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UNIVERSITY OF SOUTHAMPTON

ABSTRACT
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Doctor of Philosophy

by Dionysios Syrigos

The (outer) automorphism group of a finitely generated free group Fn, which we denote
by Out(Fn), is a central object in the fields of geometric and combinatorial group theory.
My thesis focuses on the study of the automorphism group of a free product of groups.
As every finitely generated group can be written as a free product of finitely many
freely indecomposable groups and a finitely generated free group (Grushko’s Theorem)
it seems interesting to study the outer automorphism group of groups that split as a
free product of simpler groups. Moreover, it turns out that many well known methods
for the free case, can be used for the study of the outer automorphism group of such
a free product. Recently, Out(Fn) is mainly studied via its action on a contractible
space (which is called Culler - Vogtmann space or outer space and we denote it by CVn)
and a natural asymmetric metric which is called the Lipschitz metric. More generally,
similar objects exist for a general non-trivial free product. In particular, in this thesis
we generalise theorems that are well known for CVn and Out(Fn) in the case of a finite
free product, using the appropriate definitions and tools.

Firstly, in [30], we generalise for an automorphism of a free product, a theorem due to
Bestvina, Feighn and Handel, which states that the centraliser in Out(Fn) of an irre-
ducible with irreducible powers automorphism of a free group is virtually infinite cyclic,
where it is well known irreducible automorphisms form a (generic) class of automor-
phisms in the free case.
In [31], we use the previous result in order to prove that the stabiliser of an attrac-
tive fixed point of an irreducible with irreducible powers automorphism in the relative
boundary of a free product, can be computed. This was already well known for the free
case and it is a result of Hilion.
Finally, in [29] we prove that the Lipschitz metric for the general outer space is not
even quasi-symmetric, but there is a ’nice’ function that bounds the asymmetry. As an
application, we can see that this metric is quasi-symmetric if it is restricted on the thick
part of outer space. The result in the free case is due to Algom-Kfir and Bestvina.
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Background

1 Introduction

In the first main chapter of this report we deal with the automorphisms of finitely
generated free groups. The groups Aut(Fn) and Out(Fn), where Fn is the free group
on n generators, are very basic and important for Combinatorial and Geometric Group
theory. Initially, these groups were studied via combinatorial methods and for example
these methods yield a finite presentation for Aut(Fn) and Out(Fn). More recently,
Out(Fn) is studied through its actions on nice spaces and in particular CVn which is
a contractible space, that is usually called ‘Outer Space’ or ‘Culler-Vogtmann space’,
on which Out(Fn) acts properly. We present different definitions of CVn, its basic
properties and the first applications of this action. Also, we describe three different
natural topologies that can be used for the study of CVn. In addition, we explain
how CVn can be seen as a metric space and we list some interesting properties of this
(pseudo-) metric, which is called the Lipschitz metric. The geometry which is induced
by this metric, it’s the most recent way that has been used to study CVn. The main
problem of this (pseudo-) metric is that it fails to be symmetric. In fact, it is highly
asymmetric, but we state a theorem of Algom-Kfir and Bestvina that explains the lack
of the asymmetry in terms of a function. Finally, we list the definitions and the basic
facts for a very powerful tool that can be used to study CVn, which is the existence of
train track representatives for a class of automorphisms, the irreducible automorphisms.
As an application of the train track representatives, we can associate a set of laminations
to any irreducible with irreducible powers automorphism and we can also study the set
of attractive fixed points of an automorphism in the boundary of the free group.
In the second chapter, we deal with the automorphisms of general (finite) free products
and some well known facts about them. Our approach is to describe the study of the
groups Aut(G) and Out(G) (where G splits an a non-trivial finite free product) which is
motivated by methods that are well established for finitely generated free groups. Firstly,
we explain how we can obtain a generating set providing that we have generating sets for
the free factors and the outer automorphisms of the factors. Then we will see how CVn

can be generalised in a much more general context using the notion of a deformation
space. Also, we describe the main properties of the general space and the notions of

1



Background 2

the Lipschitz metric and the train track representatives in the general case. Finally,
we present how a classical theorem (Tits alternatives) for subgroups of Out(Fn) can be
generalised for subgroups of Out(G).
Finally, in the last chapter we present the main results of the following papers: [29],
[30] and [31]. All of them are generalisations in the case of a general free product of
well known theorems for Out(Fn) and CVn. More precisely, in [29] we prove that in the
general case the well known theorem about the asymmetry of the Lipschitz metric still
holds. In [30], we study the theory of attractive laminations associated to irreducible
automorphisms of a free product. As an application, in [31] we generalise in the free
product case, a well known theorem about the stabiliser of an attractive fixed point of
an irreducible automorphism in the boundary of a free group.

2 Free groups

2.1 Definitions and Basic Results

Let F be a group and let X be any arbitrary subset of F . We will define a free group
using a universal property.

Definition 2.1. (Universal Property of Free groups)
We say that F is free on the set X and we write F = F (X), if for any group H we have
that any map φ : X → H can be uniquely extended to a homomorphism ψ : F → H so
that ψι = φ, where we denote by ι the natural inclusion from X into F .
X F

H

i

φ
ψ

Actually, given any set X, we can construct the group F (X) as follows. A word in
the alphabet X, is a finite sequence (possibly empty) of elements of X ∪ X−1, where
X−1 is the set of formal inverses of elements of x ∈ X. A reduced word is a word
without subwords of the form yy−1 for some y ∈ X ∪X−1 and we let the trivial element
1 correspond to the empty word. Then we can define the group F (X) as the set of
all reduced words in X, where the operation is the concatenation of words and then
reduction. It can be proved that:

Theorem 2.2. (Normal form)
Let F be a free group on a set X. Then every element of F can be uniquely written as
a reduced word on X. Conversely, if G is generated by the set X and every element of
G can be uniquely written as a reduced word on X, then G is free on X.

(Recall that we say that a group G is generated by a subset X of G, if every element
g ∈ G can be written as a word in X ∪X−1 or equivalently if G is the smallest subgroup
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of G that contains X.)
In both cases, the set X is called a basis of the free group F (X). The cardinality of X
is called the rank of F (X). It can be proved that two free groups are isomorphic if and
only if they have same rank.
Let’s suppose that G is generated by the set X. Then using the universal property
there is a homomorphism from the free group F (X) to G, which is surjective. Therefore
by the 1st isomorphisms theorem, G is isomorphic to the quotient of F (X) over the
kernel of that homomorphism. Conversely, let X be any set and let R be a subset of
F (X), then we say that G has the presentation < X|R > if it is isomorphic to the
group F (X)/ << R >>, where we denote by << R >> the intersection of all normal
subgroups of F (X) that contain R. R is called the relation set of the presentation. It
is easy to see that the free group F on a set X has a presentation of the form < X| >,
where the relation set is the empty set.

An important theorem for free groups is the following:

Theorem 2.3. (Nielsen - Schreier)
Let F be a free group and H be any subgroup of F , then H is free.

However, we can not say anything about the rank of the subgroup. It is possible to have
infinitely generated subgroups of the free group on two generators.
Now we will describe a classical result, which states that a group F is free if and only if
F acts freely on a tree.
Let’s define the notion of a tree in the sense of Serre (see [27]). A graph B is a quintuple
(V,E, ι, τ,̄ ), where V is the set of vertices, E is the set of oriented edges and¯: E →
E sends an edge e to the edge ē which has the inverse orientation. Moreover, ι, τ
are functions from E to V , which send an edge to the its initial and terminal vertex,
respectively. In additional, we have that ¯̄e = e, ē 6= e and ι(e) = τ(ē) for every e ∈ E. A
path p = e1e2...en is a finite sequence of edges (elements of E), where τ(ei) = ι(ei+1),
and we say that this path starts at ι(e1) and finishes at τ(en). In additional, a path is
reduced if it has no subpaths of the form eē for some e ∈ E. A path p = e1...en is called
a circuit or a loop, if ι(e1) = τ(en). A graph is called connected, if for any two distinct
vertices v1, v2 there is a path that starts at v1 and finishes at v2. A graph is called a
tree, if it is connected and it has no reduced loops.
A action of a group G on a tree T is called free, if the stabilisers of all points are trivial.
Moreover, it can be proved (for more details and proofs of these facts see [27]):

Theorem 2.4. A group F is free if and only if F acts freely on a tree T .
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2.2 Automorphisms of Free Groups

Let’s denote by Fn the free group with basis the set X = {x1, ..., xn}. Any automor-
phism of a free group can be uniquely described by considering its restriction in X, since
any two automorphisms with the same restriction in X are equal. Conversely, every map
from X to Fn induces a unique endomorphism of Fn (by the universal property of Fn),
though all not of these are automorphisms as Fn possesses injective endomorphisms
that are not surjective (Fn is not Co-Hopfian). However, as we see below free groups are
Hopfian, which means that surjective endomorphisms are automorphisms. In addition,
every automorphism sends a basis to some (possibly different) basis. The group of auto-
morphisms of Fn, which we denote by Aut(Fn), is a very well studied group. Moreover,
we denote by Inn(Fn) the group of inner automorphisms of Fn, namely ψ ∈ Inn(Fn)
if and only if there is some x ∈ Fn such that ψ(g) = xgx−1 for every g ∈ Fn. In fact,
Aut(G) and Inn(G) can be defined for any group G and it can be proved that Inn(G) is
isomorphic to G/Z(G), where we denote by Z(G) the centre of G. Since Z(Fn) is trivial
for every n > 1, we have that in this case Inn(Fn) ' Fn. Moreover, it is not difficult
to see that Inn(Fn) is a normal subgroup of Aut(Fn) and so we can define the quotient
Out(Fn) = Aut(Fn)/Inn(Fn), which is called the group of outer automorphisms.
The study of these groups is not new, as Aut(Fn) and Out(Fn) are basic objects of ‘com-
binatorial group theory’. Initially, there were a lot of results proved using combinatorial
methods.
Let’s consider a (finite) family of automorphisms that generate the group Aut(Fn).
Firstly, for every xi ∈ X (i = 1, ..., n), let’s define αi which sends xi to x−1

i and leaves
unchanged the elements of X − {xi}. Moreover, for every (distinct) i, j ∈ {1, ..., n}
we consider the automorphism βi,j that sends xi to xixj and leaves unchanged the el-
ements of X − {xi} (these maps clearly induce surjective endomorphisms, and hence
automorphisms). The automorphisms that are induced by the αi’s and the βi,j ’s, are
called elementary Nielsen transformations. Nielsen proved that Aut(Fn) and Out(Fn)
are finitely generated (since the elementary Nielsen transformations generate Aut(Fn),
see [21] p. 131) and in fact they are finitely presented (Nielsen, see again [21] p.165).
Later, a simpler presentation was given by Mc Cool ([24]).
A group G is called residually finite, if for every (non-trivial) g ∈ G there is a finite
group F and a homomorphism f : G → F such that f(g) is not trivial in F . This is
a very interesting group property, as we can study a residually finite group G using its
finite index subgroups. It is a classical fact (see [2]) that if a group G is finitely gener-
ated and residually finite then the automorphism group of G, Aut(G), is also residually
finite. In particular, Aut(Fn) is residually finite (since it is not very difficult to see that
Fn is residually finite). However, we cannot conclude immediately that Out(Fn) holds
the same property, since there are examples of quotients of residually finite groups that
are not residually finite, but Grossman ([14]) proved that Out(Fn) is residually finite.
Combining the facts above and the well known result that any finitely generated and
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residually finite group is also Hopfian, which means that every surjective map from the
group to itself it is also injective, we have that it holds that both Aut(Fn) and Out(Fn)
are Hopfian.
Let’s focus on the group Out(F2), which is interesting since it is isomorphic to GL(2,Z)
and therefore it is arithmetic, but also isomorphic to the mapping class group of a
genus-1 torus with a single puncture. More general, for any n and by considering the
abelianisation map from Fn to Zn, which induces a homomorphism from Aut(Fn) to
GL(n,Z) and it is not difficult to see that every inner automorphisms belong to the
kernel. As a consequence, we have a natural map from Out(Fn) to GL(n,Z) for which it
can be proved that it is actually surjective (and also isomorphism for n = 2). Therefore
we can see an analogy of Out(Fn) with GL(n,Z). Also, there is strong a connection
with mapping class groups, since Out(Fn) contains the mapping class group of a com-
pact surface S with fundamental group Fn (see [33]). As we will see, much of the work
for Out(Fn) has been motivated by well known results for general linear groups and
mapping class groups of compact surfaces.

2.3 Outer Space

We would like to investigate more properties for Out(Fn), but sometimes the combinato-
rial methods are very complicated. However, there is a more recent topological approach
for these groups.
These methods motivated by techniques which were used successfully for arithmetic
and mapping class groups and they can be used in order to understand better the au-
tomorphism groups of finitely generated free groups. For example, given a surface S,
the Teichmuller space of S is defined as the space of ‘marked’ Riemann surfaces, where
a ‘marking’ is an isotopy class of homeomorphisms from S to S. The mapping class
group MCG(S), which is the quotient of the group of orientation preserving homeo-
morphisms of S modulo the group of homeomorphisms of S which are isotopic to the
identity, acts on the Teichmuller space of S. Culler and Vogtmann constructed an ‘Outer
space‘, that we denote by CVn, on which the group Out(Fn) acts with a particular nice
way and which has been motivated by the construction of the Teichmuller space using
metric graphs instead of Riemann surfaces. More specifically, the points of this space,
correspond to finite ‘marked’ metric graphs with fundamental group isomorphic to Fn.
Moreover, Out(Fn) acts on this contractible space with finite point stabilisers. As we
will see, CVn has a lot of interesting properties, and so we can obtain some new results
for Out(Fn) and different proofs of known results.

There are different ways to define CVn, but firstly we will describe it as a space of
‘marked’ metric graphs. Let’s denote by Rn the rose with n petals (a graph which has
exactly 1 vertex and n loops, which we denote by e1, ..., en) and then we can identify the
free group Fn =< x1, ..., xn > with the fundamental group π1(Rn) of Rn, in such way
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that each xi corresponds to ei, for i = 1, ..., n. Under this identification, every reduced
word in Fn corresponds to a reduced edge-path loop based of Rn and vice versa. Thus
we can see that we can correspond to each outer automorphism φ : Fn → Fn a homotopy
equivalence f : Rn → Rn (since we don’t fix a base point). Now we are in position to
define the marked metric graphs:

Definition 2.5. A pair (g,Γ) is called marked metric graph, if:

• Γ is a finite connected graph, where all vertices of Γ have valence ≥ 3

• g : Rn → Γ is a homotopy equivalence, called the ‘marking’ of Γ

• Each edge e of Γ is assigned a positive number which is called the length of e. Γ
endowed with this metric, can be seen as a metric space via the path metric (the
distance between two points of Γ is defined to be the minimum of the lengths of
all paths connecting these points).

Actually, we would like to identify homothetic marked metric graphs. More precisely, let
(g,Γ), (h,∆) be two marked metric graphs, then we define ∼ such that (g,Γ) ∼ (h,∆)⇔
∃ a homothety m : Γ → ∆ (i.e. there exists some λ > 0 s.t. d(m(x),m(y)) = λd(x, y))
with m ◦ g = h. Then ∼ is an equivalence relation on the set of marked metric graphs.
CVn is defined as the space of equivalence classes of marked metric graphs up to ∼ and it
is called Outer Space. Sometimes, it is more convenient to normalise the metric graphs
by choosing as representatives the points with volume (i.e. the sum of the lengths of
edges) 1. If we choose the normalised CVn, we could change the homothety m above,
with an isometry (λ = 1).
The next step is to describe the action of Out(Fn) on CVn. Intuitively, we can say that
every automorphism leaves invariant the underlying graph and changes the marking.
Namely, let a ∈ Aut(Fn) and (g,Γ) be a marked metric graph then we can still denote
by a : Rn → Rn the homotopy equivalence which corresponds to a. The automorphism
a acts by the rule: (g,Γ)a = (g ◦a,Γ). It’s not difficult to see that Inn(Fn) acts trivially
(which means that (g,Γ) and (g ◦ ι,Γ) are homothetic, for ι ∈ Inn(Fn)), and so there
is a well defined action of Out(Fn) on CVn. Note that we can see that the stabiliser of
any marked graph (g,Γ) is isomorphic to the group of isometries of Γ, and in particular
it is finite, since Γ is finite. Therefore the action of Out(Fn) on CVn is proper.

2.4 R-trees

We would like to give an alternative definition of CVn using free Fn - actions on trees,
but firstly we will discuss some basic definitions and results for isometric G-actions on
trees for a general group G. We will see these notions in a more general context, as later
we will need non-necessarily free group actions.
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We will start by defining the notion of an R-tree. An R-tree T is a non-empty metric
space in which for any two points there is an arc that joins them and in which every arc
is isometric to a closed interval in the real line.
We are interested only in simplicial R-trees, which means that we suppose that the set
of points of T which have valence more than 2, is discete and closed. Actually, every
simpicial R-tree can be constructed as below. Let X be a connected 1-dimensional
simplicial complex without circles, then for any edge e of X we choose an embedding
of e to R. For any x, y ∈ X, there exists a unique arc from x to y and this arc can
be subdivided into subarcs A1, ..., An each of which is contained in an edge of X. The
length of Ai is defined to be equal to the length of its image in R (under the chosen
embedding). Then the distance d from x to y is defined by the sum of the lengths of
Ai’s. Then the metric space (X, d) is a simplicial R-tree.

Some interesting properties of the actions are defined below.

Definition 2.6. Let G be a group that acts on an R-tree (T, d). We say that the action
is:

1. non-trivial, if no point of T is fixed by the whole group.

2. minimal, if there is no proper G-invariant subtree.

3. free, if the stabiliser of every point of T is trivial.

4. co-compact, if the quotient graph G/T is compact (finite).

5. isometric, if d(gx, gy) = d(x, y) for every g ∈ G.

6. simplicial, if whenever v is a vertex of T then gv is a vertex of T and whenever e
is an edge of T then ge is an edge of T , for every g ∈ G.

As we are interested in isometric actions of a group G on R-trees, we need the classifi-
cation of isometries of R-trees as every element of G induces an isometry of T . See [10]
for more details.
We can classify the isometries, by studying the number (which is called the translation
length of g in T ) `T (w) := inf

p∈Γ
d(p, wp), for every w ∈ G. It can be proved that the

infimum is always achieved for some p ∈ T and so it is actually a minimum. So there
are two cases:

Remark. 1)If `T (g) > 0, then we say that g is a hyperbolic isometry (or a hyperbolic
element). In this case it can be proved that there exists a unique g-invariant line, which
is called axis of g and is denoted by AxT (g) such that the restriction of the action of g
to the line is just translation by (the positive number) lT (g) or
2) If `T (g) = 0, then g is called elliptic. In this case, g fixes a non-empty subtree of T .
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2.5 CVn using free actions on trees

In the first definition of CVn, we have a finite graph together with a homotopy equiva-
lence between the rose Rn, corresponding to some fixed basis x1, .., xn of Fn, and Γ, so
we can identify the fundamental group of the graph Γ with Fn = π1(Rn). Then we can
consider the universal cover T of Γ which is an R- tree (as we can lift the metric) and
we get a minimal free action (by deck transformations) of Fn on T , via the marking g.
Conversely, given any minimal free action of Fn by isometries on a simplicial R -tree A,
we get that the quotient graph Γ = Fn/A is a finite graph (by minimality), with a metric
induced by the metric of A and the action induces a homotopy equivalence gΓ : Rn → Γ.
Therefore we have a 1-1 relation between marked metric graphs and minimal free iso-
metric Fn- actions on real trees. Moreover, we can see that the equivalence relation of
marked metric graphs that we have defined, corresponds to actions which are the same
up to Fn - equivariant homothety (i.e. there is a homothety f : T → S between the R-
trees T, S such that f(gx) = gf(x) for every g ∈ Fn). The discussion above, implies
that CVn can be alternatively defined as the equivalence classes of minimal free actions
of Fn on simplicial R- trees up to Fn - equivariant homothety.
The action here can be naturally defined. Given an outer of automorphism a ∈ Out(Fn)
and a tree T ∈ CVn, then we can define by a(T ) to be the element of CVn with the same
underlying tree with T but the action is given by twisting the Fn-actions, i.e. the new
action will be given by the rule g ? x := a(g)x (where the second is the action of T ) for
every g ∈ Fn and for every x ∈ T .
Now we are in position to define a topology for CVn. Let T ∈ CVn and w ∈ Fn. As
we have seen, we can consider the translation length function `T : Fn → R, where
`T (w) := inf

p∈T
d(p, wp). As we have already mentioned above, it is well known that for a

minimal action the infimum is realised and, in the case of the free actions, we have that
for any non-trivial element w ∈ Fn, it is not equal to 0. In particular, every non-trivial
element of Fn acts on T hyperbolically. Culler and Morgan (in [10]) proved that actually
any minimal free action (in fact they proved something much more general) on an R -
tree T is determined (up to conjugacy) by the associated length function `T . Therefore,
if we denote by C the set of conjugacy classes of Fn, we get a map from CVn to RC (i.e.
all the maps from C to R) sending an element T of CVn to the corresponding translation
length function. Hence we can see the projective space CVn as a subset of the projec-
tive space PRC (since every two homothetic marked graphs have two translation lengths
functions which are positive scalar multiples of each other, this map is well defined) and
we can give to CVn the subspace topology, which is usually called the axes topology.

2.5.1 Gromov- Hausdorff topology

We will describe a second topology for CVn, which is called Gromov - Hausdorff topology,
that it can be defined for any space of G-trees (i.e R - trees with an isometric G-action)
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and in particular for CVn.
Let us describe this topology in general, on the set of G-trees which we denote it by
T (G).

Definition 2.7. Let K,K ′ be two metric spaces. Let ε > 0. An ε-approximation
between K and K ′ is a relation R in K × K ′ that is onto (i.e. pr1(R) = K and
pr2(R) = K ′) such that:
∀x, y ∈ K,∀x′, y′ ∈ K ′, xRx′ and yRy′ ⇒ |d(x, y)− d(x′, y′)| < ε

We will describe here the basis for our topology:

Definition 2.8. Let T ∈ T (G). Let also K be a compact subset of T , P be a finite
subset of G and let ε be a positive number. Let’s denote by VT (K,P, ε) the set which
consisted of the elements T ′ ∈ T (G), such that there exist a compact subset K ′ of T ′

and a closed ε-approximation T (G) between K and K ′, which is P -equivariant in the
following sense:
∀x ∈ K,∀x′ ∈ K ′,∀a ∈ P, ax ∈ K and xRx′ ⇒ ax′ ∈ K and axRax′

The collection of VT (K,P, ε) for T ∈ T (G), defines a neighbourhood basis at T for
a topology on T (G) (see Paulin for more details, [25]), called the Gromov-Hausdorff
topology. In particular, Gromov-Hausdorff topology for CVn is the quotient topology
that it is induced if we identify two G-trees that they are G-equivariently isometric.

2.6 Simplicial structure

CVn has an additional important property, as it has a simplicial structure. More specif-
ically, CVn decomposes into a disjoint union of open simplices. We will use here the
normalised representative of a point in CVn, so we have a marked metric graph with
volume 1, and the homothety between the graphs can be chosen to be an isometry here.
Let us describe this simplicial structure. For each marked graph (g,Γ) (if we ignore
the metric), we can see that it corresponds to the open simplex of CVn, consisting
of all marked metric graphs with underlying graph given by Γ and the same marking
g : Rn → Γ, where the metric varies over all the (positive) lengths of the (finitely many)
edges subject to the constraint that the volume remains equal to 1. More precisely, let
e1, ..., ek be the labelled edges of Γ then the set X of all marked metric graphs which
have the same underlying graph and the same marking as Γ, while the metric varies as
above, can be embedded in Rk using the map Γ→ (LΓ(e1), ..., LΓ(ek)), and actually X
coincides with the open k − 1 simplex of Rk, {(x1, ..., xk)|xi > 0,∑xi = 1}.
So we have a natural subdivision of CVn into open simplices and as a consequence we
have a third topology for CVn, which is called the weak topology. Precisely, a subset U
of CVn is closed if and only if the intersection of U with all closed simplices is closed.
Even if we have three different topologies for CVn, it can be proved that they all coincide
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(see [9], note that the main recipient for the proof is the fact that the trees of CVn are
locally finite).
However, CVn is not a simplicial complex, as there are simplices of CVn which have
some ideal faces (and some true faces), but CVn fails to be a simplicial complex due
to the presence of ideal faces. More precisely, if A is an open simplex corresponding
to the underlying graph X, a face N of A is obtained by setting to zero the lengths of
some of the edges of X. This topologically corresponds to collapsing such edges to a
point. If the resulting graph has still (fundamental group with) rank n, then N can be
seen as a simplex of CVn, and in this sense it is a true face. On the other hand, if the
rank decreases, then the new graph is not in CVn and in this case we say that it is an
ideal face of A. For example, let’s suppose that n = 2 and let’s consider the rose R2

corresponding to the base a1, a2. Then the corresponding simplex is a 1-simplex of the
form {(x1, x2)|x1, x2 > 0, x1 + x2 = 1}. But here if we collapse the edge corresponding
to a1 that means that we set x1 to 0, then the induced 0-simplex does not belong to
CVn as it corresponds to a graph with one loop, and so its fundamental group is not
isomorphic to F2.
However, we can find a deformation retract of CVn which has no ideal faces. An edge e
of a graph Γ is called a separating edge if Γ− e is disconnected.
There is a natural equivariant deformation retraction of Outer space onto the subspace,
which is called Reduced Outer Space (see [9]), consisting of marked graphs (g, Γ) such
that Γ has no separating edges, where the deformation proceeds by uniformly collapsing
all separating edges in all marked graphs.
It is interesting to see some facts about the dimensions of CVn, which lead us to results
about the virtual cohomological dimension of Out(Fn) as we will see in the next section.
More precisely:

Proposition 2.9. The maximum dimension of a simplex in CVn is 3n− 4.

However, note that the fact that we can find not homeomorphic points of CVn within
arbitrarily small distance implies that CVn is not a manifold, as for example the Teic-
muller space of a compact manifold is. Moreover, the action of Out(Fn) on CVn is not
co-compact, which means that CVn/Out(Fn) is not compact. On the other hand, the
simplicial structure is locally finite and there are finitely many orbits of simplices.

2.7 Spine and Thick part

As we have seen the action of Out(Fn) on CVn is not co-compact, but we can find
subspaces of CVn that are co-compact. Firstly, we will define the spine of CVn, which
we denote by Kn. It is a useful subspace of CVn, since for example it was used in the
original proof of contractibility of the whole space (see [9]).
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CVn contains the complex Kn, which is an equivariant deformation retract of CVn and
whose quotient is compact. This spine Kn has the structure of a simplicial complex, and
in fact it can be identified with the geometric realization of the partially ordered sets
of open simplices (with the face relation) of CVn. Any partially ordered set gives rise
to a simplicial complex. In particular, k simplices are totally ordered chains of length
k + 1. Thus a vertex of CVn is an equivalence class of marked graphs (g,Γ), considered
without lengths on the edges. A set of vertices {(g0,Γ0), ..., (gk,Γk)} spans a k-simplex
if (gi,Γi) is obtained from (gi−1,Γi−1) by collapsing a forest (subgraph of Γi−1 which
does not contain any loops) in Γi−1. It can be proved actually that Kn is a simplicial
complex and as in the previous proposition, we can get that dimKn = 2n− 3.
Now let’s define the thick part of Outer Space, which we denote by CVn(ε), for some
positive ε. One reason that the action fails to be co-compact is the fact that we can find
elements of the free group with arbitrarily small translation length. Therefore we can
define the subspace of CVn, where T ∈ CVn(ε) if and only if `T (g) ≥ ε for every non
trivial g ∈ Fn. For sufficiently small ε, we have that CVn(ε) is Out(Fn) invariant and
the action is co-compact.

2.8 Main Properties and Corollaries

In this section, we will recall the basic properties of the action and some interesting
corollaries for Out(Fn) which we can get using the action. All the details, the proofs
and many more facts about CVn can be found in [9] and in [32] which is a very inter-
esting survey paper of K.Vogtmann.
Firstly, let’s recall that CVn and all its subspaces that we have defined are contractible
and locally finite. In fact, it can be proved that Kn is contractible and that the con-
tractibility of Kn implies that CVn is also contractible. Also, the action of Out(Fn) on
CVn is simplicial with finite point stabilisers. Moreover, the action is proper and if we
are restricted on the spine Kn or on the thick part CVn(ε) is co-compact.
We can get a lot of important properties using this action. Firstly, using the fact that
Out(Fn) acts co-compactly on a contractible complex (the spine, Kn) with finite sta-
bilisers, we get that Out(Fn) is finitely presented.
Moreover, using the well known Nielsen realisation theorem which states that every fi-
nite subgroup of Out(Fn) fixes a point of CVn, we can get that Out(Fn) is virtually
torsion free.
As a consequence of the dimension of Kn, we can obtain that the vcd(Out(Fn)) ≤ 2n−3
(and we will see that the equality also holds). In fact, it has a stronger property than
just finite virtual cohomological dimension. Namely, a group G is said to be WFL if
every torsion-free finite index subgroup H has a free resolution of finite length with each
term finitely generated over the group ring ZH. In particular this implies that H has
finite cohomological dimension. In our case, the quotient of the spine Kn by Out(Fn)
is finite, thus the quotient by any finite index subgroup H is also finite. Therefore the
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chain complex for Kn means that we have a free resolution of finite length for H with
each term finitely generated over ZH, and so Out(Fn) is WFL. Since the dimension of
the simplicial complex Kn is 2n − 3, this chain complex has length 2n − 3, and this
fact give us an upper bound for the virtual cohomological dimension of Out(Fn). The
same argument works for Aut(Fn) and it can be proved that it is WFL, and the vcd of
Aut(Fn) is at most 2n− 2.

On the other hand the group Aut(Fn) contains a free abelian subgroup of rank 2n− 2:
and more precisely, if Fn =< x1, ..., xn >, then for i > 1 the automorphisms that ai, bi
which are defined such that they leave invariant all the xj ’s for j 6= i and they satisfy the
property ai(xi) = xix1, bi(xi) = x1xi. Then the automorphisms ai, bi, i ∈ I form a basis
for a free abelian subgroup of rank 2n− 2 of Aut(Fn). Then because of the conjugation,
their image in Out(Fn) is of rank 2n− 3. Therefore, since the cohomological dimension
of a free abelian group is equal to the dimension of a basis, we have a lower bound
for vcd which is equal to the upper bound. As a consequence, we have the equalities
vcd(Out(Fn)) = 2n− 3 and vcd(Aut(Fn)) = 2n− 2. Finally, as corollary of the previous
results we can get that Out(Fn) has finitely many conjugacy classes of finite subgroups.

2.9 Train Track Maps

A very useful remark for CVn is that for every outer automorphism φ of Out(Fn) can be
represented by a homotopy equivalence f : Γ→ Γ for every Γ ∈ CVn. This means that
we can see the outer automorphism as a homotopy equivalence between a graph with
fundamental group Fn. However, if we would like to study the dynamics of the automor-
phism there are problems that arise by the cancellation of a topological representative.
Bestvina and Handel (in [8]) during their study of the famous Scott Conjecture (which
states that the rank of the fixed subgroup of every automorphism of a finitely gener-
ated free group is bounded by the rank of the free group), they introduced the train
track representatives and even more general relative train track representatives of outer
automorphisms. Such a map is a very important tool which allows us to control the can-
cellation and it can be used to investigate further the outer space and as a consequence
Out(Fn).
As we have seen before, every automorphism φ of Fn can be identified with a homotopy
equivalence f : π1(Rn)→ π1(Rn) and we say that f represents φ.
In general, we say that an outer automorphism φ of Fn is topologically represented by
a homotopy equivalence f : Γ → Γ, if there exists a marked metric graph (g,Γ) such
that if h : Γ → Rn is chosen to be a homotopy inverse of g where the composition
hfg : Rn → Rn induces an automorphism of Fn = π1(Rn) whose outer automorphism
class is equal to φ.
Actually, it can be proved that for every φ ∈ Out(Fn) and for every Γ ∈ CVn there is
a topological representative f : Γ → Γ of φ. We can also assume that every vertex is
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sent to a vertex and every edge is sent to an edge-path, and even that f can be chosen
to be piecewise linear. We will make these assumptions for our representatives without
further mention.
However, let’s consider the automorphism φ of F3 with free basis a, b, c, which sends a
to c, b to c−1a and c to c−1b. In this case we can see that φ2(c) = b−1cc−1a = b−1a.
Therefore for the topological representative f of φ in the rose corresponding to the ba-
sis a, b, c, we have cancellation for some iteration of φ. So we cannot expect that we
have always representatives of automorphisms in the rose, without cancellation when we
iterate the representative. But we can give an alternative definition:

Definition 2.10. Let φ be an outer automorphism of Fn and f : Γ→ Γ be a topological
representative of φ. Then we say that f is a train track map, if for every edge e of Γ
and for every k we have that fk(e) is reduced (there is no cancellation).

Example 1. • Let φ be the outer automorphism of F2 that a is sent to aba and b
to ba. Then φ induces a natural train track representative in the rose R2 with
marking corresponding the free basis a, b.

• In general, any positive automorphism of Fn (i.e. there is some basis x1, ..., xn of
Fn such that the images of the generators xi’s don’t contain any x−1

i ) induces a
topological representative on the rose, which is a train track map.

However, unfortunately we cannot find train track representatives for any automorphism
of Fn. But we can find such representatives for a class of automorphisms (this class is
generic in terms of random walks, see more details in [26]).
A topological representative f : Γ → Γ of φ ∈ Out(Fn) is called irreducible, if there is
no proper non-trivial (at least one of its connected components it is not just a vertex)
f -invariant subgraph of Γ. More precisely:

Definition 2.11. An outer automorphism φ of Fn is called irreducible, if any topological
representative f : Γ → Γ of φ where Γ has no valence one vertices and has no proper
nontrivial f -invariant forests, is irreducible. Otherwise, φ is called reducible.

Moreover, φ is called irreducible with irreducible powers (simply IWIP) or fully irre-
ducible, if any power φk of φ is irreducible. We can see IWIP automorphisms as the
analogous object to the pseudo - Anosov homeomorphisms of the mapping class group
of a compact surface. This is an additional motivation to study this class of automor-
phisms.
We gave a topological definition for irreducibility, but there is also an equivalent alge-
braic definition. More precisely:

Definition 2.12. An automorphism φ ∈ Out(Fn) is called irreducible, if there is no
proper φ-invariant (up to conjugacy) free factor F ′ of Fn. Namely, there is no F ′ such
that Fn = F ′ ∗ H where both F ′ and H are non trivial and φ(F ′) = gF ′g−1 for some
g ∈ Fn.
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As we have already mentioned every irreducible automorphism can be represented by
an (irreducible) train track map. The main idea of the proof is that we can start with
a topological representative of an irreducible φ and after a finite sequence of foldings of
some edges and clean-ups of the induced topological representatives. This procedure can
be done for any automorphism, but the problem is that we don’t know if this will stop.
The irreducibility condition combined with the Perron - Frobenius theory is the reason
that in this special case, this machinery allows us to obtain a train track representative.
Even if it is not easy to prove directly that a given automorphism is irreducible, however
there are some other criteria to prove irreducibility.

Example 2. 1. Let φ be the outer automorphism of F2 that sends a to ab and b to
a. Then φ is irreducible and actually it can be proved that it is IWIP.

2. Let φ be the outer automorphism of F2 that sends a to ab and b to b Then φ is
reducible since for the free factor < b > of F2 we have that φ(< b >) =< b >.

However, it’s not always possible to find train track representatives of an outer auto-
morphism. For example, it can be proved that the reducible automorphism of F3 which
sends a to abcb−1c−1, b to bcb and c to cb has no train track representative. There-
fore in order to study all the automorphisms we need a generalisation of train track
representatives. Namely, we can define a relative train track representative f : Γ→ Γ.

Definition 2.13. Let φ ∈ Out(Fn). Then we say that a topological representative
f : Γ→ Γ of φ, is a relative train track map if:

• there is a stratification of Γ, H1 ⊆ H2 ⊆ ... ⊆ Hk = Γ where f(Hi) ⊆ Hi for every
i and

• for every edge e of Hi and for every k, fk(e) has cancellation only into Hi−1 (so
there is no cancellation into Hi −Hi−1).

Bestvina and Handel proved in the same paper ([8]) that every outer automorphisms of
a finitely generated free group can be represented by some relative train track map.

2.10 Lipschitz metric

As we have seen previously, the methods to study CVn were mainly combinatorial and
topological. Recently, there in a new metric theory for Outer space that it is based
on a natural non-symmetric metric. Therefore there is a new resulting geometric point
of view which allows us to get new information about Out(Fn) as well as elegant new
proofs and better understanding of older results. Moreover, this metric theory allow us
to see new aspects of the analogy between Outer space and the Teichmuller space, as
this metric is a generalisation of a well known metric for the Teichmuller space.
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Francaviglia and Martino studied this metric systematically in [11]. Let’s describe how
we can define this metric. The main idea of this metric is to study how much the
translation lengths of the group elements can be stretched between two elements of
CVn and then to take the maximum of these strething factors. However, since we are
not in advance sure that this maximum is achieved, we have to take the supremum.
More precisely, for any pair of marked metric graphs A,B we can define the maximal
stretching factors as

ΛR(A,B) = sup
16=w∈Fn

lB(w)
lA(w)

and asymmetric pseudo -distance:

dR(A,B) = ln(ΛR(A,B)) (1)

Using the pseudo-distance we can define the metric

d(A,B) = dR(A,B) + dR(B,A) (2)

Firstly, note that it can be proved that there is always some w ∈ Fn s.t. ΛR(A,B) =
lB(w)
lA(w) . It is not very hard to see that d is a well defined metric for CVn and dR is an
asymmetric metric for CVn (but it is not true that dR(A,B) = dR(B,A)). In fact, it can
be proved that it is a complete metric (actually, any closed ball is compact, see [11]).
Also, we could give an alternative definition of the metric using Lipschitz maps and this
is the reason that this metric is called Lipschitz metric and it can be defined in a more
general context.
Let (g,A), (h,B) be two elements of CVn. We say that a map φ : A→ B is a difference
of markings map if φg ' h. Here we will only consider Lipschitz piecewise linear maps
(as there are always piecewise Lipschitz maps between any two graphs of CVn) and we
denote by σ(φ) the Lipschitz constant of φ. We can define the distance alternatively as:

dR(A,B) = ln inf
φ
σ(φ) (3)

Then the metric d can be defined as before.
In order to prove that the infimum is actually minimum we need to recall the Arzelá-
Ascoli theorem, which states that any sequence of L-Lipschitz maps between two com-
pact metric spaces has a convergent subsequence. Since every A ∈ CVn is compact, this
theorem implies that the infimum above is realised by some map φ and in fact (see [11])
in this case there exists a difference of markings φ such that ΛR(A,B) = σ(φ), so we can
see that the two definitions are equivalent. We could define the notion of optimality of a
map, which are actually the maps that realise the infimum in the definition, however we
will explain the details in a more general context. Note that all the notions that we have
already defined using the description of CVn as the space of marked metric graphs, we
could define them if we see CVn as the space of minimal free Fn- actions. For example,
the train track representatives could be defined as topological representatives from a
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tree T to itself. Similarly, for all the other notions. We will describe how we can define
them in a more general context which also applies in this case.
As we have seen in the first definition of ΛR, there is always some element of the free
group w ∈ Fn that is maximally stretched. In fact, there is a very useful lemma (sausage
lemma, see [11]) which allows us to choose some g which realises the supremum above
to be rather simple. More precisely, let A,B ∈ CVn. Then there exists a loop γ cor-
responding to the group element g, such that `B(g)

`A(g) = LR(A,B) such that the loop γ

in A is either a simple closed loop, either is an embedded bouquet of two circle or a
‘dumbbell’, which means a loop that it is consisted of two disjoint simple loops and an
arc connecting them. In particular, there are finitely many choices of such a loop and
therefore we need just to check the translation length of finitely many elements.

Example 3. Let A be the rose corresponding to the base a, b and the length of each
simple loop is 1/2. Similarly, we can define Bε to be the same marked graph as A, but
the length of a is ε and the length of b is 1− ε, for some positive and sufficiently small
ε.Then in order to check the distance of dR(A,Bε), from the sausage lemma we need just
the loops a, b, ab of A. Then we can see that `Bε(a)/`A(a) = 2ε, `Bε(b)/`A(b) = 2(1− ε)
and `Bε(ab)/`A(ab) = 1. Therefore for small ε, dR(A,Bε) = ln(2(1 − ε)). However,
similarly we can see that dR(Bε, A) = − ln(2ε). As a consequence, dR is not symmetric
and it is not even a quasi - isometry.

However, even if dR is not even a quasi-isometry, there is the following theorem of
Algom-Kfir and Bestvina ([1]):

Theorem 2.14. There is an Out(Fn)-invariant continuous, piecewise analytic function
Ψ : CVn → R and constants K,L > 0 (depending only on n) such that for every
x, y ∈ CVn we have that dR(y, x) ≤ KdR(x, y) + L[Ψ(y)−Ψ(x)].

As a corollary, we get that if x, y belong in the same orbit, then we have that we need
only the multiplicative constant and namely d(y, x) ≤ Kd(y, x). Similarly, we need just
the multiplicative constant if we are restricted to the thick part CVn(ε) of CVn.
Finally, this metric induces a metric topology for CVn. We have seen that the simpilicial,
the axes topology and the Gromov-Hausdorff topology, they all coincide. In [11], it was
proved that the metric induces an equivalent topology, too.

2.11 Attractive Lamination of a free group and Tits alternative

A well known fact about the centraliser of an IWIP automorphism is the following:

Theorem 2.15. Let φ ∈ Out(Fn) which is an IWIP. Then the centraliser COut(Fn)(φ)
is a virtually infinite cyclic group.
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There are various proofs of the theorem above (for instance, see [4] or [20]). The first
proof was by Bestvina, Feighn and Handel who constructed a homomorphism from
COutG(φ) to R. The proof uses the notion of the attractive Lamination corresponding to
an irreducible with irreducible powers outer automorphism φ. They associate an attrac-
tive Lamination to φ, which is a space of lines. This laminations is called attractive since
it is constructed by choosing a train track representative of the outer automorphism,
and then by iterating the image of some edge with some fixed point in the interior we get
a bi-infinite line. The lamination is actually the equivalence class that it is induced by
this line. It can be proved that the lamination does not depend on the chosen train track
map. Using the maps between any two marked metric graphs, we have a lamination
Λ(H) corresponding to each marked metric graph H. Therefore we can define the col-
lection (space) Λ of all the laminations when H varies over all the marked metric graphs
H and the collection of the attractive laminations {Λψ : ψ is IWIP } on which Out(Fn)
acts naturally. Then they constructed a stretching homomorphism from the Out(Fn)-
stabiliser of the lamination to the positive real numbers. As a second step, they proved
that the image of this homomorphism is discrete (using the Perron - Frobenius theory)
and therefore we have a map from the stabiliser Stab(Λ) of the lamination to Z. Then
they study the kernel of the homomorphism and actually they proved that every element
of the kernel has finite order (there is the need to distinguish cases for irreducible and
reducible automorphisms). Since Out(Fn) is virtually torsion free, we get immediately
that the kernel of the action is finite. As a consequence, Stab(Λ) is a virtually infinite
cyclic group. By the definition of the action, we have that the centraliser of φ is con-
tained to Stab(Λ) and so as corollary we get that C(φ) is virtually Z.
These techniques are well established and they can be generalised in order to prove a
lot of interesting results for CVn and Out(Fn). For example, the same authors in a
series of papers they proved the Tits alternative for Out(Fn), namely they proved that
any subgroup of Out(Fn) either contains a f.g. free abelian subgroup of finite index
(virtually abelian) or it contains a free group on two generators. In that series of three
papers, they associate in every automorphism a finite set of attractive laminations using
the relative train track representatives instead of train track representatives in order to
establish the Tits alternatives ([5], [6] and [7]). Namely, they proved:

Theorem 2.16. Every finitely generated subgroup K of Out(Fn) is either virtually
abelian or it contains a subgroup of rank 2.

Later, this result generalised for any subgroup, not just for finitely generated.

2.12 Attractive fixed points in the boundary of a free group

As we have already mentioned, Bestvina and Handel (1992) proved the Scott Conjucture.
Since then, this result has been generalised and has been improved in many different
directions. For example, Gaboriau, Jaeger, Levitt and Lustig (in [13], 1998) used the
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boundary of a finitely generated free group in order to define the infinite fixed points of
an automorphism. Firstly, given a finitely generated free group Fn with basis the finite
set X, we can define the boundary ∂Fn (which is a Cantor set), as the set of infinite
reduced words relative to the word length corresponding to X. It can be proved that
the definition does not depend on the basis. Moreover, naturally Fn can be seen as
a metric space using the metric induced by the word length and every φ ∈ Aut(Fn)
induces a quasi-isometry of Fn. As we can define a natural metric d for ∂Fn, by the
formula d(X,Y ) = e−|X∧Y |, where by ∧ we denote the largest initial segment of X and
Y , we can see that every automorphism induces a homeomorphism ∂φ of the boundary
∂Fn. Note that we could define ∂Fn, as the boundary of any tree of CVn, which is well
defined up to homeomorphism.
Now for φ ∈ Aut(Fn), let’s denote by Fix(φ) the fixed subgroup of φ. As we have
discussed, Fix(φ) is a free group of finite rank and therefore its boundary that it can
be defined similarly as above, we get that ∂Fix(φ) embeds into ∂Fn. It is not difficult
to see that actually ∂Fix(φ) is contained to Fix(∂φ). We are in position to state the
lemma that give us a characterisation of the infinite fixed points of ∂φ. More precisely,
a point of ∂Fix(φ) is said to be singular if it belongs to ∂Fix(φ) and it is said regular
otherwise. For a regular point, we say that an infinite fixed point X of ∂φ is attractive,
if there is a neighbourhood U of X in Fn such that the sequences φk(y) converge to X
for all y in U . On the other hand, an infinite fixed point X of ∂φ is called repulsive, if
it is attractive for ∂φ−1. Then (in [13]), it is proved that an infinite fixed point of ∂φ is
either singular or attractive or repulsive.
We could also ask that if for given X ∈ ∂Fn can we compute the subgroup Stab(X) =
{ψ ∈ Out(Fn) : ∂ψ(X) = X} of Out(Fn). However, this question looks like very difficult
to be answered in general. But there is a partial result by Hilion for attractive fixed
points of an IWIP automorphism and more specifically:

Theorem 2.17. [17] Let φ be an automorphism of Fn and X be an attractive fixed point
of φ. Then Stab(X) is infinite cyclic.

The proof of this result heavily relies on the machinery of the attractive lamination
corresponding to an IWIP automorphism.

3 Free product of groups

3.1 Definitions and free products

Let G be a group and let Gi, i ∈ I be a family of groups.

Definition 3.1. (Universal Property of Free products)
We say that G is the free product of the Gi’s and we write G = ∗i∈IGi, if there are
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homomorphisms ji : Gi → G such that for every group H and for every family of
homomorphisms φi : Gi → H, there is a unique homomorphism φ : G → H so that
φji = φi for every i.
Gi G

H

ji

φi
φ

Note that if we have presentations for each Gi =< Xi|Ri > then we get a presentation
of G =< tXi| tRi >, where the generators and the relations in G are just the disjoint
unions of the generators and the relations of the Gi’s, respectively.

We could give an alternative definition of a free product of groups. Namely, let G and
Gi as above.
A reduced word w = y1y2...yn, yi ∈ Gj (not trivial) in G is a word where for every i,
yi, yi+1 do not belong to the same Gi.

Theorem 3.2. (Normal form of free products)
Let G be the free product of the groups Gi, i ∈ I. Then every element of G can be
uniquely written as a reduced word. In particular, if the length of the reduced sequence
for w ∈ G is not 0, then w is not the trivial element of G.

Now let’s describe the structure of the subgroups of a free product.

There is one more important theorem for subgroups of free products, the Kurosh Sub-
group theorem:

Theorem 3.3. Let G = ∗i∈IAi be a free product of groups and H a subgroup of G.
Then H = ∗(H ∩ Agi ) ∗ F , where the g ranges over a set of double coset representatives
in Ai\G/H for each i ∈ I and where F is a free group.

We can define the Kurosh rank of H with respect to the free product ∗i∈IAi as the
sum of the number of non-trivial factors (H ∩ Agi ) and of the rank of F . Of course,
it is possible that some of these numbers (or even both) is infinite. The Kurosh rank
is denoted κ − rG(H) and it can be proved that it is independent of the double coset
representatives (this was proved in Lemma 3.4 of [19]), so it is well defined, as it depends
only on the subgroup.
There is also a description of a free product of groups in terms of group actions on
trees. This is a special case of the very rich Bass- Serre theory, but in this thesis only
the results that we use, will be referred. For much more details and proofs for the
Bass-Serre Theory see [27].

Theorem 3.4. A group G is a free product of groups if and only if G acts on a tree T
with trivial edge stabilisers.
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Actually, every free factor Gi corresponds to a vertex stabiliser and conversely every
vertex stabiliser is conjugate to some Gi.

3.2 Automorphisms of a free product

Let G be a finitely generated group, then it is well known (Grushko’s theorem) that G
can be written as a free product, G = G1 ∗ ... ∗ Gp ∗ Fk, where we denote by Fk the
free group of rank k and where every Gi is a non-trivial freely indecomposable group
which is not isomorphic to Z. Moreover, the Gi’s in this decomposition are unique up
to conjugation and the free rank is well defined. Namely, if G = H1 ∗ ... ∗ Hr ∗ Fm is
another such decomposition, the number of factors is the same, m = k, p = r and (after
reordering) each Hi is conjugate in G to Gi. The number r + m is called the Kurosh
rank of G. This decomposition is called Grushko’s decomposition. In this case, we have
also that for every automorphism ψ of G, it holds that for every i there exists some ji
such that ψ(Gi) = giGjig

−1
i . Actually, all the Out(Gi)’s and Out(Fn) can be seen as

subgroups of Out(G), but actually the study of Out(G) is much more complicated than
the study of these subgroups.
Firstly, let us describe a generating set for Out(G). Let’s denote by X a free basis of
Fk. We need the permutations of isomorphic factors, i.e. automorphisms that send each
Gi to some isomorphic Gj or permute the set X ∪X−1. In addition, we need the factor
automorphisms, which are the automorphisms that are induced by an automorphism
of some free factor Gi. Finally there are the Whitehead automorphisms which are the
automorphisms of the form αx, where x is a non-trivial element of some Gj or an element
of X ∪ X−1, such that :either for every j we have that αx(g) = x−kjgxkj , where kj is
either 0 or 1, for every g ∈ Gj or for every s ∈ X, αx(s) is equal to on of s, sx, x−1 or
x−1sx. In fact, we don’t need that every Gi is freely indecomposable and not isomorphic
to Z, but in that case these automorphisms generate a subgroup of Out(G), and this
subgroup is equal to Out(G) if we further suppose that the free decomposition is the
Grushko one. Finally, we can see that if every Gi and every Out(Gi) is finitely generated,
then this subgroup is also finitely generated.

3.3 Deformation Spaces

For this subsection, let’s suppose that G is any finitely generated free group. We will
associate to G a collection of spaces that each of them is a space of R-trees (and on each
of these trees G acts minimally). Intuitively, we can say that each space corresponds
to a collection of subgroups of G, which are exactly the subgroups of G that fix a
point of every tree of this space. More precisely, let’s denote by T (G) the set of G-
equivariant homothety classes (exactly, as we did for the outer space) of G -actions on
metric simplicial trees T , where we suppose that the action of G on T is non-trivial,
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minimal, simplicial, isometric and without inversions of edges. In addition, a subgroup
H of G is called elliptic if it fixes a point in T . Note that if H is elliptic then every
element of H is elliptic, but the inverse is not always true if we don’t suppose that H is
finitely generated.

Definition 3.5. Given a R-tree T on which G acts as above, we can associate to T
its deformation space D = D(T ) ⊆ T (G), consisting of all R-trees that have the same
elliptic subgroups as T .

For example, we can see CVn as a deformation space corresponding of the Cayley tree of
the free group (for some fixed basis). In the previous chapter, we defined three topologies
for CVn. We can define the same topologies for any deformation space. In particular,
the Gromov-Hausdorff topology, the axes topology and the weak topology (using the
simplicial structure) can be defined in this general case. We will describe them again
with more details in the case of a free product. But it is in general true that if T is
locally finite, then all these topologies agree.
Also, Meinert (see [22]) studied the Lipshcitz metric (and the train track representatives
for ‘irreducible’ automorphisms) for this general space.

3.4 Relative Outer Space for a free product

The definitions and the construction below are due to Vincent Guirardel and Gilbert
Levitt, see [16].
In the case of a free group, we have described methods that apply for finitely generated
free groups, here we are interested for groups with finite Kurosh rank, this is equivalent
to the fact that the group admits a co-compact action on a R-tree T with trivial edge
stabilisers and indecomposable vertex stabilisers. For a group G we fix a decomposition
G = H1 ∗ ... ∗Hq ∗ Fm (and we keep the notation for the rest of this chapter), such that
G has finite Kurosh rank (however, it is not necessary to assume that the Hi’s are not
isomorphic to Z).
As a special case, of particular interest to us, is the so-called deformation space O =
O(G, {Hi}qi=1, Fm) corresponding to a G-action to some R-tree with vertex stabilisers
conjugates to the Hi’s and trivial edge stabilisers. Such a tree always exist, by Bass-
Serre theory (Bass-Serre Tree, see [27] for more details).
However, for completeness, let’s give the definition of O, as a space o marked metric
graph of groups, even if in this case it is more convenient for us to use the alternative
definition.
We define a point of O as the equivalence class (up to homothety) of a finite graph of
groups Γ with trivial edge groups such that:

• each edge is assigned a positive number (length).
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• the marking, in this case, is an isomorphism from G to π1(Γ) (up to composition
with an inner automorphism of G)

• for each i ∈ {1, ..., p} there is a vertex vi such that the vertex group Gvi is conjugate
to Hi in G, while all the other vertex groups are trivial

• every terminal vertex v (i.e. Γ− {v} is connected) is equal to some vi.

As in the free case, we can normalise and we can think that the sum of the lengths of
all the edges of Γ is 1.
Now let us describe the action. In order the action to be well defined, we would like
the automorphisms to respect the structure of the graph of groups, or equivalently
the free product decomposition. However, this is not in general true, so we need to
consider the subgroup Aut(G,O) of automorphisms that preserve the set of conjugacy
classes of the Hj ’s. More precisely, an automorphism a of G belongs to Aut(G,O) if
a(Hi) is conjugate to one of the Hj ’s (possibly, different). Note that in the case of the
Grushko decomposition Aut(G) = Aut(G,O). We can define a natural action for every
automorphism φ of Aut(G,O), by leaving the underlying metric graph invariant and by
changing the marking, exactly as in the free case. Also, since Inn(G) acts trivially on
O, this action induces an action of Out(G,O) on O.

3.5 Definition as space of R-trees

As in the classical case, there is a definition of the outer space via R-trees. Note that in
this case is easier to work with this definition. As we have already mentioned, G can be
seen as a finite graph of groups with fundamental group isomorphic to Fm, trivial edge
groups and vertex groups either trivial or isomorphic to some of the Hi’s. Also, G acts
on the Bass-Serre tree T corresponding to this graph of groups. The relative outer space
O could be alternatively defined as the deformation space which can be associated to T .
In order to summarise, we can see a point of O = O(G, (Hi)qi=1, Fm) as an equivalence
class up to equivariant isometry, of a simplicial, metric G-tree T , satisfying that:

• the G-action of T is minimal, with trivial edge stabiliser

• for each i = 1, ..., q there is exactly one orbit of vertices with stabiliser conjugate
to Hi, and they are called non-free vertices

• all the other vertices have trivial stabiliser and they are called free vertices.

Note that minimality of the G-action on T implies that every terminal vertex is a vi (for
some i) and under these assumptions, we have also that the action is co-compact.
As an application of the Bass-Serre theory, the two definitions are actually equivalent,
as the quotient G/T can be seen as a marked metric graph of groups exactly as in the
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first definition.
We are in position to define the action of Out(G,O). As in the first definition we
have to consider only the automorphisms that preserve the given free product decom-
position of G. Namely, for a ∈ Aut(G,O) and T ∈ T (G), the image of T under
a is the G-tree with the same underlying metric tree as T , but the action is given
by the rule g ·a(T ) x := φ(g) ·T x. As before, Inn(G) acts trivially on O and so
Out(G,O) = Aut(G,O)/Inn(G) naturally acts on O. Only in the case of the Grushko
decomposition of G, there is a natural action of Out(G) on O.

3.5.1 Simplicial Stucture and Topologies for O

In the free case, we have seen that there are three natural topologies (weak topology,
Gromov-Hausdorff and axes topology) which coincide. These topologies can be natu-
rally defined for the general space, but here they are not all the same because the trees
may be not locally finite. More generally, we can define these topologies for a general
deformation space and the topologies coincide only if the deformation space is locally
finite (see [15] and [22], for more details). Note that the elements of O are locally finite
trees if and only if all the Hi’s are finite.
Firstly, we have seen in the previous chapter that we can always define the Gromov -
Hausdorff topology for T (G), which immediately induces a topology for O.
Now let’s describe the axes topology for O. There is a natural map from the space T (G)
to RG, mapping some G-tree T to (`T (g))g∈G, where by `T we denote the translation
function. It is easy to see that if there is a G- equivariant isometry between two elements
T, S of T (G), then they have the same image under the previous map. Therefore we
can see that the restriction of this map factors through O and in fact it is true (by [10],
theorem [3.7]) that this restriction is injective. Therefore O can be naturally seen as a
subspace of RG and so it carries the subspace topology. We usually call this topology,
the axes topology, as in the free case.
Finally, we can describe a simplicial structure for O, exactly as in the free case. Every
marked graph of groups Γ can be seen as an open simplex, by ignoring the metric, of
Γ, consisting of all marked metric graphs of groups with underlying graph given by Γ
and the same marking, and where the metric varies over all the (positive) lengths of
the (finitely many) edges, subject to the constraint that the volume remains equal to 1.
More precisely, let e1, ..., ek be the labelled edges of Γ then the set X of all marked metric
graphs which have the same underlying graph and the same marking as Γ, while the met-
ric varies as above, can be embedded in Rk using the map Γ→ (LΓ(e1), ..., LΓ(ek)), and
actually Γ coincides with the open k − 1 simplex of Rk, {(x1, ..., xk)|xi > 0,∑xi = 1}.
As in the free case, this method implies that there is a natural subdivision of O into open
simplices. The induced topology by the simplicial structure is called the weak topology.
As in the free case, this complex is not a simplicial complex as there are missing faces,
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i.e. faces that correspond to graph of groups that don’t correspond to this free product
decomposition but probably some other.
However these topologies don’t coincide in general. Unlike CVn the complex O is usually
not locally finite (because there are trees in this space with vertices of infinite valence,
here it is interesting to note that these vertices must be non-free vertices so in the orbit
of some vi, since the covering map between the tree and the graph of groups is locally
homeomorphism on free vertices), and the weak topology is different from the equivari-
ant Gromov-Hausdorff topology and axes topology (which coincide).
However, it can be proved([16]) that O is contractible on each of these topologies. Ac-
tually, this can be extended for any deformation space. (see [15]).

3.6 Lipschitz Metric

In this and in the next section, we follow the paper of S. Francaviglia and A. Martino,
[12], which they study the Lipscitz metric for a general outer space. This can also be
generalised for deformation spaces ([22]). In this report, we see the space O, as the space
of trees as it is easier to work using this definition.
We can define a metric for O analogous to the metric for CVn, but we will use trees
instead of marked metric graphs. In fact, we can do the same in the free case by
considering the universal covers and the lifts of the corresponding maps. The main
difference here is that in a general G-tree, there are non-trivial elliptic elements and
in particular there are elements with translation length 0. As a consequence, in the
definition we cannot take the supremum of stretching factors over all the non-trivial
elements, but just for the hyperbolic elements of a given tree T . Since the elliptic
subgroups are the same for every S ∈ O, that means that the subset of hyperbolic
elements depends only on O. This is actually a direct generalisation of the method
of the free case, as in CVn the Fn-action is free and so all (non-trivial) elements are
hyperbolic.
Let T be a G-tree and let’s denote by Hyp(T ), Ell(T ) the sets of hyperbolic and elliptic
elements g ∈ G, respectively. If T ∈ O and g ∈ Ell(T ), then g fixes some vertex of T ,
then by definition there is i ∈ {1, ..., q} such that g ∈ giHig

−1
i and, conversely, if g lies in

a G-conjugate of some Hi, i ∈ {1, ..., q}, that means that g fixes givi, which means that
it is not hyperbolic (it is elliptic). Therefore, g ∈ G is hyperbolic with respect to T ∈ O
if and only if g is hyperbolic with respect to S ∈ O. The set of hyperbolic elements of
G for some (and hence for all) T in O is denoted by Hyp(O).
Now we are in position to define the stretching factors and the Lipschitz metric. For
any pair A,B ∈ O we define the right and left maximal stretching factors and the
asymmetric (pseudo-) metric

ΛR(A,B) = sup
g∈Hyp(O)

lB(g)
lA(g)
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Figure 1: Projections of candidates

dR(A,B) = ln ΛR(A,B)

Then if we are restricted to the space of normalised trees (with co-volume 1) dR is a well
defined asymmetric metric. As in the free case, the supremum is actually maximum.
Similarly, the symmetric version of this metric can be defined by the rule

d(A,B) = dR(A,B) + dR(B,A)

It can be proved that d is actually a metric for O, for more details see [12].
As for the induced metric topology it can be proved that it is the same as the axes
topology. So we have actually two, probably, different topologies for O.
We could also define the metric using the Lipschitz constants of all G- equivariant
Lipschitz maps that preserve the structure (i.e. they permute the finitely many orbits of
non-free vertices). There are always such maps and they are called O-maps.([12]). For
A,B ∈ O, we could also define:

ΛR(A,B) = ln inf
f
σ(f) (4)

where f varies over all the O-maps between A and B.
One important remark here, is that even if all the notions can be generalised for the
general case, some of them have much more complicated proofs due to the fact that the
space may not be locally compact (because the trees may have some non-free vertices
with infinite valence). For example, the infimum above is achieved by some O-map, but
the proof of this fact is much more complicated. In fact, here the Arzelá-Ascoli does not
apply as O is not co-compact.
Also, there is a theorem which is analogous to the sausage lemma:

Theorem 3.6. Let A,B ∈ O. Then the minimal stretching factor ΛR(A,B) is realized
by an element g such that the projection of axisA(g) to A/G is of the form:
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1. Embedded simple loop

2. embedded figure-eight (a bouquet of two copies of S1)

3. embedded barbel (two simple loops joined by a segment)

4. embedded singly degenerate barbell (a non-free vertex and a simple loop joined by
a segment)

5. embedded doubly degenerate barbell (two non-free vertices joined by a segment)

The loops and segments above may contain free and non-free vertices.

3.7 Train Track maps

It would be useful to have a notion of train track maps that represents an outer au-
tomorphism for free products as in the free case. Indeed, Francaviglia and Martino in
[12], they constructed train track representatives and they proved that ‘irreducible‘ au-
tomorphisms can be represented by a such a map. Again, we use the trees instead of
the graphs. The topological representatives of an automorphism φ can be defined as an
O-map between the trees T and φ(T ). More precisely,

Definition 3.7. Let T ∈ O and φ ∈ Out(G,O), then we say that a Lipschitz surjective
map f : T → T represents φ, if for any g ∈ G and t ∈ T we have f(gt) = φ(g)(f(t)).

In general, there areO-maps between any two elements T, S ∈ O. In particular, there are
topological representatives of φ ∈ Out(G,O) in T ∈ O for any φ and every T . Moreover,
we can choose them to be piecewise linear, as in the free case. We will assume that all
the O-maps are PL without any further mention, exactly as in the free case. Now we
can define train track representatives of an automorphism:

Definition 3.8. Let φ ∈ Out(G,O). Then a topological representative f : T → T of φ
is a train track representative, if for every edge e ∈ T there is no cancellation in fk(e)
for every k.

We could give a more general definition using the notion of a train track structure, but
here we want to explain the main idea, even if we lose some technical details. As in the
free case, it’s not possible to have always train track representatives. We need also a
notion of irreducibility:

Definition 3.9. We say φ ∈ Out(G,O) is O-irreducible (or simply irreducible) if for
any T ∈ O and for any f : T → T representing φ, if W ⊆ T is a proper f -invariant
subgraph then W/G is a union of trees each of which contains at most one non-free
vertex.
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Alternatively, we can define the irreducibility algebraically. We need the notion of free
factor systems. In particular, a (finite) free factor system of G that is induced by a free
factor decomposition G = G1 ∗ ... ∗ Gm ∗ Fr is the set G = {gGjg−1 : g ∈ G}. We can
compare two free factor systems by setting G v H if and only if for every Gi there is some
Hj such that Gi ≤ gHjg

−1 for some g ∈ G. The minimal free factor decomposition is the
Grushko free factor system and the maximal is the trivial free factor system G = {G}.
Also, for φ ∈ Out(G), a free factor system G is φ- invariant if φ permutes the conjugacy
classes of the Gj ’s.
Every space O, corresponds to some free factor system G. Then φ is irreducible relative
to O, if G is a non-trivial φ-invariant free factor system. Moreover, φ is IWIP if φk is
irreducible for every k. As in the free case every IWIP automorphism φ relative to O,
can be represented by a train track map. In fact, the representative can be chosen to
be simplicial sending vertices to vertices, see [12] for much more details.

3.8 Tits Alternatives for free products

As we have seen Bestvina, Feighn and Handel proved a stronger version of the Tits alter-
natives for finitely generated subgroups of Out(Fn), using the notion of the lamination
lamination. The Tits alternative can be generalised for general free products, however
in the classical form. More precisely, the classical Tits alternative is defined as:

Definition 3.10. We say that a group G satisfies the Tits alternative, if every subgroup
of G either is virtually solvable or it contains a free subgroup of rank 2.

In this case, if we suppose that every Gi and every Out(Gi) satisfies the Tits Alternative,
then we get the theorem below:

Theorem 3.11 (Horbez, [18]). Let G be a finitely generated group, and let G = G1 ∗ ...∗
Gq ∗Fr be the Grushko decomposition of G. Let’s suppose that for every i = 1, ..., q, both
Gi and Out(Gi) satisfy the Tits alternative. Then Out(G) satisfies the Tits alternative.

However, Horbez in his proof uses the actions of Out(G) on different complexes (outer
space and hyperbolic complexes) and their boundaries in order to establish this theorem.
He does not generalise the train track and the laminations machineries that were used
in the free case.

4 Methods and Results

In the previous chapters we have introduced the basic notions about the outer space
of a free group and general deformation spaces (and especially the relative outer space
corresponding to a fixed free product decomposition) of a group. In particular, as we
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have seen there are a lot of similarities between the two cases and we have a lot of
common tools which are very useful (for example, train track maps and the Lipschitz
metric). My research is focused on proving more similarities between these spaces.
Moreover, these results for the spaces imply a lot of group theoretic properties of the
outer automorphism group and individual automorphisms of a general free product, but
also relative results for the classical case of a free group, as we can suppose that every
free factor is a finitely generated free group.
For the sections below, we fix the notation below. Let G = G1 ∗ ... ∗ Gq ∗ Fk be an
arbitrarily non-trivial free product decomposition of G and then we denote by O the
relative outer space corresponding to this free product decomposition. We will present
the results of the following papers: [29], [30], [31].

4.1 Irreducible Lamination of an IWIP automorphism and Centralis-
ers

In this section, we present the results of [30]. As we have seen in the second chapter,
for every irreducible with irreducible power (IWIP) outer automorphism φ of Fn, we
can construct an attractive lamination associated to φ. In ([30]), we generalise this
construction for a relative IWIP automorphism of a general free product (of finite Kurosh
rank). We use exactly the same method, but the presence of the outer automorphism
groups if the free factors does not allow us to get the same result for the stabiliser of
the lamination. In fact, there are examples which show that we cannot expect that
this stabiliser is virtually infinite cyclic. However, after some natural assumptions (for
example, if every Gi is finite) we can get the same result.
More precisely, let φ be an IWIP automorphism, then we can associate to φ a collection
of lines, which is called attractive lamination and it can be constructed as in the free
case using some train track representative f : T → T of φ, where T ∈ O. Firstly, we
can define the lamination in T -coordinates as the equivalence class Λf (T ) corresponding
to the line ` that is defined by iterating the image of some edge e which contains some
fixed point in the interior (we can always find such an edge), in fact, we get ` as the
limit of large iterates fk(e) of f (which coincides with a pair of two distinct elements
of the boundary of T ). Then it can be proved that Λf (T ) does not depend on the
chosen train track representative (every train track representative induces a unique such
line, up to the equivalence relation). Since there are (optimal) O-maps between any
two elements T, S of O, and namely if f : T → S is an optimal O-map then we can
define the lamination Λf (S) in S- coordinates, as the reduced image [f(`)] of the bi-
infinite line `, which we have already been defined in T -coordinates. Moreover, we can
prove, that if there is a train track representative h : S → S of φ in S-coordinates,
then Λf (S) = Λh(S). Therefore we can define the set Λφ as the collection of all the
laminations Λf (A), where A ∈ O. Here we cannot always define the action of Out(G)
on the set of all the attractive laminations L = {Λψ : ψ is IWIP relative to O}, but we



Background 29

can define an action of Out(G,O) on L, by the formula ψΛφ = Λψφψ−1 . Actually, we
would like to study the stabiliser Stab(Λφ) of the lamination Λφ = Λ of a given IWIP
automorphism φ, which by definition it contains the (relative) centraliser of φ. The most
important step for our result is to construct a stretching homomorphism from Stab(Λφ)
to the positive real numbers. Assuming that ψ ∈ Stab(Λφ) and let h : S → S be a
topological representative of ψ, the homomorphism can be constructed as the limit of
the fraction of the lengths of the reduced image [h(L)] of h(L) over the length of L,
when the length of the subpath L of ` is going to infinity. This give us a well defined
unique number that does depend only on ψ and we can prove that the induced map is a
homomorphism . As the next step, we can prove that the image of this homomorphism
is discrete (using again the Perron - Frobenius theory), which means that we have a
homomorphism from the stabiliser of the lamination Stab(Λφ) to Z. Finally, we have to
study the kernel of this homomorphism. In this step, there is a difference between the
free and the general case. In our case, it’s not always true that the automorphisms of
the kernel have finite order. However, we can distinguish cases for the reducible and the
irreducible case and for both cases it can be proved that they every automorphism of
the kernel has a topological representative f : T → T which induces the identity on the
quotient G/T for some T ∈ O. This implies the following theorem:

Theorem 4.1.

There is a normal periodic subgroup A (i.e. all the elements of A have finite order) of
Stab(Λ), such that the group Stab(Λ)/A has a normal subgroup B = B1/A isomorphic
to subgroup of

q⊕
i=1

Out(Gi) and (Stab(Λ)/A)/B is isomorphic to Z.

Moreover, in the case where Out(G) is virtually torsion free, the theorem above can be
improved and namely:

Theorem 4.2. Let’s also suppose that Out(G) is virtually torsion free. Then Stab(Λ)
has a (torsion free) finite index subgroup K such that K/B′ is isomorphic to Z, where
B′ is a normal subgroup of K isomorphic to subgroup of

q⊕
i=1

Out(Gi).

Finally, if we also assume that every Out(Gi) is finite then we have as an immediate
corollary a generalisation of the original result:

Theorem 4.3. If Out(G) is virtually torsion free and every Out(Gi) is finite, then
Stab(Λ) is virtually (infinite) cyclic.

In fact, the results above give us as corollaries similar group-theoretic properties of the
(relative) centraliser C(φ) of an IWIP automorphism φ in Out(G,O). More precisely,
we can summarise these results in the theorem above:

Theorem 4.4. Let φ be an IWIP relative to O. Then:
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1. There is a normal periodic subgroup A1 of C(φ), such that the group C(φ)/A1 has
a normal subgroup B1 isomorphic to a subgroup of

q⊕
i=1

Out(Gi) and (C(φ)/A1)/B1

is isomorphic to Z.

2. Let’s also suppose that Out(G) is virtually torsion free. Then C(φ) has a (torsion
free) finite index subgroup K ′1 such that K ′1/B′1 is isomorphic to Z, where B′1 is a
normal subgroup of K ′1 isomorphic to subgroup of

q⊕
i=1

Out(Gi).

3. Finally, if we further suppose that every Out(Gi) is finite, then C(φ) is virtually
(infinite) cyclic.

Finally, we give an example that we show that we cannot expect that the centraliser of
an IWIP automorphism is virtually cyclic, as it can contain very big subgroups.

Example 4. We fix the free product decomposition Fn = G1∗ < b1 > ∗ < b2 >,
where bi are of infinite order and we denote by F2 =< b1 > ∗ < b2 > the ‘free part’
and we consider the relative outer space O(Fn, G1, F2) = O. Then we define the outer
automorphism φ, which satisfies φ(a) = a for every a ∈ G1, φ(b1) = b2g1, φ(b2) = b1b2

for some non trivial element g1 ∈ G1, then we can see that φ ∈ Out(G,O) is an IWIP
relative to O. But in this case every factor automorphism of G1 that fixes g1 commutes
with φ and therefore C(φ) contains the subgroup A of Aut(G1)Inn(G) that fixes g1. So if
A is sufficiently big, the relative centraliser is not virtually cyclic. Since we can change
G1 with any group (of finite Kurosh rank) and we can get automorphisms with arbitrarily
big centralisers. For example, if G1 is isomorphic to F3 and g1 an element of its free
basis, we have that C(φ) contains a subgroup which is isomorphic to Aut(F2)Inn(G).

4.2 Stabiliser of an Attactive Fixed Point of an IWIP automorphism

In this section, we describe the results of [31].
The main result is a generalisation of the Theorem 2.17. Firstly, we need some notion of
boundary of the group. There are a lot of notions of boundary that could be used, but
as we study the space O the most natural way is to use the (relative to the free factor
decomposition) boundary of any tree T of O which is well defined up to homomorphism.
Alternatively, we could define the boundary, relative to the free product decomposition,
as the set of infinite words with respect to the free product length.
More precisely, for every T ∈ O, we can define the boundary ∂xT as the set of lines
passing through a (fixed) base point x ∈ T . Firstly, it can be proved that ∂xT is inde-
pendent of x, so we can omit x in the notation. Also, we can define a natural topology
of the boundary. Let p, q ∈ V (T ) ∪ ∂T , we define the operation ∧ as follows: p ∧ q is
the common initial subpath (starting from x) of the unique edge paths [x, p], [x, q] that
connect p, q with the base point x. We define the r neighbourhood of a point p in the
boundary ∂T , as V (p, r) = {q ∈ ∂T | for any geodesic rays `1, `2 starting at x, with
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`1 = p, `2 = q we have lim inf
n→∞ |`1(n) ∧ `2(n)| ≥ r}, where |[p, x]| := dT (p, x).

A topology for ∂T can be defined by setting the collection {V (p, r)|r ≥ 0} as a basis of
neighbourhoods for any p ∈ ∂T . Moreover, this topology is metrisable and in particular,
the metric for ∂T is given by d(p, q) = e−|[x,p]∧[x,q]| for p, q ∈ ∂T (where we set e−∞ = 0).
Actually, it can be proved that any quasi-isometry f : T → S, induces a homeomor-
phism between the boundaries ∂T, ∂S. In particular, since any O-map f : T → S is
a quasi-isometry, it can be extended to the boundary and so it induces a well defined
homeomorphism between ∂T, ∂S, which we denote by ∂f : ∂T → ∂S. Therefore it holds
that:

Lemma 4.5. Let T, S ∈ O. Then ∂T is homeomorpic to ∂S.

Note that in our case, if there is some Gi which is infinite, then ∂T is not compact,
as it is in the free case (and more generally in the locally finite case), with respect to
the metric topology. For example, if it is easy to see that a point of infinite valence,
induces a sequence of (distinct) lines that they have constant distance between each
other. Therefore we have a sequence in ∂T , which has no converging subsequence.
Alternatively, we can define ∂G = ∂(G, {G1, ..., Gq}) as the set of infinite reduced words
with respect to the free product length which is induced by the (fixed) free product
decomposition. For any A,B ∈ G ∪ ∂(G, {G1, ..., Gq}), we denote by A ∧B the longest
common initial subword of A,B. It is easy to see that the map d(A,B) = e−|A∧B|, for
A 6= B and d(A,A) = 0 is a metric on the space G ∪ ∂G. Similarly, G can be seen as a
metric space using the free product length. Let’s denote by X a basis of the free part
Fk, then it is well known that every element g of G is written uniquely in the normal
form, as a reduced word g1...gn where gi ∈ Gj ∪X ∪X−1and every gi, gi+1 do not belong
to the same factor Gj . where the free product length of a word in G is the length of the
unique normal form. Finally, it can be proved that any φ ∈ Aut(G,O) induces a quasi-
isometry of G, and therefore exactly as in the free case it induces a homeomorphism
of the boundary ∂(G, {G1, ..., Gq}) which we denote by ∂φ. As we have said, it can be
proved that the two notions of the boundary are equivalent and more specifically:

Lemma 4.6. Let T ∈ O. Then ∂T is homeomorphic to ∂(G, {G1, ..., Gq}).

As we have a well defined notion of the relative boundary, it is possible to define the
notion of infinite fixed points for an automorphism of Aut(G,O). As in the free case,
there is a classification of these fixed points. More precisely, for an automorphism
φ ∈ Aut(G,O), as in the free case there is a classification of these points. Martino
studied the attractive fixed points, and in particular he proved in his phd thesis ([23]),
that:

Proposition 4.7. Let φ ∈ Aut(G,O). A fixed point of ∂φ is :

• either singular
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• or attractive

• or repulsive

Now as we have seen, every notion in the theorem of Hilion can be generalised in the
general case.
Our proof is similar to that of ([17]), but we use the generalisations of the results that
were used by Hilion. As we mentioned, the main tool that he used in his proof is the
attractive lamination associated to an IWIP automorphism by Bestvina, Feighn and
Handel. In our proof, we use the constructions and the results presented in the previous
subsection. The main step of the proof is the construction of a nice splitting of a given
attractive fixed point X of an IWIP outer automorphism φ, using the notion of train
track representatives, which matches the language of the attractive lamination. Then
it’s not difficult to relate the subgroup Stab(X) = {ψ ∈ Aut(G,O)|∂ψ(X) = X} to the
stabiliser of the attractive lamination Stab(Λφ). Then by applying 4.1 and a technical
lemma, we conclude that:

Theorem 4.8. If X ∈ ∂(G, {G1, ..., Gq}) is an attractive fixed point of an IWIP au-
tomorphism φ, then Stab(X) has a normal subgroup B isomorphic to a subgroup of
p⊕
i=1

Out(Gi) and Stab(X)/B is infinite cyclic.

In our case, there are examples of X, as above, where Stab(X) is not infinite cyclic.
We can use essentially the same example as in the previous section. The main idea to
construct a counter-example, is that there are attractive fixed words corresponding to an
IWIP automorphism that contain even finitely many elements of the elliptic free factors.
Moreover, if a composition of factor automorphisms of the Gi’s fixes these words, then it
stabilises the attractive fixed point. So if some Gi is sufficiently big, there are non-trivial
automorphisms of Gi that fix these words. As a consequence, we can find arbitrarily
large subgroups of Stab(X). On the other hand, if we suppose that every Out(Gi) is
finite, then we have a similar result as in the free case. In particular, as an immediate
corollary we get:

Corollary 4.9. If X ∈ ∂(G, {G1, ..., Gq}) is an attractive fixed point of an IWIP auto-
morphism φ and every Out(Gi) is finite, then Stab(X) is virtually cyclic.

4.3 Asymmetry of Outer space of a free product

Finally in this section, we will describe the results of [29].
As we have mentioned in the second chapter, the Lipschitz metric dR for CVn is asym-
metric and actually it does not induce a quasi-isometry in general. But Algom-Kfir and
Bestvina proved that there is a function that bounds this asymmetry. This result has
interesting applications especially for IWIP outer automorphisms of Fn. Therefore it
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seems interesting to see if this result can be generalised in the general case.
Firstly, note that in every non-trivial case the Lipschitz metric for the space O is still
highly asymmetric. In fact, in [29] we follow their approach and we generalise their
construction. For any T ∈ O we get an open simplex ΣT and for every ` ∈ ΣT , we
define the tangent space T`(ΣT ) =

{
τ : E(T ) → R| ∑

e∈E(T )
τ(e) = 0

}
, where E(T ) is

the finite set of orbits of edges in T . Initially we introduce an asymmetric Finsler norm
on the tangent space of the relative Outer space that induces the asymmetric Lipschitz
metric. This is the first attempt, but then we need to correct this norm in order to make
it quasi-symmetric and this is the second step for our proof. As soon as we have the
corrected norm, we can get our main result which explains the lack of quasi-symmetry
in terms of a certain function and more specifically:

Theorem 4.10. There is an Out(G,O)-invariant continuous, piecewise smooth function
Ψ : O → R+ and constants A,B > 0 (depending only on the numbers r, q) such that for
every T, S ∈ O we have dR(T, S) ≤ A · dR(S, T ) +B · [Ψ(T )−Ψ(S)].

As an application, we can prove that if we restrict the asymmetric metric dR to the
ε-thick part of the relative Outer space for ε > 0, ( which can be defined as in the
free case, and namely, O(ε) is the subspace of O of the points for which all hyperbolic
elements have length bounded below by ε) then dR is quasi-symmetric.
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Irreducible laminations for IWIP Automorphisms of a free
product and Centralisers

Dionysios Syrigos

Abstract

For every free product decomposition G = G1 ∗ ...∗Gq ∗Fr, where Fr is a finitely
generated free group, of a group G of finite Kurosh rank, we can associate some
(relative) outer space O. In this paper, we develop the theory of (stable) lamina-
tions for (relative) irreducible with irreducible powers (IWIP) automorphisms. In
particular, we examine the action of Out(G,O) ≤ Out(G) (i.e. the automorphisms
which preserve the set of conjugacy classes of Gi’s) on the set of laminations. We
generalise the theory of the attractive laminations associated to automorphisms of
finitely generated free groups. The strategy is the same as in the classical case (see
[1]), but some statements are slightly different because of the factor automorphisms
of the Gi’s.
As a corollary, we prove a generalisation of the fact that the centralisers of IWIP
automorphisms are virtually cyclic. However, in our statement for the (relative)
centraliser of a (relative) IWIP automorphism, the factor automorphisms of Gi’s
appear. As a direct corollary, if Out(G) is virtually torsion free and every Out(Gi)
is finite, we prove that the centraliser of an IWIP is virtually cyclic. Finally we give
an example which shows that we cannot expect that any centraliser of an IWIP is
virtually cyclic, as in the free case.
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1 Introduction

Let G be a group which splits as a free product G = G1 ∗ ... ∗ Gq ∗ Fr. Guirardel and
Levitt in [11] constructed an outer space relative to any free product decomposition for
a f.g. group and later Francaviglia and Martino in [10] noticed that the outer space
O = O(G, (Gi)qi=1, Fr) can be constructed for any group G of finite Kurosh rank. Let
Out(G,O) be the subgroup of Out(G), which consists of the automorphisms which pre-
serve the conjugacy classes of Gi’s (note that in the case of the Grushko decomposition,
Out(G) = Out(G,O)). We could define the notion of irreducibility using representatives
of automorphisms between the elements of O which leave invariant subgraphs, but here
it is less complicated to use the notion of free factor systems. More specifically, we say
that an element φ ∈ Out(G,O) is irreducible relative to O, if the corresponding free
factor system G = {[Gi] : 1 ≤ i ≤ q} is a maximal proper, φ-invariant free factor sys-
tem. Therefore we define the notion of an irreducible with irreducible powers (or simply
IWIP) automorphism relative to O, as in the special case where G is a finitely generated
free group.

In this paper, we study IWIP automorphisms and in particular we show that we can
define the stable (and unstable) lamination Λ associated to an IWIP, using exactly the
same method as in the free case. In the classical case, it can be proved that the stabiliser
of the lamination is virtually cyclic (see [1]). However, in the general case, the presence
of the factor automorphisms of the Gi’s, does not allow us to get the same statement
and as we will see this is not true in general, but can prove the following generalisation:

Theorem 1.1. Let φ be an IWIP relative to some relative outer space O. Let’s
denote by Stab(Λφ) = Stab(Λ) the Out(G,O) stabiliser of the stable lamination Λ.

1. There is a normal periodic subgroup A of Stab(Λ), such that the group Stab(Λ)/A
has a normal subgroup B isomorphic to subgroup of

q⊕
i=1

Out(Gi) and (Stab(Λ)/A)/B
is isomorphic to Z.

2. Let’s suppose that Out(G) is virtually torsion free. Then Stab(Λ) has a (torsion
free) finite index subgroup K such that K/B′ is isomorphic to Z, where B′ is a
normal subgroup of K isomorphic to subgroup of

q⊕
i=1

Out(Gi).

3. Finally, if we further suppose that every Out(Gi) is finite, then Stab(Λ) is virtually
(infinite) cyclic.

We can find the notion of laminations for a free group , in a lot of different forms and
contexts in the literature and study of them implies important results (for example,
see [1] [2], [3], [6], [7] and [12]), therefore it looks like interesting to generalise this
notion in a more general context. In addition, further motivation is that we can find
natural generalisations for a lot of facts about CVn in the general case, for example in
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[10], Francaviglia and Martino generalised a lot of tools like train track maps and the
Lipschitz metric. But there are some recent papers that show we can also use further
methods of studying Out(Fn) for Out(G) (where G is written as free product as above)
such that the closure of outer space, the Tits alternatives for Out(G), the hyperbolic
complex corresponding to Out(G) and the asymmetry of the outer space of a free product
(see [14], [15], [16], [19] and [24]). Finally, the author as an application of the results of
the present paper generalises a result of Hilion ([13]), about the stabiliser of attractive
fixed point of an IWIP automorphism ([25]).

Given a group G and an element g ∈ G, a natural question is to study the centraliser
C(g) of g in G. In several classes of groups, centralisers of elements are reasonably
well-understood and sometimes they are useful to the study of the group. For example,
Feighn and Handel in [9] classified abelian subgroups in Out(Fn) by studying centralisers
of elements. Moreover, a well known result for an IWIP automorphism of a free groups
(there are several proofs, see [1], [20] or [18]) states that their centralisers are virtually
cyclic. Again, it’s not true for a relative IWIP, but in the general case, we can obtain
a generalisation of this result where the group of factor automorphisms is still appeared
and namely:

Theorem 1.2. Let φ be an IWIP as above. Let’s denote by C(φ) the centraliser
of φ in Out(G,O).

1. There is a normal periodic subgroup A1 of C(φ), such that the group C(φ)/A1 has
a normal subgroup B1 isomorphic to subgroup of

q⊕
i=1

Out(Gi) and (C(φ)/A1)/B1

is isomorphic to Z.

2. Let’s also suppose that Out(G) is virtually torsion free. Then C(φ) has a (torsion
free) finite index subgroup A′1 such that A′1/B1 is isomorphic to Z, where B1 is a
normal subgroup of A1 isomorphic to subgroup of

q⊕
i=1

Out(Gi).

3. Finally, if we further suppose that every Out(Gi) is finite, then C(φ) is virtually
(infinite) cyclic.

In fact, we can get a stronger result for commensurators instead of centralisers.
Note that there are a lot of IWIP automorphisms that don’t commute with the factor
automorphisms of Gi’s and in particular for them, the theorem above implies that their
centralisers are virtually cyclic.
On the other hand, there are examples of IWIP automorphisms which have big cen-
traliser (in particular, they are not virtually cyclic).

Example 1.3. We fix the free product decomposition Fn = G1∗ < b1 > ∗ < b2 >, where
bi are of infinite order and we denote by F2 =< b1 > ∗ < b2 > the "free part". Then
in the corresponding outer space O(Fn, G1, F2), which we denote by O. In each tree
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T ∈ O there is exactly one non free vertex v1 s.t Gv1 = G1. Then we define the outer
automorphism φ, which satisfies φ(a) = a for every a ∈ G1, φ(b1) = b2g1, φ(b2) = b1b2

for some g1 ∈ G1, then we can see that φ ∈ Out(G,O) is an IWIP relative to O. But
then every factor automorphism of G1 that fixes g1 commutes with φ and therefore C(φ)
contains the subgroup A of Aut(G1)Inn(G) that fixes g1. So if A is sufficiently big, the
relative centraliser is not virtually cyclic. Since we can change G1 with any group (of
finite Kurosh rank) and we can get automorphisms with arbitarily big centralisers. For
example, if G1 is isomorphic to F3 and g1 an element of its free basis, we have that C(φ)
contains a subgroup which is isomorphic to Aut(F2)Inn(G).

Strategy of the proof : The paper is organized as follows:

In Section 2, we recall some preliminary definitions, facts and well known results about
the outer space of a free product. In Section 3, we prove a useful technical lemma for
O-maps, more specifically we prove that every two such maps are equal except possibly
two bounded (depends only on the map, not the path) paths near the endpoints. The
next sections form the main part of this paper and we follow exactly the same approach
as in [1]. In section 4, we define the lamination using train track representatives, and
then we extend the notion to any tree. Also, we list some useful properties. In Section
5, we define the action of Out(G,O) on the set of irreducible laminations. In Section 6
we define the notion of a subgroup which carries the lamination and then we prove that
any such subgroup has finite index in the whole group. In Section 7, which is the most
crucial for our arguments, we construct a homomorphism from the stabiliser to group
of positive real numbers. Then in Section 8, we study the kernel of this homomorphism,
and in particular, we prove that any element of the kernel is non-exponentially growing
and in the reducible case it has a relative train track representative with a very good
form restricted to the lower strata. Also, we prove the discreteness of the image which
allows us to think the previous map, as a homomorphism from the stabiliser to the group
of integers. Finally, in Section 9, we prove some useful lemmas and the main results.
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gestions, ideas, and corrections.
I would also like to thank Lee Mosher for pointing me out the inconsistency of a state-
ment of the first version of this paper and Ashot Minasyan for his suggestion to generalise
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thank the anonymous referee that pointed me out that the kernel of the action is trivial.
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2 Preliminaries

2.1 Outer space and O-maps

In this subsection we recall the definitions of outer space and some basic properties. For
example, the existence of O - maps between any two elements of the space which is a
very useful tool.
Everything in the present and the next subsection about the outer space, the O - maps
and the train track representatives can be found in [10].
Let G be a group which splits as a finite free product of the following form G =
H1 ∗ ... ∗Hq ∗Fr, where every Hi is non-trivial, not isomorphic to Z and freely indecom-
posable. We say that such a group has finite Kurosh rank and such a decomposition
is called Gruskho decomposition. For example, every f.g. group admits a splitting as
above (by the Grushko’s theorem). We are interested only for groups which have finite
Kurosh rank.
Now for a group G, as above, we fix an arbitary (non-trivial) free product decomposition
G = H1 ∗ ... ∗ Hq ∗ Fr (without the assumption that the Hi’s are not isomorphic to Z
or freely indecomposable), but we additionally suppose that r > 0. These groups admit
co-compact actions on R-trees (and vice-versa). It is useful that we can also apply the
theory in the case that G is free, and the Gi’s are certain free factors of G (relative free
case).
We will define an outer space O = O(G, (Gi)pi=1, Fr) relative to the free product de-
composition (or relative outer space). The elements of the outer space can be thought
as simplicial metric G-trees, up to G-equivariant homothety. Moreover, we require that
these trees also satisfy the following:

• The action of G on T is minimal.

• The edge stabilisers are trivial.

• There are finitely many orbits of vertices with non-trivial stabiliser, more precisely
for every Hi, i = 1, ..., q (as above) there is exactly one vertex vi with stabiliser Hi

(all the vertices in the orbits of vi’s are called non-free vertices).

• All other vertices have trivial stabiliser (and we call them free vertices).

The quotient G/T is a finite graph of groups. We could also define the outer space as
the space of "marked metric graph of groups" using the quotients instead of the trees,
but we won’t use this point of view because here it is easier to work using the trees.
However, we use the quotients when the statements in this context are less complicated.
We would like to define a natural action of Out(G) on O, but this is not possible since
it not always the case that the automorphisms preserve the structure of the trees (i.e.
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they don’t send non-free vertices to non-free vertices). However, we can describe here
the action of a specific subgroup of Out(G) (namely, the automorphisms that preserve
the decomposition or equivalently the structure of the trees) on O.
Let Aut(G,O) be the subgroup of Aut(G) that preserve the set of conjugacy classes
of the Gi ’s. Equivalently, φ ∈ Aut(G) belongs to Aut(G,O) iff φ(Gi) is conjugate to
one of the Gj ’s. The group Aut(G,O) admits a natural action on a simplicial tree by
"changing the action", i.e. for φ ∈ Aut(G,O) and T ∈ O, we define φ(T ) to be the
element with the same underlying tree with T , the same metric but the action is given
by g ∗ x = φ(g)x (where the action in the right hand side is the action of the G-tree
T ). Now since the set of inner automorphisms of G, Inn(G) acts trivially on O we can
define Out(G,O) = Aut(G,O)/Inn(G) which acts on O as above. Note that in the case
of the Grushko decomposition we have Out(G) = Out(G,O).
We say that a map between trees A,B ∈ O, f : A → B is an O- map, if it is a
G-equivariant, Lipschitz continuous, surjective function. Note here that we denote by
Lip(f) the Lipschitz constant of f .
It is very useful to know that there are such maps between any two trees. This is true
and, additionally, by their construction they coincide on the non - free vertices (and in
section 3, we prove that every two such maps "almost" coincide). More specifically, by
[10], we get:

Lemma 2.1. For every pair A,B ∈ O; there exists a O-map f : A → B. Moreover,
any two O-maps from A to B coincide on the non-free vertices.

Let f : A→ A be a simplicial (sending vertices to vertices and edges to edge-paths) O-
map, where A ∈ O. Then f induces a map (here we denote by Df the map which sends
every edge e to the first edge of the edge path f(e)) on the set of turns, sending every
turn (e1, e2) to the turn (Df(e1), Df(e2)). Then as usually, we say that the turn (e1, e2)
is legal, if for every k the turn (Dfk(e1), Dfk(e2)) is non-degenerate. This induces a
pre-train track structure on the set of edges at each vertex. But there are also different
pre-train track structures and one of which we will use later, therefore we need the
general definition.

Definition 2.2. 1. A pre-train track structure on a G-tree T is a G-invariant
equivalence relation on the set of germs of edges at each vertex of T . Equivalence
classes of germs are called gates.

2. A train track structure on a G-tree T is a pre-train track structure with at least
two gates at every vertex.

3. A turn is a pair of germs of edges emanating from the same vertex. A legal turn
is called a turn for which the two germs belong to different equivalent classes. A
legal path, is a path that contains only legal turns.
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A pre-train track structure induced by someO - map is not always a train track structure,
but there are some O - maps (we call them optimal maps) which induce train track
structures. But firstly we need the notion of PL maps (which corresponds to piecewise
linear homotopy equivalence in the free case). We call a map between two elements of
the outer space PL, if it is piecewise linear and O-map. We denote by Amax(f) the
subgraph of A consisting on those edges e of A for which Sf,e = Lip(f) (i.e. the set of
edges which are maximally stretched by f). Note that Amax is G-invariant and that in
literature the set Amax is often referred to as tension graph.

As we have seen in the discussion above, for every map there is an induced structure.
More specifically, if A,B ∈ O and f : A → B is a PL-map, then the pre-train track
structure induced by f on A is defined by declaring germs of edges to be equivalent
if they have the same non-degenerate f -image (so if two maps that are collapsed by f ,
they are not equivalent).

We are now in position to define optimal maps:

Definition 2.3. Let A,B ∈ O. A PL-map f : A → B is not optimal at v, if Amax
has only one gate at v for the pre-train track structure induced by f . Otherwise, f is
optimal at v. The map f is optimal, if it is optimal at all vertices.

Remark. A PL-map f : A → B is optimal if and only if the pre-train track structure
induced by f is a train track structure on Amax. In particular, if f : A → B is an
optimal map, then at every vertex v of Amax there is a legal turn in Amax.

Note also that by [10], every PL-map is optimal at non-free vertices and for every
A,B ∈ O there exists an optimal map from A to B. Therefore we can always choose
our O - maps to be optimal and we will use optimal maps without further mention.

2.2 Relative Automorphisms

We denote by Out(G, {Gi}t) the subgroup of Out(G,O) made of those automorphisms
that act as a conjugation by an element of G on each Gi. Since the Gi’s are free factors of
G, each subgroup Gi is equal to its normalizer in G. Therefore, any element of Out(G,O)
(i.e. that preserves the conjugacy class of the Gi’s) induces a well-defined outer auto-
morphism of Gi. Therefore there is a natural homomorphism Out(G, {Gi}t)→ Out(Gi)
and by taking the product over all groups Gi, we get a (surjective) homomorphism
Out(G,O)→

p⊕
i=1

Out(Gi), with kernel exactly Out(G, {Gi}t).

2.3 Train Track Maps and Irreducibility

In this section we will define the notion of a "good" representative of an outer auto-
morphism. It is a generalisation of train track representatives of automorphisms of free



2 Train Track Maps and Irreducibility 45

groups, but as we have already mentioned we work in the trees instead of their quotients.
For more details for this approach see [10, 23]. As we have seen there are representatives
of every outer automorphism (i.e. O-maps from A to φ(A)), but sometimes we can find
representatives with better properties. These maps, which are called train track maps,
are very useful and every irreducible automorphism has such a representative (we can
choose it to be simplicial, as well).
For T ∈ O we say that a Lipschitz surjective map f : T → T represents φ if for any
g ∈ G and t ∈ T we have f(gt) = φ(g)(f(t)). (In other words, if it is an O-map from T

to φ(T ).) We give below the definition of a train track map representing an outer auto-
morphism. We are interested for these maps because we can control their cancellation
(it is not possible to avoid it).

Definition 2.4. If T ∈ O then a PL-map f : T → T , which representing φ, is a train
track map if there is a train track structure on T so that

1. f maps edges to legal paths (in particular, f does not collapse edges)

2. If f(v) is a vertex, then f maps inequivalent germs at v to inequivalent germs at
f(v).

In the free case, an automorphism φ is called irreducible, if it there is no φ-invariant free
factor up to conjugation (or equivalently the topological representatives of φ haven’t
non-trivial proper invariant subgraphs). In our case we know that the Gi’s are invariant
free factors, but we don’t want to have "more invariant free factors". More precisely, we
will define the irreducibility of some automorphism relative to the space O or to the free
product decomposition.

Definition 2.5. We say Φ ∈ Out(G,O) is O-irreducible (or simply irreducible) if for
any T ∈ O and for any f : T → T representing Φ, if W ⊆ T is a proper f -invariant
G-subgraph then G/W is a union of trees each of which contains at most one non-free
vertex.

We can also give an alternative algebraic definition, but we need the notion of a free
factor system. Suppose that G can be written as a free product, G = G1∗G2∗...Gp∗G∞.
Then we say that the set A = {[Gi] : 1 ≤ i ≤ p} is a free factor system for G, where
[A] = {gAg−1 : g ∈ G} is the set of conjugates of A.
Now we define an order on the set of free factor systems for G. More specifically, given
two free factor systems G = {[Gi] : 1 ≤ i ≤ p} and H = {[Hj ] : 1 ≤ j ≤ m}, we write
G v H if for each i there exists a j such that Gi ≤ gHjg

−1 for some g ∈ G. The inclusion
is strict, and we write G < H, if some Gi is contained strictly in some conjugate of Hj .
We can see {[G]} as a free factor system and in fact, it is the maximal (under v) free
factor system. Any free factor system that is contained strictly to G is called proper.
Note also that the Grushko decomposition induces a free factor system, which is actually
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the minimal free factor system (relative to v). A more detailed discussion for the theory
of free factor systems can be found in [12].
We say that G = {[Gi] : 1 ≤ i ≤ p} is φ - invariant for some φ ∈ Out(G), if φ preserves
the conjugacy classes of Gi’s. We are only interested for free factor systems that G∞ is a
finitely generated free group. In particular, we suppose that G = G1∗G2∗...Gp∗G∞, and
G∞ = Fk for some f.g. free group Fk. In each free factor system G = {[Gi] : 1 ≤ i ≤ k},
we associate the outer space O = O(G, (Gi)pi=1, Fk) and any φ ∈ Out(G) leaving G
invariant, will act on O in the same way as we have described earlier.

Definition 2.6. Let G be a free factor system of G which is Φ- invariant for some
Φ ∈ Out(G). Then Φ is called irreducible relative to G, if G is a maximal (under v)
proper, Φ-invariant free factor system.

The next lemma confirms that the two definitions of irreducibility are related.

Lemma 2.7. Suppose G is a free factor system of G with associated space of trees O,
and further suppose that G is φ-invariant. Then φ is irreducible relative to G if and only
if φ is O-irreducible.

Moreover, one interesting fact is that for an irreducible automorphism we can give a
characterisation of train track maps using the axes of hyperbolic elements. More specif-
ically, if φ is irreducible, then for a map f representing φ ∈ Out(G,O), to be a train
track map is equivalent to the condition that there is g ∈ G (hyperbolic element) so that
L = axisT (g) (the axis of g) is legal and fk(L) is legal k ∈ N.

Now let’s give the definition of an irreducible automorphism with irreducible powers
relative to O, which are the automorphisms that we will study.

Definition 2.8. An outer automorphism φ ∈ Out(G,O) is called IWIP (irreducible
with irreducible powers or fully irreducible), if every φk is irreducible relative to O.

The next theorem is very important since we can always choose representatives of irre-
ducible automorphisms with nice properties, as in the free case. It generalises the well
known theorem of Bestvina and Handel (see [4]) . In particular, we can apply it on every
power of some IWIP .

Theorem 2.9 (Francaviglia- Martino). Let φ ∈ Out(G,O) be irreducible. Then there
exists a (simplicial) train track map representing φ.

The discussion above implies that we can always find an optimal train track represen-
tative of an irreducible φ ∈ Out(G,O). This map has the property that the image of
every legal path (in particular, of edges) is stretched by a constant number λ ≥ 1 which
depends only on φ.
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We close this subsection with an interesting remark.

Remark. Every outer automorphism φ ∈ Out(G) is irreducible relative to some appro-
priate space (or relative to some free product decomposition).

2.4 Bounded Cancellation Lemma

Let T, T ′ ∈ O and f : T → T ′ be an O- map. If we have a concatenation of legal paths
ab where the corresponding turn is illegal, then it is possible to have cancellation in
f(a)f(b). But the cancellation is bounded, with some bound that depends only on f

and not on a, b . In particular, we can define the bounded cancellation constant of f
(let’s denote it BCC(f)) to be the supremum of all real numbers N with the property
that there exist A,B,C some points of T with B in the (unique) reduced path between
A and C such that dT ′(f(B), [f(A), f(C)]) = N (the distance of f(B) from the reduced
path connecting f(A) and f(C) ), or equivalently is the lowest upper bound of the
cancellation for a fixed O-map.
The existence of such number is well known, for example a bound has given in [14]:

Lemma 2.10. Let T ∈ O, let T ′ ∈ O, and let f : T → T ′ be a Lipschitz map.
Then BCC(f) ≤ Lip(f)qvol(T ), where qvol(T ) the quotient volume of T , defined as the
infimal volume of a finite subtree of T whose G-translates cover T .

We can also, exactly as in the free case, define a critical constant, Ccrit corresponding
to a train track map.
Let’s suppose that f is train track map with expanding factor λ (for example, a train
track representative of some IWIP φ). If we take a, b, c legal paths and abc is a path in
the tree, and let’s denote l = length(b) the length of the middle segment. If we suppose
further that satisfies λl−2BCC(f) > l, then iteration and tightening of abc will produce
paths with the length of the legal leaf segment corresponding to b to be arbitarily long.
This is equivalent to require that l > 2BCC(f)

λ−1 , and we call the number Ccrit = 2BCC(f)
λ−1 ,

the critical constant for f .
For every C that exceeds the critical constant there is m > 0 such that b, as above, has
length at least C then the length of the legal leaf segment of [fk(abc)] corresponding to
b is at least mλklength(b).
Therefore we can see that any path which contains a legal segment of length at least
Ccrit, has the property that the lengths of reduced f -iterates of the path are going to
infinity.

2.5 N-periodic paths

A difference between the free and the general case is that it is not always the case
that there are finitely many orbits of paths of a specific length (if there are non-free
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vertices with infinite stabiliser), but it is true that there are finitely many paths that
have different projection in the quotient. Therefore the role of Nielsen periodic paths
play the N-periodic paths that we define below. Note that if h : S → S, we say that a
point x ∈ S is h-periodic, if there are g ∈ G and some natural k s.t. hk(x) = gx.

Definition 2.11. 1. Two paths p, q in S ∈ O are called equivalent, if they project to
the same path in the quotient G/S. In particular, their endpoints o(p), o(q) and
t(p), t(q) are in the same orbits, respectively.

2. Let h : S → S be a representative of some outer automorphism ψ, let p be a path
in S and let’s suppose that the endpoints of p are h - periodic (with period k),
then we say that a path p in S is N-periodic (with period k), if the paths [hk(p)], p
are equivalent.

Geometric and non-Geometric automorphisms: We will define here some notions
for automorphisms that have been motivated by the properties of geometric and non-
geometric automorphisms, respectively. The terminology also comes from the free case.
In that case, we say that φ is geometric if it can be represented as a (pseudo-Anosov)
homeomorphism of a punctured surface. It is well known that for the non-geometric case
there is an integer m such that it is impossible to concatenate more than m indivisible
Nielsen paths for every map f which represents φ. We will generalise this property in
order to give our definitions, using the notion of an indivisible N-periodic path as in the
free case. In particular:

Definition 2.12. We say that some φ has the NGC property , if it is impossible
to concatenate more than m indivisible N-periodic paths for every O-map f which
represents φ. Otherwise, we say that φ has the GC property.

2.6 Relative train-track maps

Having good representatives of outer automorphisms, is very useful. If our automor-
phism is irreducible, it is possible to find train track representatives, as we have seen.
But even in the reducible case we can find relative train track representative. The exis-
tence of such maps it follows from [10] or [5].
That we have is that every automorphism can be represented as an O-map f : T → T

such that T has a filtration T0 ⊆ T1 ⊆ ... ⊆ Tk = T by f -invariant G-subgraphs, where
T0 contains every non- free vertex, we denote by Hr = cl(Tr−Tr−1) and we suppose that
the transition matrix (it can be defined as in the free case but we count orbits of edges)
of every Hr is irreducible (or zero matrix) so we can correspond in every Hr some PF
eigenvalue (let’s denote it λr ) . In addition, f has some train track properties (such as
mixed turns are legal and the map is r-legal). There is a very interesting corollary that
we will use: for every edge-path a in Hr, the reduced image of a, [f(a)], can be written
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as a concatenation of non-degenerate edge-paths in Ti−1 and Hi with the first and the
last contained in Hi.
For such a, we can distinguish between two cases for the strata: if there exists some edge
of e in Hr such that [f(e)] contains at least two copies (orbits) of e, then we say that
the stratum is exponentially growing and we can see the r-lengths of images of edges
in Hr expands by λr > 1 and in particular the lengths of reduced f -iterates of edges
in Hr are going to infinity (using the train track properties). Otherwise, the stratum
called non-exponentially growing and the map f (if we ignore the lower strata) is just
a permutation of edges of the same length. An automorphism is called exponentially
growing if some representative has at least one exponentially growing stratum. In other
case, it is called non-exponentially growing automorphism.

2.7 Graph of Groups and Subgroups

We will recall only some facts for the graph of groups. For more about graph of groups
and their subgroups, see [22].
In the special case that we are interested, a graph of groups can be defined as a finite
connected graph X (let call Γ the underlying graph) for which in every vertex v we
correspond some (vertex) group Gv. We call non -free the vertices for which the cor-
responding group is non-trivial. Then the fundamental group of X, π1(X) is the free
product of π1(Γ) (which is a f.g. free group) and the vertex groups.
We will use a specific kind of subgroups of π1(X). Let γ be a loop in v0 ∈ V (Γ). Then
starting from vo and following the path of γ we meet some non-free vertices (we can
return back also, but we have always follow γ). So we can read words of a fixed form,
and this process produces words of the fundamental group (we can see it as the group
which it consists of all the words constructed as above but without fixing some loop γ).
In fact, the set of all such words is a subgroup of π1(X), which corresponds to γ.

3 Every two O - maps coincide

In [10] it has been proved the existence of O-maps. We will prove that even if in
the construction of such maps there is a lot of freedom, the reduced images of all of
them coincide, up to bounded error. As a consequence we obtain that their lengths are
comparable.

Theorem 3.1. Let f, h : A → B be O - maps. Then there exists a positive constant
C (which depends only on f , h and A), so that for every path L in A, then [f(L)] and
[h(L)] are equal, except possibly some subpaths near their endpoints which their lengths
are bounded by C.
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Proof. Firstly, we suppose that there is at least one non-free vertex which we denote it
by v. Then we have that f(v) = h(v). If L = [a, b] is an edge - path, then in distance
at most vol(A/G), we can find vertices of the form g1v, g2v near a, b respectively such
that [a, b] ⊆ [g1v, g2v]. Then [f(L)] is contained in [f(g1v), f(g2v)], except possibly some
segments near a, b of length at most C ′ = vol(A/G)Lip(f). Similarly, we apply the same
argument for [h(g1v), h(g2v)] and we get a constant C ′′ = vol(A/G)Lip(h). Therefore
since [h(g1v), h(g2v)] = [f(g1v), f(g2v)], we get [f(L)] = [h(L)] except possibly some
segments near a, b which are bounded by C = max(C ′, C ′′) (by definition depends only
on Lip(f), Lip(h), vol(G/A))
If there are no non- free vertices, we are in the free case and the result is well known.

Note also that it is not difficult to see that every O-map is a quasi-isometry.

4 Laminations

We follow exactly the same approach as in [1] and some of the proofs are essentially
the same, but since in this context the definitions have adjusted appropriately, we give
detailed proofs for the convenience of the reader. On the other hand, there are a lot of
technical issues which are not appeared in the free case and they are addressed separately.
In this section we define the notion of the lamination associated to an IWIP. Firstly, we
use the train track maps to define the lamination in a specific tree and the existence of
O-maps between any two trees allows us to generalise it for every tree.

4.1 Construction of the lamination and properties

Let φ ∈ Out(G,O) be an (expanding) irreducible automorphism, with irreducible pow-
ers and f : A → A for some A ∈ O be a train track map which represents φ (so it
satisfies f(gx) = φ(g)f(x)). We can also suppose that f expand the length of the edges
by a uniform factor λ > 1 (this can be done if we choose an optimal train track that
represents f , as we have already seen).
By changing f with some iterate, if necessary, we can suppose that there is x ∈ A which
is a periodic point (fk(x) = x, for some k), in the interior of some edge (in general there
exists x s.t. fk(x) = gx since the quotient is finite, but we can change the space A,
changing isometrically the action, with φg(A) and there the requested property holds).
Now let U some ε-neighbourhood, for some small ε (we want the neighbourhood to be
contained in the interior of the edge) and then there is some N > 0 s.t. fN (U) ⊃ U .
We can choose an isometry ` : (−ε, ε) → U and extend it to the unique isometry
` : R → A s.t. `(λN t) = fN (`(t)) and then we say that the bi-infinite line ` is obtained
by iterating a neighbourhood of x.
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Definition 4.1. • We say that two isometric immersions A : [a, b] → A and B :
[c, d] → A, where a, b, c, d ∈ R are equivalent, if there exists an isometry q :
[a, b]→ [c, d] s.t the triangle commutes (Bq = A). (This relation is an equivalence
relation on the set of isometric immersions from a finite interval to A).

• If P is an equivalence class and we choose a representative of that class γ : [a, b]→
A, we can define f(P ) as the equivalence class of fγ : [a, b]→ A, pulled tight and
scaled so it is an isometric immersion.

• A leaf segment of an isometric immersion R → A is the equivalence class of the
restriction to a finite interval.

Let ` be an isometric immersion, then we correspond the G-set I` (of the leaf segments
of `) to `. We can also define an equivalence relation on the set of isometric immersions
from R to A.

Definition 4.2. Let `, `′ be two isometric immersions from R to A, then we say that
they are equivalent if I` = GI`′ . Namely, we say that they are equivalent if for every leaf
segment P of ` there is an element g ∈ G and Q a leaf segment of `′ s.t. P = gQ and
vice versa (or equivalently every l.s. of ` is mapped by some g to a l.s. of `′)

Remark. Here note that it is obvious that if `(t) = g`′(t) (`, `′ are in the same orbit),
then ` and `′ are equivalent.

We will prove that if we construct any other line by iterating a neighbourhood of any
other periodic point (here we mean that there is k and g ∈ G s.t. fk(x) = gx) then it
is equivalent with `.

Lemma 4.3. Let y ∈ A, be any other f -periodic point in the interior of some edge
of A and `′ is the obtained by iterating of some neighborhood of y. Then ` and `′ are
equivalent.

Proof. We will show that any l.s. of ` is mapped by some element of G to a l.s. of `′,
then the converse follows by symmetry.
Since f represents an irreducible automorphism (and the same holds for every power of
f), `′ contains some orbit of every edge, so in particular if x is contained in the interior
of the edge e we have that there exists some g ∈ G, s.t. gx ∈ ge ⊆ `′. So there is an
isometry ψ : (−ε, ε)→ (a− ε, a+ ε) with the property `(t) = g`′(ψ(t)).
Let N ′ be a natural number s.t. `′(λN ′t) = fN

′(`(t)) and then for any t ∈ U (U
as in the definition) we have that `(λkNN ′t) = fkNN

′(`(t)) = fkNN
′(g`′(ψ(t))) =

φkNN
′(g)fkNN ′(`′(ψ(t))) = φkNN

′(g)`′(λkNN ′ψ(t)).
But since every prechosen interval is contained in some interval of the form λkNN

′(−ε, ε)
for large k, we have that for every l.s. of ` is mapped by some φkNN ′(g) ∈ G to some
l.s. of `′.
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We are now in position to define the stable lamination corresponding to A.

Now the stable lamination in A-coordinates Λ = Λ+
f (A) is the equivalence class of

isometric immersions from R to A containing some (and by previous lemma any) im-
mersion obtained as above (by iterating a neighborhood of a periodic point). We call
the immersions representing Λ leaves of Λ and the leaf segments (l.s.) of some leaf of Λ
leaf segments of Λ (by definition of the equivalence relation, every leaf of Λ contains
some orbit of every l.s. of Λ).
Note that the every leaf of the lamination project to the same bi-infinite path in the
quotient.
We will list some useful properties of the stable lamination.

Proposition 4.4. 1. Any edge of A is a leaf segment of Λ.

2. Any f -iterate of a leaf segment is a leaf segment.

3. Any subsegment of a leaf segment is a leaf segment.

4. Any leaf segment is a subsegment of a sufficiently high iterate of an edge.

5. For any leaf segment P there is a leaf segment P ′ such that f(P ′) = P .

6. Let a be a segment which is the period of the axis of some hyperbolic element which
crosses k edges (counted with multiplicity). Then any f -iterate of a (pulled tight)
can be written as concatenation of less or equal k leaf segments.

Proof. 1. This is clear by the proof of the previous lemma, since f represents an
irreducible automorphism and this implies that every ` contains orbits of every
edge, so if ge is contained in ` then e is contained in g−1` which is equivalent to `
thus is a leaf of Λ, and as consequence e is leaf segment of a leaf therefore it is l.s.
of Λ.

2. Firstly, we note that if x is f -periodic then f(x) is f - periodic with the same
period(in fact every fm(x) is periodic) and let’s denote `′ the isometric immersion
constructed as above, so if P is a l.s. of `, then f(P ) is a l.s. of `′ but since `, `′

are equivalent by lemma, we have that `′ is a leaf of Λ and therefore f(P ) is a l.s.
of Λ. So we can do it for every iterate of f .

3. This is obvious, since we restrict the isometric immersion to the subsegment and
it is a l.s. of a leaf of Λ and as a consequence a l.s. of Λ.

4. We have that f expands the length of every edge by λ, but we can use for rep-
resentative the isometric immersion constructed as above (by iterating a periodic
neighborhood) and the edge in which the periodic point belongs, then by con-
struction of ` every l.s. is contained in an high iterate of this edge. For any other
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representative `′ now we can translate ` as above (by some element g ∈ G) to have
a common segment that contain the prechosen l.s. and the proof reduced to the
first case.

5. Let P be a l.s. of Λ. By (iv) we have that there exists some iterate of an edge and
so by ` an iterate of a l.s. P ′′ s.t. P is contained in fm(P ′′) and since iterates of
l.s. are l.s. and subsegments are l.s. as well, we have that there is P ′ subsegment
of fm−1(P ′′) with the property P = f(P ′)

6. This is obvious since edges are l.s. and f -iterates of l.s. are l.s..

We note that (ii) implies that fk(`) is a leaf of the lamination, for every k.

Definition 4.5. We say that a sequence ai of isometric immersions [0, 1]i → A (where
the metric on [0, 1]i is scalar multiple of the standard part which depends on i), (weakly)
converges to Λ,
if for every L > 0 the ratio,

m({x ∈ [0, 1]i|the L- nbhd of x is a leaf segment})
m([0, 1]i)

converges to 1.

Proposition 4.6. Suppose that a is a segment in A which corresponds to the period
of the axis of some hyperbolic element, which is not N-periodic. Then the sequence (of
tightenings of f i(a)), [f i(a)] weakly converges to Λ.

Note that such hyperbolic elements always exist. For example the basis elements of the
free group, are not N-periodic by definition of irreducibility.

Proof. Suppose that a can be written as a concatenation of k l.s. then we have k − 1
illegal turns (we don’t count the endpoints) and since f is a train track map we have
that the number of illegal turns in [fk(a)] is non-increasing so it contains less than or
equal to k−1 l.s.. Therefore if the lengths of reduced iterates of a is bounded, and since
there are finitely many inequivalent paths with length less than or equal to a specific
number, we have that a is N-preperiodic and therefore periodic because a corresponds
to a group element, which leads to a contradiction to the hypothesis. Therefore some
[f i(a)] contains arbitarily long legal segments (> Ccrit), and since the length of [f j(a)]
expands for large j, we have that there are finitely many L-nbds contain points without
the requested property (of the endpoints of the concatenation of l.s. so at most k) and
the measure of these is at most 2Lk, as a consequence the ratio converges to 1.
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Definition 4.7. An isometric immersion l : R → A is quasiperiodic (qp), if for every
L > 0 there exists L′ > 0 s.t. for every l.s. P of ` of length L and for every l.s. Q of
length L′ there is g ∈ G s.t. gP ⊆ Q (P is mapped by g to a subsegment of Q).

Proposition 4.8. Every leaf of Λ is quasiperiodic.

Proof. We will first prove it for some ` which has constructed by iterating neighbourhood
of a periodic point.
We first verify it for leaf segments Π that consists of only two edges.
If we choose L0 > 2maxe(len(e)), then if a l.s. P has length ≥ L0, then it contains a
subleaf segment which is an edge. Then there is N(we can also choose it to be multiple
of k) s.t. fN restricted to any edge crosses some orbit of every turn that they crossed
by leaves of Λ+

f (A). So in particular for the chosen Π the iterate of f takes the orbit of
that turn, so there exists g ∈ G such that Π ⊆ gfN (P ).
Now if P ′ is any l.s. of length λNL0, then P ′ = fN (P ) for some P l.s. of length L0 and
therefore Π ⊆ gP ′.

For the general case, let L > 0 be given, then there is M > 0 (we choose it to have the
property λ−ML < 2min(len(e))) s.t. any l.s. of length ≤ λ−ML is a subsegment of a
two-edge l.s. as above and let L′ = λM+NL0.
So let P be a l.s. of length L and P ′ be a l.s. of length L′. Then by the properties
we have that P = fM (Π) where Π is contained to a l.s. as in the special case(by
the choice of M , since Π has length λ−ML), and similarly P ′ = fM (Π′) for a l.s. Π′

of length λNL0. By the special case we have that Π ⊆ gΠ′ and this implies that
P = fM (Π) ⊆ ΦM (g)fM (Π′) = ΦM (g)P ′. Since ` is ΦM (g)-invariant, we have the
requested property.
For any other equivalent isometric immersion `′, if we have P l.s. of length L and Q

l.s. of length L′ then we can find an isometric immersion ` like the first case with Q as
common segment. Then by the equivalence there exists g1 ∈ G s.t. g1P is l.s. of `, and
by quasiperiodicity of `, there is g2 s.t. g2P ⊆ Q and g2P is a l.s. of `′, so we have that
`′ is quasiperiodic.

4.2 Lamination in every tree

Suppose that f : A → A and Λ+
f (A) as above and B ∈ O. Then we know that there

exists an optimal map(in particular O -map) τ : A → B. Then for any immersion
` : R→ A we denote by τ(`) : R→ B the unique (up to precomposition by an isometry
of R) pulled tight to be the isometric immersion corresponding to τ`.

Lemma 4.9. • If `, `′ : R→ A are equivalent leaves, then τ(`), τ(`′) are equivalent.

• If ` is quasiperiodic, then τ(`) is quasiperiodic.
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Proof. Every optimal map τ by [10], can be factored as the composition of a homeomor-
phism and a finite sequence of folds. We have just to prove that the lemma is true for
homeomorphism and folds.
Firstly, let suppose that τ is homeomorphism. In particular [τ(`)] = τ(`) and the same
holds for `′ as well.
Let P ′ is a l.s. of τ(`), then there is some l.s. of ` P s.t. P ′ = τ(P ), so there is a
translation of P by some element of the group, gP which is contained in `′, therefore
τ(gP ) = gP ′ is contained in τ(`′). The converse follows by symmetry and so τ(`) and
τ(`′) are equivalent.
Suppose now that ` is quasiperiodic, fix a L > 0 let P ′ l.s. of τ(`) of length L. Then
there is a l.s. P of length at most K (by Bounded Cancellation Lemma there exists
such K which doesn’t depend on P but only on L) s.t. P ′ = τ(P ). Then we can define
L′′ = L′Lip(τ), where L′ is the constant corresponding by quasiperiodicity to K and we
have that if we choose any Q′ l.s. of τ(`) of length L′′ then there exists a l.s. Q of ` of
length at least L′ s.t. τ(Q) = Q′. Then Q contains orbits of any l.s. of length at most
K, in particular it contains some translation of P for some g ∈ G and therefore as above
Q′ contains some translation of P ′. So τ(`) is quasiperiodic.
We suppose that τ is an equivariant isometric simple fold of some segments starting
from the same point v and has the same τ - image, let call them a, b and c be the
corresponding segment in the quotient.
For the first statement, we note that is obvious for a l.s. of [τ(`)] which don’t contain
some orbit of c, since there τ is the identity. On the other hand, if P ′ is l.s. of τ(`)
which contains some orbits of c, then there exists P which contain the same number of
orbits as the folded turn and [τ(P )] = P ′ (it is concatenation of the segments before
and after the folds). Since `, `′ are equivalent we have that we can find g ∈ G s.t. gP is
contained in `′, then [τ(gP )] is a a l.s. of [τ(`′)]. But [τ(gP )] is just a translation (by
g) of τ(P ), and therefore as above we obtain that [τ(`)], [τ(`′)] are equivalent.
For the quasiperiodity of [τ(`)] we fix a number L > 0 and we call M the maximum
number of orbits of v which there are in a segment of length L, and L′ is the number
corresponds by quasiperiodicity for L′′ = L+ 2Mlen(a). Now let P ′ be a l.s. of length
L, then there is P which contains the same number of orbits of the folded turn and
[τ(P )] = P ′ as above. Then P has length at most L′′, some translation of it is contained
in every l.s. of ` of length L′. Now let choose Q any l.s. of [τ(`)] of length L′ then the
preimage has length at least L′, and therefore the preimage has the requested property.
So Q contains a translation of P ′ as above.

Definition 4.10. The stable lamination of f : B → B in the B-coordinates is the
equivalence class Λ+

f (B) containing τ(`) for some (and by previous lemma any) leaf of
Λ+
f (A).

Using again the property that τ is factored as the composition of a homeomorphism and
a finite sequence of folds combined with the result for the Λ+

f (A), we have the following
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proposition.

Proposition 4.11. Let a be a segment which is the period of the axis of a hyperbolic
element in A, which is not N- periodic. Then the sequence {[τ(f i(a))]} weakly converges
to Λ+

f (B)

Lemma 4.12. Suppose that h : B → B is any other train track map representing Φ.
Then Λ+

f (B) = Λ+
h (B)

Proof. Let a be a periodic segment as in 4.6 and 4.11. Then we have that the sequences
[τ(f i(a))], [hi(τ(a))] weakly converge to Λ+

h (B) and to Λ+
f (B), respectively by the pre-

vious propositions. But τf i, hiτ are O-maps from A to φ(B), so their reduced images
coincide in every path, after deleting some bounded segments near endpoints. Then
there are leaves `, `′ of Λ+

h (B) and Λ+
f (B) respectively with arbitrarily long common leaf

segments. Since they are both quasiperiodic, it follows that they are equivalent. Indeed,
let P be a l.s. of ` of length L then there exists L′ s.t. for every l.s. of length L′, P ′

there is some g ∈ G s.t. P ⊆ gP ′. But we can find a common segment Q of ` and `′

of length at least L′, so by quasiperiodicity P ⊆ gQ ⊆ ` and since Q ⊆ `′ we have that
P ⊆ gQ ⊆ g`′ and therefore g−1P ⊆ `′.
We have proved that for every l.s. of ` there is an element of the group that map this
l.s. to a l.s. of `′ and similarly we can prove the converse so ` and `′ are equivalent by
definition. Therefore Λ+

h (B) = Λ+
f (B)

So we have proved that we can use any train track representative to define the set of
laminations, in particular we give the following definition:

Definition 4.13. The stable lamination Λ+
Φ associated to some IWIP Φ ∈ Out(G,O)

is the collection {Λ+
f (B)|B ∈ O} where f : A → A is a train track representative of Φ.

The unstable lamination Λ−Φ of Φ is the stable lamination of Φ−1.

5 Action

Let φ be an IWIP and f : T → T be an optimal train track representative of φ.
We denote by IL the set of stable laminations Λ+

φ , as φ ranges over all IWIP auto-
mophisms relative to O. The group Out(G,O) acts on IL via

ψΛ+
φ = Λ+

ψφψ−1 (1)

More specifically, if ` is a leaf of Λ+
φ in the S-coordinates and h : S → S an O map

representing ψ, then [h(`)] represents a leaf of Λ+
ψφψ−1 .

We are interested to study the stabiliser of the action for a fixed automorphism. Note
that obviously the centraliser, which we denote by C(φ), of the IWIP φ in Out(G,O) is
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a subgroup of Stab(Λ).
We will equip T with a specific train-track structure, the minimal train-track structure;
more specifically we declare a turn legal, if it is crossed by some leaf of Λ+

f . The prop-
erties of the lamination imply that a turn is legal iff there is a f -iterate of an edge of T
that crosses the turn.

6 Subgroups carrying the lamination

From now and for the rest of the sections, we fix a group of finite Kurosh rank G with
some (non-trivial) free product decomposition, the relative outer space O which corre-
sponds to this decomposition, some expanding IWIP φ relative to O and the associated
lamination Λ+

φ = Λ.
This section is devoted to prove that it is not possible for a proper subtree to contain
every leaf of the lamination. Moreover, we will prove that every relative train track rep-
resentative of some automorphism of the stabiliser, after passing to some power, induces
the identity on the quotient restricted to any proper invariant subraph (which is union
of strata).

Definition 6.1. Let A be a subgroup of G of finite Kurosh rank, and let’s denote T ∈ O
and TA the minimal invariant A- subtree. We suppose also that for every v ∈ V (TA),
StabA(v) = StabG(v). Then we say that A carries the lamination Λ, if there exist some
leaf ` of Λ which is contained in TA.

Remark. 1. Every two leaves of the lamination project to the same bi-infinite path
in Γ.

2. For every vertex v of T there exist g ∈ G s.t. gv ∈ TA (in particular, TA contains
some orbit of any non-free vertex).

Proposition 6.2. If a A is a subgroup of G, as in the previous definition, which carries
Λ+
φ then A has finite index in G.

Proof. Let f : T → T be a train-track representative of φ , Γ = G/T and let H → Γ be
an isometric immersion corresponding to A ≤ G. Then by our assumptions H is finite
graph of groups and by the remarks contains every non-free vertex. Therefore (using
also the assumption that the corresponding vertex groups are full), we can complete
the immersion, by adding vertices (with trivial vertex group) and edges, to a connected
finite-sheeted covering space p : Γ′ → Γ and therefore we have that T ′ = T (where T ′ is
Bass-Serre tree of Γ′).
Now we know that if A has infinite index, then we are really adding new edges in Γ′ or
equivalently we add new orbits of edges in T . But then using irreducibility we can reach
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a contradiction.
More specifically, we choose e (edge of T ) such that f(e) starts with e. Then for every n
the path fn(e) is a path of TA. So if we choose any edge e1 (lift of some edge in Γ′−H)
there does not exist n and g ∈ G such that fn(ge′) passes through e1 (since e1 is in
different orbit of edges in TA), but this contradicts the fact that the transition matrix
corresponding to f , denote it by A(f), is irreducible. As a consequence, A must have
finite index in G.

Proposition 6.3. Let ψ ∈ Stab(Λ), and let h : S → S be a relative train-track repre-
sentative of ψ. Then let’s denote by S0 some h-invariant G-subgraph of S (without free
vertices of valence 1) that is a union of strata. Then there is a k s.t. if we restrict hk

to S0 induces the identity in G/S0.

Proof. Let ` be a leaf in S-coordinates and let S0 be a proper h-invariant subgraph. The
quasiperiodicity implies that there is an upper bound to the length of both S0 and S−S0

segments, and hence only finitely many segments occur (since there are finitely many
lengths corresponding to edge- paths of bounded length in the quotient and quasiperi-
odicity implies that there are finitely many orbits of leaf segments of a specific length).
Using the same argument we have that it is not possible for ` to contain arbitarily
long segments of a proper subgraph since then the quasiperiodicity implies that ` is
contained in that subgraph which contradicts to the previous proposition. Therefore `
is a concatenation of non-degenerate segments in S0 and in S − S0 (otherwise would
lift to a proper subgraph of H, which is impossible as we have noticed). Now we have
that all S0-segments are h- preperiodic (there exist M,N s.t. hM (L), hN (L) are in the
same orbit) or else h-iteration will produce arbitrarily long leaf segments contained in
S0 contradicting quasiperiodicity.
We can start with the disjoint union X of copies of the segments and the natural im-
mersion X → S and we identify two endpoints of X if they are mapped to the same
point of S. Then fold to convert the resulting map to an immersion π : X ′ → S. But `
lifts to X ′ (by construction) and so by previous proposition we have again that X ′ = S

(it corresponds to a finite covering space of graph of groups). In particular, any sim-
ple periodic segment in S0 lifts to X ′. Consequently, this segment is a concatenation
of paths in S0 each of which is h-preperiodic, and therefore this segment is N-periodic
(since it corresponds to an element of the group and so we have inverse). Thus every
such segment a in S0 is equivalent to some power hk(a) (note that there is a uniform
bound for the powers) and hence for some k, hk restricted to S0 induces the identity on
the quotient, since h is a relative train track.
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7 Stretching map

In this section we will see that we can define a homomorphism from the stabiliser of the
lamination to R.

Lemma 7.1. Suppose that h : S → S is an O- map that represents ψ ∈ Out(G,O).
Then there exists a positive number λ = λ(h,Λ) such that for every ε > 0 there is N > 0
so that if L is a leaf segment of Λ of length > N , then

∣∣ length([h(L)])
length(L) − λ

∣∣ < ε

Proof. We note that since f is IWIP, we have that the transition matrix M = A(f) is
irreducible (as it is every power ofM) and therefore we can apply the Perron - Frobenius
theorem to M , as a consequence we have that long leaf segments of Λ cross orbits of
edges of T with frequencies close to those determined by the components of the PF
eigenvector.
Now fix large k and then large l.s. are concatenation of l.s. of the form fk(e), for some
edges of T , each orbit of edges with definite frequency.(For k = 1 this is the statement
above, for k > 1 apply P.F theorem for fk).
If M is large enough, then for any l.s. L with length(L) > M we can think L as
concatenation of l.s. of the form fk(e) (there are possible some shorts segments contained
in the first and the final segment, which are not of this form but we can ignore them
since their contribution in lengths is neligible).
Now let C be the bounded cancellation constant for h : T → T , and let’s denote
le = len(fk(e)), lhe = len([h(fk(e))]), Ne be the number of occurrences of orbits of
fk(e) in L and N = ∑

Ne, then we have that Ne
N → re, as len(L) → ∞ (re is the PF

component of the eigenvector that corresponds to e) by the PF theorem.
Note that the numbers Ne, le, l

h
e depends on k, so we define ak =

∑
relhe∑
rele

. We have that
len(L) = ∑

Nele and by bounded cancellation lemma:
∑
Ne(lhe − 2C)∑

Nele
≤ AM = len([h(L)])

len(L) ≤
∑
Nel

h
e∑

Nele
(2)

and subdividing the sums by N we have that
∑ Ne

N lhe − 2CNe
N∑ Ne

N le
≤ AM = len([h(L)])

len(L) ≤
∑ Ne

N lhe∑ Ne
N le

(3)

where the term 2C Ne∑
Nele

converges to 0 as k →∞ and as we noted above Ne
N → re, as

len(L)→∞. As a consequence, for every ε for large k = k(ε) and for largeM = M(ε, k),
ak − ε ≤ AM ≤ ak + ε.
Firstly, we send M →∞ and then for every ε > 0 for large k,

ak − ε ≤ lim inf AM ≤ lim supAM ≤ ak + ε (4)
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Therefore sending ε to 0, k to infinity, we have that, choosing a subsequence of ak that
converges to a,

a ≤ lim inf AM ≤ lim supAM ≤ a (5)

and therefore limAM = lim inf AM = lim supAM = a.
As consequence we have the requested property that there exists a positive number λ
s.t. len([h(L)])

len(L) → λ, as len(L) is going to infinity.

Lemma 7.2. Using the notation as above and choosing any other representative h′ of
ψ, we have that λ(h,Λ) = λ(h′,Λ). In particular, the number doesn’t depend on the
representative but only on ψ.

Proof. Let h, h′ be O-maps which represent ψ as in the previous lemma. Therefore by
the proposition 3.1 for any L, [h(L)] = [h′(L)], up to bounded error that doesn’t depend
on L. Therefore for every L, len([h(L)]) ≤ len([h′(L)]) + C, where C is positive fixed
and as a consequence

∣∣ len([h(L)]− len([h′(L)]))
len(L)

∣∣ ≤ C

len(L) → 0

for large len(L).
Therefore since len([h(L)])

len(L) → λ(h,Λ) and len([h′(L)])
len(L) → λ(h′,Λ), we have as a consequence

λ(h,Λ) = λ(h′,Λ).

Lemma 7.3. Using the notation above we have that σ : Stab(Λ) → R+, where σ(ψ) =
λ(h,Λ), is a well defined homomorphism.

Proof. Since we have that ψ ∈ Stab(Λ), this means that [h(`)] is a leaf (for any leaf `)
and as a consequence σ is a well defined map.
We will prove that σ is homomorphism.
So we have to prove that for any ψ1, ψ2 ∈ Stab(Λ) it holds that σ(ψ1)σ(ψ2) = σ(ψ1ψ2).
We choose representatives h1, h2 of ψ1, ψ2 respectively, and by definitions len([h1(L)])

len(L) →
σ(ψ1) and len([h2(L)])

len(L) → σ(ψ2). Moreover, h1h2 represents ψ1ψ2 (by previous lemma we
can choose any representative).
Therefore since len([h1(h2(L))])

len(h2(L) → σ(ψ1ψ2), for len(L) → ∞ and actually we have the
equality len([h1(h2(L))])

len[h2(L)] = len([h1[h2(L)]])
len[h2(L)]

len([h2(L)])
len(L] up to bounded error. But now sending

len(L) to infinity, it holds len([h1[h2(L)]])
len[h2(L)] → σ(ψ1) (as len[h2(L)] converges to infinity

when len(L)→∞ and the fact that [h1[h2(L)]]) and [h1(h2(L))] are in bounded distance
and the bound doesn’t depend on L).
Therefore by uniqueness of the limit, we have that σ(ψ1ψ2) = σ(ψ1)σ(ψ2).
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8 Kernel of the homomorphism

Now we investigate the properties of the kernel, We would like to prove that ker(σ)
contains as subgroup of finite index the intersection of the stabiliser with the kernel of
the action. But firstly, we aim to prove that the subgroup ker(σ) contains only non-
exponentially growing automorphisms. We will prove it separately for irreducible and
reducible automorphisms.

8.1 Reducible case

In the reducible case we will see that the automorphisms of the Stab(Λ), have repre-
sentatives of a very specific form. More specifically, every stratum except the top, is
non-exponentially growing and moreover the representative restricted to each stratum
is just a permutation of edges. Therefore we can calculate the value of σ, using only the
top stratum if it is exponentially growing.

Proposition 8.1. If ψ ∈ Stab(Λ) is exponentially growing and there exists some k s.t.
ψk reducible, then ψ /∈ Ker(σ)

Proof. Let h : S → S be a relative train track representative of ψ(we can change h with
some power if it is necessary).
Firstly, we note that every stratum, except possibly the top one, is non-exponentially
growing. This is true, since otherwise if some Hr is exponentially growing and e ∈ Hr

we have that the lengths of tightenings of h- iterates of e are arbitarily long (by the train
track properties) and they are l.s. (by definition of the stabiliser of the lamination), but
this means that we have arbitarily long segments contained in some proper subgraph
(since h(Gr) ⊆ Gr), which is impossible as we have seen in 6.2.
Therefore if ψ is exponentially growing then we suppose, changing h with some iterate
if it is necessary, that there exists H0 which is union of strata, all of them are non-
exponentially growing, h restricted to H0 induces the identity in the quotient, and that
the top stratum is exponentially growing, so if we have a leaf of the lamination and using
the subgraph-overgraph decomposition of the leaf, it is implied that the lengths of long
l.s. grow exponentially and in fact the actual value is the Perron-Frobenius eigenvalue
that corresponds to the unique exponentially growing stratum.

8.2 Irreducible case

Now let’s suppose that ψ is an IWIP. We have two cases and we will prove the theorem
independently for automorphisms that have the NGC and the rest automorphisms that
have the GC (the dichotomy is the same as in the free case, but for the automorphisms
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with GC we need arguments of different nature). We will prove again that the value of
σ corresponds to the Perron - Frobenious eigenvalue of ψ (or ψ−1).

Lemma 8.2. Let h : S → S be a train track map representing some irreducible ψ ∈
Out(G,O).

Then for every C > 0 there is a number M > 0 such that if L is any path, then one of
the following holds:

1. [hM (L)] contains a legal segment of length > C

2. [hM (L)] has fewer illegal turns that L

3. L is concatenation x · y · z, such that y is N-preperiodic and x, z have length ≤ 2C
and at most one illegal turn.

Proof. Choose M to be a natural number that exceeds the number of inequivalent legal
edge paths of length ≤ 2C.
Now assume that L is a path such that the second statement fails, so [hM (L)] has the
same number of illegal turns with L (since h is train track map, sends edges to legal
paths and legal turns to legal turns so it is not possible the image of a path to have more
illegal turns than the path). So each h- iteration of L amounts to iterating maximal
legal subsegments of L and cancelling portions of adjacent ones.
If, in addition, the first fail as well, then each maximal legal segment (which has length
≤ C) of L, except possibly the ones that contain the endpoints must have two iterates
that after cancellation yield equivalent segments (otherwise we will have M equivalent
legal segments of length ≤ C, but this contradicts to the choice of M).
Therefore, we have that each segment contains a preperiodic point so that these points
subdivide L as x·y1 ·...·ym ·z, and we have that this path satisfies the third statement.

Firstly we will prove a useful lemma for IWIP automorphisms which satisfy the property
NGC and then we see that how we can use it for GC automorphisms.

Lemma 8.3. Let ψ, ψ−1 irreducible automorphisms (IWIP’S), h : S → S train track
map representing ψ, h′ : S′ → S′ representing ψ−1 and let’s suppose that there is an
integer m so that it is impossible to concatenate more than m N- periodic in S and in
S′. Let τ : S → S, τ ′ : S′ → S′, O-maps.
Then for any C > 0 there are constants N0 > 0 and L0 such that if j is line or a path
of length ≥ L0 and if j′ the isometric immersion obtained from [τj], then one of the
following holds:

(A) [hM (j))] contains a legal segment of length > C

(B) [h′M (j′)] contains a legal segment of length > C
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Proof. Without loss, we may assume that C is larger than the critical constants for h and
for h′. Let M be the larger of the two integers guaranteed by previous lemma applied
to h,C and h′, C. We will fix a large integer s = s(h, h′, τ, τ ′,M). Suppose that (A)
does not hold with N0 = sM . We will apply the previous lemma only to hM -admissible
segments (a segment L ⊆ j so that hM (∂L) ⊆ [hM (j)]). By our assumption the first
of the previous lemma doesn’t hold. If we further restrict to segments L with > m+ 2
illegal turns, then we can’t have the third case either. So for such segments the second
is always true. We can represent j as a concatenation of such segments of uniformly
bounded length and the uniform bound does not depend on j, but only on h, h′, τ, τ ′,M
(since we will apply the same argument using [τh(j)], h′ instead of j, h respectively).
Say p is an upper bound to the number of illegal turns in each segment (there are finitely
since they are of uniformly bounded length). Fix a with p−1

p < a < 1. For long enough
segments L in j the ratio number of illegal turns in [hM (L)]

number of illegal turns in L < a (since the number of illegal
turns in L than p and number of illegal turns in [hM (L)] is strictly less that the number
of illegal turns in L).
By applying the same argument to hM (j) and then to h2M (j) etc, we see that for given
s > 0 and long enough segments L ⊆ j (the length depends on s as well ), we have
number of illegal turns in [hsM (L)]

number of illegal turns in L < as,
or else (A) holds with N0 = sM . Since legal segments have length above by C and
below by the length of the shortest edge(with the exception of the two containing the
endpoints), the length can be compared with two inequalities to the number of illegal
turns. Therefore if (A) fails, there exists a constant A = A(h,C) with the property
length[hsM (L)]

length(L) < Aas. Similarly, we can use the same argument using [τhsMj] in place
of j and with h′ in place of h. If (B) fails as well,(with N0 = sM) we reach a similar
conclusion that length[h′sM τhsM (L)]

length[τhsM (L) < Bas for some B depends only on h′, C.
Firstly, we note that h′sMτhsM , τ are both O-maps so they coincide to every path, except
some bounded error near endpoints, in particular for long L, we have that the ratio of
their lengths is bounded above by 2 and below by 1/2. Therefore multiplying the above
inequalities and changing h′sMτhsM by τ we have the inequality :

length[τ(L)]
length[τhsM (L)]

length[hsM (L)]
length(L) < 2ABa2s. (6)

On the other hand, length[hsM (L)]
length(τhsML)

length[τ(L)]
length(L) > 1

2Lip(τ)Lip(τ ′) using again that τ ′τ and the
identity are both O- maps as above.
But sending s to infinity we have a contradiction, since a < 1.

Geometric Case: In the proof of the previous lemma we have used the property
that there is an integer m so that it is impossible to concatenate more than m N-
periodic paths in j (and the iterates [hM (j)]) and the same is true for j′ (and the
iterates [h′M (j′)]). The previous lemma is true for NGC automorphisms for every j.
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But if we apply this when j is some leaf of the lamination and h ∈ Stab(Λ), we can
prove that this always the case.

Lemma 8.4. If ` is some leaf of the lamination, then there is an integer m so that
it is not possible for ` to contain a concatenation of m subpaths that each of them is
N-periodic.

Proof. Choose f : T → T , stable train track representative (this is possible by [5],
since N-periodic paths correspond to Nielsen periodic paths in the quotient or see [23]
for a different approach), then there is exactly one path in Γ = G/T in which every
(indivisible) N-periodic path projects. We suppose that there is no bound in the number
of concatenation of INP in `. So by quasiperiodicity we have that every leaf segment is
contained in some concatenation of equivalent paths of the form P1P2...Pn (where every
Pi is a path that projects to the loop P ). But then the subgroup that is constructed by
the graph of groups corresponding to this loop (see the section 2.6. of the preliminaries),
carries the lamination and therefore has finite index (by 6.2) in G, which is impossible.

Therefore the lemma 8.3 is true, in this case, if we restrict to h ∈ Stab(Λ) and ` some
leaf of the lamination.

Definition 8.5. We say that a sequence {Λi} of irreducible laminations in IL if for
some (any) tree H every leaf segment of Λ in S - coordinates is a leaf segment of Λi in
S -coordinates for all but finitely many i.

Proposition 8.6. Let Λ = Λ+
φ ∈ IL and let ψ ∈ Aut(G,O) which is an IWIP. Suppose

that ψ ∈ Stab(Λ), then Λ = Λ+
ψ or Λ = Λ−ψ .

We note again that if a segment contains a legal segment with length larger than Ccrit
then the length of reduced iterates converge to infinity.

Proof. In the non-geometric case:
Using the notation of the previous lemmas. Let ` be a leaf of Λ in the S -coordinates. We
apply the lemma to [hK`] with K > 0 and C larger the critical constants of h and h′. If
for some K > 0 (A) holds, then if follows from quasiperiodicity that the forward iterates
weakly converges to Λ+

ψ , since we have that the length of reduced images converges to
infinity and so we have arbitarily long legal segments and the quasiperiodicity implies
that some translation of every leaf segment is finally contained in the reduced images.
The remaining possibility is that [τhK`] contains an S′ legal segment of length > C for
all K > 0. But this means that [τ`] which equals to [h′KτhK`] up to bounded error,
contains an arbitarily high h′-iterate of a legal segment and quasiperiodicity now implies
that Λ = Λ−h .
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Now in the geometric case, we use the same argument but only for h ∈ Stab(Λ) and we
have the same result that Λ = Λ±h

Note that we have proved that for automorphisms with the property NGC, it is true for
every IWIP ψ (relative to O) either the forward ψ -iterates of Λ weakly converges to Λ+

ψ

or Λ = Λ−ψ .

Corollary 8.7. If ψ ∈ Stab(Λ) is exponentially growing, then ψ /∈ Ker(σ)

Proof. For reducible automorphisms, we have already proved it in 8.1.
For irreducible ones, we have by the previous proposition that Λ = Λ+

ψ (changing ψ with
ψ−1, if it necessary) and so we can choose f = h, where h is the train track representative
of ψ, in the proof of 7.1, and then σ(ψ) is obviously equal to the Perron - Frobenious
eigenvalue which is greater than 1, since ψ is exponentially growing(it is an IWIP).

8.3 Discreteness of the Image

We will prove that the image of the homomorphism σ is discrete and therefore we can
see σ as a homomorphism σ : Stab(Λ)→ Z.

Lemma 8.8. σ(Stab(Λ)) is a discrete set.

Proof. This is true since by the proofs of the propositions (8.1, 8.7), every σ(ψ) other
than 1, occurs as the Perron- Frobenius eigenvalue for an irreducible integer matrix of
uniformly bounded size. It is well known then that the set of such numbers form a
discrete set and as a consequence σ(Stab(Λ)) is an infinite discrete subset of R and is
hence isomorphic to Z.

9 Main Results

In this section, we will state and prove the main theorems. We use the same notation
as in the sections above.

Lemma 9.1. Let h : S → S be a relative train track representative of ψ ∈ Ker(σ).
Then there is some k such that hk induces the identity on G\S. Moreover, there are
appropriate representatives of orbits of non -free vertices v1, ..., vq, such that h(vi) = vi.
Finally, if ψ ∈ Ker(σ) ∩Out(G, {Gi}t) then ψ is an automorphism of finite order.

Proof. Let ψ ∈ Ker(σ) and h′ : S → S be a RTT train track representative of ψ.
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By 8.7, possibly after changing ψ with some iterate ψk, we can suppose that there is a
relative train track representative, h′k = h : S → S and a maximal proper h-invariant
G-subgraph S0 of S (we denote by H0 the quotient S0/G) s.t. the restriction of h on S0

induces the identity in H0. For the top stratum we can suppose that it contains a single
edge e and that h(e) = ea, where a is some segment of S0 (since it is non-exponentially
growing). But then since h is a relative train track and h ∈ Stab(Λ), we have that
h-iterates of e produces arbitarily long segments of the lamination that are contained in
S0 which contradicts quasiperiodicity, except if the leaf of the lamination is of the form
(in the quotient, so every a, e correspond to orbits):

...eab−1e−1x−1ea
b0e−1x0ea

b1e−1x1ea
b2e−1...

for some integers bi and xi are contained in S0 (or H0 in the quotient). In this case,
the lamination is carried by the subgroup which is the fundamental group of the graph
of groups which consists of the disjoint union of two graph of groups corresponding to
H0 (which contains all the non-free vertices with full stabilisers) that are joined by an
edge corresponding to e. But by 6.2, this leads to a contradiction since it is obvious that
this subgroup is not of finite index (and by construction it contains the full stabilisers
of vertices). Therefore we have that h(e) = e and then h induces also the identity on
Γ−H0 (Γ = G/T ) and so on Γ.
Now suppose h(e1) = e1, h(e2) = g0e2, where g0 ∈ Gv as above, where e1e2 is a legal path.
Then since h is a isometry we have that we will have as leaf segments of the form e1gne2

where gn = ψn(g1). But since there are finitely many inequivalent paths of a specific
length, we can get that after passing some power if needed, that there is some g ∈ Gv
such that h(ge2) = ge2 and after changing the fundamental domain (in particular, e2

with ge2), we have that h fixes pointwise the fundamental domain. Since this can be done
for every vertex we have that we can suppose that every edge of the fundamental domain
is fixed by h (after possibly passing to some power). Therefore h is an automorphism
that sends a path of the form g1e1, ..., gmem to the path ψ(g1)e1, ..., ψ(gm)em where
gi, ψ(gi) ∈ Gø(ei), and as a consequence h depends only on the induced automorphisms
on each Gi.
From the discussion above, if we assume also that ψ ∈′ Out((G, {Gi}t) the induced
automorphism on each Gi is the identity and therefore h is the identity, which implies
that there is some k such that ψk is represented by the identity and that means that ψk

is the identity.

As a consequence, let’s consider the subgroup A = Out((G, {Gi}t)∩Ker(σ) which, by the
previous lemma, is periodic. Then Stab(Λ)/A has a normal subgroup B = Ker(σ)/A,
which is isomorphic to a subgroup

p⊕
i=1

Ai of
p⊕
i=1

Out(Gi) and (Stab(Λ)/A)/B is an infinite

cyclic group. If we further assume that Out(G) is virtually torsion free (as for example
in the free and the relative free case), then we have that Stab(Λ) has a (torsion free)
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finite index subgroup A′. Then A′ ∩ A = 1 (since A is torsion free and A′ periodic)
and so that A′/B ∩ A′ is isomorphic to Z, where A′ ∩ B is isomorphic to a subgroup
of

p⊕
i=1

Out(Gi). Finally, let’s also assume that every Out(Gi) is finite, then we get that

A′ is actually isomorphic to Z, so we have exactly the same result as in the classical
case of the free group, and more precisely Stab(Λ) is virtually Z. As conclusion of the
discussion above, we get:

Theorem 9.2. 1. There is a normal periodic subgroup A of Stab(Λ), such that the
group Stab(Λ)/A has a normal subgroup B isomorphic to subgroup of

q⊕
i=1

Out(Gi)

and (Stab(Λ)/A)/B is isomorphic to Z.

2. Let’s also suppose that Out(G) is virtually torsion free. Then Stab(Λ) has a (tor-
sion free) finite index subgroup K such that K/B′ is isomorphic to Z, where B′ is
a normal subgroup of K isomorphic to subgroup of

q⊕
i=1

Out(Gi).

3. Finally, if we further suppose that every Out(Gi) is finite, then Stab(Λ) is virtually
(infinite) cyclic.

A direct corollary of the previous theorem is the following. Let’s denote C(φ) the relative
centraliser of φ in Out(G,O). As we have seen, C(φ) is a subgroup of Stab(Λ) and so
we get:

Theorem 9.3. 1. There is a normal periodic subgroup A1 of C(φ), such that the
group C(φ)/A1 has a normal subgroup B1 isomorphic to a subgroup of

q⊕
i=1

Out(Gi)

and (C(φ)/A1)/B1 is isomorphic to Z.

2. Let’s also suppose that Out(G) is virtually torsion free. Then C(φ) has a (torsion
free) finite index subgroup K ′1 such that K ′1/B′1 is isomorphic to Z, where B′1 is a
normal subgroup of K ′1 isomorphic to subgroup of

q⊕
i=1

Out(Gi).

3. Finally, if we further suppose that every Out(Gi) is finite, then C(φ) is virtually
(infinite) cyclic.

Note that in the case in which O corresponds to the Grushko decomposition of G, we
have that the previous theorem generalises the theorem in the classical case that the
centraliser of an IWIP (for f.g. free groups with the absolute notion of irreducibility) is
virtually cyclic since there are no Gi’s and so the factor automorphisms are trivial in the
free case. Additionally, we can take also relative results for the free and for the general
case. This is possible since we can use the fact that every automorphism is irreducible
relative to some appropriate space.
Moreover, note that if φ doesn’t commute with the automorphisms of the free factors
then C(φ) is virtually cyclic. But as we will see, in the general case there are examples
that this is not true. In particular, we can find centralisers of IWIP automorphisms
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(relative to some space) which contain big subgroups and as a consequence they are not
virtually cyclic.

In fact, we can get something stronger than the previous theorem. Remember that if G is
a group andH is a subgroup ofG, the commensurator (or virtual normalizer) ofH inG is
the subgroup CommG(H) =: {g ∈ G|[H : H∩g−1Hg] <∞, and [g−1Hg : H∩g−1Hg] <
∞}. Here we have that the commensurator CommOut(G,O)(φ) contains COut(G,O)(φ) for
every automorphism φ. But for every IWIP φ the subgroup CommOut(G,O)(φ) stabilises
the lamination, since for ψ ∈ CommOut(G,O)(φ) there are n,m such that ψφmψ−1 = φn,
we get a similar statement as above for commensurators of IWIP automorphisms instead
of centralisers.

Now let’s give an example of a relative IWIP which has (relative) centraliser which fails
to be virtually cyclic.

Example 9.4. As in the introduction, we fix the free product decomposition G = G1∗ <
a > ∗ < b >, where a, b are of infinite order and we denote by F2 =< a > ∗ < b >

the "free part". Then in the corresponding outer space O(F4, G1, F2), which we denote
by O. In each tree T ∈ O there is exactly one non free vertex v1 s.t Gv1 = G1.
Then we define the outer automorphism φ, which satisfies φ(g) = g for every g ∈ G1,
φ(a) = bg1, φ(b) = ab for some non-trivial g1 ∈ G1, then φ ∈ Out(G,O) is an IWIP
relative to O. But every factor automorphism of G1 that fixes g1 commutes with φ

and therefore C(φ) contains the subgroup A of Aut(G1)Inn(G) that fixes g1. So the
centraliser is not virtually cyclic if A is sufficiently big.
We will prove that φ is an IWIP relative to O. Firstly, note that there are no φ -
invariant free factor systems of the form {[G1], [< b >]} or {< G1, b >} that contain
the free factor system {[G1]}. So the only possible case is the case where there is a
φ-invariant free factor system of the form {[G1], [< x, y >]}. Using the fact that we have
two free factors, we can assume that the free factors G1 and < x, y > are actually φ-
invariant. Therefore after possibly changing the basis we can suppose that the projection
map from G to G/ << G1 >>=< a, b > sends x, y to a, b, respectively. Moreover, we
can see that x = am, y = bn, where m,n ∈<< G1 >>. By the relations, φ(G1) = G1

and φ(< x, y >) =< x, y >, we have that φ induces the identity on G1 (after possibly
conjugacy with an element of G1). In the first case, we can see that φ(x) = xy and
φ(y) = x. Then we get the identities (am)(bn) = ab(φ(m)) and am = ag1φ(n). By
combining these together, we have that mbg−1

1 φ−1(m) = bφ(m) which easily leads to a
contradiction to the fact that m ∈<< G1 >>. Similarly, we get a contradiction in the
second case. Therefore there is no such a φ-invariant free factor system.
In the case that G1 is isomorphic to F3 and g1 an element of its free basis, we have that
C(φ) contains a subgroup which is isomorphic to Aut(F2)Inn(G).
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Stabiliser of an Attractive Fixed Point of an IWIP
Automorphism of a free product

Dionysios Syrigos

Abstract

For a group G of finite Kurosh rank and for some arbiratily free product de-
composition of G, G = H1 ∗ H2 ∗ ... ∗ Hr ∗ Fq, where Fq is a finitely generated
free group, we can associate some (relative) outer space O(G, {H1, ...,Hr}). We
define the relative boundary ∂(G, {H1, ...,Hr}) = ∂(G,O) corresponding to this
free product decomposition, as the set of infinite reduced words (with respect to
free product length). By denoting Out(G, {H1, ...,Hr}) the subgroup of Out(G)
which is consisted of the outer automorphisms which preserve the set of conjugacy
classes of Hi’s, we prove that for the stabiliser Stab(X) of an attractive fixed point
in X ∈ ∂(G, {H1, ...,Hr}) of an irreducible with irreducible powers automorphism
relative to O, it holds that it has a (normal) subgroup B isomorphic to subgroup of

r⊕
i=1

Out(Hi) such that Stab(X)/B is isomorphic to Z. The proof relies heavily on
the machinery of the attractive lamination of an IWIP automorphism relative to O.
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1 Introduction

The outer automorphism group Out(Fn) of a finitely generated free group Fn has been
extensively studied. In particular, Out(Fn) has been studied via its action on the outer
space CVn, which has been introduced by Culler and Vogtmann in [6]. Let G be a
group of finite Kurosh rank, i.e. G can be written as a finite free product of the form
G = G1 ∗ G2 ∗ ... ∗ Gm ∗ Fn, where all the Gi’s are freely indecomposable and Fn is a
finitely generated free group. The concept of the outer space can be generalised for such a
group G and there is a contractible space of G-trees, O(G, {G1, G2, ..., Gm}, Fn) on which
Out(G) acts. This space was introduced by Guirardel and Levitt in [9]. In fact, for a
group G as above and any non-trivial free product decomposition G = H1∗H2∗...∗Hr∗Fq
(here Hi may be freely decomposable or isomorphic to Z), they constructed a relative
outer O(G, {H1, H2, ...,Hr}, Fq) on which the subgroup Out(G, {H1, ...,Hr}) of Out(G)
acts, where Out(G, {H1, ...,Hr}) = {Φ ∈ Out(G)| for every i = 1, .., r, there is some j
s.t. φ(Hi) = giHjg

−1}.
For a finitely generated free group Fn, it is well known that we can define the boundary
∂Fn which is a Cantor set and it can be viewed as the set of infinite reduced words
(for some fixed basis of Fn). Moreover, an automorphism φ ∈ Aut(Fn), can be seen
as a quasi-isometry of Fn and therefore it induces a homeomorphism of the boundary
∂Fn, which we denote by ∂φ. As a consequence, we can study the subgroup Stab(X)
of automorphisms that fix the infinite word X ∈ ∂Fn, i.e. φ ∈ Stab(X) iff ∂φ(X) = X.
In this paper, we would like to study the corresponding notions for a group G (of finite
Kurosh rank) relative to some fixed non-trivial free product decomposition and especially
the Aut(G, {H1, H2, ...,Hr})- stabiliser of infinite reduced words. Firstly, we fix the outer
space corresponding to some free product decomposition of G, as above. In this case,
we can define a (relative) boundary ∂(G, {H1, ...,Hr}) as the set of infinite reduced
words for the free product length (for some fixed basis of the free group). Similarly,
every φ ∈ Aut(G, {H1, ...,Hr}) induces a homeomorphism ∂φ of the relative boundary
∂(G, {H1, ...,Hr}). It is natural to ask if we can compute the subgroups Stab(X) for any
X ∈ ∂(G, {H1, ...,Hr}). However, there is no full answer even in the free case. There is
a result of Hilion in this direction (see [11]). An automorphism of Aut(Fn) is said IWIP
(i.e. irreducible, with irreducible powers), if no non-trivial free factor of Fn is mapped
by some power k > 1 to a conjugate of itself. Therefore, using this terminology, Hilion’s
result can be stated as:

Theorem. (Hilion, [11]) If X ∈ ∂Fn is an attractive fixed point of an IWIP automor-
phism, then Stab(X) is infinite cyclic.

In the general case, we say that an automorphism φ is IWIP relative to O, if there is
non-trivial free factor B of G that strictly contain some conjugate of some Hi, i = 1, ..., r,
it is mapped by some power φk, k > 1 to a conjugate of itself. Then the main result of
the present paper is a generalisation of the previous theorem.
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However, here there is a difference that arises from the factor automorphisms of the
Hi’s. More precisely:

Main Theorem. If X ∈ ∂(G, {H1, ...,Hr}) is an attractive fixed point of an IWIP au-
tomorphism φ, then Stab(X) has a subgroup B isomorphic to a subgroup of

p⊕
i=1

Out(Hi)

and Stab(X)/B is infinite cyclic.

In our case, there are examples of X, as above, where Stab(X) is not infinite cyclic. We
describe such an example in the last section, see 4.6. The main idea is that there are
attractive fixed words of IWIP automorphisms that contain even finitely many elements
of the elliptic free factors. Moreover, if a factor automorphism (an automorphism of
some Hi) fixes these words, then it stabilises the attractive fixed point. So if Hi’s are
sufficiently big, there are non-trivial automorphisms of Hi that fix these words. As a
consequence, we can find arbitrarily large subgroups of Stab(X). On the other hand,
if we suppose that every Out(Hi) is finite, then we have a similar result as in the free
case. In particular:

Corollary 1.1. If X ∈ ∂(G, {H1, ...,Hr}) is an attractive fixed point of an IWIP auto-
morphism φ and every Out(Hi) is finite, then Stab(X) is virtually cyclic.

Our proof is similar to that of [11], but we have to adjust the notions and to use the
generalisations of the results used by Hilion, for the general case of free products. In
particular, we use the work of Francaviglia and Martino [7] for train track representatives
of IWIP automorphisms of a free product instead of the classical notion of train track
representatives of automorphisms of free groups [2]. In fact, here an IWIP automor-
phism relative to O can be represented by a train-track map which is a G-equivariant,
Lipschitz map f : T → T , where T ∈ O and f(gx) = φ(g)f(x), with the property
that no backtracking subpath occurs if one iterates the train-track map on any edge of
T . As a consequence of the general notion of train-track representatives, the author in
[19] generalised the work of Bestvina, Handel and Mosher in the free case [1], and in
particular we have the notion of the attractive lamination of an IWIP automorphism.
Now let us describe the basic steps of the proof. Fistly, we construct a nice splitting of
a given attractive fixed point X of an IWIP automorphism, using train track represen-
tatives, which matches the language of the attractive lamination. Then we relate the
subgroup Stab(X) to the stabiliser of the attractive lamination, and so using the fact
proved in [19] about the stabiliser of the attractive lamination and a technical lemma,
and more specifically the fact that Stab(X) ∩ Out(G, {Hi}t) is torsion free, we get the
main result.
As we have seen, there are a lot of facts that they are shard by CVn and the general space
O. As we have already mentioned that the train track representatives can be generalised
in the general case. In the same paper, there is the construction and the properties of
the Lipschitz metric for O which is a metric that the same authors previously studied for
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CVn (see [8]). Recently, there are more papers that they indicate that we can find more
similarities between CVn and O. For example, the construction of hyperbolic spaces on
which Out(G, {H1, ...,Hr}) acts ([10]), [13]), the boundary of outer space ([12]), the Tits
alternative for subgroups of Out(G) ([14]), the study of the asymmetry of the Lipschitz
metric([20]) and the study of the centralisers of IWIP automorphisms([19]).
OUTLINE: In Section 2, we recall some useful definitions and facts, in additional we
generalise some well known notions for free groups to the free product case and we prove
some basic preliminary results that we need for the main theorem. In Section 3, we de-
scribe the construction of the attractive lamination for an IWIP automorphism and we
list some properties. The last section is devoted to the proof of the main theorem.

Acknowledgements. I would like to thank my advisor Armando Martino for his
comments and for help.

2 Preliminaries

2.1 R -trees, Kurosh rank

Let G be a group of finite Kurosh rank i.e G splits as a free product G = H1∗...∗Hs∗Fr,
where every Hi is non-trivial, not isomorphic to Z and freely indecomposable. Here the
Kurosh rank of G is just the number s + r. This decomposition is called the Gruskho
decomposition. It is the "minimal" decomposition of G and it is unique, in the sense that
the free rank r is well defined and the Hi’s are unique up to conjugation. The class of
groups of finite Kurosh rank contain strictly the class of finitely generated groups (by
the Grushko theorem). We are interested only for groups which have finite Kurosh rank.
In particular, for such a group G we fix an arbitary (non-trivial) free product decompo-
sition G = H1 ∗ ... ∗Hm ∗ Fn (i.e. we don’t assume that every Hi is not infinite cyclic
or even freely indecomposable). However, we usually assume that m + n > 2. These
groups admit co-compact actions on R-trees (and vice-versa). It is useful that we can
also apply the theory in the case that G is free, and the Hi’s are certain free factors of
G (relative free case).

We consider isometric actions of the group G on R-trees induced by the free product
decomposition and, more specifically, we say that T is a G-tree, if it is a simplicial metric
tree (T, dT ), where G acts simplicially on T (sending vertices to vertices and edges to
edges) and for all g ∈ G, e ∈ E(T ) we have that e and ge are isometric. Moreover,
we suppose that every G-action is minimal, which means that there is no G-invariant
proper subtree.
Now let’s fix a G-tree T . An element g ∈ G is called hyperbolic, if it doesn’t fix any
points of T . Any hyperbolic element g of G acts by translations on a subtree of T
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homeomorphic to the real line, which is called the axis of g and is denoted by axisT (g).
The translation length of g is the distance that g translates its axis. The action of G on
T defines a length function denoted by

`T : G→ R, `T (g) := inf
x∈T

dT (x, gx).

In this context, the infimum is always minimum and we say that g ∈ G is hyperbolic if
and only if `T (g) > 0. Otherwise, g is called elliptic and it fixes a (unique) point of T .
For more details about group actions on R-trees, see [5].

2.2 Relative Outer Space

In this subsection we recall some basic definitions and properties. More details about
the relative outer space can be found in [7].
We consider G-trees as in the previous subsection. We will define an outer space
O = O(G, (Hi)mi=1, Fn) relative to some fixed free product decomposition of G. More
specifically, the elements of the outer space can be thought as simplicial metric G-trees,
up to G-equivariant homothety. Moreover, we require that these G-trees also satisfy the
following conditions:

• The action of G on T is minimal.

• The edge stabilisers are trivial.

• There are finitely many orbits of vertices with non-trivial stabiliser, more precisely
for every Hi, i = 1, ...,m (as above) there is exactly one vertex vi with stabiliser
Hi (all the vertices in the orbits of vi’s are called non-free vertices).

• All other vertices have trivial stabiliser (and we call them free vertices).

• The quotient G/T is a finite graph of groups

Note that the last condition follows from the others, but we mention it in order to
emphasise the importance of the co- compactness of the action.

Action: Let Aut(G,O) be the subgroup of Aut(G) that preserve the set of conjugacy
classes of theHi ’s. Equivalently, φ ∈ Aut(G) belongs to Aut(G,O) iff φ(Hi) is conjugate
to one of the Hj ’s (in general, i may be different to j). The group Aut(G,O) admits
a natural action on a simplicial tree by "changing the action", i.e. for φ ∈ Aut(G,O)
and T ∈ O, we define φ(T ) to be the metric tree with T , but the action is given by
g ∗x = φ(g)x (where the action in the right hand side is the action of the G-tree T ). As
Inn(G) acts on O trivially, Out(G,O) = Aut(G,O)/Inn(G) acts on O. Note also that
in the case of the Grushko decomposition, we have Out(G) = Out(G,O).
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Remark. Note that for a g ∈ G and T, S ∈ O, it holds that g is hyperbolic relative to
T iff g is hyperbolic relative to S. Therefore it makes sense to say that g is hyperbolic
relative to O, as we will do. We denote by Hyp(O) the set of hyperbolic elements of O.

2.3 Topological Representatives, O - Maps

Edge paths: Firstly, we would like to define the notion of an edge path for some tree
T ∈ O. More specifically, since T is an R-tree we have that any edge is isometric to
the interval [0, `(e)]. We say that an edge path is a reduced path of the form e1e2...en

(without backtracking). We can also define an infinite edge path, as an infinite reduced
path of the form e1e2...enen+1.... Similarly, we can define a bi-infinite edge path. We
usually call paths lines these paths.
Tightening: Every path p is homotopic (relative endpoints) to a unique edge path [p]
in T . Actually, we can obtain from p the path [p], after removing the backtracking, and
we say that [p] is obtained by tightening p.

O - maps:

Definition 2.1. We say that a map between trees A,B ∈ O, f : A→ B is an O- map,
if it is a G-equivariant, Lipschitz continuous, surjective function.

It is very useful to know that there are such maps between any two trees. This is true
and, additionally, by their construction they coincide on the non - free vertices. More
specifically, by [7] we get:

Lemma 2.2. For every pair A,B ∈ O; there exists a O-map f : A → B. Moreover,
any two O-maps from A to B coincide on the non-free vertices.

Now we will prove that every O-map is a quasi-isometry. But firstly, we need a technical
lemma:

Lemma 2.3. Let T ∈ O and v be a vertex of T . Then the inclusion map ι from the
G-orbit of v, A = G · b to T is a quasi-isometry. As a consequence, any projection p

from T to A is again a quasi-isometry.

Proof. It is obvious that the inclusion map is 1−1 and satisfies that dA(x, y) = dT (x, y).
So it remains to show that ι is quasi- onto, which means that there is some M s.t. for
every x ∈ T there is some g ∈ G with dT (x, gv) ≤ M . This follows from the fact that
the quotient Γ = G/T is compact and therefore we can choose M to be the maximum
distance in Γ between the projection of v and the other vertices. Therefore the result
follows.

Lemma 2.4. Let T, S ∈ O and f : T → S be an O-map. Then f is a quasi-isometry.
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Proof. Let choose some vertex v ∈ T , then f induces a Lipschitz map from A = Gv to
B = Gf(v). Note also that by the construction of O-maps there is an O - map h from
S to T which is the inverse function of f|A restricted to B and it is again Lipschitz.
Therefore f|A is an isomorphism between A and B (and in particular quasi-isometry).
Using now the lemma 2.3 and the fact that the inverse of a quasi-isometry is a quasi-
isometry we get that: T p−→ A

f−→ B
q−→ S, where p is the projection of T to A and ι is

the inclusion map, where the maps p, q, f|A are quasi-isometries, and it follows that f is
a quasi- isometry.

Using the lemma 2.4 and the existence of O-maps between every two elements of O (see
2.2), we get that:

Proposition 2.5. Let T, S ∈ O, then we have that the metric trees T and S are quasi
-isometric.

Topological representatives: It is very useful to see an outer automorphism as a map
between a tree T ∈ O. More specifically:

Definition 2.6. Let Φ ∈ Out(G,O) and T ∈ O, then we say that a Lipschitz surjective
map f : T → T represents Φ if for any g ∈ G and t ∈ T we have f(gt) = Φ(g)(f(t)).
In other words, f is an O-map from T to Φ(T ).

Applying again 2.2 (the existence of O-maps), we get:

Lemma 2.7. Let Φ ∈ Out(G,O) and T ∈ O. Then there is a (simplicial) topological
representative of Φ in T .

The topological representatives many times produce paths which are not reduced, and
then we have cancellation in their images. Therefore we have to define a map (induced
by f) from the reduced edge-paths of T to itself, and we denote it by f#, by the rule
f#(w) = [f(w)] for every edge-path w of T .

As these maps represent an outer automorphism Φ, if we change the tree T with ιh(T )
where ιh ∈ Inn(G) is just the conjugation by some h ∈ G, we get an other O-map that
still represents Φ. Therefore each regular automorphism φ ∈ Φ corresponds to some
topological representative. In particular, for a topological representative f : T → T of
an automorphism Φ, and for every φ ∈ Φ, changing appropriately the tree T with some
ιh(T ), we can choose f to satisfy φ(g)f = fg, for every g ∈ G. We say that f, φ are
mated. Note that in this case, for g ∈ G (as we can see g as an isometry of T ):

Remark. g ∈ Fix(φ) if and only g and f commute.
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2.4 N-periodic Paths

Here we will define the notion of an N - path. See more about the properties of N -
periodic paths in [19]. A difference between the free and our case is that it is not always
true that there are finitely many orbits of paths of a specific length (if there are non-free
vertices with infinite stabiliser), but it is true that there are finitely many paths that
have different projections in the quotient G/T . Therefore the notion of an N- path (we
define it below) plays the role of a Nielsen path. Note that here if h : S → S, we say
that a point x ∈ S is h-periodic, if there are g ∈ G and some natural k s.t. hk(x) = gx.

Definition 2.8. 1. Two paths p, q in S ∈ O are called equivalent, if they project to
the same path in the quotient G/S. In particular, their endpoints o(p), o(q) and
t(p), t(q) are in the same orbits, respectively.

2. Let h : S → S be a representative of some outer automorphism Ψ, let p be a path
in S and let’s suppose that the endpoints of p and h(p) are in the same orbits
(respectively), then we say that a path p in S is N-path (relative to h), if the paths
[h(p)], p are equivalent.

In the free case, we need representatives of outer automorphisms for which we can control
the number of Nielsen paths. For example the notion of stable and appropriate train
track representatives. As we will see, we can define the corresponding notions in our
case but using N-paths.

2.5 Relative Boundary

Let’s fix some relative outer space O with respect to a some fixed free product decom-
position of G. We will give the definition of the relative boundary relative to O.
For every T ∈ O, we can use the Gromov hyperbolic boundary ∂T , as T is a 0-hyperbolic
space (or a tree), by defining it as the set of equivalence classes of sequences of points in
T that converge to infinity with respect to the Gromov product (with respect to some
fixed base point p). However, it is more convenient for our purposes to define it as the
set of lines passing through a base point x ∈ T . The two definitions coincide in the case
of a proper (i.e. the closed balls are compact) hyperbolic metric space. But in the case
of trees, we don’t need the properness. For more details about the Gromov Boundary,
see the very interesting survey for boundaries of hyperbolic spaces [15].
More specifically, for any two lines `, `′ starting from x ∈ T , we define the equivalence
relation by ` ≡ `′ iff `, `′ have an infinite common subline. Now we denote the boundary
by ∂xT = {[`]|` : [0,∞) → T is a geodesic ray with `(0) = x}. It is not difficult to see
that this definition does not depend on the base point and so we will usually omit the
base point from the notation.
Let p, q ∈ V (T ) ∪ ∂T , we define the operation ∧ as follows: p ∧ q is the common initial
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subpath (starting from x) of the unique edge paths [x, p], [x, q] that connect p, q with the
base point x. We can also define the r neighbourhood of a point r in the boundary, as
V (p, r) = {q ∈ ∂xT | for any geodesic rays `1, `2 starting at x and with [`1] = p, [`2] = q

we have lim inf
n→∞ |`1(n)∧ `2(n)| ≥ r}. Now we topologise ∂T by setting the basis of neigh-

borhoods for any p ∈ ∂T to be the collection {V (p, r)|r ≥ 0}. Moreover, this topology
is metrisable and in particular, the metric on ∂T is given by d(p, q) = e−|[x,p]∧[x,q]| for
p, q ∈ ∂T (where e−∞ = 0).
It is not difficult to see that any quasi-isometry f : T → S, induces a homeomor-
phism between the boundaries ∂T, ∂S, as constructed. In particular, since any O-map
f : T → S is a quasi-isometry, it can be extended to the boundary and it induces a well
defined homeomorphism, which we denote by ∂f : ∂T → ∂S. Therefore we get that:

Lemma 2.9. Let T, S ∈ O. Then ∂T is homeomorpic to ∂S.

Note that in our case, if there is some infinite Hi it is easy to see that ∂T is not compact
in the metric topology. For example, if we have a point of infinite valence we can produce
a sequence of lines that they have constant distance between each other. Therefore we
have a sequence in ∂T , which has not converging subsequence. However, it is possible
to find other interesting topologies for which T ∪ ∂T is compact. For example, see [4]
for the observers’ topology.

We can also define the set ∂(G,O) of infinite reduced words with respect to the free
product length which is induced by our fixed free product decomposition. For any
A,B ∈ G∪∂(G, {H1, ...,Hr}), we define the operation ∧ as follows: A∧B is the longest
common initial subword of A,B. It is easy to see that the map d(A,B) = e−|A∧B|, for
A 6= B and d(A,A) = 0 is a metric on the space G∪∂G. Finally, since any φ ∈ Aut(G,O)
can be seen as a quasi-isometry of G, we have that it induces a homeomorphism of
∂(G, {H1, ...,Hr}) which we denote by ∂φ. Note that the two notions of the boundary
can be identified, in particular:

Lemma 2.10. Let T ∈ O. Then ∂T is homeomorphic to ∂(G, {H1, ...,Hr}).

Proof. Consider the universal cover S of the rose of m cycles with n edges attached,
corresponding to the free product decomposition G = H1 ∗ ... ∗Hm ∗ Fn with length of
edges corresponding to the n simple loops to be 1 and of the rest of edges to have length
1/2. It is easy to see now that of an edge path starting from a base point v (it can be
chosen to be the lift of the unique free vertex of the quotient) correspond to a word in G
(and vice versa) and the length of the edge path is exactly the free product length of the
word. Moreover, the lines starting from the base point correspond to infinite reduced
words of G with respect to the free product length. Therefore there is a bijection from
the set ∂S of lines of S starting from v to ∂∂(G, {H1, ...,Hr}). Since the metrics are
the similar, it is easy to see that this map is a actually a homeomorphism. But now for
every T ∈ O, we have that ∂T is homeomorphic to ∂S and the lemma follows.
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Note also that since ∂T, ∂(G, {H1, ...,Hr}) are homeomorphic, we can identify ∂f and
∂φ.

2.6 Rational and non-Rational Points

For every hyperbolic element g of O, the sequence of elements gk have arbitrarily large
(free product) length and so it has a limit in the relative boundary ∂(G, {H1, ...,Hr}) ,
which we denote it by g∞. We can also define g−∞ as (g−1)∞.
If g ∈ G, we denote by ιu the inner automorphism of G given by ιu(g) = ugu−1, for
every g ∈ G. If u ∈ Hyp(O) , it is easy to see that then ∂ιu fixes exactly two points
of the relative boundary ∂(G, {H1, ...,Hr}) and more specifically the points u∞, u−∞.
Note that since edge stabilisers of elements of O are trivial, for an elliptic element u
then the inner automorphism ιu cannot fix a point of the boundary.
We say that infinite words of the form u∞, u−∞ for a hyperbolic element u, are rational
points of the boundary. Alternatively, we could define the rational points as the fixed
points of inner automorphisms corresponding to hyperbolic elements.

Proposition 2.11. If X ∈ ∂(G,O) is not a rational point, then the restriction of the
quotient map Aut(G,O)→ Out(G,O) to Stab(X) is injective.

Proof. Let T ∈ O and let’s assume that φ ∈ Aut(G,O). Suppose also that X is a fixed
point of ∂φ.
Let u be a non-trivial of O and suppose that X is fixed by ∂(iu◦φ), which implies that it
is a fixed point of ∂iu. As a consequence, u is a hyperbolic element and in particular X
it is rational point or equivalently the axis of the hyperbolic element u, and so X = u∞

or X = u−∞, which leads us to a contradiction.

2.7 Regular and Singular Fixed Points

For an automorphism φ ∈ Aut(G,O), we denote by Fixφ the fixed subgroup of φ:
Fixφ = {g ∈ G|φ(g) = g}. Since by [3], we have that Fixφ has finite Kurosh rank, its
(relative) boundary ∂Fixφ embeds into ∂(G, {H1, ...,Hr}) and it is actually a subgroup
of Fix∂φ of fixed infinite words by ∂φ. We will use the same terminology as in the
free case and we distinguish two cases for infinite fixed words of an automorphism φ ∈
Aut(G,O) i.e. the elements of Fix∂φ : either it belongs to ∂Fixφ and then it is called
singular, or otherwise it is called regular.
For the singular fixed points, the are two subcases. We use the notion topologically
attractive (and repulsive) fixed points as in [16], but there is also the a metric notion.
These definitions are different in the free product case, while they coincide in the free
case. For more details, see [16].
We say that a fixed point X of ∂φ attractive, if there is an integer N s.t. if |Y ∧X| ≥ N ,
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then lim
n→∞φ

n(Y ) = X. A fixed point X is said to be repulsive, if it is attractive for
∂φ−1. A classification of fixed points of ∂φ has been proved in the proposition 5.1.14.
of [16] and more specifically:

Proposition 2.12. Let φ ∈ Aut(G,O). A fixed point of ∂φ is :

• either singular

• or attractive

• or repulsive

2.8 Bounded Cancellation Lemma

Let T, T ′ ∈ O and f : T → T ′ be an O- map. If we have a concatenation of paths ab,
ever if f(a) = f#(a) and f(b) = f#(b), it is possible to have cancellation in f(a)f(b).
However, the cancellation is bounded above by some some M which depends only on f
and not on a, b . In particular, we can define the bounded cancellation constant of f
(let’s denote it BCC(f)) to be the supremum of all real numbers N with the property
that there exist A,B,C some points of T with B in the (unique) reduced path between
A and C such that dT ′(f(B), [f(A), f(C)]) = N (the distance of f(B) from the reduced
path connecting f(A) and f(C) ), or equivalently is the lowest upper bound of the
cancellation for a fixed O-map.
The existence of such number is well known, for example a bound has given in [13]:

Lemma 2.13. Let T ∈ O, let T ′ ∈ O, and let f : T → T ′ be a Lipschitz map.
Then BCC(f) ≤ Lip(f)qvol(T ), where qvol(T ) the quotient volume of T , defined as the
infimal volume of a finite subtree of T whose G-translates cover T .

Therefore we can define a new map, in particular:

Definition 2.14. Let f : T → T be a topological representative of Φ ∈ Out(G,O) and
let’s denote by C the bounded cancellation lemma of f . Then for every edge path w of
T , we can define the map f#,C(w) as the path obtained by removing both extremities
of length C from the reduced image of f#.

2.9 Train Track Representatives

In this section we will define the notion of a "good" representative of an outer auto-
morphism Φ ∈ Out(G,O). As we have seen there are representatives of every outer
automorphism (i.e. O-maps from T to φ(T )), but sometimes we can find representatives
with better properties. In particular, we want a topological representative f , where
fk(e) = fk#(e) for every k and for every edge e. These maps, which are called train track
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maps, are very useful and every irreducible automorphism has such a representative (we
can choose it to be simplicial, as well).
We give below a more general definition of a train track map representing an outer au-
tomorphism. We are interested for these maps because we can control the cancellation
(as we have seen, it is not possible to avoid it). Firstly, we need the notions of a legal
path relative to some fixed train track structure.

Definition 2.15. 1. A pre-train track structure on a G-tree T is a G-invariant
equivalence relation on the set of germs of edges at each vertex of T . Equivalence
classes of germs are called gates.

2. A train track structure on a G-tree T is a pre-train track structure with at least
two gates at every vertex.

3. A turn is a pair of germs of edges emanating from the same vertex. A legal turn
is called a turn for which the two germs belong to different equivalent classes. A
legal path, is a path that contains only legal turns.

Now we can define the train track maps.

Definition 2.16. An O-map f : T → T , which is representing Φ is called a train track
map, if there is a train track structure on T so that

1. f maps edges to legal paths (in particular, f does not collapse edges).

2. If f(v) is a vertex, then f maps inequivalent germs at v to inequivalent germs at
f(v).

However, we can not have such representatives for any outer automorphism. But it can
be proved that for an interesting class of outer automorphisms can be represented by
such a map. We will describe this class for regular automorphisms, but it can easily be
defined for outer automorphisms as well.
In the free case, an automorphism φ ∈ Aut(G,O) is called irreducible, if it there is no
φ-invariant free factor up to conjugation. In our case we know that the Hi’s are invariant
free factors, but we don’t want to have "more invariant free factors". More precisely, we
will define the irreducibility of some automorphism relative to the space O or to the free
product decomposition. Similarly, we can define irreducibility for outer automorphisms
of G.

Firstly, we will give the algebraic definition, but we need the notion of a free factor
system. Suppose that G can be written as a free product, G = G1 ∗G2 ∗ ...Gk ∗Fn. Then
we say that the set A = {[Gi] : 1 ≤ i ≤ k} is a free factor system for G, where [A]
= {gAg−1 : g ∈ G} is the set of conjugates of A.
Now we define an order which we denote by w on the set of free factor systems of G.
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More specifically, given two free factor systems G = {[Gi] : 1 ≤ i ≤ k} and H = {[Hj ] :
1 ≤ j ≤ m}, we write G v H if for each i there exists a j such that Gi ≤ gHjg

−1 for
some g ∈ G. The inclusion is strict, and we write G < H, if some Gi is contained strictly
in some conjugate of Hj . We can see {[G]} as a free factor system and in fact, it is the
maximal (under v) free factor system. Any free factor system that is contained strictly
to G is called proper. Note also that the Grushko decomposition induces a free factor
system, which is actually the minimal free factor system (relative to v).
We say that G = {[Gi] : 1 ≤ i ≤ k} is φ - invariant for some φ ∈ Aut(G), if φ preserves
the conjugacy classes of Gi’s. In each free factor system G = {[Gi] : 1 ≤ i ≤ p}, we
associate the outer space O = O(G, (Gi)pi=1, Fk) and any φ ∈ Out(G) leaving G invariant,
will act on O in the same way as we have described earlier.

Definition 2.17. Let G be a free factor system of G which is Φ- invariant for some
Φ ∈ Out(G). Then Φ is called irreducible relative to G, if G is a maximal (under v)
proper, Φ-invariant free factor system.

We could alternatively define the notion of irreducibility as:

Definition 2.18. We say φ ∈ Aut(G,O) is O-irreducible if for any T ∈ O and choose
some f : T → T representing Φ, where φ ∈ Φ and f mated with φ, if W ⊆ T is a proper
f -invariant G-subgraph then W does not contain the axis of a hyperbolic element.

The next lemma confirms that the two definitions of irreducibility are related.

Lemma 2.19. Suppose G is a free factor system of G with associated space of trees O,
and further suppose that G is φ-invariant. Then φ is irreducible relative to G if and only
if φ is O-irreducible.

Now let’s give the definition of an irreducible automorphism with irreducible powers
relative to O, which are the automorphisms that we will study.

Definition 2.20. An outer automorphism φ ∈ Out(G,O) is called IWIP (irreducible
with irreducible powers or fully irreducible), if every φk is irreducible relative to O.

Now as we have said above, every irreducible outer automorphism has a train track
representative. This fact it generalises the well known theorem of Bestvina and Handel
(see [2]) . In particular, we can apply it on every power of some IWIP automorphism.

Theorem 2.21 (Francaviglia- Martino). Let Φ ∈ Out(G,O) be irreducible. Then there
exists a simplicial train track map representing Φ.

An interesting remark is the following:
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Remark. Every outer automorphism φ ∈ Aut(G) is irreducible relative to some appro-
priate space (or relative to some free product decomposition). Moreover, there are two
cases: either φ is IWIP relative to O or it fixes a point of O (i.e. there is T ∈ O s.t. φ
can be seen as an isometry of T ).

In particular, using the remark above, in the relative free case we have some results for
automorphisms of Out(Fn) that they are not IWIP relative to CVn, but they are IWIP
relative to some appropriate space O.

Splittings and Appropriate train track maps:
In this section, we will define the notion of an appropriate train track representative
which is similar to the definition of the free case. As we have discussed the notion of a
Nielsen path in our case it has to be replaced by the notion of a N -path. Using N -paths,
we can define the stable train track representatives.

Definition 2.22. We say that a train track representative f of an outer automorphism
Φ is stable, if it supports at most one equivalence class of N -paths.

It is well known that every outer automorphism can be represented by a stable train
track representative (for example see [3] or [17]). Let’s denote by p some representative
of the unique class of the N -path that f supports, if it exists. Here we need some even
better notion of train track representatives, but firstly we need the notion of a splitting.
More specifically, let f as above, and let w be a path in T . We say that w = ...wmwm+1...,
where wi’s are non-trivial subpaths of w, is a splitting for f if for all k ≥ 1, fk#(w) =
...fk#(wm)fk#(wm+1)..... Then we use the notation: w = ... · wm · wm+1 · ... and the wi’s
are called the bricks of w.

Definition 2.23. A stable train track representative f : T → T of an IWIP outer
automorphism Φ ∈ Out(G,O) is called appropriate, if for any path w of T , there exists
some positive integer K s.t. for all k ≥ K, fk#(w) has a splitting where the bricks are
either edger or they are N -paths equivalent to p.

The proof of the next lemma is the same as in the free case, but the main difference is
that we don’t have finitely many paths of a given length but finitely many inequivalent
paths of a given length. Therefore in the conclusion we have N-paths (and no Nielsen
paths).

Lemma 2.24. Let Φ ∈ Out(G,O) be an IWIP automorphism. Then there exists some
positive power of Φ, which can be represented by an appropriate train track representative.
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3 The Attractive lamination of an IWIP Automorphism

In this section we recall the notion of an algebraic lamination. In particular, we describe
the construction and the properties of the attractive lamination of an IWIP automor-
phism which have been proved by the author in [19]. Note that this construction is a
direct generalisation of the corresponding well known notion due to Bestvina, Feighn
and Handel in the free case, see [1].

3.1 Laminations

We denote by ∂2(G,O) the pairs of the boundary which don’t belong in the diagonal, i.e.
the set {(X,Y )|X,Y ∈ ∂(G,O), X 6= Y }. Note that the topology of ∂(G,O) induces
a topology on ∂2(G,O). Moreover, we have a natural action of G on ∂(G,O) which
induces a diagonal action on ∂2(G,O).

Definition 3.1. An algebraic lamination L of G is a subset of ∂2(G,O), which is
closed, G-invariant and flip invariant (i.e. if (X,Y ) ∈ ∂2(G,O), then (Y,X) ∈ ∂2(G,O)).

The identification of ∂(G, {H1, ...,Hr}) with ∂T where T ∈ O, implies that the lam-
ination L induces a set of lines L(T ) in T , which we call the symbolic lamination
in T -coordinates associated to L. A line of the lamination is called leaf. Now we can
define the laminary language L(L(T )) in T -coordinates as the G-set of all (orbits of)
finite edge paths which occur in some leaf of L(T ).

3.2 Action of Out(G,O) on the set of Laminations

Now we can define an action of Out(G,O) on the set of algebraic laminations of G, as
follows: for φ ∈ Aut(G,O), (X,Y ) ∈ ∂2(G,O) we define the map ∂2φ by ∂2φ(X,Y ) =
(∂φ(X), ∂φ(Y )) which is a well defined homeomorphism of ∂2(G,O) (since ∂φ is a home-
omorphism). This implies that this map sends an algebraic lamination to an algebraic
lamination. Note that from the G-invariance of the lamination follows that the image
of this map depends only of the outer automorphism Φ, where φ ∈ Φ. As a consequence
we have a well defined action of the group of outer automorphisms Out(G,O) on the set
of algebraic laminations .

Definition 3.2. Let Φ ∈ Out(G,O) and L be an algebraic lamination. Moreover,
assume f : T → T for some T ∈ O is a topological representative of Φ and let denote
by C the bounded cancellation constant corresponding to f .

• We say that Φ stabilises the algebraic lamination L, if Φ(L) = L.



3 The Attractive Lamination of an IWIP Outer Automorphism 87

• We say that f stabilises the laminary language L(L(T )), if for all w ∈ L(L(T )),
f#,C(w) ∈ L(L(T )).

Actually, these definitions are closely related. More specifically, by [19] we have:

Proposition 3.3. Let Φ ∈ Out(G,O) be an IWIP outer automorphism and L+
Φ be its

attractive lamination. Then Ψ stabilises L+
Φ iff there is some representative h : T → T

of Ψ, where T ∈ O, which stabilises the laminary language L(L+
Φ) of Φ.

3.3 The Attractive Lamination of an IWIP Outer Automorphism

Here we describe the construction of the attractive lamination relative to an IWIP outer
automorphism Φ ∈ Out(G,O) and we list some interesting properties.
Firstly, we recall the notion of a quasi-periodic line ` of T ∈ O.

Definition 3.4. A line ` of T is called quasi-periodic (or q.p.) if for every L > 0
there exists some L′ (sufficiently large) s.t. for every subpath of length L of ` occurs as
subpath of some orbit of every subpath of ` of length L′.

Note that the notion of quasi-periodicity for ` implies that (the orbits of) every path of
` occurs infinite many times in both ends of ` and moreover the distance between any
two occurrences is bounded.
Now for an IWIP automorphism Φ, let’s choose some train track representative f : T →
T of Φ. We can define the laminary language of our attractive lamination as the G- set
L+
f of the orbits of finite edge paths in T s.t. an edge path w ∈ L+

f iff there exists an
edge e of T and an integer k ≥ 1 s.t. w is a subpath of fk(e).
It can be proved that we have the following properties:

Proposition 3.5. [19]

1. For any edge e of T and for all w ∈ L+
f , there is some k such that w is a subpath

of some orbit of fk(e).

2. There exists an algebraic lamination L+
Φ whose laminary language in T -coordinates

is L+
f .

3. This algebraic lamination does not depend on the choice of the train track map f
representing Φ and of the tree T .

4. Every leaf of the L+
Φ is quasiperiodic.

Moreover, we have a very interesting result about the stabiliser of the lamination which
has been proved by the author in [19]:
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Theorem 3.6. Let’s denote by Stab(L+
Φ) the stabiliser of the lamination. Then there is a

normal periodic subgroup A of Stab(L+
Φ)∩Out(G, {Hi}t), such that the group Stab(Λ)/A

has a normal subgroup B isomorphic to a subgroup of
p⊕
i=1

Out(Hi) and (Stab(Λ)/A)/B
is isomorphic to Z.

4 Attractive Fixed points of an IWIP automorphism

In this section, we will prove the main theorem of this paper. Our result and the method
is a direct generalisation of the main result of [11].

4.1 Structure of an Attractive Fixed point of an IWIP Automorphism

Proposition 4.1. Let Φ ∈ Out(G,O) be an IWIP automorphism which can be repre-
sented by an appropriate train-track map f : T → T . Let φ ∈ Φ, and suppose that f
is mated with φ. Let’s denote by X ∈ ∂(G, {H1, ...,Hr}) an attractive fixed point of φ.
Then there is some vertex v ∈ T such that:

1. [v, f2(v)] = [v, f(v)] · [f(v), f2(v)]

2. if we denote by Rv = [v, f(v)] · [f(v), f2(v)] · . . . · [fk(v), fk+1(v)] · . . ., we have that
Rv represents the point X

3. the segment [v, f(v)] has a splitting whose bricks are either an edge or belongs to
the unique equivalence class of the N- path p of T (if it exists) and, in addition,
the first brick of this splitting is an edge.

Proof. Firstly, we will prove that we can find a point v0 ∈ T which satisfies the properties
(i) and (ii).
By the definition of an attractive fixed point of ∂φ and since f : T → T is a train track
map, there exists a vertex v0 of T s.t. the limit of iterates fk(v0) converges to X.
We denote by Rv0 the line that is constructed as in item (ii), corresponding to v0, and
by our assumption we get that Rv0 represents X. For every k we can define inductively
the points vk, obtaining vk+1 ∈ Rv0 as the projection of the reduced image of f(vk) in
Rv0 . Then it is clear to see that by construction that:

[vk+1, vk+2] ⊆ [f(vk), f(vk+1)] = f#([vk, v + k + 1]) ⊆ f([vk, vk+1])

For every k = 0, 1, 2, ..., we define the set Vk = {x ∈ T |f i(v) ∈ [vi, vi+1], for every
0 ≤ i ≤ k}, and since for y ∈ Vk we get that fk(y) ∈ [vk, vk+1], we have that fk(Vk) ⊆
[vk, vk+1]. We will prove that this is actually an equality, i.e. fk(Vk) = [vk, vk+1] .
We will prove it by induction on n = k:
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For k = 0, it is obvious since V0 = [v0, v1] = f0([v0, v1]) = f0(V0). Suppose now that
our induction hypothesis is true for n = k, i.e. fk(Vk) = [vk, vk+1] and we will prove it
for n = k + 1.
Since [vk+1, vk+2] ⊆ f([vk, vk+1]), by the induction hypothesis we get that [vk+1, vk+2] ⊆
f(fk(Vk)) = fk+1(Vk).
Now by definition of Vk, we have that:

x ∈ Vk+1 ⇐⇒ x ∈ Vk and fk+1(x) ∈ [vk+1, vk+2]

But for some y ∈ [vk+1, vk+2], as have seen, there is some x ∈ Vk s.t. fk+1(x) = y ∈
[vk+1, vk+2]. Using the equivalence above, we get that x ∈ Vk+1 and so y ∈ fk+1(Vk+1)
and our claim has been proved.
Then the equality fk(Vk) = [vk, vk+1], implies that every Vk is non-empty for every
k. Since the Vk’s form a decreasing sequence of non-empty closed subsets of [v0, v1]
(thus compact), which implies that the intersection of all Vk’s is non-empty. In partic-
ular, there is some point v ∈ Vk for every k. By the construction of Vk, we get that
fk(v) ∈ [vk, vk+1] for every k and so v satisfies the properties (i) and (ii).
Now we would like to prove that we can choose v to be a vertex which addition-
ally satisfies (iii). Let’s suppose that v is not a vertex. Then after passing to some
power, we can choose an appropriate train track representative, and then the path
u = [v0, f2(v0)] has a splitting for which the corresponding bricks are either edges or
lifts of the unique (up to equivalence) N -path of f (if it exists). Then we consider the
initial vertex v′ of the brick of u that contains f(v0). By choice of v′, we have that
fk#(v′) ∈ fk#(u) = [fk(v0), fk+2(v0)] for every k. Moreover, as v′ ∈ [v, f(v)], we get that
fk(v′) ∈ [fk(v), fk+1(v)]. Therefore fk(v′) ∈ Rv0 for all k. Therefore v′ can be chosen
to be a vertex.
Finally, since X is an attractive fixed point of ∂φ, we have that the distance between
fk(v′) and fk+1(v′) is going to infinity, as k is going to infinity. In particular, there is
a brick b of [v′, f(v′)] s.t. the length of the reduced image of fk(b) is going to infinity,
which implies that bmust be an edge (since the lengths of fk#(p) are bounded). Changing
v′ by the initial vertex of b, we find a point that satisfies (i),(i), and (iii).

Now assuming the splitting of [v, f(v)] = b0 · b1 · . . . · bq, as in the previous proposition,
we can group together the successive bricks which are N -paths and they are equivalent
with p ( we call this new splitting, the adapted splitting). Therefore we can assume that
b0 is a single edge and every other bi is either a single edge (and then we say that bi is a
regular brick) or it is equivalent to a power of p (and then we say that bi is singular).
Note that, by construction, between 2 singular bricks there is at least one regular brick.
Moreover, the adapted splitting of [v, f(v)] induces a splitting of [fk(v), fk+1(v)] =
b0,k · b1,k · . . . · bq,k for every k, where bi,k = fk#(bi). Similarly, we extend the notions of
regularity and singularity, using the corresponding notions as in the adapted splitting
of [v, f(v)].
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Finally, note that by construction and since every [fk(v), fk+1(v)] starts with a regular
brick, we have that the adapted splitting of Rv still satisfies the property: between 2
singular bricks there is at least one regular brick. Note also that the lengths of the sin-
gular bricks of Rv are bounded uniformly (for instance this follows by the quasiperiocity
of the any leaf of the lamination).

4.2 The Stabiliser of an Attractive Fixed point of an IWIP Automor-
phism

Theorem 4.2. If X ∈ ∂(G, {H1, ...,Hr}) is an attractive fixed point of an IWIP au-
tomorphism φ ∈ Aut(G,O). Assume that ψ ∈ Aut(G,O) fixes X, then if we denote
by Φ,Ψ the outer automorphisms corresponding to φ, ψ respectively, it is true that Ψ
stabilises the attractive lamination L+

Φ.

Proof. Firstly, we note that since X is an attractive fixed point of φ, then X is an
attractive fixed point of φk for every k ≥ 0. Moreover, by the construction of the
(attractive) lamination (see [19]) we get again that L+

Φ = L+
Φk for every positive integer

k.
Therefore, after possibly changing Φ with Φk, we can assume that Φ is represented (by
applying 2.24) by an appropriate train track representative f : T → T . Here we fix
our notation, more specifically let h : T → T be the O-map which represents Ψ and let
denote by C the bounded cancellation constant (2.13) corresponding to h. Finally, we
denote by `0 the maximal length of a singular brick in Rv, using the notation of the
proposition 4.1.
Now let u be an edge path of the laminary language of the symbolic attractive lamination.
We need to prove that there is an occurrence (orbit) of the reduced image (after deleting
some extremal paths of length C), h#,C(u) in Rv which is completely contained in a
regular brick of the adapted splitting. This implies that h#,C(u) is contained in L(L(T ))
and then by applying 3.3, the theorem follows.
Now since every leaf of the lamination is quasiperiodic (see 3.5 for the properties of the
lamination), we can find an edge path U in the laminary language corresponding to T ,
which has the type U = uu0u (where by u we mean that they are of the same orbit) and
u0 can be chosen arbitrarily long.
It is convenient for us to assume that the length of h#(u0) is longer than the number
`+ 2C. This can be done since every O - map, and in particular h, is a quasi-isometry.
(Indeed if h is a (µ, ν) quasi- isometry, it is enough to consider the starting path u0 to
be longer than µ(`+ 2C + ν)).
Using again the quasiperiodicity and the fact that the regular bricks have unbounded
lengths, we have that there is some K, s.t. eventually for every k ≥ K, we can find an
occurrence of U in every regular brick bi,k. In particular, we can find infinitely many
occurrences of U in Rv and so, by the definition of the action of an automorphism on
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the set of laminations, infinitely many occurrences of h#,C(U) in h#(Rv).
In order to prove it, firstly we note that since ψ(X) = X and so h#(Rv)∩Rv is a subray
of Rv, there are infinitely many occurrences of h#,C(U) in Rv. Let’s denote by wj a
sequence of these distinct occurrences.
As we have seen above, the regular bricks of Rv become arbitrarily long after some steps
and therefore for every path fixed path m there is a finite number of occurrences of m
that fully contain a regular brick.
If there is some wi that is fully contained in a regular brick, then there is some occurrence
of h#,C(u) ⊆ h#(U) which is fully contained in this brick and our claim has been proved.
Otherwise, using the remark above, after passing to a subsequence, we can see that every
wj meet at most two regular and a singular bricks of Rv. In particular, we can suppose
that are three possibly cases and we will prove that our claim is always true:

1. All wj ’s meet two regular bricks and one singular brick which is joining the regular
ones.
In this case, h#,C(U) = u1 · b ·u2, where each ui is contained in some regular brick.
By the choice of `0, we can suppose that at least one of ui’s satisfies the inequality:

|ui| ≥
|h#,C(U)| − `0

2 .

Moreover, since by the definition of the map h#,C and using the bounded cancel-
lation lemma, since U = uu0u we have that:

|h#,C(U)| ≥ 2 · |h#,C(u)|+ |h#,C(u0)|.

Combining these inequalities with the choice of u0, we have that |ui| ≥ |h#,C(u)|,
which means that h#,C(u) is a subpath of ui and so it is fully contained in a regular
brick.

2. All wj ’s meet two consecutive regular bricks.
In thiss case, as above, h#,C(U) = u1 · u2, where both ui’s are contained in some
regular bricks. As previously, there is some ui s.t.:

|ui| ≥
|h#,C(U)|

2 ≥ 2 · |h#,C(u)|+ |h#,C(u)|
2 ≥ |h#,C(u)|

Therefore we have the same conclusion: that h#,C(u) is contained in some ui and
therefore in some regular brick.

3. All wj ’s meet two consecutive bricks: a regular and a singular one.
In this case, without loss, we assume that h#,C(U) = u1 · b, where u1 is contained
in a regular brick and b′ in a singular brick. Then by the choice of `0, we get that:

|u1| ≥ |h#,C(U)| − `0 ≥ |h#,C(u)|
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As in the previous cases, we get that h#,C(u) is a subpath of a regular brick.

Proposition 4.3. Let φ ∈ Aut(G,O) be an IWIP automorphism. If X is an attractive
fixed point of φ, and ψ ∈ Aut(G, {Hi}t) with ψ(X) = X and ψ has finite order, then ψ
is the identity.

Proof. Firstly, note that since ψ has finite order, as in the free case we have that any
fixed point of ∂ψ is singular, i.e. X ∈ ∂Fix(ψ).
From the Kurosh subgroup theorem we have that Fix(ψ) = A1 ∗ ... ∗ Aq ∗ F , where
each Hi is contained in some conjugate of some Gj and F is a free group. Since
ψ ∈ Aut(G, {Hi}t), it’s easy to see that every Ai is exactly a conjugate of the cor-
responding Hj .
Combining the facts that the Kurosh rank of a the fixed subgroup is less than the
Kurosh rank of G and the Schreier formula for Kurosh ranks (see [3] and [18]) if ψ is not
the identity, then Fix(ψ) is not of finite index and therefore applying the Proposition
6.2 of [19], does not carry the lamination. In other words, if we consider some (opti-
mal) topological representative h : T → T of ψ and we denote by T ′ the subtree of T
corresponding to Fix(ψ), we have that X is fixed by ψ iff some line representing X is
contained in T ′. As we have seen, it is not possible for T ′ to contain some leaf ` of L+

Φ(T ).

So there is a finite subpath of some ` ∈ L+
Φ(T ) which cannot be lifted in T ′. Using the

notation of the previous propositions, we denote by Rv to be the line that represents
X. By the definition of the lamination, w appears in all sufficiently long regular bricks
of Rv and in particular infinitely many times in Rv. Also, it appears infinitely many
times in any ray R in T representing X. As a consequence, no ray representing X can
be lifted to T ′. Therefore X cannot be fixed by ∂ψ, with only exception the case where
ψ is the identity.

Now Theorem 1 is just a corollary of the previous statements. In particular,

Corollary 4.4. Let Φ ∈ Out(G,O) be an IWIP outer automorphism. If X ∈ ∂(G, {H1, ...,Hr})
is an attractive fixed point of an IWIP automorphism φ ∈ Φ, then Stab(X) injects into
Stab(L+

Φ) via the quotient map Aut(G,O) → Out(G,O). Moreover, there is a nor-
mal subgroup B of Stab(X) isomorphic to a subgroup of

p⊕
i=1

Out(Hi) and Stab(X)/B is
isomorphic to Z.

Proof. Since φ is an IWIP, and in particular it is not an inner automorphism, we have
that X is not a rational point, and therefore we can apply the proposition 2.11 and
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the theorem 4.2, we get that Stab(X) can be seen as a subgroup of Stab(Λ+
Φ). Using

the basic result of [19] (Theorem 3.6), we get that there is a normal periodic subgroup
A′ of Stab(X), such that the group Stab(X)/A′ has a normal subgroup B′ isomorphic
to a subgroup of

p⊕
i=1

Out(Hi) and (Stab(X)/A)/B is isomorphic to Z. But then by

applying 4.3, we get that Stab(X)∩Out(G, {Hi}t) is torsion free, therefore A′ (which is
a subgroup of Stab(X)∩Out(G, {Hi}t) so torsion free and periodic) is the trivial group
and we can conclude that there is a normal subgroup B of Stab(X) isomorphic to a
subgroup of

p⊕
i=1

Out(Hi) such that Stab(X)/B is isomorphic to Z.

An obvious corollary is the following:

Corollary 4.5. If X ∈ ∂(G, {H1, ...,Hr}) is an attractive fixed point of an IWIP auto-
morphism φ and suppose that every Out(Hi) is finite, then Stab(X) is virtually infinite
cyclic.

Example of an automorphism φ and an attractive fixed point of X of φ , such that
Stab(X) is not cyclic.

Example 4.6. Let’s suppose that our free product decomposition is of the form G =
G1∗ < b1 > ∗ < b2 > , where bi are of infinite order. Here G1 is an elliptic subgroup, we
denote by F2 =< b1 > ∗ < b2 > the "free part" and by O the corresponding outer space
O(G,G1, F2). Then we define the automorphism φ, which satisfies φ(a) = a for every a ∈
G1, φ(b1) = b2g1, φ(b2) = b1b2 where g1 ∈ G1, and it is easy to see that φ ∈ Aut(G,O) is
an IWIP automorphism relative to O. Actually, the automorphism induces a train track
representative. Since Aut(G1) can be seen as a subgroup of Aut(G,O), it follows that
there is an attractive fixed point X of φ which contains just the letters b1, b2, g1 of φ and
we have that for every ψ ∈ Aut(G1) fixes g1, i.e. ψ(g1) = g1, we have that ψ(X) = X.
Therefore Stab(X) contains the subgroup A of Aut(G1) of automorphisms of G1 that
fix g1. Therefore since we can choose G1 with arbitarily big Aut(G1) and in particular
A to not be infinite cyclic, Stab(X) isn’t always infinite cyclic. For example, if G1 is
isomorphic to F3 and g1 an element of its free basis, we have that Stab(X) contains a
subgroup which is isomorphic to Aut(F2).
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Asymmetry of Outer Space of a Free Product

Dionysios Syrigos

Abstract

For every free product decomposition G = G1 ∗ ... ∗Gq ∗ Fr of a group of finite
Kurosh rank G, where Fr is a finitely generated free group, we can associate some
(relative) outer space O. We study the asymmetry of the Lipschitz metric dR on the
(relative) Outer space O. More specifically, we generalise the construction of Algom-
Kfir and Bestvina, introducing an (asymmetric) Finsler norm ‖·‖L that induces dR.
Let’s denote by Out(G,O) the outer automorphisms of G that preserve the set of
conjugacy classes of Gi’s. Then there is an Out(G,O)-invariant function Ψ : O → R
such that when ‖ · ‖L is corrected by dΨ, the resulting norm is quasisymmetric. As
an application, we prove that if we restrict dR to the ε-thick part of the relative
Outer space for some ε > 0, is quasi-symmetric . Finally, we generalise for IWIP
automorphisms of a free product a theorem of Handel and Mosher, which states
that there is a uniform bound which depends only on the group, on the ratio of the
relative expansion factors of any IWIP φ ∈ Out(Fn) and its inverse.
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1 Introduction

Outer Space is a very well studied space, which can be used to study the group of
outer automorphisms Out(Fn) of a finitely generated free group Fn. There are a lot of
combinatorial and topological methods to study the space. However, Francaviglia and
Martino in [8] introduced a natural asymmetric Lipschitz metric dR on CVn. We could
define also a symmetric version of this metric, but the non-symmetric one is geodesic and
seems natural in terms of studying the dynamics of free group automorphisms. Recently,
this metric theory and the resulting geometric point of view have been used extensively
to study the Outer Space. As a consequence, we can get many new results, as well as
more elegant new proofs of older results, for example see: [1], [2], [3], [7] and [11].
On the other hand, Guirardel and Levitt in [10] constructed an outer space relative
to any free product decomposition of a group G = G1 ∗ ... ∗ Gq ∗ Fr of finite Kurosh
rank. There are a lot of analogies between the classical and the general Outer Space.
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Firstly, Francaviglia and Martino in [9] introduced and studied the Lipschitz metric for
the general case. In the same paper, they proved as an application, the existence of train
track representatives for (relative) IWIP automorphisms. Moreover, many well known
constructions and theorems of the free case can be generalised in the general case (for
example, see [5], [12], [14], [15], [16], [17] and [18]). This is a motivation to study further
analogies, and in particular here we study the asymmetric metric dR.
In this paper, we generalise the construction of Algom-Kfir and Bestvina in [2] following
closely their approach, as we introduce an asymmetric Finsler norm on the tangent space
of the relative Outer space that induces the asymmetric Lipschitz metric. We also show
how to correct this norm to make it quasi-symmetric. Our main result explains the lack
of quasi-symmetry in terms of a certain function and more specifically:

Theorem 1.1. There is an Out(G,O)-invariant continuous, piecewise smooth function
Ψ : O → R and constants A,B > 0 (depending only on the numbers r, q) such that for
every T, S ∈ O we have d(T, S) ≤ A · d(S, T ) +B · [Ψ(T )−Ψ(S)].

As an application, we prove that if we restrict the asymmetric metric dR to the ε-thick
part of the relative Outer space for ε > 0, which is the subspace of O of the points
for which all hyperbolic elements have length bounded below by ε, is quasi-symmetric
(actually, we just need the multiplicative constant). Finally, we generalise a theorem
of Handel and Mosher (see [13]), that there is a uniform bound, which depends only
on the numbers r and q, on the ratio of the relative expansion factors of any IWIP
φ ∈ Out(G,O) and its inverse. Since any automorphism φ ∈ Out(G) is irreducible
relative to some appropriate space O, we can apply the general theorem to get a result
for the expansion factors of any automorphism φ ∈ Out(Fn) and its inverse, as in the
general theorem of [13].

Acknowledgements: I wish to thank my advisor Armando Martino for his help, sug-
gestions and corrections. Also, I would like to thank the anonymous referee for his
suggestions. In particular, his idea help us to fill a minor gap of a previous version.

2 Preliminaries

2.1 Kurosh rank and R-trees

Let’s suppose that G is a group which splits as a finite free product G = H1∗ ...∗Hr ∗Fn,
where every Hi is non-trivial, not isomorphic to Z and freely indecomposable. We say
that such a group has finite Kurosh rank and such a decomposition is called Gruskho
decomposition. Note that the Gi’s are unique, up to conjugacy and the ranks n, r are
well defined. The number r+n is called the Kurosh rank of G. Finally, every f.g. group
admits a splitting as above (by the theorem of Grushko). We are interested only for
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groups which have finite Kurosh rank.
Now for a group G of finite Kurosh rank, we fix an arbitary (non-trivial) free product
decomposition G = H1∗ ...∗Hr ∗Fn, i.e without assuming that each Hi is not isomorphic
to Z or freely indecomposable. Note that these groups admit co-compact actions on R-
trees (and vice-versa).
More specifically, for a simplicial tree T (not necessarily locally compact), we denote by
V (T ) and E(T ) the set of vertices and edges of T , respectively. We put also a metric on
the tree T , by assigning a positive length to each edge and we can think T as a R-tree.
Now, for x, y ∈ T , we denote by [x, y] the unique path from x to y, and for any reduced
path p in T we denote by `T (p) the length of p in T which is defined by summing the
lengths of the edges that p crosses.
We consider only isometric actions of the group G on R-trees and, more specifically, we
say that T is a G-tree, if it is a simplicial metric tree (T, dT ), where G acts simplicially
on T (sending vertices to vertices and edges to edges) and for all g ∈ G, e ∈ E(T ) we
have that e and ge are isometric. Moreover, we suppose that every G-action is minimal,
which means that there is no G-invariant proper subtree.
Now let’s fix a G-tree T . An element g ∈ G is called hyperbolic, if it doesn’t fix any points
of T . Any hyperbolic element g of G acts by translation on a subtree of T homeomorphic
to the real line, which is called the axis of g and denoted by axisT (g). The translation
length of g is the distance that g translates its axis. The action of G on T defines a
length function denoted by

`T : G→ R, `T (g) := inf
x∈T

dT (x, gx).

In this context, the infimum is always minimum and we say that g ∈ G is hyperbolic if
and only if `T (g) > 0. Otherwise, g is called elliptic and it fixes a point of T . Finally,
if g is hyperbolic, we can find some v ∈ axisT (g) s.t. the unique reduced path from v

to gv has length exactly `T (g). Sometimes, the segment [v, gv] (or even the loop α on
which [v, gv] projects to Γ = G/T ) is called the period of the axis. For more details
about R-trees, see [6].

2.2 Outer Space and The simplex of Metrics

Let’s fix an arbitrarily free product decomposition G = G1 ∗ ... ∗Gr ∗Fn of a group G of
finite Kurosh rank. Note that it is useful that we can also apply the theory in the case
that G is free, and the Gi’s are certain free factors of G (relative free case).
Following [10], we define an outer space O = O(G, (Gi)ri=1, Fn) relative to this free
product decomposition (relative outer space).

Definition 2.1. An element T of the outer space O can be thought as simplicial metric
G-tree, up to G-equivariant homothety. Moreover, we require that:
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• The edge and the tripod stabilisers are trivial.

• There are finitely many orbits of vertices with non-trivial stabiliser and more
precisely for every Gi, i = 1, ..., r there is exactly one vertex vi with stabiliser
Gi (all the vertices in the orbits of vi’s are called non-free vertices).

• All other vertices have trivial stabiliser (and we call them free vertices).

The mimimality implies that we have finitely many orbits of edges for every tree T and
we denote by E1(T ) the finite set which contains exactly one edge of each orbit. Also,
for convenience we normalise the length of edges and we suppose that the sum of the
lengths of edges in E1(T ) is 1.
Note that by a remark of [9], the hyperbolic elements of T ∈ O depends only on the
space O and we denote them by Hyp(O).
On the other hand, for a G-tree T as above, we can consider a lot of different metrics `
s.t. (T, `) ∈ O. More specifically, we say that a G-invariant function ` : E(T )→ [0, 1] is
a metric (relative to O) on T , if there is no hyperbolic element g ∈ G in O s.t. `T (g) = 0.
We denote by ΣT the set of all metrics in T . The space ΣT of all metrics ` on T is a
"simplex with missing faces", where the missing faces correspond to metrics that vanish
on a G-subgraph that contains the axes of hyperbolic elements. Therefore in that case
(T, `) is not an element of O.
Alternatively, we could define O as the disjoint union of the simplices ΣT , where T varies
over all the G-trees T which satisfy the assumptions of the Definition 2.1.
We would like to define a natural action of Out(G) on O, but this is not possible since it
not always the case that the automorphisms of G preserve the structure of the trees, as
they may not preserve the conjugacy classes of the Gi’s. However, we can describe here
the action of a specific subgroup of Out(G) (namely, the automorphisms that preserve
the decomposition or, equivalently, the structure of the trees) on O.
Let Aut(G,O) be the subgroup of Aut(G) that preserve the set of conjugacy classes of
the Gi ’s. Equivalently, φ ∈ Aut(G) belongs to Aut(G,O) iff φ(Gi) is conjugate to one
of the Gj ’s (in general, i is different to j). The group Aut(G,O) admits a natural action
on a simplicial tree by "changing the action", i.e. for φ ∈ Aut(G,O) and T ∈ O, we
define φ(T ) to be the element with the same underlying tree with T , the same metric
but the action is given by g ∗ x = φ(g)x (where the action in the right hand side is
the action of the G-tree T ). As Inn(G) acts on O trivially, there is a induced action
of Out(G,O) = Aut(G,O)/Inn(G) on O. Note also that in the case of the Grushko
decomposition we have Out(G) = Out(G,O).
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2.3 Tangent spaces

For every ` ∈ ΣT , we define the tangent space

T`(ΣT ) =
{
τ : E(T )→ R|

∑

e∈E(T )
τ(e) = 0

}
.

Since the tangent space does not depend on the metric, for every two metrics `, `′ the
natural identification between T`(ΣT ) and T`′(ΣT ), implies that the total tangent space
can be written as T (ΣT ) ∼= ΣT × RN−1 where N is the number of edges of ΣT .

Definition 2.2. A tangent vector τ ∈ T`(ΣT ) is integrable (relative to `), if τ(e) < 0
implies that `(e) > 0 for all e ∈ E(ΣT ), i.e. it is not possible to find an edge e with
τ(e) < 0 and `(e) = 0.

Note that if τ is integrable, then for all sufficiently small t ≥ 0 we have that `+ tτ ∈ ΣT .
As a consequence, we can define τ(p) for any reduced path p in T , as∑

e
τ(e) where e varies

all over the edges that p crosses, counted with multiplicity. Therefore if g ∈ Hyp(O)
and Lg is the period of the axis of g, we can define τ(g) := τ(Lg).

2.4 Lipschitz metric and Optimal maps

In this section, we follow [9]. Let A,B ∈ O be two elements of the outer space and let’s
denote by `A, `B the corresponding translation functions of A and B, respectively. Here
we define the (right) stretching factor as:

ΛR(A,B) := sup
g∈Hyp(O)

`B(g)
`A(g)

and the (right) asymmetric pseudo-distance as:

dR(A,B) = d(A,B) := log ΛR(A,B)

In the case where r = 2 and n = 0, we have just one tree with exactly one orbit of edges.
Therefore the metric vanishes. However, in any other case the metric is not symmetric
and in fact is not even quasi-symmetric. If n ≥ 2, we can adjust the counter- examples
of the free case in order to work in the general case as well. We will give an examples
for the case where r = n = 1.

Example 2.3. Suppose that r = n = 1 and so is of the form G = G1 ∗ Z, where G1 is
any group of finite Kurosh rank. Then we have two simplices (marked trees, if we forget
the metric) of G-trees and let’s denote them by T, S s.t. G/T is a loop with a non free
vertex and G/S a loop with one edge attached connecting the loop and the non-free
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vertex which has valence 1. Now the unique representative of edges of T has length 1
while we give length ε in the edge corresponding to the loop of G/S and 1 − ε to the
other and let’s denote this metric tree by Sε ∈ O.
Now all the hyperbolic elements in T have length 1, while in Sε there are hyperbolic
elements of length ε and some others with length 2− ε. Therefore choosing ε sufficiently
small, we can see that dR(T, Sε) = 2− ε, while dR(Sε, T ) = 1

ε →∞.

Let’s recall the definition of [9] and some useful properties. We say that a map f :
A → B, where A,B ∈ O, is an O- map, if it is a G-equivariant, Lipschitz continuous,
surjective function. One interesting property is the following:

Lemma 2.4. For every pair A,B ∈ O; there exists an O-map f : A → B. Moreover,
any two O-maps from A to B coincide on the non-free vertices.

In addition, it can be proved that for every A,B there is an O-map f which realises the
distance between them, which means that the Lipschitz constant of Lip(f) is exactly
d(A,B). These maps are called optimal. In particular, for every IWIP automorphism
φ ∈ Out(G,O) relative to O, there is an optimal train track representative f : T → φ(T )
of φ that stretches every edge by a specific number, which is called the expansion factor
of φ (relative to O).
Finally, we list some useful properties of the metric:

Proposition 2.5. (Francaviglia and Martino, [9])

1. For every A,B ∈ O there is an optimal map f : A→ B with
Lip(f) = inf{Lip(h)|h is an O -map from A to B}

2. d(A,B) ≥ 0 with equality only if A = B.

3. d(A,C) ≤ d(A,B) + d(B,C) for all A,B,C ∈ O .

4. d is a geodesic metric. Moreover, a path that realises the distance d(A,B) for every
A,B ∈ O can be chosen to be piecewise linear, and even linear in each simplex.

5. Out(G,O) acts on O by isometries.

2.5 Candidates

Definition 2.6. An element g ∈ G is a candidate in T , if it is hyperbolic in T and,
denoting by axisT (g) its axis in T , there exists v ∈ axisT (g) such that the segment
[v, gv] projects to a loop α in the quotient graph Γ := G/T which is either (see also
Figure 1)

1. an embedded loop, or
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b

b b

embedded loop

bouquet

barbell

simply - degenerate barbell

doubly - degenerate barbell

Figure 1: Projections of candidates

2. a bouquet of two circles in Γ, i.e. α = α1α2, where α1 and α2 are embedded circles
in Γ which meet in a single point, or

3. a barbell graph, i.e. α = α1βα2β̄, where α1 and α2 are embedded circles in Γ that
do not meet, and β is an embedded path in Γ that meets α1 and α2 only at their
origin (and we denote by β̄ the path β crossed in the opposite direction), or

4. a simply-degenerate barbell, i.e. α is of the form α1ββ̄ , where α1 is an embedded
loop in Γ and β is an embedded path in Γ, with two distinct endpoints, which
meets α1 only at its origin, and whose terminal endpoint is a non-free vertex in Γ,
or

5. a doubly-degenerate barbell, i.e. α is of the form ββ̄, where β is an embedded
path in Γ whose two distinct endpoints are different non-free vertices.

We denote by CT the set of candidates in T .

Definition 2.7. Let g, g′ ∈ G be hyperbolic elements in O, for which pr(axisT (g)) =
pr(axisT (g′)), or in other words they project to the same path to the quotient Γ = G/T ,
then we say that they are projectively equivalent in T (or just projectively equivalent).

Remark. Note that if g, g′ are projectively equivalent in T , then for any ` ∈ ΣT :
τ(g) = τ(g′), `(g) = `(g′). Moreover, there are finitely many projectively inequivalent
hyperbolic elements of bounded length. In particular, there are finitely many projectively
inequivalent candidates.

The next proposition shows that the distance is realised on a candidates and it is essential
for our arguments. In particular:

Proposition 2.8. For any A,B ∈ O,

d(A,B) = max
g∈CA

`B(g)
`A(g)
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3 Basic Lemma

Let’s assume that A,B ∈ O. One main question is that if we change slightly B, can we
compute the distance d(A,B) using the same candidate of A? We will prove that this
is possible under some conditions.

Definition 3.1. A closed convex cone, in a finite dimensional real vector space V , is a
closed subset C of V such that v, w ∈ C implies that tv + sw ∈ C for all t, s ∈ [0,∞).

One main example of a closed convex cone is the set of integrable vectors in T`(ΣT ).

Notational Convention: When we restrict our attention to a specific simplex ΣT

for a specific G-tree T in Outer space, we may identify the point (T, ∗, `), where we
denote the G-action on T by ∗, by only specifying the metric `.

Firstly, we prove a very useful proposition which states that in a specific case we can
use the same candidate which realises the distance.

Proposition 3.2. We follow Proposition 6 in [2].

1. Let τ ∈ T`(ΣT ) be an integrable vector. Then there is a candidate α in ΣT such
that

d(`, `+ tτ) = log
(`+ tτ)(α)

`(α)
for all sufficiently small t ≥ 0, i.e. the same candidate a realises the distance
d(`, `+ tτ) for small t. Moreover, α has the property that for any other hyperbolic
element g, τ(α)

`(α) ≥
τ(g)
`(g) .

2. limt→0+
d(`,`+tτ)

t = τ(α)
`(α) , where α is the candidate of item (i).

3. The set of integrable vectors in T`(ΣT ) can be written as a finite union of closed
convex cones B1, B2, ..., BM such that for any Bi, there is a (projective equivalence
class of a) candidate αi that realises the distance d(`, ` + tτ) for any τ ∈ Bi and
for all sufficiently small t ≥ 0.

Proof. Let α be a candidate in T that realises d(`, ` + tτ). This is equivalent to the
inequalities :

(`+ tτ)(α)
`(α) ≥ (`+ tτ)(g)

`(g)
for all hyperbolic elements g in O. But since the distance can be realised by a candidate,
it is enough to consider these inequalities only for the candidates. Moreover, as we have
seen we have finitely many classes of projectively inequivalent candidates and so we need
finitely many of these inequalities. Let choose a representative of each class and let’s
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denote them by αi ∈ CT , i = 1, ...,M .
On the other hand, we can simplify these inequalities to τ(α)

`(α) ≥
τ(g)
`(g) when t > 0.

This is a finite system of linear inequalities which determines a closed convex cone Bi
associated to each αi as in (iii) and more specifically

τ ∈ Bi ⇐⇒
τ(αi)
`(αi)

≥ τ(aj)
`(aj)

, for every j = 1, ...,M.

The inequalities do not depend on t and so we have (i), since we can choose the same
candidate to realise the distance for all small t and the second part of the statement is
evident by the discussion above.
Finally, using the item (i), we can divide by t in order to calculate the limit which is
straightforward and then the item (ii) follows.

4 Norm

As in the section above, we fix a tree T . We can now define a function in ΣT × T`(ΣT ),
which is a norm. Therefore, we will have a norm in the tangent space which induces the
Lipschitz metric. We fix a metric ` ∈ ΣT and we give the next definition:

Definition 4.1. Let τ ∈ T`(ΣT ). Then we define:

‖(`, τ)‖L = sup
{τ(g)
`(g)

∣∣∣g ∈ Hyp(O)
}

We will prove that we have an (asymmetric) Finsler norm for the Lipschitz metric.

Proposition 4.2. 1. If τ is integrable, then ‖(`, τ)‖L = lim
t→0+

d(`,`+tτ)
t

2. The supremum in the definition is achieved on a candidate of ΣT .

3. ‖(`, τ)‖L is continuous on T (ΣT ).

4. ‖(`, τ)‖L ≥ 0 with equality iff τ = 0.

5. ‖(`, τ1 + τ2)‖L ≤ ‖(`, τ1)‖L + ‖(`, τ2)‖L

6. If c > 0, then ‖(`, cτ)‖L = c‖(`, τ)‖L

Proof. We follow Proposition 8 in [2].

Since τ is integrable, we can use 3.2 (iii) and we have that there is some i s.t.
τ ∈ Bi, but then using the item (ii) of the same proposition we get that there
exists some candidate αi with the property

lim
t→0+

d(`, `+ tτ)
t

= τ(αi)
`(αi)
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τ(e1) = 1 τ(e2) = −1

v1 v2 v3

Figure 2: The quotient G/T

Therefore, (i) of Proposition 3.2 establishes that τ(αi)
`(αi) ≥

τ(g)
`(g) for any other hyper-

bolic element g in O, which means that the supremum in the definition can be
achieved on the candidate αi.

1.2. If τ is integrable, then as we have seen above there is a candidate α with the
property ‖(`, τ)‖L = τ(α)

`(α) , and so the supremum is realised on some candidate of
T .
Now let τ be not integrable, which means that there is some edge e s.t. `(e) = 0
and τ(e) < 0. But we can always find some `′ which is as close as we want to `
(which means that `′(e) = ε for small ε) so that τ becomes integrable (relative to
`′). Therefore if the perturbation is sufficiently small, the candidate that works
for the pair (`, τ), works for (`′, τ) as well.

3. This follows from (ii), since we can replace the sup of the definition by a maximum
over a finite set (of projectively inequivalent classes of candidates for graphs in the
simplex ΣT , i.e. the projections of candidates to Γ = G/T ).

4. If τ 6= 0, then we can produce some g ∈ Hyp(O) so that τ(g) > 0. We can do
this without dependence on `, so we may assume that (as above, changing `) τ is
integrable, and then by 3.2(i) and the item (i) above, we have that for sufficiently
small t: 0 < d(`, `+ tτ) = log(1 + t‖(`, τ)‖L), which implies that there exists such
element g.

(v) and (vi) are straightforward, using the definition and the properties of supre-
mum.

However, as in the free case the norm is not quasi-symmetric. For n > 1, we can essen-
tially use the examples (adjusted appropriately) of the free case. We give an example if
there is no free part.

Example 4.3. For n = 0 and r = 3 and so G = G1 ∗ G2 ∗ G3. Let T be the tree
with three orbits of non-free vertices which we denote by v1, v2, v3 with vertex groups
G1, G2, G3, respectively. Let’s also suppose that there are exactly two orbits of edges and
namely we denote by e1 the edge connecting v1 with v2 and by e2 the edge connecting v2

with v3. Moreover, if we assume that `(e1) = ε, `(e2) = 1− ε and τ(e1) = 1, τ(e2) = −1,
it’s easy to see that there are three types of candidates (see Figure 2). More specifically,
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the candidates C1, C2, C3 that correspond to [v1, v2], [v2, v3], [v1, v3], respectively. Their
lengths are 2ε for C1, 2(1 − ε) for C2 and 2 for C3 and their τ -values are 2 for C1, −2
for C2 and 0 for C3. Therefore we can see that ‖(`, τ)‖L = 1

ε , while ‖(`,−τ)‖L = 1
1−ε .

Now sending ε to 0, we get ‖(`, τ)‖L →∞, while ‖(`,−τ)‖L → 1.

5 Corrected norm

We would like to define a new norm on ΣT ×T`(ΣT ) which is quasi- symmetric. As in the
free case, we have to correct ‖·‖L by adding the directional derivative of a function which
is the sum of - log’s of the lengths of candidates. The first problem is that the candidates
are not the same, if we change the marking. Therefore, we need to consider the double
covers but not of the graph of groups, as we don’t get all the candidates. Also, we have
to face one other problem which is the existence of Gi’s and which makes the homology
of the graph of groups insufficient. However, we can change the graph of groups with an
actual graph by introducing a loop of length 0 corresponding to some non-free vertex
and we will see that this is enough as every degenerate barbell corresponds to an actual
barbell. This idea is due to the anonymous referee.
More precisely, for every T ∈ O let’s denote by Γ the graph that corresponds to the
graph of groups T/G, as we have described above, by changing each non-free vertex
vi with an embedded loop bi of length 0 (we call the bi’s special loops). The metric
and the tangent vectors of T induce a metric and tangent vectors on Γ. Also, we set
`(bi) = τ(bi) = 0. In particular, the fundamental group of Γ is isomorphic to Fr+n. Now
we will use the homology with Z2 - coefficients, H1(Γ,Z2), of Γ which makes sense as Γ
is an actual graph. Every group element can be naturally written as a loop in Γ (but
not uniquely, even if all the natural choices have the same length) where every element
of the Gi’s corresponds to the same loop bi. We will describe a canonical choice of a
loop in Γ, if the group element correspond is a candidate.

Definition 5.1. Let g be a candidate in T . We will associate to g a unique loop of Γ,
which we will denote by αΓ.

1. If g belongs to one the first three cases of 2.6 (i.e. its projection α is either an
embedded loop, or an actual barbell or a figure eight), then we denote by αΓ the
natural projection of α in Γ.

2. If g corresponds to a simply degenerate barbell, where its projection α in G/T is
of the form α1ββ̄, where α1 is an embedded loop in G/T and β is an embedded
path in G/T , where the terminal point of β is the non-free vertex vi, we denote by
αΓ the actual barbell of the form α′1β

′biβ̄′, where we denote by α′1, β′ the natural
projections of α1, β in Γ, respectively.
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3. Finally, if g corresponds to a doubly degenerate barbell, where its projection α in
G/T is of the form ββ̄, where β is an embedded path in G/T , where the terminal
point of β is the non-free vertex vi and the origin is the non-free vertex vj , we
denote by αΓ the actual barbell of the form bjβ

′biβ̄′, where we denote by β′ the
natural projection of β in Γ.

By the construction, we get that `(αΓ) = `(α) = `(g) and τ(αΓ) = τ(α) = τ(g). Let
y = [y] ∈ H1(Γ,Z2) be non-trivial. Then we define `(y) to be the infimum of `(x), where
x ranges over all loops in the class of y. We will prove that this infimum is actually
minimum. Now as Γ is an actual graph, we get that Proposition 9 of [2] immediately
implies the following lemma:

Lemma 5.2. Let y ∈ H1(Γ,Z2), then there are finitely many loops h1, ... , hk so that
`(y) is realized by some hi for all ` ∈ ΣΓ. Moreover, if b is an embedded loop then for
all ` ∈ ΣΓ, b is the shortest loop representing b ∈ H1(Γ,Z2).

We can see that ΣT can be naturally identified with ΣΓ (as the special loops have
length 0). The set of linear inequalities `(hi) ≤ `(hj) for the set of hi’s in the previous
proposition divides the simplex ΣT into closed convex subsets C1, ..., Ck s.t. for each Ci
there is an hi with the property `(hi) ≤ `(hj) for all j. In fact, we define the Ci’s by:

` ∈ Ci ⇐⇒ `(hi) ≤ `(hj), for every j = 1, ..., k.

As a consequence we get the following corollary:

Corollary 5.3. Each simplex ΣT is covered by closed convex subsets C1, ..., Ck s.t. for
each x ∈ H1(Γ,Z2), there is a j such that `([x]) = `(hj) for all ` ∈ Cj.

Moreover, we can get as a corollary:

Corollary 5.4. Let choose [x] ∈ H1(Γ,Z2). For every integrable τ ∈ T`(ΣT ), there is
a j s.t. `, ` + tτ ∈ Cj (for all small t > 0) and the derivative from the right at 0 of
t→ (`+ tτ)([x]) is τ(hj).
Moreover, it equals to min{τ(hi)|[hi] = [x], hi realises `([x])}.

Proof. Let [x] ∈ H1(Γ,Z2) and (without loss, after reordering) assume that h1, ..., hm

are the loops in Γ in the homothety class of [x] which realise `([x]), i.e. `([x]) = `(hi), i =
1, ...,m. Assuming that τ(h1) ≤ τ(hi), i = 1, ...,m, we have that, for all sufficiently small
t > 0,

(`+ tτ)(h1) = `(h1) + tτ(h1) ≤ `(hi) + tτ(hi) = (`+ tτ)(hi), i = 1, ...,m.

Therefore (`+tτ)(h1) realises (`+tτ)([x]). As a consequence, using the previous corollary,
`, ` + tτ ∈ C1. In this case, it is straightforward that the derivative is exactly τ(h1),
since actually (`+ tτ)([x]) = (`+ tτ)(h1) for all small t > 0.
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Here we have to consider all the non-trivial double covers of Γ, Γi → Γ, i = 1, 2, ..., 2n+r−
1. Note that the only loops of length 0 in some Γi is a lift of some bi, as there are no two
special loops with a common point in Γ. We can naturally get lifts of ` and τ to each
Γi, and we denote them by `i and τi, respectively. Similarly, we can define the space
of metrics ΣΓi and the corresponding tangent space T`i(ΣΓi). A very important lemma
which is the reason that we consider the double covers is the following:

Lemma 5.5. If g is a candidate in T and let αΓ the loop in Γ as in the Definition 5.1,
then there exists a double cover Γi → Γ and a lift α̃Γ of αΓ in Γi, so that α̃Γ is the
unique loop that realises the length of [α̃Γ].

Proof. We will apply Lemma 5.2 on the appropriate Γi. The most important remark
is that every candidate can be identified in Γ with either an embedded loop or a figure
eight or an actual barbell, which we denote by αΓ see the Definition 5.1. It is enough
to prove that every embedded loop, every figure eight and every barbell in Γ lift to an
embedded loop in some appropriate double lift. This fact follows immediately from the
Lemma 12 of [2], as we have actual graphs and the proof is exactly the same.

We denote by H(Γi) the set of non-trivial classes [a] such that a is not represented by
(the lift of) some special loop bi, i = 1, ..r. Note that every elliptic element can be
represented by some special loop in Z2 coefficients, as it is conjugate to some gi ∈ Gi.

Definition 5.6. Fixing some ` ∈ ΣT and τ ∈ T`(ΣT ), we define the number

N(`, τ) = −
∑

Γi

∑

[δ]∈H(Γi)

min τi([δ])
`i([δ])

(1)

where minimum is taken over the loops h in the class of [δ] which realise `i([δ]), where
Γi are all the double covers of Γ.

We are now in position to define the new norm by :

‖(`, τ)‖N = ‖(`, τ)‖L + 1
K + 1N(`, τ) (2)

where K is the number of summands in 1 (and it depends on r, n).
We write ‖τ‖. instead of ‖(`, τ)‖., for simplicity.

Define the map Ψ : ΣT → R by

Ψ(`) = − 1
K + 1

∑

Γi

∑

[δ]∈H(Γi)
log`i([δ]) (3)

where `i is the lift of ` to Γi. Again, note that Ψ is smooth on each convex set Cj of the
Corollary 5.3.
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For both cases it is true that:

Lemma 5.7.

1
K + 1max{‖τ‖

L, ‖ − τ‖L} ≤ ‖τ‖N ≤ 2‖τ‖L + ‖ − τ‖L

Proof. Firstly, we choose some candidates α, β which realise ‖τ‖L, ‖−τ‖L, respectively.
Then we have that by 3.2 for any hyperbolic element g in O, τ(g)

`(g) ≤
τ(α)
`(α) = ‖τ‖L, ‖ and

−τ(g)
`(g) ≤

−τ(β)
`(β) = ‖− τ‖L. But since the minimum in 1 , varies over the loops h in Γ that

realise `(δ), we have that for each h in the sum we get: τ(h)
`(δ) ≤

τ(α)
`(α) = ‖τ‖L and similarly

−τ(h)
`(δ) ≤

−τ(β)
`(β) = ‖ − τ‖L. Therefore we have that the positive summands in N(`, τ)

are dominated by ‖ − τ‖L and similarly the absolute value of negative summands are
dominated by ‖τ‖L and the right hand side follows.
Now the inequality 1

K+1‖τ‖L ≤ ‖τ‖N is equivalent to −N(`, τ) ≤ K‖τ‖L, which is true
using again the same argument as above.
Also, we have to prove that 1

K+1‖ − τ‖L ≤ ‖τ‖N , which is equivalent to the inequality

‖ − τ‖L −N(`, τ) ≤ (K + 1)‖τ‖N

Let α be a candidate that realises ‖− τ‖L, then by applying the Lemma 5.5, we get that
there is a term in −N(`, τ) of the form τ(α)

`(α) which is cancelled out with ‖− τ‖L = −τ(α)
`(α) ,

because `(α) = `(αΓ) > 0, τ(α) = τ(αΓ) (see also Definition 5.1) and there is some
appropriate double lift Γi of Γ where the lift of αΓ is the unique loop that realises
its homothety class. Finally, we apply again that each positive term of −N(`, τ) is
dominated by ‖τ‖L and the left hand side inequality follows.

Therefore ‖ · ‖N is a (non-symmetric) norm, just like ‖ · ‖L (positivity follows from
the previous lemma, while subadditivity and multiplicativity with positive scalars are
evident from the definition and the properties of ‖ · ‖L). As an immediate corollary, we
can get a nice relation between ‖τ‖N and ‖ − τ‖N , which implies that the new norm is
quasi-symmetric.

Corollary 5.8. There is a constant A = 3(K + 1) so that

‖τ‖N ≤ A‖ − τ‖N

Proposition 5.9. If ` ∈ ΣT and τ ∈ T`(ΣT ) is integrable then

‖τ‖N = ‖τ‖L + dτΨ

where the third term is the derivative of Ψ in the direction of τ , i.e. the derivative from
the right at 0 of t→ Ψ(`+ tτ).
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Proof. We just need to prove that dτΨ = 1
K+1N(`, τ). We use the chain rule and the

Corollary 5.4.
Applying the Corollary 5.4 on Γi, `i and τi, we get that for any [δ] ∈ H(Γi):

dτi`i([δ]) = τi(δi)

where ai is the loop in Γi that realises `i(α) and on which τi is minimal. Therefore using
the chain rule:

dτi log`i([δ]) = τi(δi)
`i(δi)

Therefore the resulting equations follows immediately, if we take the double sum.

As in the free case, it is not difficult to see that we can extend the map (and its properties)
to the whole Outer space O. Firstly, we note that ‖ · ‖L, ‖ · ‖N and Ψ commute with
the inclusions of simplices corresponding to collapsing forests without non-free vertices
(since for the edges e in that forest we have that `(e) = τ(e) = 0).
Let’s denote by Rr,n the ‘natural rose’ corresponding to the free product with the identity
as the marking. More precisely, it has exactly r non-free vertices v1, ..., vr such that
Gvi = Gi and exactly one free vertex v. It is consisted of n loops corresponding to Fn
and r additional edges which we denote by Ei connecting vi with v. We denote byR∗r,q the
graph that is induced by changing the non-free vertices with special loops (of length 0).
Moreover, as the marking permutes the conjugacy classes of the Gi’s, every special loop
is sent to some special loop in Z2-coefficients, and so there is a permutation between
the sets H(R∗r,n) and H(Γ) by construction and so we can identify their homothety
classes. Similarly we can identify the double covers of R∗r,n with the double covers of
Γ, and the isomophism between their fundamental groups lifts to isomophisms between
the fundamental groups of their double covers.
Therefore we can define Ψ globally. Moreover, let φ ∈ Out(G,O) be an automorphism
and T ∈ O be an element of the outer space, then φ(T ) is again an element with the
same underlying tree as T with the same metric, but with a different G-action. But the
change of the action, only induces a permutation of the summands in the definition of
Ψ (as we described previously, Φ preserves the homothety classes of special loops). As
a consequence, Ψ is Out(G,O)-invariant.

6 Lengths of Paths

In the following sections all the ideas and the proofs are essentially the same as in [2],
however we include the most of the proofs for the convenience of the reader and for
completeness.
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Let γ : [0, 1]→ O be a piecewise linear path. This means that γ can be subdivided into
finitely many subpaths so that each one is contained in some Cj as in Corollary 5.3 on
which Ψ is smooth.
On the other hand, the Lipschitz length of γ is

lenL(γ) = sup
{ p∑

i=1
d(γ(ti−1), γ(ti)) : 0 = t0 < t1 < ... < tp = 1}

Suppose that ∆ti = ti − ti−1 is small. Since γ(ti) is ` and γ′(ti) is the vector of the
tangent space τ , we get:

d(γ(ti−1, γ(ti)) = d(γ(ti−1), γ(ti−1 + ∆ti))
∆ti

∆ti ∼ ‖(γ(ti−1), γ′(ti−1))‖L∆ti

Thus
lenL(γ) =

∫ 1

0
‖(γ(t), γ′(t))‖Ldt

Similarly, we can also define the length corresponding to the new norm.

lenN (γ) =
∫ 1

0
‖(γ(t), γ′(t))‖Ndt

Proposition 6.1. Let T, S ∈ O and γ : [0, 1]→ O be a path from T to S in O.
Then lenN (γ) = lenL(γ) + Ψ(S)−Ψ(T ).

Proof. We can use the Fundamental Theorem of Calculus to Ψ ◦ γ, since Ψ and γ are
piecewise differentiable. In order to simplify the notation, we write ‖γ′(t)‖· instead of
‖(γ(t), γ′(t))‖·
Therefore:

lenN (γ) =
∫ 1

0
‖γ′(t)‖Ndt

On the other hand, combining it also with 5.9, we get that:
∫ 1

0
‖γ′(t)‖Ndt =

∫ 1

0
[‖γ′(t)‖L + dγ′(t)Ψ]dt = lenL(γ) + Ψ(S)−Ψ(T )

Proposition 6.2. Let T, S ∈ O and γ : [0, 1] → O be a path from T to S in O. Let
−γ : [0, 1]→ O be the reverse path −γ(t) = γ(1− t). Then

lenN (−γ) ≤ AlenN (γ)

where A is the constant from Corollary 5.8.
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Proof. Since γ is piecewise C1, for all but finitely many points [−γ′](s) = −γ′(1 − s).
Thus using the simplification of the notation as in the previous proof and changing the
variable (s = 1− t), we get :

lenN (−γ) =
∫ 1

0
‖[−γ′](s)‖Nds =

∫ 1

0
‖ − γ′(t)‖Ndt

But now we apply the Corollary 5.8 and we have that:
∫ 1

0
‖ − γ′(t)‖Ndt ≤

∫ 1

0
A‖γ′(t)‖Ndt = AlenN (γ)

7 Applications

Now we are in position to prove the Main theorem and different applications. Let A be
the constant from Corollary 5.8.

Corollary 7.1. For any T ∈ O, for any φ ∈ Out(G,O) and any piecewise linear path
γ from T to φ(T ),

lenL(γ) = lenN (γ)

Therefore
lenL(γ) ≤ AlenL(−γ)

Proof. By Proposition 6.1, we get that:

lenN (γ) = lenL(γ) + Ψ(φ(T ))−Ψ(T ).

But since as we have seen Ψ is Out(G,O) -invariant, which means Ψ(φ(T )) = Ψ(T ),
and therefore lenN (γ) = lenL(γ). So using the Corollary 5.8, the result follows.

Theorem 7.2. For any T, S ∈ O and for any piecewise linear path γ from T to S, fo

lenN (γ) ≤ AlenN (−γ) + (A+ 1)[Ψ(T )−Ψ(S)]

where A is the constant of 5.8.

Proof. Combining the Propositions 6.1 and 6.2:

lenL(γ) + Ψ(S)−Ψ(T ) = lenN (γ)

≤ AlenN (−γ) = AlenL(−γ) +A[Ψ(T )−Ψ(S)].

Therefore we get the requested result for lenL(γ).
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Theorem 7.3. For any T, S ∈ O,

d(T, S) ≤ Ad(S, T ) + (A+ 1)[Ψ(T )−Ψ(S)]

Proof. Let T, S ∈ O and let’s choose a piecewise linear geodesic path from S to T which
we denote by −γ. We apply the previous theorem to γ, which is a path from T to S.

Remark. Note here that since φ is Out(G,O)-invariant, if T, S ∈ O are in the same
orbit, then d(T, S) ≤ Ad(S, T )

Now we prove a theorem about the relation between the expansion factors of an IWIP
relative to O and its inverse. This is a generalisation of the theorem of Handel and
Mosher in [13], about the relation of the expansions factors of an IWIP automorphism
of a free group and its inverse.

Theorem 7.4. For any IWIP automorphism φ ∈ Out(G,O) relative to O, let λ be the
expansion factor of φ and µ be the expansion factor of the IWIP φ−1. Then µ ≤ λA,
where A as above.

Proof. Let f : T → T be an optimal train track representative of φ and h : S → S be an
optimal train track representative of φ−1, which means that d(φk(T ), T ) = k log λ and
d(φ−k(S), S) = k logµ, for every natural number k .
Let choose a number D ≥ max{d(T, S), d(S, T )} and then, by the triangle inequality,
we get that for any natural number k, d(φk(T ), T ) ≥ d(φk(S), S) − d(φk(S), φk(T )) −
d(T, S) ≥ klogµ − 2D. On the other hand, using the Main Theorem, d(φk(T ), T ) ≤
A · d(T, φk(T )) = A · klogλ. Therefore combining the inequalities we get

A · k · logλ ≥ k · logµ− 2D

As consequence, for every k we have that logµ ≤ A · logλ+ 2D
k and sending k to infinity,

we get logµ
logλ ≥ A or equivalently µ ≤ λA

However, Handel and Mosher proved also a more general theorem for automorphisms of
free groups, and more specifically they proved a relation between the sets of expansions
factors of any automorphism and its inverse, using the notion of strata of relative train
tracks representatives and the powerful machinery of laminations of Bestvina, Feighn
and Handel (see for example [4]). Using the theorem above for the general case, we can
get as a corollary a special case of this theorem.
As an application of the method above and [8]. If φ ∈ Out(Fn) and f : T → T is a
relative train track representative of φ, denoting by λ the expansion factor of the top
stratum, then by a remark of [9] there is a relative outer space O on which φ ∈ Out(G,O)
and φ is irreducible relative to O (equivalently, a maximal free factor system). Moreover,
the same is true for φ−1 using the same space (equivalently the same free factor system).
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We distinguish two cases. If λ = 1, then φ and φ−1 fix some point of O. Which means
that there is a relative train track representative of φ−1, for which the expansion factor
of the top stratum is 1. If λ > 1, then φ, φ−1 are IWIP relative to O, and let’s denote by
µ > 1 the expansion factor of φ−1 relative to O, which means that there is a relative train
track representative h of φ−1 with the expansion factor of the top stratum to be µ. Using
the theorem above, we get that logµ and log λ are comparable and the constant depends
on the group. Note that, in general, we don’t have the uniqueness of the maximal free
factor system, however using this approach we can get a correspondence between the
maximal free factor systems of φ and φ−1, and in particular their relative expansion
factors.

Let ε be a positive number. Let denote by O≥ε the thick part of O, i.e. the set of all
trees of O, which don’t contain hyperbolic elements shorter than ε, then it is co-compact
for every ε.

Theorem 7.5. For every ε > 0 there is a constant B so that for every T, S ∈ O≥ε and
any piecewise linear path γ from T to S:

1
A
len(γ)−B ≤ len(−γ) ≤ Alen(γ) +B

Moreover, there is a constant D such that for all T, S ∈ O≥ε

d(S, T ) ≤ Dd(T, S)

The proof is exactly the same in the free case using the fact the ε-thick part of O is
co-compact.
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