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Abstract. This paper summarizes the content of a plenary lecture on the author’s personal 

research into the interactions between bubbles and sound fields, covering particular topics 

involving the climatically important gas exchange between atmosphere and ocean, the 

implications of bubbly ocean water to marine mammals that use sound, and the opportunities 

afforded by incorporating acoustical sensors onto probes launched to investigate other worlds 

in our solar system. It closes with recent data on the opportunities of bubble acoustics to 

investigate methods of cold water cleaning.  

1.  Introduction 

Gas bubbles in liquids have an extraordinary ability to interact with sound fields. Although 

traditionally many people date the start of studies on collapse cavitation to the 1917 work of Rayleigh 

[1], in fact Rayleigh’s well known analysis was predated by some 70 years by Stokes’ handwritten 

solution to an examination question on the problem that he set in 1847 for less able physics 

undergraduates (see Ref. [2] for details). Those analyses were dominated by the effect of the inertia of 

the inrushing liquid as it collapsed towards the centre of the void. Noltingk and Neppias [3,4] 

examined how such a cavity could be created and so introduced some permanent gas into the void, 

although the dynamics of the collapse were still dominated by the liquid inertia. The introduction of 

permanent gas harmonized the description of such ‘inertial’ cavitation with the famous 1933 

description of non-inertial cavitation by Minnaert [5], where the effects of liquid inertia and gas 

stiffness are balanced to determine the natural frequency of oscillation of a pulsating bubble.  

As Minnaert himself hypothesized, bubbles generate the song of a babbling brook [5,6], and ocean 

sounds through breaking waves. Such ocean sounds, and the way the oceans scatter and absorb sound, 

have since helped us understand the global carbon budget, as this paper will outline, Section 3 will 

describe how the particularly dense clouds of bubbles are produced in the ocean by humpback whales 

to form ‘bubble nets’ to catch prey, and speculate on the acoustical implications for this. The 

acoustical implications are wholly different when dolphins hunt with bubble nets, as they must adapt 

their sonar to avoid the bubbles themselves preventing them from finding their prey using 

echolocation.  

Section 4 will explain how a desire to predict the sounds of Titan prior to the first probe landing 

there, led to a wider exploration of the numerous ways that we might use and observe sound on other 

worlds. Particular attention has been paid to improving the understanding of extraterrestrial acoustics 

so that our familiarity with sound on Earth does not lead us into assumptions that introduce errors into 

the design of acoustic sensors for probes, or produce erroneous interpretations when we eventually 

collect acoustic signals from other worlds.  



 

 

 

 

 

 

To conclude the paper, Section 5 describes a new application of bubble acoustics, namely cold 

water cleaning without additives, and discusses its possible application in a range of scenarios where 

the use of cold water is preferable or unavoidable. 

2.  Bubble detection in the natural world 

Figure 1 shows the simultaneous hydrophone record [panel (a)] and high speed video [panels (b) to 

(h)] recorded when a water drop impacts upon a body of water. This process is familiar for images 

resembling those in the final frame [panel (h)], where the half-submerged lens clearly reveals the 

water jet that rises into the air as, below it, the crater shrinks in the water surface. This image is 

associated with the famous ‘plink’ of a dripping tap. That ‘plink’ can be seen as the exponentially 

decaying sinusoid in the hydrophone trace of panel (a), the labelling indicating that it is synchronous 

with panel (f). Therefore the famous ‘plink’ sound is not caused by either the jet or the crater, but by 

the tiny bubble that was pinched off from the base of the closing crater [panels (e) to (g)].  
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Figure 1. Synchronized hydrophone record and video frames (selected from a film recorded at 

10,000 frames per second) for the sound produced by the impact of a droplet on a water-air 

interface. (a) The hydrophone output (in red, with the timing of subsequent frames labelled (b)-(h) 

showing the impact of a water drop falling from air into water. The hydrophone signal from (c) to 

(d) is hydrodynamic, the only significant acoustic emission occurring when a small bubble is 

pinched off from the base of the crater ((e)-(g)).  



 

 

 

 

 

 

This experiment illustrates how powerful an acoustical entity is a gas bubble in liquid. Each 

bubble behaves like an underwater bell, small ones producing plinks of high notes, and larger ones 

generating low notes [5]. Therefore from the pitch of the ‘plink’, one can determine the size of the 

bubble. The first count of the size distribution of bubbles [6] entrained in the natural world, made 

using the sounds they generated, was undertaken in the early 1980s. This led to similar counts for 

the bubbles trapped by rainfall over the ocean [7,8], and today we see the deployment of at-sea 

acoustic monitors for rainfall [9]. The technique was also deployed in the ocean [2,10,11] to detect 

bubbles trapped under breaking sea waves. When an ocean wave breaks, it generates many bubbles, 

each ‘singing’ its own note, and from the overall sound we can determine the number and size of 

bubbles containing trapped atmospheric gas, which can form clouds [12,13] in the upper ocean. 

These bubbles are responsible for the transfer between atmosphere and ocean   of many hundreds of 

millions of tonnes of atmospheric carbon each year. 

However, to quantify this climatically important carbon transfer, it is not sufficient simply to 

know how many bubbles are injected into the ocean by breaking waves. One must also know how 

many are left some time after the wave has broken, after some bubbles have risen to the surface, and 

others have dissolved. To do this, we developed techniques to measure the ‘silent’ bubbles whose 

ringing ceased some time ago, based on projecting sound at the bubble and re-exciting them to emit 

sound. One particularly useful discovery [14] was that, when a signal with a high frequency (
if ) is 

projected at a bubble cloud at the same time as a signal at a lower frequency (
pf ), then the bubbles 

that are resonant at 
pf  can uniquely scatter the frequency 

i p / 2f f , allowing bubbles of this 

size to be identified from clouds of other bubbles [15-19]. By varying
pf , a cloud of bubbles could 

be scanned to count and size them all uniquely [20]. This was used to count bubbles in the sea, and 

as the basis for the development of a range of techniques suited to oceanic bubble counting [20-22], 

particularly in the surf zone where previous acoustical methods had lacked the ability to cope with 

the time dependent and nonlinear [22,23] effects that would occur there. 

3.  Cetacean acoustics 

Our ability to model the scattering of sound by undersea bubbles allowed us to postulate the 

mechanism by which humpback whales trap prey within spiral bubble nets. Although it had been 

known for decades that whales blow bubbles to do this, the reason why the prey do not escape the 

trap was not known [2]. Our models (Figure 2(a,b)) showed that the spiral bubble net traps the loud 

calls emitted by whales to produce an impassable ‘wall of sound’, whilst simultaneously creating a 

quiet zone in which the prey would congregate, this zone occurring in the model at the location 

where the rising whales feed (as photographed in Figure 2(c)) [24]. 

However, unlike humpback whales, dolphins use high frequency sonar to find prey, and the 

bubble nets they create (Figure 2(d)) would confound their sonar. Rather than accept that dolphins 

would ‘blind’ their most spectacular sensory apparatus when hunting, we set about proving that a 

previously unknown type of sonar processing (TWIPS) could detect prey in bubble nets [25, 26], 

and showed this to work with dolphin sonar calls [27]. Although the question of whether 

odontocetes use such a method or not is still open to question [28, 29]. Industry is now developing 

this to protect shipping in coastal regions such as the Persian Gulf, where clouds of bubbles and 

particles in the near-shore waters make mine detection difficult (Figure 3(a)). Realizing that this 

new processing system could work with radiations other than just sonar, we used it to develop a 

radar system (TWIPR) where the scattering off circuitry from a bomb trigger was in excess of 30 

dB more powerful than the scattering off other targets (Figure 3(b)) [30]. With the ability to detect 

mobile phones as readily and selectively  as bomb triggers, TWIPR can help to find buried targets 

of interest (bombs, people carrying phones buried by collapsed buildings or avalanches) where 

normal radar would not be able to identify the genuine target from other debris (typified in Fig 3(b) 

by (i) & (iii)). 



 

 

 

 

 

 

 
 

Figure 2. Modelling the acoustics of whales and dolphins when they use bubble nets for hunting. (a) 

A plan view 2D map models the bubble-induced variation in sound speed (shown in greyscale) that 

has been inferred from photographic evidence of spiral bubble nets produced by humpback whales. 

A single ray, projected into the open end of the spiral, impacts the bubbly wall in turn at A, B, C, 

D…, the grazing angle decreasing each time such that it does not propagate all the way to the centre 

of the spiral. At each impact with the bubble wall, the ray is partially reflected from the bubbly wall 

and partially transmitted into it, from which point refraction occurs. No absorption is included. (b) 

When many rays are modelled in this way, a ‘quiet’ zone is seen to occur at the centre of the net, 

walled-in by zones of high intensity. The photograph in (c) shows that this corresponds to the point 

at which whales rise from the water (purpose arrow connecting the locations of the source modelled 

whale and quiet zone) (photo by T. Voorheis of Gulf of Maine Production). (b) Image of a dolphin 

blowing bubbles to catch fish (Image courtesy of The Blue Planet, BBC). For details see Refs. [2, 

31-33]. 
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Figure 3. Scenarios where the use of two pulses to distinguish target from clutter would help (a) 

sonar and (b) radar. (a) Aerial image of Persian Gulf (image courtesy J. Descloitres, MODIS 

Land Rapid Response Team at NASA GSFC). (b) TWIPR Radar signal from (i) an aluminium 

plate, (ii) a circuit resembling components of a bomb trigger; (iii) a rusty bench clamp; (iv) 

mobile phones in various states: on, off, or with invalid SIM cards, which (along with differences 

in the radar resonance characteristic of the semiconductors with different models of phones 

contained within the dotted box) gives rise to different scattering strengths. The spatial layout of 

the colour map reflect the superimposition of different tests, because the test rig was not 

sufficiently large to lay out all targets simultaneously. See Ref. [30] for details.  

 

4.  Extraterrestrial acoustics 

The ability to infer the bubble sizes generated from the sounds of waterfalls, breaking waves, and 

rainfall (as discussed in Section 2) was used to create [2, 34] the possible sound of ‘methanefalls’ 

(waterfalls made up of liquid methane and ethane) on Saturn’s largest moon, Titan. As the Cassini-

Huygens mission approached Titan in 2004, no-one knew what the surface would be like because 

Titan is shrouded in a thick fog (Figure 4(a)). However, one body of opinion held that, with a 93 K 

surface temperature, the cold conditions and dense atmosphere would allow for the existence of 

lakes and possibly methanefalls on Titan (Figure 4(b)). 

Prior to Huygens’ landing, we simulated the sound that would be made were Huygens to 

splashdown in a lake, and the sound that a probe on the surface of Titan might detect if it landed 

with its camera facing away from the methanefall. Huygens was very successful, and although its 

images from its landing site revealed a barren landscape (Figure 4(c)), during descent some 

indication of topography that might have been carved by flowing surface liquid was revealed 

(Figure 4(d)), and later radar observations by Cassini revealed lakes (Figure 4(e)). 

The objective of our research was to provide material for outreach, but also to explore the extent 

to which we might start to construct the soundscapes of other worlds. Despite all the planetary 

probes that have been sent out, we have not yet heard the soundscape of another world [35]. 

Consequently, this work was conducted for the purpose of: 

 enabling better design of microphones and sound sources for use on future planetary 

probes, with respect to improving signal to noise ratios, more reliably interpreting any 

detected signals, and enabling and maintaining an appropriate calibration given the 

differences between Earth’s environmental parameters and the deployment environments 

(which can vary hugely even over a single world like Venus or Jupiter) [36-40]); 

 improving the design of missions exploiting acoustics in planetary exploration (for 



 

 

 

 

 

 

example, by correcting the analysis used to predict the correct placement of detectors on 

ice-covered moons like Jupiter’s moon Europa, with the purpose of using sound to explore 

the vast water oceans beneath the ice [41-43]); 

 eliminating errors in mission planning introduced by use of familiar Earth-based acoustics 

to extraterrestrial environments [38]; 

 exploring the extent to which we might interpret sounds picked up by planetary probes to 

ascertain key features about the world the probe is exploring [44,45] (Figure 5). 

For this latter objective, in designing the algorithms to simulate the sounds of worlds, we were 

able to provide a device, licensed to planetaria [44], which not only allows the audience to hear the 

simulated sound of the world under discussion, but in live presentations allows the presenter to use 

the voice they would have on a given planet (if they could live and speak), when telling 

schoolchildren about that planet [46,47]. More details on this topic are available on the Internet 

[48]. 
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Figure 4. Images of Titan of relevance to the Cassini-Huygens mission. (a) Image of Titan. (b) 

Artist’s impression of the Huygens probe parachuting through Titan's atmosphere, having 

previously detached from the Cassini vehicle (seen in the upper left of the image). (Painting by D. 

Seal). (c) The surface of Titan as imaged by the Huygens probe after landing. (d) Images of the 

surface of Titan taken by Huygens during descent. (e) False-colour Cassini radar image of Titan’s 

surface. Blue colouring indicates low radar reflectivity, attributed to hydrocarbon seas, lakes and 

tributary networks filled with liquid ethane, methane and dissolved nitrogen. All image credits: 

NASA/JPL/Caltech. 



 

 

 

 

 

 

 
 

Figure 5. Extraterrestrial locations of interest for acoustical sensors. (a) A computer reconstruction 

of the surface of Venus, created from data from the Magellan spacecraft.  Credit: E. De Jong et al. 

(JPL), MIPL, Magellan Team, NASA http://www.space.com/18525-venus-composition.html (b) 

Dust devil recorded by the HiRISE camera on board the Mars Reconnaissance Orbiter. Tracking 

across the flat, dust-covered Amazonis Planitia in the northern Martian spring of 2012, the core was 

about 140 meters in diameter. Lofting dust into the thin Martian atmosphere, its plume reaches 

about 20 kilometers above the surface. Tangential wind speeds of up to 110 kilometers per hour are 

reported for dust devils in other HiRISE images. Image Credit: HiRISE, MRO, LPL (U. Arizona), 

NASA.http://apod.nasa.gov/apod/ap150303.html. (c) False colour image of evidence for a possible 

cryo-volcano on Titan, photo credit, NASA, Cook et al. [49]. 

 

5.  Cold water cleaning 

 

4.1. The need for cold water cleaning 

Efficient cleaning is central to modern life, from healthcare, to food preparation, to manufacturing and 

maintaining infrastructure [50,51]. This not only constitutes excessive consumption of one of our most 

valuable resources, but also generates large quantities of contaminated run-off. Uses range from the 

domestic to the exotic. Managing and purifying the water used in cleaning is a major issue because: 

 the volumes of water used in cleaning are very great (e.g. it takes 100 tonnes of water to 

produce 1 tonne of clean wool after shearing [51]); 

 purifying run-off is costly (e.g. each cubic meter of water used for cleaning in the nuclear 

industry costs £10,000 to treat subsequently [51]); 

 even water that might appear not to be as grossly contaminated as the above two examples can 

present a hazard because of the volumes are high and run-off tends to travel into natural water 

resources (with detergents poisons, pesticides and herbicides from farmland and industry 

being carried into streams [52] where they can cause the demise of fish populations [53]). 

Policymakers, the public and industry need to act to future-proof society against future problems 

caused by the extensive use of water in cleaning. Already, inadequate cleaning produces severe public 

health issues in hospitals [54, 55]. From major factories in the industrialized world to the local 

abbatoir in the developing world, the mismatch between the volumes of water and additives used, and 

the robustness of the water supplies on which we depend, is failing to do its part in mitigating against 

future crises in water supplies, food production, and healthcare [56]. 

 

http://www.space.com/18525-venus-composition.html
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4.2. The Ultrasonically Activated Stream 

One particular innovation was the Ultrasonically Activated Stream (UAS, invented at the University of 

Southampton and now in production by Ultrawave Ltd. under the name StarStream
TM

), which 

enhances the cleaning ability of liquids, and in particular enables cold water cleaning. The UAS 

system, like the ultrasonic cleaning bath, bases its cleaning action on the speed of the bubble wall 

motion, and not (like pressure washers) on the speed of the flow. As such it will be less damaging. The 

UAS system produces a free flowing liquid stream, each nozzle generating flows of around 1-2 

litres min
-1

.  Here the cleaning action of bubbles, excited with a suitable ultrasonic field, is generated 

at the end of a fluid stream. In addition, low flow rates of fluid within this approach are useful in 

releasing the contaminant from the surface and avoiding re-deposition at another location (a further 

possible limitation in bath geometries). Using higher frequencies and generating lower amplitudes of 

ultrasound in air than cleaning baths, StarStream has not had any reports of the ‘subjective’ adverse 

effects (headaches, nausea, tinnitus, migraine etc.) anecdotally attributed to some other sources of 

ultrasound in air, including some (but by no means the majority of) users of ultrasonic cleaning baths 

[57]. The low velocity stream approach has many advantages; however, two basic criteria are 

necessary for this strategy to be successful. First, the sound field must be sufficient to generate bubble 

activity at the solid/liquid interface of the material to be cleaned. Second, a suitable bubble population 

must also be present on the surface of the target that needs cleaning. This population can then be 

driven by the sound field deployed and act on the contaminant at the interface in question (through 

suitable oscillation [58-61] and shear forces). These two requirements are by no means trivial to create 

within a flowing stream but this has successfully been achieved in the UAS system.  

The UAS system in some ways brings the power of an ultrasonic cleaning bath to the end of a hose, 

so that items can be ‘cleaned in place’. Both the UAS and the ultrasonic cleaning bath replace the 

pressure and flow that comes purely from the stream of water in the pressure washer, with pressure 

and flow close to a bubble wall. However, it would not be correct to equate the bubble activity in the 

cleaning bath with that which occurs in the UAS. The ultrasonic cleaning bath causes cavitation, 

whereby bubbles collapse under pressure fields to generate extreme conditions [62-64], which can 

include the generation of free radical generation [65, 66] and strong pressure waves [67-68] from the 

gas compression, although significantly more powerful ones can occur in the blast waves launched 

when collapsing bubbles involute to form microjets [69-72]. Pressure waves and jet impact can 

remove material from surfaces [71, 73]. In contrast, the UAS system projects sound down a column of 

water [74] in order to excite surface waves [75] on the walls of microscopic bubbles on the surface to 

be cleaned. These surface waves can generate convection [76-79] and shear forces [80, 81] in the 

liquid close to the bubble wall, and so produce a cleaning effect, and alter the way material deposits 

onto surfaces [82]. 

The design, construction and operation of the UAS device are detailed elsewhere [83], but the basic 

principle is that cold water is fed into a hollow horn that contains an ultrasonic transducer operating in 

excess of 100 kHz. The ultrasound and microbubbles in the flow both travel down the stream of water 

to the target that is to be cleaned. If the bubbles are ultrasonically activated when they are on the 

target, the cleaning ability of the liquid is enhanced in four ways (figure 6): 

 The bubbles are attracted to the surface to be cleaned by Bjerknes radiation forces [84], and 

are not as rapidly washed away by the flow as they would be in the absence of ultrasound.  

 The bubbles are particularly attracted into crevices by secondary Bjerknes radiation forces 

[84]; such crevices are traditionally more difficult to clean by wiping or brushing.  

 Surface waves on the walls of the bubble, excited by the ultrasound, produce enhanced 

convection in the liquid and enhanced shear in the contaminant, causing its removal.  

 The progress of the bubble into the crevices would, if the liquid contained additives (e.g. 

detergent or biocide) cause that additive to penetrate the crevice far more rapidly than 

would reliance on simple diffusion, so that cleaning can potentially be achieved more 

rapidly, and with lower concentrations of additives.  

 



 

 

 

 

 

 

 

 

 
 

 

Figure 6. Schematic comparing the behavior of bubbles emitted from a StarStream device, for cases 

when: (a) no ultrasound is used, and the water contains no additives; (b) the water contains no 

additives, but the ultrasound is activated; (c) no ultrasound is used, and the water contains additives (in 

this case, biocide); (d) the water contains additives (in this case, biocide) and ultrasound. 

 

 

 



 

 

 

 

 

 

The effectiveness of the UAS system has been demonstrated in controlled tests on particularly 

difficult problems, specifically on:  

 the cleaning of brain tissue and prions from surgical steel, the removal of contaminating 

material from bone transplants [85]; 

 the removal of biofilms of dental bacteria [85, 86]; 

 the cleaning of skin models  [85, 87]; 

 the cleaning of marine biofoulant [88]; 

 the cleaning of railway track [89]; 

 the cleaning of hands, kitchen surfaces, tools, glue from jar labels, contaminated tubes, and 

components of railway locomotives [90]. 

Here a range of other applications are shown. In all of them, the UAS system was a commercial 

StarStream device that projected, into the liquid stream, only cold water directly from the mains water 

supply, without additives or heating, at a flow rate of around 1 litres per minute. 

Figure 7 shows how StarStream enables cold water, without additives, to remove mascara makeup 

from a metalworker’s file. Figure 8 shows removal of whiteboard marker from a hand by StarStream 

using just cold water with no additives. Figure 9 shows the removal of a layer of Vaseline
TM

 petroleum 

jelly (beneath which was a layer of lipstick, added to provide a visual cue for the removal of the 

Vaseline
TM

). 

 

 
 

Figure 7. Cleaning a workbench file using UAS. (a,b) A workbench file has mascara make-up smeared 

onto it. (c) A StarStream device – with the ultrasound turned off - passes a stream of cold water with 

no additives over this contaminant, and afterwards (d) there has been no observable cleaning. 

However, when (e) the same water stream has ultrasound added to it, then afterwards (f) both the 

contaminant has been removed. The panels are stills from the video available at: 

https://www.youtube.com/watch?v=22tUGEGyk10  

 

 
 

Figure 8. Cleaning whiteboard marker off a hand using UAS. (a) A line of red whiteboard marker is 

applied to a hand, but (b) when a StarStream device – with the ultrasound turned off - passes a stream 

of cold water with no additives over this contaminant, no observable cleaning occurs. However, when 

(c) the same water stream has ultrasound added to it, then the hand is cleaned. The panels are stills 

from the video available at: https://www.youtube.com/watch?v=ElxcBn7-t8s  

 

https://www.youtube.com/watch?v=22tUGEGyk10
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Figure 9. Cleaning lipstick, covered by a protective layer of Vaseline
TM

, using UA. (a,b) A ceramic tile 

(10 cm x 10 cm) has lipstick placed on one corner, and a layer of Vaseline
TM

 petroleum jelly placed 

over the lipstick. (c) A StarStream device – with the ultrasound turned off - passes a stream of cold 

water with no additives over this double contaminant, and afterwards (d) there has been no observable 

cleaning. However, when (e) the same water stream has ultrasound added to it, then afterwards (f) 

both layers of contaminant have been removed. The panels are stills from the video available at: 

https://www.youtube.com/watch?v=XZ2oe4XaM3Y 

 

4.2. Choice of device 

There are many options for cleaning. Perhaps the most widespread for external use are domestic and 

small-industry power washers (also known as pressure washers) which pass water (usually with 

additives) at high speed onto the surface to be cleaned. Contaminants are flushed away (so that unlike 

systems that clean immersed targets, the object to be cleaned is not immersed in a ‘soup’ of 

contaminated liquid). The down-side to this is that power washers use large volumes of liquid (up to 

20 litres per minute for a large pressure washer), and consequently lead to large volumes of 

contaminated run-off. Pressure washers are effective, and if resources are significant (for example, on 

a warship or on a train) they can always be scaled up to produce enormous pressure. As a result, in 

assessing the performance of a pressure washer against any alternative, the first question is not ‘which 

cleans best’ but rather ‘can I tolerate the pressures, splashback, aerosol, run-off and potential damage 

that the candidate pressure washer might produce?’. 

On the domestic or small-business scale, pressure washers are difficult to scale up (in terms of 

using multiple nozzles or larger nozzles), both because of the pump requirements (in terms of power 

and water usage), and because they generate considerable back force when used, meaning that the 

structural support for scaled up versions must become increasingly robust. Indeed, even on major 

infrastructure like the railways, although pressure washers can be used to try to mitigate the effect of 

‘leaves on the line’, those washers are so powerful that they damage the track if used when the 

locomotive is stationary, and when in normal use (with the locomotive moving) they can damage the 

locomotive from the stones that the pressure washers accidentally throw up, and the run-off can 

damage the banks on which the track sits. This challenge is discussed in more detail later.  

Even small power washers can be damaging to delicate surfaces (a well-recognized mistake by boat 

owners who attempt to clean rope with pressure washers), and they generate aerosols of contaminated 

liquid (the liquid droplets produced when pressure-washing, say, sewage lines represent a significant 

hazard and route to spread contamination [51]). Whether the user cares about the backsplash, aerosol 

and spray generated by pressure washers, and the abilities of these to carry and redistribute 

contaminants onto nearby objects including the user (where they can be inhaled, settle on skin or eyes 

etc.), depends on the application. Applications where such phenomena might be of particular concern 

https://www.youtube.com/watch?v=XZ2oe4XaM3Y


 

 

 

 

 

 

include cases where the contaminant contains sewage, bacteria, radionucleotides, petrochemicals or 

chemical ingredients that represent an environmental hazard (e.g. marine antifoulant, microbeads etc.). 

Pressure washers will entrain an ad hoc population of bubbles. There are many technologies 

advertised as enhancing cleaning by the addition of bubbles, often with size distributions constrained 

to certain small sizes [91-94] but without going to the trouble (in terms of instrumentation, power 

requirements etc.) of adding sound, begging the question of why one would ever wish to use an 

ultrasonic system, with its added complexity of needing to power an ultrasonic source. 

The ultrasonic field does two things: it causes motion of the bubble wall (e.g. generating inertial 

cavitation in the ultrasonic cleaning baths, and surface waves with UAS systems); and it attracts the 

bubbles towards the solid and into crevices. Figure 10 compares the Primary Bjerknes force that 

attracts this bubble to the rigid wall, with the Mutual Bjerknes force which would be attractive 

between two bubbles whose centres are separated by the distance given on the horizontal axis (an 

unrealistic proposition for distance smaller than a bubble diameter). As expected [95, 96], the Primary 

Bjerknes force that attracts the bubble to the wall is many orders of magnitude greater than the other 

two forces: although it must in principle decrease to zero at the bubble wall, of course these numbers 

lose meaning within one bubble radius (here, 20 microns) from the wall. Coincidentally, this is 

roughly the distance from the wall at which the Mutual Bjerknes force (which in principle varies with 

distance from the wall as an inverse square law [96]) equals the buoyancy force on the bubble. 

 
 

Figure 10. Comparison of pressures and forces acting on a bubble near a wall, plotted on a common 

horizontal axis that shows distance from a rigid wall (limited to within one quarter wavelength from 

the rigid wall). The upper panel shows the variation of the amplitude of the time-varying pressure, 

formed when a 135 kHz plane wave of amplitude 100 kPa is normally incident on the rigid wall. The 

lower panel compares the Primary and Mutual Bjerknes forces on an air bubble in water under 1 bar 

static pressure. The buoyancy force is shown for comparison. Note that both axes are logarithmic. The 

calculation assumes simple harmonic motion of the component of bubble motion that contributes to 

the zeroth order spherical harmonic perturbation of the bubble wall (in practice such high driving 

pressures will cause departures from this in this bubble). 



 

 

 

 

 

 

The magnitude of the Primary Bjerknes force that attracts the bubble to the wall is impressively 

large, given that the water hammer pressure exerted by the flow of the liquid stream would be only 20-

40 Pa, 100,000 less than the water hammer pressure from a domestic pressure washer. A pressure 

washer would of course not be capable of using that water hammer pressure as an active force to drive 

a bubble to a wall, as the Primary Bjerknes force does (and of course the acoustic radiation forces that 

attract bubbles to surfaces will increase if the wall is structured [97]). Therefore the radiation forces 

that attract the bubble to the wall are impressively high, but it is critically important to recall that these 

are the forces causing bubble migration; they must be distinguished from the forces that cause 

cleaning. The forces associated with the actual cleaning are then the shear forces close to the bubble 

wall produced by surface waves. 

Addressing therefore the use of ultrasonically activated bubble activity in cleaning, the most well 

established device for cleaning using bubbles and adding sound, is the ultrasonic cleaning bath [98], 

which most frequently relies on an ad hoc bubble population. As an immersion system, it does not 

generate large quantities of run-off and can save time by bath-processing many units simultaneously. 

Such baths represent an established global product, but have many limitations which prevent further 

market penetration: the bath is too small for some objects (e.g. they cannot be used for vehicle 

cleaning); the bath cannot get into complex geometries and clean them (e.g. it cannot be used to hose 

down inside an engine); the item to be cleaned sits in a soup of contaminated liquid. Moreover, 

immersion of the object to be cleaned into the bath can degrade the sound field and the cleaning action 

[51]. This is not always apparent, since the monitoring of the cleaning performance of such ultrasonic 

baths is often rudimentary, much of industry eschewing new techniques in favour of a check based on 

the insertion of domestic aluminium cooking foil into the bath to see whether the cavitation is capable 

of generating small erosion pits and holes within the foil [98, 99]. The above list of potential 

drawbacks to ultrasonic cleaning baths is not exhaustive when considering a procedure such as hand 

washing: the ultrasonic bath works by generating violent bubble collapse, which may be destructive to 

tissue such as skin, and can penetrate tissue at bath frequencies. 

Comparison of UAS to ultrasonic cleaning baths and pressure washers is illuminating, in that it 

shows that the question is less of how well a technology cleans, but more of in what scenario it can be 

used. Ultrasonic cleaning baths and UAS both use ultrasonically activated bubbles, but the mechanism 

by which they clean is very different, and this produces key observables. For example, one would 

never immerse a hand in an ultrasonic cleaning bath because the hazard of cell damage is high, and yet 

UAS has to date been shown to be safely used on hands (figure 8). One might therefore conclude that 

UAS uses a ‘gentler’ form of cavitation, and few would argue that Faraday waves represent a ‘gentler’ 

form of bubble activity than the inertial cavitation that the bath generates. However having settled on 

the label of ‘gentler’ cavitation, one must not confuse gentleness with effectiveness: in a recent study 

[89, 100], UAS was shown to clean off railway track, within seconds, the organic layer produced when 

leaves are crushed onto it, whilst ultrasonic cleaning baths were unable to remove such a contaminant, 

even after many minutes of immersion. In addition to the advantages established above (UAS could 

clean the track in place, whilst the track had to be cut in into sections small enough to fit into the bath, 

transported to it, and were immersed in it off line), UAS brought greater effectiveness in cleaning 

whilst also being (in tests to date) ‘hands safe’. This particular contamination is responsible for the 

‘leaves on the line’ problem which costs the UK rail network £50M annually, as timetables are 

adjusted to reduce the speed of the trains to compensate for the decrease in braking ability that crushed 

leaf contamination causes.  

Therefore comparison of these two ultrasonic cleaning methods provides fruitful discussions on 

effectiveness, whilst highlighting that there are particular scenarios to which one or other is suited 

(whilst the need to immerse targets brings many limitations to ultrasonic cleaning baths as discussed 

above, it does allow batch cleaning, and so can clean large numbers of small items more quickly than 

could a single UAS nozzle).  

In contrast, there is little to be gained in comparing cleaning effectiveness of any system against 

that of the pressure washer, since the latter can always be scaled up, to the point where the most 



 

 

 

 

 

 

powerful will cut through thick steel. The issue therefore is not one of how well each cleans, but 

whether the scenario will allow deployment. Can the user cope with the slow rate of covering an area 

that a single UAS nozzle requires? Can the user accept the surface damage, aerosol production, and 

use of electrical and water resources that come with the size of pressure washer that is required to 

achieve an acceptable level of cleaning? Does the need to ‘clean-in-place’ preclude use of an 

ultrasonic bath? Section 4.3 will explore a particular application, the cleaning of wounds and ulcers, 

where a UAS nozzle (which would generate water hammer pressures 100,000 less than those 

generated by the weakest domestic pressure washer) might make an interesting comparison with 

pulsed lavage system [101], particularly if low water and power requirements were to make them 

portable.   

 

4.3. Implications for the cleaning of wounds and ulcers 

As mentioned above, StarStream will enhance the efficacy of additives (e.g. detergents or biocides) in 

the penetration of cracks and crevices, so why demonstrate (in figures 7-9) its cleaning ability with 

just cold water and no additives? Some targets (e.g. lettuce [102]) can only tolerate cold water. In 

other circumstances (e.g. rural wound cleaning in a Low/Middle Income Country [LMIC]) cold 

bottled or packaged water might be the only clean water available [103]. 

Even in controlled hospital conditions in the developed world, wound cleaning is a major and 

unsolved issue. Considering just diabetics (which ‘is now the biggest cause of amputation’ [104]), the 

inability to treat ulcers properly creates a huge cost to patients and to the NHS.  Discussing the care of 

diabetics in England, Kerr [105] states that: “Around 6,000 people with diabetes undergo leg, foot or 

toe amputation each year in England. Many of these amputations are avoidable…. Around 61,000 

people with diabetes are thought to have foot ulcers at any given time, approximately 2.5% of the 

diabetes population… Only 50% of patients with diabetes who have had an amputation survive for a 

further 2 years. Even without amputation, the prognosis is poor. Only around 56% of people with 

diabetes who have had ulcers survive for 5 years… In 2010-11, the NHS in England spent an 

estimated £639 million–£662 million, 0.6–0.7% of its budget, on diabetic foot ulceration and 

amputation.” In particular, by calculating the excess bed days as the difference between the number of 

days that a procedure actually took and the number of days it would normally be expected to take, 

Kerr estimated that ‘expenditure on excess bed days in people with diabetic foot ulcers admitted to 

non-foot care HRGs is estimated at £100 million… The annual cost of non-amputation inpatient care 

for diabetic foot ulcers is estimated at £213 million’ (an HRG  - Healthcare Resource Group - is 

grouping of patient events that consume a specified resource). 

The impact of enhanced wound cleaning in the NHS that StarStream (or some other procedure) 

might provide could therefore be significant. However StarStream’s emphasis on the use of low 

volumes of cold water has other implications, notably because it turns cold drinking water (which on 

its own is not highly effective as a wound cleaner) into a more effective cleaner. If this enhanced 

cleaning ability translated through to wound cleaning, StarStream would have particularly 

applicability for those scenarios in which clean water is a scarce, because water is a dense commodity 

that has multiple uses. An army medic, or mountain rescue or catastrophe zone worker, might carry a 

limited amount of drinking water, but appreciate having the ability (when the need arises) to pass 

his/her remaining drinking water reserves through a battery-powered StarStream nozzle (perhaps with 

powder added first to make saline) in order to clean a wound for a few minutes. Battlefield and 

catastrophe zone wounds can be extremely hazardous, and sepsis can set before the victim arrives at 

hospital. Cleaning the wound first can reduce that hazard. Ambulances, rescue vehicles, small boats, 

helicopters etc. could all carry such items. Of course, for much of the world the prospect of 

transportation to a modern hospital is remote even for as predictable an event as rural childbirth in 

peace time [106], and in much of the world healthcare needs are made less predictable and manageable 

by accident, migration, conflict, resource shortages and infrastructure that is poor or overwhelmed.    

Sepsis is indeed a huge problem: Severe sepsis hospitalizations are currently doubling each decade, 

resulting in at least 750,000 persons affected annually in the United States [107, 108], and 500,000 



 

 

 

 

 

 

patients with severe sepsis are treated annually in US emergency departments [109], 100,000 of which 

are children [110, 111]. In one study, 27.1% of a set of 56,673 adult admissions to Intensive Care in 

England, Wales and Northern Ireland  between 1995 and 2000 met severe sepsis criteria within the 

first 24 hours [112]. These admissions accounted for 45% of the total usage of the intensive care unit, 

and 33% of the hospital bed days used by all intensive care unit admissions. Of these, 35% died before 

being discharged from the intensive care unit, and the proportion that died at some point during their 

hospital stay was 47% [112]. Another study evaluated 28,150 patients with severe sepsis and septic 

shock, from January 2005 through February 2010, and found that in-hospital mortality was 29.7% for 

the cohort as a whole [113]. This percentage includes 17,990 patients who received antibiotics after 

sepsis identification. Expert consensus suggested that every 1 hour delay in effective therapy decreases 

survival by around 6%, and the Surviving Sepsis Guidelines mandate that intravenous antimicrobial 

therapy must be administered within 1 hour of recognizing septic shock [113, 114-119]. 

What has this to do with cold water cleaning? The above Surviving Sepsis Guidelines are 

challenging to implement [120]. Levy et al. [121] analysed data from 165 hospitals treating over 

15,000 patients with septic shock and revealed that only 68% of patients received broad-spectrum 

antibiotics within 3 hours of presentation at the Emergency Department. However, sepsis is often not 

caused by infection (and so will not respond to antimicrobial therapy). Even if it is caused by 

infection, those infections may be fungal or viral, and not respond to antibiotics.  Therefore the 

pressure outlined above to apply a broad-spectrum antibiotic may produce possible unwanted effects 

(such as suppression of the gut microbiome), could displace the required therapy that would be used 

had the cause of sepsis been properly identified, and will promote the development of Antibiotic 

Resistance. Cleaning wounds on-site, before transport to hospital, might therefore have wider benefits 

than simply reducing the hazard of sepsis in the patient – on a large scale it is a tactic to mitigate 

against the development of AntiMicrobial resistance (AMR), which is an arms race against natural 

selection that cannot be won [50]. To mitigate against potential catastrophes in healthcare and food 

production (which currently relies upon antibiotics to farm sufficient livestock to feed large tracts of 

the world), measures over and above the development of new antibiotics must be undertaken [50]. 

Two key elements of this are: 

 infection prevention - if the microbe never enters the body, no antimicrobial is required; 

 the removal of environments that encourage resistant strains to develop: the longer microbes 

are allowed to persist on surfaces involved in food preparation, infection management and 

water and waste treatment, the increased their chance of developing resistance and/or 

transferring it between microbes. 

Cleaning is key to both these elements, and applies not just to hospital infections. To take just one 

example, despite all efforts, the UK population persists in washing their hands lamentably short of the 

recommended 20 s in warm soapy water. The past decade, and more, has shown that we cannot change 

the behaviour of sufficient numbers of people with campaigns to educate them on hand washing: the 

StarStream philosophy would be that, if we cannot change the behaviour, we change the water, 

making any shorter washes in cold water as effective as they can be. 

StarStream cleans by a mechanical scrubbing action, which is very different to the chemical attacks 

that microbes are often challenged with, so giving another route to combat AMR. A major problem is 

that such agents enter the environment (the water supply, sewage, run-off etc.) where their occurrence 

aids the development of AMR. Microbe populations can become resistant because traditional chemical 

routes to cleaning leave ‘smoking guns’ in our water run-off, giving clues as to what was used to kill 

the previous generations of microbes. These ‘clues’ in sub-therapeutic concentrations might assist the 

vast reservoirs of microbes in our water and sewage systems to develop resistance. With StarStream, 

not only can we clean well, but nothing enters the run-off except the material we rinse off – there are 

no chemical clues that are flushed into the environment that microbe populations can use in the 

development of AMR. 

The implications go further. The scenario raised above, of rescue personnel and vehicles needing to 

conserve the volume of water they carry but undertake adequate wound cleaning, will be even more 



 

 

 

 

 

 

pertinent in a decade, when the first responder in many incidents is likely to be a drone. With its 

powerful battery but limitations in the amount of liquid it can carry, a drone makes an ideal test 

scenario for UAS: whilst it would be logical for a drone to carry a small amount of water to rehydrate 

a person needing assistance, a trade-off would normally need to be made between carrying liquid for 

rehydration and carrying liquid for wound cleaning. The ability to undertake cold water cleaning with 

water that could otherwise be used for rehydration ameliorates the conflict inherent in the choice of 

which liquid to carry. Indeed, by making drinking water dual-use (for rehydration and wound 

cleaning), there is impetus to build not-for-profit battery-powered reusable UAS nozzles that can fit on 

the top of any bottle of drinking water, for those parts of the world (in rural clinics, maternity units 

etc.) where bottled water represents the only source of clean water: UAS would turn such water from 

being a mediocre wound cleaner into a greatly enhanced one (Figure 11).  

 

   
(a) (b) (c) 

Figure 11. Concept for a battery-powered solar-charged UAS device that can fit onto any bottled 

drinking water unit. For the video see https://youtu.be/o903Yey71L4  

 

 

6.  Conclusions 

The interaction of bubbles with acoustic fields provides a route by which fundamental research, 

covering physical, engineering, zoology, biophysics and biomedicine can be conducted and translated 

through to benefit society. 

A key opportunity for bubble acoustics is in cold water cleaning, and its potential to address AMR. 

Unless preventative measures are found (and no-one in the world currently knows what those will be), 

AMR will (through the colloquial ‘rise of superbugs’) by 2050 be killing more people than cancer, and 

cost the world economy more than the current size of the global economy. We will not be able to feed 

the world unless we wean our food production industry off its dependence on antibiotics; common 

medical procedures (minor surgery, childbirth) will become significantly more hazardous; and 

advances in treatments (such as those for childhood leukaemia) will become reversed. 

To offset this doom, the benefits for finding these preventative measures now would revolutionise 

current healthcare, the example given here being of the revolution to rural childbirth, wound treatment 

and childbirth, and the cost of amputations in diabetics. 

  

Acknowledgements 

The literature search for AMR contained in section 4.3 was funded by EPSRC's Network for 

Antimicrobial Action 'Bridging the Gap' grant NAMRA (EP/M027260/1), and by the University of 

https://youtu.be/o903Yey71L4


 

 

 

 

 

 

Southampton Strategic Research Group NAMRIP http://www.southampton.ac.uk/namrip/index.page?. 

The author is very grateful to Craig Dolder and Mengyang Zhu for assistance in generating figure 10, 

and to Dr Dolder for drawing figure 11 at the author’s request, and for animating it: the animation, and 

other data from study are openly available from the University of Southampton repository at is 

http://dx.doi.org/10.5258/SOTON/400818. 

 

References 

                                                      

[1]  Rayleigh, L 1917 On the pressure developed in a liquid during collapse of a spherical cavity 

Phil. Mag. 34, 94-98 

[2]  Leighton T G 2004 From seas to surgeries, from babbling brooks to baby scans: The acoustics 

of gas bubbles in liquids International Journal of Modern Physics B 18(25) 3267-314 

[3]   Noltingk  B  E  and  Neppiras  E  A.  1950 Cavitation produced by ultrasonics. Proc. Phys. Soc. 

B 63, 674-685. 

[4]   Neppiras  E  A  and  Noltingk  B  E. 1951 Cavitation produced by ultrasonics: Theoretical 

conditions for the onset of cavitation.  Proc. Phys. Soc. B 64, 1032-1038. 

[5]  Minnaert M 1933 On musical air-bubbles and sounds of running water Phil. Mag. 16 235-48 

[6]  Leighton T G and Walton A J 1987 An experimental study of the sound emitted from gas 

bubbles in a liquid European Journal of Physics 8 98-104 

[7]  Pumphrey H C and Walton A J 1988 Experimental study of the sound emitted by water drops 

impacting on a water surface Eur. J. Phys. 9, 225-31  

[8]  Leighton T G, White P R and Schneider M F 1998 The detection and dimension of bubble 

entrainment and comminution J. Acoust. Soc. Am. 103 1825-35 

[9]  Nystuen J A and McPhaden M J 2001 The beginnings of operational marine weather 

observations using underwater ambient sound, In Acoustical Oceanography, ed TG 

Leighton, GJ Heald, H Griffiths and G Griffiths (Institute of Acoustics) Proceedings of the 

Institute of Acoustics 23(2) 135-41 

[10]  Medwin H and Daniel A C Jr. 1990 Acoustical measurements on bubble production by spilling 

breakers J. Acoust. Soc. Am. 88 408-12 

[11]  Updegraff G E and Anderson V C 1991 Bubble noise and wavelet spills recorded 1 m below the 

ocean surface J. Acoust. Soc. Am. 89 2264-79 

[12]  Thorpe S 1982 On the clouds of bubbles formed by breaking wind-waves in deep water, and 

their role in air-sea gas transfer Philos. Trans. Roy. Soc. Lond. A 304 155-210 

[13]  Farmer D M and Vagle S 1989 Waveguide propagation of ambient sound in the ocean-surface 

bubble layer J. Acoust. Soc. Am. 86 1897-1908  

[14]  Leighton T G, Lingard R J, Walton A J and Field J E 1991 Acoustic bubble sizing by the 

combination of subharmonic emissions with an imaging frequency Ultrasonics 29, 319-23 

[15]  Leighton TG, Phelps A D, Ramble D G and Sharpe D A 1996 Comparison of the abilities of 

eight acoustic techniques to detect and size a single bubble Ultrasonics 34 661-7 

[16]  Leighton T G, Ramble D G and Phelps A D 1997 The detection of tethered and rising bubbles 

using multiple acoustic techniques J. Acoust. Soc. Am. 101(5) 2626-35  

[17] Phelps A D and Leighton T G 1997 The subharmonic oscillations and combination-frequency 

emissions from a resonant bubble: their properties and generation mechanisms. Acta 

Acustica 83 59-66 

[18]  Phelps A D and Leighton T G 1996 High resolution bubble sizing through detection of the 

subharmonic response with a two frequency excitation technique’, J. Acoust. Soc. Am. 99, 

1985-92. (1996). 

http://www.southampton.ac.uk/namrip/index.page
http://dx.doi.org/10.5258/SOTON/400818


 

 

 

 

 

 

                                                                                                                                                                      

[19]  Ramble D G, Phelps A D and Leighton T G 1998 On the relation between surface waves on a 

bubble and the subharmonic combination-frequency emission Acustica with Acta Acustica 

84(5), 986-88 

[20]  Phelps A D, Ramble D G and Leighton T G 1997 The use of a combination frequency technique 

to measure the surf zone bubble population J. Acoust. Soc.Am. 101(4) 1981-9 

[21]  Phelps A D and Leighton  TG 1998 Oceanic bubble population measurements using a buoy-

deployed combination frequency technique IEEE Journal of Oceanic Engineering 23(4), 

400-10 

[22]  Leighton T G, Meers S D and White P R 2004 Propagation through nonlinear time-dependent 

bubble clouds and the estimation of bubble populations from measured acoustic 

characteristics Proc. Roy. Soc. Lond. A 460(2049) 2521-50 

[23]  Clarke J W L and  Leighton T G 2000 A method for estimating time-dependent acoustic cross-

sections of bubbles and bubble clouds prior to the steady state J. Acoust. Soc. Am. 107(4), 

1922-9 

[24]  Leighton T G and White P R 2014 Dolphin-inspired target detection for sonar and radar  

Archives of Acoustics, 39(3) 319-32 doi: 10.2478/aoa-2014-0037 

[25]  Leighton T G, Finfer D C, White P R, Chua G-H and Dix J K 2010 Clutter suppression and 

classification using Twin Inverted Pulse Sonar (TWIPS) Proceedings of the Royal Society A, 

466, 3453-78 doi:10.1098/rspa.2010.0154 

[26]  Leighton, T G, Finfer D C, Chua G H, White P R and Dix J K 2011 Clutter suppression and 

classification using Twin Inverted Pulse Sonar in ship wakes  Journal of the Acoustical 

Society of America 130(5) 3431-7 doi:10.1121/1.3626131 

[27]  Leighton T G, Chua G-H and White P R 2012 Do dolphins benefit from nonlinear mathematics 

when processing their sonar returns? Proceedings of the Royal Society A 468 3517-32 doi: 

10.1098/rspa.2012.0247  

[28]  Chua, G-H, White P R and Leighton T G 2012 Use of clicks resembling those of the Atlantic 

bottlenose dolphin (Tursiops truncatus) to improve target discrimination in bubbly water 

with biased pulse summation sonar IET Radar Sonar & Navigation 6(6) 510-15 doi: 

10.1049/iet-rsn.2011.0199 

[29]  Finfer D C, White P R, Chua G H and Leighton T G 2012 Review of the occurrence of multiple 

pulse echolocation clicks in recordings from small odontocetes IET Radar Sonar & 

Navigation 6(6) 545-55 doi: 10.1049/iet-rsn.2011.0348 

[30]  Leighton T G, Chua G-H, White P R, Tong K F, Griffiths H D and Daniels D J 2013 Radar 

clutter suppression and target discrimination using twin inverted pulses Proceedings of the 

Royal Society London A 469(2160) 20130512 (14 pages) doi: 10.1098/rspa.2013.0512 

[31]   Leighton T G, Richards S D and White P R 2004 Trapped within a 'wall of sound': A possible 

mechanism for the bubble nets of the humpback whales Acoustics Bulletin, 29(1), 24-29 

[32]   Leighton T G, Finfer D, Grover E and White P R 2007 An acoustical hypothesis for the spiral 

bubble nets of humpback whales and the implications for whale feeding Acoustics 

Bulletin, 22(1), 17-21 

[33]   Leighton T G, Finfer D and White P R 2007 Cavitation and cetacean Revista de 

Acustica, 38(3/4), 37-81 

[34]  Leighton T G and White P R 2004 The Sound of Titan: A role for acoustics in space exploration 

Acoustics Bulletin 29(4) 16-23 

[35]  Leighton T G and Petculescu A 2008 Sounds in space: The potential uses for acoustics in the 

exploration of other worlds Hydroacoustics 11 225-38 

[36] Jiang J, Baik K and Leighton T G 2011 Acoustic attenuation, phase and group velocities in 

liquid-filled pipes II: Simulation for spallation neutron sources and planetary exploration J. 

Acoust. Soc. Am. 130(2) 695-706  



 

 

 

 

 

 

                                                                                                                                                                      

[37]  Leighton T G 2009 Fluid loading effects for acoustical sensors in the atmospheres of Mars, 

Venus, Titan and Jupiter J. Acoust. Soc. Am.  125(5), EL214-EL219 

[38]  Ainslie M A  and Leighton T G 2016 Sonar equations for planetary exploration. Journal of the 

Acoustical Society of America, 140(2), 1469–1480 (doi:10.1121/1.4960785).  

[39]   Ainslie M A and Leighton T G 2009 Near resonant bubble acoustic cross-section corrections, 

including examples from oceanography, volcanology, and biomedical ultrasound Journal of 

the Acoustical Society of America, 126(5), 2163-2175 

[40]   Robb G B N, Robinson S P, Theobald P D, Hayman G, Humphrey V F, Leighton T G, Wang L 

S, Dix J K and Best A I 2009 Absolute calibration of hydrophones immersed in sandy 

sediment Journal of the Acoustical Society of America,125(5), 2918-2927 

[41]  Leighton T G, Finfer D C and White P R 2008 The problems with acoustics on a small planet 

Icarus 193(2) 649-52 

[42]  Leighton T G, White P R and Finfer D C 2012 The opportunities and challenges in the use of 

extra-terrestrial acoustics in the exploration of the oceans of icy planetary bodies Earth 

Moon and Planets 109(1-4), 91-116 

[43]  Leighton T G 2012 The use of extra-terrestrial oceans to test ocean acoustics students’, J. 

Acoust. Soc. Am. 131(3 Pt 2), 2551-5. 

[44]   Petculescu A and Leighton T G 2016 Guest editorial: Acoustic and related waves in 

extraterrestrial environments. Journal of the Acoustical Society of America, 140(2), 1397–

1399 (doi:10.1121/1.4961539). 

[45]   Leighton T G, Banda N, Berges B, Joseph PF and White P R 2016 Extraterrestrial sound for 

planetaria: a pedagogical study. Journal of the Acoustical Society of America, 140(2), 1400-

1419 (doi:10.1121/1.4960786) 

[46]  Leighton T G and Petculescu A 2009 The sound of music and voices in space Part 1: Theory 

Acoustics Today 5(3) 17-26 

[47]  Leighton T G and Petculescu A 2009 The sound of music and voices in space Part 2: Modelling 

and simulation Acoustics Today 5(3) 27-9 

[48] Leighton T G 2015 The sounds of voices and waterfalls on other planets University of 

Southampton http://tinyurl.com/znx4rve  (publ. Dec 13 2014; Last accessed Feb 21, 2016) 

[49]   Cook J.-R., Brown D C and Laustsen P 2010 Cassini Spots Potential Ice Volcano on Saturn 

Moon,” Cassini Solstice Mission, News and Features (Dec 14, 2010), Jet Propulsion Lab 

California Inst. Tech. http://saturn.jpl.nasa.gov/news/newsreleases/newsrelease20101214/  

(last observed 5 Dec 2015). 

[50] Leighton T G 2015 We need more than just new antibiotics to fight superbugs, The 

Conversation (15 July 2015) https://theconversation.com/we-need-more-than-just-new-

antibiotics-to-fight-superbugs-44054  (publ. March 5, 2015; Last accessed Feb 21, 2016) 

[51]  Leighton T G, Birkin P R and Offin D. 2013 A new approach to ultrasonic 

cleaning, Proceedings of the International Congress on Acoustics,  19, paper 075029 (2013) 

(4 pages) doi: 10.1121/1.4799209 

[52]  Enk M D and Mathis B J 1977 Distribution of cadmium and lead in a stream ecosystem 

Hydrobiologia 52(2-3) 153-8 

[53]  Clark E H 1985 The off-site costs of soil erosion J. Soil and Water Conservation 40(1) 19-22  

[54]  Cohen E 2015 Deadly superbug-related scopes sold without FDA approval. CNN News Website 

http://edition.cnn.com/2015/03/04/us/superbug-endoscope-no-permission/ (published March 

5, 2015; Last accessed Feb 21, 2016) 

[55]  Shaw M C 2015 Who’s Watching The Watchers: Big Problems With ERCP Scopes.  Health 

News Digest http://www.healthnewsdigest.com/news/contributing%20columnist0/Who-s-

Watching-The-Watchers-Big-Problems-With-ERCP-Scopes.shtml  (published Sep 13, 2015; 

Last accessed Feb 21, 2016) 

http://tinyurl.com/znx4rve
http://saturn.jpl.nasa.gov/news/newsreleases/newsrelease20101214/
https://theconversation.com/we-need-more-than-just-new-antibiotics-to-fight-superbugs-44054
https://theconversation.com/we-need-more-than-just-new-antibiotics-to-fight-superbugs-44054
http://edition.cnn.com/2015/03/04/us/superbug-endoscope-no-permission/
http://www.healthnewsdigest.com/news/contributing%20columnist0/Who-s-Watching-The-Watchers-Big-Problems-With-ERCP-Scopes.shtml
http://www.healthnewsdigest.com/news/contributing%20columnist0/Who-s-Watching-The-Watchers-Big-Problems-With-ERCP-Scopes.shtml


 

 

 

 

 

 

                                                                                                                                                                      

[56]   Leighton T G 2015 We need more than just new antibiotics to fight superbugs, The 

Conversation https://theconversation.com/we-need-more-than-just-new-antibiotics-to-fight-

superbugs-44054  (published 15 July 2015; Last accessed Feb 21, 2016) 

[57]  Leighton T G 2016 Are some people suffering as a result of increasing mass exposure of the 

public to ultrasound in air? Proc. Roy. Soc. A 472(2185) 20150624 (57 pages) 

[58]  Maksimov A O and Leighton T G 2001 Transient processes near the threshold of acoustically 

driven bubble shape oscillations Acta Acustica 87(3) 322-332  

[59]  Maksimov A O, Leighton T G and Birkin P R 2008 Self focusing of acoustically excited 

Faraday ripples on a bubble wall Physics Letters A 372(18) 3210-16 

[60]   Birkin P R, Offin D G, Vian C J B, Leighton T G and Maksimov AO 2011 Investigation of non-

inertial cavitation produced by an ultrasonic horn J. Acoustical Society of America 130(5) 

3297-3308 doi:10.1121/1.3650537 

[61]  Maksimov A O and Leighton T G 2012 Pattern formation on the surface of a bubble driven by 

an acoustic field Proc. Roy. Soc. A 468 57-75 (doi:10.1098/rspa.2011.0366)  

[62]  Leighton T G, Ho W L and Flaxman R 1997 Sonoluminescence from the unstable collapse of a 

conical bubble Ultrasonics 35 399-405 

[63]  Leighton T G, Phelps A D, Cox B T and Ho W L 1998 Theory and preliminary measurements 

of the Rayleigh-like collapse of a conical bubble Acustica with Acta Acustica 84(6) 1014-24 

[64]   Leighton T G, Cox B T and Phelps A D 2000 The Rayleigh-like collapse of a conical bubble J. 

Acoustical Society of America 107(1) 130-142 

[65]  Birkin P R, Power J F and Leighton T G 2001 Electrochemical evidence of H produced by 

ultrasound J. Chem. Soc. Chemical Communication, 21 2230-1 

[66]   Birkin P R, Power J F, Leighton T G and Vincotte, AML 2002 Cathodic electrochemical 

detection of sonochemical radical products Analytical Chemistry 74 2584-90 

[67]   Birkin P R, Offin D G, Joseph P F and Leighton T G 2005 Cavitation, shock waves and the 

invasive nature of sonoelectrochemistry J. Physical Chemistry B 109 16997-17005 

[68]  Birkin P R, Offin D G, and Leighton T G 2005 Experimental and theoretical  characterisation of 

sonochemical cells. Part 2: Cell disruptors (ultrasonic horn) and cavity cluster collapse 

Physical Chemistry Chemical Physics , 530-37 

[69]  Turangan C K, Jamaluddin A R, Ball G J and Leighton T G 2008 Free-Lagrange simulations of 

the expansion and jetting collapse of air bubbles in water Journal of Fluid Mechanics 598 1-

25 doi:10.1017/S0022112007009317 

[70]   Jamaluddin A R, Ball G J, Turangan C K and Leighton T G 2011 The collapse of single bubbles 

and calculations of the far-field acoustic emissions for cavitation induced by shock wave 

lithotripsy Journal of Fluid Mechanics 677 305-41 doi:10.1017/jfm.2011.85 

[71]   Birkin P R, Offin D G, and Leighton T G 2004 Electrochemical measurements of the effects of 

inertial acoustic cavitation by means of a novel dual microelectrode Electrochemistry 

Communications 6(11) 1174-79 

[72]  Leighton T G, Turangan C K, Jamaluddin A R, Ball G J and White P R 2013 Prediction of far-

field acoustic emissions from cavitation clouds during shock wave lithotripsy for 

development of a clinical device Proceedings of the Royal 

Society 469(2150) 20120538, 21pp (doi: 10.1098/rspa.2012.0538).  

[73]   Pickworth M J W, Dendy P P, Twentyman P R and Leighton T G 1989 Studies of the 

cavitational effects of clinical ultrasound by sonoluminescence: 4. The effect of therapeutic 

ultrasound on cells in monolayer culture in a standing wave field Physics in Medicine and 

Biology 34(11) 1553-60 

[74]   Birkin P R, Leighton T G, Power J F, Simpson M D, Vincotte A M L and Joseph P 2003 

Experimental and theoretical characterisation of sonochemical cells. Part 1. Cylindrical 

reactors and their use to calculate the speed of sound in aqueous solutions J. Physical 

Chemistry A 107 306-20 

https://theconversation.com/we-need-more-than-just-new-antibiotics-to-fight-superbugs-44054
https://theconversation.com/we-need-more-than-just-new-antibiotics-to-fight-superbugs-44054


 

 

 

 

 

 

                                                                                                                                                                      

[75]  Faraday M 1831 On the forms and states assumed by fluids in contact with vibrating elastic 

surfaces Phil. Trans. Roy. Soc. London 121 319-40 

[76]  Watson Y E, Birkin P R and Leighton T G 2003 Electrochemical detection of bubble 

oscillation Ultrasonics Sonochemistry 10 65-9 

[77]  Elder S A 1958 Cavitation microstreaming J. Acoust. Soc. Am. 31 54-64. 

[78]  Nyborg W L 1958 Acoustic streaming near a boundary J. Acoust. Soc. Am. 30 329-39 

[79]   Birkin P R, Watson Y E, Leighton T G and Smith K L 2002 Electrochemical detection of 

Faraday waves on the surface of a gas bubble Langmuir Surfaces and Colloids 18 2135-40 

[80]  Rooney J A 1970 Hemolysis near an ultrasonically pulsating gas bubble Science 169 869 

[81]  Lewin P A and Bjørnø L 1982 Acoustically induced shear stresses in the vicinity of 

microbubbles in tissue J. Acoust. Soc. Am. 71 728 

[82]  Offin D G, Birkin P R and Leighton T G 2007 Electrodeposition of copper in the presence of an 

acoustically excited gas bubble Electrochemistry Communications 9(5) 1062-68 

[83]  Leighton T G, Birkin P R and Vian C 2016 Cleaning Apparatus and Method, and Monitoring 

Thereof. European Patent Number EP 2470310 from Application No. 10748081.6 Ultrasonic 

wave device. University Of Southampton (granted on 06/01/2016; filed on 24 February 2012 

with an allocated filing date on 26 August 2010) Published 04 July 2012 under 2470310. 

Claiming priority from GB 0914836.2 and PCT/EP2010/062448. From UK Patent 

Application No. 0914836.2  (University of Southampton 2009, filed 26 August 2009, 

published 26 August 2010). 

[84]  Leighton T G 1994 The Acoustic Bubble, Academic Press, 640pages (ISBN 0124419208).  

[85]   Birkin P R, Offin D G, Vian C J B, Howlin R P, Dawson J I, Secker T J, Herve R C, Stoodley 

P, Oreffo R O C, Keevil C W and Leighton T G 2015 Cold water cleaning of brain proteins, 

biofilm and bone - harnessing an ultrasonically activated stream Physical Chemistry 

Chemical Physics 17 20574-79 doi: 10.1039/C5CP02406D 

[86]  Howlin R P, Fabbri S., Offin D G, Symonds N, Kiang K S, Knee R J, Yoganantham D C, Webb 

J S, Birkin P R, Leighton T G and Stoodley P 2015 Removal of dental biofilms with a novel 

ultrasonically-activated water stream  J. Dental Research 94(9) 1303-09 

doi:10.1177/0022034515589284 

[87] Birkin P R, Offin D G, Vian C J B and Leighton T G 2015 Electrochemical "bubble swarm" 

enhancement of ultrasonic surface cleaning Physical Chemistry Chemical Physics 17(33) 

21709-21715 (doi:10.1039/c5cp02933c). (PMID:26234563). 

[88]  Salta M, Goodes L, Mass B, Dennington S, Secker T, Leighton TG 2016 Bubbles vs. biofilms: 

A novel method for the removal of marine biofilms attached on antifouling coatings using an 

ultrasonically activated water stream. Surface Topography: Metrology and Properties, 4(3), 

034009 doi: 10.1088/2051-672X/4/3/034009.  

[89]  Goodes, L., Harvey, T., Symonds, N. and Leighton, T.G. 2016 A comparison of ultrasonically 

activated water stream and ultrasonic bath immersion cleaning of railhead leaf-film 

contaminant. Surface Topography: Metrology and Properties, 4(3), 034004 doi: 

10.1088/2051-672X/4/3/034003. 

[90] Leighton T G 2016 The acoustic bubble: Oceanic bubble acoustics and ultrasonic 

cleaning. Proceedings of Meetings on Acoustics (POMA), Acoustical Society of 

America, 24(1) doi: 10.1121/2.0000121  

[91]   Agarwal A, Ng W J and Liu Y 2011 Principle and applications of microbubble and nanobubble 

technology for water treatment Chemosphere 84, 1175–1180 

[92]   Wu Z, Chen H, Dong Y, Mao H, Sun J, Chen S, Craig V S J and Hu J 2008 Cleaning using 

nanobubbles: Defouling by electrochemical generation of bubbles J. Colloid and Interface 

Science 328 (2008) 10–14 

[93]   Yang S and Duisterwinkel A 2011 Removal of nanoparticles from plain and patterned surfaces 

using nanobubbles Langmuir, 27 (18), 11430–11435 



 

 

 

 

 

 

                                                                                                                                                                      

[94]   Liu G and Craig V S J 2009 Improved cleaning of hydrophilic protein-coated surfaces using the 

combination of nanobubbles and SDS ACS Appl. Mater. Interfaces, 1(2), 481-487 

[95]   Leighton, T.G., Walton, A.J. and Pickworth, M.J.W 1990 Primary Bjerknes forces, European 

Journal of Physics, 11, 47-50 

[96]   Leighton T G 1994 The Acoustic Bubble, Academic Press, 640 pages (ISBN 0124419208), pp. 

341-367. 

[97]  Offin, D.G., Birkin, P.R. and Leighton, T.G. (2014) An electrochemical and high-speed imaging 

study of micropore decontamination by acoustic bubble entrapment, Phys. Chem. Chem. 

Phys.,16(10), 4982-4989 doi:10.1039/C3CP55088E. 

[98]  Leighton T G, Birkin P R, Hodnett M, Zeqiri B, Power J F, Price G J, Mason T, Plattes M, 

Dezhkunov N and Coleman A J 2005 Characterisation of measures of reference acoustic 

cavitation (COMORAC): An experimental feasibility trial. In Bubble and Particle Dynamics 

in Acoustic Fields: Modern Trends and Applications ed A.A. Doinikov (Research Signpost, 

Kerala, Research Signpost) 37-94 

[99]  Leighton T G 2007 What is ultrasound? Progress Biophysics and Molecular Biol. 93(1-3) 3-83. 

[100]  Goodes, L., Harvey, T., Symonds, N. and Leighton, T.G. 2016 The Adhesion Rail Riddle – 

Ensuring trains can brake. University of Southampton (last accessed 23 Sept 2016)            

http://www.southampton.ac.uk/engineering/research/projects/the-adhesion-rail-riddle.page  

[101]  Luedtke-Hoffmann K A and Schafer D S 2000 Pulsed lavage in wound cleansing. Physical 

Therapy, 80(3), 292–300. 

[102]  Leighton, T.G. 2016 StarStream (2007-2015) - Cleaning with low volumes of cold water. University 

of Southampton (last accessed 23 Sept 2016)  

http://www.southampton.ac.uk/engineering/research/projects/starstream.page?  

[103]  Safe Water Network 2016 Ghana (last accessed 23 Sept 2016)           

http://www.safewaternetwork.org/countries-regions/ghana 

[104]  McInnes A D (2012) Diabetic foot disease in the United Kingdom: about time to put feet first. 

J. Foot and Ankle Research, 5, 26-32. 

[105]  Kerr M, 2011 Insight Health Economics: Inpatient Care for People with Diabetes: The 

Economic Case for Change. UK: NHS Diabetes. 

[106]  Bantebya Kyomuhendo G 2003 Low use of rural maternity services in Uganda: Impact of 

women’s status, traditional beliefs and limited resources. Reproductive Health Matters, 

11(21), 16–26. 

[107]  Angus D C, Linde-Zwirble W T, Lidicker J, Clermont G, Carcillo J, Pinsky M R 2001 

Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and 

associated costs of care. Critical Care Medicine 29(7) 1303–10 PubMed: 11445675 

[108]  Dombrovskiy V Y, Martin A A, Sunderram J and Paz H L 2007 Rapid increase in 

hospitalization and mortality rates for severe sepsis in the United States: A trend analysis 

from 1993 to 2003. Critical Care Medicine 35(5) 1244–50 PubMed: 17414736 

[109]  Wang H E, Shapiro N I, Angus D C and Yearly D M 2007 National estimates of severe sepsis 

in United States emergency departments Crit. Care. Med. 35(8) 1928–36. 

[110]  Singhal S, Allen M W, McAnnally J R, Smith K S, Donnelly J P and Wang H E 2013 National 

estimates of emergency department visits for pediatric severe sepsis in the United States  

PeerJ. 1 e79. doi: 10.7717/peerj.7 

[111]  Horeczko T, Green J P and Panacek E A 2014 Epidemiology of the Systemic Inflammatory 

Response Syndrome (SIRS) in the emergency department West J Emerg Med. 15(3) 329-36 

doi: 10.5811/westjem.2013.9.18064 

[112]  Padkin A, Goldfrad C, Brady A, Young D, Black N and Rowan K 2003 Epidemiology of severe 

sepsis occurring in the first 24 hrs in intensive care units in England, Wales, and Northern 

Ireland Critical Care Medicine 31(9) 2332-38 doi: 10.1097/01.CCM.0000085141.75513.2B 



 

 

 

 

 

 

                                                                                                                                                                      

[113]  Ferrer R, Martin-Loeches I, Phillips G, Osborn T, Townsend S, Dellinger R P, Artigas A, 

Schorr C and Levy M 2014 Empiric antibiotic treatment reduces mortality in severe sepsis 

and septic shock from the first hour: results from a guideline-based performance 

improvement program Crit. Care. Med. 42(9) 1749-55 doi: 

10.1097/CCM.0000000000000330 

[114]  Gaieski D F, Mikkelsen M E, Band R A, Pines J M, Massone R, Furia F F, Shofer F S and 

Goyal M 2010 Impact of time to antibiotics on survival in patients with severe sepsis or 

septic shock in whom early goal-directed therapy was initiated in the emergency department  

Critical Care Medicine 38(4) 1045-53  doi: 10.1097/CCM.0b013e3181cc4824 

[115]  Dellinger R P, Levy M M, Rhodes A, Annane D, Gerlach H, Opal S M, Sevransky J E, Sprung 

C L, Douglas I S, Jaeschke R, Osborn T M, Nunnally M E, Townsend S R, Reinhart K, 

Kleinpell R M, Angus D C, Deutschman C S, Machado F R, Rubenfeld G D, Webb S, Beale 

R J, Vincent J L, Moreno R and the Surviving Sepsis Campaign Guidelines Committee 

including The Pediatric Subgroup. 2013 Surviving Sepsis Campaign: international guidelines 

for management of severe sepsis and septic shock, 2012. Intensive Care Med. 39(2) 165-228. 

doi: 10.1007/s00134-012-2769 

[116]  Dellinger R P, Levy M M, Rhodes A, Annane D, Gerlach H, Opal S M, Sevransky J E, Sprung 

C L, Douglas I S, Jaeschke R, Osborn T M, Nunnally M E, Townsend S R, Reinhart K, 

Kleinpell R M, Angus D C, Deutschman C S, Machado F R, Rubenfeld G D, Webb S A, 

Beale R J, Vincent J L, Moreno R and the Surviving Sepsis Campaign Guidelines 

Committee including the Pediatric Subgroup 2013 Surviving sepsis campaign: international 

guidelines for management of severe sepsis and septic shock: 2012. Critical Care Medicine 

41(2) 580-637 doi: 10.1097/CCM.0b013e31827e83af.  PMID: 23353941 

[117]  Levy M M, Dellinger R P, Townsend S R, Linde-Zwirble W T, Marshall J C, Bion J, Schorr C, 

Artigas A, Ramsay G, Beale R, Parker M M, Gerlach H, Reinhart K, Silva E, Harvey M, 

Regan S and Angus D C 2010 The Surviving Sepsis Campaign: results of an international 

guideline-based performance improvement program targeting severe sepsis. Intensive Care 

Med. 36(2) 222-31 doi: 10.1007/s00134-009-1738-3 

[118]  Levy M M, Dellinger R P, Townsend S R, Linde-Zwirble W T, Marshall J C, Bion J, Schorr C, 

Artigas A, Ramsay G, Beale R, Parker M M, Gerlach H, Reinhart K, Silva E, Harvey M, 

Regan S, Angus D C and Surviving Sepsis Campaign. 2010 The Surviving Sepsis Campaign: 

results of an international guideline-based performance improvement program targeting 

severe sepsis. Crit. Care. Med. 38(2):367-74. doi: 10.1097/CCM.0b013e3181cb0cdc 

[119]  Kumar A, Roberts D, Wood K E, Light B, Parrillo J E, Sharma S, Suppes R, Feinstein D, 

Zanotti S, Taiberg L, Gurka D, Kumar A and Cheang M  2006 Duration of hypotension 

before initiation of effective antimicrobial therapy is the critical determinant of survival in 

human septic shock Critical Care Medicine 34(6) 1589–96 PubMed: 16625125 

[120]  Puskarich M A, Trzeciak S, Shapiro NI, Arnold RC, Horton JM, Studnek JR, Kline JA and 

Jones AE 2011  Association between timing of antibiotic administration and mortality from 

septic shock in patients treated with a quantitative resuscitation protocol  Critical Care 

Medicine 39(9) 2066-71 doi:10.1097/CCM.0b013e31821e87ab 

[121]  Levy M M, Dellinger R P, Townsend S R, Linde-Zwirble W T, Marshall J C, Bion J, Schorr C, 

Artigas A, Ramsay G, Beale R, Parker M M, Gerlach H, Reinhart K, Silva E, Harvey M, 

Regan S, Angus D C and Surviving Sepsis Campaign 2010 The Surviving Sepsis Campaign: 

results of an international guideline-based performance improvement program targeting 

severe sepsis Critical Care Medicine 38(2) 367–74 PubMed: 20035219 


