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Chapter 1

Introduction

The calculation of the homotopy groups π∗(X) of a topological space X plays a critical

role in homotopy theory. However, their calculation continues to be very difficult, even

for otherwise basic spaces such as spheres. The ideal scenario is to reduce the calculation

of π∗(X) to the calculation of other, easier to calculate, spaces. From the fact that

π∗(
∏
α

Xα) ∼=
∏
α

π∗(Xα)

a standard technique is to decompose X, up to homotopy, as a product of other spaces.

For example there is the classical result of Serre that localised away from 2 there is a

homotopy equivalence

ΩS2n ' S2n−1 × ΩS4n−1.

One therefore deduces that the calculation of odd torsion in the homotopy groups of

even spheres is reduced to the calculation of odd torsion in the homotopy groups of

odd spheres. Or without localisation the Hilton-Milnor theorem gives the homotopy

equivalence

Ω(ΣX ∨ ΣY ) ' ΩΣX × ΩΣ(

∞∨
j=0

X∧j ∨ Y ).

The aim of this thesis is to provide satisfactory decompositions for particular examples of

gauge groups. Due to their intimate ties with other fields, there has been a lot of interest

in the topology of gauge groups and their classifying spaces. For instance, Donaldson

[Don86] used gauge theory to introduce new restrictions on the intersection form of

simply-connected differentiable 4-manifolds and also used gauge theory to introduce new

polynomial invariants of such spaces [Don90]. As a result, this showed the existence of

topological 4-manifolds with no smooth structure, as well as the existence of 4-manifolds

with infinitely many non-diffeomorphic smooth structures.

1



2 Chapter 1 Introduction

The study of gauge groups exceeds these applications by having intimate ties with mathe-

matical physics and algebraic geometry. In physics, gauge groups refer to certain internal

symmetries of field theories and we point the reader to [CM94] for an exposition of how

the topology of gauge groups fits into the picture. In algebraic geometry, the gauge

group relates to moduli spaces of stable vector bundles, indeed this is the application

that we will focus on. We point the reader to [BHH10], [LS13] and [Bai14] in which

there are calculations of some of the topological invariants of the gauge groups studied

in this thesis.

Unless otherwise stated, we will assume that all topological spaces are homotopy equiv-

alent to CW -complexes.

1.1 Definitions and Notation

Consider a degree n polynomial with real coefficients

anx
n + an−1x

n−1 + · · ·+ a0 = 0.

By the Fundamental Theorem of Algebra we know that the polynomial has exactly n

roots over C. However, over the field R, we only know that the number of roots is

congruent to n mod 2. This is due to the fact that complex roots come in pairs, hence

information about the complex case reveals information about the real case.

In [Ati66], Atiyah’s idea was to try to compare real and complex K-theory in a similar

fashion by providing a K-theory that catered for both. The idea was to take real vector

bundles and ‘complexify’ them in some way. This new flavour of bundle, termed Real

vector bundle, is associated with the Real principal bundles described in Chapter 4.

We highlight a natural way to think about this ‘complexification’. In the complex case,

it is very well known that to a smooth projective complex algebraic curve, one can

associate a compact Riemann surface. This correspondence provides an equivalence

between the category of smooth complex algebraic curves and the category of compact

Riemann surfaces.

Alternatively, taking a smooth projective real algebraic curve Y , we can still associate

Riemann surface using ‘complexification’, that is, extending Y to C. This new space

X := Y ×RC has a canonical antiholomorphic involution σ : X → X induced by complex

conjugation. In general the pair (X,σ) with X a compact Riemann surface and σ an

antiholomorphic involution will be called a Real surface. We can then form the category

of Real surfaces where morphisms are continuous maps f : X → Y with the property

fσX = σY f.
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In this new setting, the correspondence described above provides an equivalence between

the category of smooth projective real algebraic curves and the category of Real surfaces.

To a Real surface (X,σ) we associate the following triple (g(X), r(X), a(X)) where

• g(X) is the genus of X;

• r(X) is the number of path components of the fixed set Xσ;

• a(X) = 0 if X/σ is orientable and a(X) = 1 otherwise.

We note that the path components of Xσ are each homeomorphic to S1. The following

classification of Real surfaces was studied in [Wei83].

Theorem 1.1 Weichold. Let (X,σ) and (X ′, σ′) be Real surfaces then there is a iso-

morphism X → X ′ (in the category of Real surfaces) if and only if

(g(X), r(X), a(X)) = (g(X ′), r(X ′), a(X ′)).

Furthermore, if a triple (g, r, a) satisfies one of the following conditions

1. if a = 0, then 1 ≤ r ≤ g + 1 and r ≡ (g + 1) mod 2;

2. if a = 1, then 0 ≤ r ≤ g;

then there is a Real surface (X,σ) such that (g, r, a) = (g(X), r(X), a(X)).

Therefore a Real surface (X,σ) is completely determined by its triple (g, r, a) which we

call the type of the Real surface.

Let π : P → X be a principal U(n)-bundle over the underlying Riemann surface X of

the Real surface (X,σ). A lift of σ is a map σ̃ : P → P satisfying

1. σ π = π σ̃;

2. σ̃(p · g) = σ̃(p) · g for all p ∈ P, g ∈ U(n);

where g represents the entry-wise complex conjugate of g ∈ U(n). We remark that, due

to Property 2 of a lift, the fixed point set P σ̃ has the structure of a principal O(n)-bundle

over the real points Xσ.

Let σ̃ be a lift then we say that (P, σ̃)→ (X,σ) is a Real principal U(n)-bundle (or Real

bundle) if σ̃ further satisfies

3. σ̃2(p) = p for all p ∈ P ;
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or if n is even we say that (P, σ̃)→ (X,σ) is a Quaternionic principal U(n)-bundle (or

Quaternionic bundle) if σ̃ satisfies

3′. σ̃2(p) = p · (−In) for all p ∈ P.

where In represents the n × n identity matrix. We point the reader to Chapter 4 for

some general theory on equivariant bundles.

The following two propositions originally appeared in [BHH10] but the reader can find

their proofs in Section 4.5.

Proposition 1.2. Let (X,σ) be a Real surface with r fixed components Xi for 1 ≤ i ≤ r.
Then Real principal U(n)-bundles (P, σ̃) → (X,σ) are classified by the first Stiefel-

Whitney classes of the restriction to bundles Pi → Xi over the fixed components

ω1(Pi) ∈ H1(Xi,Z/2) ∼= Z/2

and the first Chern classes of the bundle over X

c1(P ) ∈ H2(X,Z) ∼= Z

subject to the relation

c1(P ) ≡
∑

w1(Pi) mod (2).

Furthermore, given any such characteristic classes there is a Real principal U(n)-bundle

that realises them.

We write

(c, w1, w2, . . . , wr) := (c1(P ), w1(P1), w1(P2), . . . , w1(Pr))

and we will refer to the tuple (c, w1, w2, . . . , wr) ∈ Z ×
∏
r Z2 as the class of the Real

principal U(n)-bundle (P, σ̃).

Proposition 1.3. Quaternionic principal U(n)-bundles (P, σ̃) → (X,σ) are classified

by their first Chern class which must be even. Furthermore, given any such Chern class

there is a Quaternionic principal U(n)-bundle that realises it.

Writing c = c1(P ), we will therefore refer to c ∈ 2Z as the class of the Quaternionic

principal U(n)-bundle (P, σ̃).

Let (P, σ̃)→ (X,σ) be a Real or Quaternionic principal U(n)-bundle. An automorphism

of (P, σ̃) is a U(n)-equivariant map φ : P → P such that the following diagrams commute

P
φ
//

��

P

��

X
idX // X

and

P
φ
//

σ̃
��

P

σ̃
��

P
φ
// P.
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Let Map(P, P ) be endowed with the compact open topology. We then define the (un-

pointed) gauge group G (P, σ̃) to be the subspace of Map(P, P ) whose elements are au-

tomorphisms of (P, σ̃).

In order to provide homotopy decompositions for G (P, σ̃), it will be convenient to provide

decompositions for certain subspaces of the gauge group. Choose a basepoint ∗X of

(X,σ) such that σ(∗X) = ∗X if r > 0. Then the (single)-pointed gauge group G ∗(P, σ̃)

consists of the elements of G (P, σ̃) that restrict to the identity above ∗X .

Another pointed gauge group of interest was considered in [BHH10]. Let (X,σ) be a Real

surface of type (g, r, a), then for each 1 ≤ i ≤ r choose a designated point ∗i contained

in the fixed component Xi. Further if a = 1 choose another designated point that is

not fixed by the involution. Then the (r+ a)-pointed gauge group G ∗(r+a)(P, σ̃) consists

of the elements of G (P, σ̃) that restrict to the identity above these (r + a) designated

points of (X,σ).

We now present results of [BHH10] corresponding to the low dimensional homotopy

groups of G (P, σ) and G ∗(r+a)(P, σ̃). We note that we only previously defined Quater-

nionic bundles with even rank and hence n is assumed to be even for the last row. We

also note that these homotopy groups depend on the type of Real surface (g, r, a) but

are independent of the choice of class of (P, σ̃).

Theorem 1.4 Biswas, Huisman, Hurtubise. The low dimensional homotopy groups of
the rank n gauge groups above a Real surface of type (g, r, a) are as follows

Real π0(G ∗(r+a)(P, σ̃)) π0(G (P, σ̃)) π1(G ∗(r+a)(P, σ̃)) π1(G (P, σ̃))

n > 2 Zg+a × (Z2)r Zg × (Z2)r+1 Z Z× (Z2)r

n = 2 Zg+a+r Zg+r × Z2 Z Zr+1

n = 1 Zg+a Zg × Z2 0 0

Quat.

rank 2n
Zg+a Zg × (Z2)a Z Z

Our aim to is expand on the results presented in Theorem 1.4, and the reader is directed

to Appendix A for these results. In this appendix, we also highlight a discrepancy with

the third and fourth columns of the table in Theorem 1.4.
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1.2 Main Results for Real Bundles

In this section we present the main results pertaining to homotopy decompositions of

gauge groups of Real principal U(n)-bundles. Their proofs can be found in Chapter 5,

and the author has provided hyper-links on each result to ease navigation. We recall

that the isomorphism class of a gauge group of a Real bundle (P, σ̃) depends on

1. the type of the underlying Real surface (g, r, a);

2. the isomorphism class of the bundle (c, w1, w2, . . . , wr);

subject to the relations in Theorem 1.1 and Proposition 1.2. Therefore, to ease notation

we will sometimes use the following

• G ((g, r, a); (c, w1, w2, . . . , wr)) to represent the unpointed gauge group of a Real

bundle of class (c, w1, w2, . . . , wr) over a Real surface of type (g, r, a);

• G ∗((g, r, a); (c, w1, w2, . . . , wr)) to represent the single-pointed gauge group of the

Real bundle as above;

• G ∗(r+a)((g, r, a); (c, w1, w2, . . . , wr)) to represent the (r + a)-pointed gauge group

of the Real bundle as above.

Our aim is to provide homotopy decompositions for these spaces and in doing so we will

be able to significantly build upon the results in Theorem 1.4; the reader is directed to

Appendix A for an extension of these results.

We first present the results relating to when gauge groups of different Real bundles have

the same homotopy type. For (r + a)-pointed gauge groups this is always the case.

Proposition 1.5. Let (P, σ̃) and (P ′, σ′) be Real principal U(n)-bundles over a Real

surface (X,σ) of arbitrary type (g, r, a), then there is a homotopy equivalence

B G ∗(r+a)(P, σ̃) ' B G ∗(r+a)(P ′, σ′).

However, this is not necessarily the case for the single-pointed and unpointed gauge

groups, although we do have the following results.

Proposition 1.6. For any c, c′, w1, w
′
1 there is a homotopy equivalence

B G ∗((g, r, a); (c, w1, w2, . . . , wr)) ' B G ∗((g, r, a); (c′, w′1, w2, . . . , wr)).

Proposition 1.7. Let the following be classifying spaces of rank n gauge groups. Then

there are homotopy equivalences

B G ((g, r, a); (c, w1, w2, . . . , wr)) ' B G ((g, r, a); (c+ 2n,w1, w2, . . . , wr)).
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Proposition 1.8. Let n be odd then there are homotopy equivalences

1. B G ((g, r, a); (c, w1, w2, . . . , wr)) ' B G ((g, r, a); (c,
∑r

i=1wi, 0, . . . , 0));

2. B G ∗((g, r, a); (c, w1, w2, . . . , wr)) ' B G ∗((g, r, a); (c,
∑r

i=1wi, 0, . . . , 0)).

After discussion with the external examiner, it is apparent that there are stronger state-

ments than Propositions 1.7 and 1.8 which have simpler and more conceptual proofs.

We include the stronger statements here and the corresponding proofs immediately after

those of Propositions 1.7 and 1.8.

Proposition 1.7 (Strong). Let the following be gauge groups of rank n. Then there

are isomorphisms of topological groups

G ((g, r, a); (c, w1, w2, . . . , wr)) ∼= G ((g, r, a); (c+ 2n,w1, w2, . . . , wr)).

Proposition 1.8 (Strong). Let n be odd then there are isomorphisms of topological

groups

1. G ((g, r, a); (c, w1, w2, . . . , wr)) ∼= G ((g, r, a); (c,
∑r

i=1wi, 0, . . . , 0));

2. G ∗((g, r, a); (c, w1, w2, . . . , wr)) ∼= G ∗((g, r, a); (c,
∑r

i=1wi, 0, . . . , 0)).

Due to Proposition 1.5, it is easy to state homotopy decompositions for (r+ a)-pointed

gauge group as seen in Theorem 1.9.

Theorem 1.9. Let (P, σ̃) be of arbitrary class then there are integral homotopy decom-
positions

Type Decompositions for G ∗(r+a)(P, σ̃)

(g, 0, 1) for g even G ∗((0, 0, 1); 0)×
g∏

ΩU(n)

(g, 0, 1) for g odd G ∗((1, 0, 1); 0)×
g−1∏

ΩU(n)

(g, r, 0) Ω2(U(n)/O(n))×
(g−r+1)+(r−1)∏

ΩU(n)×
r−1∏

ΩO(n)

(g, r, 1) for g − r even G ∗((1, 1, 1); (0, 0))×
(g−r)+(r−1)+1∏

ΩU(n)×
r−1∏

ΩO(n)

(g, r, 1) for g − r odd G ∗((1, 1, 1); (0, 0))×
(g−r−1)+(r−1)+2∏

ΩU(n)×
r−1∏

ΩO(n)

However, in the single-pointed case we have to be a little more careful with regards to

the class of the underlying Real bundle. For the cases where G ∗(r+a)(P, σ̃) 6= G ∗(P, σ̃),

that is when r + a > 1, we have the results in Theorem 1.10.
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Theorem 1.10. Let n be odd or let (P, σ̃) be of class (c, w1, 0, . . . , 0). Let r + a > 1
then there are integral homotopy decompositions

Type Decompositions for G ∗(P, σ̃)

(g, r, 0) Ω2(U(n)/O(n))×
g−r+1∏

ΩU(n)×
r−1∏

ΩO(n)×
r−1∏

Ω(U(n)/O(n))

(g, r, 1)

g − r even
G ∗((1, 1, 1); (0, 0))×

g−r∏
ΩU(n)×

r−1∏
ΩO(n)×

r−1∏
Ω(U(n)/O(n))

(g, r, 1)

g − r odd
G ∗((1, 1, 1); (0, 0))×

(g−r−1)+1∏
ΩU(n)×

r−1∏
ΩO(n)×

r−1∏
Ω(U(n)/O(n))

The remaining cases seem to integrally indecomposable, however we will obtain the

following localised homotopy decompositions.

Theorem 1.11. Let p 6= 2 be prime and let n be odd, then there are the following p-local

homotopy equivalences

1. G ∗((0, 0, 1); c) 'p Ω2(U(n)/O(n))× Ω(U(n)/O(n));

2. G ∗((1, 0, 1); c) 'p Ω2(U(n)/O(n))× Ω(U(n)/O(n))× ΩU(n);

3. G ∗((1, 1, 1); (c, w1)) 'p Ω2(U(n)/O(n))× Ω(U(n)/O(n))× ΩO(n).

We move on to some integral homotopy decompositions for unpointed gauge groups.

The reader is invited to compare the tables of Theorem 1.12 and Theorem 1.10.

Theorem 1.12. Let (P, σ̃) be of class (c, w1, w2, . . . , wr) then there are integral homo-

topy decompositions

1.

Type Decompositions for G (P, σ̃)

(g, r, 0) G ((r − 1, r, 0); (c, w1, . . . , wr))×
g−r+1∏

ΩU(n)

(g, r, 1)

g − r even
G ((r, r, 1); (c, w1, . . . , wr))×

g−r∏
ΩU(n)

(g, r, 1)

g − r odd
G ((r + 1, r, 1); (c, w1, . . . , wr))×

g−r−1∏
ΩU(n)

2. G ((2, 1, 1); (c, w1)) ' G ((1, 1, 1); (c, w1))× ΩU(n).
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Further, for r ≥ 1 and when (P, σ̃) is of class (c, w1, 0, . . . , 0) or n is odd, there are

integral homotopy decompositions

(3)

Type Decompositions for G (P, σ̃)

(r − 1, r, 0) G ((0, 1, 0); (c,Σwi))×
r−1∏

ΩO(n)×
r−1∏

Ω(U(n)/O(n))

(r, r, 1) G ((1, 1, 1); (c,Σwi))×
r−1∏

ΩO(n)×
r−1∏

Ω(U(n)/O(n))

(r + 1, r, 1) G ((2, 1, 1); (c,Σwi))×
r−1∏

ΩO(n)×
r−1∏

Ω(U(n)/O(n))

The remaining unfamiliar spaces in Theorem 1.12 seem to be integrally indecomposable,

however localising at particular primes permits further decompositions.

Theorem 1.13. Let n be a positive integer and let p be a prime with p - n.

1. Let the following be gauge groups of rank n then there are p-local homotopy equiv-

alences

(a) G ((g, 1, a); (c, 0)) 'p O(n)× G ∗((g, 1, a); (c, 0));

further if p 6= 2 and n is odd, then there are p-local homotopy equivalences

(b) G ((0, 0, 1); c) 'p SO(n)× Ω2(U(n)/SO(n));

(c) G ((1, 0, 1); c) 'p SO(n)× Ω2(U(n)/SO(n))× ΩU(n).

2. Let the following be gauge groups of rank p then there are p-local homotopy equiv-

alences

(a) G ((g, 1, a); (c, 0)) 'p O(p)× G ∗((g, 1, a); (c, 0));

further if p 6= 2, then there are p-local homotopy equivalences

(b) G ((0, 0, 1); c) 'p SO(p)× Ω2(U(p)/SO(p));

(c) G ((1, 0, 1); c) 'p SO(p)× Ω2(U(p)/SO(p))× ΩU(p).

1.3 Main Results for Quaternionic Bundles

We now focus on the results for homotopy decompositions of gauge groups of Quater-

nionic principal U(2n)-bundles, the proofs of these results are similar to the Real case but

some details are provided in Section 5.4. To distinguish the notation of gauge groups

from the Real case we will use a subscript Q, for example GQ(P, σ̃). Recall that the

isomorphism class of a gauge group of a Quaternionic bundle (P, σ̃) depends on
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1. the type of the underlying Real surface (g, r, a);

2. the isomorphism class of the bundle c;

subject to the relations in Theorem 1.1 and c ≡ 0 mod 2. Therefore, to ease notation

we will sometimes use the following

• GQ((g, r, a); c) to represent the unpointed gauge group of a Quaternionic bundle of

class c over a Real surface of type (g, r, a);

• GQ
∗((g, r, a); c) to represent the single-pointed gauge group of the Quaternionic

bundle as above;

• GQ
∗(r+a)((g, r, a); c) to represent the (r + a)-pointed gauge group of the Quater-

nionic bundle as above.

Once again, our aim is to provide homotopy decompositions for these spaces and in doing

so we will be able to significantly build upon the results in the last row of Theorem 1.4;

the reader is directed to Appendix A.

We present results in the same order as we did in the Real case. In the Quaternionic case,

the homotopy types of the pointed and (r+ a)-pointed gauge groups are independent of

the class of the bundle.

Proposition 1.14. Let (X,σ) be a Real surface of fixed type (g, r, a). Let (P, σ̃) and

(P ′, σ′) be Quaternionic principal U(2n)-bundles over (X,σ), then there are homotopy

equivalences

1. B GQ
∗(P, σ̃) ' B GQ

∗(P ′, σ′);

2. B GQ
∗(r+a)(P, σ̃) ' B GQ

∗(r+a)(P ′, σ′).

For the unpointed case, we have an analogue of Proposition 1.7.

Proposition 1.15. Let (X,σ) be a Real surface of fixed type (g, r, a) and let the following

be the classifying spaces of gauge groups of Quaternionic bundles of rank 2n. Then for

any even integer c, there is a homotopy equivalence

B GQ((g, r, a); c)) ' B GQ((g, r, a); c+ 4n).

We now present homotopy decompositions for pointed gauge groups in the Quaternionic

case. The reader is invited to compare the following results to their Real analogues.
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Theorem 1.16. Let (P, σ̃) be a Quaternionic principal U(2n)-bundle of class c then

there are integral homotopy decompositions

Type Decompositions for GQ
∗(r+a)(P, σ̃)

(g, 0, 1) for g even GQ
∗((0, 0, 1); 0)×

g∏
ΩU(2n)

(g, 0, 1) for g odd GQ
∗((1, 0, 1); 0)×

g−1∏
ΩU(2n)

(g, r, 0) Ω2(U(2n)/Sp(n))×
g∏

ΩU(2n)×
r−1∏

ΩSp(n)

(g, r, 1) for g − r even GQ
∗((1, 1, 1); 0)×

g∏
ΩU(2n)×

r−1∏
ΩSp(n)

(g, r, 1) for g − r odd GQ
∗((1, 1, 1); 0)×

g∏
ΩU(2n)×

r−1∏
ΩSp(n)

For the cases where GQ
∗(r+a)(P, σ̃) 6= GQ

∗(P, σ̃), that is when r + a > 1, we have the

results in Theorem 1.17.

Theorem 1.17. For (P, σ̃) of arbitrary class c, there are integral homotopy decomposi-
tions

Type Decompositions for GQ
∗(P, σ̃)

(g, r, 0) Ω2(U(2n)/Sp(n))×
g−r+1∏

ΩU(2n)×
r−1∏

ΩSp(n)×
r−1∏

Ω(U(2n)/Sp(n))

(g, r, 1)

g − r even
GQ
∗((1, 1, 1); 0)×

g−r∏
ΩU(2n)×

r−1∏
ΩSp(n)×

r−1∏
Ω(U(2n)/Sp(n))

(g, r, 1)

g − r odd
GQ
∗((1, 1, 1); 0)×

g−r∏
ΩU(2n)×

r−1∏
ΩSp(n)×

r−1∏
Ω(U(2n)/Sp(n))

Again, the remaining cases seem to integrally indecomposable, however we will obtain

the following localised decompositions.

Theorem 1.18. Let p 6= 2 be prime, then there are p-local homotopy equivalences

1. GQ
∗((0, 0, 1); 0) 'p Ω2(U(2n)/Sp(n))× Ω(U(2n)/Sp(n));

2. GQ
∗((1, 0, 1); 0) 'p Ω2(U(2n)/Sp(n))× Ω(U(2n)/Sp(n))× ΩU(2n);

3. GQ
∗((1, 1, 1); 0) 'p Ω2(U(2n)/Sp(n))× Ω(U(2n)/Sp(n))× ΩSp(n).
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We now present homotopy decompositions for the unpointed case.

Theorem 1.19. For (P, σ̃) of arbitrary class c, there are integral homotopy decomposi-
tions

Type Decompositions for GQ(P, σ̃)

(g, 0, 1)

g even
GQ((0, 0, 1); c)×

g∏
ΩU(n)

(g, 0, 1)

g odd
GQ((1, 0, 1); c)×

g−1∏
ΩU(n)

(g, r, 0) GQ((0, 1, 0); c)×
r−1∏

ΩSp(n)×
r−1∏

Ω(U(2n)/Sp(n))×
g−r+1∏

ΩU(n)

(g, r, 1) GQ((1, 1, 1); c)×
r−1∏

ΩSp(n)×
r−1∏

Ω(U(2n)/Sp(n))×
g−r∏

ΩU(n)

The remaining unfamiliar spaces in Theorem 1.19 seem to be integrally fundamental,

however localising at a particular prime permits further decompositions.

Theorem 1.20. Let n be a positive integer and let p be a prime such that p - 2n. Let

the following be gauge groups of a Quaternionic bundle of rank 2n, then there are p-local

homotopy equivalences

1. GQ((g, 1, a); c) 'p Sp(n)×B GQ
∗((g, 1, a); c);

2. GQ((0, 0, 1); c) 'p Sp(n)× Ω2
(
U(2n)/Sp(n)

)
;

3. GQ((1, 0, 1); c) 'p Sp(n)× Ω2
(
U(2n)/Sp(n)

)
× ΩU(2n).
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1.4 Summary of Contents

Chapter 2 is dedicated to providing the background homotopy theory used throughout

this thesis. As a consequence there are many unrelated sections and the flow of this

chapter is independent from the rest of the thesis. Sections 2.1 and 2.2 were added for

completeness; the aim is provide rigorous statements and proofs used later in the thesis.

Section 2.3 follows the work of [Har61], introducing a map that has intimate ties with

some of the results in Chapter 5.

Chapter 3 introduces gauge groups related to principal U(n)-bundles in the usual sense,

that is, not Real nor Quaternionic bundles. In Section 3.1 we discuss in some detail the

properties of principal G-bundles, their group of automorphisms (gauge groups) and

how they relate to a certain type of mapping space. In Sections 3.2 and 3.3 we go

on to discuss some decompositions in the case of principal U(n)-bundles over Riemann

surfaces as considered by [The11]. The methods used in these sections are used markedly

in Chapter 5.

Chapter 4 aims to provide general statements about equivariant bundle theory and

how their associated gauge groups are related to mapping spaces in a similar way to the

gauge groups of Chapter 3. We acknowledge that the generalised equivariant bundle

theory of Sections 4.1–4.3 is well-known by experts but we have expanded on some of

the proofs which arise as a generalisation of the non-equivariant case. From Section 4.4

we focus on the Real and Quaternionic bundles defined in the introduction and go on

to prove the classification of such bundles as studied in [BHH10].

Chapter 5 provides the proofs for the statements in Sections 1.2 and 1.3. The proofs

aim to be in the same order as stated in these sections.





Chapter 2

Tools in Homotopy Theory

In the following sections we highlight various facts and techniques in homotopy theory

that are used throughout this thesis. Unless otherwise stated, all spaces will be assumed

to be homotopy equivalent to CW -complexes.

2.1 Homotopy Pullbacks

Some of the homotopy decompositions of gauge groups rely on the homotopy theory of

pullbacks. In the category of topological spaces, a (strict) pullback of the diagram

C
f−→ D

g←− B

is a space A along with maps p : A → C and q : A → B such that the following square

commutes
X

s

##

r

��

∃!t
  

A

p

��

q
// B

g

��

C
f
// D

(2.1)

and the following universal property holds. For every space X and maps s : X → B

and r : X → C such that fr = gs there exists a unique map t : X → A that makes the

triangles in diagram (2.1) commute.

If a commuting square is a pullback then it will be decorated with a right angle as follows

A

p

��

q
// B

g

��

C
f
// D.

15
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We define the standard pullback of the diagram C
f−→ D

g←− B to be the space

C ×D B := {(c, b) ∈ C ×B | f(c) = g(b)}

along with that maps p : C ×D B → C and q : C ×D B → B given by

p(b, c) = c and q(b, c) = b.

It is clear that the standard pullback is a pullback and therefore pullbacks exist. It is

also clear that pullbacks are unique up to isomorphism. We now present some useful

properties of pullbacks whose proofs can be found in [Sel97].

Proposition 2.1. Let the following be a pullback square of pointed topological spaces

D :=

A

p

��

q
// B

g

��

C
f
// D

then

1. if g (or f) is a fibration then p (or q) is a fibration;

2. if g is a fibration and f is a homotopy equivalence then q is a homotopy equivalence.

3. if g and p are fibrations, then the restriction of q to p−1(∗C) is a homeomorphism

onto g−1(∗D).

Let the following be a commutative diagram of topological spaces

X //

��

Y //

��

Z

��

X ′ // Y ′ // Z ′

then

4. if the right square is a pullback then the left square is a pullback if and only if the

outside square is a pullback.

Consider the replacement of the diagram C
f−→ D

g←− B with C ′
f ′−→ D

g′←− B′ where

spaces are replaced up to homotopy equivalence and maps up to homotopy. One may

hope that the pullbacks of these diagrams will have the same homotopy type, however

the following example shows that this is not the case.



Chapter 2 Tools in Homotopy Theory 17

Example 2.1. Let X be a subspace of a space Y with inclusion i : X → Y . Let D2 be

a 2-disk with j : S1 → D2 the inclusion of its boundary. Consider the pullbacks

A

��

//Map∗(D2, Y )

j∗

��

ΩX
i∗ // ΩY

and

A′

��

// ∗

��

ΩX
i∗ // ΩY.

Using the description of the standard pullback we see that

A′ ∼= {(γ, ∗) ∈ ΩX × ∗ | i∗(γ) = ∗} = ∗

and

A ∼= {(γ, δ) ∈ ΩX ×Map∗(D2, Y ) | i∗(γ) = j∗(δ)}.

However the last space is homeomorphic to the subspace of Map∗(D2, Y ) whose elements

under i∗ have image lying in X. In general we can see that A 6' A′, in particular if X

is nullhomotopic in Y then A ' Ω2Y .

Remark 2.2. This example was used to highlight that changing a diagram up to homo-

topy may yield a different limit (or colimit). The author admits that whilst this example

may seem exotic for this purpose, it serves the dual purpose of introducing a format of

pullbacks that is heavily used in Chapter 5.

Therefore, our aim is to provide a definition of a ‘pullback’ that is invariant when

changes are made up to homotopy. Let the following be squares of topological spaces

that commute up to homotopy

D :=

A

p

��

q
// B

g

��

C
f
// D.

and E :=

A′

p′

��

q′
// B′

g′

��

C ′
f ′
// D′.

Then a map of squares from D to E is a homotopy commuting diagram

A′
q′

//

p′

��

B′

g′

��

A
q

//

p

��

α

>>

B

g

��

β
==

C ′
f ′

// D′.

C
f

//

γ
>>

D

δ

==

(2.2)

We say that D is homotopy equivalent to E if there exists such a map of squares with

α, β, γ and δ homotopy equivalences. If D and E are homotopy equivalent, and further
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if E is a strict pullback and f ′ and g′ are fibrations, then we say that D is a homotopy

pullback square. Further, we say that the space A along with the maps p and q are a

homotopy pullback of the diagram C
f−→ D

g←− B.

Proposition 2.3. The following ‘universal’ property is satisfied by homotopy pullback

squares. With notation as above, let D be a homotopy pullback square. For a space X

and maps s : X → B and r : X → C such that fr ' gs

X
s

##

r

��

∃t
  

A

p

��

q
// B

g

��

C
f
// D

(2.3)

there exists t : X → A making the diagram commute up to homotopy. However t is not

necessarily unique, even up to homotopy.

Proof. The homotopy pullback D slots into the homotopy commuting diagram (2.2)

where the back square is a strict pullback, the maps f ′ and g′ are fibrations and α, β, γ

and δ are homotopy equivalences. Hence there is a homotopy

H : X × I → D′

such that H0 = f ′γr and H1 = g′βs. However, using the homotopy lifting property of

the fibration f ′, there is a homotopy H̃ : X × I → C ′ such that H̃0 = γr and H = f ′H̃.

Therefore f ′H̃1 = g′βs and by the pullback universal property of the back square, there

is a unique map t′ : X → A′ such that H̃1 = p′t′ and βs = q′t′.

For a homotopy inverse α−1 of α we set t := α−1t′ and check that the diagram (2.3)

homotopy commutes

pt = pα−1t′ ' γ−1p′t′ = γ−1H̃1 'H̃ γ−1H̃0 = γ−1γr ' r

for a homotopy inverse γ−1 of γ. One can similarly check that upper triangle homotopy

commutes.

The choices of H̃ and α−1 mean that t is not necessarily unique, even up to homotopy.

We remark that this universal property only required one of the maps f or g to be a

fibration. With this in mind, we shall see that the definition of a homotopy pullback

square can be relaxed so that a homotopy pullback square only has to be homotopy

equivalent to a pullback square whose vertical or horizontal maps are fibrations. Firstly,

it will be useful to construct a standard homotopy pullback squares in the same way we

constructed one for strict pullbacks.
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It is well known that any map α : X → Y between topological spaces can be factored as

X
'−→ P (α)

α̃−→ Y

where α̃ is a fibration with fibre F (α). We apply this process to the maps f and g in

diagram C
f−→ D

g←− B which we will use to obtain the following diagram

P (f)×D P (g)
q′

//

p′

��

P (g)

g̃

��

P (f)×D P (g)
q

//

p

��

B

g

��

β'
==

P (f)
f̃

// D.

C
f

//

γ'
55

D

(2.4)

In the diagram the back square is the standard pullback which defines p′ and q′. We

define p := p′γ−1 and q := q′β−1 for γ−1 and β−1 homotopy inverses of γ and β and

this makes the diagram homotopy commute. Therefore the front square is a homotopy

pullback square and we refer to the space P (f) ×D P (g) with maps p and q as the

standard homotopy pullback of the diagram C
f−→ D

g←− B.

Proposition 2.4. Let

D :=

A

p

��

q
// B

g

��

C
f
// D.

be a homotopy commuting square of topological spaces. Then the following are equivalent

1. D is a homotopy pullback square;

2. D is homotopy equivalent to a pullback square whose vertical arrows are fibrations;

3. D is homotopy equivalent to a pullback square whose horizontal arrows are fibra-

tions.

Furthermore, if A,B,C and D have the homotopy type of connected CW -complexes then

the following are equivalent to the above

4. there exists an induced map of homotopy fibres F (q)→ F (f) which is a homotopy

equivalence.

5. there exists an induced map of homotopy fibres F (p)→ F (g) which is a homotopy

equivalence.
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Proof. (2⇒ 1) Suppose that the diagram D is homotopy equivalent to a pullback square

E :=

C ′ ×D′ B′

p′
����

q′
// B′

g′
����

C ′
f ′

// D′

where double arrowheads denote fibrations. We will show that E is homotopy equivalent

to a pullback square whose vertical and horizontal arrows are fibrations.

We now replace f ′ with a fibration to obtain the diagram

C ′ ×D′ B′

��

h // P (f ′)×D′ B′

����

// // B′

����

C ′
' // P (f ′)

f̃ ′
// // D′

where h is defined using the universal property of the right hand pullback square. Note

that this implies that the outside square is just the diagram E and therefore is a pullback

square. By Proposition 2.1 (4), this implies that the left hand square is also a pullback

square and further that h is a homotopy equivalence by Proposition 2.1 (2). This shows

that the outside square is homotopy equivalent to the right hand square and the result

follows.

(4⇒ 1) We replace the maps f and g by fibrations to obtain the following diagram

F (q′) // P (f)×D P (g)
q′

// //

p′

����

P (g)

g̃

����

F (q)

a
;;

//

b

��

A
q

//

p

��

α
99

B

g

��

β'
==

F (f̃) // P (f)
f̃

// // D.

F (f) //

c
;;

C
f

//

γ'
99

D

(2.5)

The back right square is a strict pullback and hence α is defined using the universal

property. The left hand cube is a choice of induced maps on the (homotopy) fibres and

by assumption we can choose b to be a homotopy equivalence. The back left vertical map

is a homeomorphism by Proposition 2.1 (3) and the map c is a homotopy equivalence

by the five-lemma. We conclude that a is a homotopy equivalence and again by the five-

lemma that α is a homotopy equivalence. This shows that D is a homotopy pullback.

The implication (1 ⇒ 4) is clear from diagram (2.5) and the five lemma. However,

notice that connectivity of the spaces can be relaxed. Furthermore, we trivially have

that (1⇒ 2) and by symmetry we have the equivalences of the remaining statements.
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In the following, we shall see that the homotopy type of the homotopy pullback is

invariant when maps or spaces in C
f−→ D

g←− B are replaced up to homotopy. However,

we will require some general properties of homotopy pullbacks.

Proposition 2.5. Let the following be a homotopy commuting square of spaces having

the homotopy type of connected CW -complexes

D :=

A

p

��

q
// B

g

��

C
f
// D

and assume that f (or g) is a homotopy equivalence. Then q (or p) is a homotopy

equivalence if and only if D is a homotopy pullback square.

Proof. This follows immediately from Proposition 2.4 and the five-lemma.

Proposition 2.6. Let the following be a commutative diagram of topological spaces

X //

��

Y //

��

Z

��

X ′ // Y ′ // Z ′

then if the right square is a homotopy pullback then the left square is a homotopy pullback

if and only if the outside square is a homotopy pullback.

Proof. By replacing the relevant diagrams with strict pullbacks, the results follow from

Proposition 2.1.

Proposition 2.7. Let the following be homotopy pullback squares of spaces with the

homotopy type of connected CW -complexes

D :=

A

p

��

q
// B

g

��

C
f
// D.

and E :=

A′

p′

��

q′
// B′

g′

��

C ′
f ′
// D′.

Assume that the diagrams C
f−→ D

g←− B and C ′
f ′−→ D′

g′←− B′ are homotopy equiva-

lent, that is, there exist homotopy equivalences making the following diagram homotopy
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commute
A′ //

��

B′

��

A //

��

φ
>>

B

��

'
==

C ′ // D′.

C //

'
>>

D

'
==

(2.6)

Then a map φ : A→ A′ induced by the universal property of E is a homotopy equivalence,

in other words D and E are homotopy equivalent.

Proof. Consider the front and right squares

A

��

// B

��

' // B′

��

C // D
' // D′.

Then by assumption the front square is a homotopy pullback and the right square is a

homotopy pullback by Proposition 2.5. Therefore the outside rectangle of this diagram

is a homotopy pullback by Proposition 2.6. By the homotopy commutativity of the

cube, the outside rectangle of the left and back squares

A

��

φ
// A′

��

// B′

��

C
' // C ′ // D′

is also a homotopy pullback. By assumption the back square is a homotopy pullback

and hence the left hand square is by Proposition 2.6. We conclude that φ is a homotopy

equivalence by Proposition 2.5.

Corollary 2.8. Let the following be a homotopy pullback square of spaces having the

homotopy type of connected CW -complexes

D :=

A

p

��

q
// B

g

��

C
f
// D

and assume that f (or g) is a fibration. Then there is a homotopy equivalence

A ' B ×D C.
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Proof. The assumption that f (or g) is a fibration implies that the strict pullback square

B ×D C
p

��

q
// B

g

��

C
f

// D

is a homotopy pullback square. The result follows from Proposition 2.7.

2.2 Obtaining Homotopy Decompositions

At the start of this thesis we noted that providing a homotopy decomposition of any

space can be a powerful method for obtaining homotopy groups. However, it feels like

a bit of logical leap to immediately expect gauge groups to decompose as a product. In

this section we provide motivation for that expectation.

A product of two spaces A×B satisfies the following universal property:

X

f
��

f2

##

f1

{{
A A×Bπ1

oo
π2

// B

for any space X and maps f1 : X → A and f2 : X → B there is a unique map

f : X → A×B

making the above diagram commute. This universal property gives a bijection of sets

Map(X,A×B)←→ Map(X,A)×Map(X,B).

Suppose f and f ′ in Map(X,A×B) are sent to (f1, f2) and (f ′1, f
′
2) under the bijection,

then the universal property also implies that the following are equivalent

1. there exists homotopies such that f ′1 ∼ f1 and f ′2 ∼ f2;

2. there exists a homotopy such that f ′ ∼ f .

We conclude that there is an bijection of homotopy sets [X,A×B] and [X,A]× [X,B].

Dually, there is a bijection [A ∨ B,X] and [A,X] × [B,X]. Since a lot of homotopy

invariants take the form of these homotopy sets, it makes sense to decompose spaces as

either a product or a wedge. We now motivate the expectation that topological groups

should not decompose as a wedge.

Proposition 2.9. Let F be a field, let X be a connected H-space and suppose X ' A∨B
then either H̃1 := H̃∗(A;F ) or H̃2 := H̃∗(B;F ) is trivial.
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Proof. There is an induced H-space structure on A and B since they retract off X. As

graded F -modules we can write

H∗(X;F ) ∼= F ⊕ H̃1 ⊕ H̃2.

It is well known that the homology of a connected H-space has the structure of a Hopf

algebra. Furthermore, the positively graded Hopf algebra structure of H∗(X;F ) should

split as a direct product as above. However, since

(H̃1 ⊗ H̃1)⊕ (H̃2 ⊗ H̃2) 6= (H̃1 ⊕ H̃2)⊗ (H̃1 ⊕ H̃2)

this is impossible unless either H̃1 or H̃2 is trivial.

Taking motivation from the above, we seek methods to homotopy decompose a space as

a product. The following results highlight examples of such methods used throughout

this thesis.

Proposition 2.10. Let ΩB → F
f−→ E be a principal fibration. If there is a map

s : E → F such that fs ' idE, then there is a homotopy equivalence

F ' ΩB × E.

Proof. We will show that the sequence

ΩB × E idΩB ×s−−−−−→ ΩB × F → F

is a homotopy equivalence where the last arrow is the action of ΩB on F . Consider the

homotopy commutative diagram, where the columns are homotopy fibrations

ΩB × ∗

��

// ΩB × ΩB //

��

ΩB

��

ΩB × E

��

idΩB ×s// ΩB × F //

��

F

��

E E E.

Then if we consider the induced maps on homotopy groups then the top and bottom

rows are the identity. The result follows.

Corollary 2.11. Let ΩB → F
f−→ E be a principal fibration induced by a map E

∂−→ B.

If ∂ is nullhomotopic then there is a homotopy equivalence

F ' ΩB × E.
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Proof. This follows immediately from Proposition 2.10 since if ∂ is nullhomotopic then

the identity map idE : E → E lifts to a section s : E → F as in the diagram

E

idE
��

s
��

F // E
∂ // B.

Proposition 2.12. Let the following be a principal fibration

ΩE
j−→M ×N f−→ F

such that there exist maps l : M → ΩE and g : F → N with the properties

(M
l−→ ΩE

j−→M ×N p1−→M) ' idM (2.7)

(N ↪→M ×N f−→ F
g−→ N) ' idN (2.8)

where p1 is the projection onto the first factor. Let D be the homotopy fibre of g : F → N

then there is an equivalence

ΩE 'M × ΩD.

Proof. By property (2.8), the principal fibration ΩD → ΩF → ΩN has a section. Hence

by Proposition 2.10 the following composition is a homotopy equivalence

ΩN × ΩD → ΩF × ΩD → ΩF. (2.9)

By restricting the action obtained from the following homotopy fibration

ΩF
∂−→ ΩE

j−→M ×N

we can induce an action α : ΩE × ΩD → ΩE. Analogous to proof of Proposition 2.10,

we aim to show that the composition

M × ΩD
l×idΩD−−−−→ ΩE × ΩD

α−→ ΩE

is homotopy equivalence.



26 Chapter 2 Tools in Homotopy Theory

The above composition then fits into the following diagram

ΩN × ΩD

∗×idΩD

��

// ΩF × ΩD

∂×idΩD

��

// ΩF

∂
��

M × ΩD

idM ×∗
��

l×idΩD // ΩE × ΩD
α //

j×∗
��

ΩE

j

��

M ×N (M ×N)× ∗ M ×N

where the columns are homotopy fibrations. The right hand squares homotopy commute

by properties of the action α.

The top left square commutes on the restriction to ΩD because both routes give the

identity idΩD. For the factor ΩN , the upper route consists of the composition

ΩN ↪→ ΩM × ΩN
Ωf−−→ ΩF

∂−→ ΩE

which is nullhomotopic and hence the top left square homotopy commutes.

The bottom left square commutes on the restriction to ΩD. For the other factor, notice

that the composition

ΩE
j−→M ×N p2−→ N

is nullhomotopic since p2 ' g ◦ f by property (2.8). Using property (2.7), we conclude

that the bottom left square homotopy commutes.

The top row is the same as the composition in (2.9) and hence is a homotopy equivalence.

The induced maps on homotopy groups are then isomorphisms for the top and bottom

rows. The result then follows from the five lemma.

2.3 Homotopy Types of Classical Groups

Some of the results in this thesis are intimately linked with some of the results found in

[Har61]. For completeness, we replicate some of those results here.

Theorem 2.13. Let p 6= 2 be prime, then there are p-local homotopy equivalences

1. SU(2n) 'p Sp(n)× (SU(2n)/Sp(n));

2. SU(2n+ 1) 'p SO(2n+ 1)× (SU(2n+ 1)/SO(2n+ 1)).

From which we will deduce the following.

Corollary 2.14. Let p 6= 2 be prime, then there is a p-local homotopy equivalence

Sp(n) 'p SO(2n+ 1).
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To prove Theorem 2.13, we will show that for a prime p 6= 2 there exist p-local sections

to the principal fibrations

Sp(n)→ SU(2n)
q0−→ SU(2n)/Sp(n);

SO(2n+ 1)→ SU(2n+ 1)
q1−→ SU(2n+ 1)/SO(2n+ 1).

The existence of these p-local sections essentially follows from the existence of involutions

on SU(m) with nice enough properties.

Let σ1 : SU(m)→ SU(m) be the involution induced by complex conjugation and for m

even define σ0 = J−1σ1J where

J =



0 1 0 0 · · · 0 0

−1 0 0 0 · · · 0 0

0 0 0 1 · · · 0 0

0 0 −1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1

0 0 0 0 · · · −1 0


.

Note that SU(2n+1)σ1 = SO(2n+1) and SU(2n)σ0 = Sp(n). We will define the p-local

sections

s1 : SU(2n+ 1)/SO(2n+ 1)→ SU(2n+ 1);

s0 : SU(2n)/Sp(n)→ SU(2n).

Let K1 = K1(2n+ 1) := SO(2n+ 1) and let K0 = Sp(n), then for i ∈ {0, 1} define si to

be the map

si(AKi) := Aσi(A)−1.

The maps si are well defined since the fixed point set of σi is Ki. We will calculate the

induced maps in cohomology

(qisi)
∗ : H∗(SU(2n+ i)/Ki)→ H∗(SU(2n+ i)/Ki)

and show that they are isomorphisms localised a prime p 6= 2.

It is well known (see [Bor53] or [MT91] for example) that localised at a prime not equal

to 2 we have

H∗(SU(2n+ i)) ∼= Λ[x3, x5, . . . , x4(n+i)−1]

and that

H∗(SU(2n+ i)/Ki) ∼= Λ[y5, y9, . . . , y4(n+i)−3] (2.10)
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such that q∗i (yj) = xj for j ≡ 1 mod 4 and 5 ≤ j ≤ 4(n+ i)− 3. We first calculate the

induced map (siqi)
∗ : H∗(SU(2n+ i))→ H∗(SU(2n+ i)).

Lemma 2.15. For each i, the map (siqi)
∗ sends generators of H∗(SU(2n+i)) as follows

(siqi)
∗(xj) =

2xj for j ≡ 1 mod 4;

0 otherwise.

Proof. Denote m = 2n+ i then notice that the map siqi is homotopic to the composition

SU(m)
∆−→ SU(m)× SU(m)

1⊗σi−−−→ SU(m)× SU(m)
1⊗−1−−−→

→ SU(m)× SU(m)
µ−→ SU(m)

where ∆ denotes the diagonal map, −1 is the map that sends an element to its inverse

and µ is the multiplication in SU(m). Since each xj is primitive, we obtain

(siqi)
∗(xj) =∆∗(1⊗ σ∗i )(1⊗−1∗)µ∗(xj)

=∆∗(xj ⊗ 1 + 1⊗ σ∗i (−xj))

=xj − σ∗i (xj).

It remains to calculate the element σ∗i (xj), but since σ0 is a conjugate of σ1 it suffices

to calculate σ∗1(xj). The following is a principal bundle

SU(m− 1)
α−→ SU(m)

β−→ SU(m)/SU(m− 1) ∼= S2m−1.

Re-notate each generator of H∗(SU(m)) by xmj , then by looking at the long exact se-

quence in cohomology arising from the Serre spectral sequence we can see that generators

can be chosen such that

α∗(xmj ) = xm−1
j (2.11)

for 1 ≤ j ≤ 2m− 3. Again, from the long exact sequence in cohomology, we can choose

a generator y ∈ H2m−1(S2m−1;Z) such that

β∗(y) = xm2m−1.

Therefore, we can study σ∗1 by inductively looking at the induced maps on S2k−1. The

map β : SU(m) → S2m−1 can be thought of as restricting to the last column of the

matrix or more concretely

q(A) = Aem = (a1m, a2m, . . . , amm)t.
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The induced map of σ1 on S2m−1 is therefore defined via

(a1m, a2m, . . . , amm)t 7→ (a1m, a2m, . . . , amm)t.

It is easy to see that this can be decomposed as a series of m reflections and is therefore

a degree (−1)m map. Indeed, for U(1) ∼= S1, this can easily be seen to be the case since

σ1(eiθ) = e−iθ.

We deduce that each map σ∗i is defined as follows on the generators

σ∗i (x
m
j ) =

{
−xmj for j ≡ 1 mod 4

xmj for j ≡ 3 mod 4.

This finishes the proof.

It is not much more work to deduce Theorem 2.13.

Proof of Theorem 2.13. By Lemma 2.15 and equation (2.10), we deduce that for gener-

ators yj of H∗(SU(2n+ i)/Ki) we have

(qisi)
∗(yj) = s∗i (xj) = 2yj .

Therefore, after localising at a prime p 6= 2, the map qisi induces an isomorphism on

the cohomology of the simply connected space SU(2n+ i)/Ki. Hence the result follows

by Whitehead’s theorem.

We now provide the proof for Corollary 2.14 in which we assume that spaces and maps

are localised at a prime p 6= 2.

Proof of Corollary 2.14. By Theorem 2.13 we have

SU(2n+ 1) 'p SO(2n+ 1)× SU(2n+ 1)/SO(2n+ 1)

then let p1 : SU(2n+ 1)→ SO(2n+ 1) be the projection onto the first factor. Now, we

define γ : Sp(n)→ SO(2n+ 1) to be the composition

Sp(n) ↪→ SU(2n)
α−→ SU(2n+ 1)

p1−→ SO(2n+ 1)

where the two leftmost arrows are the canonical inclusions. It is well known that

H∗(SO(2n+ 1)) ∼= H∗(Sp(n)) ∼= Λ[z3, z7, . . . , z4n−1]
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and by Theorem 2.13 and equation (2.11) the induced map γ∗ in cohomology is an iso-

morphism. Finally SO(2n+ 1) is p-locally homotopic equivalent to its simply connected

cover Spin(2n+ 1) and hence γ is a p-local homotopy equivalence.



Chapter 3

Gauge Groups

3.1 Definitions and Basic Properties

Let P be a topological space and G be a topological group. A right action of G on P is

a continuous map

P ×G→ P

(p, g) 7→ p · g

for p ∈ P and g ∈ G such that

1. (p · g) · h = p · (gh) for all p ∈ P and g, h ∈ G;

2. p · e = p for all p ∈ P and e the identity of G.

A left action is defined similarly for a continuous G × P → P . We call the space P a

right (or left) G-space or just a G-space when the context is clear. In general, we will use

prefix terms with G to mean ‘G-equivariant’, for example G-maps will be G-equivariant

maps and G-homotopies will mean G-equivariant homotopies.

Let X be a topological space, then we define a principal G-bundle over X to be a

surjective map π : P → X together with an action P ×G→ P such that

1. the map P ×G→ P × P given by (p, g) 7→ (p, p · g) is a homeomorphism onto its

image;

2. X = P/G and π is the quotient map;

3. P is locally trivial. That is, for all x ∈ X there exists an open neighbourhood U of

x such that there is a homeomorphism ϕ : π−1(U)→ U ×G satisfying π = π2 ◦ ϕ

31
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for π2 the projection onto the second factor, and ϕ(p ·g) = ϕ(p) ·g where the action

on U ×G is given by (x, g) · g′ = (x, gg′).

For a principal G-bundle π : P → X, we call X the base space, P the total space and π

the projection. We remark that property 1 of π : P → X implies that

p · g 6= p for all p ∈ P and g 6= id ∈ G. (3.1)

If an action of G on P has property (3.1) we describe it as a free action. One can also

see that properties 1 and 2 of π : P → X imply that for any point x ∈ X we have

π−1(x) = G. We therefore call G the fibre of the bundle.

Given principal G-bundles P and P ′ over a space X, an isomorphism of such bundles is

a G-equivariant map φ : P → P ′ such that the diagram

P

π
��

φ
// P ′

π
��

X
id // X

(3.2)

commutes. We denote isomorphism classes of principal G-bundles over Y by PrinG(Y ).

The next few statements are classical properties of principal G-bundles. Proofs of these

statements can be found in [Hus94, Ch.4] or proofs of equivariant analogues can be found

in Chapter 4.

Proposition 3.1. Let π : P → X be a principal G-bundle, let f : Y → X be a map and

consider the strict pullback (see Section 2.1)

f∗(P ) //

π′

��

P

π

��

Y
f
// X.

Then the map π′ : f∗(P )→ Y is also a principal G-bundle.

We therefore call π′ : f∗(P )→ Y the pullback bundle of P under f . We remark that the

following two theorems require X and G to have numerable covers, which is automatic

for the case where X and G are CW -complexes, see [Hus94, Se.4.12-13] for details.

Theorem 3.2. Let π : P → X be a principal G-bundle, and let f0, f1 : Y → X be maps

from a space Y . Suppose that f0 is homotopic to f1 then their pullback bundles are

isomorphic

f∗0 (P ) ∼= f∗1 (P ).

This theorem gives the existence of a well defined map

[Y,X]→ PrinG(Y )
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from the set of homotopy classes of maps from Y to X to isomorphism classes of principal

G-bundles over Y . We say that a principal G-bundle is universal if the map above is a

bijection for all Y .

Theorem 3.3. Let G be a topological group, then a principal G-bundle

EG→ BG.

is a universal bundle if and only if EG is weakly contractible.

The existence of a universal bundle was shown in [Mil56] where an explicit construction

of EG as the infinite join lim
n→∞

G∗n is shown to have the appropriate properties. In

particular, it is clear that EG has a right action induced by an action of G on itself, and

BG is defined to be EG/G.

Let π : P → X be a principal G-bundle and recall the definition of isomorphism above

diagram (3.2), then we define an automorphism of P to be an isomorphism φ : P → P .

Now let the mapping space Map(P, P ) be endowed with the compact open topology. We

define the gauge group G (P ) of P to be the set of all automorphisms of P endowed with

the subspace topology from Map(P, P ). It is clear that G (P ) is a group via composition.

Proposition 3.4. The gauge group G (P ) can be identified with the space

MapG(P,G) =
{
f : P → G | f(p · g) = g−1f(p)g

}
.

Moreover, if P is trivial or if G is abelian, then we have

G (P ) = Map(X,G).

Proof. Let φ : P → P be an element of G (P ), then for all p ∈ P we have π(p) = πφ(p).

Hence p and φ(p) lie in the same fibre, and therefore for some gp ∈ G we have φ(p) = p·gp.
The desired map f : P → G is then defined as f(p) = gp. For G-equivariance, the fact

that the G-action on P is free and

(p · g) · gp·g = φ(p · g) = φ(p) · g = (p · gp) · g

implies that ggp·g = gpg and so f(p · g) = g−1f(p)g.

Conversely, given f ∈ MapG(P,G), we define φ ∈ G (P ) via

φ(p) = p · f(p).

Then, clearly φ covers the identity and it is easy to show that φ is G-equivariant using

the equivariance of f .
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For the second part, let P = X ×G and then G (P ) = MapG(X ×G,G). For all x ∈ X
and g ∈ G we have f(x, g) = f(x, e) · g. Therefore f is completely determined by what

it does to elements (x, e), hence G (P ) = Map(X,G).

If G is abelian, then we have f(p · g) = f(p), and since P/G = X we have that

MapG(P,G) descends to the required space.

Theorem 3.5. Let P be a principal G-bundle that is a compact CW -complex, there is

a homotopy equivalence

BG (P ) ' Map(X,BG;P )

where Map(X,BG;P ) denotes the connected component of Map(X,BG) containing a

map f : X → BG such that P is the pullback bundle of EG under f .

Proof. Consider the space MapG(P,EG) ofG-equivariant maps from P to the total space

of the universal bundle. By composing, there is a free action of G (P ) on MapG(P,EG).

Let f ∈ MapG(P,G) and g ∈ MapG(P,EG), then with the identification shown in

Proposition 3.4, the action of G (P ) on MapG(P,EG) corresponds to

(g · f)(p) = g(p) · f(p).

We deduce that MapG(P,EG)/G (P ) = MapG(P,BG) where G acts on BG trivially.

This trivial G-action implies that MapG(P,BG) can be identified with the mapping

space Map(X,BG;P ). Then, the following is obviously a fibration

G (P )→ MapG(P,EG)→ Map(X,BG;P )

but one can arrange for it to be locally trivial (see [AB83]) and therefore it is actually

a principal G (P )-bundle.

It remains to show that MapG(P,EG) is contractible, we adapt an argument of [Bai14]

which in turn is an adaptation of [Dol63]. When P is a compact CW -complex we can

deduce1 that

MapG(P,EG) = lim
n→∞

MapG(P,G∗n)

where G∗n is the n-fold topological join. It is therefore enough to show that for each n

there exists an m such that the inclusion

in : MapG(P,G∗n)→ MapG(P,G∗n+m)

is nullhomotopic. But in factors as

MapG(P,G∗n) ↪→ MapG(P,G∗n) ∗MapG(P,G∗m)→ MapG(P,G∗n+m)

1This is shown in a much more general setting in [Hov99, Prop 2.4.2]. The fact that P is compact
is essential, and the fact that P is a CW -complex implies that P is Hausdorff and that for m > n the
injections G ∗ n ↪→ G ∗m have closed image.
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and the inclusion of a factor of a join is nullhomotopic.

The pointed gauge group, G ∗(P ) is defined as the space of automorphisms of P that

restrict to the identity over a basepoint of X. It should be noted that the arguments in

Propositions 3.4 and 3.5 also hold for the pointed case and hence we obtain

B G ∗(P ) ' Map∗(X,BG;P ).

By studying the mapping spaces above we will be able to recover some properties of

the topology of the gauge groups G (P ). We now describe two fibrations involving these

mapping spaces that will be used throughout the thesis. First, we let

A
f−→ X

g−→ X/A

be a cofibration, then for any space Z the sequence

Map∗(X/A,Z)
g∗−→ Map∗(X,Z)

f∗−→ Map∗(A,Z) (3.3)

is a fibration. This follows from the duality of the homotopy lifting and extension

properties.

If we instead applied the unpointed functor Map(−, Z) then we would not obtain a

pointed fibration, however there is a fibration relating the unpointed and pointed map-

ping spaces. For spaces, X and Z we have the evaluation fibration

Map∗(X,Z)→ Map(X,Z)
ev−→ Z (3.4)

where ‘ev’ evaluates a function at the basepoint of X. We can restrict these fibrations to

a particular path component of Map(X,Z) (or Map∗(X,Z)) which allows us to analyse

the topology of the classifying space of the gauge groups.

Remark 3.6. By the pointed exponential law, there is a homotopy equivalence

Ω Map∗(X,BG) ' Map∗(X,G).

In the unpointed case, the relevant equivalence does not hold in general, however it

does hold for the cases in the second part of Proposition 3.4. In these cases, we use the

evaluation fibration (3.4) to obtain the principal fibration

Map∗(X,G)→ Map(X,G)
Ω ev−−→ G.

There is a section s : G→ Map(X,G) defined by s(g)(x) = g for all g ∈ G, x ∈ X. Fur-

thermore, the multiplication on G induces a multiplication on Map(X,G), and therefore
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we obtain a homotopy equivalence

Map(X,G) ' Map∗(X,G)×G.

3.2 Homotopy Types of Path-Components

Clearly the gauge group depends on the isomorphism class of the bundle P . However,

there are cases where gauge groups are homotopy equivalent for non-isomorphic bundles.

In the pointed case, the gauge groups behave particularly well in this manner. We take

motivation from Theorem 3.5 and prove some general facts about the path components

of spaces Map∗(X,Y ).

Proposition 3.7. Let X be a space and let Y be a homotopy-associative H-space with

homotopy inverse. Then all the path components of Map∗(X,Y ) are homotopy equiva-

lent.

Proof. The assumed H-space structure on Y endows the space Map∗(X,Y ) with the

structure of a homotopy-associative H-space with homotopy inverse. Therefore the set

π0(Map∗(X,Y )) = [X,Y ]∗

has the structure of a group. Let α be an element in [X,Y ]∗ and let Map∗(X,Y ;α)

denote the path component of Map∗(X,Y ) corresponding to α.

We fix an element f̃ in Map∗(X,Y ;α−1) and define

Θf̃ : Map∗(X,Y ;α)→ Map∗(X,Y ; 1)

to be the map that sends an element f ∈ Map∗(X,Y ;α) to

f + f̃ := X
∆−→ X ×X f×f̃−−−→ Y × Y m−→ Y

where ∆ is the diagonal map and m is the multiplication in Y . Let g̃ : X → Y be the

map that sends x to (f̃(x))−1. Now g̃ is in Map∗(X,Y ;α) so g̃ defines a map

Θg̃ : Map∗(X,Y ; 1)→ Map∗(X,Y ;α)

in the same way as Θf̃ . Notice that g̃ + f̃ ' f̃ + g̃ ' c∗Y where c∗Y is the constant

map onto ∗Y . Using homotopy associativity, we deduce that Θg̃ is a homotopy inverse

to Θf̃ .

It is clear that the above also holds if we require Y to be a space and X to be a

homotopy-co-associative co-H-space with homotopy-inverse. Essentially this holds due
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to the co-multiplication on the space X, and more generally one should expect a similar

result if there is a co-action on X by a co-H-space. For an n-dimensional CW -complex

X with one n-cell, the pinch X → X ∨ Sn is the co-action of the cofibration sequence

Xn−1 ↪→ X → Sn

where Xn−1 is the (n−1)-skeleton of X. This induces an action of πn(Y ) on Map∗(X,Y )

defined via

X
pinch−−−→ X ∨ Sn f∨α−−→ Y ∨ Y fold−−→ Y (3.5)

where α ∈ πn(Y ) and f ∈ Map∗(X,Y ). This gives a homotopy equivalence between the

path components containing f and the map (3.5).

Theorem 3.8. Let X be an n-dimensional CW -complex and let P and P ′ be principal

G-bundles over X. Suppose that there is an action of πn(BG) on Map∗(X,BG) defined

as above and that there exists an element of πn(BG) that sends

Map∗(X,BG;P ) to Map∗(X,BG;P ′).

Then B G ∗(P ) ' B G ∗(P ′).

The unpointed case is more complicated, when X = S4 and G = SU(2) there are

infinitely many homotopy types of the components of Map(X,BG), although there are

only 6 homotopy types of G (P) as we vary P , see [Kon91] and [Mas90]. In fact, it was

shown in [CS00] that there are only ever finitely many homotopy types of the gauge

group G (P). We go on to consider the case where G = U(n) and X is a Riemann

surface.

3.3 Principal U(n)-bundles over a Riemann Surface

Let X be a Riemann surface of genus g, then principal U(n)-bundles over X are classified

by [X,BU(n)]∗ ∼= Z, which can be thought of as the first Chern class. Therefore for an

integer c we denote the relevant gauge groups by G (X,U(n); c) and similarly we denote

Map(X,BU(n); c) for the relevant components of the mapping spaces.

Since X is a 2-dimensional CW -complex, the preamble to Theorem 3.8 induces an ac-

tion of π2(BU(n)) ∼= Z on Map∗(X,BU(n)). It is easy to see that d ∈ π2(BU(n)) sends

elements in Map(X,BU(n); c) into Map(X,BU(n); c+d). We deduce that Theorem 3.8

gives homotopy equivalences between any two path components of Map∗(X,BU(n)).

Therefore the homotopy types of the pointed gauge groups do not depend on the iso-

morphism class of the bundle.

We will analyse some properties of path components in the unpointed case which were

considered in [Sut92], but first we reduce to the case when g = 0 by following [The10].
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Theorem 3.9. There is a homotopy decomposition

G (X,U(n); c) ' G (S2, U(n); c)×
2g∏
i=1

ΩU(n).

Proof. Consider the cofibration sequence

S1 f−→
∨
2g

S1 i−→ X
pinch−−−→ S2 Σf−−→

∨
2g

S2 (3.6)

where f is the attaching map of the 2-cell in X. Explicitly, let α1, β1, . . . , αg, βg be the

one-cells of X, then we glue the boundary of the 2-cell via

α1β1α
−1
1 β−1

1 · · ·αgβgα
−1
g β−1

g .

It is then clear that Σf is trivial, since

Σf = Σα1Σβ1Σα−1
1 Σβ−1

1 · · ·ΣαgΣβgΣα
−1
g Σβ−1

g

and each expression on right hand side is an element of the abelian group π2(
∨

2g S
2).

The triviality of Σf can also be deduced from the fact that it is the suspension of a sum

of Whitehead products. Essentially, the theorem will follow due to this triviality.

Let q : X → S2 denote the pinch map from (3.6), then an exact sequence associated to

this cofibration sequence is

[
∨
2g

S2, BU(n)]∗
(Σf)∗−−−→ [S2, BU(n)]∗

q∗−→ [X,BU(n)]∗
i∗−→ [
∨
2g

S1, BU(n)]∗ ∼= 0

The triviality of Σf shows that q∗ is an isomorphism. Therefore, when we restrict the

induced map Map(S2, BU(n))
q∗−→ Map(X,BU(n)) to the c-th component, the image is

in Map(X,BU(n); c).

We will restrict fibrations (3.3) and (3.4) to the c-th components. First consider the

fibration (3.4), then a map h : S2 → BU(n) and its image under q∗ must agree on

basepoints which implies that the right hand square in the following diagram commutes

U(n)
∂c //Map∗(S2, BU(n); c)

q∗

��

//Map(S2, BU(n); c)
ev //

q∗

��

BU(n)

U(n)
ϕc
//Map∗(X,BU(n); c) //Map(X,BU(n); c)

ev // BU(n).

The middle square obviously commutes because both vertical arrows are induced by the

same map q which was shown to preserve path components of the mapping space. The

homotopy commutativity of the left hand square follows and we deduce that ϕc factors

through Map∗(S2, BU(n); c). The restriction of fibration (3.3) to the c-th component
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obtains the fibration

Map∗(S2, BU(n); c)
q∗−→ Map∗(X,BU(n); c)→ Map∗(

∨
2g

S1, BU(n)). (3.7)

Now, from the homotopy ϕc ' q∗ ◦ ∂c and the extension of fibration (3.7), we obtain a

homotopy pullback diagram which defines the maps h and h′

Map∗(Σ(X), BU(n); c)

j

��

Map∗(Σ(X), BU(n); c)

(Σi)∗

��

G (S2, U(n); c)
h′ // G (X,U(n); c)

h //

��

Map∗(
∨

2g S
2, BU(n))

(Σf)∗

��

G (S2, U(n); c) // U(n)
∂c //

ϕc

��

Map∗(S2, BU(n); c)

q∗

��

Map∗(X,BU(n); c) Map∗(X,BU(n); c).

Since Σf is trivial, the same is true for (Σf)∗ and hence (Σi)∗ has a right homotopy

inverse s. Therefore, the map js is a right homotopy inverse to h, since hjs ' (Σi)∗s ' id

and hence the sequence

G (S2, U(n); c)×Map∗(
∨
2g

S2, BU(n); c)
h′×js−−−→

→ G (X,U(n); c)× G (X,U(n); c)→ G (X,U(n); c)

is a homotopy equivalence. We remark that Map∗(
∨

2g S
2, BU(n)) '

∏
ΩU(n) and this

completes the proof.

It should be remarked that the theorem does hold more generally than just for U(n),

see [The10]. From the theorem, we deduce that we need only study the gauge groups

G (S2, U(n); c). We now follow some results from [Sut92].

Proposition 3.10. For any integer c, there is a homotopy equivalence

Map(X,BU(n); c) ' Map(X,BU(n); c+ n).

Proof. We first restrict to the case X = S2. An element in Map(S2, BU(n)) is homotopic

to a map that has image in the 2-skeleton of BU(n) which is a copy of S2. Therefore

a map in Map(S2, BU(n)) is in the c-th component if and only if it is homotopic to a

map S2 → S2 of degree c.
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Let i : S2 → BU(n) be the inclusion of the bottom cell. In the following we will define

a map T : BU(n)×BU(1)→ BU(n) which will be used to define

θ : Map(S2, BU(n); c)→ Map(S2, BU(n); c+ n)

that sends f to

S2 ∆−→ S2 × S2 f×i−−→ BU(n)×BU(1)
T−→ BU(n)

with a natural homotopy inverse.

First we define T̃ : U(n)×U(1)→ U(n) to be scalar multiplication on U(n). The induced

map T̃∗ : H1(U(n))⊕H1(U(1))→ H1(U(n)) is given by

T̃∗(αn, 0) = αn and T̃∗(0, α1) = nαn

where αi are generators. This can be seen by the fact that the map T̃ |∗×U(1) is the

inclusion of the center of U(n). The quotient of which is PU(n), the projective unitary

group and π1(PU(n)) ∼= Zn which shows that the induced map on homotopy groups

is multiplication by n. By the Hurewicz map, the map on homology groups is also

multiplication by n.

We now set T = BT̃ and a homotopy inverse to θ is constructed in the same way but

we replace T̃ with conjugate scalar multiplication.

For the general case, let q : X → S2 denote the pinch map that sends all of the 1-cells

of X to a point. Then we define a homotopy equivalence θ̃ in a similar way to θ but we

replace i with the composition i ◦ q.

We deduce from Proposition 3.10 that there are a maximum of n homotopy types of

the path components of Map(X,BU(n)). By studying the homotopy groups of these

components, Sutherland was able to distinguish some of these.

Proposition 3.11. Suppose that Map(X,BU(n); c) ' Map(X,BU(n); d) then the high-

est common factors (c, n) and (d, n) are equal.

Proof. Again, we restrict to the case X = S2. Consider the long exact sequence corre-

sponding to the evaluation fibration

πi(Map∗(S2, BU(n); c))→ πi(Map(S2, BU(n); c))→

→ πi(BU(n))
(∂c)∗−−−→ πi−1(Map∗(S2, BU(n); c)). (3.8)

Let ΩU(n)0 denote the connected component of ΩU(n) containing the identity, then we

have Map∗(S2, BU(n); c) ' ΩU(n)0 and the boundary map can be identified with a map

πi−1U(n)→ πiU(n).
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In fact, if we let α, β be the generators of π1U(n) and π2n−1U(n), we can choose this

map such that

(∂c)∗β = ±〈β, cα〉

where 〈 , 〉 denotes the Samelson product. For details see [Sut92].

Using a corollary in [Bot60], this Samelson product is (n− 1)!c times a generator of the

group π2n(U(n)) ∼= Zn!. Therefore the kernel of

π2n−1U(n)
(∂c)∗−−−→ π2nU(n) (3.9)

depends on (c, n). Hence, by sequence (3.8), so does π2n(Map(S2, BU(n); c)).

Now let q : X → S2 be the pinch map, then there is a commutative diagram

π2n−1U(n)
(∂c)∗

// π2nU(n)

q∗

��

π2n−1U(n)
∂ // π2n−1(Map∗(X,BU(n); c)).

By the above, the kernel of ∂ depends on (c, n) and therefore by the evaluation fibration

involving X, the group π2n(Map(X,BU(n); c)) also depends on (c, n).

We state a partial converse to Proposition 3.11, the proof can be found in [Sut92].

Proposition 3.12. Suppose that (c, n) = (d, n), then the d-th and c-th components of

Map(X,BU(n)) are homotopy equivalent after completion at any prime p.

We highlighted the proof of Proposition 3.11, where the idea was to study the boundary

map ∂c in the evaluation fibration. The analysis of this map is crucial, for if ∂c were

trivial then we would obtain a homotopy decomposition of the fibration, recall Section

2.2. We will follow [The11] where this boundary map was studied for G = U(n) and X

a Riemann Surface.

3.3.1 Homotopy Decompositions of the Gauge Groups

In light of Theorem 3.9 we reduce our study to the gauge groups over S2, and therefore

define G (U(n); c) = G (S2, U(n); c). We first state the main theorem in [The11].

Theorem 3.13. With the notation above, fix a prime p, then

1. if q 6= p is a prime then there is a q-local homotopy decomposition

G (U(p); c) ' U(p)× Ω2U(p);
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2. if p | c, there is a p-local homotopy decomposition

G (U(p); c) '
p−1∏
i=0

S2i+1 ×
p−1∏
j=1

Ω2S2j+1;

3. if p - c there is a p-local homotopy decomposition

G (U(p); c) '
p−2∏
i=0

S2i+1 ×
p−1∏
j=2

Ω2S2j+1 × (S1 × Ω2S2p+1).

Therefore we reduce our study of the topology of G (X,U(p); c) to the study of spheres

and U(p). Notice that since p is prime, unless we have c = mp for some integer m, we

have that (c, p) = 1. Hence, the fact that the right hand side of the decompositions are

independent of c agrees with Proposition 3.12.

We note that by [Ser53] there is a p-local homotopy equivalence

e : U(p)→
p−1∏
i=0

S2i+1. (3.10)

Therefore we will be able to deduce Theorem 3.13 (1) and (2) if we prove the q (or

p)-local triviality of the boundary map ∂c in

Ω2U(n)→ G (U(n); c)→ U(n)
∂c−→ ΩU(n)0.

For part (3), it is clear there needs to be a deeper analysis of this boundary map.

In a more general setting, the boundary map of the evaluation fibration was studied in

[Lan73] and we state a lemma due to this paper.

Let ev′ : ΣU(n)→ BU(n) be the evaluation map, that is the map

ΣΩBU(n)→ BU(n)

(t, γ) 7→ γ(t)

precomposed with the homotopy equivalence ΣU(n)→ ΣΩBU(n). Let i : S2 → BU(n)

be the inclusion of the bottom cell, and let c : ΩU(n)0 → ΩU(n)0 be the c-th power map.

Lemma 3.14. The adjoint of the map U(n)
∂c−→ ΩU(n)0 is homotopic to the Whitehead

product

S2 ∧ U(n)
[ci,ev′]−−−−→ BU(n).

We take the adjoints of the maps i and ev′ to obtain

ī : S1 → U(n) and ēv′ : U(n)→ U(n).
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Adjoint to the Whitehead product [ci, ev′] is the Samelson product 〈c̄i, ēv′〉 which is the

composition

S1 ∧ U(n)
c̄i∧ēv′−−−−→ U(n) ∧ U(n)

k−→ U(n) (3.11)

where k(x, y) = xyx−1y−1 is the commutator. The pointed homotopy set

[S1 ∧ U(n), U(n)]∗

is given a group structure by the co-H structure of S1 and therefore the Samelson

product c〈̄i, ēv′〉 is the same as (3.11). This equality clearly holds more generally, it

follows from the fact the Samelson product is bilinear. We have deduced the following

lemma.

Lemma 3.15. There is a homotopy

∂c ' c ◦ ∂1.

Proof of Theorem 3.13 (b). The above lemma gives ∂0 ' 0 ◦ ∂1 and hence ∂0 is nullho-

motopic. This implies that there is an integral homotopy equivalence

G (U(p); 0) ' U(p)× Ω2U(p).

Now our assumption is that p | c, hence by Proposition 3.10 there are homotopy equiv-

alences

G (U(p); cα) ' U(p)× Ω2U(p)

for all α ∈ Z. Using the p-local equivalence (3.10) gives the required result.

We proceed to prove Theorem 3.13 (a).

Proposition 3.16. The boundary map U(n)
∂1−→ ΩU(n)0 has order n.

Proof. It has already been noted that ∂0 is nullhomotopic, now by Proposition 3.10 and

Theorem 3.8 the following diagram homotopy commutes

U(n)
∂0 //

γ

��

Map∗(S2, BU(n); 0)

'
��

//Map(S2, BU(n); 0)

'
��

U(n)
∂n //Map∗(S2, BU(n);n) //Map(S2, BU(n);n)

where γ is an induced map of fibres. Using the five lemma, we see that γ is a homotopy

equivalence. Therefore, the left square implies that ∂n ' n ◦ ∂1 is nullhomotopic, and

hence n is a multiple of the order of ∂1. However, recall (3.9) in Proposition 3.11

π2n−1U(n)
(∂1)∗−−−→ π2n−1ΩU(n)0.
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It was stated in this proposition that (∂1)∗ has image (n− 1)! times a generator of the

group π2n−1U(n) ∼= Zn! and therefore it must have order n. We deduce that the order

of ∂1 must be a multiple of n and the proposition follows.

We immediately obtain the following corollary which appeared in [The11].

Corollary 3.17. Let n be a positive integer and let q be prime such that q - n. Then

there is a there is a q-local homotopy decomposition

G (U(n); c) 'q U(n)× Ω2U(n).

Proof. Let q - n be a prime, then n is a unit in Z(q) and therefore localised at q the map

∂1 has order 1, or in other words, ∂1 is nullhomotopic. Since we have ∂c ' c ◦ ∂1 the

same is true for ∂c. Therefore the principal homotopy fibration sequence

Ω2U(n)→ G (U(n); c)→ U(n)

has a section and the q-local homotopy decomposition follows.

Proof of Theorem 3.13 (a). This follows from Corollary 3.17 if we take n = p.

The proof of part (c) is harder due to the non-triviality of the boundary map in this

case. We run through a sketch of the proof but the full details can be found in [The11].

Proof of Theorem 3.13 (c). Throughout this proof we assume that spaces and maps have

been localised at p. By Lemma 3.15, the following diagram is homotopy commutative

G (U(p); 1)

φ
��

// U(p)
∂1 // ΩU(p)0

c

��

G (U(p); c) // U(p)
∂c // ΩU(p)0

where φ is an induced map of fibres. We assume that p - c and hence c is unit modulo p,

therefore the map c is a homotopy equivalence. By the five-lemma φ is also a homotopy

equivalence and we reduce our study to the space G (U(p); 1).

Now let c : S3〈3〉 → S3 be the map from the three-connected cover and let

ι : S2p−1 → ΩS3〈3〉

be the inclusion of the bottom cell2. We now define α = (Ωc)ι. It was shown in [The11]

that the homotopy fibre of α is S1×Ω2S2p+1 and that there is a homotopy commutative

2We recall that we have localised at p.
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diagram

U(p)
∂1 //

e
��

ΩU(p)0

(Ωe)0

��∏p−1
i=0 S

2i+1 proj
// S2p−1 α // ΩS3 incl //

∏p−1
j=1 ΩS2j+1

where e is as in (3.10) and (Ωe)0 is the map Ωe restricted to the component containing

the basepoint.

Both vertical arrows are homotopy equivalences, hence by the five-lemma, we will be

able to deduce the homotopy type of G (U(p); 1) by calculating the homotopy fibre of

the bottom horizontal arrow. But it can be shown that the homotopy fibre of the

map (incl ◦ α ◦ proj) is just the product of each of the homotopy fibres and the result

follows.





Chapter 4

Real Principal Bundles

The aim of this chapter is to provide a more comprehensive introduction to the objects

defined in Chapter 1. In Section 4.1, we present a general background of equivariant

bundle theory and our aim is to show that the classifying spaces of gauge groups of such

bundles correspond to mapping spaces in a similar way to the non-equivariant case. We

then restrict our attention to the Real and Quaternionic bundles of Chapter 1 with the

ultimate aim to prove the classification results in Propositions 1.2 and 1.3.

4.1 Equivariant Principal Bundles

We recall that a Real surface is a pair (X,σ) where X is a closed orientable Riemann

surface and σ : X → X is an antiholomorphic involution. More generally, for an arbitrary

space X we define an involution to be a map σ : X → X with the property σ2 = idX .

The pair (X,σ) is then described as a Real space and a morphism (or map) between Real

spaces (X,σX) and (Y, σY ) is a continuous map f : X → Y such that σY ◦ f = f ◦ σX .

The category of Real spaces can be thought of as the category of Z2-spaces with Z2-maps

between them. More generally, for a compact Lie group Γ, we can think of the category

of Γ-spaces with Γ-maps between them and this is the context we will think of in this

section. The intention of introducing this generality is to encourage the possibility of

future projects where one could consider bundles endowed with actions other than Z2.

We will introduce the concept of generalised equivariant bundles as considered in [LM86]

whilst highlighting the context we are interested in. Let Γ and G be compact Lie groups

and let π : P → X be a principal G-bundle with X a Γ-space. We would like the action

of Γ on X to lift appropriately to P . Initially, one may ask for the G-action on P

to extend to a Γ × G action as studied in [Las82]. However, with this definition, an

extension

0→ G→ Π
q−→ Γ→ 0 (4.1)

47



48 Chapter 4 Real Principal Bundles

is excluded as an example of such a bundle. Therefore, for a fixed extension Π, we define

a principal (G,Π)-bundle to be the bundle π : P → X with the G-action on P extended

to Π in such a way that π is a Π-map, with the Π-action on X understood to be via q.

If (4.1) is a split extension then Π is a semi-direct product and can be written as Γ×αG
for some continuous homomorphism α : Γ → Aut(G). Therefore, for p ∈ P we require

the action of Π to satisfy

γ · (p · g) = (γ · p) · α(γ)(g)1.

When Γ = Z2, G is a connected reductive affine algebraic group defined over C and

α(1) corresponds to an antiholomorphic automorphism, we will call these Real principal

G-bundles or just Real bundles. If G = U(n) and α(1) is complex conjugation, we can

see that these correspond to Real principal U(n)-bundles as introduced in Chapter 1.

We compare this definition of a Real bundle with the definition using Real space nota-

tion. Let (X,σ) be a Real space, G a complex Lie group and α(1) an antiholomorphic

automorphism, then a lift of σ is a map σ̃ : P → P satisfying

1. σ̃2(p) = p for all p ∈ P ;

2. σ̃(p · g) = σ̃(p) · α(1)(g) for all p ∈ P and g ∈ G.

More generally, we will say that π : P → X is a pseudo Real principal G-bundle or a

pR-bundle if there exists g0 ∈ G such that the lift σ̃ satisfies

σ̃2(p) = p · g0 for all p ∈ P

in addition to Property 2. Of course, if we set G = U(n), the automorphism α(1) to

correspond to complex conjugation and g0 = −In, we have the definition of Quaternionic

bundles of Chapter 1.

For pR-bundles, it can be seen that the action on P can be described by the extension

Π ∼= Z×αβ G/ ∼ where (n, g) ∼ (n− 2, g · g0) and the product on Π is given by

(n, g)(m,h) = (n+m,α(β(n))(h) · g)

for the quotient map β : Z → Z2. We let ZR(G) denote the set containing elements in

the center of G that are fixed by α(1).

Proposition 4.1. Let (P, σ̃)→ (X,σ) be a pseudo Real principal G-bundle then g0 (as

above) is in ZR(G).

1Compare with [tD87, 8.7f.].
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Proof. Let g denote α(1)(g) and let p be in P , then

p · g2
0 = (p · g0) · g0 = σ̃2(σ̃2(p)) = σ̃(σ̃2(σ̃(p))) =

= σ̃(σ̃(p) · g0) = σ̃2(p) · g0 = p · g0g0.

Since the action on P restricted to G is free, it follows that g0 = g0. Now let h be in G

then

p · g0h = σ̃2(p) · h = σ̃2(p · h) = p · hg0

where the second equality holds by Property 2 and the fact that h = h . It follows that

g0 is in the center of G.

Remark 4.2. Let (P, σ̃) be a pR-bundle with σ̃2 = idP ·g0. We can alter the lift σ̃ by the

action of an element h ∈ Z(G) by setting σ̃′ = σ̃ · h. Now

(σ̃)′2 = σ̃ · h ◦ σ̃ · h = idP ·g0(α(1)(h))h.

The fact that h is in Z(G) forces g0(α(1)(h))h to be in ZR(G) and we have defined a

new pR-structure. If g0 = (α(1)(h))h for some h ∈ Z(G), in particular if g0 = h2 for

some h ∈ ZR(G), then we normalise the pR-structure to a Real one.

The aim of this section is to discuss the theory of principal (G,Π)-bundles, but the

reader is encouraged to use pR-bundles as an ongoing example. Most of the content in

this section is due to [LM86] or [tD87] but we elaborate on some of the proofs in the

interest of completeness.

It is clear that a principal (G,Π)-bundle is locally trivial as a principal G-bundle but we

would like to define what it means to be locally trivial as a (G,Π)-bundle. To do this,

we discuss the local structure of a completely regular Γ-space Y .

Let y be a point in Y and denote the isotropy subgroup at y by Γy. We say an open Γ-set

U ⊂ Y is a tube about y if y ∈ U and there exists a Γ-map f : U → Γ/Γy. Notice that

A = f−1(eΓy) is a Γy-subspace of U and therefore we can obtain a map F : Γ×ΓyA→ U

defined via [γ, a] 7→ γa. The next proposition says that this is a homeomorphism.

Proposition 4.3. Let f : Y → Γ/Λ be a Γ-map, let A = f−1(eΛ) and let the Γ-map

F : Γ ×Λ A → Y be defined by [g, a] 7→ ga. Then F is always a bijection and if Γ is

compact Hausdorff and Λ is a closed in G then F is a homeomorphism.

Proof. For surjectivity, let y ∈ Y , then f(y) = γΛ for some γ ∈ Γ. Hence a preimage

to y under F is the element [γ, γ−1y]. Now, for injectivity, let [g, a], [g′, a′] be in Γ×Λ A

with ga = g′a′. Then g−1g′Λ = eΛ and so g−1g′ = λ for some λ ∈ Λ. Then a = λa′ and

[g, a] = [g, λa′] = [gλ, a′] = [g′, a′].
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Finally when Γ is compact, we note the action Γ × Y → Y is a closed mapping (see

[tD87, 3.1(iii)]) and since Λ is closed we find that F is also a closed mapping. We deduce

that F is a continuous closed bijection and therefore a homeomorphism.

For our purposes, we therefore think of a tube U as Γ-homeomorphic to Γ ×Γy A. The

following theorem highlights one of the key local properties of Γ-spaces. We recall that

a space X is completely regular if for every closed subset F ⊆ X and point x ∈ X \ F ,

there is map f : X → [0, 1] such that f(x) = 1 and f(y) = 0 for every y ∈ F .

Theorem 4.4. Let Γ be a compact Lie group and Y a completely regular Hausdorff

Γ-space. Then there is a tube about each of its points.

Proof. See Theorem 5.7 in [tD87].

We say that a Γy-invariant subspace Ay ⊂ Y containing y is a slice if the map

µ : Γ×Γy Ay → Y, µ[γ, v] = γv

is an embedding onto a tube at y. It is clear that the subspace A above is an example of a

slice. The following lemma starts to motivate how the local structure of a (G,Π)-bundle

should look.

Lemma 4.5. Let π : P → X be a principal (G,Π)-bundle. Let x ∈ X and p ∈ π−1(x)

with respective isotropy groups Γx and Πp. Then the restriction of q : Π → Γ to Πp is

an isomorphism onto Γx and Πp ∩G = {e}.

Proof. For v ∈ Πp, we have

q(v) · x = q(v) · π(p) = π(v · p) = π(p) = x

and hence q(v) ∈ Γx. For surjectivity, if γ ∈ Γx then there exists w ∈ Π with γ = q(w)

and w · p = p · g for some g ∈ G. But then vg−1 ∈ Πp and q(vg−1) = γ. For injectivity

we first note that Πp ∩G = {e} because the action of G on P is free. Now let v, v′ ∈ Πp

with q(v) = q(v′), then v = v′h for some h ∈ G but this implies h ∈ Πp and so h = e.

We say that a principal (G,Π)-bundle π : P → X is trivial if it isomorphic to a bundle

of the form Π×H A→ Γ×Λ A, where H < Π, Λ < Γ, H ∩G = {e}, the homomorphism

q |H is an isomorphism and A is a Λ-space that is thought of as an H-space via q. It is

clear that A is a Λ-slice as defined above.

We say that π : P → X is locally trivial if there is an open cover of X by Γ-sets {Aβ} such

that π |π−1(Aβ) is trivial. Further, we say π is numerable if the base space has a cover

satisfying local triviality and has a Γ-invariant partition of unity (PoU) subordinate to

it; the interval [0, 1] is understood to be endowed with the trivial Γ-action.
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Proposition 4.6. Let π : P → X be a locally trivial principal (G,Π)-bundle with X

paracompact and Hausdorff2. Then π is numerable.

Proof. This follows from the non-equivariant case since the quotient map

q̃ : X → X/Γ

is open and the orbit space X/Γ is also paracompact and Hausdorff. The idea is that

we can lift partitions of unity on X/Γ to Γ-invariant partitions of unity on X. Compare

with [Las82, 1.12].

Proposition 4.7. Let π : P → X be a principal (G,Π)-bundle with completely regular

total space. Then π : P → X is locally trivial.

Proof. The details can be found in [LM86, 3(ii)].

We will now start to discuss the usual properties of principal bundles in the equivariant

context. The ultimate aim of this section will be to show the existence of a universal

(G,Π)-bundle. Our method of attack is to follow the usual method, that is, to prove

that for a locally trivial bundle π : P → X × I, there is an equivalence

P ' P |π−1(X×{0}) ×I. (4.2)

We first study a specific case which will then be used to prove (4.2) in all generality.

We recall that in the non-equivariant case, a locally trivial G-bundle π : P → X has an

open cover {Uβ} of X such that each π−1(Uβ) is G-homeomorphic to the product bundle

p1 : Uβ ×G→ Uβ. It would be useful to extend this description to the equivariant case,

but it becomes problematic due to the possible non-commutativity of the actions of G

and Γ on P . Therefore, we briefly restrict our study to bundles where these actions do

commute, that is principal (G,Π)-bundles where Π = Γ × G. In this case, Bierstone

introduced a condition for locally trivial bundles that is equivalent to our definition when

X is completely regular, see [Las82, pp. 258-259].

Definition 4.8 Bierstone’s Condition. We say that a principal (G,Γ×G)-bundle satisfies

Bierstone’s condition if the following property holds. For every x ∈ X, there is a Γx-

invariant neighbourhood Ux such that π−1(Ux), considered as a (G,Γx × G)-bundle, is

isomorphic to the bundle Ux ×G where Γx acts via

γ(u, g) = (γu, ρx(γ)g)

for u ∈ Ux, γ ∈ Γx and for a homomorphism ρx : Γx → G.

2We note that Γ-complexes (see Section 4.3) have these properties and that X/Γ is automatically
given a CW -structure.
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We note that the homomorphism ρx captures the information about the lift of the Γ-

action. It is now easy to prove (4.2) for trivial bundles.

Proposition 4.9. Let π : P → X × I be a trivial principal (G,Γ×G)-bundle. Then P

satisfies (4.2).

Proof. By the Bierstone condition, the bundle P is (G,Γ×G)-equivalent to the bundle

(X × I) ×G. Since the action of Γ ×G on this copy of I is trivial, there is an obvious

equivalence P ' P |π−1(X×{0}) ×I.

Using the usual methods, we can extend (4.2) to locally trivial (G,Γ×G)-bundles over

paracompact spaces and therefore prove the Corollary 4.10. However we will prove

similar results in a more general setting and so we omit them for now. Let Λ < Γ,

then we say a Γ-map has equivariant homotopy lifting property (EHLP) with respect to

Λ-spaces if it satisfies the homotopy lifting property for all Λ-spaces and additionally

the lifted homotopies can be chosen to be Λ-maps.

Corollary 4.10. Let X be paracompact and let π : P → X be a locally trivial principal

(G,Γ × G)-bundle and let Λ < Γ be a subgroup. Then π has EHLP for paracompact

Λ-spaces.

We still require the next two lemmas to prove that (4.2) holds in general. For the follow-

ing we will require that the following bundles enjoy the EHLP property for paracompact

Λ-spaces

Bundle 1 the quotient bundle Γ→ Γ/Λ where Λ acts on Γ via conjugation and

on Γ/Λ via left multiplication;

Bundle 2 and Π/H
q−→ Γ/Λ where H ∼= Λ via q and Λ acts via left multiplication

on both spaces.

We note that the groups Π, H,Λ, and Γ as in a trivial (G,Π)-bundle should be the

motivating example for Bundle 2. It is clear that the actions of Λ and G on Π/H

do commute and so we immediately conclude that it is has EHLP. Now, the following

diagram is a pullback of Λ-spaces

Π //

��

Π/H

��

Γ // Γ/Λ.

and (by generalising the usual arguments) we deduce that Π → Λ also has EHLP with

respect to paracompact Λ-spaces.

It is shown in [Las82, p.266] that Bundle 1 also has EHLP, by showing that it is equivalent

to a (Λ× Λ,Λ× Λ× Λ)-bundle.
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Lemma 4.11. Let X be a Γ-space and let A be a Λ-space with the property that there

is a Γ-homeomorphism

φ : X × I → Γ×Λ A.

Then X is Γ-homeomorphic to Γ×Λ A0 where A0 = φ−1(A) ∩ (X × {0}).

Proof. Let f : X → Γ/Λ be the composition

X
i0−→ X × I φ−→ Γ×Λ A

p1−→ Γ/Λ

where i0 is the inclusion into X × {0} and p1 is the projection onto the first factor.

Notice that this is well-defined, that it is a Γ-map and that f−1(eΛ) = A0. Then by

Proposition 4.3, we have X = Γ×Λ A0.

Lemma 4.12. Let X, A, A0 and φ be as in the previous lemma and let Λ act on Γ by

conjugation γ · λ 7→ λγλ−1 for λ ∈ Λ, γ ∈ Γ. Then there exists a Λ-map θ : A0 × I → Γ

such that

1. the map ψ(a0, t) = θ(a0, t)
−1φ(a0, t) is a Λ-homeomorphism and;

2. for all [g, a0] ∈ Γ×Λ A0 = X we may write the Γ-homeomorphism φ as follows

φ([g, a0], t]) = [gθ(a0, t), ψ(a0, t)].

Proof. Define a Λ-map by φ′ : A0 × I → Γ/Λ by

φ′(a0, t) = p1φ(a0, t).

Notice that φ′(A0 × {0}) = eΛ so there is an obvious lift of φ′ |(A0×{0}) to the constant

map A0 → Γ given by a0 7→ e. By the comments before Lemma 4.11, the quotient map

q′ : Γ → Γ/Λ satisfies the EHLP for paracompact Λ-spaces and so φ′ lifts to a Λ-map

which is the required map θ : A0 × I → Γ.

Now, φ |A0×I is a Λ-homeomorphism onto its image but there is no guarantee that this

lands in A. But since φ′(a0, t) = q′θ(a0, t), the map ψ(a0, t) = θ(a0, t)
−1φ(a0, t) has

image in A. The details for the fact that ψ is a Λ-homeomorphism can be found in the

proof of [Las82, 2.8].

Corollary 4.13. Let π : P → X × I be a trivial principal (G,Π)-bundle, then there is a

bundle isomorphism P ' P |π−1(X×{0}) ×I.

Proof. By definition π is trivial if it is bundle isomorphic to a bundle of the form

Π×H A→ Γ×Λ A.
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Now with X = Γ×ΛA0 as in the previous lemmas, the bundle P |π−1(X×{0}) is isomorphic

to the bundle Π×H A0 → Γ×Λ A0. Therefore to prove the statement we need to show

that there is a Π-homeomorphism

φ̃ : (Π×H A0)× I → Π×H A

covering φ : (Γ×Λ A0)× I → Γ×Λ A. Now by the preamble to Lemma 4.11, the bundle

Π
q−→ Γ has the EHLP with respect to paracompact Λ-spaces where Λ acts on Π via q−1.

Therefore the map θ from Lemma 4.12 lifts to a Λ-map θ̃ : A0 × I → Π. We therefore

define φ̃ by

φ̃([g, a0], t) = [gθ̃(a0, t), θ̃(a0, t)
−1φ(a0, t)]

which is a lift of φ and is a Π-homeomorphism.

From herein, we adapt arguments from the non-equivariant setting. We point the reader

to [Hus94] or [Sel97] for these arguments.

Theorem 4.14. Let π : P → X × I be a numerable principal (G,Π)-bundle, then it is

isomorphic to the bundle P |π−1(X×{0}) ×I → (X × {0})× I.

Sketch of Proof. We outline the non-equivariant method featured in [Hus94, 9.5f.] which

generalises to this case.

1. By extending covers along the interval, one can shown that any numerable cover of

X × I can be taken to be of the form {Uβ × I} where {Uβ} is a numerable Γ-cover

of X.

2. Construct Γ-invariant PoU λβ : X → I, where supp(λβ) ⊂ Uβ.

3. We note that by Corollary 4.13, we have bundle isomorphisms

φβ : P |π−1(Uβ)×{0} ×I → P |π−1(Uβ×I) .

Now define maps hβ : P |π−1(Uβ×I)→ P |π−1(Uβ×I) by

hβ(φβ(x, t)) = φβ(x,min(λβ(p), t))

which we note are equivariant.

4. By picking a total ordering of the index set β, we define a Π-map

h : P → P

by sending a point x ∈ X to the composition hβnhβn−1 · · ·hβ1(x) for every time

x ∈ Uβi . The paracompactness of X makes the composition finite and hence
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makes h continuous. We note that h covers the map r : X × I → X × I given by

r(x, t) = (x, 0).

5. Now this shows that P is (G,Π)-equivalent to the bundle r∗(P ) which is in turn

(G,Π)-equivalent to the bundle P |π−1(X×{0}) ×I.

Corollary 4.15. Let P → X be a numerable principal (G,Π)-bundle and let

f0, f1 : Y → X

be Γ-maps. Suppose that f0 ∼ f1 under a Γ-homotopy then the pullback bundles are

isomorphic as (G,Π)-bundles

f∗0 (P ) ∼= f∗1 (P ).

Proof. Let H denote the Γ-homotopy between f0 and f1, and consider the pullback

square

H∗(P )

��

// P

��

Y × I H // X.

By Theorem 4.14 and the fact that H∗(P ) |Y×{0}= f∗0 (P ), there is a (G,Π)-bundle

isomorphism

f∗0 (P )× I

��

F // H∗(P )

��

Y × I Y × I.

We now restrict this square to Y × {1} and we recall that H(−, 1) = f1 to give the

required isomorphism.

Let X and Y be Γ-spaces, and then let [X,Y ]Γ denote Γ-equivariant homotopy classes of

Γ-equivariant maps from X to Y . Further, let Prin(G,Π)(X) denote isomorphism classes

of principal (G,Π)-bundles over X. The following corollary is an immediate consequence

of the previous one.

Corollary 4.16. Let P → Y be a principal (G,Π)-bundle. Then there is a well defined

map

[X,Y ]Γ → Prin(G,Π)(X).

In the non-equivariant case, we recall that an explicit model of a universal G-bundle was

given by the Milnor construction limn→∞G
∗n. Explicitly, as a set there is an equivalence

EG =
{

(g0, t0, g1, t1, . . . ) ∈ (G× I)∞ |
∑

ti = 1 and almost all ti = 0
}
/ ∼
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where ‘almost all’ means the complement is at most finitely many, and

(g0, t0, g1, t1, . . . , gn, 0, . . . ) ∼ (g0, t0, g1, t1, . . . , g
′
n, 0, . . . ).

Suppose now that G is given a Π-action extending a right G-action, then there is an

obvious Π-action on EG via

h · (g0, t0, g1, t1, . . . , gn, tn, . . . ) = (h · g0, t0, h · g1, t1, . . . , h · gn, tn, . . . )

for h ∈ Π. Notice that EG/G = BG endowed with a Γ-action. We denote the induced

quotient map by EGΠ → BGΠ and note that it is a numerable principal (G,Π)-bundle.

We will see in Theorem 4.18 that this bundle is a universal (G,Π)-bundle, but first we

need the following lemma.

Lemma 4.17. Let α1 : EGΠ → EGΠ be the map defined by

α1(g0, t0, g1, t1, . . . , gk, tk, . . . ) = (e, 0, g0, t0, e, 0, g1, t1, . . . , e, 0, gk, tk, e, 0, . . . )

and hence whose image lies in the odd factors of EGΠ. Then α1 'Π idEGΠ
.

Proof. It suffices to show that the map β : EGΠ → EGΠ defined by

β(g0, t0, g1, t1, . . . , gn, tn, . . . ) = (e, 0, g0, t0, g1, t1, . . . , gn, tn, . . . ).

is Π-homotopic to idEGΠ
.

Let In = [1− (1
2)n, 1− (1

2)n+1] and L′n : In → I be defined by L′n(s) = 2n+1s− 2n+1 + 2,

this is the linear map that takes the end points 1− (1
2)n and 1− (1

2)n+1 to 0 and 1. Now

define Ln : I → I by

Ln(s) =


0 for s ∈ [0, 1− (1

2)n]

L′n(s) for s ∈ [1− (1
2)n, 1− (1

2)n+1]

1 for s ∈ [1− (1
2)n+1, 1]

We now define a homotopy H : EG× I → EG by

H((g0, t0, g1, t1, . . . , gn, tn, . . . ), s) =

= (g0, t0L0(s), g0, t0(1− L0(s)) + t1(L1(s)), g1, t1(L1(s)) + t2(L2(s)), . . . ).

Notice that for x = (g0, t0, g1, t1 . . . ), we have

H(x, 0) = (g0, 0, g0, t0, g1, t1, . . . ) = (e, 0, g0, t0, g1, t1, . . . ) = β(x)

and H(x, 1) = idEG. It is obvious that H is Π-equivariant.
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Theorem 4.18. Let X be a Γ-space and let EGΠ → BGΠ be as above. Then the map

[X,BGΠ]Γ → Prin(G,Π)(X)

is a bijection.

Proof. We adapt a proof in [Sel97]. For surjectivity, let π : P → X be a locally trivial

numerable principal (G,Π)-bundle, it is enough to construct a Π-map f : P → EGΠ.

Let {Ai}∞i=0 be a numerable open cover of X by Γ-sets and let φi : π
−1(Ai)→ Π×Hi Bi

be a trivialisation where Bi are Hi-slices. Let {hi}∞i=0 be a Γ-equivariant PoU relative

to {Ai}∞i=0 and we define

f(p) = (π1(φ0p) · e, h0(π(p)), π1(φ1p) · e, h1(π(p)), . . . , π1(φip) · e, hi(π(p)), . . . )

where π1 is the projection to the first factor and for g ∈ Π the notation g · e refers to the

action of Π on the identity element e of G. This map is well defined, since if p /∈ Ai then

hi(p) = 0 and so the preceding element in G does not matter. One can deduce that the

map f is Π-equivariant due to the way the actions are defined.

For injectivity, let f0 : X → BGΠ and f1 : X → BGΠ be Γ-maps and suppose that there

is a isomorphism θ : f∗0 (EGΠ) → f∗1 (EGΠ). We will build a Γ-equivariant homotopy

F : X×I → B between f0 and f1. It is enough to build a Π-map F̃ : f∗0 (EGΠ)×I → EGΠ

that covers F .

Let f̃0 : f∗0 (EGΠ) → EGΠ and f̃1 : f∗1 (EGΠ) → EGΠ be induced by f0 and f1 respec-

tively. We now define F̃ by

F̃ (p, s) = (g0, (1− s)t0, g′0, st′0, g1, (1− s)t1, g′1, st′1, . . . )

where f̃0(p) = (g0, t0, g1, t1, . . . ) and f̃1(p) = (g′0, t
′
0, g
′
1, t
′
1, . . . ). Recall the map α1 from

Lemma 4.17 and similarly define

α0(g0, t0, g1, t1, . . . , gk, tk, . . . ) = (g0, t0, e, 0, g1, t1, e, 0, . . . , e, 0, gk, tk, e, 0, . . . )

whose image is in the even factors of EGΠ. Notice that by the previous lemma

F̃ (p, 1) = α1f̃1(p) 'Π f̃1(p) and F̃ (p, 0) = α0f̃0(p) 'Π f̃0(p).

It is clear that F̃ is a Π-map and this concludes the proof.

We end this section noting that if Γ = Z2 then the space BG is given an involution.

This involution will be essential in the next few sections where we will analyse bundles

and gauge groups in the category of Real spaces.
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4.2 Gauge Groups over Real Spaces

The following sections will concentrate on Real and pseudo Real bundles, hence we set

Γ ∼= Z2 and as in the preamble to Proposition 4.1 we let Π be Z2×αG for Real bundles

or Z×αβ G/ ∼ for the pseudo Real case.

Let (P, σ̃) → (X,σ) be a pseudo Real principal G-bundle. In comparison with the

definitions in Sections 1.2, 1.3 and 3.1, an automorphism of (P, σ̃) is an automorphism

φ : P → P of the principal G-bundle P with the additional property that

P
σ̃ //

φ
��

P

φ
��

P
σ̃ // P.

The Real gauge group, G (P, σ̃) is defined to be the group of all automorphisms of (P, σ̃).

The pointed Real gauge group, G ∗(P, σ̃) is defined to be the subgroup of G (P, σ̃) that

restricts to the identity above the basepoint of X.

Proposition 4.19. There is an identification of G (P, σ̃) with the space

MapΠ(P,G) =

{
f : P → G

∣∣∣∣∣ f((n, g) · p) =

αβ(n)(g−1f(p)g)

}
.

Proof. We recall as in Proposition 3.4 that given φ ∈ G (P, σ̃), we define a map f : P → G

to be f(p) = gp where φ(p) = p·gp. Notice that (n, g)·(p) = σ̃n(p)·αβ(n)(g) and therefore

σ̃n(p) · (αβ(n)(g))g(n,g)·p = φ((n, g) · (p)) = (n, g) · φ(p) =

= σ̃n(p · gpg) = σ̃n(p) · αβ(n)(gpg)

and therefore

(αβ(n)(g))g(n,g)·p = αβ(n)(gpg).

We deduce that

f((n, g) · p) = g(n,g)·p = αβ(n)(g−1gpg)

as required. The converse is similar to the proof of Proposition 3.4.

We would like an equivariant analogue of Theorem 3.5. Recall that we naturally induced

a Z2-action on BGΠ, from herein we write BG = BGΠ. Given the Z2-action, we let

MapZ2
(X,BG) denote the space of Z2-equivariant maps from X to BG. Again, we write

MapZ2
(X,BG;P ) to mean a particular component of MapZ2

(X,BG) containing a map

that induces (P, σ̃) via Theorem 4.18.
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Theorem 4.20. When P is a compact CW -complex, there are homotopy equivalences

B G (P, σ̃) ' MapZ2
(X,BG;P )

and

B G ∗(P, σ̃) ' Map*
Z2

(X,BG;P ).

Proof. By a similar argument to Theorem 3.5, we obtain a principal bundle

G (P, σ̃)→ MapΠ(P,EG)→ MapZ2
(X,BG;P )

which again can be shown to be universal.

4.3 Equivariant Mapping Spaces

In light of Theorem 4.20 we would like to check that some of the features of non-

equivariant bundles transfer to this context. The main result of interest of this section

is Proposition 4.26 which is the equivariant analogue of the following lemma.

Lemma 4.21. Let A → X be a cofibration and let Z be a space, then the restriction

map is a fibration

Map∗(X,Z)→ Map∗(A,Z)

with fibre Map∗(X/A,Z).

By a Γ-complex we mean a CW -complex X endowed with an action of Γ such that

1. the action permutes cells of X;

2. if g · τ = τ for some g ∈ Γ and cell τ of X then g · x = x for all x ∈ τ .

Throughout the following, we will let I denote the interval [0, 1] endowed with the trivial

Γ-action.

Proposition 4.22. Let X, Y and Z be Γ-complexes, let A be a sub Γ-complex of Z and

let f : A→ Y be a cellular Γ-map then

1. Z tf Y is a Γ-complex and;

2. X × I is a Γ-complex.

Proof. For the cells of Z tf Y , we take the union of the cells in Y and Z − A. This

union of cells inherits the Γ-actions from Z and Y and it is clear that it is closed under

the Γ-action since A is a sub Γ-complex.
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The attaching maps are the same for cells that originated from Y and the ‘interior’ of

Z − A; cells τ that originated from Z such that τ ∩ A = ∅. For the remaining cells we

alter the attaching maps by using f in the appropriate places. It is easy to see that

Z tf Y is a Γ-complex because the map f was cellular and a Γ-map.

The space X × I obviously inherits the structure of a Γ-complex.

Notice that by setting Z = X×I and A = X×{0}, we immediately obtain the following.

Corollary 4.23. Let X and Y be Γ-complexes and let f : X → Y be a cellular Γ-map.

Then the mapping cone Mf is a Γ-complex.

An inclusion g : X → Mf satisfies the usual homotopy extension property (HEP ) but

to prove Proposition 4.26 we require a stronger notion. We say that a Γ-map α : A→ B

has Γ-homotopy extension property (ΓHEP ) with respect to a Γ-space C if it satisfies

HEP and we can choose the extended homotopy to be a Γ-homotopy. We say that

α : A→ B is a Γ-cofibration if it satisfies ΓHEP with respect to all Γ-spaces.

Therefore, the aim of this section is to show that the inclusion g : X →Mf has ΓHEP

with respect to all Γ-spaces Z. In the above, we have shown that the pair (Mf , X) is a

Γ-complex pair and we generalise [Hat02, Prop 0.16] to obtain the following.

Proposition 4.24. Let (X,A) be a Γ-complex pair then (X,A) has ΓHEP .

Proof. In the proof of [Hat02, Prop 0.16], the space X × {0} ∪ A × I was shown to be

a deformation retract of X × I. Since the Γ-action only permutes cells and does not

non-trivially send a cell to itself then this deformation retract is Γ-equivariant. Hence

there is a Γ-equivariant retract

r : X × I → X × {0} ∪A× I

and the result follows.

We have shown the following.

Theorem 4.25. Let Γ be an arbitrary discrete group, let X and Y be Γ-complexes and

let f : X → Y be a Γ-map that is cellular. Then f can be factored through maps

X
g−→Mf

h−→ Y

where g is a Γ-cofibration and h is a Γ-homotopy equivalence.

This is particularly useful when combined with the following. We say that a pointed

Γ-space X has a fixed basepoint if g · ∗X = ∗X for all g ∈ Γ.
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Proposition 4.26. Let i : A ↪→ X be a pointed Γ-cofibration between locally compact

Hausdorff Γ-spaces with fixed basepoints and let Z be Γ-space with fixed basepoint. Then

the following is a (non-Γ) fibration

Map∗Γ(X,Z)
i∗−→ Map∗Γ(A,Z)

with fibre Map∗Γ(X/A,Z).

To prove the proposition we first need a technical lemma.

Lemma 4.27. Let X and Y be pointed Γ-spaces where X is locally compact Hausdorff

and with fixed basepoint. Let Z be a pointed space and consider it as a Γ-space with the

trivial Γ-action. Then there is a homeomorphism

φ : Map∗(Z,Map∗Γ(X,Y ))→ Map∗Γ(Z ∧X,Y )

Proof. Forgetting about Γ-equivariance, with the conditions on X there is a homeomor-

phism (see [Sel97, Thm 3.1.2])

φ̃ : Map∗(Z,Map∗(X,Y ))→ Map∗(Z ∧X,Y ).

Let φ be the restriction of φ̃ to Map∗(Z,Map∗Γ(X,Y )), then φ is a homeomorphism onto

its image so it suffices to show that

im(φ) = Map∗Γ(Z ∧X,Y ).

when Z is endowed with a trivial Γ-action.

Let f be in Map∗(Z,Map∗Γ(X,Y )) then φ(f) : Z ∧X → Y is a well-defined Γ-map since

X and Z have fixed basepoints. Explicitly, φ(f) must satisfy

φ(f)(z, g · x) = g · φ(f)(z, x) for all x ∈ X, z ∈ Z and g ∈ Γ

and hence φ(f) is in Map∗Γ(Z ∧X,Y ).

Conversely, let φ̃−1 be the inverse homeomorphism to φ̃. Then for h ∈ Map∗Γ(Z ∧X,Y )

the map φ̃−1(h) must satisfy

g · φ̃−1(h)(z)(x) = φ̃−1(h)(z)(g · x) for all x ∈ X, z ∈ Z and g ∈ Γ

and the result follows.
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Proof of Proposition 4.26. Let Y be an arbitrary pointed space then we wish to prove

that the pointed homotopy F̃ exists as in the following commutative diagram

Y × {0} f
//

��

Map∗Γ(X,Z)

i∗

��

Y × I

F̃
77

F //Map∗Γ(A,Z).

Considering Y and I as trivial Γ-spaces, we use Lemma 4.27 to consider the Γ-maps

φ(f) : Y ∧X → Z and φ(F ) : (Y × I) ∧A→ Z.

Now F is a pointed homotopy so the domain in φ(F ) descends to the space (Y o I)∧A
where (Y o I) = (Y × I)/ ∼ with (∗Y , t) ∼ (∗Y , t′) for all t, t′ in I. We have that the

space (Y o I)∧A is the same as (Y ∧A)o I. Now because i is a Γ-cofibration, the map

Y ∧A idY ∧i−−−−→ Y ∧X

is also a Γ-cofibration. Therefore there is an extension of φ(F ) to a pointed Γ-homotopy

H : (Y ∧X) o I → Z

and it is clear that F̃ = φ−1(H) gives the needed result.

The first part of the following lemma follows directly from Lemma 4.27 with Z a copy

of S1 endowed with the trivial action. The proof of the second part is very similar.

Lemma 4.28. Let X,Y be as in Lemma 4.27 then there are equivalences

1. Ω Map∗Γ(X,Y ) ∼= Map∗Γ(ΣX,Y )

2. Map∗Γ(X,ΩY ) ∼= Map∗Γ(ΣX,Y )

These results will be of particular interest when Γ ∼= Z2 in the coming sections but first

we show that Real surfaces admit a Z2-CW structure.

4.4 Real Surfaces as Z2-complexes

We recall that Real surfaces are classifie, up to involution-equivariant homeomorphism,

by their types, that is, the triple (g, r, a) where

• g is the genus of X;

• r is the number of path components of the fixed set Xσ;
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• a = 0 if X/σ is orientable and a = 1 otherwise.

subject to the relations in Theorem 1.1. We will follow [BHH10] and define a CW-

structure for each type of X that has nice properties under the involution. In the

following, Σp,q will denote a Riemann surface of genus p with q open discs removed.

Type (g, 0, 1). We first study the case where g is even. We can think of X as two copies

of Σg/2,1 glued along their boundary components; each a copy of S1. The involution

restricted to S1 is the antipodal map and extends to swap the two copies of Σg/2,1.

We give a CW -structure of X as follows, let X0 be 2 zero-cells; ∗ and σ(∗). There are

2g + 2 one-cells

α1, . . . , αg/2, β1, . . . , βg/2, γ and

σ(α1), . . . , σ(αg/2), σ(β1), . . . , σ(βg/2), σ(γ).

The boundaries of αi, βi are glued to ∗ and the boundaries of σ(αi), σ(βi) are glued to

σ(∗). One end of γ is glued to ∗ and the other to σ(∗), whilst the same is done for σ(γ)

with the opposite orientation. There are 2 two-cells glued on, one with attaching map

α1β1α
−1
1 β−1

1 · · ·αg/2βg/2α
−1
g/2β

−1
g/2γσ(γ)

and the other with the same attaching map but with αi, βi replaced with σ(αi), σ(βi)

and γσ(γ) replaced with σ(γ)γ.

As the notation suggests, the involution swaps cells that differ by σ. In particular, this

is a σ-equivariant CW -structure and hence descends to a CW -structure of X/σ.

Now assume that g is odd and let g′ = (g− 1). We see that X can be thought of as two

copies of Σg′/2,2 glued along their boundaries; two copies of S1 in X. The involution

swaps these copies of S1 but reverses orientations, and it extends to X to swap the two

copies of Σg′/2,2.

There are 2 zero-cells, ∗ and σ(∗) and 2g one-cells

α1, . . . , αg′/2, β1, . . . , βg′/2, γ, δ and

σ(α1), . . . , σ(αg′/2), σ(β1), . . . , σ(βg′/2), σ(γ), σ(δ)

where αi, βi, σ(αi), σ(βi), γ, σ(γ) are glued as before but the boundary of δ is glued to ∗
and σ(δ) to σ(∗). Now there are 2 two-cells, one with boundary map

α1β1α
−1
1 β−1

1 · · ·αg′/2βg′/2α
−1
g′/2β

−1
g′/2δγσ(δ)γ−1

and the other glued equivariantly. The cells δ and σ(δ) correspond to the copies of S1

above and here γ is a cell joining these copies of S1.
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Type (g, r, 0). Let the involution fix r circles and let g′ = (g − r + 1)/2, then X/σ

is a Σg′,r and X can be thought of as two copies of Σg′,r glued along the r boundary

components.

In this case, the basepoint is preserved under σ, however X0 is given r zero-cells; one

for each fixed component. The one cells are then

α1, . . . , αg′ , β1, . . . , βg′ , γ2, . . . , γr, δ1, . . . , δr and

σ(α1), . . . , σ(αg′), σ(β1), . . . , σ(βg′), σ(γ2), . . . , σ(γr)

where αi, βi are as before and γi joins the basepoint to the i-th fixed component which

is represented by δi. One of the 2 two-cells has attaching map

α1β1α
−1
1 β−1

1 · · ·αg′βg′α
−1
g′ β

−1
g′ δ1γ2δ2γ

−1
2 · · · γrδrγ

−1
r

and we again define the other one equivariantly.

Type (g, r, 1) for r > 0. Let the involution fix r circles. We first consider the case

where g ≡ r mod 2. Let g′ = (g − r)/2, then X can be thought of as two copies of

Σg′,r+1 glued along the boundary components. The involution fixes the first r of these

components whilst restricting to the antipodal map on the extra copy of S1.

Now, X0 is given (r + 2) zero-cells ∗i; one for each fixed component and two for the

extra S1. The one cells are then

α1, . . . , αg′ , β1, . . . , βg′ , γ2, . . . , γr+1, δ1, . . . , δr, δ and

σ(α1), . . . , σ(αg′), σ(β1), . . . , σ(βg′), σ(γ2), . . . , σ(γr+1), σ(δ)

where αi, βi are as before and γi joins the basepoint to the i-th boundary circle. Each

fixed component is represented by δi and δ joins ∗r+1 to ∗r+2 and therefore δσ(δ) rep-

resents the extra copy of S1. One of the 2 two-cells has attaching map

α1β1α
−1
1 β−1

1 · · ·αg′βg′α
−1
g′ β

−1
g′ δ1γ2δ2γ

−1
2 · · · γrδrγ

−1
r γr+1δσ(δ)γ−1

r+1

and we again define the other one equivariantly.

For the case where, g ≡ r+ 1 mod 2, we let g′ = (g− r− 1)/2. Now X can be thought

of as two copies Σg′,r+2 glued along the boundary components. Again, the involution

fixes r of these components, whilst swapping the final two copies of S1 but reversing

orientation.
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Again X0 is given (r + 2) zero-cells; one for each fixed component and one for each of

the extra two copies of S1. The one cells are then

α1, . . . , αg′ , β1, . . . , βg′ , γ2, . . . , γr+2, δ1, . . . , δr+1 and

σ(α1), . . . , σ(αg′), σ(β1), . . . , σ(βg′), σ(γ2), . . . , σ(γr+2), σ(δr+1)

where αi, βi are as before and γi joins the basepoint to the i-th boundary circle. Each

fixed component is represented by δi for i ≤ r, and δr+1 and σ(δr+1) represent the extra

copies of S1. One of the 2 two-cells has attaching map

α1β1α
−1
1 β−1

1 · · ·αg′βg′α
−1
g′ β

−1
g′ δ1γ2δ2γ

−1
2 · · · γr+1δr+1γ

−1
r+1γr+2σ(δr+1)γ−1

r+2

and we again define the other one equivariantly.

4.5 Real Principal U(n)-bundles over Real Surfaces

We now restrict our study to Real principal U(n)-bundles over Real surfaces, reserving

pseudo Real bundles for later study. We first analyse how the bundles are classified using

Theorem 4.18. This classification was originally studied in [BHH10]. We endow the

group U(n) with an action of Z2×αU(n) where α(1) is induced by complex conjugation.

We will use the notation EU(n)→ BU(n) to mean the universal bundle with the Real

structure induced by this action as given in the preamble to Theorem 4.18.

For a Real map f : Y → Z and a fixed point y of σY we note that

σZ(f(y)) = f(σY (y)) = f(y).

We conclude that Real maps send fixed points to fixed points. In light of Theorems

4.18 and 4.20 we will be studying Real maps of the form f : (X,σ)→ (BU(n), σBU(n)).

Therefore fixed points Xσ are sent to fixed points of σBU(n) which is the subspace

BO(n) ⊂ BU(n).

Throughout the next two sections we will let S0 denote the bottom cell of BU(n) which

is homeomorphic to a copy of S2. We denote the meridian of S0 by S1 which is a copy

of S1 and corresponds to the bottom cell of BO(n) ⊂ BU(n). We are ready to prove

Proposition 1.2 and restate here for convenience.

Proposition 1.2. Let (X,σ) be a Real surface with r fixed components Xi for 1 ≤ i ≤ r.
Then Real principal U(n)-bundles (P, σ̃) → (X,σ) are classified by the first Stiefel-

Whitney classes of the restriction to bundles Pi → Xi over the fixed components

w1(Pi) ∈ H1(Xi,Z/2) ∼= Z/2
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and the first Chern classes of the bundle over X

c1(P ) ∈ H2(X,Z) ∼= Z

subject to the relation

c1(P ) ≡
∑

w1(Pi) mod (2). (4.3)

Furthermore, given any such characteristic classes there is a bundle satisfying them.

Remark 4.29. Notice that the right hand side of (4.3) is 0 if there are no fixed points. We

see that the classification is a lot simpler in this case, that is, we only require c1(P ) be

even. The reader should compare this to the classification of U(n)-bundles over Riemann

surfaces which are characterised by even and odd Chern classes.

Proof. By Theorem 4.18, isomorphism classes are in bijection with the elements of the

set [X,BU(n)]Z2 . We first study the case where there are no fixed points of σ.

Since S0 is a two-cell, given a map f : X → BU(n) we can contract all the one-cells

of X to a point. This implies that we can choose another representation f ′ of [f ] in

[X,BU(n)]Z2 that factors through (S2 ∨ S2, sw) where sw swaps the factors. There is

no restriction on how we map the first copy of S2, without loss of generality we assume

it wraps c times S0. This then completely determines the mapping of the other copy of

S2. Since the involution is orientation reversing we obtain a map of X that wraps 2c

times round S0, which shows the result for r = 0.

We now let r be greater than 0. Each fixed component Xi = S1 is mapped into BO(n)

and such maps are classified by π1(BO(n)) = Z2.

For relation (4.3) we let f : X → BU(n) be a Real map that is non-trivial on s fixed

components, Xi for 1 ≤ i ≤ s. The rest of the one-cells can be contracted to a point. Now

we can choose another map f ′ representing [f ] that sends each Xi homeomorphically

onto S1. This forces one of the two-cells of X to wrap s times round the top hemisphere

of S0, and the other cell wraps s times round the bottom hemisphere of S0. The overall

effect of this alters the Chern class in the corresponding bundle by +s. Combining

with the case r = 0, we find that X wraps around this bottom cell 2c + s times. This

completes the proof.

4.5.1 Pseudo-Real Bundles over Real Surfaces

We apply a similar analysis to the previous section but transfer to the setting of pseudo

Real principal U(n)-bundles. Let π : (P, σ̃)→ (X,σ) be a pR-bundle with σ̃2 = idP ·g0.

We have already shown that we require g0 ∈ ZR(U(n)). The center of U(n) consists

of elements eti · In for t ∈ [0, 2π); a copy of U(1) ⊂ U(n). Further the only points in
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U(1) fixed by complex conjugation are In and −In, hence these elements are the only

possibilities for g0.

We dealt with the case In above and so we focus on the case −In. Thus far, we have

referred to bundles with the property σ̃2 = idP ·(−In) as Quaternionic bundles. We

note that we have not restricted to Quaternionic bundles of even rank as we did in

Chapter 1. However, in Chapter 5 we shall see that decompositions for gauge groups of

Real bundles will generalise more naturally if we restrict to the even rank case. That

said, in the coming section we first consider the classification of Quaternionic bundles of

odd rank and then we consider the even case, in which, we will also motivate the term

‘Quaternionic’.

In this section, we will once again denote the bottom cell of BU(n) by S0.

Proposition 4.30. If n is odd then Quaternionic bundles only exist over Real spaces

without fixed points.

Proof. Let n be odd and suppose that the is a fixed point π(p) of σ. Notice that

σ̃(p) = p·gp for some gp ∈ U(n). Clearly gp must satisfy g2
p = −In but also α(1)(gp) = gp

since

p · gpgp = σ̃(p · gp) = σ̃(p) · α(1)(gp) = p · gpα(1)(gp).

This is impossible since det(−In) = −1 implying det(gp) = ±i and therefore gp cannot

be fixed by the antiholomorphic map α(1).

We therefore need only analyse isomorphism classes of bundles over type (g, 0, 1) Real

surfaces. As in the Real case, we follow the classification as in [BHH10].

Proposition 4.31. The Quaternionic bundles of odd rank over a Real surface of genus

g are classified by their first Chern class which satisfy

c1(P ) ≡ g + 1 mod (2).

Proof. Recall the CW decompositions of Real surfaces of type (g, 0, 1). We first consider

the case where g is even.

We note that up to homotopy the only involution on S0 that has no fixed points is the

antipodal map. We choose a basepoint x on the equator of this bottom cell and we

homotope the one-cells αi, βi onto x. Therefore σ(αi), σ(βi) are mapped to σ(x).

The one-cells γ, σ(γ) require a bit more attention. We map γ to one half of the equator

and hence σ(γ) to the other half. Just as in the Real case, this increases or decreases

the Chern class on the bundle by 1. We are free to wrap one of the two cells of the

Real surface c times round S0 and, as in the Real case, this forces the other cell to wrap
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around a further c times. Putting these together shows that the Chern class of such a

bundle must be odd.

The odd genus case is quite similar, we homotope the one cells αi, βi, δ onto x and

σ(αi), σ(βi), σ(δ) onto σ(x). Again, γ and σ(γ) are forced onto the equator. However,

neither of the two-cells are glued onto both γ and σ(γ), hence the Chern class is not

altered by this mapping of the one-cells. Therefore, we are left with mapping the two-

cells into S0, and therefore we require an even Chern class. It is clear that all such

bundles can be obtained.

In the case n = 2m, there is a natural way of inducing a Quaternionic structure on the

universal bundle EU(2m)→ BU(2m). The aim is to define a (Z×αβ U(2m)/ ∼)-action

on U(2m). We first define the homomorphism α : Z2 → Aut(U(2m)).

There is a useful correspondence between the quaternionic numbers H and a particular

subset of 2× 2 matrices with complex coefficients which obeys addition and multiplica-

tion:

a+ bi+ cj + dk = (a+ bi) · 1 + (c+ di)j ←→ e+ fj ←→

(
e f

−f e

)
.

Notice also that quaternionic conjugation is given by conjugate transposition of the

matrix. The correspondence gives an embedding of Sp(m) in U(2m) with each 2 × 2

block of an element of U(2m) corresponding to a quaternionic number. We define a map

on each 2× 2 block via (
a b

c d

)
7→

(
d −c
−b a

)
and notice that this fixes quaternionic numbers. We remark that we can extend this

map to U(2m) and that this corresponds to the involution σ0 from Section 2.3. We

define α(1) to be this automorphism.

We will now define how the element (1, In) acts. First, we define a map

ρ : M2(C) → M2(C)(
a b

c d

)
7→

(
−d c

−b a

)

that has the properties ρ2(A) = A · (−I2) and ρ(AB) = ρ(A) · α(1)(B). Using this

we can define a map on U(2m) with the same properties and by the comments before

Theorem 4.18 this induces a pR-structure on the universal bundle. Notice that the

induced involution σBU(2m) fixes the subspace BSp(m).

Proposition 1.3. Let (X,σ) be a Real surface, then Quaternionic principal U(2m)-

bundles (P, σ̃) → (X,σ) are classified by their first Chern class which must be even.
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Furthermore, given any such Chern class there is a Quaternionic principal U(2m)-bundle

that realises it.

Proof. As noted, the fixed points of σBU(2m) is BSp(m) which is 3-connected. Hence for

any type of Real surface, all of the one-cells can be homotoped to a point p in S0. We

are then left with the usual situation of mapping the 2 two-cells in equivariantly. We

conclude that the Chern class must be even.





Chapter 5

Results

We will find that obtaining homotopy decompositions of gauge groups of Quaternionic

bundles will follow a similar method to that of the Real case. However for the sake

of clarity, the first part of this chapter restricts to the study of gauge groups of Real

bundles. We then reserve the Quaternionic case until later but we only elaborate on

where the proofs differ from the Real case.

For convenience, we recall the main objects of interest and their classification. Let

(P, σ̃) → (X,σ) be a Real principal U(n)-bundle over a Real surface, then we aim to

provide homotopy decompositions of the following spaces

• the unpointed gauge group G (P, σ̃);

• the (single)-pointed gauge group G ∗(P, σ̃);

• the (r + a)-pointed gauge group G ∗(r+a)(P, σ̃).

From Section 1.1 we recall that the isomorphism class of these gauge groups depend on

1. the type (g, r, a) of the underlying Real surface (X,σ) where

• g is the genus of X;

• r is the number of path components of the fixed set Xσ;

• a = 0 if X/σ is orientable and a = 1 otherwise;

2. the isomorphism class (c, w1, w2, . . . , wr) of the bundle (P, σ̃) where

• c is the first Chern class of the underlying principal U(n)-bundle P ;

• each wi is the first Stiefel-Whitney class of the restriction to the bundle

Pi → Xi over each fixed component Xi;

71
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subject to the relations in Theorem 1.1 and Proposition 1.2.

Taking motivation from the non-equivariant case, we look to decompose the above gauge

groups by studying the corresponding mapping spaces as in Theorem 4.20. We first

provide such a correspondence for the (r + a)-pointed gauge group.

Let (X,σ) be a Real surface of type (g, r, a), then we recall that to define G ∗(r+a)(P, σ̃)

we chose (r + a) designated points as follows. For each 1 ≤ i ≤ r we chose a designated

point ∗i; one for each of the fixed components Xi. Further if a = 1 we chose another

designated point ∗r+1 that is not fixed by the involution.

Now let A := qr+1
i=1 ∗i qσ(∗r+1) and let Map

∗(r+a)
Z2

(X,BG) denote the subspace of

MapZ2
(X,BG) whose elements send A to ∗BG. Let X denote the cofibre of A ↪→ X,

then it is clear that Theorem 4.20 extends to this case. For convenience we rewrite the

entire theorem.

Theorem 5.1. With notation as above and with the involution on BU(n) induced from

complex conjugation, there are homotopy equivalences

1. B G (P, σ̃) ' MapZ2
(X,BU(n);P );

2. B G ∗(P, σ̃) ' Map*
Z2

(X,BU(n);P );

3. B G ∗(r+a)(P, σ̃) ' Map
∗(r+a)
Z2

(X,BU(n);P ) ' Map*
Z2

(X,BU(n);P );

where on the right hand side we pick the path component of MapZ2
(X,BU(n)) that

induces (P, σ̃).

Finally we highlight some notational conventions. As in Chapter 1, we will sometimes

use

G ((g, r, a); (c, w1, . . . , wr))

to denote a gauge group of a bundle of class (c, w1, . . . , wr) over a Real surface of type

(g, r, a). Similar notation is used for the pointed gauge groups.

There are a number of Z2-spaces that will often appear, here we provide a dictionary:

• (X, id) - any space X with the trivial involution;

• (X∨X, sw) - the wedge X∨X equipped with the involution that swaps the factors;

• (Sn,− id) - the sphere Sn equipped with the antipodal involution;

• (Sn,he) - the sphere Sn equipped with the involution that reflects along the equa-

tor.
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5.1 Equivalent Components of Mapping Spaces

All of the results in the coming section will be exact restatements of those found in

Section 1.2. Therefore to ease navigation, the following four propositions use the same

numbering as in that section.

Proposition 1.5. Let (P, σ̃) and (P ′, σ′) be Real principal U(n)-bundles over a Real

surface (X,σ) of arbitrary type (g, r, a), then there is a homotopy equivalence

B G ∗(r+a)(P, σ̃) ' B G ∗(r+a)(P ′, σ′).

Proof. Using the notation of Theorem 5.1, we wish to study the components of the

mapping space Map*
Z2

(X,BU(n)). We take motivation from the non-equivariant case,

and study the actions of π2(BU(n)) and π1(BO(n)) on [X,BU(n)]Z2 . Recall that in the

non-equivariant case the action of π2(BU(n)) was defined via

X
pinch−−−→ X ∨ S2 f∨α−−→ BU(n) ∨BU(n)

fold−−→ BU(n) (5.1)

with α ∈ π2(BU(n)) and f ∈ Map∗(X,BU(n)). We now consider the equivariant case

when r = 0. Let S1 be the loop that is pinched together under the map X → X ∨ S2.

Due to equivariance, we are also forced to pinch the loop σ(S1) producing an extra

factor of S2 and the action becomes

X
pinch−−−→ X ∨ S2 ∨ σ(S2)

f∨α∨α−−−−→ BU(n) ∨BU(n) ∨BU(n)
fold−−→ BU(n).

where α = σBU(n)α. Since σ and σBU(n) are both orientation reversing, the action of

α ∈ π2(BU(n)) ∼= Z alters the class [f ] by 2α. Hence for 2c ∈ [X,BU(n)]Z2
∼= 2Z, this

action gives homotopy equivalences

Map*
Z2

(X,BU(n); 2c) ' Map*
Z2

(X,BU(n); 2c+ 2α).

In particular this gives the required homotopy equivalences for the case when r = 0.

When r > 0, the path components of Map*
Z2

(X,BU(n)) are classified by the tuple

(c, w1, w2, . . . , wr) ∈ Z×
∏
r

Z2

subject to c ≡
∑r

i1
wi mod 2. We wish to construct an action of π1(BO(n)) to alter

each wi. For β ∈ π1(BO(n)), we note that the inclusion of the image of β into BU(n)

is nullhomotopic, so there is an extension β′ : D2 → BU(n) of β. Now, consider (S2, he)

and denote the fixed equator by E, the upper hemisphere by U and the lower hemisphere

by L. We can extend β to a map β̃ : (S2, he)→ BU(n) where

β̃ |U= β′ and β̃ |L= σBU(n)β
′
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and therefore β̃ |E= β. By the last paragraph of the proof of Proposition 1.2, we deduce

that the class [β̃] ∈ Z× Z2 is (0, 0) if β is trivial or (±1, 1) otherwise.

Let (S1, he) ↪→ X be an inclusion such that the fixed points of (S1,he) are mapped to

the i-th fixed component Xi of X. As in Equation (5.1) we apply the pinch map to this

copy of (S1,he) in X, and hence produce a factor of (S2, he). Now the action becomes

X
pinch−−−→ X ∨ (S2, he)

f∨β̃−−→ BU(n) ∨BU(n)
fold−−→ BU(n).

For β̃ of class (±1, 1), we conclude that this action gives a homotopy equivalence be-

tween the components (c, w1, w2, . . . , wr) and (c±1, w1, . . . , wi+1, . . . , wr). We can also

apply the action of π2(BU(n)) as before and combining these actions gives a homotopy

equivalence between all the components of Map*
Z2

(X,BU(n)).

We cannot provide such an extensive result for the single pointed gauge groups, due to

the ‘unpointed’ fixed circles. However, choosing ∗1 (see preamble to Theorem 5.1) as

the basepoint obtains the following result.

Proposition 1.6. For any c, c′, w1, w
′
1 there is a homotopy equivalence

B G ∗((g, r, a); (c, w1, w2, . . . , wr)) ' B G ∗((g, r, a); (c′, w′1, w2, . . . , wr)).

We cannot hope to use the actions of π1 and π2 on the unpointed mapping space due to

the lack of basepoint. But again, we take motivation from the non-equivariant case to

provide some equivalences between components.

Proposition 1.7. Let the following be classifying spaces of rank n gauge groups. Then

there are homotopy equivalences

B G ((g, r, a); (c, w1, w2, . . . , wr)) ' B G ((g, r, a); (c+ 2n,w1, w2, . . . , wr)).

Proof. Let i be the composition

(X,σ)
q−→ (S2 ∨ S2, sw)

ι∨ι−−→ BU(1) ∨BU(1)
fold−−→ BU(1)

where q collapses the 1-skeleton of X, the map ι is the inclusion of the bottom cell of

BU(1) and ι = σBU(1)ι.

The rest of the proof is almost identical to that of Proposition 3.10 but we sketch the

proof again. We let T : BU(n)×BU(1)→ BU(n) be induced from scalar multiplication

and we define

θ : MapZ2
(X,BU(n); (c, w1, . . . , wr))→ MapZ2

(X,BU(n); (c+ 2n,w1, . . . , wr))
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to be the map that sends f to the composition

X
∆−→ X ×X f×i−−→ BU(n)×BU(1)

T−→ BU(n).

As in Proposition 3.10, the map θ has a natural homotopy inverse given by replacing T

with a map induced by conjugate scalar multiplication.

Proposition 1.8. Let n be odd then there are homotopy equivalences

1. B G ((g, r, a); (c, w1, w2, . . . , wr)) ' B G ((g, r, a); (c,
∑r

i=1wi, 0, . . . , 0))

2. B G ∗((g, r, a); (c, w1, w2, . . . , wr)) ' B G ∗((g, r, a); (c,
∑r

i=1wi, 0, . . . , 0)).

Proof. To motivate the general case, we first restrict to the case when X is of type

(1, 2, 0), that is, a torus Σ1 with orbit space a cylinder. Previously we defined a map

T : BU(n)×BU(1)→ BU(n)

induced from the scalar product. In this new setting, we let T ′ be the restriction of T

to BU(n)×BO(1). Our aim is to define homotopy equivalences

θ : MapZ2
(Σ1, BU(n); (c, w1, w2))→ MapZ2

(Σ1, BU(n); (c, w1 + 1, w2 + 1)).

In a similar fashion to the proof of Proposition 1.7, the map θ will send f to the

composition

θ(f) : Σ1
∆−→ Σ1 × Σ1

f×i−−→ BU(n)×BO(1)
T ′−→ BU(n)

where i is to be defined.

We want to be considering how this map alters the Stiefel-Whitney class of the associated

bundle. Hence we restrict T ′ to the map T2 : BO(n)×BO(1)→ BO(n) and we consider

the induced map on first homology groups (T2)∗ : Z2 ×Z2 → Z2 which sends generators

α ∈ H1(BO(n)) and β ∈ H1(BO(1)) as follows

(T2)∗(α, 0) = α and (T2)∗(0, β) = α.

The first equality is obvious, and the second equality comes from the fact that scalar

multiplication of −1 on a matrix A in O(n) switches the sign of the determinant if n is

odd.

We now need to provide the map i, we first note that

[Σ1, BO(1)]Z2
∼= [Σ1/σ,BO(1)] ∼= [Σ1/σ,K(Z2, 1)] ∼= H1(Σ1/σ;Z2) ∼= Z2.

We choose i so that one of the fixed circles is sent nontrivially to β (as represented as an

element of π1(BO(1))). This forces the other fixed circle to be sent to the same class.
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We note that the composition as defined does not alter the Chern class of the associated

bundle and so we have defined θ as above.

To extend to cases r > 2, we are only required to adjust the map i. We have

[X,BO(1)]Z2
∼= [X/σ,BO(1)] (5.2)

but for some r′ ≥ r−1 we have X/σ ' ∨r′S1 under a deformation retract. In particular,

we can choose this deformation retract to fix the fixed components Xi for 2 ≤ i ≤ r and

we assume that the first r − 1 copies of S1 in ∨r′S1 are these components Xi. Now, for

each 2 ≤ i ≤ r choose a representative w̃i : S
1 → BO(1) of wi ∈ π1(BO(1)) and then we

let i be induced by (5.2) via the composition

X/σ
'−→
∨
r′

S1

r−1∨
i=1

w̃i+1
∨
∗

−−−−−−−→
∨
r′

BO(1)
fold−−→ BO(1) (5.3)

where ∗ is the constant map onto the basepoint. Due to the properties of T ′, this defines

a map

θ : MapZ2
(X,BU(n); (c, w1, w2, . . . , wr))→ MapZ2

(X,BU(n); (c,
∑

wi, 0, . . . , 0)).

Finally, we need to provide a homotopy inverse to θ. We note that we can extend θ to

a map

Θ: MapZ2
(X,BU(n))→ MapZ2

(X,BU(n))

which is defined exactly in the same way as θ. Explicitly, the map Θ sends a map g to

the composition

Θ(g) : X
∆−→ X ×X f×i−−→ BU(n)×BO(1)

T ′−→ BU(n)

where T ′ is as above and i is the composition in (5.3).

In the non-equivariant setting, we provided a homotopy inverse to θ by replacing T

with a map representing the conjugate tensor product. In this setting, since T ′ is the

restriction to BU(n)× BO(1), a homotopy inverse of θ is given by the restriction of Θ

to the path component MapZ2
(X,BU(n); (c,

∑
wi, 0, . . . , 0)).

It is clear that we can apply the same method to the pointed mapping spaces.

Proof of Proposition 1.7 (Strong). Let π : (P, σ̃) → (X,σ) be a Real principal U(n)-

bundle of class (c, w1, w2, . . . , wr) over a Real surface of type (g, r, a). The idea will be

to tensor P with a Real U(1)-bundle πQ : (Q, τ) → (X,σ) of class (2, 0, . . . , 0). The

proof works for the same underlying reason as in the proof of Proposition 1.7, but it

detects information that is missed by the diversion through homotopy theory.
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Using the inclusion of the centre U(1) ↪→ U(n), there is a U(1)-action on (P, σ̃). In the

principal bundle setting, the tensor of (P, σ̃) and (Q, τ) is the pullback

(∆∗(P ×U(1) Q),∆∗(σ̃×τ)) //

��

(P ×U(1) Q, σ̃×τ)

π̃
��

(X,σ)
∆ // (X,σ)× (X,σ).

where ∆ is the diagonal map and π̃ = π × πQ. Using a similar method to the proof of

Proposition 1.7, we calculate that the class of the pullback (∆∗(P ×U(1) Q),∆∗(σ̃×τ))

is (c+ 2n,w1, w2, . . . , wr).

We then define

Θ: G (P, σ̃)→ G (∆∗(P ×U(1) Q),∆∗(σ̃×τ))

to be the map that sends φ : P → P to ∆∗(φ× id). Then an inverse to Θ is defined in the

same way as Θ, except that we replace the inclusion U(1) ↪→ U(n) with the conjugate

inclusion defined via

a 7→


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a


.

Proof of Proposition 1.8 (Strong). Let π : (P, σ̃) → (X,σ) be a Real principal U(n)-

bundle of class (c, w1, w2, . . . , wr) over a Real surface of type (g, r, a). The statement is

proven using the same method as Proposition 1.7 (Strong), except that we tensor with

a Real U(1)-bundle (Q̃, τ̃) of class (0,
∑r

i=2wi, w2, . . . , wr). If n is odd, the class of the

pullback (∆∗(P ×U(1) Q̃),∆∗(σ̃×τ̃)) is then (c,
∑r

i=1wi, 0, . . . , 0).

An isomorphism Θ: G (P, σ̃)→ G (∆∗(P ×U(1) Q̃),∆∗(σ̃×τ̃)) is then defined in the same

way as for Proposition 1.7 (Strong).

5.2 Pointed Gauge Groups

In the following analysis, it will be necessary to distinguish the following types of Real

surfaces

0. r = 0 (⇒ a = 1)

1. r > 0 and a = 0

2. r > 0 and a = 1.
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Generally we will analyse the gauge groups in order of ease. We therefore will first

analyse the (r + a)-pointed gauge group and then the single pointed gauge group. Our

results for the single pointed gauge groups will then be used to analyse the unpointed

case.

5.2.1 Integral Decompositions

In the non-equivariant case, we recall that the attaching map of a surface f : S1 → ∨2gS
1

is a sum of Whitehead products and hence we deduced that Σf was nullhomotopic. Now

in the equivariant case, we still see Whitehead products appearing in the attaching maps

of Section 4.4. Hence we obtain an analogous result for the equivariant case.

We will use the notation as defined in Section 4.4 and furthermore we require the fol-

lowing notation in this section. Let g′ denote the number of one-cells of X which are of

the form αi, βi in X. Explicitly

g′ =


(g − r + 1) when a = 0;

(g − r) when a = 1 and g − r even;

(g − r − 1) when a = 1 and g − r odd.

Proposition 5.2. Let Xαβ = ∨S1 be the 1-cells αi, σ(αi), βi, σ(βi) in the decomposition

of (X,σ). Then the map µ in the Z2-cofibration sequence

Xαβ ↪→ X → X ′
µ−→ Σ(Xαβ)

is Z2-nullhomotopic.

Proof. We recall that the attaching map of one of the two-cells in a Real surface of type

(g, r, 0) is

α1β1α
−1
1 β−1

1 · · ·αg′βg′α
−1
g′ β

−1
g′ δ1γ2δ2γ

−1
2 · · · γrδrγ

−1
r .

Note that the attaching map involving the cells αi and βi is a sum of Whitehead products.

The idea is to collapse the rest of the cells.

Now in the general case, let X be a type (g, r, a) Real surface, let Σg′/2 be a Riemann

surface of genus g′/2 and let

s : X → (Σg′/2 ∨ Σg′/2, sw)

be the map that collapses the 1-skeleton of X other than the cells αi, σ(αi), βi and σ(βi).

An example for the map s is illustrated in Figure 5.1. Note that four of the ‘holes’ are

undisturbed by s; these correspond to the one-cells of the form αi, σ(αi), βi and σ(βi).
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Figure 5.1: For a type (5, 2, 0) Real surface, the map s collapses the one-cells
coloured in blue: δ1, δ2, γ2 and σ(γ2).

σ ∗1 ∗2δ1 δ2

γ2

σ(γ2)

s
sw

There is a commutative diagram

Xαβ
// X //

s

��

X ′

s′

��

µ
// Σ(Xαβ)

Xαβ
// (Σg′/2 ∨ Σg′/2, sw) // (S2 ∨ S2, sw)

Σf∨Σf
// Σ(Xαβ)

where the rows are Z2-cofiber sequences, s′ is an induced map on cofibers and f is the

attaching map of the Riemann surface Σg′/2. The Z2-triviality of µ therefore follows

from the triviality of Σf .

We immediately deduce the following theorem which contributes a lot of results to

Theorems 1.9 and 1.10.

Theorem 5.3. With notation as above, there are homotopy equivalences

1. G ∗(P, σ̃) ' G ∗((g − g′, r, a); (c, w1, . . . , wr))×
∏
g′ ΩU(n);

2. G (r+a)∗(P, σ̃) ' G (r+a)∗((g − g′, r, a); (c, w1, . . . , wr))×
∏
g′ ΩU(n).

Proof. Follows from Theorem 5.1, Lemma 4.28 and Proposition 5.2.

We note that for Real surfaces of type (g, 0, 1), Theorem 5.3 leaves only types (0, 0, 1)

and (1, 0, 1) to consider. The gauge groups of these types seem to be integrally inde-

composable and so we leave their analysis until later.

5.2.2 Case: r > 0, a = 0

Although we restrict to the case a = 0, we will see that many of the methods in this

section will also transfer to the case when a = 1.



80 Chapter 5 Results

We use the same notation as in the preamble to Theorem 5.1. The involution σ fixes r

circles which we denote qri=1Xi. The r designated points ∗i are chosen such that ∗i ∈ Xi

and we choose ∗1 as the basepoint of X. We note that each ∗i is fixed by σ.

Due to Theorem 5.3 we restrict to the case when (X,σ) is of type (r − 1, r, 0). Using

Theorem 5.1 and Lemma 4.28 and their notation we obtain the equivalences

G ∗r(P, σ̃) ' Map∗Z2
(Σ(X), BU(n)) and,

G ∗(P, σ̃) ' Map∗Z2
(Σ(X), BU(n)).

The aim of this section is to prove Theorems 1.9 and 1.10 for types (g, r, 0) which is

restated below.

Theorem 5.4. Let (P, σ̃) be a Real bundle of class (c, w1, . . . , wr) over a Real surface

(X,σ) of type (r − 1, r, 0). Then

1. there is a homotopy equivalence

G ∗r(P, σ̃) ' Ω2(U(n)/O(n))×
∏
r−1

ΩO(n)×
∏
r−1

ΩU(n);

2. if wi = 0 for all i > 1 or if n is odd then there is a homotopy equivalence

G ∗(P, σ̃) ' Ω2(U(n)/O(n))×
∏
r−1

ΩO(n)×
∏
r−1

Ω(U(n)/O(n)).

We first recall the Z2-CW decomposition of X. The 0-skeleton of X consists of r zero-

cells labeled ∗i for 1 ≤ i ≤ r. The one-cells consist of

γ2, . . . , γr, σ(γ2), . . . , σ(γr), δ1, . . . , δr

where each δi is a loop at ∗i. The cells γj and σ(γj) both connect ∗1 to ∗j and are

swapped under the involution.

There are 2 two-cells in X, the first has the attaching map

δ1γ2δ2γ
−1
2 γ3δ3γ

−1
3 · · · γrδrγ

−1
r (5.4)

and the other cell is glued on equivariantly. In the following Xγ will be the sub-complex

of the one-cells of X that are denoted by either γi or σ(γi).

Proposition 5.5. Let (X,σ) be as above, then in the Z2-cofibration sequence

Xγ
ι−→ X → X̃

µ′−→ Σ(Xγ)

there is a left Z2-homotopy inverse to ι. In particular µ′ is Z2-nullhomotopic.
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Proof. We will use induction on r; the number of fixed circles of X. Let Xr denote a

Real surface of type (r − 1, r, 0) and let (Xr)γ be the sub-complex of Xr with one-cells

denoted by either γi or σ(γi). We aim to define left homotopy inverses jr : Xr → (Xr)γ

of ι for each r.

Note that the space (Xr)γ is the wedge
∨
r−1(S1, he) and hence the first non-trivial case

is when r = 2. In this case, one can see that X2 is the product (S1, id) × (S1, he). We

define j2 to be the projection onto the second factor and Figure 5.2 illustrates this map.

Figure 5.2: The map j2 projects to the factor (S1, he) and j2 factors through
X2/δ1.

σ δ1

γ1

σ(γ1)

γ1

σ(γ1)

j̃Collapse

δ1

X2/δ1

he

j2

For r = l, we assume that jl exists. For r = l+1, we first use a map j′l+1 that collapses a

copy of (S1 ∨S1, sw) in Xl+1 such that the image is homeomorphic to Xl ∨X2/δ1 where

X2/δ1 is a copy X2 with the 1-cell δ1 collapsed. The map j′l+1 is illustrated in Figure

5.3.

Figure 5.3: Collapse a copy of (S1 ∨ S1, sw) to obtain the wedge X2/δ1 ∨Xl.

Xl+1 Xl
X2/δ1

j′l+1

(S1 ∨ S1, sw)

Figure 5.2 also shows that j2 factors through the space X2/δ1. We therefore define jl+1

to be the composition

Xl+1

j′l+1−−→ X2/δ1 ∨Xl
j̃∨jl−−→ (Xl+1)γ

where j̃ is defined in Figure 5.2.
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As an easy consequence of Proposition 5.5 we obtain the following homotopy equivalences

ΣX ' ΣX̃ ∨ ΣXγ and ΣX ' ΣX̃ ∨ ΣXγ .

In the following, we shall see that the factors ΣXγ and ΣXγ give the factors
r−1∏

ΩU(n)

and
r−1∏

Ω(U(n)/O(n)) respectively in Theorem 5.4 and that the factor ΣX̃ produces the

factors Ω2(U(n)/O(n)) ×
∏
r−1 ΩO(n). However, the map jr automatically induces a

map

Map*
Z2

(Xγ , BU(n))→ Map*
Z2

(X,BU(n); (0, 0, . . . , 0))

hence we only obtain a splitting on the level of mapping spaces in this trivial case.

We now restrict to this trivial case for the rest of this section. For the other cases,

Proposition 1.5 will then give results for Theorem 5.4 (1) and Propositions 1.6 and 1.8

will give results for Theorem 5.4 (2). We provide further decompositions at the level of

the Real surface to continue the proof of Theorem 5.4.

Proposition 5.6. Let Xδ be the 1-cells in X̃ denoted by δ2, . . . , δr then in the Z2-

cofibration

Xδ
ι′−→ X̃ → (S2,he)

µ′′−→ Σ(Xδ)

the map µ′′ is Z2-nullhomotopic.

Proof. The space X̃ is the quotient of a type (r− 1, r, 0) Real surface with the one-cells

denoted by γ2, . . . , γr collapsed to a point. We see that the attaching map in Equation

5.4 becomes

δ1δ2 · · · δr

and therefore conclude that X̃ is a sphere (S2, he) with r of its fixed points identified.

Let U denote the upper ‘hemisphere’ of X̃; it is homeomorphic to a disc with r of its

boundary points identified and notice that X̃ = U ∪ σ(U). Now, there is a deformation

retract H : U × I → U of U onto the wedge
∨r
i=2 δi. Therefore, we define a left inverse

to the map ι′ via

x 7→

H(x, 1) for x ∈ U

H(σX̃(x), 1) for x ∈ σX̃(U).

and the result follows.

We deduce that

ΣX̃ ' ΣXδ ∨ Σ(S2, he).

The factor ΣXδ =
r−1∨

(S1, id) provides the factor
r−1∏

ΩO(n) for both cases in Theorem

5.4. We now show that the spaces Σ(S2, he) and ΣXγ provide the other factors.

Lemma 5.7. There are homotopy equivalences
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1. Map*
Z2

(ΣXγ , BU(n)) '
∏
r−1 Ω(U(n)/O(n));

2. Map*
Z2

(ΣXγ , BU(n)) '
∏
r−1 ΩU(n).

Proof. The space Σ(Xγ) is the same as the wedge
∨
r−1 Σ(S1, he). Looking at the r-

pointed case, the 0-skeleton of Σ(Xγ) is collapsed and the space Σ(Xγ) becomes the

wedge Σ
∨
r−1(S1 ∨ S1, sw). This shows part (2) of the lemma.

For part (1), we recall Example 2.1. The space Map*
Z2

((S1, he), BU(n)) fits into the

following pullback diagram

Map*
Z2

((S1, he), BU(n))

r̃
��

ũ //Map∗(D1, BU(n))

r

��

Map*
Z2

((S0, id), BU(n))
u //Map∗(S0, BU(n)).

Here r̃ restricts to the fixed points of (S1, he) and ũ restricts to the upper hemisphere

of (S1, he) and then forgets about equivariance. Since

Map*
Z2

((S0, id), BU(n)) ' BO(n)

the map u is just the inclusion BO(n) ↪→ BU(n) and hence the homotopy fibre of

u is U(n)/O(n). Since r is a fibration, the square is also a homotopy pullback by

Proposition 2.4. We note that the space Map∗(D1, BU(n)) is contractible and so the

result follows.

Lemma 5.8. There is a homotopy equivalence

Map*
Z2

((S2, he), BU(n); (0, 0)) ' Ω(U(n)/O(n))0

where Ω(U(n)/O(n))0 denotes the connected component of Ω(U(n)/O(n)) containing the

basepoint.

Proof. There is a similar pullback as in Lemma 5.7

Map*
Z2

((S2, he), BU(n))

r̃
��

ũ //Map∗(D2, BU(n))

r

��

Map*
Z2

((S1, id), BU(n))
u //Map∗(S1, BU(n)).

This time the map u is homotopic to the inclusion O(n) ↪→ U(n) and so the homotopy

fibre of u is Ω(U(n)/O(n)). The space Map∗(D2, BU(n)) is contractible and so there is

an equivalence

Map*
Z2

((S2,he), BU(n)) ' Ω(U(n)/O(n))

and the result follows.



84 Chapter 5 Results

Proof of Theorem 5.4. This follows from Propositions 5.5, 5.6 and Lemmas 5.7 and 5.8.

5.2.3 Case: r > 0, a = 1

We use the techniques and notation of the previous section. In particular, let (P, σ̃) be

a bundle of class (0, 0, . . . , 0) over a Real surface (X,σ) of type (g, r, 1). We first note

that by Proposition 5.2 we can restrict to the cases

g = r or g = r + 1. (5.5)

With these cases in mind, the main aim will be to prove the following theorem which is

a restatement of Theorems 1.9 and 1.10 for Real surfaces of type (g, r, 1).

Theorem 5.9. For the notation as above and g as in (5.5), there are homotopy equiv-

alences

1. G ∗(P, σ̃) ' G ∗((g − r + 1, 1, 1); (0, 0))×
∏
r−1

ΩO(n)×
∏
r−1

Ω(U(n)/O(n));

2. G ∗r+1(P, σ̃) ' G ∗2((g − r + 1, 1, 1); (0, 0))×
∏
r−1

ΩO(n)×
∏
r−1

ΩU(n).

We note that after we have proven the above theorem, the only cases we have left to

analyse will be gauge groups over Real surfaces of type (2, 1, 1) and type (1, 1, 1).

For the proof of the theorem, we will essentially follow the methods of the previous

section. Let Xγ denote the sub-complex of X consisting of the 1-cells denoted by either

γi or σ(γi) for 2 ≤ i ≤ r.

Proposition 5.10. Let (X,σ) be as above, then in the Z2-cofibration sequence

Xγ
κ−→ X → X̃

ν−→ Σ(Xγ)

the map ν is Z2-nullhomotopic.

Proof. We define a left inverse to κ. First in X collapse the cells

γr+1, σ(γr+1), δr+1, σ(δr+1)

and the cells γr+2, σ(γr+2) if they exist. We are left with a space Z2-homeomorphic to

a Real surface of type (r − 1, r, 0), we now use the map jr as defined in the proof of

Proposition 5.5.

The proof of the next proposition is identical to that of Proposition 5.6 except we

exchange (S2,he) for a Real surface X ′ of type either (2, 1, 1) or (1, 1, 1).
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Proposition 5.11. Let Xδ be the 1-cells in X̃ denoted by δ2, . . . , δr then in the Z2-

cofibration

Xδ
κ′−→ X̃ → X ′

ν′−→ Σ(Xδ)

the map ν ′ is Z2-nullhomotopic.

Proof of Theorem 5.9. This follows from Lemma 5.7 and Propositions 5.11 and 5.10.

From Theorem 5.9, we reduce our study to the gauge groups

G ∗((1, 1, 1); (0, 0)) and G ∗((2, 1, 1); (0, 0));

G ∗2((1, 1, 1); (0, 0)) and G ∗2((2, 1, 1); (0, 0)).

The following theorem provides the remaining integral homotopy decompositions that

we can obtain for these gauge groups. The theorem contributes to results in the last

two rows of Theorem 1.9 and the last row in Theorem 1.10.

Theorem 5.12. There are integral homotopy equivalences

1. G ∗2((1, 1, 1); (0, 0)) ' G ∗((1, 1, 1); (0, 0))× U(n);

2. G ∗2((2, 1, 1); (0, 0)) ' G ∗((1, 1, 1); (0, 0))× U(n)× U(n);

3. G ∗((2, 1, 1); (0, 0)) ' G ∗((1, 1, 1); (0, 0))× U(n).

We analyse the structure of a type (2, 1, 1) Real surface X ′.

Proposition 5.13. Let X ′γ be the 1-cells γr+1, γr+2, σ(γr+1), σ(γr+2) of a type (2, 1, 1)

Real surface X ′, then in the Z2-cofibration

X ′γ
κ′′−→ X ′ → X ′/X ′γ

ν′′−→ Σ(X ′γ)

the map ν ′′ is Z2-nullhomotopic.

Proof. We define a left inverse to κ′′. In X ′ collapse the cell δ1 and then collapse a copy

of (S1 ∨ S1, sw) so that X ′/ ∼ is the wedge ((Σ1/ ∼) ∨ (Σ1/ ∼), sw) where (Σ1/ ∼) is

a torus with δ1 collapsed. We now project to (S1 ∨ S1, sw) as we did in the proof of

Proposition 5.5, in fact, the left inverse is similar to the map j3 from this proposition.

In the following we show that the space X ′/X ′γ is Z2-homotopy equivalent to a (1, 1, 1)

Real surface (X,σ). We first recall the Z2-decomposition of (X,σ). The 0-skeleton X0

is given 3 zero-cells ∗i for 1 ≤ i ≤ 3. The one cells are then

δ1, δ, σ(δ), γ2, σ(γ2)
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where the fixed circle is represented by δ1 and δ joins ∗2 to ∗3 and therefore δσ(δ)

represents the copy of (S1,− id). The 1-cell γ2 joins ∗1 to ∗2 and σ(γ2) joins ∗1 to ∗3.

One of the 2 two-cells has attaching map

δ1γ2δσ(δ)γ−1
2

and we define the other one equivariantly.

On the other hand, the space X ′/X ′γ has an induced Z-complex structure as follows.

There is 1 zero-cell ∗, to which we attach the one-cells

δ′1, δ
′ and σ(δ′).

There are 2 two-cells, one of which is attached to the above 1-skeleton via

δ1δ
′ σ(δ′)

and the other is glued equivariantly. However, the sub-complex given by γ2 ∪ σ(γ2) of

(X,σ) is Z2-contractible and we see that (X,σ) is homotopy equivalent to Z2-complex

structure of X ′/X ′γ .

Proof of Theorem 5.12 (2) and (3). By Proposition 5.13, we obtain the following homo-

topy equivalences

ΣX ′ ' ΣX ′γ ∨ ΣX ′/X ′γ

ΣX
′ ' ΣX

′
γ ∨ ΣX ′/X ′γ .

In the first case the factor ΣX ′γ is the same as the space (S1 ∨ S1, sw). We see that

collapsing the 0-skeleton of ΣX ′γ provides
∨

2(S1 ∨ S1, sw) and hence this corresponds

to the factor ΣX
′
γ in the second equivalence. The result follows.

Proof of Theorem 5.12 (1). We use the Z2-structure provided after Proposition 5.13. In

this 2-pointed case, we identify the three 0-cells ∗1, ∗2, ∗3 to produce X. Let

Xγ = γ2 ∪ σ(γ2)

and let Xγ be the image in the quotient X. There is a left inverse to the inclusion

Xγ ↪→ X

using a similar map to j2 in the proof of Proposition 5.5. Therefore there is a homotopy

equivalence

ΣX ' ΣXγ ∨ Σ(X/Xγ)
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but by the comments after Proposition 5.13 the factor Σ(X/Xγ) is Z2-homotopy equiv-

alent to the suspension of a Real surface of type (1, 1, 1). This finishes the proof.

5.2.4 Non-integral Decompositions

By the previous sections, we have reduced our study of the pointed gauge groups to

those over Real Surfaces of the following types

(0, 0, 1), (1, 0, 1) and (1, 1, 1).

These spaces seem fundamental in some way and for the single-pointed case we do not

obtain any further integral decompositions.

However, one may expect these spaces to become easier to examine when we choose to

invert 2 since the involution has order 2 and the 2-torsion in O(n) vanishes. This turns

out to be the case and we will find that localising at a prime p 6= 2 will prove particularly

fruitful.

Case: (0, 0, 1)

We fix notation, let (S2,− id) be a Real surface of type (0, 0, 1). By Proposition 1.6, all

of the pointed gauge groups over (S2, he) are homotopy equivalent, so we assume that

(P, σ) is of class 0. In this section, we aim to prove the following theorem which is a

restatement of Theorem 1.11 (1).

Theorem 5.14. Let p 6= 2 be prime and let n be odd, then there is a p-local homotopy

equivalence

G ∗(P, σ̃) 'p Ω(U(n)/O(n))× Ω2(U(n)/O(n)).

Let u : B G ∗(P, σ̃) → Map∗2(D2, BU(n)) be the map that restricts to the upper hemi-

sphere of (S2,− id) and forgets about equivariance considering the image as landing in

the space Map∗2(D2, BU(n)). Let

r : B G ∗(P, σ̃)→ Map*
Z2

((S1 ∨ S1, sw), BU(n))

be the map restricting to the 1-skeleton of (S2,− id). These maps fit into the following

pullback

B G ∗(P, σ̃)
u //

r

��

Map∗2(D2, BU(n))

r′

��

Map*
Z2

((S1 ∨ S1, sw), BU(n))
u′ //Map∗(S1 ∨ S1, BU(n))

(5.6)

where r′ restricts to the 1-skeleton and u′ forgets about equivariance.
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Note that u′ is homotopic to the map ∆: U(n)→ U(n)×U(n) where ∆(α) = (α, α), and

the map r′ is homotopic to the map ∆−1 : U(n)→ U(n)×U(n) where ∆−1(α) = (α, α−1).

Let Q be the strict pullback of ∆ and ∆−1 as in the following diagram

Q

π1

��

π2 // U(n)

∆−1

��

U(n)
∆ // U(n)× U(n).

By the comments at the beginning of Section 2.1, it is unclear if there is an equivalence

Q
?' B G ∗(P, σ̃)

and in fact this is not the case, but we will see that Q retracts off B G ∗(P, σ̃) after

inverting the prime 2.

The map r′ in diagram (5.6) is a fibration, and hence this diagram is a homotopy

pullback. Therefore, there is an induced homotopy commuting diagram

Q

π1

  

π2

((

π̃

$$

B G ∗(P, σ̃)
u //

r

��

U(n)

∆−1

��

U(n)
∆ // U(n)× U(n)

(5.7)

where we have replaced the pullback square (5.6) with a homotopy equivalent1 square.

Lemma 5.15 hints at a possible left homotopy inverse to π̃, namely the composition

B G ∗(P, σ̃)
r−→ U(n)

q−→ U(n)/O(n)

where q is the quotient map.

Lemma 5.15. The pullback Q is homeomorphic to U(n)/O(n).

Proof. We first show that Q is the space {A ∈ U(n) | A is symmetric} and then we show

that this is homeomorphic to U(n)/O(n). The space Q consists of the elements (α, β)

of U(n) × U(n) such that α = β and α = β−1 = β
t
, exactly the symmetric matrices of

U(n).

We define a map f : U(n) → Q by f(A) = AAt. Now for A ∈ U(n) and W ∈ O(n) we

have

(AW )(AW )t = AWW tAt = AAt

and so f induces a map f ′ : U(n)/O(n)→ Q.

1This homotopy equivalence is in the sense of Section 2.1.
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The map f ′ is injective. Let A,B ∈ U(n) and suppose AAt = BBt, then

In = B−1AAtBt−1
= (B−1A)(B−1A)t

for In ∈ U(n) the identity matrix. Therefore B−1A ∈ O(n) and so AO(n) ≡ BO(n).

The map f ′ is surjective. Let A be in Q then due to the Autonne–Takagi factorisation

(see [You61]), there is a unitary matrix P such that A = PDP t where D is a diagonal

matrix with real entries. Let
√
D be a diagonal (hence symmetric) matrix in U(n) such

that
√
D

2
= D, we note that any other matrix

√
D
′

of such a form has the property

that
√
D
′
=
√
DI± where I± is a matrix in O(n) of the form

±1 0 · · · 0

0 ±1 · · · 0
...

...
. . .

...

0 0 · · · ±1

 .

We have A = P
√
D
√
DP t = P

√
D(P

√
D)t and therefore f ′((P

√
D)O(n)) = A.

The map f ′ is therefore a continuous bijection, and since U(n)/O(n) is compact and Q

is Hausdorff it is a homeomorphism.

The above diagram and Lemma 5.15 give the following composition

ϕ : U(n)/O(n)
f ′−→ Q

π̃−→ B G ∗(P, σ̃)
r−→ U(n)

q−→ U(n)/O(n) (5.8)

for q the quotient map. From the properties of π1 we see that ϕ is homotopic to a map

that sends an element AO(n) to AAtO(n). For odd n, we showed in Section 2.3 that

the related map

SU(n)/SO(n)→ SU(n)/SO(n)

ASO(n) 7→ AAtSO(n)
(5.9)

is a homotopy equivalence when localised at a prime p 6= 2. Our aim is to show that the

same is true for ϕ.

Lemma 5.16. For a prime p 6= 2, there is an p-local homotopy equivalence

U(n)/O(n) 'p U(n)/SO(n).
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Proof. Consider the following pullback diagram where the downward arrows represent

taking universal covers

U(n)/SO(n) //

��

BSO(n)

��

// BU(n)

U(n)/O(n) //

��

BO(n)

��

// BU(n)

K(Z2, 1) K(Z2, 1)

.

The result immediately follows.

We now show that U(n)/SO(n) further decompositions into the product

SU(n)/SO(n)× S1.

The map BSO(n) → BU(n) factors through BSU(n). Hence, we obtain the following

commutative diagram which defines the maps i and j

U(n)

��

U(n)

f
��

SU(n)/SO(n)
i // U(n)/SO(n)

��

j
// S1

��

SU(n)/SO(n) // BSO(n)

��

// BSU(n)

��

BU(n) BU(n).

(5.10)

It is not too much more work to show the following lemma.

Lemma 5.17. There is a homotopy equivalence

η : SU(n)/SO(n)× S1 '−→ U(n)/SO(n).

Proof. There is a right inverse l to the map f and there is an action of U(n) on

U(n)/SO(n), hence the composition

η : S1 × SU(n)/SO(n)
l×i−−→ U(n)× U(n)/SO(n)

‘action’−−−−−→ U(n)/SO(n)

is the required homotopy equivalence.

Let ϕ be the composition in equation (5.8) and then define

s : U(n)/SO(n)→ U(n)/SO(n)
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to be the composition

U(n)/SO(n)
'−→ U(n)/O(n)

ϕ−→ U(n)/O(n)
'−→ U(n)/SO(n)

Our aim is to show that s restricts to the factors SU(n)/SO(n) and S1 in a nice enough

way.

Lemma 5.18. There exist maps s′′ : SU(n)/SO(n) → SU(n)/SO(n) and s′ : S1 → S1

such that the following is a homotopy commuting square

SU(n)/SO(n)× S1 s′′×s′
//

η

��

SU(n)/SO(n)× S1

η

��

U(n)/SO(n)
s // U(n)/SO(n).

Furthermore, s′′ is homotopic to the map

ASO(n) 7→ AAtSO(n)

and s′ is homotopic to the map x 7→ x2.

Proof. Let s̃ : SU(n)/SO(n)× S1 → SU(n)/SO(n)× S1 be the composition

SU(n)/SO(n)× S1 η−→ U(n)/SO(n)
s−→ U(n)/SO(n)

η−1

−−→ SU(n)/SO(n)× S1

for a homotopy inverse η−1 of η. Let ι : SU(n)/SO(n) → SU(n)/SO(n) × S1 and

κ : S1 → SU(n)/SO(n)× S1 be the inclusions. We note that ι is homotopic to

SU(n)/SO(n)
i−→ U(n)/SO(n)

η−1

−−→ SU(n)/SO(n)× S1

where i is as in diagram (5.10). By the way the homotopy equivalences are defined in

Lemmas 5.16 and 5.17, we see that the composition si is homotopic to

BSO(n) 7→ BBtSO(n) for B ∈ SU(n)

and hence the image of this map lands in the image of i. We deduce that s̃ι has image

in SU(n)/SO(n) and we define

s′′ = s̃ι.

Similarly s̃κ has image in S1 and we define s′ = s̃κ. We see that s′′ is homotopic to a

map defined via ASO(n) 7→ AAtSO(n) and that s′ is homotopic to the map x 7→ x2.
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We immediately obtain the following homotopy commuting diagram where the rows are

homotopy fibrations

SU(n)/SO(n)

s′′

��

i // U(n)/SO(n)

s

��

// S1

s′

��

SU(n)/SO(n)
i // U(n)/SO(n) // S1

(5.11)

By Lemma 5.18, the map s′′ is homotopic to the map in equation (5.9) and hence it

is a p-local equivalence when n is odd and p 6= 2 is a prime. We note that s′ is also a

p-local equivalence. Finally, the spaces in (5.11) are connected, hence s is also a p-local

equivalence and we deduce the following proposition.

Proposition 5.19. With notation as in equation (5.8), let F be the homotopy fibre of

qr : B G ∗(P, σ̃) → U(n)/O(n). Then for n odd and for any prime p 6= 2, there is a

p-local homotopy equivalence

G ∗(P, σ̃) 'p Ω(U(n)/O(n))× ΩF.

Therefore, to prove Theorem 5.14 it only remains to identify the fibre F .

Proposition 5.20. For any prime p 6= 2, there is a p-local homotopy equivalence

F 'p Ω(U(n)/O(n)).

Proof. Since qr is defined as a composition, there is a homotopy commutative diagram

F

��

// B G ∗(P, σ̃)
qr
//

r

��

U(n)/O(n)

O(n) // U(n)
q

// U(n)/O(n)

where the left square is a homotopy pullback square by Proposition 2.4. The map r is a

fibration since it is induced by i : (S1,− id) ↪→ (S2,− id); the inclusion of the meridian

copy of (S1,− id) into (S2,− id). By Corollary 2.8, the space F is homotopy equivalent

to the relative mapping space

Map*
Z2

((
(S2,− id), (S1,− id)

)
,
(
BU(n), BO(n)

)
; 0
)
.

We will associate another pullback square with this description of F . There is a map

T : F → Map*
Z2

((S2,− id), (BU(n), id); 0) given by

T (f)(x) =

f(x) for x in the upper hemisphere including equator;

f(− id(x)) for x in the lower hemisphere excluding equator.
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Let i : (S1,− id) ↪→ (S2,− id) be defined as above, then i induces the following pullback

diagram

F
T //

i∗

��

Map*
Z2

((S2,− id), (BU(n), id); 0)

i∗

��

O(n) �
�

// U(n).

There is a homeomorphism

Map*
Z2

((S2,− id), (BU(n), id); 0) ∼= Map∗(RP 2, BU(n); 0)

but for a prime p 6= 2 the space RP 2 is p-locally contractible. Therefore, p-locally, we

have identified the space F as the fibre of the inclusion O(n) → U(n) and the result

follows.

Proof of Theorem 5.14. Use Propositions 5.19 and 5.20.

Case: (1, 0, 1)

Let (T, τ) be a Real surface of type (1, 0, 1) and since all pointed gauge groups over

(T, τ) are homotopy equivalent, we restrict to the case where (P, σ̃) is a bundle of class 0

over (T, τ). We will use similar techniques to the even genus case to obtain the following

theorem, which is a restatement of Theorem 1.11 (2).

Theorem 5.21. For any prime p 6= 2 and n odd, there is a p-local homotopy equivalence

G ∗(P, σ̃) 'p Ω(U(n)/O(n))× Ω2(U(n)/O(n))× ΩU(n).

Proof. Let u : B G ∗(P, σ̃) → Map∗(C,BU(n)) be the map that forgets about equivari-

ance and restricts to the upper half of (T, τ) which is homeomorphic to a cylinder C.

Let i be the inclusion of the boundary circles of C, then i induces a pullback

B G ∗(P, σ̃)
u //

r

��

Map∗(C,BU(n))

r′

��

Map*
Z2

((S1 ∨ S1, sw), BU(n))
u′ //Map∗(S1 q S1, BU(n))

(5.12)

where r′ = i∗ and r is the restriction to the one-skeleton of (X,σ).
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In a similar fashion to the way we obtained diagram (5.7), we replace (5.12) with a

homotopy equivalent square and obtain the diagram

Q

  

))$$

B G ∗(P, σ̃)
u //

r

��

U(n)

∆−1

��

U(n)
∆ // U(n)× LBU(n).

Here LBU(n) denotes the free loop space of U(n) and Q is the strict pullback of the

diagram

U(n)
∆−→ U(n)× LBU(n)

∆−1

←−−− U(n)

and hence Q is again the symmetric matrices in U(n). We deduce that U(n)/O(n) also

p-locally retracts off B G ∗(P, σ̃).

It is clear that, as in the even case, there is similar description for the fibre F of the

map B G ∗(P, σ̃)→ U(n)/O(n). The space F fits into the following pullback diagram

F //

��

Map*
Z2

((T, τ), (BU(n), id); 0)

r̄

��

O(n) �
�

// U(n).

We note that if we let K be a Klein bottle then there is an homeomorphism

Map*
Z2

((T, τ), (BU(n), id); 0) ∼= Map∗(K,BU(n); 0)

The map r̄ is induced by the inclusion S1 ↪→ K which on fundamental groups induces

the quotient

Z→ Z× Z2

a 7→ (0, [a]2)

onto the right factor. We see that for a prime p 6= 2, the map r̄ is p-locally nullhomotopic

and we obtain

ΩF 'p Ω2(U(n)/O(n))× Ω Map∗(K,BU(n); 0).

Now for p 6= 2 prime we have a p-local homotopy equivalence K 'p S1 because K is

a K(Z × Z2, 1). Therefore, the space Ω Map∗(K,BU(n); 0) is homotopy equivalent to

ΩU(n) when localised away from 2 and Theorem 5.21 follows.

Case: (1, 1, 1)
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Let (X,σ) be a Real surface of type (1, 1, 1). For convenience we choose (P, σ̃) to be a

bundle of class (0, 0) over (X,σ). We use a very similar method to the previous sections

to prove the following theorem, which is a restatement of Theorem 1.11 (3).

Theorem 5.22. For any prime p 6= 2, there is a p-local homotopy equivalence

G ∗(P, σ̃) 'p G ∗((S2,− id); 0)× ΩO(n).

Proof. We first recall the Z2-decomposition of (X,σ). The 0-skeleton X0 is given 3

zero-cells ∗i for 1 ≤ i ≤ 3. The one cells are then

δ1, δ, σ(δ), γ2, σ(γ2)

where the fixed circle is represented by δ1 and δ joins ∗2 to ∗3 and therefore δσ(δ)

represents the copy of (S1,− id). The 1-cell γ2 joins ∗1 to ∗2 and σ(γ2) joins ∗1 to ∗3.

One of the 2 two-cells has attaching map

δ1γ2δσ(δ)γ−1
2

and we define the other one equivariantly.

Since the subspace γ2 ∪ σ(γ2) is Z2-contractible, we amend the above decomposition to

have only 3 one-cells δ1, δ, σ(δ) and amend the attaching map to

δ1δ σ(δ).

We obtain a pullback similar to that of the previous section

B G ∗(P, σ̃)
u //

r

��

Map∗3(D2, BU(n))

r′

��

Map*
Z2

((S1, id) ∨ (S1 ∨ S1, sw), BU(n);w1)
u′ //Map∗(S1 ∨ S1 ∨ S1, BU(n))

where r is the restriction to the one-skeleton of (X,σ) and u restricts to one of the

two-cells and forgets about equivariance.

In a similar fashion to the way we obtained diagram (5.7), we obtain the diagram

O(n)

f1

##

f2

**

f3

&&

B G ∗(P, σ̃)
u //

r

��

U(n)× U(n)

r′

��

SO(n)× U(n)
u′ // U(n)× U(n)× U(n)

(5.13)
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where f1, f2 and f3 are to be defined momentarily.

The map r′ : U(n)× U(n)→ U(n)× U(n)× U(n) is the map

r′(A,B) = (B−1A−1, A,B)

and the map u′ : SO(n)× U(n)→ U(n)× U(n)× U(n) is the map

u′(C,D) = (C,D,D).

We can therefore define maps f1 : O(n)→ SO(n)× U(n) and f2 : O(n)→ U(n)× U(n)

by

f1(X) = (X−2, X) and f2(Y ) = (Y, Y )

such that u′f1 = r′f2. Since 5.13 is a homotopy pullback, there exists a map

f3 : O(n)→ B G ∗(P, σ̃)

such that the composition

χ : O(n)
f3−→ B G ∗(P, σ̃)

r−→ O(n)× U(n)
p1−→ O(n)

sends an element X to X−2. Then observe that χ has image lying in SO(n) and therefore

when χ is restricted to SO(n), it is the inverse of theH-space squaring map. We conclude

that restriction of χ to SO(n) is a p-local homotopy equivalence for p 6= 2 and therefore

SO(n) retracts off B G (P, σ̃).

The map p1r is just the restriction to the fixed points of the involution. Hence the fibre

of this map is the space B G ∗((0, 0, 1); 0) which we have already studied. We finish by

noting that ΩSO(n) and ΩO(n) are homeomorphic.

5.3 Unpointed Gauge Groups

In the last section, we showed that certain trivialities of the attaching map of the top

cells of X led to homotopy decompositions in the pointed case. We will see that these

decompositions somewhat extend to the unpointed case. however the unpointed case

needs to be treated with care due the non-equivalence of the components.
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5.3.1 Integral Decompositions

Let (X,σ) be a Real surface of type (g, r, a). In the following proposition g′ will denote

the number of αi and βi cells in the description of (X,σ) in Section 4.4. Explicitly

g′ =


(g − r + 1) when a = 0;

(g − r) when a = 1 and g − r even;

(g − r − 1) when a = 1 and g − r odd.

We now present Proposition 5.23 which is a restatement of Theorem 1.12 (1).

Proposition 5.23. There are homotopy equivalences

G ((g, r, a); (c, w1, . . . , wr)) ' G ((g − g′, r, a); (c, w1, . . . , wr))×
∏
g′

ΩU(n).

Proof. In essence, we follow the proof of Theorem 3.9. For convenience, we write

(c, w) := (c, w1, . . . , wr). Let Xαβ =
∨
g′(S

1 ∨ S1, sw) be sub-complex of X represented

by αi, σ(αi), βi, σ(βi). Recall the Z2-cofibration sequence of Proposition 5.2

Xαβ ↪→ X
q−→ X ′

µ−→ Σ(Xαβ).

Then the map q induces the following diagram

ΩB
∂(c,w)

//Map*
Z2

(X ′, BU(n); (c, w))

q∗

��

//MapZ2
(X ′, BU(n); (c, w))

ev //

q∗

��

B

ΩB
ϕ(c,w)

//Map*
Z2

(X,BU(n); (c, w)) //MapZ2
(X,BU(n); (c, w))

ev // B

where

B =

BU(n) if r = 0;

BO(n) otherwise.
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The fact that ϕ(c,w) = q∗∂(c,w) obtains the following diagram which defines the maps h

and h′

Map∗(Σ(X), BU(n); (c, w))

��

Map*
Z2

(ΣX,BU(n); (c, w))

(Σi)∗

��

G (g − g′) h′ // G ((g, r, a); (c, w))
h //

��

Map*
Z2

(Σ(Xαβ), BU(n))

µ∗

��

G (g − g′) // ΩB
∂(c,w)

//

ϕ(c,w)

��

Map*
Z2

(X ′, BU(n); (c, w))

q∗

��

Map*
Z2

(X,BU(n); (c, w)) Map*
Z2

(X,BU(n); (c, w))

and in which G (g − g′) := G ((g − g′, r, a); (c, w)). By Proposition 5.2 the map µ∗ is

trivial. Hence there is a section to the map (Σi)∗, so there is also a section to h and the

result follows.

The quotient map q in Proposition 5.23 induced an isomorphism on π0 between

Map*
Z2

(X,BU(n); (c, w)) and Map*
Z2

(X ′, BU(n); (c, w)).

However, for a fixed cell δi of (X,σ), the quotient map q̃ : X → X/δi automatically

induces the map

MapZ2
(X/δi, BU(n))

q∗−→ MapZ2
(X,BU(n); 0)

hence the requirement for wi = 0 in Theorem 1.12 (3). Whilst there is an equivalence

Map*
Z2

(X,BU(n); (c, 0)) ' Map*
Z2

(X,BU(n); (c, 1))

there is not necessarily an equivalence in the unpointed case in general. Hence, there

is not enough information to guarantee the commutativity of the diagram needed to

induce a homotopy decomposition.

Omitting such non-trivialities allows further splittings; let X1 be a subset of the 1-cells

of X such that

1. if there is a fixed cell δi ⊂ X1 then wi = 0 and;

2. for appropriate components the induced map

g∗ : Map*
Z2

(ΣX1, BU(n); (w))→ Map*
Z2

(X/X1, BU(n); (c, w))

is Z2-nullhomotopic.
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Under these assumptions, it is clear that the methods in the previous proposition would

yield another homotopy decompositions.

Proof of Theorem 1.12 (2) and (3). The above conditions apply to the 1-cells consid-

ered in Propositions 5.5, 5.10 and 5.13 for bundles of arbitrary type.

Additionally the conditions are satisfied by the 1-cells considered in Propositions 5.6

and 5.11 for bundles of type (c, w1, 0, . . . , 0). When n is odd we can take advantage of

Proposition 1.8 to obtain the table in Theorem 1.12 (3). We have now finished the proof

of Theorem 1.12.

5.3.2 Analysing the Boundary Map

Let (P, σ̃) be a Real bundle of class (c, w1, . . . , wr) over a Real surface (X,σ) of type

(g, r, a). Let

B =

BO(n) if r > 0

BU(n) otherwise

and reconsider the evaluation fibration

ΩB
∂P−−→ Map∗Z2

(X,BU(n);P )→ MapZ2
(X,BU(n);P )→ B (5.14)

The analysis of the map ∂P is absolutely crucial, if it is (q-locally) trivial then we will be

able to reduce the unpointed case to the pointed one. Indeed, we recall Theorem 3.13

in which there were such trivialities for the non-equivariant case.

Theorem 3.13. Fix a prime p, then

1. if q 6= p is a prime then there is a q-local homotopy decomposition

G (U(p); d) ' U(p)× Ω2U(p);

2. if p | d, there is a p-local homotopy decomposition

G (U(p); d) '
p−1∏
i=0

S2i+1 ×
p−1∏
j=1

Ω2S2j+1;

3. if p - d there is a p-local homotopy decomposition

G (U(p); d) '
p−2∏
i=0

S2i+1 ×
p−1∏
j=2

Ω2S2j+1 × (S1 × Ω2S2p+1).
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For parts (1) and (2), the local triviality of the boundary map

U(n)
∂d−→ Map∗(S2, BU(n); d) (5.15)

provides the needed results. For part (3), it was a more delicate matter of calculating

the homotopy fibre of the ∂d.

We will find in the coming section that Theorem 3.13 provides some similar results for

gauge groups of bundles of class (2d, 0, 0, . . . , 0). Note that the following proposition

immediately implies Theorem 1.13 (1) for the cases q 6= p and q = p | d.

Proposition 5.24. Fix d ∈ Z and let ∂d be the boundary map in (5.15). Let

∂P : ΩB → B G ∗((g, r, a); (2d, 0, . . . , 0))

be the boundary map of the evaluation fibration as in (5.14). If ∂d is (q-locally) trivial

then

1. if r > 0 then ∂P is (q-locally) trivial;

2. if r = 0 then the composition

O(p) ↪→ U(p)
∂P−−→ B G ∗((g, 0, a); (2d))

is (q-locally) trivial.

Proof. The key will be to compare both maps to another evaluation boundary map

involving the Z2-space Y = (S2∨S2, sw). We note that components of Map∗Z2
(Y,BU(n))

are classified by even integers.

Let S2 i1−→ S2 ∨ S2 = Y be the inclusion onto the left factor, and note that this is not a

Z2-map. The following diagram commutes

O(n)
∂2l //

� _

��

Map∗Z2
(Y,BU(n); 2l)

i∗1
��

//MapZ2
(Y,BU(n); 2d)

��

// BO(n)� _

��

U(n)
∂d //Map∗(S2, BU(n); d) //Map(S2, BU(n); d) // BU(n).

(5.16)

Now, there is an inverse to i∗1 which sends a map f in Map∗(S2, BU(n); d) to the com-

position

S2 ∨ S2 f∨f−−→ BU(n) ∨BU(n)
id∨σBU(n)−−−−−−−→ BU(n) ∨BU(n)

fold−−→ BU(n)

which is Z2-equivariant because the involution on S2 ∨ S2 swaps the factors. Note that

the map induced on the unpointed mapping spaces does not have an inverse because the
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basepoint of Y must land in BO(n). We conclude that if ∂d is q-locally trivial then so

is ∂2d.

Let q : X → Y be the map that collapses the 1-skeleton of the Real surface (X,σ). We

obtain the following commutative diagram

O(n)
∂2d //

f

��

Map∗Z2
(Y,BU(n); 2d)

q∗

��

//MapZ2
(Y,BU(n); 2d)

��

// BO(n)

��

ΩB
∂P //Map∗Z2

(X,BU(n);P ) //MapZ2
(X,BU(n);P ) // B

The map f is an equivalence if r > 0 and is the inclusion O(n) ↪→ U(n) otherwise. Since

∂2d is (q-locally) trivial, the result follows.

The above proposition allows us to transfer Theorem 3.13 (1) and (2) to the equivariant

setting and we now apply the same treatment for Theorem 3.13 (3).

Proposition 5.25. Let p - d and let (P, σ̃) be a Real principal U(p)-bundle of class

(2d, 0, . . . , 0) over a Real surface of type (g, r, a). Let

∂P : ΩB → B G ∗((g, r, a); (2d, 0, . . . , 0))

be the boundary map of the evaluation fibration. Then

1. if r > 0 then ∂P is p-locally trivial;

2. if r = 0 then the composition

O(p) ↪→ U(p)
∂P−−→ B G ∗((g, 0, a); (2d))

is p-locally trivial.

Proof. We assume that that p - d is a prime and that all spaces and maps are localised

at p. Let Y = (S2 ∨ S2, sw) be as above, then there is a homotopy commuting diagram

O(p)
∂2d //

� _

i

��

Map*
Z2

(Y,BU(n); 2d)

'
��

U(p)
∂d // ΩU(p)0

U(p)
∂1 //

e
��

ΩU(p)0

d

OO

(Ωe)0

��∏p−1
i=0 S

2i+1 proj
// S2p−1 α // ΩS3 incl //

∏p−1
j=1 ΩS2j+1

(5.17)
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where the bottom square is from diagram (5.16) and the top two squares are from the

proof of Theorem 3.13 (3).

We recall the map d-th power map d : ΩU(p)0 → ΩU(p)0 is a homotopy equivalence

because p - d. Furthermore, the maps e and (Ωe)0 are homotopy equivalences provided

in [Ser53]. Now for p 6= 2 prime, there is a p-local homotopy equivalence

SO(p) 'p

p−1
2∏
i=1

S4i−1

and furthermore the inclusion O(p) ↪→ U(p) is in fact the inclusion of these factors into∏p−1
i=0 S

2i+1. We conclude that the composition

χ : O(p) ↪→ U(p)→
p−1∏
i=0

S2i+1 proj−−−→ S2p−1 (5.18)

is nullhomotopic and therefore so is ∂2d.

For p = 2, the space O(2) is homeomorphic to S1 q S1. Since χ in (5.18) has target

space S3, we conclude that χ and hence ∂2d are nullhomotopic in this case too. The

result then follows in a similar way to the last paragraph of Proposition 5.24.

Proof of Proposition 1.13 (1a) and (2a). Corollary 3.17 and Proposition 5.24 immedi-

ately obtain part (1a). The analysis of the boundary map in Theorem 3.13 (2) and

Proposition 5.24 obtains part (2a) for p | d. Finally, Proposition 5.25 provides the

remaining cases when p - d in part (2a).

5.3.3 Case: (0, 0, 1)

We restrict to analysing gauge groups above Real surfaces of type (0, 0, 1). Fix an even

integer c then we wish to analyse the boundary map ∂c of the evaluation fibration.

For a Z2-space A, let ∆: A→ A×A be the composition

A
∆−→ A×A id×σA−−−−→ A×A. (5.19)

Let u : B G ∗((0, 0, 1); c) → U(n) be the map that restricts to the upper hemisphere of

(S2,− id) and forgets about equivariance except at ∗ and σ(∗). These are the same maps

as in equation (5.7) and they fit into the following commutative diagram

U(n)
∂c //

∆
��

B G ∗((0, 0, 1); c)

u

��

// B G ((0, 0, 1); c)

��

// BU(n)

∆
��

U(n)× U(n)
ζ

// U(n) //Map(D2, BU(n))
ev2 // BU(n)×BU(n)
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where ev2 evaluates at two antipodal points on the boundary of D2 and ζ is defined via

this diagram.

Since D2 is contractible, the map ev2 is homotopic to the diagonal map

∆: BU(n)→ BU(n)×BU(n).

Therefore, the map ζ is homotopic to the map defined by (A,B) 7→ AB−1. Let

f : U(n) → U(n) be defined as f(A) = AAt, this is the same map as in Lemma 5.15.

We conclude that u∂c ' f .

Localising the map f at a prime p 6= 2 yields the map

f ′ : SO(n)× U(n)/SO(n)→ U(n)/SO(n)

which is an equivalence when we restrict to the factor U(n)/SO(n). We have shown the

following proposition.

Proposition 5.26. Let n be odd, then localised at a prime p 6= 2 the following compo-

sition is a homotopy equivalence

U(n)/SO(n) ↪→ U(n)
∂c−→ B G ∗((0, 0, 1); c)

u−→ U(n)→ U(n)/SO(n).

With this proposition, we now have enough ammunition to prove the rest of Theorem

1.13.

Proof of Theorem 1.13 (1b) and (2b). We first prove part (1b). Localise at a prime p 6= 2

such that p - n. Reconsider the fibration sequence

G ((0, 0, 1); c)→ SO(n)× U(n)/SO(n)
∂c−→ B G ∗((1, 0, 0); c).

By Proposition 5.26 the factor U(n)/SO(n) retracts off B G ∗((1, 0, 0); c) and by Propo-

sition 5.24 (2) the factor SO(n) retracts off G ((0, 0, 1); c). We now use Proposition 2.12

to obtain the required homotopy decomposition. The proof of part (2b) is similar.

5.3.4 Case: (1, 0, 1)

We now analyse unpointed gauge groups above a Real surface (T, τ) of type (1, 0, 1).

We use a similar method to the (0, 0, 1) case and adopt some of its notation.

As in the proof of Theorem 5.21, let u′ : B G ∗((1, 0, 1); c) → Map∗(C,BU(n)) be the

map that forgets about equivariance and restricts to the upper half of (T, τ) which is

homeomorphic to a cylinder C. Let ∆ be as in (5.19) then we obtain the following



104 Chapter 5 Results

diagram

U(n)
∂c //

∆
��

B G ∗((1, 0, 1); c)

u′

��

// B G ((1, 0, 1); c)

��

// BU(n)

∆
��

U(n)× U(n)
ζ′
//Map∗2(C,BU(n)) //Map(C,BU(n))

ev2 // BU(n)×BU(n)

where ev2 is another double evaluation map; viewing C as a sub-complex of (T, τ), the

map ev2 evaluates at the basepoint ∗1 and its image under the involution τ(∗1). Again,

the map ζ ′ is defined via this diagram.

As in the previous case, we aim to study the homotopy type of the map ∆ζ ′. However,

it is not immediately clear on the homotopy type of the ‘boundary’ map ζ ′. We note

that C ' S1 under a deformation retract fixing ∗1 and taking τ(∗1) to ∗1. Therefore,

if we let LU(n) be the free loop space of U(n), we deduce that there is a homotopy

commutative diagram

Map(C,BU(n))

'
��

ev2 // BU(n)×BU(n)

LBU(n)
ev // BU(n)

∆

OO

where ev evaluates at the basepoint ∗1 and ∆ is the diagonal map. Given that ∆ ev is

a composition, we obtain the following homotopy commutative diagram

U(n)× U(n)

ζ′

��

U(n)× U(n)

ζ̃
��

U(n)
h′ //Map∗2(C,BU(n))

��

h // U(n)

∗
��

U(n) // LBU(n)

∆ ev
��

ev // BU(n)

∆
��

BU(n)×BU(n) BU(n)×BU(n)

defining the maps h and h′.

By the triviality of the middle right vertical, there is a right homotopy inverse i to h

and a left inverse q to h′. Therefore the space Map∗2(C,BU(n)) is homotopy equivalent

to the product U(n)× U(n).2 Therefore the homotopy type of

ζ ′ : U(n)× U(n)→ Map∗2(C,BU(n))

2Of course, this can be seen directly by studying the homotopy type of C.
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can be determined by studying qζ ′ and hζ ′. It is clear that qζ ′ ∼ ∗ and hζ ′ ∼ ζ̃.

However, ζ̃ is the same as the map ζ : U(n)×U(n)→ U(n) in Case (0, 0, 1) and therefore

it homotopic to the map (A,B) 7→ AB−1.

We conclude that ζ ′ is homotopic to a map

U(n)× U(n)→ U(n)× U(n)

(A,B) 7→ (In, AB
−1).

Proof of Theorem 1.13 (1c) and (2c). We first prove part (1c). Let p 6= 2 be a prime

with p - n . Then localised at p, in the same way as Proposition 5.26 we see that the

factor U(n)/SO(n) in

U(n) 'q U(n)/SO(n)× SO(n)

retracts off B G ∗((1, 0, 1); c) via

U(n)/SO(n) ↪→ U(n)
∂c−→ B G ∗((1, 0, 1); c)

u′−→ U(n)→ U(n)/SO(n).

Additionally by Propositions 5.24 (2), the factor SO(n) retracts off the gauge group

G ((1, 0, 1); c). We use Proposition 2.12 to obtain the required homotopy decomposition.

The proof of part (2c) is similar.

5.4 The Quaternionic Case

From herein we restrict to the Quaternionic case. For convenience, we recall the main

objects of interest and their classification. Let (P, σ̃)→ (X,σ) be a Quaternionic princi-

pal U(2n)-bundle over a Real surface, then we aim to provide homotopy decompositions

of the following spaces

• the unpointed gauge group GQ(P, σ̃);

• the (single)-pointed gauge group G ∗Q(P, σ̃);

• the (r + a)-pointed gauge group G
∗(r+a)
Q (P, σ̃).

From Section 1.1 we recall that the isomorphism class of these gauge groups depend on

1. the type (g, r, a) of the underlying Real surface (X,σ) where

• g is the genus of X;

• r is number of path components of the fixed set Xσ;

• a = 0 if X/σ is orientable and a = 1 otherwise;
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2. the isomorphism class c of the bundle (P, σ̃) where

• c is the first Chern class of the underlying principal U(2n)-bundle P ;

subject to the relations in Theorem 1.1 and Proposition 1.3.

Again, our method of attack will be to study some mapping spaces related to these

gauge groups. In fact these mapping spaces are the same as in the Real case except

BU(2n) is endowed with an involution so that

(EU(2n), σEU(2n))→ (BU(2n), σQ)

is a universal Quaternionic bundle. Therefore since a lot of the results in the Real case

come from geometric properties of (X,σ), we will see that these results transfer to the

Quaternionic setting without too much hassle. Furthermore, since (BG)σQ = BSp(n)

we will see that a number of results will be easier to prove due to the high connectivity

of BSp(n).

For the Z2-space (BU(2n), σQ) as above, we write

MapQ(X,BU(2n)) := MapZ2
(X,BU(2n))

to distinguish from the Real case and use similar notation for the pointed cases. Now let

X be as in the preamble to Theorem 5.1, and we recall Theorem 4.20 for the Quaternionic

case.

Theorem 5.27. Let (P, σ̃) be a Quaternionic principal U(2n)-bundle of class c over a

Real surface (X,σ) of type (g, r, a). Then there are homotopy equivalences

1. B GQ(P, σ̃) ' MapQ(X,BU(2n);P );

2. B GQ
∗(P, σ̃) ' Map*

Q(X,BU(2n);P );

3. B GQ
∗(r+a)(P, σ̃) ' MapQ

∗(r+a)(X,BU(2n); c) ' Map*
Q(X,BU(2n);P ).

where on the right hand side we pick the path component of MapQ(X,BU(n)) that in-

duces (P, σ̃).

As with the Real case, we sometimes write GQ((g, r, a); c) to mean the gauge group of a

quaternionic bundle of class c over a Real surface (X,σ) of type (g, r, a). We use similar

notation for the pointed cases. We now sketch the proofs for the results in Section 1.3.

Proposition 1.14. Let (X,σ) be a Real surface of fixed type (g, r, a). Let (P, σ̃) and

(P ′, σ′) be quaternionic principal U(2n)-bundles over (X,σ), then there are homotopy

equivalences
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1. B GQ
∗(P, σ̃) ' B GQ

∗(P ′, σ′);

2. B GQ
∗(r+a)(P, σ̃) ' B GQ

∗(r+a)(P ′, σ′);

Proof. We use the action of π2(BU(2n)) on [(X,σ), (BU(2n), σQ)]Z2 as presented in the

proof of Proposition 1.5.

As in the Real case, the lack of π2(BU(2n)) action means that we cannot provide an ana-

logue for B GQ(P, σ̃). However, we now prove the Quaternionic analogue of Proposition

1.7.

Proposition 1.15. Let (X,σ) be a Real surface of fixed type (g, r, a) and let the following

be the classifying spaces of gauge groups of Quaternionic bundles of rank 2n. Then for

any even integer c, there is a homotopy equivalence

B GQ((g, r, a); c)) ' B GQ((g, r, a); c+ 4n).

Proof. We will define a map

θ : MapQ(X,BU(2n); c)→ MapQ(X,BU(2n); c+ 4n)

that sends a f to the composition

X
∆−→ X ×X f×i−−→ BU(2n)×BU(1)

T−→ BU(2n).

Here, BU(1) is seen as a subspace of BU(2n) and hence BU(1) is endowed with the

involution induced by complex conjugation; turning T into Z2-map.

With this in mind, define j : (S2 ∨ S2, sw) → BU(1) to be the inclusion of the bottom

cell on the left hand factor S2 and then define it equivariantly on the right hand factor.

Then let i be the composition

i : (X,σ)
q−→ (S2 ∨ S2, sw)

j−→ BU(1)

where q is the quotient map collapsing the 1-cells. This defines θ and a homotopy inverse

to θ is given by replacing i with σBU(1)i.

We sketch the proofs for the results related to homotopy decompositions of the gauge

groups.

(Proof of 1.16 and 1.17). The proof is similar to those in Sections 5.2.1–5.2.3 except

that in this case BU(2n)σQ = BSp(n). We recall that decompositions involving fixed

circles in the Real case needed to be handled delicately, but this does not occur in the

Quaternionic case due to the high connectivity of BSp(n).
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Localised at a prime p 6= 2 and for n odd, we obtained a p-local decomposition in the

Real case due to the fact that the p-local homotopy equivalence

U(n)/O(n)→ U(n)/O(n)

AO(n) 7→ AAtO(n)

factored through B G ∗((0, 0, 1); 0). In Section 2.3, we presented a similar map involving

U(2n)/Sp(n) and we shall see that this map also factors through the Quaternionic

analogue of this gauge group. The following is a restatement of Theorem 1.18 (1).

Proposition 5.28. Let p 6= 2 be prime, then there is a p-local homotopy equivalence

GQ
∗((0, 0, 1); 0) 'p Ω2(U(2n)/Sp(n))× Ω(U(2n)/Sp(n)).

We will follow the proof and use the notation of Theorem 5.14. Recall from 2.3 that

the involution σ0 on U(2n) is defined via σ0(A) = J−1AJ where A denotes complex

conjugation and

J =



0 1 0 0 · · · 0 0

−1 0 0 0 · · · 0 0

0 0 0 1 · · · 0 0

0 0 −1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1

0 0 0 0 · · · −1 0


.

Let

u : B GQ
∗((0, 0, 1); 0)→ Map∗2(D2, BU(2n))

be the map that restricts to the upper hemisphere of (S2,− id) and forgets about equiv-

ariance considering the image as landing in Map∗2(D2, BU(2n)). Let

r : B GQ
∗((0, 0, 1); 0)→ Map*

Z2
((S1 ∨ S1, sw), BU(2n))

be the map restricting to the 1-skeleton of (S2,− id). We obtain a similar homotopy

commuting diagram to diagram (5.7)

Q

""

**&&

B GQ
∗((0, 0, 1); 0)

u //

r

��

U(2n)

∆−1

��

U(2n)
∆Q

// U(2n)× U(2n).
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where ∆Q is the map A 7→ (A, σ0A). Here, Q is the strict pullback of the diagram

U(2n)
∆Q

−−→ U(2n)× U(2n)
∆−1

←−−− U(2n)

and B GQ
∗((0, 0, 1); 0) is the homotopy pullback of the same diagram. Once again, we

aim to show that Q retracts off B GQ
∗((0, 0, 1); 0).

Lemma 5.29. The pullback Q is homeomorphic to U(2n)/Sp(n).

Proof. This is essentially the same proof as Lemma 5.15, but for the sake of clarity we

include the details in this case.

The space Q consists of the elements (α, β) of U(2n) × U(2n) such that α = β and

J−1αJ = β−1. Hence αJ = Jαt and

(αJ)t = J tαt = −Jαt = −αJ.

We conclude that A ∈ U(2n) is in Q if and only if AJ is skew-symmetric.

We define a map f : U(2n) → U(2n) by f(A) = Aσ0(A)−1. Note that J2 = − id2n and

so

(f(A)J)t = (AJ−1AtJJ)t = −(AJ−1At)t = AJAtJJ = −(AJ−1AtJ)J = −f(A)J

and so we redefine f to have image in Q.

Now for A ∈ U(2n) and W ∈ Sp(n) we have

f(AW ) = AWσ0(W )−1σ0(A)−1 = AWW−1σ0A = Aσ0(A)−1 = f(A)

and so f induces a map f ′ : U(2n)/Sp(n)→ Q.

The map f ′ is injective. Let A,B ∈ U(2n) and suppose Aσ0(A)−1 = Bσ0(B)−1, then

id2n = B−1Aσ0(A)−1σ0(B) = (B−1A)σ0(B−1A)−1.

Therefore B−1A ∈ Sp(n) and so ASp(n) ≡ BSp(n).

The map f ′ is surjective. Let A be in Q then AJ is skew-symmetric and hence due the

Youla Lemma [You61], there is a unitary matrix P such that AJ = PJP t. Therefore

A = PJP tJ−1 = P (J−1PJ)−1 = f ′(PSp(n))

The map f ′ is therefore a continuous bijection, and sinceQ is Hausdorff and U(2n)/Sp(n)

is compact, f ′ is a homeomorphism.
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Similar to the map in (5.8), we obtain the following composition

ϕ : U(2n)/Sp(n)
f ′−→ Q→ B GQ

∗((0, 0, 1); 0)
r−→ U(2n)

q−→ U(2n)/Sp(n) (5.20)

where q is the quotient map. The map ϕ sends an element ASp(n) to Aσ0(A)−1Sp(n).

In Section 2.3, we showed that the related map

s′ : SU(2n)/Sp(n)→ SU(2n)/Sp(n)

ASp(n) 7→ Aσ0(A)−1Sp(n)
(5.21)

is a homotopy equivalence when localised at a prime p 6= 2.

It is clear that there are analogue statements to Lemmas 5.17 and 5.18 and Proposition

5.20.

Lemma 5.30. There is a homotopy equivalence

η : U(2n)/Sp(n)× S1 '−→ U(2n)/Sp(n).

Lemma 5.31. There exist maps s′′ : SU(n)/SO(n) → SU(n)/SO(n) and s′ : S1 → S1

such that the following is a homotopy commuting square

SU(2n)/Sp(n)× S1 s′′×s′
//

η

��

SU(2n)/Sp(n)× S1

η

��

U(2n)/Sp(n)
s // U(2n)/Sp(n).

Furthermore, s′′ and s′ are p-local equivalences.

Proposition 5.32. Let F be the homotopy fibre of the composition

B GQ
∗((0, 0, 1); 0)

r−→ U(2n)
q−→ U(2n)/Sp(n)

then for any prime p 6= 2, there is a p-local homotopy equivalence

F 'p Ω(U(2n)/Sp(n)).

Proof of Proposition 5.28. For a prime p 6= 2, we have shown that there is a p-local

section to the principal homotopy fibration

Ω2(U(2n)/Sp(n))→ GQ
∗((0, 0, 1); 0)

Ω(qr)−−−→ Ω(U(2n)/Sp(n))

and the result follows.

Proof of Theorem 1.18 (2) and (3). These follow using the same proofs as Theorems

5.21 and 5.22.
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In the unpointed case, the theorems involving integral decompositions follow immedi-

ately from the Real case.

Proof of Theorem 1.19. The results presented in Section 5.2.1 do not depend on the fixed

point set of the involution on BU(n) and hence Theorem 1.19 follows immediately.

We proceed to prove the Quaternionic analogues of Section 5.3.2. Let

B =

BSp(n) if r > 0

BU(2n) otherwise

and recall the evaluation fibration

ΩB
∂P−−→ Map∗Q(X,BU(n);P )→ MapQ(X,BU(n);P )→ B. (5.22)

The following proposition can be proven using the same method as Proposition 5.24.

Proposition 5.33. Fix d ∈ Z and let ∂d be the boundary map in (5.15). Let

∂P : ΩB → B GQ
∗((g, r, a); 2d)

be the boundary map of the evaluation fibration as in (5.22). If ∂d is (q-locally) trivial

then

1. if r > 0 then ∂P is (q-locally) trivial;

2. if r = 0 then the composition

Sp(n) ↪→ U(2n)
∂P−−→ B GQ

∗((g, r, a); 2d)

is (q-locally) trivial.

Proof of Theorem 1.20 (1). Let p be a prime such that p - 2n. Then 2n is a unit mod

p and hence by Corollary 3.17 the map ∂2n is p-locally trivial. The result then follows

from Proposition 5.33.

Proof of Theorem 1.20 (2) and (3). The proof is similar to the proofs of Theorem 1.13

(1b) and (1c). We do require that p 6= 2 but this is automatic with the assumption that

p - 2n.
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Appendix A

Tables of Homotopy Groups

In this appendix we present some of the homotopy groups of the discussed gauge groups

that can be obtained from the homotopy decompositions presented in Sections 1.2 and

1.3. We will only present the homotopy groups of the trivial components, that is,

• (c, w1, . . . wr) = (0, 0, . . . , 0) for Real bundles and;

• c = 0 for Quaternionic bundles;

with the understanding that results can be obtained for different components using

Propositions 1.5, 1.6, 1.7, 1.8, 1.14 and 1.15.

We first recall the status of the calculation of the homotopy groups before this thesis,

that is, we present Table A.1 which is a restatement of the table in Theorem 1.4.

Table A.1: Results of [BHH10] – the low dimensional homotopy groups of rank n
gauge groups above a Real surface of type (g, r, a). The entries in blue disagree
with the author’s results.

Real π0(G ∗(r+a)(P, σ̃)) π0(G (P, σ̃)) π1(G ∗(r+a)(P, σ̃)) π1(G (P, σ̃))

n > 2 Zg+a × (Z2)r Zg × (Z2)r+1 Z Z×(Z2)r

n = 2 Zg+a+r Zg+r × Z2 Z Zr+1

n = 1 Zg+a Zg × Z2 0 0

Quat.

rank 2n
Zg+a Zg × (Z2)a Z Z
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From the results in Sections 1.2 and 1.3, we can see that our homotopy decompositions

usually contain factors involving U(n), O(n) and Sp(n). Due to Bott periodicity, it is

easy to calculate some of the higher homotopy groups for high rank gauge groups. We

present such results in Tables A.2 and A.3 where η is defined via

η = η(g, r, a) =

1 if r > 0 and a = 1;

0 otherwise.

Some of the results in Table A.2 are a consequence of localised homotopy equivalences

and hence may provide incomplete information. To highlight these localised results we

use the following notation

• groups surrounded by (−)p are understood to have come from p-local homotopy

equivalences where p and the rank n of the gauge groups satisfy the requirements

of Theorems 1.11 and 1.13.

Table A.2: Homotopy groups for high rank gauge groups of Real bundles, that
is, the homotopy groups πi when the rank n > i + 2. The results in blue
correspond to the top row in Table A.1.

G ∗(r+a)(P, σ̃) G (P, σ̃)

π8j Zg−1 × Zr−1
2 × (Z1+a)p × (Z1+η

2 )p Zg−1 × Zr−1
2 × (Z)p × (Z1+η

2 )p

π8j+1 (Z1+a
2 )p Zr−1

2 × (Z2+η
2 )p

π8j+2 Zg+r−2 × (Z1+η)p × (Za2)p Zg−1 × Zr−1
2 × (Z)p × (Zη2)p

π8j+3 (Z)p (Z2)p

π8j+4 Zg−1 × (Z1+a)p Zg−1 × (Z)p

π8j+5 0 0

π8j+6 Zg+r−2 × (Z1+η)p Zg−1 × (Z1−η)p

π8j+7 Zr−1
2 × (Z)p × (Zη2)p Zr−1

2 × (Z2)p × (Zη2)p

Similarly, some of the results in Table A.3 are a consequence of localised homotopy

equivalences and hence may provide incomplete information. To highlight these localised

results we use the following notation

• groups surrounded by (−)p are understood to have come from p-local homotopy

equivalences where p is prime and the rank 2n of the gauge groups satisfy the

requirements of Theorems 1.18 and 1.20.
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Table A.3: Homotopy groups for high rank gauge groups of Quaternionic bun-
dles, that is, the homotopy groups πi when the rank 2n > i+1

4 . The results in
blue correspond to the bottom row in Table A.1.

GQ
∗(r+a)(P, σ̃) GQ(P, σ̃)

π8j Zg−1 × (Z1+a)p Zg−1 × (Z)p

π8j+1 0 0

π8j+2 Zg+r−2 × (Z1+η)p Zg−1 × (Z1−η)p

π8j+3 Zr−1
2 × (Z)p × (Zη2)p Zr−1

2 × (Z2)p × (Zη2)p

π8j+4 Zg−1 × Zr−1
2 × (Z1+a)p × (Z1+η

2 )p Zg−1 × Zr−1
2 × (Z)p × (Z1+η

2 )p

π8j+5 (Z1+a
2 )p Zr−1

2 × (Z2+η
2 )p

π8j+6 Zg+r−2 × (Z1+η)p × (Za2)p Zg−1 × Zr−1
2 × (Z)p × (Zη2)p

π8j+7 (Z)p (Z2)p

Due to the properties of Bott periodicity, Table A.3 is a translation of Table A.2. We

note that additional calculations can be made for the lower rank cases. We point the

reader to [Mim95, Section 3.2] where explicit homotopy groups of some of the relevant

factors can be found.

We note that the author’s results disagree with the Z-summands coloured in blue in

Table A.1. In the pointed case, this Z-summand arises in [BHH10] by studying a fibration

arising from restricting the gauge group to the 1-skeleton of the Real surface.

For example, the corresponding fibration for a type (g, r, 0) Real surface is

Ω2U(n)→ G ∗(P, σ̃)→
g∏

ΩU(n)×
r∏

ΩO(n)

and we obtain the exact section

0→ π2(G ∗(P, σ̃))
ν−→ Zg+r → Z µ−→ π1(G ∗(P, σ̃))→ 0.

The claim in [BHH10] is that the map µ can be thought in terms of the classification of

bundles over S2∧X. Further since µ is induced by a map that collapses the one skeleton

of X, the map µ is essentially providing an identification of the second Chern class, and

hence is an isomorphism.

The author agrees that this argument holds in the non-equivariant case. Indeed, if we

consider X as a Riemann surface we obtain that S2 ∧X is a wedge of spheres and then
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µ is induced by a map that collapses all but the top copy of S4.

However, we now demonstrate that π1(G ∗(P, σ̃)) cannot contain a Z-summand, at least

for the type (0, 1, 0) case. We assume that π1(G ∗(P, σ̃)) contains a Z-summand, and

that subsequently the map µ is an isomorphism. Therefore ν is an isomorphism and we

recall that it is induced by the map r′ which restricts to the 1-skeleton of X. The map r′

fits into the following commutative diagram1

G ∗(P, σ̃)
u′ //

r′

��

Ω Map∗(D2, BU(n))

r

��

Ω Map*
Z2

((S1, id), BU(n); 0)
u // Ω Map∗(S1, BU(n))

where u′ is the map that forgets about equivariance and restricts to the upper hemisphere

of X.

Now u is homotopic to the inclusion ΩO(n) ↪→ ΩU(n) and hence by assumption the

induced map

u∗ν = (ur′)∗ : Z ∼= π2(G ∗(P, σ̃))→ π2(ΩU(n)) ∼= Z

is multiplication by 2. But ru′ is nullhomotopic because it factors through the con-

tractible space Ω Map∗(D2, BU(n)) and we obtain a contradiction. We conclude that µ

cannot be an isomorphism.

It remains to show that the other blue entries in Table A.1 cannot contain Z-summands.

However, these entries were obtained from the calculation in the pointed case and there-

fore we argue that these cannot contain Z-summands either.

1Recall from Example 2.1 that the diagram is actually a pullback.
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