ∈ N ,

and ei is the ith column vector of the identity matrix. Apparently, we have

〈Ak, Y 〉 = Yikjk (hence the name of the selection matrix). Furthermore, let

100 Chapter 3 EDM-based optimization approach for sensor network localization

b1 = A1(D̂). We then have

‖H ◦ (Y − D̂)‖2 = ‖A1(Y)− b1‖2.

We further define linear operator A2 : Sn → IRn, the matrix C ∈ Sn, and closed

convex set C respectively as

A2(X) := diag(X), C := νJ + V,

and

C := {W ∈ Sn : L ≤ W ≤ U} ,

and the problem (3.14) can be equivalently written as

minY ∈Sn
1
2
‖A1(Y)− b1‖2 + 〈C, Y 〉

s.t. A2(Y) = 0,

Y ∈ C, − Y ∈ Kn+.

(3.16)

To derive the Lagrangian dual of (3.16), we introduce a new variable t := A1(Y)−

b1 ∈ IRN and a slack variable W ∈ Sn, then (3.16) is equivalent to

min
Y ∈Sn,t∈IRN ,W∈Sn

1
2
‖t‖2 + 〈C, Y 〉+ δC(W) + δKn+(−Y)

s.t. A(Y)−Bt = b,

Y = W,

(3.17)

where A : Sn → IRN × IRn is the linear mapping defined by

A(Y) := (A1(Y);A2(Y)) , b := (b1; 0n) ∈ IRN+n,

and B := [IN ; 0n×N] ∈ IR(N+n)×N , IN is the identity matrix with order N , 0n×N

is the matrix of all zeroes with order n × N . For any given set Ω, δΩ(·) is the

Chapter 3 EDM-based optimization approach for sensor network localization 101

indicator function over Ω such that δΩ(u) = 0 if u ∈ Ω and ∞ otherwise. We

note here that directly solving problem (3.17) by ADMM is applicable since it

fits the general convex quadratic conic programming (1.40), however, it has been

discovered to be much less efficient than working on its dual problem.

Let the Lagrangian function of the above problem be defined by

L(Y, t,W ; y, Z) := 1
2
‖t‖2 + 〈C, Y 〉+ δC(W) + δKn+(−Y)

−〈A(Y)−Bt− b,y〉 − 〈Y −W,Z〉 ,

where y ∈ IRN+n and Z ∈ Sn are the Lagrangian multipliers corresponding to the

two constraints. The Lagrangian dual problem is

max
y,Z

{
min
Y,t,W

L(Y, t,W ; y, Z)

}
. (3.18)

The inner optimization problem can be solved with respect to t, Y , W separately.

Let

t∗ = arg min
t
L(Y, t,W ; y, Z),

then

t∗ = arg min
t

1

2
‖t‖2 + 〈BTy, t〉

= arg min
t

1

2
‖t +BTy‖2 − 1

2
‖BTy‖2

= −BTy. (3.19)

To minimize L(Y, t,W ; y, Z) regrading Y , note that

min
Y
L(Y, t,W ; y, Z)

102 Chapter 3 EDM-based optimization approach for sensor network localization

is equivalent to

min
Y
δKn+(−Y) + 〈C −A∗y − Z, Y 〉

which implies that

A∗y + Z − C ∈ (Kn+)∗, (3.20)

and the objective function is 0.

To minimize L(Y, t,W ; y, Z) regarding W is equivalent to

min
W

δC(W) + 〈W,Z〉. (3.21)

Using (3.19), (3.20) and (3.21), the Lagrangian dual problem can be derived as

maxy,Z,S −1
2
‖BTy‖2 + 〈b,y〉 − δ∗C(−Z)

s.t. Z +A∗y − S − C = 0,

S ∈ (Kn+)∗,

(3.22)

where (Kn+)∗ is the dual cone of Kn+ and δ∗C(·) is the conjugate function of δC(·)

given by

δ∗C(−Z) = sup
W∈C
〈−Z,W 〉 = − inf

W∈C
〈Z,W 〉 . (3.23)

We note that the insider optimization problem in (3.18) also gives the relationship

between t and y: t = −BTy.

3.3.2 Implementation of 3-block ADMM

Problem (3.22) is well structured with three separable block variables. The SCB-

SPADMM Algorithm 6 in Li et al. (2014) can be directly applied to get the

optimal solution. The algorithm actually alternatively minimizes the associated

Augmented Lagrangian defined by (note: here we cast (3.22) as a minimization

Chapter 3 EDM-based optimization approach for sensor network localization 103

problem)

Lσ(y, Z, S;Y) := 1
2
‖BTy‖2 − 〈b,y〉+ δ∗C(−Z)

+ 〈Z +A∗y − S − C, Y 〉

+σ
2
‖Z +A∗y − S − C‖2,

where σ > 0 is a given parameter and Y ∈ Sn is the Lagrangian multiplier

corresponding to the equality constraint in (3.22). The proposed ADMM algorithm

is described below.

Let σ > 0 and τ ∈ (0,∞), set (y0, Z0, S0, Y 0) ∈ IRN+n × Sn × Sn × Sn as initial

point. For iteration k = 1, 2, . . . perform the kth iteration as follows



ȳk = arg miny∈IRN+n Lσ(y, Zk, Sk;Y k),

Zk+1 = arg minZ∈Sn Lσ(ȳk, Z, Sk;Y k),

yk+1 = arg miny∈IRN+n Lσ(y, Zk+1, Sk;Y k),

Sk+1 = arg minS∈(Kn+)∗ Lσ(yk+1, Zk+1, S;Y k),

Y k+1 = Y k + τσ
(
Zk+1 +A∗yk+1 − Sk+1 − C

)
,

tk+1 = −BTyk+1.

(3.24)

The convergence analysis of the algorithm above as well as the necessity of having

the first update of ȳ have been already discussed in Section 1.3.2.

For any given set Ω ∈ Sn, we let ΠΩ(A) denote the orthogonal projection of

A ∈ Sn onto Ω. The subproblems in (3.24) all have closed-form solutions involving

orthogonal projections.

To update ȳk, compute the gradient of Lagrangian function of y while other vari-

ables are fixed, we have

∇yLσ(y, Zk, Sk;Y k) = (BBT + σAA∗)y − (b− σA(Zk + σ−1Y k − Sk − C)).

104 Chapter 3 EDM-based optimization approach for sensor network localization

By taking ∇yLσ(y, Zk, Sk;Y k) = 0 we have

ȳk =
(
BBT + σAA∗

)−1 (
b− σA(Zk + σ−1Y k − Sk − C)

)
.

To update Zk+1, we need to solve the following optimization problem:

min
Z∈Sn

δ∗C(−Z) +
σ

2
‖Z +A∗ȳk − Sk + σ−1Y k − C‖. (3.25)

We need the following useful results from Moreau-Yosida regularization to derive

the solution of the above optimization problem.

Proposition 3.3. (Moreau, 1965; Yosida, 1995). Let K be a closed convex set

and ϕ(x̄) := min δ∗K(−x) + σ
2
‖x− x̄‖2, the following results hold:

(i) x+ = arg min δ∗K(−x) + σ
2
‖x− x̄‖2 = x̄+ 1

σ
ΠK(−σx̄).

(ii) ∇ϕ(x̄) = σ(x̄− x+) = −ΠK(−σx̄).

(iii) ϕ(x̄) = 〈−x+,ΠK(−σx̄)〉+ 1
2σ
‖ΠK(−σx̄)‖2 = −〈x̄,ΠK(−σx̄)〉− 1

2σ
‖ΠK(−σx̄)‖2.

Note that the objective function in problem (3.25) has exactly the same structure

with the objective function of ϕ(x̄) in Proposition 3.3. By using Proposition 3.3

(i), we can immediately have

Zk+1 = Sk −A∗ȳk − σ−1Y k + C + σ−1ΠC(−σ(Sk −A∗ȳk − σ−1Y k + C)).

Chapter 3 EDM-based optimization approach for sensor network localization 105

The update of yk+1 is similar to ȳk and the update of SK+1 is directly from the

definition of projection function. We summarize the update process as follows:

ȳk =
(
BBT + σAA∗

)−1
(
b− σA(Zk + Ŵ k)

)
Zk+1 = Ẑk + σ−1ΠC(−σẐk)

yk+1 =
(
BBT + σAA∗

)−1
(
b− σA(Zk+1 + Ŵ k)

)
Sk+1 = Π(Kn+)∗

(
Zk+1 +A∗yk+1 − C + σ−1Y k

)
where Ŵ k := σ−1Y k − Sk − C, and Ẑk := Sk − A∗ȳk − σ−1Y k + C. Because

C is a box-type constraints (lower and upper bounds), the projection ΠC(A) is

easy to compute. For the projection Π(Kn+)∗(A), we use the Moreau decomposition

formula:

Π(Kn+)∗(A) = A+ ΠKn+(−A),

and the Gaffke-Mather formula (1.5). Hence, Π(Kn+)∗(A) = ΠSn+(JAJ), which

can be calculated through the eigen-decomposition of JAJ . We note that the

matrix (BBT + σAA∗) is a positive definite diagonal matrix in SN+n. The com-

putation complexity of JAJ is in the order O(n2) because of the structure in J .

Hence, the major computational complexity in (3.24) is dominated by the eigen-

decomposition of JAJ in computing Sk+1.

We directly adopt the measurement in Li et al. (2014) on the accuracy of an ap-

proximate optimal solution for (3.16) and its dual (3.22) by using the following

relative residual obtained from their general optimality conditions (KKT condi-

tions):

ηe(t,y, Y, Z, S) = max {ηP , ηY , ηZ , ηC1 , ηC2} , (3.26)

106 Chapter 3 EDM-based optimization approach for sensor network localization

where

ηP =
‖A(Y)−Bt− b‖

1 + ‖b‖
, ηD =

‖Z +A∗y − S − C‖
1 + ‖C‖

,

ηZ =
‖Y − ΠC(Y − Z)‖

1 + ‖Y ‖+ ‖Z‖
, ηC1 =

| 〈S, Y 〉 |
1 + ‖S‖+ ‖Y ‖

,

ηC2 =
‖Y + ΠKn+(−Y)‖

1 + ‖Y ‖
.

We note that ηP measures the violation of the first equation constraint in the

primal problem (3.17); ηD for the violation of the equation constraint in the dual

problem (3.22); ηZ for the violation of Y belonging to C; ηC1 measures the comple-

mentarity condition between S and D; and finally ηC2 measures the violation of

−Y belonging to Kn+. We terminate the algorithm if the maximum of the violations

is below certain level, i.e.,

ηe(t
k,yk, Y k, Zk, Sk) ≤ tol, (3.27)

where tol is a given tolerance.

3.4 Experimental results by EDM-SNL

In this section, we conducted numerical experiments using MATLAB (R2015a)

on a desktop of 4GB memory and Intel(R) Core(TM) i5-2500 3.3GHz CPU to

evaluate the performance of the proposed EDM-SNL, whose parameters are set as

ν = 10, tol = 10−3,

and the initial points y0, Z0, S0, Y 0 are all zeros in the corresponding space. Below

we first briefly discuss the numerical methods that we plan to compare with and

why we choose them. We then generate three classes of test problems having

Chapter 3 EDM-based optimization approach for sensor network localization 107

regular and irregular topologies. We finally present the comparison results, which

show that EDM-SNL is overall more robust and faster on the tested problems.

3.4.1 Benchmark methods

We select two representative state-of-the-art methods: ARAP in Zhang et al.

(2010) and SFSDP in Kim et al. (2012) as benchmark methods. ARAP is a

MDS-based localization scheme that “stitches” together local structures of sensor

nodes. Shown by the authors, ARAP outperforms other MDS-based methods such

as SMACOF and MDS-MAP(P, R). SFSDP is a sparse version of the full SDP

localization scheme proposed by Biswas and Ye (2004) and it achieves results with

similar accuracy but using much less computation time. There are other methods

that also produce comparable results, but their codes are not publicly available.

For ARAP, we use its default parameters. However, ARAP is mainly for the

anchor-free localization problem (i.e., m = 0 in our case). But it can be used

to deal with the case m 6= 0. One would have to do an extra step to place the

generated localizations by ARAP to the coordinate system used by the anchors.

The step is very similar to the one described in Section 3.2.4. For SFSDP, we keep

all default parameters except the SDP solver option and the objective function

option. We set pars.SDPsolver = ‘sedumi’ because by our observation, SeDuMi

always gives us a solution with better accuracy than SDPA (a sover used by SFSDP

for SDPs). We set pars.objSW = 3 to add the regularization term (the trace term)

to the SDP objective function. It is reported in Biswas et al. (2006) that the

use of regularization in SDP provides notable improvement for the networks with

random anchor distribution. We believe in these settings, SFSDP would have the

best performance in terms of localization accuracy.

Another important feature of SFSDP is its refinement step, which was previously

used by Biswas et al. (2006). The refinement is a heuristic step that uses the

108 Chapter 3 EDM-based optimization approach for sensor network localization

steepest gradient method to improve the quality of the final localization. The

general view on the refinement step is that it more often than not improves the

quality, but not always. For more detail on this, see Biswas et al. (2006). We will

report both the results with and without the refinement step for all algorithms.

However, it will be seen in Section 3.4.4 that when the network is in a square

region, ARAP actually benefits little from the refinement step.

3.4.2 Test examples

We follow the standard framework in generating the noisy distances:

d̂ij = dij × |1 + nf × randn|, ∀ (i, j) ∈ Nx ∪Na,

where dij is the true Euclidean distance between nodes xi and xj which will be

generated soon, 0 ≤ nf ≤ 1 is the noise factor, and randn is the standard normal

random variable. We generate xi in the following three examples, the first having

square region layout and the rest two having irregular topologies.

Example 3.1. (Square Network) In a square region of [0, 100]2, we randomly gen-

erate n points xi following the uniform distribution. Two types of anchor positions

are considered: placed at corners or randomly.

Example 3.2. (Corridor Network) We generate n points xi following a uniform

distribution in a region that looks like a corridor, as shown in Figure 3.2. The

corridors are formed by creating two rectangular gaps inside the square [0, 100]2.

Example 3.3. (EDM Network) We randomly generated n points xi in a region

whose shape is similar to the letter “E”, “D” and “M”. The ground truth network

is depicted in Figure 3.3.

Chapter 3 EDM-based optimization approach for sensor network localization 109

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

Figure 3.2: Ground truth Corridornetwork with n = 494 nodes in total,
among which are m = 24 anchor nodes randomly distributed (colored in
black).

0 20 40 60 80 100 120

0

10

20

30

40

50

Figure 3.3: Ground truth EDM network with n = 511 nodes in total,
among which are m = 25 anchor nodes randomly distributed (colored in
black).

To measure the accuracy of the estimated positions, we simply adopt the commonly

used root mean square distance (RMSD)

RMSD :=
1√

n−m

(
n∑

i=m+1

‖x̂i − xi‖2

) 1
2

, (3.28)

where x̂i is the estimated position and xi is the ground-truth sensor position.

3.4.3 Performance comparison on quality of localizations

Before we report more detailed numerical comparison, we would like to emphasize

one important fact that the flip ambiguity does not always occur. However, when

110 Chapter 3 EDM-based optimization approach for sensor network localization

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

(a)

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

(b)

Figure 3.4: Network generated in Example 3.1 with n = 200 and m = 10
anchors randomly distributed. Noise factor nf = 0.1. Communication
radius R = 20. (a) EDM-SNL: Localization Error = 3.93%R. (b) SFSDP:
Localization Error = 52.62%R. (Blue diamond: anchor position. Green
circle: original sensor position. Red star: estimate sensor position. Blue
line: error offset between original and estimate sensor position.)

it occurs, it would severely degrade the localization of the whole network. A

simulation result from randomly generated network is depicted in Figure 3.4 to

illustrate the importance of flip ambiguity mitigation. As shown in Figure 3.4(b),

the lower left and upper right parts of the sensors are completely folded over across

the dotted line towards the center of the region, and causes a large localization

error by SFSDP, while EDM-SNL recovers the sensor positions correctly in Figure

3.4(a).

Now we report our observation on the general performance of all methods using

the three test problems. The results are the average over 50 randomly generated

instances for each problem. Figure 3.5 depicts the variation of localization error

(i.e. RMSD normalized by communication range R) from each method for Exam-

ple 3.1 (with n = 200 and various anchor positions) when the noise in the distance

measurements increases.

In Figure 3.5(a), four anchors are placed at four corners of the square region,

i.e., [0, 0], [1, 100], [100, 0] and [100, 100]. It can be observed that when the noise

Chapter 3 EDM-based optimization approach for sensor network localization 111

factor is less than 0.3, all three methods performed similarly well. However, as

the noise keeps increasing, EDM-SNL outperforms both ARAP and SFSDP in

terms of localization accuracy, and controls the localization error around 50%R

even when the noise factor is as large as 0.9. When the anchor distribution type is

changed to random, as shown in Figure 3.5(b), SFSDP got a large impact on its

localization accuracy, while EDM-SNL and ARAP are steadily getting worse when

the noise level gets bigger. Overall, EDM-SNL performed best. As expected, with

more anchors being used, all three methods obtained better quality of localization

and this can be observed from Figure 3.5(c) and Figure 3.5(d).

Now we test all the methods on Example 3.2 and Example 3.3, both of which have

irregular topology. It is always important for a localization system to be resistance

to irregular wireless sensor networks, because many applications require sensor

network to be restricted in a certain region. The main challenge of this problem

comes from its multiscale structure and nonconvex region. Such characteristics of

irregular layout would cause large localization error for ARAP in its patching and

stitching procedures when the distance measurements contain large noise. For

example, for the corridor network in Example 3.2 (it contains total 494 nodes

randomly (uniformly) distributed in a nonconvex region and m = 24 of them are

anchors, and the communication radius of sensor/anchor nodes is R = 12), the

localization error by three methods under different noise factors are compared in

Figure 3.6. It can be observed that when the noise factor is less than 0.3, EDM-

SNL and ARAP both work well and ARAP is slightly better. However, when the

noise factor goes beyond 0.3, the performance of ARAP degrades dramatically,

whereas EDM-SNL is still stable and kept the localization error under 30%R.

We further tested Example 3.3 with n = 511 and m = 25. The communication

radius of sensor/anchor nodes is R = 10. Localization error comparison is shown

in Figure 3.7. Like the results for Example 3.2, when the noise factor is less than

20%, all three methods perform well and ARAP is slightly better. When the

112 Chapter 3 EDM-based optimization approach for sensor network localization

Noise Factor nf
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lo
ca

liz
at

io
n

E
rr

or
(%

R
)

0

10

20

30

40

50

60

70

80

EDM-SNL
ARAP
SFSDP

(a)

Noise Factor nf
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lo
ca

liz
at

io
n

E
rr

or
(%

R
)

0

10

20

30

40

50

60

70

80

EDM-SNL
ARAP
SFSDP

(b)

Noise Factor nf
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lo
ca

liz
at

io
n

E
rr

or
(%

R
)

0

10

20

30

40

50

60

70

80

EDM-SNL
ARAP
SFSDP

(c)

Noise Factor nf
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lo
ca

liz
at

io
n

E
rr

or
(%

R
)

0

10

20

30

40

50

60

70

80

EDM-SNL
ARAP
SFSDP

(d)

Figure 3.5: Variation of localization error with varying noise factor and
anchor distribution type. Networks of totally 200 nodes with communi-
cation radius R = 20. (a) 4 anchor nodes distributed at corners. (b) 10
anchor nodes randomly (uniformly) distributed. (c) 20 anchor nodes ran-
domly (uniformly) distributed. (d) 40 anchor nodes randomly (uniformly)
distributed.

noise is greater than 0.5, our method still controls the error under 20%R, while

ARAP and SDP recovered sensor positions with relatively large error. Qualitative

results are shown in Figure 3.8. When the noise factor goes to as large as 0.6,

EDM-SNL is still capable of generating sensor nodes that form the shape of the

EDM network, especially for the rightmost letter (‘M’), leading to the superior

localization results. One of the reasons that make EDM-SNL robust to large noise

measurement is that the upper bound constraint in (3.8) makes sure the distance

between two sensor nodes that have communication with each other is less than

the communication radius R, no matter how large the input distance is detected.

Chapter 3 EDM-based optimization approach for sensor network localization 113

Noise Factor nf
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lo
ca

liz
at

io
n

E
rr

or
(%

R
)

0

10

20

30

40

50

60

70

80

EDM-SNL
ARAP
SFSDP

Figure 3.6: Variation of localization error with varying noise factor. Net-
works of totally 494 nodes, among which are 24 anchor nodes distributed
randomly. Communication radius R = 12.

Noise Factor nf
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lo
ca

liz
at

io
n

E
rr

or
(%

R
)

0

10

20

30

40

50

60

70

80

EDM-SNL
ARAP
SFSDP

Figure 3.7: Variation of localization error with varying noise factor. Net-
works of totally 511 nodes, among which are 25 anchor nodes distributed
randomly. Communication radius R = 10.

3.4.4 Performance comparison on computation time

We use Example 3.1 and Example 3.2 to test the computation efficiency of our

EDM-based localization approach for networks with regular and irregular topol-

ogy respectively, we run simulations on networks with various number of sensor

114 Chapter 3 EDM-based optimization approach for sensor network localization

nf EDM-SNL ARAP SFSDP

0 0 20 40 60 80 100 120

0

10

20

30

40

50

0 20 40 60 80 100 120

0

10

20

30

40

50

0 20 40 60 80 100 120

0

10

20

30

40

50

0.2 0 20 40 60 80 100 120

0

10

20

30

40

50

0 20 40 60 80 100 120

0

10

20

30

40

50

0 20 40 60 80 100 120

0

10

20

30

40

50

0.4 0 20 40 60 80 100 120

0

10

20

30

40

50

0 20 40 60 80 100 120

0

10

20

30

40

50

0 20 40 60 80 100 120

0

10

20

30

40

50

0.6 0 20 40 60 80 100 120

0

10

20

30

40

50

0 20 40 60 80 100 120

0

10

20

30

40

50

0 20 40 60 80 100 120

0

10

20

30

40

50

Figure 3.8: Qualitative localization results of EDM network, comparing
EDM-SNL, ARAP, SFSDP with different noise level

and anchor nodes randomly (uniformly) distributed. The total number of (sen-

sor/anchor) nodes n varies as n = 200, 500 and 1000, and the number of anchor

nodes m = 5%, 10% and 20% of n. The noise factor nf is fixed at nf = 0.4

and the communication radius R varies in order to control the average degree

of nodes. For each specific network, we randomly generated 50 different inputs

(sparse and noisy distance matrices) and the average results are reported in Table

3.1 for square networks and Table 3.2 for corridor networks, which contain the ex-

ecution time and the corresponding localization error for all three methods before

and after refinement step.

From both Table 3.1 and Table 3.2, it can be observed that the refinement step

usually reduces the localization error by some extent, except for the EDM-SNL

when n = 500 and m = 5%n, 10%n in Table 3.1, and the additional computation

time is only around 1 second. ARAP benefits the least from refinement among

Chapter 3 EDM-based optimization approach for sensor network localization 115

Number of Sensors
200 300 400 500 600 700 800 900 1000

T
ot

al
 T

im
e

0

50

100

150

200

250

300

350

400

450

500
(a)

EDM-SNL
ARAP
SFSDP

Number of Sensors
200 300 400 500 600 700 800 900 1000

T
ot

al
 T

im
e

0

50

100

150

200

250

300

350

400

450

500
(b)

EDM-SNL
ARAP
SFSDP

Number of Sensors
200 300 400 500 600 700 800 900 1000

T
ot

al
 T

im
e

0

50

100

150

200

250

300

350

400

450

500
(c)

EDM-SNL
ARAP
SFSDP

Figure 3.9: Computation time comparison in Square Network. (a) The
number of anchors is 5% of the number of sensors. (b) The number of
anchors is 10% of the number of sensors. (c) The number of anchors is
20% of the number of sensors.

three methods since it actually uses a stress majorization step, which is similar to

the refinement we used here, in localizing each small patch to improve the local

embedding in its whole process.

Number of Sensors
200 300 400 500 600 700 800 900 1000

T
ot

al
 T

im
e

0

50

100

150

200

250

300

350

400

450

500
(a)

EDM-SNL
ARAP
SFSDP

Number of Sensors
200 300 400 500 600 700 800 900 1000

T
ot

al
 T

im
e

0

50

100

150

200

250

300

350

400

450

500
(b)

EDM-SNL
ARAP
SFSDP

Number of Sensors
200 300 400 500 600 700 800 900 1000

T
ot

al
 T

im
e

0

50

100

150

200

250

300

350

400

450

500
(c)

EDM-SNL
ARAP
SFSDP

Figure 3.10: Computation time comparison in Corridor Networks. (a)
The number of anchors is 5% of the number of sensors. (b) The number
of anchors is 10% of the number of sensors. (c) The number of anchors is
20% of the number of sensors.

116 Chapter 3 EDM-based optimization approach for sensor network localization

The computation time of both the EDM-SNL and SFSDP will benefit from the

increasing number of anchor nodes since more prior knowledge is used in the

localization scheme. It can be observed from Table 3.1 and Table 3.2 that our

approach is the fastest among three methods with comparable values of RMSD

for all cases tested. Figure 3.9 and Figure 3.10 depict the computation time

comparison clearly. For each scenario our method (showed in red line) outperforms

the other two methods on time consuming. For small networks, e.g. n = 200, our

approach only took around 7 seconds to achieve a localization result with the

lowest error among three methods. When the number of nodes goes to thousand,

e.g. n = 1000 in Table 3.2, EDM-SNL used approximate 100 seconds less time

than ARAP for the case m = 20%n, and the difference of localization error from

two schemes is only as small as 0.07.

Chapter 3 EDM-based optimization approach for sensor network localization 117

T
ab

le
3.

1:
E

x
ec

u
ti

on
T

im
e

R
es

u
lt

s
of

S
q
u
ar

e
N

et
w

or
k

T
es

t
P

ro
b
le

m
s

L
o
ca

li
za

ti
on

n
(R

)
m

S
ch

em
e

R
M

S
D

R
M

S
D

.R
e

T
im

e
T

im
e.

R
e

T
ot

al
T

im
e

20
0(

20
)

5%
n

E
D

M
-S

N
L

4.
18

E
+

00
3.

74
E

+
00

6.
34

0.
10

6.
44

A
R

A
P

4.
98

E
+

00
3.

90
E

+
00

12
.9

0
0.

12
13

.0
2

S
F

S
D

P
1.

47
E

+
01

7.
11

E
+

00
38

.7
1

0.
14

38
.8

5

10
%
n

E
D

M
-S

N
L

3.
76

E
+

00
3.

44
E

+
00

4.
97

0.
08

5.
05

A
R

A
P

4.
96

E
+

00
3.

57
E

+
00

12
.9

1
0.

07
12

.9
7

S
F

S
D

P
1.

30
E

+
01

5.
81

E
+

00
34

.2
8

0.
08

34
.3

6

20
%
n

E
D

M
-S

N
L

3.
15

E
+

00
3.

12
E

+
00

2.
91

0.
04

2.
94

A
R

A
P

4.
79

E
+

00
3.

35
E

+
00

12
.9

7
0.

06
13

.0
2

S
F

S
D

P
1.

12
E

+
01

4.
01

E
+

00
24

.4
0

0.
04

24
.4

4

50
0(

15
)

5%
n

E
D

M
-S

N
L

1.
89

E
+

00
1.

98
E

+
00

50
.2

9
0.

20
50

.4
9

A
R

A
P

2.
16

E
+

00
1.

99
E

+
00

64
.0

9
0.

15
64

.2
4

S
F

S
D

P
1.

19
E

+
01

3.
04

E
+

00
12

7.
47

0.
43

12
7.

91

10
%
n

E
D

M
-S

N
L

1.
92

E
+

00
1.

89
E

+
00

32
.2

8
0.

12
32

.4
0

A
R

A
P

2.
14

E
+

00
1.

90
E

+
00

64
.7

6
0.

13
64

.8
9

S
F

S
D

P
9.

81
E

+
00

3.
09

E
+

00
12

5.
10

0.
22

12
5.

32

20
%
n

E
D

M
-S

N
L

1.
48

E
+

00
1.

81
E

+
00

29
.6

8
0.

07
29

.7
5

A
R

A
P

2.
13

E
+

00
1.

81
E

+
00

64
.6

0
0.

09
64

.6
8

S
F

S
D

P
8.

85
E

+
00

2.
03

E
+

00
88

.0
8

0.
14

88
.2

2

10
00

(1
2)

5%
n

E
D

M
-S

N
L

3.
24

E
+

00
2.

15
E

+
00

21
6.

08
0.

56
21

6.
64

A
R

A
P

1.
48

E
+

00
1.

34
E

+
00

22
3.

56
0.

26
22

3.
82

S
F

S
D

P
9.

61
E

+
00

2.
44

E
+

00
45

7.
10

0.
88

45
7.

98

10
%
n

E
D

M
-S

N
L

3.
03

E
+

00
1.

76
E

+
00

16
8.

87
0.

49
16

9.
36

A
R

A
P

1.
47

E
+

00
1.

28
E

+
00

22
3.

36
0.

24
22

3.
60

S
F

S
D

P
1.

10
E

+
01

1.
92

E
+

00
34

5.
86

0.
76

34
6.

62

20
%
n

E
D

M
-S

N
L

3.
72

E
+

00
1.

22
E

+
00

14
6.

34
0.

21
14

6.
55

A
R

A
P

1.
47

E
+

00
1.

22
E

+
00

22
3.

30
0.

16
22

3.
46

S
F

S
D

P
1.

04
E

+
01

1.
56

E
+

00
27

5.
52

0.
27

27
5.

79

118 Chapter 3 EDM-based optimization approach for sensor network localization

T
ab

le
3.2:

E
x
ecu

tion
T

im
e

R
esu

lts
of

C
orrid

or
N

etw
ork

T
est

P
rob

lem
s

L
o
calization

n
(R

)
m

S
ch

em
e

R
M

S
D

R
M

S
D

.R
e

T
im

e
T

im
e.R

e
T

otal
T

im
e

200(20)

5%
n

E
D

M
-S

N
L

4.41E
+

00
4.35E

+
00

7.09
0.12

7.21
A

R
A

P
1.25E

+
01

9.20E
+

00
12.18

0.14
12.32

S
F

S
D

P
1.66E

+
01

9.29E
+

00
35.64

0.21
35.85

10%
n

E
D

M
-S

N
L

3.76E
+

00
3.74E

+
00

4.85
0.08

4.93
A

R
A

P
1.21E

+
01

5.68E
+

00
12.13

0.11
12.24

S
F

S
D

P
1.40E

+
01

7.24E
+

00
31.32

0.10
31.41

20%
n

E
D

M
-S

N
L

3.50E
+

00
3.33E

+
00

3.35
0.06

3.41
A

R
A

P
1.20E

+
01

4.63E
+

00
12.15

0.06
12.22

S
F

S
D

P
1.57E

+
01

4.86E
+

00
26.70

0.08
26.78

500(15)

5%
n

E
D

M
-S

N
L

3.11E
+

00
2.02E

+
00

54.70
0.42

55.12
A

R
A

P
2.63E

+
00

2.00E
+

00
71.86

0.35
72.21

S
F

S
D

P
1.39E

+
01

4.91E
+

00
149.00

0.71
149.71

10%
n

E
D

M
-S

N
L

3.56E
+

00
1.78E

+
00

36.36
0.28

36.65
A

R
A

P
2.59E

+
00

1.78E
+

00
71.55

0.28
71.82

S
F

S
D

P
1.09E

+
01

2.51E
+

00
150.56

0.53
151.09

20%
n

E
D

M
-S

N
L

2.15E
+

00
1.72E

+
00

32.01
0.13

32.13
A

R
A

P
2.57E

+
00

1.70E
+

00
71.71

0.13
71.84

S
F

S
D

P
8.31E

+
00

2.01E
+

00
105.00

0.23
105.22

1000(12)

5%
n

E
D

M
-S

N
L

3.69E
+

00
1.44E

+
00

209.28
0.68

209.96
A

R
A

P
1.58E

+
00

1.49E
+

00
276.90

0.42
277.32

S
F

S
D

P
9.81E

+
00

1.90E
+

00
428.95

1.13
430.08

10%
n

E
D

M
-S

N
L

3.62E
+

00
1.23E

+
00

147.77
0.41

148.18
A

R
A

P
1.58E

+
00

1.45E
+

00
276.83

0.28
277.12

S
F

S
D

P
7.77E

+
00

1.52E
+

00
421.06

0.54
421.60

20%
n

E
D

M
-S

N
L

5.92E
+

00
1.18E

+
00

161.07
0.29

161.36
A

R
A

P
1.57E

+
00

1.11E
+

00
276.84

0.19
277.03

S
F

S
D

P
1.09E

+
01

1.42E
+

00
312.34

0.38
312.73

Chapter 3 EDM-based optimization approach for sensor network localization 119

3.5 Summary

In this section, we introduced a new scheme for wireless sensor network localiza-

tion problem based on the Euclidean distance matrix. A conic programming built

upon the Kn+ cone is solved by a recently developed alternating direction method

of multipliers to retrieve missing distances between nodes. Then classical multidi-

mensional and Procrustes analysis are applied to recover the node positions. By

modelling the problem based on EDM, inequality constraints are integrated in a

simple closed convex set, resulting in a localization scheme that acquires both effi-

ciency and robustness towards the existence of large noise. Numerical experiments

showed the EDM-based Localization scheme outperforms existing state-of-the-art

ARAP and SFSDP schemes.

The major computation in EDM-SNL is the spectral decomposition of a symmetric

matrix, which could be fatal to the scheme when the number of nodes in the

network goes beyond thousands. For the large scale networks consisting tens

of thousands nodes, following the paradigm of “think globally, fit locally”, the

Euclidean distance matrix could be completed part by part, thus a robust EDM-

based localization scheme for large-scale networks could be developed.

Chapter 4

Implication for large-scale

network and future work

When dealing with large-scale distance geometry problems of, for example, 10000

points or more, we may face a big challenge in algorithm design due to the limi-

tation of the capacity of PC hardware such as CPU and memory. For instance, a

single execution of eigenvalue decomposition of a 10000×10000 symmetric matrix

would take around 200 seconds by MATLAB on a normal computer with 3.30GHz

CPU and 4GB memory. This almost closes the door to use the alternating direc-

tion method of multipliers which always involves projection operations in matrix

conic programming. Large-scale networks exist in many application areas such as

molecular conformation (Crippen et al., 1988; Havel and Wüthrich, 1985), sensor

network localization (Biswas and Ye, 2004; Biswas et al., 2006; Wang et al., 2008)

and dimensionality reduction (Weinberger et al., 2006, 2004), and large-scale data

analysis is the new trend in future research. In this chapter, we focus on the large-

scale network localization problem and the framework can be extended to other

application areas with minor modification. We first introduce background on a

class of patching methods for large-scale network localization problem, then we

121

122 Chapter 4 Implication for large-scale network and future work

describe our proposal for dealing with such problems and some primary results.

Finally we summarize the issues to be investigated in the future.

4.1 Backgroud on patching method

Given a large-scale network which can always be represented as an undirected

graph with vertices V and edges E, as described in Chapter 3, a localization

problem is to find the (relative or global) coordinates of vertices based on (complete

or incomplete) pairwise distance information, which is always noisy. We already

know for network of medium size, EDM-SNL can recover the positions of vertices

robustly and efficiently. When comes to the large-scale network, a direct idea is

to divide the network into small subnetworks, called patch in some literatures,

then localize each patch separately, finally “stitch” them together to get the final

network localization.

The idea comes from the distributed sensor network localization, in which each

node calculates its own position based on the local data gathered from its neigh-

bours. Savarese et al. (2001) and C̆apkun et al. (2002) treat every point and its

R-hop neighbours (R usually takes 1 or 2) as a subnetwork, then use triangulation

or geometry to localize each subnetwork. By using anchor information, Savarese

et al. (2001) managed to get global coordinates of each point. C̆apkun et al. (2002)

only provided a method to retrieve relative positions in GPS-free mobile ad hoc

networks. Using triangulation and geometry, methods in Savarese et al. (2001);

C̆apkun et al. (2002) will result in positions of points with large error when the

distance information is highly noisy. Moreover, such distributed framework re-

quires that each point has computation capacity, which brings higher requirement

to the sensor hardware.

Chapter 4 Implication for large-scale network and future work 123

Based on the work in Savarese et al. (2001); C̆apkun et al. (2002), Shang and

Ruml (2004) proposed a MDS-based localization scheme called MDS-MAP(P),

which uses classical MDS to localize each patch instead of triangulation. For a

network with n points, MDS-MAP(P) first generates local map for each node by its

R-hop neighbours, then computes the local map position for each individual point.

To localize the patches, shortest paths between all pairs of nodes in the patch are

computed, and classical MDS is conducted to get relative coordinates of each point.

After getting all relative positions of patches, the next work is to merge the patches

to get the whole network. To do that, they random choose a patch as the core

network, then merge its neighbour patches one by one using Procrustes analysis

introduced in Section 1.1.3, until the whole network is recovered. A least square

minimization is also used to refine the localization for both the patches and whole

network. And the global coordinates are retrieved if sufficient anchor nodes exist.

The main purpose of MDS-MAP(P) is to compensate the drawbacks of MDS-MAP

(Shang et al., 2003) for networks with irregular topology, in which the shortest

path can not estimate the true distance between far away points very well. By

dividing the whole network into patches, the authors believe that each small patch

is relatively regular and shortest path can serve well as an estimation of missing

distances. Stitching the patches incrementally to the global coordinate system

seems to be sound, however, unfortunately, it may accumulate error indefinitely,

especially when the pairwise distances are highly noisy.

Several stitching strategies are proposed to reduce the error that incremental al-

gorithms could bring, resulting in different localization schemes. One of which

is PATCHWORK introduced by Koren et al. (2005). Unlike MDS-MAP(P), for

each patch PATCHWORK estimates the missing distances by the upper bound

and lower bound. Denote Dij as the distance between node xi and xj, for every

124 Chapter 4 Implication for large-scale network and future work

(i, j) 6∈ E, from the triangle inequality, the upper bound Dij is obtained by

Dij = min
k:(i,k)∈E,(j,k)∈E

{Dik +Djk}.

Moreover, for the disk graph, the lower bound Dij is given by

Dij = max{ max
k:(i,k)∈E

{Dik}, max
k:(j,k)∈E

{Djk}}.

Then Dij is estimated as (Dij + Dij)/2. After retrieving all pairwise distance in-

formation, classical MDS is used to get relative coordinates of the points in each

patch. To stitch all patches together, they propose to work with affine trans-

formations that not only include rigid transformations, but also has additional

operations such as scaling and shear. Using affine transformations allows compen-

sating for errors introduced by noise.

Let (V (s), E(s)) be a patch that centered at point s, X(s) ∈ IRns×(r+1) be the

collection of locations of the points in the patch. The ith row of X(s) represents

the ith point, where the first r entries are its r coordinates and the last entry is

always 1. Denote X(s) as the corresponding coordinates in the global coordinate

system, then the affine transformation Q(s) ∈ IR(r+1)×(r+1) gives the relation as

X(s)Q(s) ≈ X(s). The best least square solution is

Q(s) = X(s)+X(s),

where X(s)+ is the pseudo-inverse. Then the global coordinates can be recovered

by solving the minimization problem

min
X(s)
‖X(s)−X(s)Q(s)‖2,

Chapter 4 Implication for large-scale network and future work 125

which is identical to

min
X(s)
‖X(s)− (X(s)X(s)+)X(s)‖2. (4.1)

Koren et al. (2005) proposed to solve the above optimization problem, which is

equivalent to solving a linear equation system. They also introduced how to use

anchor position information to avoid degenerate solutions of the linear equation

system.

Instead of using affine transformation, Zhang et al. (2010) used rigid transforma-

tion, which is efficient to preserve better local relationships between patches, but

has the disadvantage of resulting in a nonlinear system of equations. The stitching

process is modelled to solve the following optimization problem simultaneously:

(X∗, Q∗i , . . . , Q
∗
N) = arg min

X,Qi,...,QN
{
N∑
i=1

‖Xi −QiX i‖2
F : QT

i Qi = I}, (4.2)

where N is the number of patch, X is the collection of global coordinates of points

in each patch, Qi, i = 1, . . . , N are the rigid transformations that transform patch

i into the global coordinate system, and X i is the local (relative) coordinates

of points in patch i. To solve (4.2), Zhang et al. proposed to use a two-phase

Alternating Least-Square (ALS) method. In the first phase, X is fixed and they

solve (4.2) for each Qi. In the second phase, all Qi are assumed to be fixed, and

they solve (4.2) for X. Based on ALS, they developed a MATLAB code called

ARAP, however, numerical experiment shows that ARAP will provide large error

solution when the distance information is very noisy, especially for the networks

with irregular topology.

To compensate the error that occurs in the stitching process, a convex relaxation is

proposed by Chaudhury et al. (2013, 2015), in which a semidefinite programming

is built up to merge patches together. In their paper, the merge process is call

126 Chapter 4 Implication for large-scale network and future work

global registration. Let xk,i be the relative coordinate of sensor xk in the ith patch,

the registration is to find some orthogonal transform Qi and translation ti such

that

xk = Qixk,i + ti.

For network with anchors, an additional equation should be satisfied as follows:

al = Qial + ti,

where al is the lth anchor’s position. Then the loss function is defined as

φ =
N∑
i=1

{
∑
k∈Pi

‖xk −Qixk,i − ti‖2 + λ
∑
l∈Pi

‖QN+1al −Qial − ti‖2},

where N is the number of patch, Pi is the collection of indices of points in patch

i, QN+1 is added to make φ homogeneous with respect to the variables. The

registration process is to minimize φ with respect to xk, Qi and ti. By simplification

and substitution, the original problem is reduced to minimize

Tr(CQTQ) =
N+1∑
i=1

N+1∑
j=1

Tr(CijQ
T
i Qj),

where the variables are the orthogonal matrices Q1, . . . , QN+1, and Cij is constant

matrices. Let G = QTQ, the above optimization problem is equivalent to

min Tr(CG)

s.t. G � 0, rank(G) = r,Gii = Ir(i = 1, . . . , N + 1).

(4.3)

By dropping the rank constraint, the resulting convex optimization model is given

as

min Tr(CG)

s.t. G � 0, Gii = Ir (i = 1, . . . , N + 1).

(4.4)

Chapter 4 Implication for large-scale network and future work 127

Problem (4.4) is a linear positive semidefinite programming that can be efficiently

solved by state-of-the-art SDP solvers such as SDPT3 (Toh et al., 1999).

For localization of each patch, Chaudhury et al. suggest to use SDP-based local-

ization schemes such as SNLSDP (Biswas et al., 2006) and ESDP (Wang et al.,

2008) as they offer a good tradeoff between accuracy and run-time for small prob-

lems. The numerical experiment shows that the localization scheme proposed in

Chaudhury et al. (2013) can localize a network with 8000 points in 30 minutes

on a standard PC with a four-core 2.83 GHz Linux workstation with a 3.6 GB

memory.

All the localization schemes in Savarese et al. (2001); C̆apkun et al. (2002); Shang

and Ruml (2004); Koren et al. (2005); Chaudhury et al. (2013) follow the idea

of patching-stitching process, however, they all divide the whole network into

subnetworks by taking each point and its neighbours as one patch, resulting in

a large amount of patches, which may slow down the localization process and

accumulate localization error. Other research groups provided different dividing

and localization approaches, especially in the research area of gene network and

molecular conformation.

Tzeng et al. (2008) proposed a split-and-combine MDS (SC-MDS) for large ge-

nomic data sets. They divided the set of points into K groups randomly with Ng

points in each group and NI overlapping points in each intersection region. For

each patch, they used cMDS to get the relative position of points. To stitch patches

together, they chose a patch as central reference and combined the patch around it

one by one, until all patches are stitched to the main network. They claimed that

for this method to work, the number of points in the intersection region should be

greater than the real data dimension so that one can find the proper affine trans-

formation. Their experimental result also showed that the points in each group

should be chosen randomly, or the rotation effect will hamper the performance

128 Chapter 4 Implication for large-scale network and future work

of the low dimensional location recovery. This method is based on the full and

well estimated information of pairwise distances between all points, otherwise the

random picking would result in a patch with unconnected graph.

Biswas et al. developed a distributed SDP approach for large-scale noisy anchor-

free graph realization for molecular conformation in Biswas et al. (2008). To break

the limitation of interior point method for large-scale SDP problem, they used a

symmetric reverse Cuthill-McKee permutation (George and Liu, 1981) to divide

the whole molecular network into subnetworks. Then they used SDP relaxation

with several techniques on rank reduction to localize each subnetwork. Finally they

stitched the patches one by one to get the whole final molecular conformation.

4.2 EDM-SNL based localization scheme for large-

scale network

Following patching-stitching scheme for large-scale network, we introduce our

EDM-SNL localization method for networks with large amount of points. As dis-

cussed in the previous section, three key issues should be addressed for developing

such method:

1. How to divide the whole network into patches?

2. How to localize points in each patch in the local coordinate system?

3. How to stitch patches together to get the global coordinates of all points?

In the following of this section, we will try to answer above three questions and

propose a EDM-SNL based localization scheme for large-scale networks.

Chapter 4 Implication for large-scale network and future work 129

4.2.1 Grouping strategy to divide network into patches

Recall the model (3.8) for EDM-SNL in Section 3.2.2, the most important input for

localization of a network is the distance matrix D. To divide the whole network

into several patches, we need to decide how much distance information we will

need for each patch’s localization and the merging process. We want the distance

information in each patch to be as much as possible, then we can manage to localize

each patch efficiently and accurately. We also want the intersection of each patch

is reasonably large, then the stitching process will provide more accurate global

network. Due to the limitation of radio range of each sensor, only the distance

information between points in a certain neighbourhood is available, resulting in a

sparse symmetric distance matrix D. Assume D has the partition as

D =

 Daa Das

Dsa Dss

 ∈ Sn, (4.5)

where Daa ∈ Sm contains the distance between anchors, Das ∈ IRm×(n−m) and

Dsa ∈ IR(n−m)×m contain the distance between anchors and sensors, Dss ∈ Sn−m

is the distance matrix containing distance information between sensors. Note that

m can be 0 for the case that there is no anchor position available.

To decide the patch where a certain sensor should go to, we perform the symmetric

inverse Cuthill-McKee permutation (Cuthill and McKee, 1969; Liu and Sherman,

1976) on the distance matrix of sensors Dss. The Cuthill-McKee permutation was

fist developed in 1969 to reduce the bandwidth of sparse symmetric matrices by E.

Cuthill and J. McKee. It seeks a permutation that moves the non-zero element of

a matrix to the diagonal as much as possible, resulting in a quasi-diagonal block

matrix. An example is showed in Figure 4.1, which is the sparsity pattern of a

distance matrix D ∈ S2000 after Cuthill-McKee permutation.

130 Chapter 4 Implication for large-scale network and future work

nz = 252238
0 500 1000 1500 2000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

D1

D2

Di

DK

Figure 4.1: Sparsity pattern of distance matrix D after Cuthill-McKee
permutation

The network used in Figure 4.1 contains n = 2000 points in total. The number of

anchors m = 100. After the permutation, the distance information are gathered

around the diagonal of the matrix as close as possible. Then it is straight forward

for us to partition the points into different patches by breaking the whole matrix

D into several small distance matrices D1, D2, . . . , DK . By now, we successively

separate the whole network into K small patches. Every rectangular in Figure 4.1

represents a distance matrix for a certain patch. We will not waste the distance

between anchors and sensors as well. During the localization process of each patch,

the anchor-sensor distance (the blue band on the top of the graph in Figure 4.1) is

added to the patch distance matrix Di, resulting in a more accurate localization.

In the stitching process, the points that in the intersection of two patches (the

intersection of two black rectangulars in Figure 4.1) are used to stitch the two

patches together.

Chapter 4 Implication for large-scale network and future work 131

4.2.2 Localization and stitching methods for patches

Once we have the distance matrices D1, . . . , DK for K patches, EDM-SNL intro-

duced in Chapter 3 is used for localizing each patch. We will use the example in

Figure 4.1 to introduce the stitching process. At this stage of research, we choose

to stitch each patch one by one form D1 to DK . Notice that the only information

to stitch the points in D1 to the global coordinate system is the anchor distance

information (upper left blue rectangular in D1). Then the points in D1 can be

successively stitched to the global coordinate system by Procrustes analysis. For

the patch Di, i > 1, we not only use the anchors, we also use the points in the

intersection region of Di and Di−1 as new anchors for stitching Di, resulting in a

much robust merging process to retrieve global positions of points. We summa-

rize the above process in Algorithm LSEDM-SNL (Large-Scale EDM-based Sensor

Network Localization).

Algorithm 9 LSEDM-SNL

1: Set np and mp as the number of points in each patch except for the last one
and number of points in the intersection region between two patches corre-
spondingly. Use symmetric inverse Cuthill-McKee permutation to get distance
matrices D1, D2, . . . , DK .

2: Localize the points in patch D1 using EDM-SNL, transform the points into
global coordinate system by anchor positions through Procrustes analysis.

3: for i = 2 to K do
4: Localize the points in Di using EDM-SNL, use the anchor position and the

points in the intersection region of Di and Di−1 to transform the points into
global coordinate system through Procrustes analysis.

5: end for

The localization process by LSEDM-SNL is illustrated in Figure 4.2. The network

contains n = 800 points in total, which are randomly distributed in the square

region of [0, 100]2. Among n points, there are m = 30 anchor nodes randomly dis-

tributed in the same region. The green circles represent the ground true locations

of the generated sensor nodes and the blue diamonds represent the anchor nodes

positions. The radio range is set to be R = 15. Following the process illustrated in

Figure 4.1, setting the number of points in each patch np = 300 and the number

132 Chapter 4 Implication for large-scale network and future work

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

(a)

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

(b)

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

(c)

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

(d)

Figure 4.2: Localization process for network with n = 800 points in total,
number of anchors m = 30, the radio range R = 15. Number of points in
each patch np = 300, number of points in the intersection region of two
patches mp = 100. Total CPU time t = 27.43s.

of points in the intersection region of two patches mp = 100, we get four distance

matrices Di, i = 1, 2, 3, 4. Localizing and stitching each patch one by one, we have

the process showed in Figure 4.2, the points in four patches are coloured in red,

blue, black and yellow respectively. The points in D1 is localized first as illustrated

in the Figure 4.2(a). After that, we localize and stitch the blue points in patch D2

showed in Figure 4.2(b), so on and so forth, we have all four patches localized and

stitched to the global coordinate system. We must point out that the randomly

distributed anchors play an important role for patch localization. If there are only

a few anchors available or no anchor at all, the idea that finds the global coordinate

of each patch one by one would not work well. It is an interesting question and in

Chapter 4 Implication for large-scale network and future work 133

that case, one can find local coordinates instead of global ones of each patch and

use the intersection of patches to stitch them together. Without anchors, the re-

sulting coordinates could only be relative. Figure 4.3 depicts the relation between

the number of anchors and localization quality. When the anchors get fewer, the

localization error gets larger since the patch localization struggles resulting in the

error propagation.

Number of Anchors
10 15 20 25 30

Lo
ca

liz
at

io
n

E
rr

or
(%

R
)

0

10

20

30

40

50

60

70

80

n = 800
np = 300
mp = 100
nf = 0.1
R = 15

Figure 4.3: Variation of localization error with varying number of anchors.
Networks of totally 800 nodes. Noise factor nf = 0.1. Communication
radius R = 15.

Indeed, the stitching method has been in the literature for a long time and the

quality of it highly depends on the localization quality of each patch and the

intersection of two patches, i.e., the intersection of two squares in Figure 4.1.

4.2.3 Primary experimental results by LSEDM-SNL

In this section, we show the primary numerical experiment results using MAT-

LAB (R2015a) on a desktop of Intel(R) Core(TM) i5-2500 3.3GHz CPU and 4GB

memory to evaluate the efficiency of the proposed LSEDM-SNL algorithm.

134 Chapter 4 Implication for large-scale network and future work

The test networks are generated in a square region of [0, 100]2, in which the (sensor

and anchor) points are randomly distributed following the uniform distribution.

The noise in the distance information is generated following a standard framework

as follows:

d̂ij = dij × |1 + nf × randn|, ∀(i, j) ∈ E , (4.6)

where dij is the true Euclidean distance between points xi and xj, 0 6 nf 6 1 is

the noise factor, randn is the standard normal random variable, and E is the index

set containing the existing edges in the network. The accuracy measurement of

the estimated positions follows directly from that of Chapter 3, which is the root

mean square distance (RMSD)

RMSD :=
1√

n−m

(
n∑

i=m+1

‖x̂i − xi‖2

) 1
2

, (4.7)

where x̂i is the estimated position and xi is the ground-truth sensor position.

To test both accuracy and scalability of LSEDM-SNL, we generate networks with

the total number of points n varying from 2000 to 10000. The radio range R

varies from 15 to 10 to control the number of available edges. The noise factor is

0 and 0.1. Two importance parameters for the algorithm to work are the number

of points in each patch np and the number of points in the intersection region

of two patches mp. At this stage of research, we set np = 300 and mp = 100

fixed for all patches. We would like to point out that there may be wiser ways to

choose different np and mp for each patch to make the algorithm more efficient.

For each test example, 10 random inputs are generated and the average results

are reported.

Figure 4.4 shows the change of localization quality while the noise factor increases

from 0 to 0.9. The network used contains 2000 points in total. The number of

anchor nodes is 100. The radio range is set to be 15. We can see that LSEDM-SNL

Chapter 4 Implication for large-scale network and future work 135

controls the localization error within 20%R even when the noise factor is as large

as 0.9.

Noise Factor nf
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lo
ca

liz
at

io
n

E
rr

or
(%

R
)

0

10

20

30

40

50

60

70

80

n = 2000
m = 100
np = 300
mp = 100
R = 15

Figure 4.4: Variation of localization error with varying noise factor. Net-
works of totally 2000 nodes, among which are 100 anchor nodes distributed
randomly. Communication radius R = 15.

The execution time and localization quality results by LSEDM-SNL are shown in

Table 4.1. The number of sensors n varies from 2000 to 10000, and the number of

anchors is fixed to 100. Compared to the results in Section 3.4.4, we know that

patching-stitching localization scheme LSEDM-SNL is much faster than the direct

localization EDM-SNL. LSEDM-SNL solves a problem of 2000 points in only 100

seconds while EDM-SNL uses 200 seconds to solve a problem of only 1000 points.

Even for the problem of 10000 points, it only takes LSEDM-SNL less than 14

minutes to give an acceptable solution with RMSD ≈ 3.9.

However, we would like to point out that there are space for LSEDM-SNL to be

improved. As shown in Figure 4.5, with the number of points in the network

increasing, the localization error gets bigger.

One reason for that may be that we localize and stitch each patch one by one,

using the position of the points in the last patch as anchor nodes for the next

136 Chapter 4 Implication for large-scale network and future work

Table 4.1: Execution Time and Quality Results by LSEDM-SNL

n nf R RMSD CPU time (secs)

2000
0 15 2.10E-05 97.79

0.1 15 6.69E-02 97.20

4000
0 14 5.95E-04 200.50

0.1 14 5.77E-02 199.73

6000
0 13 3.67E-02 316.86

0.1 13 9.81E-01 320.83

8000
0 12 1.06E+00 471.79

0.1 12 1.08E+00 454.33

10000
0 10 3.93E+00 771.08

0.1 10 3.95E+00 767.16

Number of Points n
2000 3000 4000 5000 6000 7000 8000 9000 10000

Lo
ca

liz
at

io
n

E
rr

or
(%

R
)

0

10

20

30

40

50

60

70

80

nf = 0
nf = 0.1

Figure 4.5: Variation of localization error with varying number of points
in the network.

patch’s localization, which may propagate the error through the whole process

and built up the final localization error. An example is shown in Figure 4.6(a).

The points of the lower part in the network are all shifted to the right since one

patch in the lower right corner is miss localized.

Another possible reason is that we fix the number of each patch np = 300 and

the number of points in the intersection region of two patches mp = 100 for all

n = 2000 to 10000. For networks with points as many as 10000, it would drop

so much useful distance information, resulting in a solution with bigger error. As

Chapter 4 Implication for large-scale network and future work 137

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

(a)

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

(b)

Figure 4.6: Localization result of Network with n = 3000 and m = 100
anchors randomly distributed. Noise factor nf = 0.1. (a) np = 300,
mp = 100, localization error RMSD = 2.61E + 00, CPU time t = 185.80
seconds. (b) np = 500, mp = 100, localization error RMSD = 2.48E− 01,
CPU time t = 239.17 seconds. (Blue diamond: anchor position. Green
circle: original sensor position. Red star: estimate sensor position. Blue
line: error offset between original and estimate sensor position.)

illustrated in Figure 4.6(a), when np = 300, we got a localization with large error

RMSD = 2.61E + 00, and all the points in the lower part shifted to the right.

When we change mp to 500, we got a very well localized network showed in Figure

4.6(b), but more time was taken. It can be explained clearly using Figure 4.1. If

the black rectangulars are too small, and the bandwidth (the horizon length of the

blue band on the diagonal) is very large, the rectangulars can not cover enough

space of the blue band, resulting in the lose of useful distance information. To fix

the above problems, several interesting and important issues, which are discussed

in the next section, should be investigated.

4.3 Discussion and future work

In this Chapter, following the patching-stitching idea, based on the EDM-SNL, we

introduced a large-scale network localization scheme called LSEDM-SNL, which

138 Chapter 4 Implication for large-scale network and future work

opens a gate to large-scale network localization using convex optimization ap-

proach. Numerical results showed that LSEDM-SNL is able to handle large data

even with 10000 points in less than 14 minutes, while the solution still enjoys an

acceptable accuracy. In the following part of this section, we would like to point

out some interesting and important problems that are worth further discussion

and research.

The number of points in each patch np and the number of points in the intersection

region of two patches mp are the key parameters that influence the efficiency and

accuracy of the LSEDM-SNL. We can not choose np to be too large since the

eigenvalue decomposition for large matrix is not affordable and it may slow down

the EDM-SNL for each patch’s localization. The parameter mp can not be too

small as it would degrade the quality of the stitching process. By now, we fix np

and mp all the same for each patch. To make the most of EDM-SNL, np and mp

should be chosen wisely to generate each patch individually with different size and

intersection region. One possible way to do that is to use the bandwidth showed

in Figure 4.1 and set the lower bound of distance information percentage in each

patch.

Another possible upgrade of LSEDM-SNL is from the distributed localization

scheme. Recall that LSEDM-SNL localizes and stitches patches one by one, the

stitching process of each patch is depend on the localization quality of the previous

patch, especially the localization quality of points in the intersection region since

they are used as anchor nodes in the localization of next patch. This kind of way

would propagate error through the whole process and build up the localization

error. Moreover, it requires there exist enough anchor nodes in the first patch to

stitch it to the global coordinate system. A more robust way is to localize each

patch independently without using the points in the intersection region as anchor

nodes. The role of points in the intersection region of two patches is only for

gluing the two patches together, and the anchor nodes are used only to register

Chapter 4 Implication for large-scale network and future work 139

the whole network into the global coordinate system. However, this kind of way

may degrade the localization quality in each patches, which may also influence the

stitching and registration process.

One more interesting strategy is about parallel computing, in which many calcula-

tions are carried out simultaneously. It is possible to conduct parallel computing

due to the development of computer architecture, mainly in the form of multi-

core processor. If each patch is localized independently without exchanging data

with other patches, as discussed in the above paragraph, then parallel computing

would make the algorithm several times faster, depending on the number of cores

in processor of the PC hardware. We believe that parallel computing is the new

trend in the research area on big data analysis.

Chapter 5

Conclusions

In this thesis, we designed algorithms for solving two kinds of models in EDM-

based optimization problem, both with rank constraint. The first model consists

of spherical constraint, the second model has a large amount of equality and in-

equality constraints which can be integrated into bound constraints on the EDM.

For the EDM-based optimization problem with spherical constraint, we applied

the framework of majorized penalty method to the resulting matrix problem in

order to deal with the rank constraint iteratively. A key feature we exploited

is that all the subproblems can be efficiently solved by the semismooth Newton

method. Even though the resulting equation system is nonsmooth, we proved that

the Newton method is quadratically convergent under the constraint nondegener-

acy condition. Constraint nondegeneracy is a difficult constraint qualification to

analyse. We proved it under a weak condition for our spherical constrained prob-

lem. A complete set of MATLAB code called FITS is written for test. We used

4 classic examples from the spherical multidimensional scaling to demonstrate the

flexibility of the algorithm in incorporating various constraints.

For the EDM optimization with bound constraints, a heuristic linear function is

added to induce low rank solution, resulting in a sensor network localization scheme

141

142 Chapter 5 Conclusions

that mitigates flip ambiguity and obtains robustness under presence of large noises

in the distance measurements. A novel alternating direction method of multipliers

is applied to solve the resulting 3-block convex quadratic optimization model.

We implemented the integrated localization scheme in the MATLAB code EDM-

SNL for public test. Numerical experiments showed the EDM-SNL outperforms

the existing state-of-the-art localization schemes.

Both Newton-type algorithm and ADMM algorithm have advantages against each

other, but they also have their own drawbacks. Newton-type algorithm usually

converges fast and could provide accurate solution efficiently, however the conver-

gence may be influenced by the presence of different types of constraint. ADMM

algorithm could deal with different types of constraints, however, it requires more

iteration to get a high accuracy solution. For EDM-based optimization, the major

computation is the spectral decomposition of a symmetric matrix, which could be

fatal to the algorithm efficiency when the scale of matrix goes beyond thousands.

To tackle this problem, we introduced an EDM-SNL based patching-stitching local-

ization approach called LSEDM-SNL for large-scale network localization. Break-

ing the whole network into small patches allows us to use limited computation

resource and less time to deal with localization problems of large-scale. Numerical

results showed that the proposed LSEDM-SNL algorithm is promising.

References

I. F. Akyildiz and M. C. Vuran. Wireless sensor networks, volume 4. John Wiley

& Sons, 2010.

S. Al-Homidan and H. Wolkowicz. Approximate and exact completion problems

for Euclidean distance matrices using semidefinite programming. Linear algebra

and its applications, 406:109–141, 2005.

A. Alfakih, A. Khandani, and H. Wolkowicz. Solving Euclidean distance matrix

completion problems via semidefinite programming. Computational Optimiza-

tion and Applications, 12(1-3):13–30, 1999.

A. Y. Alfakih and H. Wolkowicz. On the embeddability of weighted graphs in

Euclidean spaces. Citeseer, 1998.

A. Y. Alfakih, M. F. Anjos, V. Piccialli, and H. Wolkowicz. Euclidean distance ma-

trices, semidefinite programming and sensor network localization. Portugaliae

Mathematica, 68(1):53, 2011.

F. Alizadeh, J.-P. Haeberly, and M. Overton. Complementarity and nondegeneracy

in semidefinite programming. Mathematical Programming, 77(1):111–128, 1997.

S. Bai and H.-D. Qi. Tackling the flip ambiguity in wireless sensor network local-

ization and beyond. Digital Signal Processing, 55:85–97, 2016.

143

144 REFERENCES

S. Bai, H.-D. Qi, and N. Xiu. Constrained best euclidean distance embedding on

a sphere: A matrix optimization approach. SIAM Journal on Optimization, 25

(1):439–467, 2015.

A. Beck and D. Pan. On the solution of the GPS localization and circle fitting

problems. SIAM Journal on Optimization, 22(1):108–134, 2012.

D. P. Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.

P. Biswas and Y. Ye. Semidefinite programming for ad hoc wireless sensor network

localization. In Proceedings of the 3rd International Symposium on Information

Processing in Sensor Networks, IPSN ’04, pages 46–54, New York, NY, USA,

2004. ACM.

P. Biswas, T.-C. Liang, K.-C. Toh, Y. Ye, and T.-C. Wang. Semidefinite pro-

gramming approaches for sensor network localization with noisy distance mea-

surements. Automation Science and Engineering, IEEE Transactions on, 3(4):

360–371, Oct 2006.

P. Biswas, K.-C. Toh, and Y. Ye. A distributed SDP approach for large-scale

noisy anchor-free graph realization with applications to molecular conformation.

SIAM Journal on Scientific Computing, 30(3):1251–1277, 2008.

J. F. Bonnans and A. Shapiro. Perturbation analysis of optimization problems.

Springer Science & Business Media, 2013.

I. Borg and P. J. Groenen. Modern multidimensional scaling: Theory and appli-

cations. Springer Science & Business Media, 2005.

I. Borg and J. Lingoes. A model and algorithm for multidimensional scaling with

external constraints on the distances. Psychometrika, 45(1):25–38, 1980.

J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization.

Springer., 2000.

REFERENCES 145

E. J. Candès and B. Recht. Exact matrix completion via convex optimization.

Foundations of Computational mathematics, 9(6):717–772, 2009.

S. C̆apkun, M. Hamdi, and J.-P. Hubaux. GPS-free positioning in mobile ad hoc

networks. Cluster Computing, 5(2):157–167, 2002.

Z. X. Chan and D. Sun. Constraint nondegeneracy, strong regularity, and nonsin-

gularity in semidefinite programming. SIAM Journal on Optimization, 19(1):

370–396, 2008.

K. N. Chaudhury, Y. Khoo, and A. Singer. Large-scale sensor network localization

via rigid subnetwork registration. arXiv preprint arXiv:1310.8135, 2013.

K. N. Chaudhury, Y. Khoo, and A. Singer. Global registration of multiple point

clouds using semidefinite programming. SIAM Journal on Optimization, 25(1):

468–501, 2015.

C. Chen, B. He, Y. Ye, and X. Yuan. The direct extension of ADMM for multi-

block convex minimization problems is not necessarily convergent. Mathematical

Programming, pages 1–23, 2014.

F. H. Clarke. Optimization and nonsmooth analysis, volume 5. Siam, 1990.

J. A. Costa, N. Patwari, and A. O. Hero, III. Distributed weighted-

multidimensional scaling for node localization in sensor networks. ACM Trans.

Sen. Netw., 2(1):39–64, Feb. 2006.

T. F. Cox and M. A. Cox. Multidimensional scaling on a sphere. Communications

in Statistics - Theory and Methods, 20(9):2943–2953, 1991.

T. F. Cox and M. A. Cox. Multidimensional scaling. CRC Press, 2000.

G. M. Crippen, T. F. Havel, et al. Distance geometry and molecular conformation,

volume 74. Research Studies Press Somerset, England, 1988.

146 REFERENCES

E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices.

In Proceedings of the 1969 24th National Conference, ACM ’69, pages 157–172,

New York, NY, USA, 1969. ACM.

J. De Leeuw and P. Mair. Multidimensional scaling using majorization: SMACOF

in R. Journal of Statistical Software, 31(3):1–30, 2009.

Y. Ding, N. Krislock, J. Qian, and H. Wolkowicz. Sensor network localization,

euclidean distance matrix completions, and graph realization. Optimization and

Engineering, 11(1):45–66, 2010.

P. Drineas, A. Javed, M. Magdon-Ismail, G. Pandurangan, R. Virrankoski, and

A. Savvides. Distance matrix reconstruction from incomplete distance informa-

tion for sensor network localization. In Sensor and Ad Hoc Communications and

Networks, 2006. SECON ’06. 2006 3rd Annual IEEE Communications Society

on, volume 2, pages 536–544, Sept 2006.

R. L. Dykstra. An algorithm for restricted least squares regression. Journal of the

American Statistical Association, 78(384):837–842, 1983.

G. Ekman. Dimensions of color vision. The Journal of Psychology, 38(2):467–474,

1954.

M. Fazel. Matrix rank minimization with applications. PhD thesis, PhD thesis,

Stanford University, 2002.

M. Fazel, T. K. Pong, D. Sun, and P. Tseng. Hankel matrix rank minimization

with applications to system identification and realization. SIAM Journal on

Matrix Analysis and Applications, 34(3):946–977, 2013.

D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational

problems via finite element approximation. Computers & Mathematics with

Applications, 2(1):17 – 40, 1976.

REFERENCES 147

N. Gaffke and R. Mathar. A cyclic projection algorithm via duality. Metrika, 36

(1):29–54, 1989.

Y. Gao. Structured Low Rank Matrix Optimization Problems: a Penalty Approach.

PhD thesis, National University of Singapore, 2010.

Y. Gao and D. Sun. A majorized penalty approach for calibrating rank constrained

correlation matrix problems. Technical report, Department of Mathematics,

National University of Singapore, March 2010.

A. George and J. W. Liu. Computer Solution of Large Sparse Positive Definite.

Prentice Hall Professional Technical Reference, 1981.

S. Gepshtein and Y. Keller. Sensor network localization by augmented dual em-

bedding. Signal Processing, IEEE Transactions on, 63(9):2420–2431, May 2015.

R. Glowinski and A. Marroco. Sur l’approximation, par éléments finis d’ordre

un, et la résolution, par pénalisation-dualité d’une classe de problèmes de

dirichlet non linéaires. Revue française d’automatique, informatique, recherche

opérationnelle. Analyse numérique, 9(2):41–76, 1975.

W. Glunt, T.-L. Hayden, S. Hong, and J. Wells. An alternating projection algo-

rithm for computing the nearest euclidean distance matrice. SIAM J. Matrix

Anal. Appl., 11:589–600, 1990.

J. C. Gower. Some distance properties of latent root and vector methods used in

multivariate analysis. Biometrika, 53(3-4):325–338, 1966.

J. C. Gower. Generalized procrustes analysis. Psychometrika, 40(1):33–51, 1975.

J. C. Gower. Euclidean distance geometry. Mathematical Scientist, 7(1):1–14,

1982.

J. C. Gower. Properties of Euclidean and non-Euclidean distance matrices. Linear

Algebra and its Applications, 67:81 – 97, 1985.

148 REFERENCES

S.-P. Han. A successive projection method. Mathematical Programming, 40(1-3):

1–14, 1988.

J. A. Hartigan. Clustering Algorithms. John Wiley & Sons, Inc., New York, NY,

USA, 99th edition, 1975.

T. F. Havel and K. Wüthrich. An evaluation of the combined use of nuclear mag-

netic resonance and distance geometry for the determination of protein confor-

mations in solution. Journal of molecular biology, 182(2):281–294, 1985.

T. Hayden and J. Wells. Approximation by matrices positive semidefinite on a

subspace. Linear Algebra and its Applications, 109:115 – 130, 1988.

M. Hestenes. Multiplier and gradient methods. Journal of Optimization Theory

and Applications, 4(5):303–320, 1969.

J.-B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization algo-

rithms ii: Advanced theory and bundle methods, vol. 306 of grundlehren der

mathematischen wissenschaften, 1993.

J.-B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization algo-

rithms I: fundamentals, volume 305. Springer Science & Business Media, 2013.

J.-B. Hiriart-Urruty, J.-J. Strodiot, and V. Nguyen. Generalized Hessian matrix

and second-order optimality conditions for problems with C 1,1 data. Applied

Mathematics and Optimization, 11(1):43–56, 1984.

B. Jiang and Y.-H. Dai. A framework of constraint preserving update schemes

for optimization on Stiefel manifold. Mathematical Programming, pages 1–41,

2014.

A. Kannan, G. Mao, and B. Vucetic. Simulated annealing based wireless sensor

network localization with flip ambiguity mitigation. In Vehicular Technology

REFERENCES 149

Conference, 2006. VTC 2006-Spring. IEEE 63rd, volume 2, pages 1022–1026,

May 2006.

A. Kannan, B. Fidan, and G. Mao. Analysis of flip ambiguities for robust sensor

network localization. Vehicular Technology, IEEE Transactions on, 59(4):2057–

2070, May 2010.

A. Karbasi and S. Oh. Robust localization from incomplete local information.

Networking, IEEE/ACM Transactions on, 21(4):1131–1144, Aug 2013.

S. Kim, M. Kojima, H. Waki, and M. Yamashita. Algorithm 920: SFSDP: A

sparse version of full semidefinite programming relaxation for sensor network

localization problems. ACM Trans. Math. Softw., 38(4):27:1–27:19, Aug. 2012.

M. Kočvara and M. Stingl. PENNON: A code for convex nonlinear and semidefinite

programming. Optimization methods and software, 18(3):317–333, 2003.

Y. Koren, C. Gotsman, and M. Ben-Chen. PATCHWORK: Efficient localiza-

tion for sensor networks by distributed global optimization. Technical report,

Citeseer, 2005.

N. Krislock and H. Wolkowicz. Explicit sensor network localization using semidef-

inite representations and facial reductions. SIAM Journal on Optimization, 20

(5):2679–2708, 2010.

N. Krislock and H. Wolkowicz. Euclidean distance matrices and applications.

Springer, 2012.

M. Laurent and A. Varvitsiotis. Positive semidefinite matrix completion, universal

rigidity and the strong Arnold property. Linear Algebra and its Applications,

452:292 – 317, 2014.

S.-Y. Lee and P. M. Bentler. Functional relations in multidimensional scaling.

British Journal of Mathematical and Statistical Psychology, 33(2):142–150, 1980.

150 REFERENCES

Q. Li and H.-D. Qi. A sequential semismooth Newton method for the nearest

low-rank correlation matrix problem. SIAM Journal on Optimization, 21(4):

1641–1666, 2011.

X. Li, D. Sun, and K.-C. Toh. A Schur complement based semi-proximal admm for

convex quadratic conic programming and extensions. Mathematical Program-

ming, pages 1–41, 2014.

L. Liberti, C. Lavor, N. Maculan, and A. Mucherino. Euclidean distance geometry

and applications. SIAM Review, 56(1):3–69, 2014.

C. Ling, J. Nie, L. Qi, and Y. Ye. Biquadratic optimization over unit spheres and

semidefinite programming relaxations. SIAM Journal on Optimization, 20(3):

1286–1310, 2010.

W.-H. Liu and A. H. Sherman. Comparative analysis of the CuthillMcKee and the

reverse CuthillMcKee ordering algorithms for sparse matrices. SIAM Journal

on Numerical Analysis, 13(2):198–213, 1976.

J. Malick. The spherical constraint in boolean quadratic programs. Journal of

Global Optimization, 39(4):609–622, 2007.

W. Mian. Matrix completion procedure with fixed basis coefficients and rank reg-

ularized problems with hard constraints. PhD thesis, National University of

Singapore, 2013.

W. Miao, S. Pan, and D. Sun. A rank-corrected procedure for matrix completion

with fixed basis coefficients. arXiv preprint arXiv:1210.3709, 2012.

R. Mifflin. Semismooth and semiconvex functions in constrained optimization.

SIAM Journal on Control and Optimization, 15(6):959–972, 1977.

J.-J. Moreau. Décomposition orthogonale dun espace hilbertien selon deux cônes

mutuellement polaires. CR Acad. Sci. Paris, 255:238–240, 1962.

REFERENCES 151

J.-J. Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société

mathématique de France, 93:273–299, 1965.

J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business

Media, 2006.

J.-S. Pang, D. Sun, and J. Sun. Semismooth homeomorphisms and strong sta-

bility of semidefinite and Lorentz complementarity problems. Mathematics of

Operations Research, 28(1):39–63, 2003.

N. Patwari, J. Ash, S. Kyperountas, A. Hero, R. Moses, and N. Correal. Lo-

cating the nodes: cooperative localization in wireless sensor networks. Signal

Processing Magazine, IEEE, 22(4):54–69, July 2005.

E. Pȩkalska and R. P. Duin. The dissimilarity representation for pattern recogni-

tion: foundations and applications. Number 64. World Scientific, 2005.

M. J. Powell. A method for non-linear constraints in minimization problems.

UKAEA, 1967.

H.-D. Qi. A semismooth Newton method for the nearest euclidean distance matrix

problem. SIAM Journal on Matrix Analysis and Applications, 34(1):67–93, 2013.

H.-D. Qi and D. Sun. A quadratically convergent Newton method for computing

the nearest correlation matrix. SIAM Journal on Matrix Analysis and Applica-

tions, 28(2):360–385, 2006.

H.-D. Qi and X. Yuan. Computing the nearest Euclidean distance matrix with low

embedding dimensions. Mathematical Programming, 147(1-2):351–389, 2014.

L. Qi and J. Sun. A nonsmooth version of Newton’s method. Mathematical

Programming, 58(1-3):353–367, 1993.

152 REFERENCES

S. Robinson. Local structure of feasible sets in nonlinear programming, part iii:

Stability and sensitivity. In B. Cornet, V. Nguyen, and J. Vial, editors, Nonlin-

ear Analysis and Optimization, volume 30 of Mathematical Programming Stud-

ies, pages 45–66. Springer Berlin Heidelberg, 1987.

S. M. Robinson. Constraint nondegeneracy in variational analysis. Mathematics

of Operations Research, 28(2):201–232, 2003.

R. T. Rockafellar. Augmented lagrangians and applications of the proximal point

algorithm in convex programming. Mathematics of Operations Research, 1(2):

97–116, 1976.

R. T. Rockafellar and R. J.-B. Wets. Variational analysis, volume 317. Springer

Science & Business Media, 2009.

C. Savarese, J. Rabaey, and J. Beutel. Location in distributed ad-hoc wireless

sensor networks. In Acoustics, Speech, and Signal Processing, 2001. Proceedings.

(ICASSP ’01). 2001 IEEE International Conference on, volume 4, pages 2037–

2040 vol.4, 2001.

I. J. Schoenberg. Remarks to Maurice Frechet’s article “sur la definition axioma-

tique d’une classe d’espace distances vectoriellement applicable sur l’espace de

hilbert. Annals of Mathematics, 36(3):pp. 724–732, 1935.

I. J. Schoenberg. On certain metric spaces arising from Euclidean spaces by a

change of metric and their embedding in Hilbert space. Annals of Mathematics,

38(4):pp. 787–793, 1937.

Y. Shang and W. Ruml. Improved MDS-based localization. In INFOCOM 2004.

Twenty-third AnnualJoint Conference of the IEEE Computer and Communica-

tions Societies, volume 4, pages 2640–2651 vol.4, March 2004.

Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz. Localization from mere

connectivity. In Proceedings of the 4th ACM International Symposium on Mobile

REFERENCES 153

Ad Hoc Networking &Amp; Computing, MobiHoc ’03, pages 201–212, New York,

NY, USA, 2003. ACM.

A. Shapiro. Sensitivity analysis of generalized equations. Journal of Mathematical

Sciences, 115(4):2554–2565, 2003.

S. Shekofteh, M. Khalkhali, M. Yaghmaee, and H. Deldari. Localization in wireless

sensor networks using tabu search and simulated annealing. In Computer and

Automation Engineering (ICCAE), 2010 The 2nd International Conference on,

volume 2, pages 752–757, Feb 2010.

D. Sun. The strong second-order sufficient condition and constraint nondegeneracy

in nonlinear semidefinite programming and their implications. Mathematics of

Operations Research, 31(4):761–776, 2006.

D. Sun and J. Sun. Semismooth matrix-valued functions. Mathematics of Opera-

tions Research, 27(1):150–169, 2002.

D. Sun, K.-C. Toh, and L. Yang. A convergent 3-block semi-proximal alternat-

ing direction method of multipliers for conic programming with 4-type of con-

straints. arXiv preprint arXiv:1404.5378, 2014.

K.-C. Toh. An inexact primaldual path following algorithm for convex quadratic

SDP. Mathematical Programming, 112(1):221–254, 2008.

K.-C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3-a MATLAB software package

for semidefinite programming, version 1.3. Optimization methods and software,

11(1-4):545–581, 1999.

P. Tseng. Second-order cone programming relaxation of sensor network localiza-

tion. SIAM Journal on Optimization, 18(1):156–185, 2007.

J. Tzeng, H. H. Lu, and W.-H. Li. Multidimensional scaling for large genomic

data sets. BMC bioinformatics, 9(1):179, 2008.

154 REFERENCES

Z. Wang, S. Zheng, Y. Ye, and S. Boyd. Further relaxations of the semidefi-

nite programming approach to sensor network localization. SIAM Journal on

Optimization, 19(2):655–673, 2008.

K. Weinberger and L. Saul. Unsupervised learning of image manifolds by semidef-

inite programming. International Journal of Computer Vision, 70(1):77–90,

2006.

K. Q. Weinberger, F. Sha, and L. K. Saul. Learning a kernel matrix for nonlin-

ear dimensionality reduction. In Proceedings of the Twenty-first International

Conference on Machine Learning, ICML ’04, pages 106–, New York, NY, USA,

2004. ACM.

K. Q. Weinberger, F. Sha, Q. Zhu, and L. K. Saul. Graph Laplacian regularization

for large-scale semidefinite programming. In Advances in neural information

processing systems, pages 1489–1496, 2006.

Z. Wen and W. Yin. A feasible method for optimization with orthogonality con-

straints. Mathematical Programming, 142(1-2):397–434, 2013.

Z. Wen, D. Goldfarb, and W. Yin. Alternating direction augmented lagrangian

methods for semidefinite programming. Mathematical Programming Computa-

tion, 2(3-4):203–230, 2010.

K. Yosida. Functional analysis. reprint of the sixth (1980) edition. classics in

mathematics. Springer-Verlag, Berlin, 11:14, 1995.

G. Young and A. Householder. Discussion of a set of points in terms of their

mutual distances. Psychometrika, 3(1):19–22, 1938.

L. Zhang, L. Liu, C. Gotsman, and S. J. Gortler. An as-rigid-as-possible approach

to sensor network localization. ACM Trans. Sen. Netw., 6(4):35:1–35:21, July

2010.

REFERENCES 155

X.-Y. Zhao, D. Sun, and K.-C. Toh. A Newton-CG augmented lagrangian method

for semidefinite programming. SIAM Journal on Optimization, 20(4):1737–1765,

2010.

G. Zhou, L. Caccetta, K. L. Teo, and S.-Y. Wu. Nonnegative polynomial opti-

mization over unit spheres and convex programming relaxations. SIAM Journal

on Optimization, 22(3):987–1008, 2012.

