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Abstract. The energy dissipation of the Navier-Stokes equations is controlled by the
viscous force defined by the Laplacian −∆, while that of the generalized Navier-Stokes

equations is determined by the fractional Laplacian (−∆)α. The existence and unique-
ness problem is always solvable in a strong dissipation situation in the sense of large
α but it becomes complicated when α is decreasing. In this paper, the well-posedness
regarding to the unique existence of small time solutions and small initial data solutions

is examined in critical homogeneous Besov spaces for α ≥ 1
2
. An analytic semigroup

approach to the understanding of the generalized Navier-Stokes equations is developed
and thus the well-posedness on the equations is examined in a manner different to earlier
investigations.
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1. Introduction

The Navier-Stokes equations, governing the motion of incompressible and viscous fluid
substances through the balance of viscous force, pressure force and fluid acceleration, are a
fundamentally important system in fluid mechanics. The three-dimensional Navier-Stokes
equations also give rise to Leray’s question of global existence of classical solutions [27].
This is of great interest in mathematical analysis. In the attempt to answer the question, a
variety of dissipative equations were examined (see, for example, [13, 22, 25, 31, 32, 36]).

In the present paper, we are interested in the generalized Navier-Stokes equations

∂tu+ (−∆)αu+ u · ∇u+∇π = 0, ∇ · u = 0 (1)

in the domain (0, T )×Rd for the dimension number d ≥ 2 and the time bound 0 < T ≤ ∞.
Here u and π represent respectively unknown fluid velocity and pressure. The fluid motion
described by (1) involves an energy dissipation which is controlled by the fractional Lapla-
cian (−∆)α. The existence, uniqueness and regularity of the solution to (1) is essentially
determined by the parameter α. When α = 1, equation (1) is the Navier-Stokes equations
and thus Leray’s question remains open for d ≥ 3. Equation (1) with α > 1 is called a
hyper-dissipative system. The global existence of classical solutions with d ≥ 3 can only
been obtained when α > d+2

4 [22, 37]. However, the existence of classical global solution
to the two-dimensional Navier-Stokes equations can be solved readily due to the validity
of the energy inequality in the L2 space [20]. Actually, similar to the ideal flow governed
by the two-dimensional Euler equations, the maximum principle holds true for the vorticity
formulation of the two-dimensional generalized Navier-Stokes equations. This gives rise to
the additional L∞ estimate of the corresponding vorticity field and hence the existence of
the global classical solutions to the two-dimensional equations for α ≥ 0 (see, for example,
[6]). This global solution existence can be extended from that of the two-dimensional Euler
equations [5, 19, 41]. For the well-posedness with respect to the existence and uniqueness
of small global solutions or small time solutions to (1) with α > 1

2 , we refer to [39] for solu-
tions in critical homogeneous Besov spaces and [28] for solutions in critical homogeneous Q
spaces introduced in [28, 40]. For the limit case of α = 0 and d = 2, equation (1) represents
actually the simplified atmospheric circulation equations system of Charney and DeVore
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[7, 9, 12, 35]. The vorticity formulation of (1) with d = 2 is similar to the surface dissi-
pative quasi-geostrophic equation [6, 10, 24, 36]. However, the vorticity-velocity relations
ω = ∇× u in the former and θ = ∇⊥(−∆)−1/2u in the latter lead to the difference for the
global solution existence of the two systems. For the problem on the nonexistence of the
global solutions to the supercritical surface dissipative quasi-geostrophic equation, one may
refer to [23].

A homogeneous Besov space is a collection of the functions f which can be expressed as
the Littlewood-Paley decomposition

f =
∑

−∞<j<∞
∆jf

for the dyadic blocks ∆j . This unit decomposition helps define the norm of the homogeneous
Besov space and examine the function f by reducing to the examination of individual terms
∆jf through Bernstein inequalities (see, for example, [26]). The Littlewood-Paley decompo-
sition approach is overwhelming in the analytic study of fluid mechanics equations (see, for
example, [14] for the compressible Navier-Stokes equations, [15] for the density-dependent
incompressible Navier-Stokes equations, [38, 39] for the generalized Navier-Stokes euqations
(1), and [8] for the dissipative quasi-geostrophic equation).

Note that the fractional Laplacian (−∆)α generates an analytic semigroup operator
e−t(−∆)α , which can be characterized in homogeneous Besov spaces in terms of the Littlewood-
Paley decomposition [33, 34]. This characterization simplifies the derivation of a priori esti-
mates of the system (1) and was applied to the understanding of the well-posedness of the
Navier-Stokes equations [11]. The purpose of the present paper is to extend this approach
to the generalized Navier-Stokes equations (1) and then to provide a new approach to the
understanding of a higher regularity problem initiated from [18].

For simplicity, the notation <∼ is adopted in the sense that a1 <∼ a2 represents the

inequality a1 ≤ Ca2 for a constant C independent of the quantities t ∈ [0, T ), x ∈ Rd,
T > 0, functions u, v, f , g and a scalar constant λ > 0. Moreover, we use the equivalence

relation a1 ≃ a2 if both a1 <∼ a2 and a2 <∼ a1 hold ture.

As is well known, equation (1) is scale invariant with respect to the scale transformation

uλ(t, x) = λ2α−1u(λ2αt, λx), πλ(t, x) = λ4α−2π(λ2αt, λx).

That is, equation (1) is equivalent to the scaled equations

∂tuλ + (−∆)αuλ + uλ · ∇uλ +∇πλ = 0, ∇ · uλ = 0. (2)

According to this scale-invariant property, it is beneficial to examine equation (1) in
homogeneous function spaces. A spatial function space Xs(Rd) is said to be homogeneous
of degree s if

∥f(λ ·)∥Xs(Rd) ≃ λs∥f∥Xs(Rd) for f ∈ Xs,

and a temporal-spacial function space Y s([0, T )×Rd) for 0 < T ≤ ∞ is said to be homoge-
neous of degree s if

∥f(λ2α·, λ·)∥Y s([0,T )×Rd) ≃ λs∥f∥Y s([0, λ2αT )×Rd) for f ∈ Y s([0, T )×Rd)

for −∞ < s <∞ and λ > 0.
For the integral formulation of (1) transformed as

u+ (∂t + (−∆)α)−1(u · ∇u+∇π) = 0, ∇ · u = 0 (3)

initially from the static state u(0) = 0, an analytic semigroup approach is applied to equation
(3) on a homogeneous space Y s involving a homogeneous Besov space to obtain the estimate

∥u∥Y s <∼ ∥(∂t + (−∆)α)−1(u · ∇u)∥Y s <∼ ∥uu∥Y s+1−2α <∼ ∥u∥Y s∥u∥Y 1−2α . (4)

This together with a linearization technique implies that the homogeneous space Y s with
s = 1 − 2α is the critical space for ensuring the unique existence of the solution to (1) .
Moreover, it is obtained that the estimates involve an unbounded exponential differential
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operator or an inverse of an analytic semigroup operator. This is known as the Gevrey
regularity problem examined in [18] for Navier-Stokes equations in Hilbert spaces and is
further developed in [4, 26]. For the recent investigations of this problem in dissipative
quasi-geostrophic equations and some other related dissipative equations, one may refer to
[1, 2, 16, 17].

The significance of the present paper is the development of an analytic semigroup ap-
proach in Besov spaces for the well-posedness and Gevrey regularity problem of the general-
ized Navier-Stokes equations (1) and provides an alternative way for the understanding of the
problem different to the Bernstein estimates approach based on the dyadic Littlewood-Paley
blocks in earlier studies (see, for example, [39]).

This paper is organized as follows. Firstly, we display basic properties of Besov spaces and
its connection with the analytic semigroup e−t(−∆)α in Section 2. Next, we derive a priori
estimates of linearized equation of (1) in homogeneous Besov spaces by using the semigroup
approach. Finally, the result obtained for the linearized system is extended to the nonlinear
equation (1) to show the well-posedness and Gevrey regularity properties.

2. Besov spaces and basic properties

For the readers’ convenience, we collect basic properties of Besov spaces and their homo-
geneous counterparts from [33, 34].

Standard notion is used. S(Rd) represents the Schwartz space of rapidly decreasing
infinitely differential functions on Rd. Its dual space S′(Rd) is the collection of all tempered
distributions on Rd. Lp(R

d) denotes the Lebesgue space of functions on Rd for 1 ≤ p ≤ ∞.
F represents the Fourier transform in S′(Rd) satisfying Ff(ξ) =

∫
Rd e

−ix·ξf(x)dx and the

inverse Fourier transform is defined as F−1.
As in [33, Definitions 2.3.1/1, 2.3.1/2 and 5.1.3/2], let ϕ be a smooth function on Rd in

the following sense ϕ(ξ) = 0 for |ξ| ≥ 2 and ϕ(ξ) = 1 for |ξ| ≤ 1 which produces the dyadic
block symbols

ψj(ξ) = ϕ(2−jξ)− ϕ(2−j+1ξ)

and the dyadic blocks

∆j = F−1ψjF

for j ∈ Z, the integer set. Therefore, for 1 ≤ p, q ≤ ∞ and −∞ < s < ∞, we define the
Besov space

Bs
p,q(R

d) =

f ∈ S′(Rd); ∥f∥Bs
p,q

=

∥F−1ϕFf∥qLp
+

∞∑
j=1

2jsq∥∆jf∥qLp

 1
q

<∞

 ,

and the homogeneous Besov space

Ḃs
p,q(R

d) =

f ∈ S′(Rd); f =
∞∑

j=−∞
∆jf, ∥f∥Ḃs

p,q
=

 ∞∑
j=−∞

2jsq∥∆jf∥qLp

 1
q

<∞

 .

Here the lq norm reduces to the l∞ norm for the sequences {2js∥∆jf∥Lp}j∈N and {2js∥∆jf∥Lp}j∈Z

when q = ∞.
It is readily seen that the space Ḃs

p,q(R
d) is homogeneous of degree s − d

p and its norm

can be expressed as

∥f∥Ḃs
p,q

= lim
k→∞

∥f(λ ·)∥Bs
p,q

λs−
d
p

, λ = 2k (5)

for s > 0 and f ∈ Bs
p,q(R

d).

Lemma 1. ([33, Theorem 5.2.3/1]) Let −∞ < σ, s < ∞ and 1 ≤ p, q ≤ ∞. Then the

fractional operator (−∆)
σ
2 maps Ḃs

p,q(R
d) isomorphically onto Ḃs+σ

p,q (Rd) or there holds the
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norm equivalence

∥(−∆)
σ
2 f∥Ḃs

p,q
≃ ∥f∥Ḃs+σ

p,q
for f ∈ Ḃs+σ

p,q (Rd). (6)

The real interpolation property of Besov spaces [33] gives the following interpolation
inequality.

Lemma 2. ([33, Theorem 2.4.2 and Subsection 5.2.5]) Let 0 < θ < 1, 1 ≤ p, q0, q1, q ≤ ∞,
−∞ < s < τ <∞ and σ = (1− θ)s+ θτ . Then there holds the real interpolation property

Ḃσ
p,q(R

d) =
(
Ḃs

p,q0(R
d), Ḃτ

p,q1(R
d)
)
θ,q

and

∥f∥Ḃσ
p,q

<∼ ∥f∥1−θ

Ḃs
p,q0

∥f∥θ
Ḃτ

p,q1

(7)

for f ∈ Ḃs
p,q0(R

d) ∩ Ḃτ
p,q1(R

d).

The combination of equation (5) and the characterization of the Besov space Bs
p,∞(Rd)

(see [33, Eqs 2.3.5/3, Theorem 2.5.12]) by the difference operators

△0
hf(x) = f(x), △1

hf(x) = f(x+ h)− f(x), △k
hf(x) = △1

h(△k−1
h f(x)) for h ∈ Rd

produces the following characterization of its homogeneous counterpart.

Lemma 3. Let s > 0, 1 ≤ p ≤ ∞ and an integer k > s. Then there holds the equivalence
relation

∥f∥Ḃs
p,∞

≃ ess sup
0̸=h∈Rd

∥△k
hf∥Lp

|h|s
for f ∈ Ḃs

p,∞(Rd). (8)

The operator e−t(−∆)α = F−1e−t|ξ|2αF is an analytic semigroup in Lp(R
d) generated

by the fractional Laplacian (−∆)α = F−1|ξ|2αF , which maps the fractional Sobolev space
H2α

p (Rd) = (1 + (−∆)α)−1Lp(R
d) onto Lp(R

d), due to the validity of the property

∥(−∆)αe−t(−∆)αf∥Lp
<∼ t−1∥f∥Lp for t > 0. (9)

Therefore, for 1 < p <∞ and k ≥ 1, the characterization property [34, Proposition 1.8.1/1](
Lp(R

d), H2αk
p (Rd)

)
θ,∞ =

{
f ∈ Lp(R

d); sup
t>0

tk−kθ∥(−∆)αke−t(−∆)αf∥Lp <∞
}

and the real interpolation property [33, Theorems 2.4.2 and 2.5.6](
Lp(R

d), H2αk
p (Rd)

)
θ,∞ = B2αkθ

p,∞ (Rd)

yield the characterization of the Besov space Bs
p,∞(Rd)

∥f∥Bs
p,∞

≃ ∥f∥Lp + sup
t>0

tk−
s
2α ∥(−∆)αke−t(−∆)αf∥Lp (10)

for s > 0, 1 < p <∞, and k > s
2α . Using (5) to remove the lower order part ∥f∥Lp of (10),

we obtain the characterization of the homogeneous Besov space by the analytic semigroup
e−t(−∆)α in the following.

Lemma 4. Let α > 0, s > 0, 1 < p <∞ and an integer k > s/(2α). Then we have

∥f∥Ḃs
p,∞

≃ sup
t>0

tk−
s
2α ∥(−∆)αke−t(−∆)αf∥Lp for f ∈ Ḃs

p,∞(Rd). (11)

Thus the homogeneous Besov space defined by the Littlewood-Paley decomposition re-
duces to that characterized by the analytic semigroup e−t(−∆)α generated by (−∆)α.

Lemma 5. ([26, Lemma 24.8]) Let d ≥ 1, 1 < p, q < ∞, 1
r = 1

p + 1
q , f ∈ Lp(R

d) and

g ∈ Lq(R
d). Then there holds the inequality

∥et|∇|1
(
(e−t|∇|1f) e−t|∇|1g

)
∥Lr

<∼ ∥f∥Lp∥g∥Lq , (12)

where the operator et
1
2α |∇|1 = F−1et

1
2α |ξ|1F by using the l1 norm |ξ|1 =

∑d
i=1 |ξi|.
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This generalized Hölder inequality given in [26] is essential in the investigation of Gevrey
regularity problem. For the readers’ convenience, it is demonstrated as follows.

Proof. Let begin with the case d = 1. For |∇| = |∇|1, f̂ = Ff and real variables x, y, η, ξ ∈
R in the one-dimensional situation, we have

et|∇|(e−t|∇|fe−t|∇|g)(x)

=

∫
R2

eix(ξ+η)et|ξ+η|−t|η|−t|ξ|f̂(η)ĝ(ξ)dηdξ

=

∫
ηξ≥0

eix·(ξ+η)f̂(η)ĝ(ξ)dηdξ +

∫
ηξ<0

eix(ξ+η)et|ξ+η|−t|η|−t|ξ|f̂(η)ĝ(ξ)dηdξ

=

∫
ηξ≥0

eix(ξ+η)(1− e−2t|ξ|)f̂(η)ĝ(ξ)dηdξ

+

(∫ ∞

0

dη

∫ −η

−∞
dξ +

∫ 0

−∞
dη

∫ ∞

−η

dξ

)
eix(ξ+η)e−2t|η|f̂(η)ĝ(ξ)

+

(∫ ∞

0

dη

∫ ∞

−η

dξ +

∫ 0

−∞
dη

∫ −η

−∞
dξ

)
eix(ξ+η)e−2t|ξ|f̂(η)ĝ(ξ)

=

∫
ηξ≥0

eix(ξ+η)(1− e−2t|ξ|)f̂(η)ĝ(ξ)dηdξ +

∫
ξη<0

eixξe−2t|η|f̂(η)ĝ(ξ − η)dηdξ

+

∫
ξη>0

eixξe−2t|ξ−η|f̂(η)ĝ(ξ − η)dηdξ
.
= I1 + I2 + I3.

Defining the half space Fourier transforms

S+f =

∫ ∞

0

eixξ f̂dx and S−f =

∫ 0

−∞
eixξ f̂dx,

we have

I1 =

∫ ∞

0

eixη f̂(η)dη

∫ ∞

0

eixξ(1− e−2t|ξ|)ĝ(ξ)dξ +

∫ 0

−∞
eixη f̂(η)dη

∫ 0

−∞
eixξ(1− e−2t|ξ|)ĝ(ξ)dξ

= (S+f)S+(1− e−2t|∇|)g + (S−f)S−(1− e−2t|∇|)g,

I2 =

∫ 0

−∞
eixξF

(
g(y)

∫ ∞

0

eiyηe−2t|η|f̂(η)dη

)
(ξ)dξ

+

∫ ∞

0

eixξF

(
g(y)

∫ 0

−∞
eiyηe−2t|η|f̂(η)dη

)
(ξ)dξ

= S−

(
gS+e

−2t|∇|f
)
+ S+

(
gS−e

−2t|∇|f
)

and, similarly,

I3 = S+(fS+e
−2t|∇|g) + S−(fS−e

−2t|∇|g).

Note that

∥S±f∥ <∼ ∥f∥Lτ and ∥e−2t|∇|1f∥Lτ
<∼ ∥f∥Lτ (13)

for τ = r, p, q since the operators S± are Lτ Fourier multiplier operators [30, Theorem
4.1.4] and e−2t|∇|1 is obviously an Lτ Fourier multiplier operator. We thus use Hölder
inequality and estimates (13) to obtain the validity of (12) in the case d = 1. When d > 1,

the observation et|∇|1 = et|∂x1 |et|∂x2 | · · · et|∂xd
| ensures that the d-dimensional operator is

decomposed into 1-dimensional operators. Thus there exist Lτ Fourier multiplier operators
Li, Mi and Ni given by S± and e−2t|∇|1 so that

et|∇|1
(
(e−t|∇|1f) e−t|∇|1g

)
=

3d∑
i=1

Li ((Nig)Mif) .
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This together with the estimates (13) and the Hölder inequality implies∥∥∥et|∇|1
(
(e−t|∇|1f) e−t|∇|1g

)∥∥∥
Lr

<∼
3d∑
i=1

∥(Nig)Mif∥Lr
<∼ ∥g∥Lp∥f∥Lq

and completes the proof of (12) for d > 1.

3. Analytic semigroup approach to generalized Stokes equations

In this paper, the existence of local solutions and small solutions of the nonlinear system
(1) is examined and can be obtained by a linearization technique. Therefore, it is beneficial
to consider the linearized system of (1) or the generalized Stokes equations

∂tu+∇π + (−∆)αu = ∇ · f, ∇ · u = 0, (14)

coupled with zero initial condition

u(0) = 0 in Rd. (15)

Here f : Rd 7→ Rd2

, (∇ · f)j =
∑d

i=1 ∂ifij and the pressure force term ∇π can be written as

∇π = ∇∆−1∇ · (∇ · f)

due to divergence property of u. Hence (14) is written as

∂tu+ (−∆)αu = P∇ · f in (0, T )×Rd, (16)

for the bounded projection operator

P = δij − ∂i∂j∆
−1

in Lp(R
d) for 1 < p < ∞, where δij denotes the Kronecker symbol. Now we rewrite the

differential equation (16) in the form of the integral equation

u(t) = (∂t + (−∆)α)−1P∇ · f =

∫ t

0

e−(t−s)(−∆)αP∇ · f(s)ds. (17)

With the use of the characterization by the analytic semigroup, the purpose of this section
is to show that the operators (∂t + (−∆)α)−1P∇ behaviours like the operator |∇|1−2α

mapping a homogeneous space of degree s into a homogeneous space of degree s+ 1− 2α.

Theorem 1. Let d ≥ 2, 0 < T ≤ ∞, 0 ≤ β < α, −2β < σ and 1 < p < ∞. Define the
operators S(t) = F−1m(t, ξ)F and S−1(t) = F−1 1

m(t,ξ)F for a symbol m(t, ·). Assume that

the inequality

∥e− 1
4 (t−s)(−∆)αS(t)S−1(s)g∥Lp

<∼ ∥g∥Lp (18)

holds true for g ∈ Lp(R
d). Then u(t) presented in equation (17) is subject to the estimates

∥S(t)u(t)∥Ḃσ
p,∞

+ t
β
α ∥S(t)u(t)∥Ḃσ+2β

p,∞
<∼ ess sup

0<t<T
t
β
α ∥S(t)f(t)∥Ḃσ+2β+1−2α

p,∞
(19)

and

∥S(t)u(t)∥L∞
<∼ ess sup

0<t<T
t
β
α ∥S(t)f(t)∥

Ḃ
2β+1−2α+ d

p
p,∞

(20)

for 0 < t < T , provided that the right-hand sides are finite.

A typical example of the operator S(t) is et
γ
α (−∆)γ for 0 ≤ γ < α.
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Proof. For an integer k > σ+2β
2α , it follows from Lemmas 1 and 4, equations (9) and (18)

and the boundedness of the projection operator P in the space Lp(R
d) that

∥S(t)u(t)∥Ḃσ+2β
p,∞

≃ sup
τ>0

τk−
σ+2β
2α ∥(−∆)αke−τ(−∆)α

∫ t

0

PS(t)S−1(s)e−(t−s)(−∆)αS(s)∇ · f(s)ds∥Lp

<∼ sup
τ>0

τk−
σ+2β
2α

∫ t

0

∥(−∆)αke−
3
4 (t−s+τ)(−∆)αS(s)∇ · f(s)∥Lpds

<∼ sup
τ>0

τk−
σ+2β
2α

∫ t

0

(t− s+ τ)−1∥(−∆)αke−
1
2 (t−s+τ)(−∆)α(−∆)−αS(s)∇ · f(s)∥Lpds

<∼ sup
τ>0

τk−
σ+2β
2α

∫ t

0

(t− s+ τ)−k−1+σ+2β
2α s−

β
α s

β
α ∥(−∆)−αS(s)∇ · f(s)∥Ḃσ+2β

p,∞
ds.

After the calculation of the integral over the intervals [0, t
2 ) and [ t2 , t), the previous inequality

reduces to

∥S(t)u∥Ḃσ+2β
p,∞

<∼ sup
τ>0

τk−
σ+2β
2α [(t+ τ)−k+σ+2β

2α t−
β
α + (t+ τ)−k−1+σ+2β

2α t1−
β
α ]

· ess sup
0<t<T

t
β
α ∥S(t)f(t)∥Ḃσ+2β+1−2α

p,∞

<∼ t−
β
α ess sup

0<t<T
t
β
α ∥S(t)f(t)∥Ḃσ+2β+1−2α

p,∞
. (21)

Furthermore, equation (9) and the interpolation inequality

∥(−∆)γe−t(−∆)αg∥Lp
<∼ ∥e−t(−∆)αg∥1−

γ
α

Lp
∥(−∆)αe−t(−∆)αg∥

γ
α

Lp

imply that

∥(−∆)γe−t(−∆)αg∥Lp
<∼ t−

γ
α ∥g∥Lp , (22)

and hence

∥(−∆)γe−t(−∆)αg∥Ḃs
p,∞

<∼ t−
γ
α ∥g∥Ḃs

p,∞
. (23)

Using Lemma 1, equations (18) and (23) and the boundedness of the operator P , we have

∥S(t)u(t)∥Ḃσ
p,∞

<∼
∫ t

0

∥e− 3
4 (t−s)(−∆)αS(s)∇ · f(s)∥Ḃσ

p,∞
ds

<∼
∫ t

0

(t− s)−1+ β
α ∥(−∆)−(α−β)S(s)∇ · f(s)∥Ḃσ

p,∞
ds

<∼
∫ t

0

(t− s)−1+ β
α s−

β
α ds ess sup

0<t<T
t
β
α ∥S(t)f(t)∥Ḃσ+2β+1−2α

p,∞

<∼ ess sup
0<t<T

t
β
α ∥S(t)f(t)∥Ḃσ+2β+1−2α

p,∞
.

To derive the estimate in the L∞ norm, we employ the Gagaliardo-Nirenberg inequality
[29] to obtain that

∥e−t(−∆)αg∥L∞
<∼ ∥e−t(−∆)αg∥1−

d
q

Lq
∥∇e−t(−∆)αg∥

d
q

Lq

<∼ t−
d

2αq ∥g∥Lq . (24)
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for a real number q > d. If the number q > p satisfies additionally the condition 2β+ d
q < 2α,

equations (6), (11), (18), (24) and (22) yield

∥S(t)u(t)∥L∞
<∼

∫ t

0

(t− s)−
d

2αq ∥e− 3
4 (t−s)(−∆)αS(t)P∇ · f(s)∥Lqds

<∼
∫ t

0

(t− s)−
d

2αq ∥e− 1
2 (t−s)(−∆)αS(s)∇ · f(s)∥Lqds

<∼
∫ t

0

(t− s)−
d

2αq (t− s)−1+
2β+ d

q
2α ∥S(s)(−∆)−α∇ · f(s)∥

Ḃ
2β+ d

q
q,∞

ds

<∼
∫ t

0

(t− s)−1+ β
α s−

β
α ds ess sup

0<t<T
t
β
α ∥S(t)f(t)∥

Ḃ
2β+1−2α+ d

q
q,∞

<∼ ess sup
0<t<T

t
β
α ∥S(t)f(t)∥

Ḃ
2β+1−2α+ d

p
p,∞

,

where we have used the imbedding theorem [33, Theorem 2.7.1 and Subsection 5.2.5]

Ḃ
γ+ d

p
p,∞ (Rd) ↪→ Ḃ

γ+ d
q

q,∞ (Rd). (25)

Collecting terms, we have the desired estimate and thus complete the proof of Theorem 1.

The symbolm = e−
1
4 (t−s)|ξ|2α+t

1
2α |ξ|1−s

1
2α |ξ|1 satisfies the conditions of the Marcinkiewicz

multiplier theorem [30, Theorem 6.1.6′] and thus there holds the Lp estimate

∥e− 1
4 (t−s)(−∆)αet

1
2α |∇|1e−s

1
2α |∇|1g∥Lp

<∼ ∥g∥Lp for α >
1

2
, (26)

which gives an example of S(t) = et
1
2α |∇|1 in (18). For this special choice, Theorem 1 can

be stated as

Corollary 1. Let d ≥ 2, 1
2 < α, 0 ≤ β < α, 1 < p < ∞ and 0 < σ + 2β. Then

u = (∂t − (−∆)α)−1P∇ · f is subject to the estimate

∥et
1
2α |∇|1u(t)∥Ḃσ

p,∞
+ t

β
α ∥et

1
2α |∇|1u(t)∥Ḃσ+2β

p,∞
<∼ ess sup

0<t<T
t
β
α ∥et

1
2α |∇|1f(t)∥Ḃσ+2β+1−2α

p,∞

for 0 < t < T ≤ ∞, provided that the right-hand side term is finite.

4. Well-posedness of the nonlinear problem

The well-posedness of the nonlinear equations (1) can be obtained by combining the
estimates of the linear Stokes equations derived in Theorem 1 and the Banach contraction
mapping principle. Therefore it is necessary to examine the nonlinear term of (1) though
the pointwise multiplication fg of functions f and g in suitable homogeneous spaces in the
form

∥fg∥Y 2−4α <∼ ∥f∥Y 1−2α∥g∥Y 1−2α . (27)

To do so, we need the following function multiplication estimate.

Lemma 6. Let 1 < p < q < ∞, s + d
p > 0, an integer k > s + 2d

p and (k − 1)p < q < ∞.

Then there holds the estimate

∥et
1
2α |∇|1fg∥

Ḃ
s+ d

p
p,∞

<∼
k−1∑
j=1

∥et
1
2α |∇|1f∥

Ḃ
js
k

+ d
p

p,∞

∥et
1
2α |∇|1g∥

Ḃ

(k−j)s
k

+ d
p

p,∞

+∥et
1
2α |∇|1f∥

Ḃ
d
p
− d

q
p,∞

∥et
1
2α |∇|1g∥

Ḃ
s+ d

p
+ d

q
p,∞

+ ∥et
1
2α |∇|1g∥

Ḃ
d
p
− d

q
p,∞

∥et
1
2α |∇|1f∥

Ḃ
s+ d

p
+ d

q
p,∞

(28)

for functions f and g on Rd, provided the right-hand side terms are finite.
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Proof. Let us begin with the proof of the inequality

∥fg∥
Ḃ

s+ d
p

p,∞

<∼
k−1∑
j=1

∥f∥
Ḃ

js
k

+ d
p

p,∞

∥g∥
Ḃ

(k−j)s
k

+ d
p

p,∞

+ ∥f∥
Ḃ

d
p
− d

q
p,∞

∥g∥
Ḃ

s+ d
p
+ d

q
p,∞

+ ∥g∥
Ḃ

d
p
− d

q
p,∞

∥f∥
Ḃ

s+ d
p
+ d

q
p,∞

. (29)

For the integer k ≥ s+ d
p+

d
q , it is readily seen that the function product under the difference

operator is subject to the binomial formula

△k
h(f(x)g(x)) =

k∑
j=0

(
k
j

)
△j

hf(x)△
k−j
h g(x+ jh).

For the real number r so that 1
r = 1

p + 1
q , the selection of q and k implies that

1

r
<

1

p
+

1

(k − 1)p
or

kr

k − 1
> p.

By the imbedding property (25), the characterization property (8) and the Hölder inequality,
we find that

∥fg∥
Ḃ

s+ d
p

p,∞

<∼ ∥fg∥
Ḃ

s+ d
r

r,∞

<∼ ess sup
0̸=h∈Rd

∥
∑k

j=0

(
k
j

)
△j

hf△
k−j
h g(·+ jh)∥Lr

|h|s+ d
r

<∼ ess sup
0̸=h∈Rd

∑k−1
j=1 ∥△

j
hf∥L kr

j

∥△k−j
h g∥L kr

k−j

+ ∥f∥Lq
∥△k

hg∥Lp
+ ∥g∥Lq

∥△k
hf∥Lp

|h|s+ d
r

<∼
k−1∑
j=1

∥f∥
Ḃ

j
k

(s+ d
r
)

kr
j

,∞

∥g∥
Ḃ

(k−j)
k

(s+ d
r
)

kr
k−j

,∞

+ ∥f∥Lq∥g∥
Ḃ

s+ d
r

p,∞
+ ∥g∥Lq∥f∥

Ḃ
s+ d

r
p,∞

. (30)

Since kr
j ≥ kr

k−1 > p, the imbedding property (25) implies that

Lq(R
d) ↪→ Ḃ0

q,∞(Rd) ↪→ Ḃ
d
p−

d
q

p,∞ (Rd) and Ḃ
j
k (s+ d

r )
kr
j ,∞ (Rd) ↪→ Ḃ

j
k s+ d

p
p,∞ (Rd).

Thus equation (30) becomes (29).

Since et
1
2α |∇|1△j

hf = △j
he

t
1
2α |∇|1f , following the derivation of (29) by applying the in-

equality (12) instead of the Hölder inequality, we obtain (28) and hence complete the proof
of Lemma 6.

Now we consider the nonlinear system described by (1). Let u solve equation (1) associ-
ated with the initial condition

u(0) = u0 on Rd. (31)

Taking the integral form of this system, we have the mild solution of equations (1) and (31)
expressed as

u(t) = e−t(−∆)αu0 + (∂t + (−∆)α)−1Pu · ∇u(t). (32)

The well-posed result for equations (1) and (31) is stated in the following.

Theorem 2. Let d ≥ 2, α > 1
2 , 1 < p < ∞, 2 − 2α + d

p > 0 and u0 ∈ Ḃ
1−2α+ d

p
p,∞ (Rd).

Then there exists a constant T > 0 such that equation (32) admits a unique solution u ∈
L∞(0, T ; Ḃ

1−2α+ d
p

p,∞ (Rd)) subject to the estimate

ess sup
0<t<T

(
t
β
α ∥et

1
2α |∇|1u(t)∥

Ḃ
2β+1−2α+ d

p
p,∞

+ ∥et
1
2α |∇|1u(t)∥

Ḃ
1−2α+ d

p
p,∞

)
<∼ ∥u0∥

Ḃ
1−2α+ d

p
p,∞

+ 1, (33)
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where β is a constant such that

α > β > 0, 2β + 1− 2α > 0, 2β + 2− 4α+
d

p
> 0.

Additionally, if u0 is sufficiently small in the space Ḃ
1−2α+ d

p
p,∞ (Rd), the solution u exists

globally in time and the bound (33) remains true for T → ∞.

Proof. For a constant T > 0, we define the operator

Mu0
u(t) = e−t(−∆)αu0 + (∂t + (−∆)α)−1u(t) (34)

and the space

XT =

{
u ∈ L∞(0, T ; Ḃ

1−2α+ d
p

p,∞ (Rd)); ∥u∥XT
≤ C∥u0∥

Ḃ
1−2α+ d

p
p,∞

}
for a suitable constant C and the norm

∥u∥XT
= ess sup

0<t<T

(
t
β
α ∥et

1
2α |∇|1u(t)∥

Ḃ
2β+1−2α+ d

p
p,∞

+ ∥et
1
2α |∇|1u(t)∥

Ḃ
1−2α+ d

p
p,∞

)
. (35)

It suffices to show that Mu0
is a contraction operator mapping XT into itself.

Indeed, it is readily seen that

∥et
1
2α |∇|1e−t(−∆)αu0∥XT

<∼ ∥u0∥
Ḃ

1−2α+ d
p

p,∞

by taking into account the inequality (23) and the fact that et
1
2α |∇|1e−

3
4 t(−∆)α is a bounded

multiplier in Lp(R
d) and hence in Ḃ

1−2α+ d
p

p,∞ (Rd).
Let u, v ∈ XT and let the integer k and the real number q > p be given in Lemma 6. It

follows from Theorem 1 with σ = 1− 2α+ d
p and the inequality (28) with s = 2β + 2− 4α

that

∥Mu0u∥XT
<∼ ∥u0∥

Ḃ
1−2α+ d

p
p,∞

+ ess sup
t>0

t
β
α ∥et

1
2α |∇|1uu(t)∥

Ḃ
2β+2−4α+ d

p
p,∞

<∼ ∥u0∥
Ḃ

1−2α+ d
p

p,∞

+ ess sup
t>0

t
β
α ∥et

1
2α |∇|1u∥

Ḃ
d
p
− d

q
p,∞

∥et
1
2α |∇|1u∥

Ḃ
2β+2−4α+ d

p
+ d

q
p,∞

+ ess sup
0<t<T

k−1∑
j=1

∥et
1
2α |∇|1u∥

Ḃ

j(2β+2−4α)
k

+ d
p

p,∞

∥et
1
2α |∇|1u∥

Ḃ

(k−j)(2β+2−4α)
k

+ d
p

p,∞

and

∥Mu0u−Mu0v∥XT

<∼ ess sup
0<t<T

t
β
α

(
∥et

1
2α |∇|1(u− v)u∥

Ḃ
2β+2−4α+ d

p
p,∞

+ ∥et
1
2α |∇|1(u− v)v∥

Ḃ
2β+2−4α+ d

p
p,∞

)
<∼ ess sup

0<t<T
t
β
α ∥et

1
2α |∇|1(u− v)∥

Ḃ
d
p
− d

q
p,∞

∥et
1
2α |∇|1u∥

Ḃ
2β+2−4α+ d

p
+ d

q
p,∞

+ ess sup
0<t<T

t
β
α ∥et

1
2α |∇|1v∥

Ḃ
d
p
− d

q
p,∞

∥et
1
2α |∇|1(u− v)∥

Ḃ
2β+2−4α+ d

p
+ d

q
p,∞

+ ess sup
0<t<T

t
β
α

k−1∑
j=1

∥et
1
2α |∇|1(u− v)∥

Ḃ

j(2β+2−4α)
k

+ d
p

p,∞

∥et
1
2α |∇|1u∥

Ḃ

(k−j)(2β+2−4α)
k

+ d
p

p,∞

+ ess sup
0<t<T

t
β
α

k−1∑
j=1

∥et
1
2α |∇|1(u− v)∥

Ḃ

j(2β+2−4α)
k

+ d
p

p,∞

∥et
1
2α |∇|1v∥

Ḃ

(k−j)(2β+2−4α)
k

+ d
p

p,∞

.

The number q > p is selected to be sufficiently large so that −2β < 1−2α+ d
q < 0. Moreover

we may assume the integer k ≥ 2 so that

1− α <
j

k
(2β + 2− 4α) < 2β + 1− 2α for j = 1, ..., k.
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By Lemma 2, we have the real interpolation relations

Ḃ
2β+2−4α+ d

p+
d
q

p,∞ (Rd) =

(
Ḃ

1−2α+ d
p

p,∞ (Rd), Ḃ
2β+1−2α+ d

p
p,∞ (Rd)

)
1−θ0,∞

, (36)

Ḃ
d
p−

d
q

p,∞ (Rd) =

(
Ḃ

1−2α+ d
p

p,∞ (Rd), Ḃ
2β+1−2α+ d

p
p,∞ (Rd)

)
θ0,∞

, (37)

Ḃ
(k−j)(2β+2−4α)

k + d
p

p,∞ (Rd) =

(
Ḃ

1−2α+ d
p

p,∞ (Rd), Ḃ
2β+1−2α+ d

p
p,∞ (Rd)

)
1−θj ,∞

, (38)

Ḃ
j(2β+2−4α)

k + d
p

p,∞ (Rd) =

(
Ḃ

1−2α+ d
p

p,∞ (Rd), Ḃ
2β+1−2α+ d

p
p,∞ (Rd)

)
θj ,∞

(39)

for

θ0 =
2α− 1− d

q

2β
, θj =

j
k (2β + 2− 4α)− 1 + 2α

2β
, j = 1, ..., k − 1.

We thus have

∥Mu0u∥XT
<∼ ∥u0∥

Ḃ
1−2α+ d

p
p,∞

+ ess sup
0<t<T

t
β
α ∥et

1
2α |∇|1u(t)∥

Ḃ
2β+1−2α+ d

p
p,∞

∥et
1
2α |∇|1u(t)∥

Ḃ
1−2α+ d

p
p,∞

<∼ ∥u0∥
Ḃ

1−2α+ d
p

p,∞

+ ess sup
0<t<T

t
β
α ∥et

1
2α |∇|1u(t)∥

Ḃ
2β+1−2α+ d

p
p,∞

∥u∥XT (40)

and

∥Mu0u−Mu0v∥XT

<∼
k−1∑
j=0

(
ess sup
0<t<T

t
β
α ∥et

1
2α |∇|1u(t)∥

Ḃ
2β+1−2α+ d

p
p,∞

)1−θj

∥u∥θjXT
∥u− v∥XT

+

k−1∑
j=0

(
ess sup
0<t<T

t
β
α ∥et

1
2α |∇|1v(t)∥

Ḃ
2β+1−2α+ d

p
p,∞

)θj

∥v∥1−θj
XT

∥u− v∥XT . (41)

Since

lim
t→0

t
β
α ∥et

1
2α |∇|1u(t)∥

Ḃ
2β+1−2α+ d

p
p,∞

+ lim
t→0

t
β
α ∥et

1
2α |∇|1v(t)∥

Ḃ
2β+1−2α+ d

p
p,∞

= 0,

the estimates

∥Mu0u∥XT
≤ C∥u0∥

Ḃ
1−2α+ d

p
p,∞

and

∥Mu0
u−Mu0

v∥XT
≤ 1

2
∥u− v∥XT

hold true for a small constant T > 0 and a suitable constant C. Hence there exists a unique
solution u ∈ XT satisfying u =Mu0u due to the Banach contraction principle.

For the existence of small global solution with T → ∞, we adopt the space

X∞ =

{
u ∈ L∞(0,∞; Ḃ

1−2α+ d
p

p,∞ (Rd)); ∥u∥X∞ ≤ ∥u0∥
1
2

Ḃ
1−2α+ d

p
p,∞

}
for ∥u∥X∞ expressed in (35) as T → ∞. By (40) and (41), we have the following bounds

∥Mu0u∥X∞
<∼ ∥u0∥

Ḃ
1−2α+ d

p
p,∞

+ ∥u∥2X∞
≤ ∥u0∥

1
2

Ḃ
1−2α+ d

p
p,∞

, u ∈ X∞,

∥Mu0u−Mu0v∥X∞ ≤ 1

2
∥u− v∥X∞ , u, v ∈ X∞

provided that ∥u0∥
Ḃ

1−2α+ d
p

p,∞

is sufficiently small. Therefore the global solution exists due to

Banach contraction principle. The proof of Theorem 2 is complete.
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Remark 1. Note that S(Rd) is not dense in L∞(Rd) and hence is not dense in Ḃ
1−2α+ d

p
p,∞ (Rd).

That is,

∥e−t(−∆)αu0 − u0∥
Ḃ

1−2α+ d
p

p,∞

̸→ 0 as t→ 0

for some u0 ∈ Ḃ
1−2α+ d

p
p,∞ (Rd). Thus the continuity of the solution in the space Ḃ

1−2α+ d
p

p,∞ (Rd)

is generally not obtainable. However, if we define the space B̊
1−2α+ d

p
p,∞ (Rd) ⊂ Ḃ

1−2α+ d
p

p,∞ (Rd)

to be the closure of S(Rd) under the norm of Ḃ
1−2α+ d

p
p,∞ (Rd), then the solution u given in

Theorem 2 satisfies the continuity property

u ∈ C([0, T ); B̊
1−2α+ d

p
p,∞ (Rd)) whenever u0 ∈ B̊

1−2α+ d
p

p,∞ (Rd).

and hence solves the initial value problem defined by (1) and (31).

To show the continuity, we see that the proof of Theorem 1 yields the estimate

∥(∂t + (−∆)α)−1Pu · ∇u(t)∥Ḃσ
p,∞

+ t
β
α ∥(∂t + (−∆)α)−1Pu · ∇u(t)∥Ḃσ+2β

p,∞

<∼ ess sup
0<t<T

t
β
α ∥uu∥Ḃσ+2β+1−2α

p,∞
.

This together with the proof of (40) using (29) instead of (28) implies that

∥u(t)− u0∥
Ḃ

1−2α+ d
p

p,∞

<∼ ∥e−t(−∆)αu0 − u0∥
Ḃ

1−2α+ d
p

p,∞

+ ess sup
0<t<T

t
β
α ∥u(t)∥

Ḃ
2β+1−2α+ d

p
p,∞

∥u(t)∥
Ḃ

1−2α+ d
p

p,∞

for 0 < t < T . Hence we have

lim
t→0

∥u(t)− u0∥
Ḃ

1−2α+ d
p

p,∞

<∼ lim
t→0

∥e−t(−∆)αu0 − u0∥
Ḃ

1−2α+ d
p

p,∞

. (42)

Moreover, for small ϵ > 0, the definition of the space B̊
1−2α+ d

p
p,∞ (Rd) ensures the existence of

v0 ∈ B
1+ d

p
p,∞ (Rd) satisfying

∥u0 − v0∥
Ḃ

1−2α+ d
p

p,∞

< ϵ.

This yields that

∥e−t(−∆)αu0 − u0∥
Ḃ

1−2α+ d
p

p,∞

<∼ ∥u0 − v0∥
Ḃ

1−2α+ d
p

p,∞

+ ∥e−t(−∆)α(u0 − v0)∥
Ḃ

1−2α+ d
p

p,∞

+ ∥e−t(−∆)αv0 − v0∥
Ḃ

1−2α+ d
p

p,∞

<∼ ϵ+ ∥u0 − v0∥
Ḃ

1−2α+ d
p

p,∞

+

∫ t

0

∥(−∆)αe−s(−∆)αv0∥
Ḃ

1−2α+ d
p

p,∞

ds

<∼ ϵ+ t∥v0∥
Ḃ

1+ d
p

p,∞

.

The combination of the previous equation and (42) gives the estimate

lim
t→0

∥u(t)− u0∥
Ḃ

1−2α+ d
p

p,∞

<∼ ϵ

for any ϵ > 0. We thus obtain the continuity of the solution u at the initial state t = 0 and
therefore the continuity of u for t > 0 due to the solution semigroup property of (1).

The Gevrey regularity result for α > 1
2 obtained in Theorem 2 is not extendable to the

critical state α = 1
2 as the proof of generalized Hölder estimate (12) is derived from Lp

estimate, which is only available for 1 < p < ∞. When α = 1
2 , it is necessary to consider

the solution in the L∞(Rd) space. Therefore we provide an application of Theorem 1 for
α = 1

2 without involvement of Gevrey regularity.
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Theorem 3. Let α = 1
2 and 1 < p <∞. Then there exists a constant T > 0 such that initial

value problem defined by (1) and (31) admits a unique solution u ∈ C([0, T ); B̊
d
p
p,∞(Rd))

subject to the estimate

ess sup
0<t<T

(
t2β∥u(t)∥

Ḃ
2β+ d

p
p,∞

+ ∥u(t)∥
Ḃ

d
p
p,∞

+ ∥u(t)∥L∞

)
<∼ ∥u0∥

Ḃ
d
p
p,∞

+ ∥u0∥L∞ (43)

for 0 < β < 1
2 , provided that the initial function u0 ∈ B̊

d
p
p,∞(Rd) ∩ L∞(Rd).

Proof. The proof of Theorem 1 shows that

∥(∂t + (−∆)α)−1Pu · ∇u(t)∥
Ḃ

d
p
p,∞

+ t2β∥(∂t + (−∆)α)−1Pu · ∇u(t)∥
Ḃ

2β+ d
p

p,∞

+∥(∂t + (−∆)α)−1Pu · ∇u(t)∥L∞
<∼ ess sup

0<t<T
t2β∥uu(t)∥

Ḃ
2β+ d

p
p,∞

. (44)

Defining the space

XT =

{
u ∈ C([0, T ); B̊

d
p
p,∞(Rd)); ∥u∥XT ≤ C∥u0∥

Ḃ
d
p
p,∞

+ C∥u0∥L∞

}
for a constant C and the norm

∥u∥XT
= ess sup

0<t<T

(
t2β∥u(t)∥

Ḃ
2β+ d

p
p,∞

+ ∥u(t)∥
Ḃ

d
p
p,∞

+ ∥u(t)∥L∞

)
and recalling Mu0u given in (34), we use equation (44) to obtain

∥Mu0u− e−t(−∆)αu0∥XT
<∼ ess sup

0<t<T
t2β∥uu(t)∥

Ḃ
2β+ d

p
p,∞

. (45)

To estimate the right-hand side term of this equation, we employ (30), (38) and (39) to
obtain

∥uu∥
Ḃ

2β+ d
p

p,∞

<∼
k−1∑
j=1

∥u∥
Ḃ

j
k

(2β+ d
p
)

kp
j

,∞

∥u∥
Ḃ

k−j
k

(2β+ d
p
)

kp
k−j

,∞

+ ∥u∥L∞∥u∥
Ḃ

2β+ d
p

p,∞

<∼
k−1∑
j=1

∥u∥
Ḃ

2βj
k

+ d
p

p,∞

∥u∥
Ḃ

2β(k−j)
k

+ d
p

p,∞

+ ∥u∥L∞∥u∥
Ḃ

2β+ d
p

p,∞

<∼ ∥u∥
Ḃ

d
p
p,∞

∥u∥
Ḃ

2β+ d
p

p,∞

+ ∥u∥L∞∥u∥
Ḃ

2β+ d
p

p,∞

for an integer k > 2β + d
p . Therefore (45) becomes

∥Mu0u− e−t(−∆)αu0∥XT
<∼ ess sup

0<t<T
t2β∥u(t)∥

Ḃ
2β+ d

p
p,∞

∥u∥XT . (46)

This combined with Remark 1 gives the continuity

lim
t→0

∥Mu0u(t)− u0∥
Ḃ

d
p
p,∞

<∼ lim
t→0

∥e−t(−∆)αu0 − u0∥
Ḃ

d
p
p,∞

= 0

and the boundedness

∥Mu0
u∥XT

<∼ ∥e−t(−∆)αu0∥XT
+ ess sup

0<t<T
t2β∥u(t)∥

Ḃ
2β+ d

p
p,∞

∥u∥XT

≤ C(∥u0∥
Ḃ

d
p
p,∞

+ ∥u0∥L∞)

for a suitable choice of the constant C, since limt→0 t
2β∥u(t)∥

Ḃ
2β+ d

p
p,∞

= 0. This shows that

the operator Mu0 maps the space XT into itself when T > 0 is sufficiently small. Similarly,
we also have the contraction property

∥Mu0u−Mu0v∥XT ≤ 1

2
∥u− v∥XT for u, v ∈ XT .
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Since XT is a complete metric space, the operator Mu0 has a unique fixed point in XT as a
result of the Banach contraction principle. This completes the proof of Theorem 3.

It should be mentioned that the well-posedness result described by Theorem 2 is essen-
tially based Theorem 1 and Lemma 6, by which the norm of the negative degree homogeneous

space Ḃ
d
p−

d
q

p,∞ (Rd) in Lemma 6 can be controlled by those of the positive degree homogeneous

space Ḃ
2β+1−2α+ d

p
p,∞ (Rd) and the negative degree homogeneous space Ḃ

1−2α+ d
p

p,∞ (Rd) in The-
orem 1 for 1

2 < α. For the weak dissipation situation 0 < α < 1
2 , the negative degree

homogeneous space Ḃ
d
p−

d
q

p,∞ (Rd) is no longer an interpolation space between the two positive

degree homogeneous spaces Ḃ
2β+1−2α+ d

p
p,∞ (Rd) and Ḃ

1−2α+ d
p

p,∞ (Rd). Thus for controlling the
nonlinear term of (1), the Hölder like estimate in Lemma 6 should be improved. To do so, it
is useful to consider the Hölder like estimate involving derivatives as related to commutator
estimates [8, 14, 15, 21].
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